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ABSTRACT 

The neuroscientific study of mammalian vision has yielded important achievements in 

the last decades, but a thorough understanding is still lacking at anatomical and functional 

levels. From an operational perspective, this understanding would amount to being able to 

create an artificial system that reaches the performance and versatility of human vision. A first 

step to reach this goal requires understanding what neuroscientists call core object recognition, 

i.e., the rapid and largely feed-forward processing of visual information that mediates the 

identification and categorization of objects undergoing various identity-preserving 

transformations (DiCarlo et al., 2012). Electrophysiological experiments on primates have 

revealed that populations of neurons along the so-called ventral stream – a succession of areas 

running from the occipital to the temporal cortex – support core recognition, thanks to two key 

properties: along the pathway, neuronal responses become increasingly more selective to 

objects identities and increasingly more invariant to their transformations. With similar goals 

in mind, albeit with an engineering focus, the machine learning field has developed artificial 

neural networks, with feed-forward multi-layered architectures, that reach human-level 

performance in various object recognition tasks. Yet these artificial networks are only loosely 

inspired by the biological ones, they are mainly trained with supervised techniques, and perform 

on static images, so they fall short at providing a model for the understanding of the mammalian 

visual system (Kriegeskorte, 2015).  

Electrophysiological investigations therefore remain an important aspect of vision 

research. Primates are the closest species to humans, but conducting research with them has 

become more and more difficult (for practical and ethical reasons). Thus, over the past decade, 

rodents have been used as complementary models to monkeys in the study of visual processing, 
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as they are smaller, reproduce faster, and, importantly, are more suitable for a large batch of 

experimental techniques. Recent physiological studies in the mouse and the rat have described 

successions of areas that resemble the visual pathways found in the monkey (Niell, 2011; 

Vermaercke et al., 2014; Tafazoli et al., 2017), while behavioral studies have shown that the 

rat visual system is capable of sophisticated object recognition (Zoccolan et al., 2009; Alemi-

Neissi et al., 2013). 

Until recently, most of the vision research has focused on simple, static and parametric 

artificial stimuli (e.g. bars), leaving the representations of time-varying natural images (i.e. 

movies) little explored. Natural images are those we see during every-day life: they are 

characterized by high spatial and temporal correlations, i.e. they contain well-defined structures 

that have similar color intensities over extended areas, and that remain present in the scene over 

long intervals (for example, a tree trunk is all brown and doesn’t disappear from a scene from 

moment to moment). Some have argued though that natural images are too complex and still 

poorly understood to allow well-controlled hypothesis-driven experiments (Rust and Movshon, 

2005); others have instead stressed the fact that organisms have evolved within a natural 

environment and they must have adapted to process natural images in the most efficient way 

(by exploiting their spatiotemporal regularities), hence the requirement to use this type of 

stimuli in vision studies (Barlow, 1961; Felsen and Dan, 2005).  

The theory that formalizes this hypothesis is named “efficient coding”. The aim of this 

PhD project is to investigate whether we find evidence in support of the theory in the visual 

cortex of rats. Specifically, we are addressing two important predictions: 1) that neural 

responses are increasingly persistent in time, which amounts to measuring if neurons across 

different areas fluctuate at different timescales in response to the same input (which would be 

a sign of invariance), and 2) that response distributions successively become sparser (a sign of 

selectivity). 

We recorded the neuronal activity in four rat visual areas: in order from the most medial 

to the most lateral, V1, LM, LI and LL. The results we found are described in two chapters. In 

the first one, “Representation of natural movies in rat visual cortex”, we observe a tendency 

towards an increase of slowness estimated with two different measures, and a decrease of 

sparseness across the four areas. In the second one, “Population decoding”, we are 

implementing a population decoding technique and show that LL neurons are better than those 

from other areas at maintaining a self-similar object representation over time. In the last chapter 

of the thesis we discuss possible implications of our findings. 
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 INTRODUCTION 

VISUAL OBJECT RECOGNITION 

Any individual object in our visual environment can be presented to us in an infinite 

number of appearances produced by identity-preserving transformations. The images formed 

on our retinae are therefore also infinite, yet we are able to rapidly and accurately discriminate 

them. We call this ability “invariant” object recognition because it affords identification (of one 

named object) and categorization (of a set of objects) over a large range of transformations. 

When achieved within less than approximately 300 ms, we can refer to it as “core” object 

recognition, because it constrains the type of feedback involved in the process (DiCarlo and 

Cox, 2007). Due to the large variability of the world, the encounter of an observer with an object 

is almost unique. Transformations in position, scale, pose, lighting and context on a single 

object will all create different retinal patterns, but the visual system needs to label them as 

belonging to a single object, i.e. to be selective for object identity and invariant to changes that 

merely alter the appearance. Selectivity and invariance (or tolerance) thus become the central 

aspects of object recognition. 

It is now well established that primate visual cortex is hierarchically organized in two 

pathways: the ventral pathway or stream is specialized in “object” vision and runs from the 

occipital to the temporal lobe, while the dorsal pathway is specialized in “spatial” vision and 

projects from the occipital to the posterio-parietal cortex (Mishkin et al., 1983). In primates 

object recognition is resolved through the ventral pathway, that consists of the primary visual 

cortex (V1), V2, V4, and the various stages of the inferotemporal (IT) (Figure 1).  
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Figure 1. Ventral visual pathway in the primate brain.  

LGN, lateral geniculate nucleus; V1, primary visual cortex; AIT, anterior inferotemporal; CIT, 

central inferotemporal; PIT, posterior inferotemporal. 

Taken from DiCarlo et al. (2012). 

 

Neural populations along consecutive stages of the ventral stream progressively 

reformat the visual input in a largely feed-forward manner (DiCarlo et al., 2012). The type of 

reformatting that is taking place can be intuitively understood with a geometrical perspective 

(DiCarlo and Cox, 2007). We can consider the response pattern of a population of neurons to a 

default view of an object as a point in a high-dimensional space in which each dimension is the 

activity of one neuron in the population (Figure 2A). Any transformation of that object (such 

as pose or lighting) will result in a different response pattern that will correspond to another 

point close to the default one. The cloud of points emerging from all possible transformations 

of the object will define an “object manifold”: a continuous, low-dimensional, curved surface 

inside the space.  

In the retina, the first relay of visual information, receptive fields of retinal ganglion 

cells are relatively small and well driven by simple light patterns, therefore the object manifold 

will be highly curved. Moreover, manifolds of different objects will be tangled in the retinal 

representation (Figure 2B), which implies it’s impossible to reliably separate them with a linear 

decision function. So the aim of the ventral processing stream is to reformat the retinal 

representation of an object, so as to make it flatter and therefore more separable from other 

object representations (Figure 2B).  

In support of the geometrical interpretation, numerous studies have shown that neuronal 

populations at the highest level of the monkey visual stream – the IT cortex – are capable of 

supporting object recognition (reviewed by DiCarlo et al., 2012), and that simple linear 

classifiers can accurately decode object category from the firing rates of IT populations (Hung 

et al., 2005; Rust and DiCarlo, 2010).  
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Figure 2. Untangling object representations 

A. The response pattern of a population of 𝑁 neurons to an image is a point in a high-dimensional 

space where each axis is the response 𝑟𝑖  of each neuron. Three images and their corresponding 

representations are shown: two views of a car (red) and a plane (blue). 

B. All possible identity-preserving transformations of an object will form a low-dimensional and 

highly curved manifold of points in the high-dimensional space. Here, all views of the car and plane 

lie on their respective manifolds shown as curves for simplicity. The ventral stream is successively 

transforming each representation until the two manifolds are smoother and separable by a 

hyperplane (dashed line). 

C. An unlabeled object (depicted with black points) undergoing a transformation in time (such as 

translation) will create views that share a large amount of structure, so the population response 

patterns will also be similar. Therefore, the manifold produced by an identity-preserving 

transformation at different time points will be a continuous, curved and low-dimensional surface 

(gray curves here for simplicity). Cortical circuits can infer shape dimensions by utilizing the 

temporal continuity of these structures and untangle their representations. 

Adapted from DiCarlo et al. (2012).  

 

Additional computational ideas that are consistent with physiology enable manifold 

untangling (DiCarlo and Cox, 2007). First, the flow of information from the retina is projected 

into an even higher dimensional space in V1 (the number of neurons in V1 is two orders of 

magnitude larger than the one in the retina), which spreads the data into a larger space 

(Olshausen and Field, 2004). Second, at each stage, neurons optimize their responses to match 

the distributions of the visual input: this increases the effective over-completeness, i.e. the 

number of code elements available to represent visual information (Olshausen and Field, 1996; 
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Simoncelli and Olshausen, 2001). Third, time implicitly supervises manifold untangling (Figure 

2C and details below): theoretical work has formalized the notion that temporal evolution of a 

retinal image offers clues about object identities in the surrounding world (Földiák, 1991; 

Wiskott and Sejnowski, 2002). 

RODENT VISION 

To date, the most common animal model used in object vision studies is the non-human 

primate, because its visual system closely resembles our own. Unfortunately, the neural 

mechanisms underlying the formation of explicit object representation in the primate temporal 

cortex is still not understood. There is probably a combination of factors that make the problem 

of studying primates so difficult: their visual system is extremely complex (Felleman and Van 

Essen, 1991); they are relatively big animals and difficult to handle; and genetic, molecular and 

highly invasive experimental manipulations are often unpractical with this species. To 

overcome these issues, over the last decade, small mammals, and in particular rodents, have 

become increasingly popular models for studying visual processing in the brain (reviewed by 

Huberman and Niell, 2011; Zoccolan, 2015).  

Among rodents, mice are the model-of-choice for vision studies. They have poor spatial 

acuity (0,5 cycles per degree, cpd) and lack some basic visual functions (such as foveation), yet 

they seem to have a fully functioning visual neural machinery (Prusky et al., 2000; Niell, 2011). 

Recent advances in imaging techniques allowed extensive charting and functional description 

of mouse extrastriate areas (Figure 3) (Wang and Burkhalter, 2007; Andermann et al., 2011; 

Marshel et al., 2011). For example, Andermann and colleagues found that AL (anterolateral) 

neurons in awake mice were responsive particularly to low spatial frequencies and high 

temporal frequencies – i.e. large features moving fast, while PM (posteromedial) neurons were 

responsive to high spatial frequencies and low temporal frequencies – i.e. fine detail moving 

slowly. The properties of these two areas might suggest disjunctive processing, but Wang and 

colleagues (2012), by analyzing the cortico-cortical connections, place them along the same 

processing pathway. In fact, although there are still conflicting results between various groups, 

an interesting idea that emerges from these studies is that mouse areas form modules that are 

analogous to the monkey ventral and dorsal pathways. Specifically, the ventral module includes 

areas LM, LI, P and POR; the dorsal module includes areas AL, RL, PM, AM and A (reviewed 

by Glickfeld and Olsen, 2017).  
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Figure 3. Extrastriate visual areas in primate and mouse.  

Ventral (blue shades) and dorsal (pink shades) pathways in the macaque brain (left) and their 

putative corresponding pathways in mouse visual cortex (right).  

Taken from Niell (2011). 

 

Despite these results, high-level vision in mice has been little explored (Cox, 2014). 

Rats instead were recently shown to be capable of learning complex object discrimination tasks 

and were put forward as a viable model for the study of invariant object recognition (Zoccolan 

et al., 2009; Tafazoli et al., 2012; Alemi-Neissi et al., 2013). In the following we will describe 

rat’s visual system and their visual abilities in behavioral and physiological experiments. 

RAT VISUAL SYSTEM 

Rats’ eyes are located on the side of their heads, therefore they have a wider field of 

view and less binocular overlap (76°) than humans (105°). The dynamics of their movements 

are complex, regularly disconjugate and are often asymmetrical, as reported by Wallace and 

colleagues (2013), who tracked eye and pupil movements in freely moving rats. They also show 

that a large proportion of the eye movements are driven by the vestibulo-ocular reflex: i.e., 

rotating the head nose-up or nose-down shift the pupils up or down, respectively; and turning 

the head to the side result in elevation of the lower pupil and declination of the higher pupil.  

 

Figure 4. Visual perception of rat strains in the Visual Water Task. 

In the visual water task, rats are released into a tank of water that contains two monitors at one end 

separated by a long divider, and a hidden platform in front of one of the monitors. The rat has to 
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swim towards the monitors, and at the end of the divider to make a choice about which arm of the 

pool to enter to locate the platform. 

The original image has been blurred to model the perception of rats with different acuities of the 

visual stimuli (width 30°) used in this experiment: Fisher-Norway (top-right), Long Evans (bottom-

left), Wistar (bottom-right). 

Taken from Prusky et al. (2002). 

 

Rat visual acuity ranges from 0,5 cpd to 1,5 in various albino and pigmented strains 

(Figure 4), but we should note that intense light (e.g. used in the laboratory) can damage the 

retina and reduce the acuity (Burn, 2008). The Long Evans rat’s visual acuity measured in a 

behavioral task is 1 cpd (Prusky et al., 2002). 

Even though the rat’s eye cannot accommodate, so light cannot be focused on a discrete 

point on the retina, it has a considerable depth of focus with its pupil constricted. Rat retina is 

able to function in scotopic conditions, owing to the preponderance of rods, which account for 

more than 99% of the photoreceptors. Photopic vision is mediated by two types of cones: one 

has a peak response at 510 nm (blue-green light), while the other one at about 360 nm (in the 

UV range) (Sefton et al., 2004). It’s worth noting that, due to the color sensitivities of cones in 

the rat retina, the white emitted by monitors – as a combination of red, green and blue light 

adjusted for human vision – would probably not appear as white to rats (Burn, 2008). 

There is yet no consensus on the critical flicker-fusion frequency (CFF) in rats, which 

is the frequency at which flickering stimuli appear as continuous. CFF is strongly dependent on 

the luminous intensity of the stimulus and ranges from approximately 16-19 Hz in pigmented 

rats (Long Evans) to 39 Hz in albinos, when measured in psychophysical experiments (Williams 

et al., 1985; Heath and Newland, 2006). Physiological measures that directly look at responses 

of visual cortical neurons to full-field light pulses place CFF between 10 to 35 Hz in pigmented 

rats (Wells et al., 2001). 

Rat visual cortex consists of at least 13 areas (Figure 5), of which V1 is the largest, 

accounting for about 15% of the total neocortex (Sereno and Allman, 1991). The topographical 

organization of V1 is such that the upper visual field (lower retina) is represented caudally, the 

nasal visual field (temporal retina) is represented laterally, and the vertical meridian is at the 

lateral border of V1 (Figure 6). The lateral part constitutes the binocular field, whereas in its 

medial part only the monocular field from the contralateral eye is represented; approximately 

80% of V1 cells are binocular (Sefton et al., 2004).  
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Figure 5. Rat visual areas 

Adapted from Sereno and Allman (1991). 

 

Extrastriate areas receive extensive projections that don’t originate in V1 (but in 

thalamus and superior colliculus) and are visually driven in the absence of V1 (Sereno and 

Allman, 1991). Additionally, asymmetric projections exist within lateral extrastriate cortex and 

between lateral and medial extrastriate cortex (Coogan and Burkhalter, 1993), and lesions in 

the most lateral visual areas induce deficits in rats’ ability to recognize changes in the visual 

characteristics of objects (Tees, 1999). The projection patterns and lesioning results, along with 

the fact that receptive fields are wider in the most lateral extrastriate areas (Espinoza and 

Thomas, 1983), support the idea that rat visual areas are hierarchically organized on multiple 

levels, similarly to what has been suggested in mice. Recent functional descriptions of temporal 

areas seem to confirm that there is a rat visual pathway specialized in object processing 

(Vermaercke et al., 2014; Tafazoli et al., 2017). These studies pay particular attention to a 

putative object processing stream: V1 and three extrastriate areas, that run laterally to it, LM 

(lateromedial), LI (laterointermediate), and LL (laterolateral).  

 

Figure 6. Retinotopic organization of V1, LM, LI and LL 

The dorsal view of the left posterior parietal cortex was colored in each of the recording sites to 

illustrate the representations of the right eye visual field. Color indicates rostrocaudal (green to red) 

and mediolateral (yellow to blue) positions. Adapted from Espinoza and Thomas (1983). 
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These areas are retinotopically organized (Espinoza and Thomas, 1983), display 

receptive field reversal at each border, and each of them encodes a complete representation of 

the visual field (Figure 6). In LM the upper visual field is represented caudally and the nasal 

visual field medially, being thus a mirror image of V1. In LI, the upper visual field is medial 

and the nasal visual field, lateral, being thus a mirror image of LM, or a reduced copy of V1. 

The mediolateral displacement in LL determines a nasal to temporal progression of receptive 

fields, and the rostrocaudal displacement, a lower to upper visual field progression of receptive 

fields (Figure 6). 

OBJECT RECOGNITION IN RATS 

A first exploration of rat visual abilities started in the 1930s with Karl Lashley’s 

experiments that employed a jumping stand apparatus in two-alternative forced-choice tasks, 

which required the rat to jump from a platform towards the target stimulus in order to obtain a 

reward. His results showed that rats use their vision to discriminate patterns and generalize to 

variations (e.g. due to size or cluttering) of previously learned discriminations (reviewed by 

Zoccolan, 2015). 

Further experiments by other groups confirmed that rats are capable of processing shape 

information, though without systematically testing their recognition tolerance to 

transformations in object appearance, nor assessing the perceptual processes underlying this 

ability, i.e. understanding which visual features were relevant when rats are making a choice. 

Some of the recent investigations addressed these issues with relatively large sets of natural and 

artificial stimuli (presented in the following). 

Forwood and colleagues (2007) used the so-called “spontaneous oddity preference” task 

as a means of one-trial testing of cognition. In this task the rat is exposed to three stimuli new 

for the rat, of which two are identical, while the experimenters record and quantify its 

exploratory behavior towards the stimuli. Interestingly, when two-dimensional photos were 

used, rats predominantly explored the different one, showing that rats are capable of 

spontaneously discriminating (i.e. without training) purely visual stimuli and, moreover, that 

they can be tested with natural stimuli. Brooks and colleagues (2013) have also used natural 

images and trained rats to discriminate two pairs of photographic categories (chairs versus 

flowers and cars versus humans). Rats successfully transferred these discriminations to novel 

exemplars of each category, partly by relying on global shape-based features of those objects, 
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such as aspect ratio and convexity, but, importantly, not on low-level image attributes, such as 

brightness or size. 

An ecological approach on the study of rat vision was carried out by Vinken and 

colleagues (2014), who trained rats to discriminate between three classes of 5 sec-long movies 

– natural movies containing rats, natural movies containing other objects, and artificial (phase-

scrambled) movies (Figure 7) – in a visual water maze implementing a two-alternative forced-

choice task (described in more detail in the caption of Figure 4). Rats learned to discriminate 

the stimuli and generalized well to new ones not included in the training set. Better 

performances were obtained with artificial movies as distractors. Additional controls confirmed 

that these results were not based on motion energy: specifically, in one experimental 

manipulation, both target and distractor movies were played at one fourth of the original speed; 

in another manipulation only one representative frame was shown for each movie. Other 

controls checked whether rats, in order to solve the task, relied on local luminance features in 

the lower half of the screen, as proposed by Minini and Jeffery (2006). In this case, the movies 

and the single frames were altered as to revert the luminance patterns between target and 

distractor stimuli, which didn’t affect the generalization performance. 

 

Figure 7. Example frames from the movies used in the study by Vinken et al. (2014) 

The blue and red rows show snapshots from natural movies that contained rats or other objects (five 

each). The green row shows snapshots from the five artificial movies generated by phase-scrambling 

the natural rat movies. This stimulus set was used to test rats’ ability to generalize to new, unseen 

movies. 

Adapted from Vinken et al. (2014). 

 

The first systematic investigation of rat invariant recognition was carried out by 

Zoccolan and colleagues, who trained rats to discriminate artificial three-dimensional objects 

(Zoccolan et al., 2009; Tafazoli et al., 2012; Alemi-Neissi et al., 2013).  

In the first study (Zoccolan et al., 2009), rats were trained on the default views of two 

objects, and afterwards on views that had been transformed along two axes: size and in-depth 
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rotation (Figure 8A and B). After the training phase, rats were tested with all remaining 

combinations of size and rotation transformations that hadn’t been seen by the rats (Figure 8B). 

Recognition performance was significantly above chance for virtually all pairs of stimuli 

(Figure 8C), and remained high after the inclusion of new transformations of lighting and in-

depth elevation rotation in the generalization part. 

 

Figure 8. Experimental design in the studies by Zoccolan and colleagues 

A. The rat performed the task in a box equipped with one monitor and three sensors placed in front 

of it. The leftmost and rightmost ports were also providing reward through a licking spout. The rat 

had to lick the central sensor to trigger stimulus presentation. Afterwards it had to lick either on the 

right, for one object (top panel), or on the left, for the other object (bottom panel). 

B. Transformations of object 1 along the two dimensions: size and azimuth rotation. The green frame 

highlights the default view used in the first phase of training; the light blue frame highlights the 

views used in the second phase of training, after the default views had been learned by the rat. 

C. The average performance (percentage of correct trials) for each of the object views shown in 

panel B. Stars indicate the level of statistical significance. 

Taken from Zoccolan et al. (2009) and Zoccolan (2015). 

 

As already mentioned above, in this experimental paradigm, differently from the two-

alternative forced-choice tasks described above, stimuli were presented one at a time on screen. 

This is important for at least two reasons: first, it is more difficult for rats to rely on low level 

features because they cannot directly compare the stimuli, but instead they have to remember 

them; second, at each trial the rat has to compare the stimulus to an internal representation of 

the object, learned during training. This argues for the claim that rats are capable to form 

invariant object representations. 

In another study, in which the transformed views were only shown as primes of the 

default views (i.e. briefly flashed before the main stimulus), the same group showed that 

A B C 
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extensive training on multiple identity-preserving transformations is not necessary for rats to 

successfully recognize novel views of previously encountered objects (Tafazoli et al., 2012). 

In other words, assessing invariant recognition using a priming paradigm prevented the 

invariance endowed by perceptual constancy to be confounded with the invariance resulting 

from explicitly learning the associative relations among the different views of an object during 

training (Zoccolan, 2015). Alemi-Neissi and colleagues went even further to show that not only 

rats can invariantly discriminate objects, but their strategy in doing so is complex, relies on the 

most informative image features and is close-to-optimal when compared to an ideal observer 

(Alemi-Neissi et al., 2013). 

The behavioral evidence described above is strong enough for a certain level of high-

level processing in rats, which justifies physiological investigations. A few studies investigated 

the functional specialization of the areas along the proposed ventral pathway in rats, i.e. V1, 

LM, LI and LL.  

Vermaercke and colleagues (2014) recorded extracellular signals in awake animals from 

the four areas and an additional one, TO, that was not described in the literature before (e.g. in 

the study by Espinoza and Thomas (1983) mentioned above). They reported that response 

latencies in the two most lateral areas are longer by approximately 20ms than in the medial 

areas, and that both orientation and direction selectivity increase along the progression, 

differently from macaques (Vogels and Orban, 1994). By showing simple stimuli at two 

positions on the screen they were able to measure the position tolerance. More precisely, they 

displayed 6 moving simple shapes (e.g. H, triangle or +) in the center and on the side of the 

receptive fields of recorded neurons and trained classifiers to discriminate pairs of shapes from 

the responses of populations of neurons. Their results seem to suggest that TO is more tolerant 

than V1, and this is not only due to the increase of receptive field sizes. An interesting 

confirmation comes from a study by the same group, in which the aim was to find the visual 

area that is most likely to underlie rats’ performance in a behavioral task employing the six 

shapes. They found that neural population discriminability in V1 correlated well with the low-

level properties of the shapes, and neural discriminability in lateral areas correlated well with 

the behavioral performance. This implies that, in rat temporal areas, visual information is 

transformed into a representation that is used to drive behavior (Vermaercke et al., 2015). 

In another study that explored high-level visual processing of rats, neurons were 

recorded from V1, LM, LI and LL in anesthetized animals while they were passively presented 

with a large set of stimuli (Tafazoli et al., 2017). These stimuli were similar to the ones used 
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by Zoccolan and colleagues in the behavioral experiments, and consisted of many 

transformations along five axes (position, size, in-depth and in-plane rotations, luminance) of 

10 three-dimensional objects. By applying information theoretical tools and computational 

techniques, it was possible to reveal a few neuronal properties along the V1-LL progression: 

neurons are decreasingly sensitive to stimulus luminance and increasingly so to the shape of 

the presented objects, and single neurons and population of neurons gain better discriminability 

of objects in spite of the transformations in their appearance, which amounts to reformatting 

the visual information in order to make it more accessible for higher brain areas. 

The anatomical, behavioral and physiological studies described above indicate rat as a 

simple enough but potentially good model for studying object recognition.  

EFFICIENT CODING UNDER NATURAL STIMULATION 

PROPERTIES OF NATURAL IMAGES 

Natural scenes are often defined as images of the visual environment that include 

vegetation, animals and landforms, in which artifacts of civilization do not appear (Olshausen 

and Field, 2000). In practice, though, this definition is typically relaxed: human artifacts are 

included or images are stripped of their chromatic or temporal dimensions (Hyvarinen et al., 

2009). The naturalistic aspect of the environment can be appreciated by comparison with 

artificial images. Figure 9 shows example natural and artificial images. 

 

Figure 9. Example natural and artificial images 

A. Natural images contains edges and shapes.  

B. Some artificial images can have completely random structure: this “white noise” image was 

generated by assigning to each pixel random intensity values drawn from a uniform distribution. 

C. Scrambled images lack consistent edges or sharp features. This image was generated by 

randomizing the original phase spectrum of the image in A using a 2D fast Fourier transform (more 

details for the 3D case in Methods).  

A B C 



 

21 

 

From a geometrical perspective, images can be thought of as belonging to a high-

dimensional state space whose axes are the pixel values of the image. For example, if we’re 

only dealing with images of fixed size of N pixels, one requires an N-dimensional space to 

represent the set of all possible images, where each of them corresponds to a point in the space. 

White-noise patterns like the one in Figure 9 would be scattered randomly across the high-

dimensional space, whereas natural images, due to the correlations present in them, would 

occupy a tiny part and lie on a continuous curved surface embedded in the space (Olshausen 

and Field, 2004). 

 

Static and time-varying images (or movies) have been extensively studied (Dong and 

Atick, 1995; Simoncelli and Olshausen, 2001; Betsch et al., 2004; Hyvarinen et al., 2009). For 

simplicity, in the following we will only describe the statistics of time-varying monochromatic 

images. 

Histograms of pixel intensities are the simplest statistical description. By estimating the 

intensity of light in the original scene for each pixel, one discovers that in most natural images 

the range of intensity is extremely large, and the distribution of luminance values is typically 

peaked at the low end with an exponential fall-off toward higher intensities (Olshausen and 

Field, 2000; Ratliff et al., 2010). 

Natural scenes are highly correlated in space and time, which means that the scenes 

contain patches of relatively constant luminance (indicative of spatial correlations) that are 

persistent over relatively long intervals (indicative of temporal correlations). At pixel level this 

translates into groups of pixels having similar values within single frames and across multiple 

frames (Figure 10A). 

The magnitude of correlation between pixel values can be shown by computing the 

autocorrelation function of an image, which is a function of relative distance between pixels 

and calculated as the average of products of two pixel values situated at constant distance 

(Figure 10B). One can see that the strength of the correlations falls with pixel distance within 

one image or across a set of sequential images (Simoncelli and Olshausen, 2001).  
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Figure 10. Correlation between pixel intensities 

A. The correlation between two adjacent pixels is relatively high in natural images. 

B. The autocorrelation function shows the normalized correlation (Y axis) between all pixels placed 

at a given distance in the image (X axis). 

Taken from Olshausen and Field (2000) and Simoncelli and Olshausen (2001) 

 

The properties described above are based on second-order (covariance) statistics. Much 

of the structure of natural scenes (such as lines, edges, contours) are due to higher-order 

correlations (Figure 9). This can be shown by computing the two-dimensional power spectrum 

of an image and then reducing it to a one-dimensional function of spatial frequency by 

performing a rotational average. Intuitively this means that repetitive patterns along all 

directions (e.g. edges) can be captured by the Fourier transform, which is then averaged to 

obtain a single power spectrum plot (Figure 11).  

 

Figure 11. Power spectrum of natural images 

The solid line shows the power spectrum of a natural image averaged over all orientations in a log-

log plot. The similarity between the power spectrum and the 1/f2 function (dashed line) indicates 

that the power spectrum follows a power law. Taken from Simoncelli and Olshausen (2001). 

 

One can note that, unlike the power of a white noise image which is flat (by definition), 

the spectral power falls with frequency, f, according to a power law, i.e. 1/fp, where p is typically 
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2. This property suggests that natural images are scale invariant, i.e. their appearance doesn’t 

change when one zooms in or out of it (Olshausen and Field, 2000; Hyvarinen et al., 2009). 

Natural scenes have a complex temporal structure that arises from the movement of the 

observer and of the objects in the world. As in the case of static images, correlations of time-

varying images can be best illustrated in the frequency domain (Dong and Atick, 1995). Figure 

12 (left panel) shows the spatiotemporal power spectrum averaged across orientations as a 

function of spatial frequency for different temporal frequencies. We note again a decrease as a 

reciprocal power of spatial frequency, and that the power spectrum cannot be decoupled into 

purely spatial and temporal parts (Dong and Atick, 1995).  

 

Figure 12. Spatiotemporal power spectrum of natural movies 

The spatio-temporal power spectrum was estimated by computing the three-dimensional Fourier 

transform of short segments from Hollywood and custom-made movies, averaging them together 

and averaging over orientations. The same power spectrum is plotted in the left panel against spatial 

frequency (in cycles per degree, cpd) for various temporal frequencies (in Hz), and in the right panel 

against temporal frequency for various spatial frequencies. Power spectrum slope at high temporal 

(and spatial) frequencies is shallower than at low temporal (spatial) frequencies. 

Adapted from Dong and Atick (1995). 

EFFICIENT CODING HYPOTHESIS 

Understanding object recognition cannot be achieved by overlooking how the visual 

system has evolved and developed under the constraints of the environment. The survival of 

the organism would depend on the ability to quickly identify a potential predator, meal or mate; 

this ability would in turn be shaped by the neural circuitry at hand. One can then assume that 

sensorial representations are under strong influence of three fundamental components: the tasks 

the organism must perform, the metabolic and wiring constraints, and the stimulation it receives 

(Simoncelli and Olshausen, 2001).  
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The “efficient coding” hypothesis is a prominent theory in systems neuroscience that 

states that the visual cortex is optimized to efficiently represent natural scenes. In a seminal 

paper, Horace Barlow puts forward the ideas that sensory pathways must possess mechanisms 

for detecting specific relevant stimuli and that “reduction of redundancy is an important 

principle guiding the organization of sensory messages” (Barlow, 1961; Barlow, 2001). In more 

concrete terms, this means that neurons are constrained to represent the visual input as 

compactly as possible, so as to maximize the information they carry about the visual 

environment: the strategy by which neurons encode sensory information using a small number 

of active neurons at any given time is often referred to as “sparse coding” (Simoncelli, 2003; 

Olshausen and Field, 2004). As opposed to “dense codes” in which all neurons simultaneously 

contribute to represent information, sparse codes are metabolically and computationally 

efficient (Willmore et al., 2011).  

Possible predictions of the sparse coding hypothesis include:  

 successively sparser representations should be generated at higher levels of the 

visual pathway;  

 visual cortices should produce sparser representations when presented with natural 

rather than artificial stimuli;  

 neural representations should decorrelate the visual input;  

 and neurons are building their tolerances to identity-preserving transformations by 

exploiting time contiguity of natural scenes.  

In the following we will present how these predictions have been approached in the 

literature, along with a few measures and empirical results. 

SPARSENESS 

There are many ways in which one can estimate to what extent neural codes are optimal, 

and these depend on how a constraint on the neuronal code is imposed: on the neural activity 

of single versus multiple neurons, or alternatively, on the overall activity (i.e. firing rate) versus 

the shape of the response distribution (Baddeley et al., 1997; Simoncelli and Olshausen, 2001; 

Willmore and Tolhurst, 2001; Olshausen and Field, 2004; Willmore et al., 2011).  

The maximization of information principle applied on spike trains of single neurons 

must distinguish between the features that carry the information: the firing rate, i.e. number of 

spikes over discrete intervals of time, or the interspike intervals. Baddeley and colleagues 

(Baddeley et al., 1997) discuss three constraints on the neural activity: a maximum firing rate, 
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an average firing rate and the sparseness of the firing distribution. They have shown that when 

animals are presented with movies of natural scenes, the distributions of firing rates well 

approximate exponential distributions – which are the maximum entropy distributions for 

positive values and fixed mean. Mean firing rate constraints are actually likely to exist due to 

metabolic costs to produce action potentials: the literature estimates an average upper bound of 

approximately 4 spikes/second in the rodent brain (Baddeley et al., 1997; Attwell and Laughlin, 

2001; Willmore et al., 2011). 

Laughlin (1981) has shown that neurons in the insect eye, under a maximum firing rate 

constraint, have response functions that amplify inputs in proportion to their expected frequency 

so that to achieve a flat response distribution: i.e. they perform a so-called histogram 

equalization. 

 

The sparseness of the firing distribution is more specifically known as lifetime 

sparseness (to indicate that it refers to the stimuli presented to a neuron during its lifetime). 

This measure quantifies the degree to which a neuron preferentially produces strong responses 

to certain stimuli, i.e. how peaked its response distribution is. It can be thought of simply as the 

proportion of stimuli to which neurons respond (Rolls and Tovee, 1995; Vinje and Gallant, 

2000): 𝑆 = {1 − [(∑ 𝑟𝑖 /𝑛)2/ ∑(𝑟𝑖
2/𝑛)]}/(1 − 1/𝑛), where 𝑟𝑖 is the firing rate of one neuron 

to the 𝑖th stimulus of in the set of 𝑛 stimuli. This measure ranges from 0 (responses to all 

stimuli) to 1 (response to one stimulus). Lifetime sparseness is dependent on the shape of the 

response distribution, so the mean firing rate doesn’t play any role. It results that this is not a 

measure of metabolic efficiency (Willmore et al., 2011).  

One of the prominent application of this metric comes from Vinje and Gallant (2000): 

in their experiment two monkeys had to fixate the screen for juice reward. During fixation, 

movies simulating natural vision were played either solely inside the classical receptive fields 

(CRF) of recorded V1 neurons, or inside the nonclassical receptive fields (nCRF) of the same 

neurons. Their results show that stimulating the nCRF increases the sparseness from 0.4, when 

the stimulus is the size of the receptive field, to 0.6, when the stimulus is four times the diameter 

of the CRF. This suggests that it is the context that sparsifies the responses. Additional evidence 

for this idea was provided by Froudarakis et al. (2014): sparseness was reported to be higher in 

mice V1 during presentation of full-field natural movies as compared to phase-scrambled 

artificial movies. 
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Few studies have systematically compared sparseness in multiple visual areas: 

Willmore et al. (2011) didn’t find significant differences of sparseness between V1, V2 and V4 

with a stimulus paradigm in which thousands of images were shown to monkeys; similarly, 

Rust and DiCarlo (2010, 2012) didn’t see an increase of sparseness from V4 to IT, and argued 

that selectivity and tolerance both increase and offset one another to maintain a constant sparse 

representation in the two areas; Vinken and colleagues (2016) do measure sparseness in three 

rat visual areas (V1, LI and TO), but don’t report any comparison between areas.  

Baddeley and colleagues (1997) didn’t find evidence for increasing sparseness as they 

move from the representations in V1 to IT. It’s important to note though that the neurons in the 

two areas were recorded in anaesthetized cats and awake monkeys, respectively, which could 

make the two datasets incomparable.  

 

Population sparseness takes the formula of the lifetime sparseness, but in this case 𝑟𝑖 is 

the response of neuron 𝑖 to a given stimulus (Treves and Rolls, 1991; Willmore and Tolhurst, 

2001). Due to the similarity to the lifetime sparseness, the properties described before are also 

valid here. The two measures of sparseness are not necessarily related, i.e. high lifetime 

sparseness does not imply high population sparseness, unless the corresponding population 

responses are independent and identically distributed (Willmore et al., 2011). Froudarakis and 

colleagues (2014) have shown that in large populations of simultaneously recorded neurons, 

population sparseness was higher for natural movies than for phase-scrambled ones, and 

additionally that the two measures were highly correlated. 

 

Kurtosis is the fourth standardized moment of a distribution and reflects its “tailedness” 

(i.e. how heavy the tails are): 𝑘 =
1

𝑛
∑

(𝑟𝑖−𝑟̅)4

𝜎4
𝑛
𝑖=1 − 3, where 𝑟̅ is the mean firing rate and 𝜎 is 

the standard deviation of the distribution.  

In practice this measure is difficult to use with biological neurons, since it requires that 

the distribution be unimodal, symmetrical (about zero), and with negative tails (Willmore and 

Tolhurst, 2001; Olshausen and Field, 2004). Vinje and Gallant (2000) measured kurtosis in 

population response distributions obtained by pooling responses of all neurons to all movie 

frames (experiment described above). To circumvent the issues mentioned with this metric, 

they reflected the distributions about the origin and computed kurtosis on the resulting 

symmetric distribution. 
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SLOWNESS 

The interaction between the visual cortex and the environment happens at multiple 

timescales, which is an important aspect of the efficient coding hypothesis. It is reasonable to 

assume that the properties of natural images have remained unchanged for millennia so their 

effects on the visual system have been hardwired into the organism. Concurrently, alterations 

at medium and short timescales can be seen during neural development or neural adaptation 

(Simoncelli and Olshausen, 2001). 

As noted before, one of the statistical regularities of natural images is the persistence in 

time (or slowness) of patterns with common structure. To better illustrate the slowness 

principle, let’s consider the sequence of frames in Figure 13. As a response to the moving object, 

neurons in the primary visual area will be heavily driven by fluctuations of pixel intensities 

within their receptive fields. Since the brain needs to extract behaviorally relevant features from 

the primary sensory signal, such as the identity or location of the object, one can assume that a 

higher-level cortical area will utilize the persistence and contiguity of objects in the world to 

form an invariant representation of the natural scene (Hyvarinen et al., 2009; Wiskott et al., 

2011). Formally, such an approach belongs to the class of “unsupervised temporal learning” 

algorithms (DiCarlo et al., 2012). 

 

Figure 13. Toy example of the slowness principle  

The sequence of frames (top panel) depicts a monkey that stands on a suspended rope and then 

leaves the field of view to the left. Neurons in the primary visual cortex, with small receptive fields 

and selective for low-level features (e.g. pixel intensity), will have a highly varying activity in 

response to the moving monkey (bottom-left panel). Neurons in a higher area, such as IT, will form 

a high level representation: if they code for object identity, their firing will be maximal and sustained 

in the first frames while the monkey is present in the scene; location neurons instead will become 

active when the monkey is in the center (bottom-right panel). 

Taken from Wiskott et al. (2011). 
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Computational work has suggested possible implementations of unsupervised temporal 

learning that result in invariant representations. Földiák (1991) was the first to show that by 

adding a decay term to a Hebbian rule, a network of simple-cell-like neurons can learn position 

invariance from temporal patterns undergoing position transformations (shifting oriented bars). 

This mechanism could explain the emergence of position invariance of complex cells in the 

primary visual cortex.  

Another algorithm that is employing temporal slowness is Slow Feature Analysis, which 

is able to extract slowly varying components from quickly varying input signals (Wiskott and 

Sejnowski, 2002; Wiskott et al., 2011). This method had various applications in computational 

neuroscience: for example it can learn independent representations of object position, angle and 

identity from quasi-natural stimuli (Franzius et al., 2008), or produce a set of functions that 

match properties of complex cells in V1 (Berkes and Wiskott, 2005). 

 

There is scarce empirical evidence supporting the efficient coding theory. One of its 

predictions states that visual areas should recode the visual input into a whitened (decorrelated) 

form. Dan and colleagues (1996) have addressed this prediction in a straightforward way. They 

recorded responses of individual neurons in cat lateral geniculate nucleus during presentation 

of full-field natural and white-noise movies. The autocorrelation of the responses to natural 

stimuli showed narrow peaks at 0 msec lags and flat amplitudes beyond the peak (which 

indicates that LGN output was temporally decorrelated), and the corresponding power spectra 

were predominantly flat between 3 and 15 Hz (consistent with the theoretical prediction that 

the natural visual signals should be whitened, Figure 14A).  

Their controls, the white-noise stimuli, showed autocorrelations with small dips at lags 

between 10 and 100 msec, which is reflected in the positive slopes between 10 and 15 Hz in the 

frequency domain. The increase in power at higher frequencies in the case of white noise stimuli 

shows that LGN neurons are not simply whitening any stimulus, but only those with low high 

frequency spectrums such as natural images (compare panels A and B in Figure 14). 

These results are consistent with the theoretical predictions: i.e., natural images are 

selectively decorrelated at early processing stages. A similar conclusion was reached by Vinje 

and Gallant (2000), in the experiment described before: firing activity of pairs of neurons were 

less correlated during stimulation within their non-classical receptive fields, than within 

classical receptive fields. 
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Figure 14. Power spectra of LGN responses 

A. Power spectra in response to natural movies. Each trace corresponds to the response of one neuron 

and, for clarity, is normalized by its value at 5-6 Hz. The box shows the autocorrelation function of 

the spike trains of one neuron. 

B. Power spectra in response to full-field white noise movies. The box shows the autocorrelation 

function of the same neuron as in panel A. 

 

A series of behavioral and physiological experiments in the group of DiCarlo explored 

the hypothesis that the ventral visual stream could construct a tolerant object representation by 

taking advantage of objects’ temporal contiguity in the visual input (Cox et al., 2005; Li and 

DiCarlo, 2008, 2010). In the physiological studies, neural activity was recorded from monkeys 

involved in simple tasks that allowed them to freely look at a monitor on which two objects 

appeared intermittently below or above the gaze point. For each recorded neuron objects were 

selected so that one would induce a strong response (preferred object), and the other one a 

moderate response (non-preferred object). At each image change, the monkeys reflexively 

foveated the newly appeared objects. By means of a real-time eye-tracker, the experimenters 

were able to change the identity of the object at desired trials while the animal was saccading 

toward the object (swap exposure, Figure 15A). 

By consistently swapping the two objects’ identities at either location (below or above 

gaze point), they show that IT neurons changed their position tolerance (by lowering their firing 

rate) to the initially preferred object in a relatively short interval (Figure 15B). Additional 

experiments extended these results for size and identity tolerance, and showed that temporal 

direction of experience is relevant to attain the effect (Li and DiCarlo, 2010). 

A 

B 
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Figure 15. Breaking position tolerance in monkey visual cortex 

A. The experiment consisted of a sequence of two alternating phases: test and exposure (bottom 

row). During these phases one object was presented at either 3° below or above the center of gaze. 

In the test phase, the position tolerance of the preferred (P) and nonpreferred (P) objects (determined 

beforehand from a set of stimuli) was measured as the response of the neuron to these objects at the 

two locations. For the exposure phase, for each neuron a swap position (above or below the center 

of gaze) is chosen and kept fixed throughout the recording. In the swap position, the object P is 

maintained while the monkey is saccading (normal exposure, top row), or changed with object N 

(bottom row, swap exposure). 

B. The data reported in these plots were gathered only during test phases. The object selectivity for 

each neuron is calculated as the difference in its response to object P and N. From top to bottom, 

each row indicates more exposure phases undergone by surviving neurons. The decreasing trend at 

the swap position (red traces) indicates that neural responses to object P become smaller as object 

N replaces P at that position, therefore altering the position tolerance. At the non-swap position 

objects preserved identity so neurons maintained their selectivity (constant black traces). 

Taken from Li and DiCarlo (2008). 

 

These manipulations show that altering the contiguity of visual experience can build 

artificial neural invariance, therefore confirming the starting hypothesis. 

A B 
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 METHODS 

SURGICAL PROCEDURE 

Male Long Evans rats (weighting 350-550 g) were anesthetized with an intraperitoneal 

injection of a solution of medetomidine (Dormitor: 0,3 mg/kg) and fentanyl (Fentanest: 0,3 

mg/kg). Body temperature was kept constant at ~37° with a warming pad. A constant flow of 

oxygen was delivered to the rat to prevent hypoxia, and oxygen saturation was monitored with 

a pulse oximeter attached to one of the hind paws. The rat was placed in a stereotaxic apparatus. 

After loss of paw and tail reflexes, an incision was performed on the scalp over the left 

and posterior parietal bones, and then a cranial window (approx. 2×2mm wide) was created at 

the coordinates intended for recording (left hemisphere). Dura was removed to ease the 

insertion of the electrode. Throughout the experiment, the exposed brain was irrigated with 

saline solution to prevent drying. The right eye (contralateral to the hemisphere from which we 

recorded) was immobilized with an eye ring anchored to the stereotaxic apparatus and covered 

with ophthalmic solution Epigel (Ceva Vetem) to prevent drying; the left eye was covered with 

black tape.  

Once the surgical procedure was completed, the stereotaxic apparatus was moved on an 

elevated rotating platform. The rat was maintained under anesthesia by a continuous 

intraperitoneal flow of the fentanyl and medetomidine solution (0,1 mg/kg/h). 

Before penetration, the probe was coated with Vybrant DiI cell-labeling solution 

(Invitrogen). This dye was used to recover the location of probe insertion through histological 

procedures. 

Recordings were performed with 32-channel silicon probes (Neuronexus Technologies) 

in various configurations (example Figure 16A). In order to maximize the receptive field 
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coverage, recordings in V1 were performed with 4- or 8-shanks probes, which were inserted 

perpendicularly on the cortex. For lateral areas, one shank probes were used, which were 

inserted along the cortex, in order to be able to observe the reversal of retinotopy between 

successive, adjacent areas (Figure 16B and C). The space between recording sites on each shank 

ranged from 25 to 200µm; the distance between shanks (when more than one) was 200µm; the 

surface of recording sites (and as a consequence the site impedance) was either 177 or 413 µm2. 

 

Figure 16. Electrophysiological recording and the reversal of retinotopy 

A. Example linear electrode used for lateral penetrations: in this configuration, the recording sites 

are placed 25µm apart, which facilitates recording from small areas, such as LI and LL. 

B. Example penetration for recordings from LM, LI and LL. The probe is inserted at mediolateral 

position 4 and bregma -7.56 mm with a tilt of 30°. This probe configuration (recording sites at 100 

µm apart) allow for simultaneous recordings from multiple areas. 

A B 
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C. The reversal of retinotopy between areas V1 and LM). We note that the receptive fields in 

channels 32-25 move leftwards, whereas those in channels 24 to 16 move rightwards (recording 

sites from 16 to 32 are highlighted with red in panel B). 

Panel B adapted from Paxinos and Watson (2007). 

 

Extracellular signal was acquired with a TDT system 3 workstation (Tucker-Davis 

Technologies) at a sampling rate of ~24 kHz. Action potentials (spikes) were detected online 

by thresholding the bandpass filtered signal (0.3-3 kHz) and were used for data monitoring and 

the estimation of receptive fields at each recording site (detailed below). 

At the end of a recording session, an electrolytic lesion was performed by passing a 5µA 

current for 2s through 2-4 channels at the tip of the probe. 

STIMULI 

Stimuli were presented full-field to the right eye at a distance of 30 cm on a 47-inch 

LCD monitor (SHARP PN-E471R), with 1920 × 1080 resolution, 60 Hz refresh rate, 9 ms 

response time, 700 cd/m2 maximum brightness, 1200:1 contrast ratio, spanning a visual field of 

~120° azimuth and ~89° elevation. 

The rotating platform on which the rat was placed was adjusted so as to center the rat’s 

right eye over the platform’s rotation axis and align it to the normal from the center of the 

monitor. The rat was rotated before each recording session in a position that would optimize 

recorded neurons’ receptive field coverage on the monitor (typically 45° leftwards); its position 

was adjusted every time the visual fields of the recorded neurons were outside of the screen. 

A full recording protocol lasted approximately 2h 15min and consisted of receptive field 

mapping and movies, which were the main stimuli of the experiment (Figure 17). All stimuli 

were shown with Psychtoolbox (Kleiner et al., 2007) in a pseudorandom order: movies were 

repeated 30 times (number of trials) and the receptive field mapping 7 times. Between each 

stimulus (movie or moving bar) a black screen was shown for 200 ms, except before some 

movies, because they took up to 4 seconds to load. The activity during these 4 sec-long periods 

was included in all analyses regarding the spontaneous activity. 
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Figure 17. Stimulus protocol 

Stimuli were shown in a pseudorandom order during a recording session. This order was frozen 

across sessions. 

Colored horizontal bar represent movies, which were repeated 30 times (rows in the image). Gray 

stripes indicate short periods of receptive field mapping consisting of drifting moving bars (~0.36 

seconds, described below). Black stripes indicate periods when no stimulus was shown, during 

which the screen was black. The 4 sec intervals in which some movies were loaded are not shown. 

RECEPTIVE FIELD MAPPING 

Receptive field estimation was obtained by showing moving oriented bars at 73 

locations on the screen, covering the central 110° azimuth and central-upper 70° elevation of 

the total visual field coverage of the monitor (Figure 18A). This configuration was chosen so 

as to optimize the coverage of the screen and the duration of the receptive field protocol.  

Bars measuring 10°×10° were shown translating along four differently oriented axes of 

movement (horizontal, vertical and two diagonals) from -5° to 5° and back again to -5° with 

respect to the location point. An example bar at 0° orientation is shown in Figure 18B. 

 

Figure 18. Receptive field mapping  

A. All 73 locations covering 110° along the azimuth axis and approximately 70° along the elevation 

axis. Bar intensity at each location is randomly assigned to illustrate its borders. 

B. Example frame of a moving bar. 

A B 
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As mentioned above, the rat’s eye was placed at 30 cm from the screen, a choice 

motivated by behavioral results showing that rats are able to perform complex object 

recognition at this distance (e.g. Tafazoli et al., 2012). Because of the short viewing distance, 

stimuli presented at large eccentricities would look distorted compared to stimuli presented 

directly in front of the eye. To account for this distortion, bars were shown under a spherical 

projection (described below), so that they appear as if they were displayed at equal distance 

from the rat’s eye (Marshel et al., 2011; labrigger.com, 2012). The procedure basically consists 

of finding the projection over the monitor of a point belonging to a sphere. 

In our three-dimensional coordinate system (Figure 19), we defined the eye as the origin 

𝑂: the 𝑧 axis was set to pass through the center of the monitor, and the axes 𝑥 (width) and 𝑦 

(height) lay on the plane parallel with the monitor, which was at distance 𝑅. Therefore, azimuth 

is the angle θ from the 𝑧 − 𝑦 plane, and elevation the angle φ from the 𝑧 − 𝑥 plane (Figure 19). 

The projection 𝑃(𝑥, 𝑦, 𝑧) on the monitor of any point 𝑄(𝑅, 𝜃, 𝜑) belonging to the bar at 

location 𝐵(𝑅, 𝜃0, 𝜑0) on a sphere of radius 𝑅 centered over the eye was computed as follows: 

1)  𝑄(𝑅, 𝜃, 𝜑) was converted from spherical to Cartesian coordinates  

𝑥𝑄 = 𝑅 cos 𝜑 sin 𝜃 

𝑦𝑄 = 𝑅 sin 𝜑 

𝑧𝑄 = 𝑅 cos 𝜑 cos 𝜃 

2) point 𝑄 was rotated about 𝑂𝐵 by the orientation angle of the bar (0°, 45°, 90°, or 135°, 

the green angle in Figure 19)(code adapted from Bourke, 1992) 

𝑄′(𝑥𝑄
′ , 𝑦𝑄

′ , 𝑧𝑄
′ ) =  𝑟𝑜𝑡(𝑄(𝑥𝑄, 𝑦𝑄, 𝑧𝑄), 𝑂𝐵) 

3) 𝑄′ was converted back to spherical coordinates 

𝜃′ = tan−1
𝑥𝑄

′

𝑧𝑄
′  

𝜑′ = tan−1
𝑦𝑄

′

√𝑥𝑄
′ 2

+ 𝑧𝑄
′ 2

 

4) In order to find the position of point 𝑃 on the plane of the screen, we extended 𝑂𝑄′ until 

it intersected the plane at distance 𝑅′, which was calculated as: 

𝑅′ =  
𝑅

cos 𝜃′ sin 𝜑′
 

5) The Cartesian coordinates of point 𝑃(𝑅′, 𝜃′, 𝜑′) were then given by 

𝑥 = 𝑅′ cos 𝜑′ sin 𝜃′ 
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𝑦 = 𝑅′ sin 𝜑′ 

𝑧 = 𝑅′ cos 𝜑′ cos 𝜃′ = 𝑅 

 

 

Figure 19. Spherical projection for receptive field mapping 

O represents the eye, R is the distance from the eye to center of the screen, B is the location of each 

bar given as azimuth and elevation angles, Q is a point within the bar B, Q’ is the rotation (green 

angle) of point Q about axis OB, P corresponds to Q on the plane of the screen (𝑥 − 𝑦), R’ is the 

distance between the eye and point P. The inset shows again all divisions of Figure 18A and the 

rotated bar (dashed rectangle). 

Note that the reference plane is the one containing the eye (see the axes), and the azimuth and 

elevation angles are defined differently from the standard convention. 

 

A full receptive field mapping protocol consisted of 292 short movies (73 locations × 4 

orientations), 0.363 seconds long (11 frames), which were always followed by a 0.2 seconds 

interval of black screen. 

MOVIES 

The main stimulus set consisted of: 2 fast natural movies, 2 slow natural movies, 2 

ratcam movies, 1 phase-scrambled version of one fast movie, 1 phase-scrambled version of a 
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ratcam movie (Figure 20). These movies were each 720x1280 pixels, 20 seconds long and were 

presented at 30 fps (600 frames per movie). An additional white-noise movie 45x80 pixels was 

shown at 20 fps for 20 seconds (400 frames).  

All stimuli were converted to grayscale and were gamma-corrected offline with a lookup 

table calculated for the monitor used for stimulus presentation. 

The videos can be watched at the following link: 

youtube.com/playlist?list=PLR5haZHnCJ-gsvtlx-V2nsyhA-89tYiYx 

 

Figure 20. Movies 

Example frames for one of each movie type along with the time of each frame within the movie. 

The frames of the movie Phase-scrambled fast 1 correspond to those of Manual fast 1. 

Manual movies fast 1 and 2, slow 1 and 2 had similar appearances, but varied in the speed objects 

moved on screen. Ratcam 1 and 2 perceptually looked indistinguishable. The frames of the movies 

phase-scrambled fast 1 and phase-scrambled rat 2 looked similar, but varied in their apparent speed 

(see also Figure 22). 

https://www.youtube.com/playlist?list=PLR5haZHnCJ-gsvtlx-V2nsyhA-89tYiYx
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Note that not all frames are equally spaced (for example the first 3 frames of manual slow 1, that 

illustrate the trajectory of an object on screen). 

 

Natural movies were designed to show solid objects undergoing various 

transformations (e.g. translation, size and lighting change) in a relatively controlled way. To 

this aim, we filmed 3D-printed objects painted black and white in an arena (~0.6 m2) of uniform 

blue color (which turned into mid gray when the movie was converted to grayscale). The shapes 

of the objects were selected based on previous reports in monkey (Sereno and Maunsell, 1998) 

and rat (Vermaercke et al., 2014).  

 

Figure 21. Objects’ shapes  

The objects used to create the movies. These shapes were 3D-printed with thickness of 3 cm, then 

spray painted in either black or white to obtain 16 objects in total.  

 

The 3D objects were randomly placed in the arena, but in such a way to allow filming 

with a hand-held camera a continuous movie that included most objects. The two fast movies 

included close-up views of all 16 objects; the two slow movies only included a subset of them. 

Ratcam movies were intended to simulate the visual input of a rat exploring a natural 

environment (Froudarakis et al., 2014). They were obtained by placing a small modified web 

camera (Microsoft Lifecam Cinema HD) on the head of a rat while it was running freely inside 

the arena that contained some of the printed objects and another rat. To prevent shaky camera 

effects, we added extra weight on the head. Therefore, the camera captured slow body and head 

movements, but not eye movements.  

 

Phase-scrambled movies preserve first- and second-order properties of the original 

movies, but destroy higher-order correlations (see Introduction). Previous reports have 

described how phase-scrambled images and movies can be obtained from monochromatic or 

color movies (Fraedrich et al., 2010; Froudarakis et al., 2014; Vinken et al., 2014). Our method 

was based on the following steps:  
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1) video frame data (x, y and time) were normalized to mean 0 and standard deviation 

1 to obtain 𝑀;  

2) we computed the spatiotemporal fast Fourier transform (FFT) 𝐴𝑒−𝑖𝜑 over 𝑀 from 

which we extracted the phase 𝜑 and amplitude 𝐴 spectrums;  

3) we saved the indices of identical phases from 𝜑 across the three dimensions – so 

that to preserve the conjugate symmetry of the FFT matrix –, then scrambled the 

phases and populated the matrix at matching indices to obtain a new phase spectrum 

𝜑∗; 

4) the original amplitude A and the new phase spectrum 𝜑∗ were combined into the 

matrix 𝑀∗ by performing an inverse FFT over 𝐴𝑒𝑖𝜑∗
; 

5) the imaginary part of 𝑀∗ due to round-off errors was discarded, then the original 

pixel intensity distribution was restored; 

6) values outside the 0-255 range were clipped. 

 

In order to establish how similar natural and phase-scrambled movies are at pixel level, 

we computed four indices from the pixel intensities (𝐼𝑥𝑦) of each image, i.e., across columns 

𝑥 = 1 … 𝑋 and rows 𝑦 = 1 … 𝑌. 

Average intensity contained the average pixel intensity in each frame: 

𝐼(̅𝑡) =
1

𝑋𝑌
∑ ∑ 𝐼𝑥𝑦(𝑡)

𝑌

𝑦=1

𝑋

𝑥=1

 

Root-mean-squared contrast (𝑅𝑀𝑆) is defined as the standard deviation of the pixel 

intensities in each frame: 

𝑅𝑀𝑆(𝑡) = √
1

𝑋𝑌
∑ ∑ (𝐼𝑥𝑦(𝑡) −  𝐼𝑥̅𝑦(𝑡))

2
𝑌

𝑦=1

𝑋

𝑥=1

 

Michelson contrast was calculated as follows: 

𝑀𝐶(𝑡) =
𝐼(𝑡)𝑚𝑎𝑥 − 𝐼(𝑡)𝑚𝑖𝑛

𝐼(𝑡)𝑚𝑎𝑥 + 𝐼(𝑡)𝑚𝑖𝑛
 

Time contrast (or pixel change) measures how similar two consecutive frames are, and 

was defined per frame transition, 𝑡 = 1 … 𝑇 − 1, as: 

𝑃𝐶̅̅̅̅ (𝑡) =
1

𝑋𝑌
∑ ∑|𝐼𝑥𝑦(𝑡 + 1) − 𝐼𝑥𝑦(𝑡)|

𝑌

𝑦=1

𝑋

𝑥=1
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The original movies and their corresponding phase-scrambled version had virtually 

identical average intensity (Figure 22) and RMS contrast when averaged across frames, and 

slightly different average Michelson contrast.  

 

Figure 22. Average intensities of natural and phase-scrambled movies 

Average pixel intensity of each frame is shown as a function of frame number. Horizontal lines are 

grand averages across all frames. 

A. One natural fast movie and its phase-scrambled version.  

B. One rat movie and its phase-scrambled version. 

 

Average pixel change was also very well preserved (Figure 23), even though this 

measure varied less from frame to frame in phase-scrambled movies, which is perhaps an 

indication of their faint flickering appearance. 

 

Figure 23. Pixel change 

Pixel change shows how similar two consecutive frames are as a function of frame number.  

Same notations as in Figure 22. 

A B 

A B 
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The white noise movie was obtained by drawing values from a standard normal 

distribution, normalizing and then binarizing them to 0 or 255. The frame size (height 45, width 

80 pixels) was chosen to match the rat visual acuity (~1 cpd, see Introduction) at the center of 

the screen: given that the screen spanned 90×120 degrees of visual angle, one degree covered 

approximately 2 pixels (i.e. one cycle). 

DATA ANALYSIS 

After the recording session, raw data were spike-sorted offline with WaveClus (Quiroga 

et al., 2004) or KlustaKwik (Rossant et al., 2016), in two phases: the first one was an automatic 

process that separated the spikes in distinctive clusters, the second one consisted of a manual 

refinement of the clusters generated in the automatic phase. The spike sorting procedure 

produced for each of the 32 recording sites (or channels) a number of units (typically 1-4) that 

represented our pool of available neurons. 

All analyses were performed with custom-written MATLAB (Mathworks) code, unless 

otherwise specified. Some statistical analyses were performed with SPSS Statistics (IBM 

Corporation). 

PREPROCESSING 

The duration of each movie (20 sec) was divided in equal time bins of 33 ms for natural 

and phase-scrambled movies, and of 50 ms for white-noise movies, which resulted in 600 and 

400 bins respectively. In the population decoding part, some analyses were performed with bins 

which were 100 ms long. A time histogram was obtained for each movie repetition (or trial) by 

counting the number of spikes in each time bin (spike counts). These histograms were then 

averaged across all trials to obtain the peristimulus time histogram (PSTH), which shows the 

average activity of a neuron during the presentation of one movie (Figure 24A,B).  

Because of the sudden and large change of luminance at the onset of each movie, the 

first ~250ms of the responses (5 bins for white-noise movies, and 7 bins for all other movies) 

were discarded from all analyses to avoid luminance-driven effects. 
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Figure 24. Sparseness, PSTH autocorrelation and noise autocorrelation 

This figure refers to the responses of one V1 neuron to two movies. The spike counts from which 

these plots are obtained are shown in Figure 26 and in section Example responses (Figures 31 and 

37). 

A. The average firing rate (PSTH) in response to movie manual slow 1.  

B. The PSTH of the same neuron in response to movie ratcam 1. 

C. The autocorrelation computed from the signals in A and B, along with their exponential fits and 

the time constants of the decay (termed slowness). We observe that the autocorrelation for the faster 

movie (ratcam 1) has a steeper decay than the one for the slower movie, and the time constant are in 

consequence smaller. 

D. The noise autocorrelation computed from the spike counts from which A and B are obtained, 

along with their exponential fits and time constants. 

E. Sparseness and slowness rely on the same time series so they are strongly interdependent: we can 

appreciate this by sorting the PSTH and plotting the same values against their rank in the ordered 

list. The two traces are obtained from the PSTHs in A and B which have been normalized. High 

sparseness is associated with narrower ranked PSTHs, and low sparseness with wider ranked PSTHs 

(the two extremes are pulse-like and step-like functions, respectively). 

A 

B 

C D E 
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SELECTION OF NEURONS 

Data analysis was restricted to a selection of single and multi units taken from the pool 

of available neurons, that met our criterion of reproducibility, which is a metric that quantifies 

how reliable neurons respond to preferred stimuli, i.e. frames that elicit the strongest responses. 

In more detail, we rank ordered the PSTH for each movie and selected the highest 10% peaks 

(60 and 40 frames, respectively, for the 33 and 50 ms bins). For each time bin corresponding to 

the selected peaks, we calculated the coefficient of variation (CV) of the spike counts across 

trials (i.e. 30 values), and then averaged and normalized the CVs: 

𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
〈𝐶𝑉𝑝𝑒𝑎𝑘𝑠〉

𝑚𝑎𝑥𝐶𝑉
 

where 𝑚𝑎𝑥𝐶𝑉 is the maximum value the coefficient of variation can take for a given 

sample size. It can be shown (whuber, 2011) that the maximum value is reached for a sample 

that contains only one nonzero and positive element, and all other elements zero, and is equal 

to the square root of the size of the sample (for a sample of 30 elements, 𝑚𝑎𝑥𝐶𝑉 = √30 =

~5.47).  

The resulting metric ranges from 0 to 1, where 1 corresponds to neural responses with 

perfectly reproducible trials. This metric was chosen over others that rely on the coefficient of 

correlation between trials (Rikhye and Sur, 2015; Vinken et al., 2016), to avoid the inclusion 

of silent neurons which would have had high trial-by-trial correlations due to lack of activity. 

After visually inspecting the responses of many units in the original dataset (2571 units), 

we decided to set the inclusion threshold at 0.7, that is to include those neurons which produced 

for at least one movie a reproducibility index greater or equal than 0.7. By doing so, we 

restricted our population to 548 responsive and reliable units recorded from 22 animals in 29 

sessions (of which 8 sessions included units recorded from two areas): 

 291 in V1 collected over 9 sessions; 

 49 in LM collected over 4 sessions; 

 95 in LI collected over 12 sessions; 

 113 in LL collected over 12 sessions. 

In the following, single and multi units will be called neurons. 

RECEPTIVE FIELD ESTIMATION 

The receptive field position and size for each neuron were calculated from its firing rate 

in response to drifting bars at 73 positions on the screen and 4 orientations (see Methods, section 
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Receptive field mapping). For each drifting bar, spikes were counted in windows that matched 

the duration of the bar on screen (~0.38 sec). At each location, the responses to the four oriented 

bars were averaged, and the resulting maps were fitted with a two-dimensional Gaussian (Curve 

Fitting Toolbox, MATLAB). The fitting produced five coefficients: the coordinates of the 

center, the 𝑥 and 𝑦 standard deviations, and the orientation angle 𝜃. The receptive field was 

defined as the area encompassed by an ellipse whose center coincides with the center of the 

Gaussian, and whose radii are equal to one standard deviation along the two axes of the 

Gaussian rotated by angle 𝜃 (Figure 25). Each fitting procedure also provided a goodness of fit 

index ranging from 0 to 1, that was used to establish the reliability of the ellipse in describing 

the shape and orientation of the actual receptive field. 

 

Figure 25. Receptive field estimation 

For each neuron, the size and position of its receptive field were obtained by fitting its response to 

drifting bars at various locations on the screen with a 2D Gaussian. The boundary of the receptive 

field was defined by the profile of the Gaussian at 1 STD from the center (black ellipse). 

SPARSENESS AS A MEASURE OF SELECTIVITY 

Sparseness is a measure of neuronal selectivity that shows how sparsely a neuron 

responds across the frames of the movies. As explained in the Introduction, sparseness 𝑆 was 

calculated with the formula  

𝑆 =

1 −
(∑

𝑟𝑖

𝑛
)

2

∑ (
𝑟𝑖

2

𝑛
)

1 −
1
𝑛

 

where 𝑟𝑖 is the value of the PSTH at time bin 𝑖 and 𝑛 is the number of frames. S ranges from 0 

(no preference for any frame) to 1 (preference for a single frame).  

A visual understanding of sparseness can be gathered by plotting together the rank 

ordered normalized PSTHs of neuronal responses with different sparseness indices, as in Figure 
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24E. We note that the reordered PSTHs of more selective responses decay faster than those of 

less selective responses. 

MEASURES OF TIMESCALE OF PROCESSING 

In our analysis, the timescale of neural processing was assessed in two ways: as the time 

constant of the autocorrelation function of the PSTH (also referred to as slowness), and as the 

autocorrelation of spike counts, both obtained for single neurons. 

The autocorrelation of the PSTH signal was computed as follows. 

Let 𝑥(𝑡) be the PSTH of a neuron in response to a single movie, where 𝑡 = 0 … 𝑁 − 1 

represents the time of the binning window of fixed width ∆𝑡, obtained as explained in section 

Preprocessing. Then the autocovariance for lag ∆𝑡 ≥ 0 is calculated as 

𝑐(∆𝑡) = ∑ (𝑥𝑡+∆𝑡 − 𝜇𝑥)

𝑁−∆𝑡−1

𝑡=0

(𝑥𝑡 − 𝜇𝑥) 

where 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑡

𝑁−1
𝑡=0 . The autocovariance is then normalized so that the values at zero lag 

equal 1: 

𝑟 =
𝑐

𝑐(0)
 

Next, the autocorrelation 𝑟  in the lag interval (0 … 0.3]  seconds was fitted (Curve 

Fitting Toolbox, MATLAB) with an exponential of the form 

𝑓(𝑡) = 𝐴𝑒
−𝑡
𝜏 + 𝐵 

where A is the amplitude, B is the offset, and 𝜏 is the time constant of the exponential decay, 

which was our measure of the timescale of the time-averaged neural response. A and B were 

not included in the analysis. 

Figure 24C shows the autocorrelation functions obtained for two PSTHs of an example 

neuron and their fitted exponentials. 

The noise (or spike-count) autocorrelation was computed as described by Murray et 

al. (2014) and explained in the following (Figure 26). 

Let matrix 𝐶 of size 𝑀 × 𝑁 be the spike count data for each movie, where 𝑀 is the 

number of trials and 𝑁 is the number of bins, which contains at each item 𝑐𝑖,𝑡 the number of 

spikes that occurred in trial 𝑖 at time bin 𝑡. Then the noise autocorrelation at lag 𝑛∆𝑡 is obtained 

by averaging all Pearson correlations 𝑅𝑡,𝑡+𝑛∆𝑡  between pairs of column vectors 𝑐∗,𝑡  and 

𝑐∗,𝑡+𝑛∆𝑡, which include the spike counts across trials at time 𝑡 and 𝑡 + 𝑛∆𝑡, respectively. 
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𝑅(∆𝑡) =
𝑐𝑜𝑣(𝑐∗,𝑡 , 𝑐∗,𝑡+𝑛∆𝑡)

𝑠𝑡𝑑(𝑐∗,𝑡) × 𝑠𝑡𝑑(𝑐∗,𝑡+𝑛∆𝑡)
 

𝑅(∆𝑡) =
∑ (𝑐𝑖,𝑡 − 𝜇𝑡)(𝑐𝑖,𝑡+∆𝑡 − 𝜇𝑡+𝑛∆𝑡)𝑀

𝑖=1

√∑ (𝑐𝑖,𝑡 − 𝜇𝑡)𝑀
𝑖=1 √∑ (𝑐𝑖,𝑡+𝑛∆𝑡 − 𝜇𝑡+𝑛∆𝑡)𝑀

𝑖=1

 

where 𝜇𝑡 =
1

𝑀
∑ 𝑐𝑖,𝑡

𝑀
𝑖=𝑖 . 

We note that, because of the subtraction of mean in each time bin, this measure corrects 

for nonstationarity in the mean firing rate during a movie, therefore we can say that this measure 

is not directly dependent on the stimulus (Murray et al., 2014).  

Next, the autocorrelation 𝑅(∆𝑡) in the interval (0 … 0.3] seconds was fitted with an 

exponential, as explained above for the autocorrelation of the PSTH. 

 

Figure 26. Noise (spike-count) autocorrelation 

A. The raster plot of the first 1.65 seconds of the spiking activity across 30 trials of one V1 neuron 

during the presentation of manual movie fast 1. Each dot represents one spike. 

B. The same activity as in A but discretized in time (in total 50 bins). The color of each bin indicates 

the number of spikes triggered within that bin. The red rectangles in panels A and B indicate, out of 
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the many possible combinations, 2 pairs of bins with a lag of 1 ∆𝑡 (small arrows), 1 pair with a lag 

of 4 ∆𝑡 (medium arrow), and 1 pair with a lag of 21 ∆𝑡 (long arrow). 

C. The noise autocorrelation is obtained as follows. First, the correlation between spike counts in 

bins separated by a given lag is computed: the matrix shows the correlation coefficients 𝑅 between 

bins at all possible lags. Pairs at small lags are more frequent than pairs at longer lags (e.g. there are 

599 pairs at lag 1 ∆𝑡 – on the first diagonal of the matrix – and one pair at lag 600 ∆𝑡 – the last 

element on the first line of the matrix). The elements on the diagonal are 1 and represent the 

correlation between each bin with itself. 

Then, all correlations between pairs of bins at a given lag are pooled together and averaged (for 

example all pairs at lag 1 ∆𝑡). This amounts to averaging the matrix along the main diagonal, which 

results in the red trace.  

 

Figure 24D shows two example noise autocorrelations calculated over the spike counts 

given in section Example responses (Figures 31 and 37). 

SPEED OF THE VISUAL INPUT 

The speed of the visual stimulus for a neuron was a scalar defined as the amount of 

change at pixel-level taking place within that neuron’s receptive field during the presentation 

of one movie (Figure 27A). 

First, for each movie, we computed the frame-by-frame difference of pixel intensities, 

converted to absolute values, and then averaged across time in order to obtain an array 𝑆𝑥𝑦 the 

size of a movie frame (720 lines by 1280 columns) that contained at each element the average 

intensity change of each pixel (Figure 27B-E): 

𝑆𝑥𝑦 =
1

𝑁
∑|𝐼𝑥𝑦(𝑡 + 1) − 𝐼𝑥𝑦(𝑡)|

𝑁−1

𝑡=1

 

where N is the number of frames in a movie, and 𝐼𝑥𝑦(𝑡) is the pixel intensity of the frame at 

time 𝑡. Next, we thresholded and binarized each neuron’s receptive field (see section Receptive 

field estimation) at 0.5, so only the higher half was used in the following calculations. Then, 

we computed the dot product between the speed map and the receptive field, so pixel change 

was defined as 

𝑃𝐶 = 𝑆𝑥𝑦 ∙ 𝑅𝐹 

𝑃𝐶 =
1

𝑀𝑅𝐹
∑ ∑ 𝑆𝑖,𝑗 × 𝑅𝐹𝑖,𝑗

𝑊

𝑗=1

𝐻

𝑖=1
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where 𝐻 and 𝑊 are the height and width of the movie frame, and 𝑀𝑅𝐹 the number of nonzero 

elements of the receptive field mask. 

When calculated over two frames, pixel change (speed) ranges from 0, when the frames 

are identical inside the receptive field, to 255, when one frame is white and the other one black. 

Figure 27B-E shows that neurons, depending on the relative position of their receptive 

fields, can receive very different input. The pixel change measure was used in order to quantify 

the motion energy inside the receptive field. 

 

Figure 27. Speed of the visual input  

A. Illustration of how the pixel change measure is obtained. For each neuron, receptive fields are 

normalized to 0-1 and thresholded at 0.5; then each pixel of the receptive field (red square) is 

multiplied with the average intensity change in the corresponding pixel of a movie (black triangle). 

B-E. Average intensity change for the movies white noise (B), manual fast 1 (C), ratcam 1 (D), and 

phase-scrambled manual fast 1 (E). Please note that the scale bars are different. C and D show that 

natural movies had their content localized only to some areas of the image. 

 

In the following we will refer to this measure as speed (especially when it is used as a 

scalar) or pixel change (especially when it is a function of time). 

 

A 

C 

D 

B 

E 
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 REPRESENTATION OF NATURAL 

MOVIES IN RAT VISUAL CORTEX 

STATISTICS OF RESPONSE PROPERTIES ACROSS VISUAL AREAS 

In this chapter we characterize the responses of neurons recorded in four rat visual areas 

(V1, LM, LI and LL) while anaesthetized animals were passively exposed to natural and 

artificial movies. 

Natural movies (named manual fast 1, manual fast 2, manual slow 1, manual slow 2, 

ratcam 1 and ratcam 2) consisted of sequences of 3D black and white objects filmed in a rat 

playground with uniform background. Artificial movies consisted of randomly generated 

images (white noise) and altered versions of two of the natural movies (phase-scrambled fast 

1, phase-scrambled rat 2). 

Based on a measure that quantifies how reliably neurons respond from trial to trial, we 

included in this analysis 548 neurons.  

Reproducibility (or reliability, see Methods) was strongly dependent on the average 

speed of the movie: the same neurons responded differently to the 9 movies (Figure 28). 

Specifically, the movies ratcam 1 and 2, the white noise and the phase-scrambled version of the 

ratcam movie evoked the most reproducible responses within each area; the manual movies 

instead were the least reproducible. This effect is probably due to the sharp contrast changes 

from frame to frame; in the case of ratcam movies, the changes were induced by the jerky 

movements of the animal carrying the camera.  

By comparing the movies manual fast 1 and ratcam 2 with their phase-scrambled 

versions, we observe that natural movies evoked more reproducible response than the artificial 
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ones (cyan vs. red bars, and dark pink vs. brown bars, within each area); this has already been 

observed in mice and rat visual cortices (Froudarakis et al., 2014; Rikhye and Sur, 2015; Vinken 

et al., 2016).  

 

Figure 28. Reproducibility 

The four panels show the average reproducibility of the neurons included in the analysis from each 

area. The inclusion threshold was set at 0.7, but we see smaller values because the threshold was 

applied on the movie with the highest reproducibility (see Methods). 

 

The average firing rate was calculated as the number of spikes that occurred during all 

trials for a given movie divided by the duration of the movie and by the number of trials. 

Spontaneous average activity was estimated from short 4 seconds long periods of black screen 

before the onset of some movies (see Methods). In confirmation of previous results (Vinken et 

al., 2016; Tafazoli et al., 2017), the firing rates of V1 neurons were larger than those of the 

three other areas (Figure 29A). This result was supported by a two-way mixed and unbalanced 

ANOVA with area as the between factor (4 levels) and movie as the within factor (9 levels) 

that yielded a significant main effect for area: F(3,544) = 4,36, p < 0.01. In the post-hoc 

analysis only the difference of the pair V1-LL was significant (Dunnett T3 test, p < 0.05). 

The movies that elicited higher firing rates (ratcam 1 and 2, phase-scrambled ratcam 2) 

did so in all four areas: this can be observed in Figure 29B, that shows the coefficients of 

correlation between the patterns of firing rates measured across the nine movie in the four areas. 

The correlations are virtually perfect and highly significant (Student’s t-test, p < 0.001, Holm-

Bonferroni corrected). 
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Figure 29. Firing rates 

A. Average firing rate per movie and area. Average spontaneous activity is also represented (black).  

B. Pairwise linear correlation coefficient between each pair of areas. Each square color codes the 

Pearson coefficient of correlation between the average firing rates in one area and the average firing 

rates in other area. 

SPARSENESS AND SLOWNESS  

The aim of this project was to test some of the predictions of the sparse coding theory 

such as the selectivity or slowness of the response across visual areas (discussed in the 

Introduction). To do so, we calculated the lifetime sparseness and the timescale of neural 

activity for each neuron and movie. Yet, the neurons in the investigated areas had basic response 

properties that were not matched between areas, thus making difficult to have a fair comparison: 

as seen above, the firing rates varied between areas and movies, and neurons had receptive 

fields of different sizes and at various positions on the screen (see examples in Figure 30). 

While we do expect to see an increase of size across the visual areas (Vermaercke et al., 2014; 

Tafazoli et al., 2017), the receptive field positions can be adjusted only to some extent during 

the experiment (Methods and Figure 6). We note in Figure 30, which shows the estimated 

receptive field of some of our recorded neurons, that V1 neurons mostly cover the center of the 

screen, whereas LL the top-left and bottom-left corners. 

A 

B 
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Figure 30. Position and size of receptive fields  

The receptive fields with a goodness of fit larger than 0.25 are shown (46 neurons from V1, 6 from 

LM, 22 from LI and 46 from LL). 

 

Our stimuli add another dimension of variability: movies of the same type (i.e. natural 

or artificial, slow or fast, manual or ratcam) were rather different between each other. For 

example, natural manual movies predominantly had their content (i.e. moving objects) localized 

to the center of the image, while natural ratcam movies to one side (Figure 27C,D).  

It follows that recorded neurons in the four visual areas received different amounts of 

stimulation which depend on the properties of their receptive fields. In order to control for this, 

we chose to present our selectivity (sparseness) and slowness metrics relative to the speed of 

the visual input, which shows how much movies change from frame to frame, on average, 

across the pixels inside the receptive field (described in Methods). To increase the power of the 

analysis we also pooled together similar movies, i.e. those whose pixel change (speed) clustered 

together: manual movies formed one group, ratcam movies another one, and the artificial 

movies where kept separate (from Figure 41 to Figure 47). 

EXAMPLE RESPONSES 

The neurons included in this analysis had widely different firing activities in response 

to the nine movies, for what concerns their viability (i.e. for how long we could record them), 

reproducibility, firing rate, position and size of the receptive field. The next figures show the 

response of two relatively good neurons, one in V1 and one in LL, to five movies: white noise, 

manual fast 1, manual slow 1, ratcam 1, and phase-scrambled fast 1. 

In our dataset we included only neurons for which we had completed a full recording 

protocol, i.e. 30 repetitions (e.g. panel C in Figures 31 to 40). The response reproducibility 

across trials mostly varied across units (Figure 28), but to a large extent even between movies 

within single neurons: compare, for example, the raster plots in panel C in Figure 31 and Figure 



 

53 

 

33, which show the responses to ratcam 1 and white noise, respectively. Our reproducibility 

index measures 0.83 and 0.74 in the two cases.  

 

Figure 31. Properties of a V1 neuron with respect to the movie ratcam 1 

Neural properties presented in this figure are related to a single neuron and to its response to one 

movie. The top-right text contains, in order:  

- a unique ID of the neuron (session-channel-unit),  

- the area where the neuron was recorded,  

- the name of the movie,  

- the reproducibility index for the specified movie (as defined in Methods), 

- the sparseness (as defined in Methods) calculated on the PSTH response to the specified movie 

(black trace in B),  

- and the average over time of the pixel change measure (red trace in A). 

A. Pixel change as a function of time (see Methods) in arbitrary units (pixel intensity; it can range 

from 0 to 255). 

B. The PSTH (black trace) is the trial-averaged response of the neuron to the specified movie. The 

average spontaneous activity is shown before the onset of the movie (gray trace). Magenta points 

indicate the peaks/bins that have been used to compute the reproducibility index (in total 10% of the 

number of bins; see Methods); their position on the y axis indicates the average firing rate during 

the movie (i.e. the mean of the black trace). 

C. The raster plot shows the spikes produced in response to the 30 repetitions (trials) of the movie 

(blue dots), and the ones before and after the movie (gray dots). 

D. The receptive field and its fitting (see Methods). This panel is identical for all movies. 

E. The part of the receptive field that was used to compute the pixel change measure (see Methods). 

The mask is identical for all movies. 

F. The autocorrelation function of the PSTH (black trace), its fit with an exponential (dashed black 

trace) and the time constant of the decay. The noise (spike-count) autocorrelation based on the spike-

count data, its fit and the time constant of the decay (blue traces).  
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Figure 32. Properties of a LL neuron with respect to the movie ratcam 1  

Same content structure as in Figure 31 for a LL neuron in response to the movie ratcam 1. 

 

White noise movies are characterized by high values of the pixel change measure. Panel 

A in figures 33 and 34 show that it typically reaches values close to 127 (half the maximum 

range) and is relatively constant. Neurons are poorly triggered by this movie, but some frames 

seem to strongly drive all neurons (for example those at sec ~7 or sec ~15 in the PSTH, panel 

B), which results in sparseness being towards the lower end (compare sparseness in Figure 33 

and Figure 37).  

 

Figure 33. Properties of a V1 neuron with respect to the movie white noise 

Same content structure as in Figure 31. 

 

One should also note the difference between receptive fields in the two example 

neurons: one central, the other one in the top-left corner (panels D and E in all figures in this 
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section). As a consequence, the input received by each neuron had different dynamics and 

energy, given by the pixel change measure (compare panel A in Figures 35 and 36). 

 

Figure 34. Properties of a LL neuron with respect to the movie white noise 

Same content structure as in Figure 31. 

 

 

Figure 35. Properties of a V1 neuron with respect to the movie manual fast 1 

Same content structure as in Figure 31. 

 

The main focus of this work was to assess whether we can find evidence of activity at 

different timescales across visual areas. The PSTHs of Figures 35 and 36 show the responses 

of two neurons (one in V1 and the other in LL) to movie manual fast 1. We can appreciate that 

the LL neuron has fewer strong responses than the V1 neuron, each with a longer duration, and 

this can be quantified by computing the autocorrelation of the PSTH (“PSTH AC” in panel E) 
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or the spike-count autocorrelation (“Noise AC” in panel E). The time constants of the decay 

(“fit tau”) is in both cases larger for the LL neuron, which confirms that the two signals are 

more self-similar than the corresponding ones of the V1 neuron. However, as discussed in 

section Sparseness and slowness, the position of the receptive fields in the two cases could 

confound these effects. In this specific example, the objects contained in the movie manual fast 

1 swept more often through the receptive field of the V1 neuron, than through the receptive 

field of the LL neuron, as can be appreciated by looking at the richer dynamics of the pixel 

change metric (panel A). A similar pattern was found for the movie manual slow 1 (Figures 37 

and 38). 

 

Figure 36. Properties of a LL neuron with respect to the movie manual fast 1 

Same content structure as in Figure 31. 

 

Figure 37. Properties of a V1 neuron with respect to the movie manual slow 1 

Same content structure as in Figure 31. 
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Figure 38. Properties of a LL neuron with respect to the movie manual slow 1 

Same content structure as in Figure 31. 

 

The two phase-scrambled movies were similar in their properties and their ability to 

drive neurons (Figure 39 and Figure 40): they had similar variation of the pixel change (panel 

A), and, as with the white noise movie, they had less reproducible responses compared to those 

to natural movies. 

 

Figure 39. Properties of a V1 neuron with respect to the movie phase-scrambled fast 1 

Same content structure as in Figure 31. 
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Figure 40. Properties of a LL neuron with respect to the movie phase-scrambled 1 

Same content structure as in Figure 31. 

 

In the following sections we will make an analysis of sparseness and slowness of the 

response of all neurons in our population, relative to the speed of the movie. 

SPARSENESS 

To assess how selective individual neurons are when presented with natural and 

artificial movies, we computed lifetime sparseness over the trial-averaged response (described 

in Methods). This measure ranges from 0 to 1: it takes small values when neurons fire similarly 

to all frames and large values when neurons fire only to some frames of the movie.  

Sparseness was plotted against the speed of the visual input. As explained above, this 

allows a fair comparison among the areas, because we could control for differences in terms of 

receptive field position and size (and, thus, of stimulus luminance changes within the receptive 

field). In addition, it allowed testing whether sparseness depends on the speed (i.e. on the 

spatiotemporal energy) of the visual input – a relationship that has not been explored so far in 

the previous studies of sparseness in visual cortex. 

Figure 41 shows the sparseness for manual (speeds between 3 and 11.1) and ratcam 

movies (speeds from 24 to 35). Figure 42 shows the sparseness for the three artificial movies 

(speeds from 13.8 to 128.8). 

We observe that sparseness generally decreases from V1 to LL in all types of movies, 

with the exception of the ratcam ones, where LM is the largest (Figure 41 right and Figure 42 

middle). We also note that sparseness increases with speed, but only in the case of natural 
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movies. Precisely, mean sparseness is larger for ratcam (faster) than for manual (slower) movies 

(Figure 41 right vs left), and remains roughly unchanged between the three artificial movies 

(Figure 42). A two-way ANOVA with area and speed bin as factors confirms these results and 

yields a significant main effect of area (𝐹3,4896 = 92.73, p < 0.001, speed bin (𝐹8,4896 =

72.76, p < 0.001), and a significant interaction area*speed bin (𝐹24,4896 = 4.67, p < 0.001). 

Finally, sparseness is higher for natural than for artificial movies at similar speeds: this 

is evident when one compares the bins starting at speed 8.4 with the one starting at 13.8, or bin 

31.4 with bin 33.0 in Figure 41 and Figure 42, respectively (𝐹1,4924 = 356.34, p < 0.001). 

 

Figure 41. Sparseness of responses to natural movies 

Each of the two columns of this figure refer to a group of movies listed at the very top: fast 1, fast 

2, slow 1 and slow 2 for the left column, and ratcam 1 and ratcam 2 for the right column, which 

together make up the natural movies of our stimulus set. 

The top row of the figure shows, for each neuron, the sparseness of responses to the listed movies 

as a function of the movie speed measured inside the receptive field, i.e. each point refers to the 

response of one neuron to one movie. The x axis has been divided in three equal bins for different 

intervals of speed, from the minimum to the maximum speed evoked in any neuron by the listed 

movies (dashed lines). The exact margins of each interval are given at the very bottom of the figure 

(speed range). Also note that speed, on the x axis, increases monotonically from left to right in the 

two columns.  

The bars in the bottom row of the figure show the average sparseness per area computed from 

responses with speeds within the aforementioned bins.  

Numbers at the base of each bar indicate the number of responses (points in the top panel) used to 

obtain the value of that bar, so the cloud of dots in each column counts: the number of movies × the 

size of our population (4 × 548 for the left column, 2 × 548 for the right column). 
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Figure 42. Sparseness of responses to artificial movies 

The content structure is similar to the one of Figure 41. 

This figure shows the sparseness of responses to three artificial movies: phase-scrambled fast 1, 

phase-scrambled rat 1 and white noise, in increasing order of speed (x axis in both rows). 

Note that the movie phase-scrambled rat 2 (bin starting at 33.0) and the third bin of the right column 

in Figure 41 (bin 31.4) have matching speeds. Phase-scramble fast 1 (bin 13.8) is also very close to 

bin 8.4 of Figure 41. 

 

Overall, these results suggest that the visual areas we investigated are functionally 

different in terms of sparseness. Its decrease across areas does not support one of the predictions 

of the sparse coding theory, i.e., that areas at higher levels of processing should be sparser (see 

Introduction). However, the reduction of sparseness could result from an increase of invariance 

of the response to transformation, which could overcome the increase of selectivity (Rust and 

DiCarlo, 2012). In this sense, our finding could be consistent with the emergence of ventral-

like processing across the areas’ progression. 

The high sparseness values observed in LM for ratcam movies, which are the fastest 

natural movies in our stimulus set, could be explained by at least one of the following 

considerations: 1) LM does not belong to the putative V1-LL processing stream, as already 

suggested by Tafazoli et al. (2017); 2) LM neurons are particularly selective to fast-changing 

stimuli, which argues for a dorsal-like processing, as observed for mice LM neurons, which 

prefer high temporal and low spatial frequencies (Marshel et al., 2011); 3) our population of 

LM neurons is too small (49) to allow a proper estimation of sparseness. 
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Our results also confirm what has already been observed in mice and rats, i.e., that 

responses to natural movies are sparser than those to artificial ones (Froudarakis et al., 2014; 

Vinken et al., 2016). Interestingly, in our case, this conclusion is not affected by possible 

variations of the speed of the phase-scrambled movies, since, for matching speed, the natural 

movies still surpass the phase-scrambled ones. 

SLOWNESS 

The slowness of the response of each neuron was assessed by computing the time 

constant of the autocorrelation function of the trial-averaged response (PSTH) to a given movie 

(see Methods). The time constant (in ms) indicates the timescale at which neurons respond to 

various types of movie, i.e., large time constants correspond to slow fluctuations in the stimulus 

response, whereas small time constants correspond to fast responses.  

By construction, this measure is strongly stimulus-dependent, as can be seen in Figure 

43, which highlights three emerging groups of similar movies: 1) the four manual ones, 2) the 

two ratcam and the two phase-scrambled movies, and 3) the white noise movie, which produced 

the smallest time constants. 

We note that qualitatively neurons in various areas respond differently to movies, and 

that there is an overall increase of slowness from V1 to LL (Figure 43). The group of artificial 

movies and the ratcam ones (which both are fastest movies in the stimulus set) don’t seem to 

produce large differences in average time constants in the four areas: 

37.4, 32.4, 38.7, 44.7 ms in V1, LM, LI and LL (Figure 43, red hues). By contrast, for the 

natural manual movies, which are slower, a sharp increase of slowness can be observed from 

LM (86.9 ms) to LL (128.3 ms) (Figure 43, blue hues), although V1 time constants are not 

much smaller than LL ones. 

 

Figure 43. PSTH time constants per movie 

For each movie (colored lines) we plot the mean time constants in areas V1, LM, LI and LL. We 

note the strong dependence of this measure on the movie type, i.e. natural manual movies cluster 
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together (traces of blue hues), and so the fast-moving natural and artificial ones (ratcam and phase-

scrambled, traces of red hues). 

The black trace (background) represents the time constants computed from the PSTHs relative to 

short periods of spontaneous activity (see Methods). 

 

The qualitative analysis is confirmed when we plot time constants as a function of speed 

inside the receptive field: except for the faster manual movies (Figure 44, left column, third 

bin) which contains few responses, the trends observed in Figure 43 are reproduced at slow 

(Figure 44), medium and high speeds (Figure 45), irrespective of the movie type (natural or 

artificial). A two-way ANOVA with area and speed bin as factors produces a significant main 

effect of area (𝐹3,4896 = 24.8, p < 0.001) and speed bin (F8,4896 = 512.44, p < 0.001), and a 

significant interaction area*speed bin (F24,4896 = 13.34, p < 0.001). The ANOVA interaction 

reflects the way V1 neurons respond to slow stimuli, which prevent the trend across areas to be 

a strict monotonic increase (Figure 44). 

 

Figure 44. PSTH time constants of responses to natural movies 

The content structure is similar to the one of Figure 41. 

 

Overall, by measuring the slowness of the PSTH response we note, as expected, the 

strong dependence of the visual input, and a slight tendency for lateral areas to fire at slower 

timescales compared to the medial areas, particularly at very fast stimuli (Figure 45).  
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Figure 45. PSTH time constants of responses to artificial movies 

The content structure is similar to the one of Figure 41. 

NOISE AUTOCORRELATIONS 

Another way one can analyze neural fluctuations is by looking at the variability at the 

level of individual trials of a neuron’s response, in relation to the ongoing stimulus. The 

rationale of this approach is that the PSTH, which is the focus of the previous section, discards 

the single-trial information by only considering the mean of spike counts in a given time bin, 

whereas the brain works with single trials. 

A possible implementation is to compute, for each neuron and for pairs of time bins 

separated by a time lag, the correlation of the number of spikes across trials, and then plot the 

average correlation as a function of time lag to obtain the so-called spike-count or noise 

autocorrelation (see Methods). Intuitively, the decay of the autocorrelation will be a measure 

of self-similarity of individual trials, i.e. the time span in which the spiking activity is sustained 

at a similarly high or low rate.  

Murray and colleagues (2014) have employed this method to estimate the timescales of 

firing activity (i.e. when no stimulus was presented) in various cortical areas of the monkey, 

and found that sensory areas exhibit shorter timescales while prefrontal areas longer timescales. 

Our results show that the activity of neurons in lateral areas is generally at slower 

timescales: in 8 out of 9 speed bins in Figure 46 and Figure 47, the time constants of LL 

(𝑀 = 73.5 ms, SD = 1.9)  and LI (𝑀 = 57.4 ms, SD = 2.1)  are larger than those of V1 

(𝑀 = 55.6 ms, SD = 0.9) and LM (𝑀 = 41.2 ms, SD = 2.3) neurons. A two-way ANOVA 
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with the factors area (4 levels) and speed bin (9 levels) confirms the effect of area: 𝐹3,4896 =

40.24, p < 0.001. 

We also note that, even though the noise autocorrelation doesn’t include the mean 

response (i.e. PSTH), the speed of the stimulus is still reflected in the time constant of the 

response. The same ANOVA yields a significant main effect of speed: 𝐹8,4896 = 22.4, p <

0.001. 

 

Figure 46. Noise autocorrelations for natural movies 

The content structure is similar to the one of Figure 41. 

 

 

Figure 47. Noise autocorrelations for artificial movies 

The content structure is similar to the one of Figure 41. 
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There is no indication that time constants of responses to natural movies are different 

from those to artificial movies, as the main effect of movie type in a two-way ANOVA with 

factors area and movie type (2 levels) is not significant: 𝐹1,4924 = 0.76, p = 0.38. 

In this section we have seen that, when we estimate the trial-by-trial autocorrelation, the 

emerging timescales of neural activity during stimulus presentation show a progression of 

increasing slowness from V1 to LL. Noise time constants (𝑀 = 58.4 𝑚𝑠) are significantly 

smaller than PSTH ones (𝑀 = 72.6 𝑚𝑠) (Wilcoxon signed-rank test, 𝑝 < 0.001) and overlap 

with those obtained for the spontaneous activity (Figure 43 and Figure 48). Moreover, we don’t 

see any difference between natural and artificial movies. All of these suggest that noise 

autocorrelations capture the intrinsic timescales of processing in neural circuits (and less the 

timescale of the visual input), and our results highlight a putative functional and architectural 

difference between the four visual areas investigated. 

 

Figure 48. Noise time constants per movie 

Mean time constant of noise autocorrelation for each movie and area. To facilitate the comparison, 

the y axis matches the one of Figure 43.  
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 POPULATION DECODING 

In the previous chapter we have characterized the timescales of single cell responses to 

movies with various dynamic properties, and assessed to what extent the slowness principle is 

implemented in the rat visual cortex so as to represent (or encode) time-varying stimuli. A slow 

and invariant representation is one in which neurons maintain a fairly constant firing over time 

when presented with stimuli that change their appearance (see Figure 13). If their firing is 

slower, then one can assume their ability to discriminate between preferred and non-preferred 

stimuli is also preserved over longer timescales.  

A different approach from what has been done in the previous chapter is to assess 

slowness through single-cell or population decoding, by training classifiers to discriminate 

between consecutive instances of objects undergoing identity-preserving transformations. The 

movies we used in this project contain many objects that are translating, rotating, changing size, 

pose, and lighting. Our working hypothesis is that, if some neuronal responses change slowly 

over time, we should see it in their ability to assign the same label to consecutive frames of an 

object changing over time. In practice, in our case, one can address this idea by training a 

classifier to discriminate between a pair of frames of two objects (taken from two different 

segments of the same movie or different movies) and testing the ability of the classifier to 

generalize to pairs of frames containing the same objects that are adjacent, in time, to the 

training ones: a sharp drop in the performance of the classifier would indicate that the 

population of neurons is not maintaining a stable (invariant) representation of the two objects, 

whereas a shallow decrease in performance – as tested by looking at frames that are farther 

apart in time – would suggest that those representations are slow (Figure 52C). 
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In the following, we are presenting an application of the population decoding technique 

used before for the discrimination of static objects (Hung et al., 2005; Rust and DiCarlo, 2010; 

Vermaercke et al., 2015; Tafazoli et al., 2017). Noticeably, previous studies have applied 

decoding approaches to time-varying stimuli, but they have not tried to decode the identity of 

visual objects that are continuously transforming over time: they either decoded the identity of 

static visual shapes presented in rapid sequence (Nikolic et al., 2006) or random frames of 

natural movies (Froudarakis et al., 2014). The read-out scheme we apply here is one possible 

way to estimate the amount of information that neurons convey to downstream visual areas. 

STIMULUS SET 

In order to limit possible confounds due to the complexity of natural images, for this 

analysis we only used the four manual movies: fast 1, fast 2, slow 1 and slow 2. Moreover, 

within each movie, we considered only sequences of frames that contained only one object per 

frame. 

To obtain the objects’ masks of each movie we performed a semi-automatic image 

segmentation process on each frame: the automatic part consisted of selecting the continuous 

pixels whose colors were within a certain tolerance relative to two manually-defined reference 

pixels, by using a magic wand tool applied on the color movies (Phung, 2004, updated 2 April 

2004); the manual part consisted of refining the masks with a brush-like tool and labeling each 

object with pre-defined names (16 objects in total, see Methods and Figure 49 below).x 

Manual movies contain on average 2.55 (𝑠𝑡𝑑 = 1.58) objects per frame across the 4 × 

600 frames, from which we extracted 25 segments of black and white objects (exactly one per 

frame) of mean duration 30.3 frames (𝑠𝑡𝑑 = 13) (Figure 49).  

 

 

Figure 49. Objects used for population decoding 

The two panels show the source of movie segments from the four manual movies. Each filled square 

indicates whether the object drawn at the top of the table has been found in the movie named on the 
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left side. The numbers inside each square represents the length (i.e. number of frames) of the movie 

segment. The red contours highlight the objects that were included in the stimulus set (Figure 50). 

From left to right, the names of the 8 objects are: bunny, hash, m, pacman, square, star, triangle, y, 

to which their color (black or white) are added, to obtain the total number (16) of objects used in 

this experiment. 

 

The 25 objects had trajectories (or transformations) that could roughly be classified 

based on a few qualitative criteria, as follows: start position (center, left or right off-center, 

extreme right, extreme left, top right of the image), direction (towards left, right, bottom left, 

bottom right), size (zoom-in, constant size), and magnitude of translation (half screen, full 

screen). The objects that were eventually included in the analysis are shown in Figure 50A and 

were matched for all these criteria. Figure 50B shows some objects that were not included in 

the analysis: either because their trajectories were not similar to other objects’ trajectories (to 

allow grouping them together), or because they appeared for too short durations.  

Since for this analysis we also used a bin size the duration of three frames (100 ms), we 

created resampled movies that contained the original frames at positions 3 × 𝑘 − 1 for 𝑘 =

1 … 200. 

In the following, with the locution movie segment, we refer to a consecutive sequence 

of frames that contained a specific object (one of those selected above) from the four manual 

movies, binned at either 33 or 100 ms. 

 

Figure 50. Trajectories of selected objects 

Individual panels show objects’ trajectories along movie segments. The contours indicate the 

positions of an object in a given frame, at times coded by color (red represents the starting point, 

and blue the end). The number of frames of each object is given in Figure 49. 

A 

B 
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A. We included in this analysis 5 black objects (marked with small black squares) and 3 white 

objects. We note that objects started being alone in the frame when they were approximately in the 

center of the image and then moved towards the left or right corner. The two groups of objects (black 

and white) were analyzed separately because of the difference in color and direction of the trajectory. 

B. Some example objects that were not included in the analysis, for the following reasons: not 

enough direction matches, not enough start position matches (panels 1, 2, 4), and too few frames 

(panel 1 and 3). 

SELECTION OF THE POPULATIONS OF NEURONS 

In this analysis we included only the most reliable neurons in our dataset, i.e. those with 

a lifetime average firing rate of at least 2 Hz and a reproducibility index larger than 0.75. With 

these criteria we selected 216 neurons recorded in V1, 28 in LM, 60 in LI and 58 in LL. 

Because most objects were present in the center of the image (Figure 50A), we aimed 

at having populations of neurons whose receptive fields would maximally cover the same area. 

To this end, we did the following steps: within each area, we pseudorandomly sampled 1000 

populations of 15 neurons, and for each one of them we generated the binary union of receptive 

fields masks of constituent neurons (see Methods). We then assigned to each population a score 

that was computed as the ratio between the screen coverage of the union 𝑈 – defined as the 

number of nonzero pixels –, and the median distance from each pixel of the union to the center 

of the image 𝑑̃. 

𝑈 = 𝑅𝐹1 ⋃ 𝑅𝐹2 … ⋃ 𝑅𝐹15 

𝑠𝑐𝑜𝑟𝑒 =
∑ 𝑈

𝑑̃
 

Finally, from the 1000 populations we selected the 10 with the highest scores for each 

area, which were used in all the decoding analyses described in the following. Figure 51 shows 

a few examples of the resulting population receptive fields.  

Not all neurons that met our criteria were included in the 40 populations. The unique 

neurons that made up our populations numbered 90 from V1, 28 from LM, 32 from LI, and 28 

from LL. 
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Figure 51. Example population receptive fields 

Each panel is showing one of the ten populations in the four areas we investigated. Note that most 

receptive fields cover at least partially the central area of the image. 

DECODING ANALYSIS 

The decoding analysis consisted of training classifiers to discriminate between frames 𝑖 

and 𝑗 belonging to two different movie segments containing, respectively, object 𝑂1 (frames 

𝑖 = 1 … 𝑀1) and object 𝑂2 (frames 𝑗 = 1 … 𝑀2), respectively, where 𝑀1 and 𝑀2 are the lengths 

of the two segments. For every pair of frames 𝑖 and 𝑗, a classifier was built. 

The data fed to each of the 𝑀1 × 𝑀2 classifiers comprised the spike count responses of 

a population of 𝑁 neurons to 𝑃 presentations of the frames 𝑖 and 𝑗 (see Figure 26B for the spike 

counts of one neuron). The binning windows Δ𝑡 , in which spikes were counted, were the 

duration of one frame (33 ms) or three frames (100 ms), which will be called in the following 

small bins or large bins, respectively (Figure 26B). Each presentation of a frame resulted in an 

array with a dimensionality of 𝑁 × 1 that corresponds to one point in a high-dimensional space, 

whose axes represent the responses of the neurons of the population; all 𝑃 repetitions of a frame 

formed a cloud of points in this space (Figure 2 and Figure 52A). In our analysis 𝑁 = 15 and 

𝑃 = 30, therefore each 𝑖, 𝑗 pair produced two clouds of 30 points in a 15-dimensional space 

(Figure 52A). 

Our procedure for generating populations did not specifically consider whether neurons 

had been recorded simultaneously or in separate sessions. Obviously, in the case of 

simultaneously recorded neurons, noise (i.e., trial-by-trial) correlations can affect the 

representation. To avoid inhomogeneities, given that we randomly mixed neurons recorded in 

the same and different sessions, we destroyed all noise cross-correlations by shuffling the 

responses of each neuron in a population across trials (sampling trials with replacement for each 

V1 LM 

LI LL 
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neuron), thus obtaining neuronal pseudo-population vectors (Figure 52B). This approach is 

typically applied when population decoding analyses are utilizing data that were not all 

recorded simultaneously (Hung et al., 2005; Tafazoli et al., 2017).  

 

Figure 52. Population decoding 

A. The schematic representation of the training and testing procedures in our decoding analysis. The 

response patterns of a population of N neurons (axes 𝑟𝑛) to the repeated presentation of a frame can 

be represented in a high-dimensional space as a cloud of points (dots). Training a classifier to 

discriminate between the responses to frames 𝑖  and 𝑗  (red and blue dots) amounts to finding a 

hyperplane that separates the two classes of responses (dashed line for simplicity). Testing the 

classifier on the adjacent frames 𝑖 + 𝑘∆𝑡  and 𝑗 + 𝑘∆𝑡  amounts to calculating the proportion of 

correct classifications over the total number of decisions (light red and blue dots). In this case the 

performance is high, at ~0.88, as only 2/16 datapoints have been mislabeled. 

B. The data fed to the classifiers consisted of arrays that stored the responses of one population of 

neurons (rows, from 1 to 15) to multiple trials (columns, from 1 to 30). The order of trials was 

A 

C 

B 
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shuffled for each neuron within a single frame. Note that neurons 1, 2 and 15 have different orders 

of the 30 trials which are maintained across frames. 

C. The main prediction of this analysis is that training a classifier to discriminate a given pair of 

frames (solid rectangle) and then testing to discriminate an adjacent pair of frames (dashed rectangle) 

will result in a decrease of performance (toy red and black traces), which will be different between 

areas. More specifically, we expect neuronal populations from LL (black trace) to maintain high 

classification performances for pairs of frames placed at longer time intervals 𝑘∆𝑡 with respect to 

the training pair, compared to other areas (such as V1, red trace): compare red and black traces at 

positive and negative lags ∆𝑡. 

 

For each 𝑖, 𝑗 pair, a Support Vector Machine (SVM, with a linear kernel and the penalty 

parameter C set to 1, implemented in the Statistics and Machine Learning Toolbox, MATLAB) 

was trained to discriminate the two frames with a 10-fold cross-validation procedure, that 

consists in splitting the data in 10 subsets and using, in each cross-validation loop, nine of them 

for training a decoder – which amounts to finding a hyperplane that would best separate the two 

clouds of data points –, and one for testing the decoder – i.e. testing its ability to correctly label 

the data points in the remaining subset. Performance was measured as the proportion of correct 

classification decisions in the testing set and it ranges from 0 to 1, where 1 is perfect 

classification and 0,5 is chance. The average performance across the cross-validation loops for 

an 𝑖, 𝑗 pair will be called in the following the cross-validated performance (Figure 53B). This 

performance is indicative of how well the individual frames 𝑖 and 𝑗 are decodable in the first 

place and sets an upper bound on the ability of the population to generalize to different frames 

containing the same objects. 

In a similar way, for each 𝑖, 𝑗 pair, an SVM was trained on the full data (i.e. all trials) 

and then tested on the adjacent frames before or after the training pair, i.e. on pairs 𝑖 − 𝑘Δ𝑡, 𝑗 −

𝑘Δ𝑡 and 𝑖 + 𝑘Δ𝑡, 𝑗 + 𝑘Δ𝑡, respectively, where Δ𝑡 is the bin size, and 𝑘 is a counter ranging 𝑘 =

1 … 10 for the 33 ms binning, and 𝑘 = 1 … 3 for the 100 ms binning. The performance on this 

test will be called in the following the generalization performance and will be dependent on the 

time lag 𝑘Δ𝑡 between training and testing pairs of frames (Figure 52C and Figure 53). In order 

to obtain an estimate of the population discrimination for a given object pair 𝑂1 and 𝑂2, we 

averaged the generalization performance curves obtained from various choices of the training 

frames 𝑖, 𝑗 at matching lags (Figure 53). This averaging procedure will be extensively used 

throughout the analysis, as it’s giving an estimate of the decoding performance of one neuronal 

population, tested on one pair of objects, within one single area. 
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Not all pairs of frames allowed testing bins both before and after the training pair (such 

as pairs 1,1, or 1, 𝑀1, or 𝑀1, 𝑀2), because this would have meant including frames outside of 

the movie segments that contained one object per image (Figure 53A). 

Generalization performance at a given time lag 𝑖 ± 𝑘Δ𝑡, 𝑗 ± 𝑘Δ𝑡  is providing an 

absolute measure of how well the classifier 𝑖, 𝑗 is performing when tested on unseen data (i.e., 

from adjacent frames); cross-validated performance instead shows what is the maximal 

discriminability at the very same lag. In order to quantify how well the classifier 𝑖, 𝑗  is 

performing with respect to the available discriminability at the given lag, one needs to divide 

the two performances. In the following, the proportion of performance achieved by classifier 

𝑖, 𝑗  at time lag ±𝑘Δ𝑡 , calculated as the ratio between generalization and cross-validated 

performances, will be referred to as normalized performance (Figure 53B).  

  

Figure 53. Example performance traces 

This figure refers to the pair of black objects bunny – hash (made of 46 and 44 frames, respectively). 

A. Each of the 3 (out of 46 × 44 = 2024) solid traces represents the generalization performance of 

the classifier trained with the data corresponding to the frames given in the legend. The value at lag 

0 is the cross-validated performance for the same pair of frames.  

Note that for some pairs (e.g. 2,1) only the pairs after the training pair can be tested (10 positive 

lags). In the case of the training pair 4,20, the following pairs of frames were tested: from the leftmost 

dot before lag 0: (1,17)(2,18)(3,19), and after lag 0 (5,21)(6,22)… (14,30). 

The mean is computed from the available values at each lag (dashed line), which makes the average 

trace overlap with the trace for pair 24,10 at negative lags. 

The red horizontal line is the chance level for the binary classifier. 

B. Similarly to panel A, each value of the thick trace shows the generalization performance for 

adjacent pairs. The thin trace instead shows the cross-validated performance for adjacent pairs: note 

that the two traces are actually identical at lag 0, because they both refer to pair 1,13. 

B A 
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The normalized performance is defined as the ratio between the values of the thick trace and the 

values of the thin trace, individually for each lag. In order, from the leftmost value, the pairs are: 

(1,13)(2,14)(3,15)…(11,23). 

 

The chance classification performance was estimated by training the SVMs as explained 

above, with the only difference that the association between the object identity and the spike 

count data has been shuffled (Figure 55B). The testing procedure did not change. In Figure 52A 

this would be equivalent to shuffling the color labels between dark red and blue dots.  

RESULTS 

In this section we will present the decoding performances of populations of neurons 

from the four visual areas investigated in response to two classes of stimuli extracted from the 

manual movies. The first group includes five black objects translating from the center of the 

image to the bottom left corner of it, that can be combined in (
5
2

) = 10 pairs of objects (Figure 

50). The second group includes three white objects translating approximately rightwards, which 

can be combined in (
3
2

) = 3 pairs (Figure 50). 

Our decoding analysis is based on a large number of combinations of different variables: 

pairs of objects (13), bin sizes (one small and one large), and areas (4). Moreover, each pair of 

objects can be tested starting from roughly 900 pairs of different training frames (i.e. ~30×30 

frames, Figure 49), and, for each of such pairs, 20 or 6 (depending on the bin size) additional 

values are obtained in the generalization test (i.e., as points of the generalization performance 

curves as a function of the time lag from the training frames, see Figure 53A). It becomes 

apparent that substantial averaging at multiple levels is needed in order to check for possible 

differences among the visual areas (Figure 54). 

As explained in section Decoding analysis, the cross-validated performance provides an 

upper bound (or reference) of the performance that a population of neurons can achieve when 

discriminating between any two frames. At the other end, randomizing the identities of the 

frames during the training procedure (i.e., label-shuffling) is diagnostic of the extent to which 

the decoder’s outcome is due to chance. In this analysis, we considered these margins on the 

expected performance sufficient to make our results relevant. Additional possible controls (such 

as the overlap between objects, or the overlap of objects with the population receptive field) 
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were not implemented for the present report because their effects on the final results were 

moderate.  

 

  

Figure 54. Decoding performance for one object pair 

This figure refers to the pair of black objects bunny – hash. 

A. Each trace represents the average generalization performance (i.e., the average of 1848 pairs of 

frames, of which 3 are shown in Figure 53A), for one population of neurons, and one pair (black 

bunny – black hash). There are 10 traces per area as explained in section Selection of the populations 

of neurons. 

B. Each trace is the average cross-validated performance (thin trace in Figure 53B) for one 

population (average of the same number of pairs, i.e. 1848, as in panel A). 

C. Average per area (across populations) for the combined traces in panel A and B. 

 

BLACK OBJECTS 

The generalization performance for the 10 pairs of black objects (solid lines), along with 

the cross-validated performances (dashed lines), and their averages per area, are shown in 

Figure 55A. Additionally, Figure 55B shows the performance after training with shuffled label, 

which is virtually equal to the chance performance; since in all combinations the shuffled labels 

traces are very similar (i.e. overlapping at 0.5), they will not be plotted anymore. The fact that 

this type of training is producing chance performance during testing is a clear indication that 

the effects we are seeing are not artificially created by our SVM implementation. 

A B 

C 
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To assess the slowness (i.e., the persistence) of the representation over time (i.e., at time 

lags increasingly farther from the training bin), the generalization performance was normalized 

by the cross-validated performance. The resulting normalized generalization curves (Figures 

55C and 56B) show how self-similar the representations of the two objects remain over time. 

Critically, this normalization equates the visual areas in terms of the decoding power (as 

measured by the cross-validated performance) that the different populations afford over the 

time axis. In addition, the normalization discounts the absolute magnitude of the generalization 

performance, which is not relevant in order to assess the self-similarity of object representation 

over time. As shown in Figure 55B, V1 affords better generalization in absolute terms, but this 

is due to the fact that its discriminatory power starts higher in the first place, as compared to the 

other areas (compare the peaks of the four curves). However, the decay of the discrimination 

performance from the peak is faster for V1: we see that the performance is surpassed by the 

other areas at time lags that are very far from the training bin (i.e. the peak). Normalizing by 

the cross-validated performance allows assessing the variation of the generalization 

performance, relative to the maximal discriminability of the two objects (which is virtually flat 

over time). 

 

 

Figure 55. Decoding performance for black objects 

A. Solid traces are the generalization performance for each pair of objects (in total 10, including the 

one in Figure 54C). Dashed traces are the cross-validated performances (Figure 53B), for each pair 

of objects (as an average across populations). 

A B 
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B. Average performance and SEM of the traces in panel A, obtained for each area. There are four 

traces that overlap at 0,5, and they represent the averages for each area of the shuffled-labels 

performances, which are obtained by testing classifiers that had been trained with data with random 

label assignment. 

C. Average normalized performance obtained from the traces in panel A by dividing, for each bin, 

the generalization performances (solid traces) by the cross-validated performances (dashed traces) 

(see also Figure 53B). 

 

V1 populations produced significantly higher cross-validated performances than all 

other areas, at both bin sizes of 33 ms (Figure 55B, values at lag 0) and 100 ms (Figure 56A). 

This result is supported, in each case, by the main effect of a one-way ANOVA with area as a 

factor and the cross-validated performance of each population as the dependent variable (n =

400 values, i.e. 10 object pairs × 10 populations × 4 areas): 𝐹3,396 = 252, p < 0.001 for the 

33ms bin, and 𝐹3,396 = 262, p < 0.001  for the 100ms bin. The post-hoc analyses indicate 

indeed that V1 performances are higher than those of all other areas (Student’s t-test, p <

0.001, Bonferroni corrected).  

Normalized performances in Figures 55C and 56B, for the two bin sizes (33 ms and 100 

ms), show that generalization performance of the four visual areas gradually decrease from LL 

to V1, especially at large positive and negative lags (> 99 ms in absolute values), which means 

that object representations in lateral areas remain more self-similar, over time, compared to 

those in V1. 

There are at least two ways to establish whether these observations are statistically 

meaningful: 1) by comparing the time constants of the decay, or 2) by comparing the values at 

each lag. For these tests, data at population level have been used, 400 traces in total: 10 object 

pairs × 10 populations × 4 areas (Figure 54A, where one pair of objects is shown); within each 

generalization trace, only the values at strictly positive lags were included (10 lags).  

For the first approach, the normalized generalization traces were fitted with exponential 

curves, as described in Methods. One-way ANOVA with area as a factor yields a non-

significant main effect at both bin sizes. 

For the second approach, we compared the generalization traces by considering the 

values at each lag individually, in which case we used a balanced two-way mixed ANOVA with 

area as a between factor (4 levels) and lag as a within factor (10 levels). This analysis yielded, 

for small bins, significant main effects of area (𝐹3,396 = 155.6, p < 0.001) and lag (𝐹3,1080 =

8035, p < 0.001) , and a significant interaction area*lag (𝐹8,1080 = 40.9, p < 0.001); the 
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degrees of freedom were Greenhouse-Geisser corrected. Similar results were obtained for large 

bins (Figure 56). 

 

Figure 56. Decoding performance for pairs of black objects at large bins 

A. Same contents as in 55A but for 100 ms bins. 

B. Same contents as in 55C but for 100 ms bins. 

WHITE OBJECTS 

The decoding analysis for the white objects was similar to the one for black objects. In 

this case though, three white objects were used and they could be combined in three pairs 

(Figure 50). 

The average generalization performances for each pair and across populations are 

shown in Figures 57A and 57C, for the two bin sizes, respectively. As in the case of black 

objects, V1 cross-validated performances (i.e., at lag 0) are higher than those of all other areas. 

A one-way ANOVA, similar to the one described above, with area as a factor and the cross-

validated performance of each population as the dependent variable (n = 120 values, i.e. 3 

object pairs × 10 populations × 4 areas), produces a significant main effect of area (𝐹3,116 =

222, p < 0.001 for the small bin, and 𝐹3,116 = 171, p < 0.001 for the large bins); the post-hoc 

analyses confirm that the main effect is driven by V1 performances being significantly higher 

than those of other three areas (Student’s t-test, p < 0.001, Bonferroni corrected). 

The normalized performances of Figures 57B and 57D show the same effect as in the 

case of black objects, i.e. generalization performances of LL populations decrease at shallower 

slopes, compared to V1. For these pairs, this observation is confirmed by two one-way 

ANOVAs (one for each bin size) performed on the time constants of the exponential fits of each 

population trace ( n = 120 ): 𝐹3,116 = 5.44, p = 0.001  for the small bins, and 𝐹3,116 =

3.24, p = 0.04 for the large bins. 

 

B A 
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Figure 57. Decoding performance for pairs of white objects 

A, C. Generalization (solid traces) and cross-validated performances (dashed traces) for 3 pairs of 

white objects for small (panel A) and large (panel C) bin sizes. 

The contents are similar to those in Figures 55A and 56A. 

B, D. Normalized performances obtained from the traces of panels A and C. Similar to Figures 55C 

and 56B.  

 

A two-way mixed ANOVA (identical to the one described for the black objects) yielded, 

for small bins, significant main effects of area (𝐹3,116 = 97.3, p < 0.001) and lag (𝐹2,239 =

2467, p < 0.001 ), and a significant interaction area*lag ( 𝐹6,239 = 33.5, p < 0.001 ); the 

degrees of freedom were Greenhouse-Geisser corrected. Similar significant results were 

obtained for the large bins. 

THE EFFECT OF BIN SIZES ON THE DECODING PERFORMANCE 

Until now, we showed results separately for each bin size: 33 ms and 100 ms, which are 

the widths of the spike counting windows used in our analyses (section Decoding analysis). By 

directly comparing the performances obtained in each case, we can assess whether the bin size 

itself is important for how well classifiers generalize. Figure 58A shows the normalized 

generalization curves obtained for the white objects at both small and large bins. Since the large 

bin is three times larger than the small bin, the positive and negative lags 99, 198 and 297 ms 

are common between the curves corresponding to the two bin sizes. This allows comparing the 

performances obtained at these three time lags, within each area, with the small and large time 

A B 

C D 



 

81 

 

bins. As it can be appreciated by looking at Figure 58A, the differences between such 

performances (e.g., between curves of the same color at lags 99, 198, and 297) diminishes at 

longer lags (for example, compare black traces at negative lags 99 and 297). More importantly, 

such differences are not the same across the four areas: they are much larger in LL and LI, than 

in V1 (especially at the shortest lag of 99 ms). 

 

 

Figure 58. Performance relative to the size of spike count window 

A. Normalized performance for pairs of white objects and two bin sizes: 33 and 100 ms. Identical 

to those in Figures 57B and D. 

B. The scatter plot shows the normalized performance at large bins relative to the normalized 

performance at small bins, for 4 areas and 6 matching positive and negative lags (±99, ±198, ±99, 

empty and filled dots, respectively). Larger dots indicate longer lags. Values above the identity line 

(dashed line) show lags for which the performance at 100ms bin is larger than that at 33ms. 

 

Figure 58B shows the comprehensive comparison between the performances at different 

bin sizes. The dots corresponding to short lags (i.e. 99 ms) are all above the identity line, which 

means that generalization performance is better when decoders are trained with data from larger 

bins. Importantly, this effect is particularly strong for LL (black dots) and, to a lesser extent, 

A 
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for LI and LM, than for V1. The dots corresponding to long lags (i.e. 198 or 297 ms) are slightly 

above the identity line only for LL (thus showing slight improvement in performance when 

information is integrated over longer time windows). The longer lags for other areas are either 

on the identity line (no improvement) or below it (and close to the chance level: far left and 

right dots in Figures 57A and 57C, that show the non-normalized performances). 

Similar results were obtained for black objects (not shown). 

Overall, the results observed in the previous two sections for the pairs of black and white 

objects show that there is a gradual increase in the stability of decoding performances along the 

four visual areas. This indicates a more persistent (i.e. more self-similar) representation over 

time in lateral areas (especially LL), as compared to V1. We also note that V1 populations are 

always better, in absolute values, than all other areas at discriminating pairs of objects. This 

effect could be due to the high reproducibility of V1 neurons (Figure 28) – which increases the 

performance at lag 0 obtained through a cross-validation procedure –, and to their strong 

preference for low-level features (such as luminance), that facilitate the discrimination (Tafazoli 

et al., 2017). At a qualitative level, large spike counting windows seem to especially benefit 

populations in the lateral areas and at relatively short lags (99 ms), as their performances 

increase with bin size (Figure 58). All of these results indicate that the timescales of the 

representations of visual objects become gradually slower from V1 to LL.  

SLOWNESS OF MOVIE SEGMENTS 

As explained in section Decoding analysis, the results described in this chapter are based 

on movie segments that contain only one specific object, whereas the previous chapter 

characterizes the dynamics of full-length movies, i.e., including empty frames or frames with 

multiple objects. 

By repeating the analysis of the first chapter of results (section Slowness), but for the 

short movie segments, we can assess to what extent the effects we observe in this chapter are 

due to the self-similarity of the trial-averaged signal (PSTH) or to noise autocorrelations. In this 

analysis, only the neurons included in the 40 populations were used. Figure 59 shows that the 

average time constants of the decay of the PSTH (panel A) are approximately equal and around 

70 ms. A one-way unbalanced ANOVA with area as a factor yields a non-significant main 

effect (p = 0.22). 

In the case of noise autocorrelations (panel B), the time constants obtained from LL 

responses are significantly higher than all other three areas. A similar one-way ANOVA 
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produces a significant main effect of area (𝐹3,1420 = 21.4, p < 0.001 ), and the post-hoc 

analyses confirm that all pairwise comparisons with LL are statistically significant (Student’s t 

test, p < 0.01, Holm-Bonferroni corrected) and those between V1, LM and LI are not. 

  

Figure 59. Time constants of the PSTH and noise autocorrelation of movie segments 

The two panels of this figure refer to the same data, i.e. neural responses during the movie segments 

for the 8 objects included in this analysis (Figure 50A). The responses belong to the unique neurons 

that make up the 10 populations within each area, without repetition (i.e., 90 for V1, 28 for LM, 32 

for LI, and 28 for LL; described in section Selection of the populations of neurons). 

Dots represent the time constants for a given object and a given neuron (note that the number of 

points = number of objects (8) × number of neurons in each area). Horizontal lines represent mean 

time constants. 

A. Time constants of the exponential fits of the PSTHs computed from short movie segments (the 

duration in frames is given in Figure 49). 

B. Time constants of the exponential fits of the noise autocorrelations computed from the spike 

counts of all trials of the movie segments. 

 

These results suggest that stimulus-independent properties of neurons (i.e. noise 

autocorrelations), not the stimulus-dependent one, are responsible for the pattern of decoding 

performances we saw in this chapter. We should note again that, even though the neurons in 

the two analyses are the same, the spike counts fed to the SVM classifiers were shuffled across 

trials within each neuron (Figure 52B): in practice, this means that the decoders have been 

trained with pseudo-data obtained by mixing responses from multiple neurons. 
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 DISCUSSION 

In this study we have investigated the representation of movies in rat visual cortex. We 

recorded neurons from four visual cortical areas, while animals were passively exposed to 

stimuli with various spatio-temporal properties (objects undergoing various transformations at 

different speeds, or noisy content). To our knowledge, this is the first study that compares how 

neuronal populations in multiple cortical areas represent movies with very different dynamical 

properties. Other studies have focused on one area (Kayser et al., 2003; Froudarakis et al., 2014; 

Rikhye and Sur, 2015), on areas from different species (Baddeley et al., 1997), or have used 

natural and artificial movies with similar properties (Vinken et al., 2016). 

  

In the chapter “Representation of natural movies in rat visual cortex”, section “Statistics 

of response properties across visual areas”, we looked at two basic properties of the neural 

activity of each neuron: the trial-by-trial reproducibility (or reliability), and the firing rate.  

We found that reproducibility is strongly influenced by the speed of the content of each 

movie (e.g. ratcam or white noise movies, Figure 28). This effect has been described in the 

literature in the context of temporal precision: it was reported that precision depends on the 

frequency content of the stimulus and it was suggested that spiking precision at timescales 

shorter than those of the stimulus are necessary to accurately represent natural stimuli (Butts et 

al., 2007; Kayser et al., 2010).  

Similarly to previous reports (Froudarakis et al., 2014; Vinken et al., 2016), we see a 

separation between natural and artificial movies: i.e., responses to natural movies are more 

reliable than those to artificial ones. Two possible interpretations can explain this result: first, 

neurons are preferably activated by natural movies, so that the stimulus-driven component of 
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their firing is larger than the internal noise; second, neurons reduce variability of their spiking 

so as to ensure efficient coding (Simoncelli and Olshausen, 2001). 

Neurons were always significantly driven by the visual input, with respect to their 

baseline activity, and their firing rates were modulated by the speed of the movies: in 

particular, the ratcam ones evoked the strongest activations (Figure 29). V1 had larger firing 

rates than the other areas, but from our data we cannot ascertain whether this was due to 

unbalanced distributions of single and multi units between areas, or V1 neurons fire more in 

general. 

In the chapter “Representation of natural movies in rat visual cortex”, section 

“Sparseness”, we calculated sparseness for each neuron and movie and plotted it against the 

speed of the visual input neurons experienced in their receptive fields. We found that, for natural 

movies, sparseness decreased significantly along the areas’ progression while, at the same time, 

globally increasing as a function of the speed (Figure 41). Area and speed also showed a 

significant interaction, driven by the large increase of sparseness in LM at high speeds. Finally, 

sparseness was lower for the phase-scrambled and white noise movies, despite their large speed 

values (Figure 42). As already explained (page 60), the reduction in sparseness that we observe 

for the recorded neurons is not consistent with the sparse coding theory – that predicts an 

increase along the ventral stream (Olshausen and Field, 2004) –, but alternatively it could be 

accounted for by an increase of invariance (slowness) from V1 to LL (Rust and DiCarlo, 2012).  

Indeed, slowness increased along the areas’ progression, for most speed bins (Figures 

44 and 45). Because of the way it is calculated (as the decay of the autocorrelation function of 

the PSTH), slowness reflects the dynamics of the stimulus that evokes the responses: hence, as 

expected, we observe that time constants decreased with the speed of the movie. Surprisingly, 

the pattern across areas was maintained for both natural and artificial movies, whereas in the 

efficient coding paradigm we expect invariance to be instantiated only for the stimuli to which 

the visual cortex is adapted.  

Our second slowness metric, noise autocorrelation, was calculated on the detrended 

signal, so it is less dependent on the dynamics or content of the stimuli: we note that noise time 

constants vary much less than PSTH time constants with the speed of the movies (Figures 46 

and 47). At each speed level there is a strong trend of increase of noise time constants across 

areas’ progression. This pattern reflects the intrinsic timescales of neural variability in each 

visual area, and suggests the existence of a hierarchical ordering and specialization between 

areas (Murray et al., 2014).  
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In the chapter “Population decoding” we implemented a population decoding 

technique to assess whether object representations are more persistent over time in some areas 

than others. To this end, we trained classifiers to discriminate between instances of two objects 

undergoing transformations and tested on farther apart instances of the same objects: the decay 

of the generalization performance (normalized by the decoding power, explained on page 77) 

was then indicative of the slowness of the representation.  

For both pairs of black and white objects (Figures 55-57), at small and large bins, we 

found that LL affords high generalization performance for longer durations than the other 

areas, and much higher than V1, in particular. This effect was stronger in the case of white 

objects (Figure 57): the difference between black and white objects (for example, Figures 56B 

and 57D for large bins), was due both to shallower decay of LL generalization power and to 

sharper decay of V1 generalization power. Although we are not showing it here, from 

preliminary investigations, it results that the stronger effect for white objects could be ascribed 

to luminance differences between objects within each pair. Specifically, the two objects that 

created a pair on which the classifiers were build (e.g., Figure 52C) had different amounts of 

brightness at pixel level, which was enough to evoke different responses in the neurons making 

up the populations, therefore facilitating the discriminability (white objects’ pixel intensities 

ranged between ~100-200, whereas black objects ranged between ~0-15, for a maximum range 

of 0-255). This could also explain why V1 populations outperformed the other areas, in 

absolute value (lag 0 in Figures 55A, 56A, 57A,C): Tafazoli and colleagues (2017) have shown 

that V1 neurons are more sensitive to low-level stimulus features, in particular luminance, than 

other visual areas. 

We compared the performances obtained with two different spike counting bins (33 

and 100 ms) and found that LM, LI, and LL performances increase with the bin size (Figure 

58), but only at small lags (±99 ms). The fact that larger bin sizes boost generalization 

performance in some areas suggest that larger integration windows are more relevant for those 

specific populations. This result could be further confirmed by expanding the analysis to 

additional bin sizes (such as 66 or 132 ms). 

Finally, we linked the slowness of single-cell responses to the population decoding 

analysis and showed that a possible source for the generalization performance is the intrinsic 

timescale of the response, as measured by the decay of noise autocorrelations (Figure 59). 
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In the following, we describe possible issues of this study. 

The data on which our results are based are collected from anesthetized animals: one 

of the reasons for this choice is that our experimental design requires lengthy and stable 

recording sessions; another reason is the need to avoid top-down and learning effects, which 

are detrimental to our goal to probe the feed-forward visual computations at the first stages of 

visual processing. While we don’t exclude anesthesia influences on our measures (sparseness 

and slowness), we discount a complete corruption of the effects we presented, as some of the 

results in another study with identical experimental paradigm were no different from those 

obtained in awake animals (discussed in Tafazoli et al., 2017). 

We explained in section “Sparseness and slowness” that the position of receptive fields 

of our neurons varied between areas (Figure 30). It’s important to mention that controlling for 

the speed of the input might not be enough for a fair comparison. Various studies have shown 

that contextual effects are modulating the firing rate distributions of individual neurons (Vinje 

and Gallant, 2000) and affecting the developmental refinement of visual processing (Pecka et 

al., 2014); therefore, neurons from different areas should ideally be matched for their receptive 

field position, so as to ensure they receive the same amount of surround stimulation and as 

similar as possible visual content.  

Figure 29 shows that firing rates were larger in V1 than in other three areas. We didn’t 

quantify whether and how this affected our sparseness and slowness results. Selecting sub-

populations of neurons with matched firing rates could reduce possible confounds. 

In the population decoding analysis, the cross-validated performance is providing an 

upper bound of the decoding power a population can afford. The analysis could be further 

improved by making sure that, within each movie segment, objects do overlap between 

themselves and with the population receptive field. Additionally, to assess how specific our 

results are to the objects we selected (Figure 50), we can train and test classifiers on random 

movie segments (that either contain no objects or multiple objects), or on segments extracted 

from phase-scrambled movies. 

 

Taken together, our results confirm the specialization of visual neurons for the sparse 

coding of natural scenes, not only in V1 but also in higher-level areas. They also support the 

attribution of LM, LI and LL to an object-processing pathway, given the gradual decrease of 

sparseness and increase of slowness that were found across these areas, which are consistent 

with the growth of invariance expected for ventral stream representations.  
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