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ABSTRACT

The internal dynamics of a dark matter structure may have the remarkable property that the local temperature
in the structure depends on direction. This is parameterized by the velocity anisotropy β which must be zero
for relaxed collisional structures, but has been shown to be nonzero in numerical simulations of dark matter
structures. Here, we present a method for inferring the radial profile of the velocity anisotropy of the dark matter
halo in a galaxy cluster from X-ray observables of the intracluster gas. This nonparametric method is based on
a universal relation between the dark matter temperature and the gas temperature which is confirmed through
numerical simulations. We apply this method to observational data and we find that β is significantly different
from zero at intermediate radii. Thus, we find a strong indication that dark matter is effectively collisionless
on the dynamical timescale of clusters, which implies an upper limit on the self-interaction cross-section per
unit mass σ/m � 1 cm2 g−1. Our results may provide an independent way to determine the stellar mass
density in the central regions of a relaxed cluster, as well as a test of whether a cluster is in fact relaxed.
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1. INTRODUCTION

Our understanding of dark matter structures has increased
significantly over recent years. This progress has mainly been
driven by numerical simulations which have identified a range
of universalities of the dark matter structures. One of the first
general properties to be suggested was the radial density profile
(Navarro et al. 1996; Moore et al. 1998; Diemand et al. 2004;
Merritt et al. 2006; Graham et al. 2006), whose radial behavior
was shown to change from a fairly shallow decline in the cen-
tral region to a much steeper decline in the outer regions. This
behavior has been confirmed observationally for galaxy clusters,
both through X-ray observations (Buote & Lewis 2004; Pointe-
couteau et al. 2005; Arnaud et al. 2005; Vikhlinin et al. 2006;
Pratt et al. 2006) and also more recently through strong and
weak lensing observations (Sand et al. 2004; Broadhurst et al.
2005; Comerford et al. 2006; Limousin et al. 2008).

A slightly less intuitive quantity to be considered is the dark
matter velocity anisotropy defined by

β ≡ 1 − σ 2
t

σ 2
r

, (1)

where σ 2
t and σ 2

r are the one-dimensional tangential and
radial velocity dispersions in a spherical system (Binney &
Tremaine 1987). This anisotropy was shown in pure dark matter
simulations to increase radially from zero in the central region
to roughly 0.5 in the outer region (Carlberg et al. 1997; Cole &
Lacey 1996; Hansen & Moore 2006). For collisional systems,
in contrast, the velocity anisotropy is explicitly zero in the
equilibrated regions. Therefore, eventually inferring β from
observational data is an important test of whether dark matter
is in fact collisionless, as assumed in the standard model of

structure formation. On this note, it has been shown that the
Galactic velocity anisotropy can affect the detection rates of
direct dark matter searches (Vergados et al. 2008), and it is in
principle measurable in a direction-sensitive detector (Host &
Hansen 2007).

The most massive bound structures in the universe are clusters
of galaxies that consist of an extended dark matter halo, an
X-ray emitting plasma making up the intracluster medium
(ICM), and the individual galaxies. While the contribution of
galaxies to the total mass is small, approximately 10% of
the cluster mass resides in the ICM. The present generation
of X-ray satellites, XMM-Newton and Chandra, allows very
accurate measurements of azimuthally averaged radial profiles
of density and temperature of the ICM. These are used, under the
assumption of hydrostatic equilibrium and spherical symmetry
of both gas and total mass distributions, to estimate total, gas,
and dark matter mass profiles (Fabricant et al. 1980).

Below we infer the radial velocity anisotropy profile of
dark matter in 16 galaxy clusters using a generally applicable
framework without any parameterized modeling of the clusters.
In short, we assume a universal relation between the effective
temperature of dark matter and the ICM temperature, which
allows us to solve the dynamics of the dark matter halo using
the radial gas temperature and density profiles determined
from X-ray data. We investigate the shape and validity of this
temperature relation in two cosmological simulations of galaxy
clusters, based on independent numerical codes. We apply our
method to 16 galaxy clusters from two different samples and
find a velocity anisotropy significantly different from zero in
the outer parts, in qualitative agreement with simulations.

Our approach here is a generalization of the nonparametric
analysis in Hansen & Piffaretti (2007) where β was inferred ne-
glecting the radial dependence. We also note the parameterized
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analyses in Ikebe et al. (2004) and Morandi & Ettori (2007),
where the total dark matter velocity dispersion was inferred as-
suming either β = 0, or the analytical β-profiles of Colı́n et al.
(2000) or Cole & Lacey (1996; see also Wojtak et al. 2008). In
particular, Morandi & Ettori (2007) found that the dark matter
temperature and the ICM temperature were essentially the same
in strong cooling-core clusters.

The structure of the paper is the following: in the next section,
we discuss how we relate the temperature of dark matter to the
observable gas temperature. In Section 3, we show how we
can then solve the dynamics of the dark matter. In Section 4,
we test the assumed temperature relation and our method on
numerical simulations, and in Section 5 we apply the method
to observational data. Section 6 is the summary and discussion.
We assume h = 0.70 everywhere.

2. THE TEMPERATURE OF DARK MATTER

The equality of inertial and gravitational mass implies that the
orbit of a test particle in a gravitational system is independent of
mass. For example, the velocity of a circular orbit in a spherical
mass distribution v2

c = GM(r)/r depends only on the distance
to the center of the system and the mass contained within that
radius. Therefore it is natural to assume that, at a given radius,
all species in a relaxed, spherical gravitational system have the
same average specific kinetic energy. Obviously, they also have
the same specific potential energy. In a gas system, equilibrium
implies energy equipartition between all species. It is clear that
the corresponding principle for a relaxed gravitational system is
a common velocity dispersion, precisely because gravitational
dynamics are independent of mass. Since the average velocity
is associated with the thermal energy content, this relationship
is expressed by

TDM = κTgas. (2)

The parameter κ is constant as long as the impact of radiative
or entropy-changing processes affecting the gas is negligible
and the system is relaxed. Therefore, we allow for a radial
dependence, κ = κ(r/r2500), where r2500 is the scale radius
within which the mean total density is 2500 times the critical
density at the redshift of the cluster.

The dark matter temperature in (2) is naturally not well
defined as there is no thermodynamic equilibrium for a col-
lisionless gas. Instead, we simply define an effective dark mat-
ter temperature which is proportional to the three-dimensional
velocity dispersion,

kBTDM = 1

3
μmHσ 2

DM (3)

= 1

3
μmH

(
σ 2

r + 2σ 2
t

)
. (4)

The velocity dispersion has been decomposed into the contri-
butions from the one-dimensional radial and tangential disper-
sions. We choose the constant of proportionality to be the mean
molecular mass of the intracluster gas simply to allow κ to be of
order unity. Equations (2)–(4) are equivalent to assuming that
the specific energies of gas and dark matter particles are the
same up to a factor of κ , on average. The same conjecture was
made in Hansen & Piffaretti (2007), but with κ = 1 explicitly.

It should be mentioned that the temperature relation (2)
was recently analyzed in simulations by Evrard et al. (2008).
Whereas we allow a possible radial variation in the temperature
relation, these authors considered averages within r200 and found

that

κ̃<r200 ≡ kBTgas/μmH

σ 2
DM

= 1.04 ± 0.06, (5)

This was based on their determination of κ̄−1
<r200

= (0.87 ±
0.04)〈Tspec/Tmw〉, where the ratio of the spectroscopic tem-
perature to the mass-weighted temperature was 〈Tspec/Tmw〉 =
1.1 ± 0.05 (Nagai 2006). Then, in Rines et al. (2008), by apply-
ing virial scaling to the WMAP5+SN+BAO results (Komatsu
et al. 2008), an average value of κ̃−1|<r500 = 1.1 was found.
The authors concluded that the observational results indicated
that the average specific energy of the ICM was close to both
that of the dark matter and that of the galaxies. In Section 4,
we will arrive at the same conclusion for simulated galaxy
clusters.

3. SOLVING THE DARK MATTER DYNAMICS

Equation (2) allows us to estimate the total velocity dispersion
profile of the dark matter structure from measurements of the
radial temperature profile of the gas. In this section, we discuss
how we can proceed to determine the dark matter velocity
anisotropy.

The collisionless Jeans equations relate the dynamical prop-
erties of the dark matter to the gravitational potential of the
cluster. Assuming that the system is spherically symmetric and
in a steady state, the second Jeans equation can be put in the
form (Binney & Tremaine 1987)

d
(
νv2

r

)
dr

+
ν

r

[
2v2

r − (
v2

θ + v2
φ

)] = −ν
GM

r2
, (6)

where ν is the dark matter number density, v2
i is the second

moment of the ith velocity component, and M is the mass
contained within radius r. If it is further assumed that there are no
bulk flows, vi = 0, and that the tangential velocity dispersions
are equal, σ 2

θ = σ 2
φ ≡ σ 2

t , the Jeans equation becomes

σ 2
r

(
d ln ρDM

d ln r
+

d ln σ 2
r

d ln r
+ 2β

)
= −GM(r)

r
, (7)

where ρDM is the mass density, σ 2
r is the radial velocity

dispersion, and β is the velocity anisotropy introduced in (1).
Similar to the Jeans equation, the radial part of the Euler

equations of the ICM expresses the condition that the thermal
pressure of the gas balances the gravitational potential. This
equation of hydrostatic equilibrium reads

kBTgas

μmH

(
d ln ne

d ln r
+

d ln Tgas

d ln r

)
= −GM(r)

r
, (8)

where Tgas is the gas electron temperature and ne is the number
density of electrons. This important equation has been widely
used to estimate the total mass of a galaxy cluster from X-
ray data. In the case where there is turbulence or larger
scale bulk motion in the gas, additional terms of the form
(�v · ∇)�v − (

v2
θ + v2

φ

)/
r appear (Landau & Lifshitz 1987).

Neglecting such terms may lead to an underestimate of the
mass; however, this is usually not a major effect for systems
that appear relaxed (Piffaretti & Valdarnini 2008).

By equating (7) and (8) and using (1) and (2) to eliminate
β, we obtain the following differential equation for the radial
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velocity dispersion:

σ 2
r

(
d ln ρDM

d ln r
+

d ln σ 2
r

d ln r
+ 3

)
= ψ(r), (9)

where the function ψ is defined by

ψ(r) = 3κ
kBTgas

μmH

− GM

r
. (10)

Clearly, ψ is determined directly from the X-ray observables
and the κ-profile, which we discuss in Section 4.3.

The differential Equation (9) is solved by finding an integrat-
ing factor which yields

σ 2
r (r) = 1

ρDM(r) r3

∫ r

0
dr ′ ψ(r ′)ρDM(r ′)r ′2. (11)

The dark matter density is determined as usual through ρDM =
ρtot − μmHne. With the radial velocity dispersion profile
determined, the velocity anisotropy is easily recovered from
either the temperature relation (2) or the Jeans equation (7),

2βtr = 3

(
1 − κ

kBTgas

μmHσ 2
r

)
, (12)

2βJe = −d ln
(
ρDMσ 2

r

)
d ln r

− GM

rσ 2
r

. (13)

Obviously, these two expressions should be equal. This can be
used as a consistency check on whether numerical issues related
to the differentiations and integration involved are kept under
control.

To summarize, the assumed relation (2) between the effective
dark matter temperature and the gas temperature, along with
the mass estimate from (8), allows us to solve the dark matter
dynamics directly from X-ray data, and determine both the radial
velocity dispersion and the velocity anisotropy as functions of
radius.

4. CLUSTER SIMULATIONS

We use numerical simulations of the formation of galaxy
clusters in the ΛCDM cosmology to investigate the validity and
shape of the temperature relation (2), and to test the method for
determining the velocity anisotropy. In order to check systematic
effects, we take samples from two different simulations based
on two completely independent numerical codes.

4.1. CLEF

We first consider a sample of 67 clusters taken from the
CLEF simulation (Kay et al. 2007), details of which are briefly
summarized here. The CLEF simulation was run with the
GADGET2 N-body/SPH code (Springel 2005) and followed
the evolution of large-scale structure within a box of comoving
length, 200h−1 Mpc. The following cosmological parameters
were assumed: Ωm = 0.3; ΩΛ = 0.7; Ωb = 0.0486;h =
0.7; ns = 1; σ8 = 0.9. Here, the value of the Hubble constant is
written as 100 h km s−1 Mpc−1 and σ8 is the rms mass fluctuation
at the present epoch in a sphere of radius 8 h−1Mpc. The
number of particles was set to 4283 for each of the gas and
dark matter species, thus determining the particle masses to
be mDM = 7.1 × 109h−1 M	 and mgas = 1.4 × 109h−1 M	,
respectively. The equivalent Plummer softening length was set to

20 h−1 kpc and held fixed at all times in comoving coordinates.
Pressure forces were calculated using the standard GADGET2
entropy-conserving version of SPH with an artificial viscosity to
convert kinetic energy into thermal energy where the flow was
convergent. The gas could cool radiatively assuming a fixed
metallicity, Z = 0.3 Z	. Cold (T < 105 K) gas with nH >
10−3 cm−3 either formed stars or was heated by an entropy,
ΔS = 1000 keV cm2. This choice was determined stochastically
by selecting a random number, r, from the unit interval and
heating the particle if r < 0.1, i.e., a 10% probability of
being heated. This high level of feedback was necessary to
reproduce the observed excess entropy in clusters (see Kay
et al. 2007 for further details).

To select the cluster sample, we first consider all clusters at
z = 0 with X-ray temperatures, kT > 2 keV; this produces
95 objects with virial masses Mvir > 1.3 × 1014h−1 M	
(correspondingly, > 15, 000 dark matter particles). We then
select those clusters with 3D substructure statistic, s < 0.05.
The substructure statistic (Thomas et al. 1998) measures the
displacement of the center of mass from the potential minimum
of the cluster (taken to be its center), relative to r500, which is
the scale radius within which the mean total density is 500 times
the critical density. By making this cut, we therefore exclude all
clusters that show significant signs of dynamical activity, i.e.,
major mergers. We estimate the ellipticities from mock surface
brightness maps of the clusters in the sample, using the formulae
in Hashimoto et al. (2007), and we find that the median ellipticity
is only about 0.1.

4.2. V06

The second sample is a subsample of that presented in
Valdarnini (2006) which we refer to as V06. These simulations
assumed a concordance flat ΛCDM with the same cosmological
parameters as for the CLEF simulation.

The simulation ensemble of galaxy clusters was constructed
according to a procedure described in Piffaretti & Valdarnini
(2008). Here, we briefly summarize the most important aspects.
The hydrodynamic simulations were run using an entropy-
conserving multistep TREESPH code for a sample of 153
clusters spanning a range from 
1.5 × 1015h−1 M	 down to
Mvir 
 1.5 × 1014h−1 M	. The initial conditions (zin = 49)
were extracted from a set of purely N-body cosmological
simulations in which clusters of galaxies were identified from
the particle distribution at z = 0 using a friends-of-friends
algorithm. In order to investigate the effect of the implemented
gas processes on the energy equipartition between gas and dark
matter particles, we performed both adiabatic and radiative
simulations. The radiative simulations are of course more
realistic than the adiabatic ones because they additionally
take into account radiative cooling, star formation, energy and
metal feedback (Valdarnini 2003). More details concerning
the simulation technique and the implementation of physical
processes of the gas are given in Valdarnini (2006).

In order to avoid contamination from dynamically perturbed
clusters, we select the 20 most relaxed objects at z = 0. The
selection is based on the power ratio method, which measures
the amount of substructure in X-ray surface brightness maps.
The map sources a pseudo potential which is expanded in plane
harmonics, and the ratio of the third coefficient to the zeroth is
a measure of substructure. More details are given in Piffaretti &
Valdarnini (2008).
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Figure 1. Radial profile of κ = TDM/Tgas for the samples of clusters obtained
from the CLEF and V06 simulations comprising 67 and 20 clusters, respectively.
We plot the median and 1σ percentiles taken over each sample. The vertical line
indicates the largest radius of the observational data sample, while the horizontal
lines indicate the mean (dashed) and standard deviation (dotted) of the κ-profile
that we use in the fiducial analysis. Note that, for the CLEF sample, only eight
clusters contribute to the innermost bin.

(A color version of this figure is available in the online journal.)

4.3. The Temperature Relation

We examine the temperature relation (2) in the two simulated
samples by comparing the gas mass-weighted temperature to
the rescaled dark matter velocity dispersion. The resulting κ-
profiles are shown in Figure 1 and clearly κ ≈ 1 for both
samples. Since we apply somewhat different criteria to select
the two simulation samples, it is not surprising to find slightly
different profiles. This indicates a systematic uncertainty of
±0.1 in the simulated κ profiles. The kinetic energy associated
with bulk motions of both gas and dark matter particles is at most
a few percent of the thermal energy within 2 r2500, outside which
bulk motion is not negligible. This is in agreement with what
was found in Ascasibar (2003). Due to the standard problem
of limited force resolution, the simulations do not probe the
innermost region reliably. Therefore we exclude data inside a
cutoff radius (56 h−1 kpc for CLEF, 0.1 r2500 for V06), which
means we cannot estimate κ in the central region where gas
physics can make a significant impact.

The adiabatic version of the V06 sample exhibits a larger
median κ-profile which is constant about 1.2 within r2500 and
increases steadily to 1.4 at r200. This is comparable with the
earlier work of Rasia et al. (2004), where the specific energy
of dark matter was seen to be larger than that of the gas by
20%–30% in adiabatic simulations.

4.4. Reconstructing the Velocity Anisotropy

In order to test the method outlined above for determining β,
we reconstruct the anisotropy profiles observed in the simulated
samples. Here, we assume κ = 1 for all radii even though we
expect deviations at small radii. First we derive the integrated
mass profile M(r) for each cluster assuming hydrostatic equilib-
rium (8), and from that the total density profile. The numerical
derivatives involved are calculated using three-point quadratic
interpolation. The estimated density profile, as shown in Figure 2
(top), displays a satisfactory agreement with the actual density
profile for both the CLEF and V06 samples. The only excep-
tion is at the outermost radii above r2500 where the density is
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Figure 2. Comparison of estimated and true values of the physical quantities
involved in determining the velocity anisotropy β in our simulations. Top: the
ratio of the reconstructed total density to the true one; bottom: the ratio of the
reconstructed σ 2

r to the true one. The error bars show the 1σ percentiles taken
over the sample members.

(A color version of this figure is available in the online journal.)

underestimated. Next, we calculate the radial velocity dispersion
(11) by interpolating the integrand from r = 0 using a four-point
natural spline interpolation. We compare the resulting radial ve-
locity dispersion with the actual in Figure 2 (bottom) which
shows that there is good agreement except for the deviation at
large radii already seen in the density profiles.

Finally, we determine the velocity anisotropy parameter β.
We find similar results whether we calculate βJe or βtr; however
the temperature relation yields less noisy results. The median
velocity anisotropy profiles are shown in Figure 3 together with
the median actual profile. The reconstructed profile tracks the
actual anisotropy well in the inner parts but overestimates β in
the outer parts. There is also considerable noise in the results.

In order to understand the origin of the deviations at
large radii and the significant scatter in our results, we investigate
the systematics of the analysis, as applied to the CLEF sample
(similar conditions hold for the V06 sample). First, we substitute
the dark matter density estimated from hydrostatic equilibrium
with the true density. The β-profiles calculated on this basis are
shown in the top panels of Figure 4. The agreement between the
estimated and actual β is considerably improved, and the error
bars are significantly reduced. This clearly indicates that, in the
fiducial analysis, the numerical derivatives necessary to estimate
ρDM are responsible for the large error bars. Since we do not
want to do any parameterized modeling of the gas properties,
the numerical derivatives are liable to amplify noise and induce
systematic deviations in the outermost bin, where the quantities
are only constrained to one side. Additionally, this explains why
βJe appears noisier in the fiducial analysis since an additional
derivative must be calculated. The test also shows that there is
a deviation from hydrostatic equilibrium at large radii which is
part of the reason why β is overestimated. As a second test, we
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Figure 3. Reconstructed velocity anisotropies for the simulated samples. The
hatched bands show the actual β-profiles of the samples. Error bars show the
1σ percentiles taken over the sample members.

(A color version of this figure is available in the online journal.)

additionally use the true three-dimensional velocity dispersion
instead of using the temperature relation. This yields further
improvement as to how well the reconstructed β tracks the true
one, as shown in the bottom panels of Figure 4. This implies
that it is possible to get the correct scale of the radial velocity
dispersion, calculated as an integral from the center, despite the
lack of resolved data in the inner radii. We note that, with respect
to observational data, the tests we apply here can possibly be
utilized in the future, e.g., with accurate density profiles inferred
from gravitational lensing, and with more detailed knowledge
of κ from improved simulations. We conclude that the numer-
ical simulations provide proof that our method is robust, and
that it is indeed possible to infer the β-profile despite lacking
knowledge of κ in the center.

5. OBSERVATIONS

Next we apply our analysis to observational data from which
the radial gas density and temperature profiles are recovered.
This is done strictly using nonparametric methods, i.e., no
modeling of the gas properties is involved. Our data consist of
the deprojected density and temperature profiles of two samples
of clusters at low and intermediate redshift, respectively. The
deprojected profiles were obtained from X-ray data analysis
published in earlier work (details below). We consider clusters
which appear relaxed and close to spherical, and for which
sufficient spectroscopic data are available to analyze several
annuli, so that the radial variations of the gas density and
temperature are resolved with good statistics.

The first set of 11 clusters at low redshift is based on
X-ray data from XMM-Newton of the clusters: A262, A496,
A1795, A1837, A2052, A4059, Sérsic 159-3, MKW3s, MKW9,
NGC533, and 2A0335+096. These objects are highly relaxed
cool-core (CC) clusters selected to match the requirements de-
scribed above. The objects were part of the sample analyzed in
Kaastra et al. (2004; see this paper for an extensive presentation
of the data analysis), in which deprojected radial temperature
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Figure 4. Systematics of the reconstruction of the β-profiles for the CLEF
simulation. Again, β is recovered both from Equation (12) (left) and
Equation (13) (right). The true dark matter density is substituted for the es-
timated, and in the bottom panels we additionally use the true total velocity
dispersion instead of estimating it from TDM = κTgas.

(A color version of this figure is available in the online journal.)

and density profiles were derived from spatially resolved spec-
troscopy. We adopt the radial bin selection of Piffaretti et al.
(2005) in order to ensure a robust determination of gas tem-
perature and density for the full radial range. Note that data
for A2052 and Sérsic 159-3 were also used in the analysis by
Hansen & Piffaretti (2007), where a constant velocity anisotropy
was assumed.

The other set of five intermediate redshift X-ray galaxy
clusters (RXJ1347.5, A1689, A2218, A1914, A611) is from the
Chandra sample analyzed in Morandi et al. (2007). The radial
deprojected temperature and density profiles were retrieved
through resolved spectral analysis in a set of annuli, selected to
collect at least 2000 net counts, by assuming spherical geometry
and by using the definition of “effective volume” (see Morandi
et al. 2007 for further details).

6. RESULTS

We determine the dark matter velocity anisotropy profile β(r)
of each cluster according to the recipe in Section 3 using a Monte
Carlo method. For each radial bin the deprojected gas tempera-
ture and density are sampled assuming Gaussian uncertainties,
i.e., a random number is chosen from a Gaussian distribution
with mean equal to the measured temperature or density and a
standard deviation equal to the uncertainty of the measurement.
The bins are sampled independently. The parameter κ is also
sampled for each bin assuming a Gaussian distribution with a
mean of 1 and a standard deviation of 0.1, which is a reason-
able value according to the simulations. The sampled profiles
are used to reconstruct the total mass through Equation (8), and
then the integrand, the radial velocity dispersion, and the ve-
locity anisotropy are calculated in each bin. The sampled set
of profiles is accepted only if the temperature and density as
well as the reconstructed dark matter density and radial veloc-
ity dispersion are all nonnegative in all bins. For each sample,
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Figure 5. Three steps in the calculation of the velocity anisotropy for Sérsic 159−3. Left: the inferred total density; center: the radial velocity dispersion; right: the
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(A color version of this figure is available in the online journal.)

Table 1
Properties of Our Cluster Sample

Cluster z r2500/ (kpc) M2500/ (M	)

A262 0.015 256 ± 28 (2.7 ± 0.8) × 1013

A496 0.032 398 ± 10 (1.0 ± 0.2) × 1014

A1795 0.064 504 ± 22 (1.9 ± 0.2) × 1014

A1837 0.071 374 ± 26 (8.0 ± 1.7) × 1013

A2052 0.036 362 ± 11 (6.7 ± 0.6) × 1013

A4059 0.047 445 ± 21 (1.3 ± 0.2) × 1014

Sérsic 159−3 0.057 337 ± 17 (5.7 ± 0.8) × 1013

MKW3s 0.046 404 ± 14 (9.5 ± 0.9) × 1013

MKW9 0.040 279 ± 44 (3.2 ± 1.5) × 1013

NGC533 0.018 191 ± 15 (9.7 ± 2.2) × 1012

2A0335+096 0.034 350 ± 40 (6.9 ± 2.5) × 1013

A611 0.29 519 ± 52 (2.5 ± 0.6) × 1014

A1689 0.18 609 ± 4 (3.5 ± 0.7) × 1014

A1914 0.17 590 ± 44 (3.3 ± 0.8) × 1014

A2218 0.18 535 ± 51 (2.5 ± 0.7) × 1014

RXJ1347.5-1145 0.45 710 ± 60 (7.3 ± 1.4) × 1014

we also estimate the scale radius r2500 and the mass M2500 con-
tained within that radius. Table 1 summarizes the properties of
the clusters in our sample.

The numerical methods for calculating derivatives and inte-
grals are the same as for the simulated samples, i.e., three-point
quadratic interpolation is used for derivatives and four-point
spline interpolation is used for the integral in Equation (11).
The integration results are stable to using two-point linear, three-
point quadratic, or four-point least-squares quadratic interpola-
tion instead.

Individual steps of the reconstruction are shown in Figure 5
for the cluster Sérsic 159-3, and the deprojected input data are
also displayed. We always plot the median and 1σ percentiles
since spurious outliers in individual Monte Carlo samples can
bias the mean and standard deviation significantly. The size of
the error bars is mostly determined by the uncertainties of the
temperatures, to a lesser degree by the uncertainties of the ICM
densities, and it is virtually insensitive to the 10% variation
assumed for the κ-profile.

As can be seen in the right panel of Figure 5, the agreement
between βtr and βJe indicates that numerical effects associated
with the integration and differentiations are small. By contrast,
β becomes unphysically large in the outermost bins since
the reconstructed radial velocity dispersion for some samples
becomes greater than the total velocity dispersion. This result

is similar to that found in the blind analysis of the simulation
samples. As discussed above, this behavior is mainly due to
the gas deviating from hydrostatic equilibrium, and to a lesser
degree to edge effects making the numerical differentiations
less well determined in the outermost bin. It is possible that
systematic uncertainties in the input data or radial variations in
κ for individual clusters also play a role. In principle, we could
impose σ 2

r < σ 2, thereby forcing β < 1, as another physical
condition on each Monte Carlo sample, but we prefer not to do
so in order to have a consistency check.

We repeat the data analysis for the remaining 15 clusters of
our sample and the resulting velocity anisotropy profiles are
shown in Figure 6. In almost all cases, the anisotropy is small
in the inner radial bins and increases to between 0.5 and 1.0
in the outer parts. There is good agreement between the two
derivations of β for all clusters, indicating that numerical issues
are under control.

Since the qualitative behavior of the velocity anisotropy pro-
files are similar, we combine all our data into a single “stacked”
profile, as shown in Figure 7. In the region where direct com-
parison is possible, the measured stacked profile is very similar
to the reconstructed β profiles for the simulation samples (the
green line), and within r2500 there is also agreement with the
actual velocity anisotropy of the simulation samples (hatched
band). The velocity anisotropy is likely overestimated outside
r2500 for the same reason as for the simulated samples, i.e.,
deviation from hydrostatic equilibrium, but the effect appears
to be even stronger for the observational data. Interior to the
cut-off radius of the numerical simulations, the observations
tend to β ∼ 0.3. This is somewhat surprising since numer-
ical simulations at all mass scales generally have very little
anisotropy toward the center of structures. While we cannot ex-
clude the possibility that cluster halos are anisotropic even at
low radii, our result can also be explained by the neglected stel-
lar or black hole contribution ρ
 to the total mass density. To first
order, this contribution enters our analysis in the Jeans equation
through the estimated dark matter density ρ̃DM = ρDM + ρ
. In
terms of δ
 = ρ
/ρDM, the Jeans equation becomes

σ 2
r

(
d ln ρ̃DM

d ln r
+

d ln σ 2
r

d ln r
+ 2β − d ln(1 + δ
)

d ln r

)
= −GM(r)

r
,

(14)
where the slope of (1 + δ
) is negative since the stellar density
must fall off faster than the dark matter density. This means that
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Figure 6. Median velocity anisotropy profiles for the remaining 15 clusters of our sample. The estimated scale radii are also shown, and the symbols are the same as
in Figure 5.

(A color version of this figure is available in the online journal.)

we overestimate the velocity anisotropy in the central region
by not accounting for the stellar mass. Indeed, if we assume
that 50% of the total mass in the innermost bin is made up of
stars, the velocity anisotropy in the two innermost bins becomes

consistent with zero. There is also a second order correction
through the appearance of ρ̃DM in (11) instead of ρDM, but this
correction must be small since the density contributes to both
the integrand and the normalization factor.
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Figure 7. Median velocity anisotropy profile of all 16 clusters in our dataset. In
this case the error bars denote the 1σ percentiles of the combined probability
density of all clusters within the bin. The actual and reconstructed β-profiles
from the simulations are also shown. The left vertical line is the innermost radius
probed in the CLEF simulations and the right vertical line shows, roughly, the
onset of significant deviations from hydrostatic equilibrium in the simulations,
see Figure 2.

(A color version of this figure is available in the online journal.)

Finally, we investigate how the assumed shape of the κ-profile
affects our results. We try five different profiles as functions
of x = r/r2500 with noise added as before, and calculate the
velocity anisotropy profiles for each. The κ-profiles are chosen
so as to mimic either the effects of gas radiative cooling or
AGN heating in the central regions, or to check the results
if the dark matter is generally hotter or cooler than the gas.
The radially varying profiles we try are extreme cases of the
simulation profiles (Figure 1). Typically, the result is that the β-
profile is shifted in the central regions while the outer regions are
largely unaffected, as shown in Figure 8. This analysis confirms
that there is a significant velocity anisotropy at large radii,
independent of the specific assumptions about the temperature
relation.

7. SUMMARY AND DISCUSSION

In this paper, we have presented a nonparametric method for
inferring the velocity anisotropy of dark matter in clusters of
galaxies from the observable temperature and density of the
intracluster medium. We assume that the intracluster medium
has the same specific energy as the dark matter, and we
investigate the validity of this assumption in two different
cosmological simulations of the formation of galaxy clusters.
Both confirm the simplest possible form of the relation, namely
TDM ≈ Tgas in the radial range which is resolved.

We have tested how well our method can reconstruct the actual
velocity anisotropy in the simulated clusters, and we have found
good agreement between the two, although the reconstruction
is sensitive to systematic biases connected with deviations from
hydrostatic equilibrium.

We have applied our method to the radial ICM density and
temperature profiles of 16 galaxy clusters based on Chandra and
XMM-Newton X-ray data. The shape of the velocity anisotropy
profiles is always consistent with that seen in simulations, which
tends toward zero at the innermost radius where the temperature
relation is calibrated. It then increases to about 0.5 at r2500 and
even larger in the outer regions. The same is true of the fiducial
analysis applied to simulated data and is likely caused by a
deviation from hydrostatic equilibrium outside r2500. We also
find a significant anisotropy even if we assume radially varying
κ-profiles, such as can be expected given the strong gas cooling
and AGN heating in the core of many clusters, or if we assume
κ 
= 1. The agreement between the observed velocity anisotropy
and that predicted in numerical simulations shows that we are
beginning to also understand the dynamical aspects of dark
matter in halos.

In the innermost radial bins we measure a rather large
anisotropy, but this is most likely an overestimation due to the
neglect of the stellar mass in the center. This can be used as a
means to estimate the stellar mass profile of galaxy clusters if one
assumes that the velocity dispersion to be isotropic in the central
regions. Similarly, our method may be used as a general test of
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Figure 8. Effect of assuming different κ-profiles on the stacked velocity anisotropy profile of Figure 7. Top left: the five κ-profiles. Others, the resulting sample
averaged β-profiles calculated assuming the numbered κ-profile. In all cases, β is greater than zero in the outer parts and the general shape of Figure 7 is retained.

(A color version of this figure is available in the online journal.)
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whether a cluster is relaxed. A reconstructed velocity anisotropy
which deviates significantly from the simulated profiles would
be a strong hint that the data do not support the assumption of
hydrostatic equilibrium.

The inferred velocity anisotropy profiles are significantly
different from zero which means that the collective behavior
of dark matter is unlike that of baryonic particles in gases.
This shows that dark matter is effectively collisionless on the
timescale of τ ∼ 109 yr, the dynamical timescale of galaxy
clusters. By taking typical values at ∼0.3 r2500 and allowing
only a few scatterings within the time τ , this corresponds to an
order-of-magnitude upper limit to the scattering cross-section of
roughly σ/m = (ρDMτv)−1 � 1 cm2 g−1. This limit is similar
to what has been found for merging clusters (Markevitch et al.
2004; Bradač et al. 2008), and within an order of magnitude
of the scattering cross-section for self-interacting dark matter
proposed in Spergel & Steinhardt (2000).

We emphasize that improvements to the numerical simula-
tions in the near future will improve our understanding of the
κ profile and hopefully track the impact of radiative effects in
the center. We also hope that improved understanding of devia-
tions from hydrostatic equilibrium will allow us to estimate how
large the suspected bias at large radii is. On the observational
side, the main problem at present is the uncertainty in the temper-
ature profile. Improvements can be expected both with regards
to the deprojection analysis and the amount of data available.
Obviously, there is also the possibility of including a kinematical
analysis of the galaxy clusters in our method.

We thank Jens Hjorth, Gary A. Mamon, and Kristian Pedersen
for comments. The Dark Cosmology Centre is funded by the
Danish National Research Foundation. S.E. acknowledges the
financial contribution from contract ASI-INAF I/023/05/0 and
I/088/06/0.

Facilities: XMM, CXO.

REFERENCES

Arnaud, M., Pointecouteau, E., & Pratt, G. W. 2005, A&A, 441, 893
Ascasibar, Y. 2003, PhD thesis, Univ. Autonoma de Madrid
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton

Univ. Press), 747
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Y. 2008, MNRAS, 719

http://dx.doi.org/10.1051/0004-6361:20052856
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...441..893A
http://adsabs.harvard.edu/cgi-bin/bib_query?1987gady.book.....B
http://www.arxiv.org/abs/0806.2320
http://dx.doi.org/10.1086/428122
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...619L.143B
http://dx.doi.org/10.1086/381793
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...604..116B
http://dx.doi.org/10.1086/310801
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...485L..13C
http://adsabs.harvard.edu/cgi-bin/bib_query?1996MNRAS.281..716C
http://dx.doi.org/10.1086/309248
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...539..561C
http://dx.doi.org/10.1086/500824
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...642...39C
http://dx.doi.org/10.1111/j.1365-2966.2004.08094.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.353..624D
http://dx.doi.org/10.1086/521616
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...672..122E
http://dx.doi.org/10.1086/158369
http://adsabs.harvard.edu/cgi-bin/bib_query?1980ApJ...241..552F
http://dx.doi.org/10.1086/508990
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....132.2701G
http://dx.doi.org/10.1016/j.newast.2005.09.001
http://adsabs.harvard.edu/cgi-bin/bib_query?2006NewA...11..333H
http://dx.doi.org/10.1051/0004-6361:20078656
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...476L..37H
http://dx.doi.org/10.1051/0004-6361:20065125
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...467..485H
http://dx.doi.org/10.1088/1475-7516/2007/06/016
http://adsabs.harvard.edu/cgi-bin/bib_query?2007JCAP...06..016H
http://dx.doi.org/10.1086/421986
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...611..175I
http://dx.doi.org/10.1051/0004-6361:20031512
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...413..415K
http://dx.doi.org/10.1111/j.1365-2966.2007.11605.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.377..317K
http://www.arxiv.org/abs/0803.0547
http://www.arxiv.org/abs/0802.4292
http://dx.doi.org/10.1086/383178
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...606..819M
http://dx.doi.org/10.1086/508988
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....132.2685M
http://dx.doi.org/10.1086/311333
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...499L...5M
http://dx.doi.org/10.1111/j.1365-2966.2007.12158.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.380.1521M
http://dx.doi.org/10.1111/j.1365-2966.2007.11882.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.379..518M
http://dx.doi.org/10.1086/506467
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...650..538N
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...462..563N
http://dx.doi.org/10.1051/0004-6361:20041888
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...433..101P
http://www.arxiv.org/abs/0808.1111
http://dx.doi.org/10.1051/0004-6361:20042569
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...435....1P
http://dx.doi.org/10.1051/0004-6361:20054025
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...446..429P
http://dx.doi.org/10.1111/j.1365-2966.2004.07775.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.351..237R
http://dx.doi.org/10.1086/588783
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...679L...1R
http://dx.doi.org/10.1086/382146
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...604...88S
http://dx.doi.org/10.1103/PhysRevLett.84.3760
http://adsabs.harvard.edu/cgi-bin/bib_query?2000PhRvL..84.3760S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.364.1105S
http://dx.doi.org/10.1046/j.1365-8711.1998.01491.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1998MNRAS.296.1061T
http://dx.doi.org/10.1046/j.1365-8711.2003.06163.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.339.1117V
http://dx.doi.org/10.1016/j.newast.2006.06.005
http://adsabs.harvard.edu/cgi-bin/bib_query?2006NewA...12...71V
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77B3509V
http://dx.doi.org/10.1086/500288
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...640..691V

	1. INTRODUCTION
	2. THE TEMPERATURE OF DARK MATTER
	3. SOLVING THE DARK MATTER DYNAMICS
	4. CLUSTER SIMULATIONS
	4.1. CLEF
	4.2. V06
	4.3. The Temperature Relation
	4.4. Reconstructing the Velocity Anisotropy

	5. OBSERVATIONS
	6. RESULTS
	7. SUMMARY AND DISCUSSION
	REFERENCES

