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Standing upon the shore of all we know

We linger for a moment doubtfully,

Then with a song upon our lips, sail we

Across the harbor bar —no chart to show,

No light to warn of rocks which lie below,

But let us yet forth courageously.

T.S. Eliot
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Outline

Choices are quintessential to our lives. Whether we realize it or not, we make

thousands of them everyday, shaping our lives deeply. Among the choices

we make, choosing what to eat represents one of the most important, as our

lives depend on it. Food choice is a complex phenomenon, that is character-

ized by physiological, affective and cognitive determinants. These dimensions,

however, have been studied either separately or jointly but without offering a

comprehensive mechanistic approach that could pinpoint which cognitive as-

pects drive food choice. Most of the literature on the topic stems either from

decision-making in cognitive neuroscience (Glimcher and Rustichini, 2004; Kra-

jbich et al., 2012, 2015; Levy and Glimcher, 2011; Mormann et al., 2010; Pear-

son et al., 2014), considering food only as a special case of a general theory

on value-based choice, or comes from experimental psychology and consumer

research (Rozin, 1996; Shepherd and Raats, 2006), where it lacks a mechanistic

approach to the neurocognitive determinants of food choice.

In my thesis work, I aimed to bridge this gap by showing how we can study

food choice combing the two lines of research. This could be done, I believe, by

employing a set of different behavioral, neural and computational approaches.
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In my first Study I focused on the interaction of a cognitive on a physi-

ological aspect (calories) in food choice, that is, how people understand and

judge calories when it comes to choosing different food items. Calories are a

fundamental element in driving choice about food, as they give us the energy

we need to survive, grow and reproduce. But still little is known about the

cognitive processes underlying their evaluation. In fact, it has been shown

that the energy density (calorie content) of a food can bias the estimation of a

portion size (Frobisher and Maxwell, 2003; Japur and Diez-Garcia, 2010), and

vice versa (Wansink and Kim, 2005). However, we still do not know whether

calories are considered as an absolute (total in a portion. Caloric Content,

CC) or a relative (related to the type of food. Caloric Density, CD) quantity,

which has implication as to the importance of controlling the size of portions

in meals to contrast overeating (Rozin et al., 2011). I hypothesized that the

type of food would be more important than the total amount of calories in

a portion in determining how calories are understood, giving rise to known

problems in estimating portion size.

In my second Study, I wanted to investigate the neurocognitive mechanism

of the interplay between a physiological (calories) and a cognitive-affective as-

pect (perception of risk). Safety concerns about food represent a powerful

factor shaping food choice (Rosati and Saba, 2004), but little is known about

how people choose food when it is at risk of being contaminated, with no

knowledge about how different aspects of risk and reward (calories) interact

with each other. I hypothesized that risk would drive the choice with partici-

pants choosing conservatively the least risky options, with a possible exception

12



represented by food with higher CD. What the results show is that overall

participants were risk averse, while high calorie foods managed to partially

counteract this tendency, i.e., some of them were chosen. Deactivation of the

right anterior insula, a risk prediction error area (Preuschoff et al., 2008), as

well as activation of the pre-SMA, implicated in working memory (d’Esposito

et al., 1998; Pessoa et al., 2002; Petit et al., 1998), supported the idea that

perceived differences in calories among the items made the task easier when it

comes to risk evaluation.

In my third Study, I wanted to investigate how a physiological element

like hunger would impact on two components, one physiological (calorie) and

one affective (preference) using a computational approach. While there is a

wealth of research on the effects of hunger on food choice (Frank et al., 2010;

Hoefling and Strack, 2010; Piech et al., 2010; Read and Van Leeuwen, 1998;

Reisenman, 2014; Siep et al., 2009), we still lack a mechanistic approach that

could help us examining the effects of hunger on calorie and preference at the

same time. I hypothesized that hunger would make calories more important

in determining choice, while satiety would, on the other hand, prioritize the

role of preference in determining the pattern of choices. Using a drift-diffusion

modeling approach I managed to show how hunger has opposite effects on

calorie and preference, with participants choosing more high calorie and less

preferred items when hungry and low calorie and high preferred items when

satiated.

Overall, with this work I aimed to show that the complexity of food choice
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can be stripped down to three basic dimensions (physiology, affect and cogni-

tion) and their interactions and that it is possible to study it, without too much

sacrifice in terms of ecological validity, by using a template made of different

analytic and quantitative approaches, from behavioral, to computational and

neuroimaging.
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1. Introduction

1.1 Choice

Everyday we choose. It might be trivial to say that you choose what to buy at

the grocery store on your way home so that you can cook a decent, satisfying

dinner after a day of work. But also the choice of actually going to the store

is a decision that rules out other possibilities, such as exercising, ordering out

food or enjoying an aperitivo with your friends in that place you really like.

Some choices are important, like whether you want to buy a house. Others

are more trivial, like which brand of toothpaste you buy at the supermarket.

However, what makes even trivial choices important is the way they accumulate

in patterns that self-repeat without explicit deliberation, i.e., habits, which can

deeply shape our well-being, health and quality of life (Duhigg, 2012). This

is especially true in the case of food choice, as we depend on it to sustain

ourselves, although we may scarcely realize it, as most of us in the western

world live amidst general abundance (Shepherd, 2001).
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1.2 Theoretical perspectives on Choice

Given the role choices play in our everyday life it comes hardly as a surprise

that humanity has tried to make sense of them for centuries. This can be nicely

described, I believe, as a set of perspectives that allows to tackle this issue from

different angles. In my opinion, based on a review of the literature, three of

them deserve especially our attention. A philosophical, or speculative, the most

dated and long-standing, alongside more recent axiomatic and experimental

approaches.

1.2.1 Speculative approach

How the pattern of choices performed by individuals shapes the structure of

society and its interaction - as well as its wealth - has been at the core of the

interest of the first political economists from the enlightenment onward. It is,

for instance, in the works of John Locke (Locke, 1700), Bernard Mandeville

(Mandeville, 1795) and Adam Smith (Smith, 1827) that we can find the notion

that individuals pursuing their self-interest can, overall, produce an outcome

that is better off for everyone. However, this approach, that we can call - hope-

fully without making offense to too many philosophers - speculative, can be

largely considered, as the name suggests, an intellectual endeavor. Using sharp

arguments, thought experiments and examples, what these thinkers hoped to

show was that we can make sense of how people make choices using rational de-

liberation. While this is indeed a good first step, addressing the issue without
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investigating how people actually choose offers a poor ground for any theory

of choice. In fact, without any room for testing our hypotheses in reality, we

fail to provide a theory that can be disputed with evidence (Popper, 1938).

The second issue is the lack of a model of how choices are taken and interact

with each other, which allows not only to explain but also to predict, both

basic tenets of a scientific explanation (Ladyman, 2002). This approach has

endured through the centuries and, in fact, although choice can be considered

the cornerstone of modern and contemporary social sciences, it is not until

recently that the process of making a choice has been studied scientifically.

1.2.2 Axiomatic approach

Once we take a closer look at the process of choice, we immediately realize one

central point, namely the notion of preference, which can be considered in its

basic logical sense as the hierarchy of values that different items represent for a

chooser (Rescher, 1968)1. Without it, most choices would be random, as items

would not have, by definition, different values for the chooser. As preference

- a way to hierarchically order value (Von Wright, 1963) - can be considered

largely subjective, the problem of studying it in a quantifiable manner becomes

tricky. One successful approach in dealing with this issue can be traced back

to the work of a group of economists starting in the 1930s, most notably Ken-

neth Arrow (Arrow, 1959), Gérard Debreu (Debreu, 1954) and Paul Samuelson

1There are numerous other ways to conceive preference, including in terms of attitudes
towards a set of objects or actions (Lichtenstein and Slovic, 2006). However, what I want
to stress here is its ordinal aspect, that is, the fact that it allows to construct a (subjective)
hierarchy of values or actions.
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(Samuelson, 1938). Their idea was to rely on a few sets of primitive assump-

tions about preferences that could be formalized mathematically and used to

model choice behavior on a large scale (we can call this approach axiomatic).

Their models were strongly normative, with little regard to the empirical work

of experimental psychologists, but without doubt have paved the way to study

choice more systematically and precisely. Their work impinged on the notion

of revealed preferences (Samuelson, 1938). If the value of the items for a sub-

ject cannot be measured by reading someone’s mind, it can be clearly inferred

from her pattern of choices, i.e., her behavior. If she prefers an apple to an

orange, and grapes to an apple and her behavior is consistent, we can write

her preferences as such:

grapes > apple > orange

This relationship, which embodies the well known logical property of tran-

sitivity, was formalized into a fundamental axiom, known as General Axiom

of Revealed Preference (GARP ; Houthakker, 1950). In the same years, de-

velopments such as von Neumann and Morgestern work on game theory and

expected utility theory (Von Neumann and Morgenstern, 1945) expanded the

scope of GARP including further assumptions and lead to a formal and quan-

titative framework which has been fundamental in neoclassical economics for

the years to come. Quantifying utility, in particular, helped solving the prob-

lem of giving an actual value to the options for a decision-maker 2. The core

2A thorough review of value theory in economics and philosophy goes beyond the central
scope of the present thesis. For a clear survey of the field, I recommend the Stanford Ency-
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assumptions of this model of human behavior, the so-called homo economicus

were laid in those years.

This axiomatic approach has been extremely popular for its quantitative

rigor and simplicity. In fact a great improvement over the speculative ap-

proach is represented by the quantitative dimension, which allowed to make

predictions and provide a formal way to conceive rationality. The epistemo-

logical bases of this approach are discussed by Milton Friedman in his work

on positive economics (Friedman, 1953) and his idea suggests that it does not

matter how individuals behave in reality, as long as their aggregate behavior

can be usefully accounted for by the higher-level (macroeconomic) theories.

This conception maintained (a sort of philosophical instrumentalism; Guala,

2006) that individuals behave as if they are maximizing their utility functions,

obeying the central axioms of the homo economicus conception.

Although we can argue that the axiomatic approach has been an improve-

ment over the previous speculative approach, there are still a number of lim-

itations in the face of determining how people do choose in real life. First,

it admittedly lacks a mechanism3 that would explain how choices are made,

both at the neurological level (how choices are implemented by the brain) and

the cognitive level (which are the representations at stake?). Second, although

predictions were possible, they were largely ignored, not only at the individual

level - which was not the focus of economists anyways - but also the aggregate

clopedia of Philosophy (SEP) page on the topic: Schroeder (2016) as well as the excellent
book on economic thought by Blaug (1997). For our purposes we will just consider utility
as a way to measure the value of an item for a decision-maker.

3The notion of mechanism (Machamer et al., 2000) as an explanatory device has been
extensively explored in philosophy of science. For a good introduction to the debate I
recommend Marraffa and Paternoster (2013).
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level, where it was just assumed that people would behave in a rational way

(Friedman, 1962). After all, the axioms were considered to be reasonable as-

sumptions about behavior that did not needed to be scrutinized or be put to

test (Samuelson, 1966).

1.2.3 Empirical approach

1.2.3.1 Behavioral Economics

As empirical evidence on real choices started to accumulate, it became more

and more clear that the set of assumptions that were held at the core of the

axiomatic approach used so far had to be, at best, revised. Pioneering work in

the ’50s by Maurice Allais on risky choices (Allais, 1953) and Herbert Simon on

the behavior of business managers (Simon, 1955), among others, highlighted

the limits of human rationality and brought to the foreground a wealth of

systematic biases in reasoning. A systematic approach to the study of human

decision-making can be found in the work of Daniel Kahneman and Amos

Tversky (Kahneman and Tversky, 1979). In their work they integrated ideas

from experimental and cognitive psychology, such as the concept of mental

representations (e.g., Tversky and Kahneman, 1985). They emphasized the

role of heuristics, that is rule-of-thumb shortcuts to decisions that do not

need complete information. In particular, their work on the effect of how

information is presented on decisions - i.e., framing - is worthy of mention.

To give an example, consider you are faced with the following dilemma (asian

disease problem; Tversky and Kahneman, 1985):
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Imagine that your country is preparing for the outbreak of an un-

usual disease, which is expected to kill 600 people. Two alternative

programs to combat the disease have been proposed. Assume that

the exact scientific estimate of the consequences of the programs

are as follows:

If Program A is adopted, 200 people will be saved.

If Program B is adopted, there is a 1/3 probability that 600 people

will be saved, and 2/3 probability that no people will be saved.

Most people, but not all, will pick program A here. After all the prospect of

saving 200 people is appealing, right? However, imagine you were presented the

choice a little differently, like this (as it was the case of half of the participants

of the original experiment):

If Program A is adopted 400 people will die.

If Program B is adopted there is 1/3 probability that nobody will

die, and 2/3 probability that 600 people will die.

The two scenarios presented have the same, identical, consequences, only

framed differently, in the first case in terms of gains and in the second case in

terms of losses. The effect of this simple difference in presenting the informa-

tion is striking: in the original experiment Tversky and Kahneman found 72%

of their participants favoured option A if the dilemma was framed in terms of

gains, while this percentage dropped to roughly 22% if the dilemma was pre-
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sented in terms of losses (with, conversely, 78% participants accepting option

B in the loss framing, Tversky and Kahneman (1985)).

This example shows that the set of assumptions of the axiomatic approach

had to be revised, to incorporate heuristics and cognitive distortions (i.e.,

biases) that affect decision-making. Moreover, they demonstrated that the

way in which information is framed matters when making choices 4.

Notwithstanding the success of this new, empirical, approach to study

decision-making (prospect theory and the heuristics and biases research pro-

gram Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), whose

most important contribution to the study of choices is the use of actual lab-

oratory experiments, we can still find some limitations. First, while mathe-

matically solid, this approach falls short of providing a mechanistic account of

how choice is implemented. Indeed, it provides only a formal way - i.e., utility

maximization or some form of cost optimization - to predict how people would

choose given a set of preferences, reasoning and information constraints, with

limited attention to computational models (Gigerenzer et al., 1999; Vranas,

2000), unlike other empirical approaches to decision-making (e.g., Gigerenzer

and Brighton, 2009), but similar to the aforementioned axiomatic approach

(Von Neumann and Morgenstern, 1945). Second, preferences are exogenously

determined 5, that is they are assumed to be given (i.e., external) to the choice

process, and not varying in time, for instance, even following a mere change

in physiological state, such as being tired or hungry (e.g., Bossaerts and Mu-

4This aspect will be relevant in my work presented here (see chapters 2 and 3).
5This is a common assumption in Rational Choice Theory (Green and Fox, 2007), a fairly

widespread theory about human behavior in microeconomics.
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rawski, 2015; Dietrich and List, 2013). In order to address these issues, some

economists felt the need to turn to the emerging tools of neuroscience and in-

vestigate whether biological constraints of choice models would help face these

issues, shedding light onto the mechanisms at play in decision-making.

1.2.3.2 Neuroeconomics and Decision Neuroscience

This convergence between neuroscience and economics took years to fully de-

velop and give birth to a new discipline: Neuroeconomics (Glimcher and Rus-

tichini, 2004). At its core is the idea of decisions as algorithm-based processes

in which information is elaborated. If neurons do process information, then

it is clear that hypotheses on mental processes happening during decision-

making can be tested relying on neural data, i.e., a mechanistic approach.

Neuroimaging tools such as functional magnetic resonance imaging (fMRI)

and transcranial magnetic stimulation (TMS) have managed to capture the

interest of behavioral economists for their potential in uncovering the underly-

ing processes of decision-making, how they unfold in the brain and how their

outcomes can be manipulated, in real time. A larger and clearer picture on

how we do make decisions, learn and adapt in a changing environment started

to emerge (Rangel et al. (2008), Figure 1.1), together with models of learning

originally developed in animals, such as reinforcement learning (see Sutton and

Barto, 1998).

Some successes of this approach include the discovery and subsequent

manipulation of utility values that are hypothesized in the axiomatic ap-
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Figure 1.1: Decision-making flow-chart. Adapted from Rangel et al., 2008.
.

proach (Padoa-Schioppa and Assad, 2006; Platt and Glimcher, 1999; Rolls and

Grabenhorst, 2008, e.g.,), and helping discriminate between different valuation

models (Levy and Glimcher, 2011; Padoa-Schioppa, 2011, e.g.,). Furthermore

significant amendments to classical utility theories have been proposed. These

include the discovery that, under particular circumstances, choices under risk

are better explained by models where the subjective weighting of risk does not

follow expected utility theory predictions (mean-variance models) Christopou-

los et al., 2009 rather than utility models. Other examples include the work

by Barbaro et al. (2017), who showed that valence can better drive object

representation accuracy in the brain when compared to utility.

In recent years the idea of biology merely imposing constraints on economics

models of decision-making, so typical of neuroeconomics, is being challenged

(Bossaerts and Murawski, 2015). This emerging approach, named decision

neuroscience puts biology center-stage and proposes that biology offers more
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than constraints in the implementation of formal models (Shiv et al., 2005) 6.

It can be argued that not only biology, but also experimental psychology and

cognitive neuroscience can offer more than simple constraints to economics

models of decision-making. This can emerge more clearly if we focus on a

special case of decision-making whose complexity and centrality in our lives

encompasses a wide range of factors, from physiology to society, such as food

choice. In fact, I hope to show that, in spite of its complexity, we can try to

break it down along its relevant dimensions with a range of analytic tools, such

as behavioral testing, computational modeling and neuroimaging.

1.3 Food Choice

A complex and important model of choice is food choice (Rangel, 2013). Its

multifarious nature escapes simple models of choice in that personal, socio-

economical and cultural factors all shape the decisions (Mela, 2001; Rozin,

2006; Shepherd and Raats, 2006, Figure 1.2). Food is arguably the fuel that

shaped our evolution (Wrangham, 2009), fostering cooperation among males in

hunting (Bowles and Gintis, 2004, 2011; Skyrms, 2004) and that feeds our com-

plex brains (Pontzer et al., 2016), as well as shaping complex social practices

(Delormier et al., 2009). Food is so important for our survival that convincing

evidence of its own peculiar representation in the brain exists (Rumiati and

Foroni, 2016). The ecological importance of food choice is paramount as diet-

related diseases, such as obesity, represent an increasing concern for global

6A few examples in this direction are reviewed in Boureau and Dayan (2011) and Pearson
et al. (2014).
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health (NCD-RisC, 2017), as well as the global effects of food consumption

on climate change (McMichael et al., 2007) and environmental sustainability

(Pullman et al., 2009).

1.3.1 Relevant dimensions

Figure 1.2: Food choice complexity.

There is a vast literature on the topic, and most studies rely on single fea-

tures that influence food choice. A few ways to organize food choice along a

set of key dimensions have been proposed in the literature (e.g., Rozin, 2006;

Shepherd and Sparks, 1994). At the center of these models we typically find

factors that are related to the food, such as physiological aspects (Figure 1.2,

top). We can consider these fundamental as they provide the motivational

impulse to eat (hunger and energy content). In turn, these physiological el-

ements influence, on a higher level, what the authors call person-related and

socio-economic factors. Among these we find the main dimensions of affect

(Figure 1.2, bottom left) and cognition (Figure 1.2, bottom right): the first

one influencing preferences and attitudes towards food, the second determining
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how food is categorized.

1.3.1.1 Physiology

Calories and edibility. Physiological aspects are very important when it

comes to food as normally they provide the impulse to eat in the first place

(Berthoud, 2011). Among these, calories take on a primary role, as they pro-

vide the energy that ultimately allows our organism to function. Given the

importance of calories, it is no wonder that food with a high quantity of them

can have a special representation in the brain. More specifically, foods with

high calories have been shown to be processed differently from low-calorie

foods, activating reward-related areas such as the ventral striatum and hy-

pothalamus (Killgore et al., 2003). In line with this idea, high calorie foods

would also tend to be more craved while on a calorie-restraining diet (Gilhooly

et al., 2007). Given the importance of calories as a fuel for the brain and

the body, this is not surprising, as extracting information about calories in

a reliable way (Toepel et al., 2009) in an uncertain environment represents a

clear evolutionary advantage helping secure food for survival and reproduction

(Lieberman, 2014).

Furthermore, there is also evidence that not only high-calorie, but trans-

formed food, that is food which thanks to a chemo-physical transformation is

able to provide more calories and different nutrients, is categorized differently

by our brain (Pergola et al., 2017). Evolutionary speaking, cooked - and hence

transformed - food can be thought of as an important element in support-
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ing the growth of our energy-thirsty brains (Pontzer et al., 2016; Wrangham,

2009).

Foods with more easily available calories would also tend to be more salient.

Given the importance of vision for mammals and humans in particular, it

comes to no particular surprise the importance of color in conveying infor-

mation about nutrients and edibility (Clydesdale, 1993). The ability to dis-

criminate red-green colors, a characteristic of trichromatic vision, has been

shown to be advantageous in foraging ripe fruits and younger leaves, which are

normally redder in hue, in many primates species (Dominy and Lucas, 2001;

Jacobs, 2009; Lucas et al., 2003; Osorio and Vorobyev, 1996; Regan et al.,

2001). This adaptation appears to be preserved in humans. As Foroni et al.

(2016) showed, red-colored food items significantly elicit higher arousal than

green-colored ones. Green food items were also perceived to be less calorie

richer than redder ones, even when calorie content was controlled for.

All in all, calories are important determinants of food choice in that they

provide the energy we need to function and reproduce. As a consequence of

this, calorie-rich foods are perceived as more salient and have spurred adap-

tations in perception, such as color signaling, and in motivation, such as in-

creased drive to consume transformed foods. Considering the importance of

this life-serving function, it is expected that we have evolved cognitive and

bran mechanisms to detect and process calorie information.

Hunger. However, once calories are successfully detected, they would not be

ingested by themselves without capitalizing on the motivation to do so. Indeed,
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hunger and thirst can play this role by prioritizing the choices depending on

the state of need of the organism (e.g., proteins; See Griffioen-Roose et al.,

2014). As the popular saying goes, hunger can be considered the best spice

(Reisenman, 2014). Piech et al. (2010) exemplified this by using a visual

target detection task with random food cues and distractors. They found that

hunger significantly altered the attentional focus of participants during target

detection. As this effect was not present when participants were satiated, it

suggests a selective effect of hunger on attentional focus when it comes to

food. Along the same line of evidence, di Pellegrino et al. (2010) investigated

whether sensory-specific satiety, i.e., decrease in reward value of an item once

it has been consumed up to satiety, would affect subjects’ attentional focus.

As they managed to show using a visual probe task, both pleasantness ratings

and focus decreased with sensory-specific satiety for that food, but not for

other foods.

As shown by Siep et al. (2009), hunger can modulate brain activity in

reward-related areas such as medial OFC, insula, caudatus and putamen while

interacting with the calorie content of foods. Indeed, while hungry their par-

ticipants showed higher activity for high calorie foods in these areas, while

when satiated, this happened for low calorie foods. This differential effect

of hunger is interesting and is in line with other studies, such as Read and

Van Leeuwen (1998), who found that hungry participants would choose more

high calorie foods when hungry. Although on satiated participants only, Char-

bonnier et al. (2015) were also able to find that participants would choose more

quickly low calorie than high calorie foods.
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Hunger plays indeed such an important role in prioritizing calorie intake

that there is evidence suggesting it can override preference for certain foods

when others, less preferred, are more readily available (Hoefling and Strack,

2010). Furthermore, hunger does seem to interact with affective elements such

as stress. Born et al. (2010) had their fasting subjects perform either a stressful

or non-stressful task in two separate sessions in the lab. After the task they

had to select their breakfast in the MRI scanner and they were scanned twice,

one before and one after food intake. Interestingly, their participants tended,

overall, to favor foods that were richer in proteins and carbohydrates when

stressed, compared to when they were not stressed. Moreover they found that

stress seemed to decrease the reward value of food items, as found in the lower

activation of amygdala, hippocampus and cingulate cortex.

Altogether, hunger reflects the need of an organism to obtain calories and

promotes behaviors accordingly. It not only affects attention by increasing the

focus toward food that can provide needed nutrients but also seems to modu-

late preferences towards particular foods based on the contextual situation as

well as interact with the state of stress and urgency of the organism.

1.3.1.2 Affect

The aforementioned studies seem to suggest that affective aspects constitute

an important dimension of food choice. There is, in fact, a wealth of evidence

on the effects of mood and emotion on food choice, such as the case of stress

or comfort eating (Griffin et al., 1993; Oliver and Wardle, 1999; Oliver et al.,
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2000; Pool et al., 2015; Zellner et al., 2006). Interestingly, also the converse

phenomenon, that is the effects of food choice on mood and emotion, has at-

tracted the attention of research in recent years (Gibson, 2006, 2012; Spencer

et al., 2017). Most of these effects, however, are related to the actual con-

sumption of food more than the process of choice itself (e.g., Macht et al.,

2003).

Preference. Among the different aspects included in the affective dimension,

we will address food preference, with a focus on how genetic and environmen-

tal aspects shaped its development (Köster, 2009), including early exposure

(Garcia et al., 2001; Mennella et al., 2001), and sometimes remarkable stabil-

ity throughout the years (e.g., Nicklaus et al., 2004). As already mentioned,

axiomatic models of decision-making, as well as empirical ones have long con-

sidered preferences as exogenous, that is, stable over time. However, evidence

is mounting in that not only food preference develops and changes through

time, but it can exhibit transitory changes with simple re-exposure or contex-

tual - i.e., framing - effects (Lévy and Köster, 1999; Mojet and Köster, 2002).

Other studies have shown that food preferences can also be manipulated in chil-

dren (Birch and Marlin, 1982; Wardle et al., 2003) through exposure. Mere

exposure effects, in fact, (Zajonc, 1968) seems to impact preference formation

and choice, with pre-exposed alternatives being either chosen more often (Bird

et al., 2012) or considered for a shorter time (Glaholt and Reingold, 2011).

This effect has been found and replicated for food items, as well. For instance

Fedoroff et al. (1997) found that exposing both unrestrained and restrained

31



eaters to food cues (pizza) had an impact on subsequent food intake on un-

restrained eater, while it produced an urge to eat pizza in restrained eaters.

Similarly, exposing college students to different drinks significantly impacted

their preference ratings on them, with the best ones for drinks that were tasted

more (Pliner, 1982). The mere exposure effect, however, does not seem to

act equally on items with different valence, with neutral and pleasant items’

ratings being influenced while unpleasant not, as shown with chemo-sensory

preferences (Delplanque et al., 2015). Food preference can interact with other

dimensions such as, for instance, physiological factors. As shown by Spence

et al. (2015), for instance, in environments that are rich in high calorie foods,

preference seems to be the most important factor in shaping choice. Moreover,

while being satiated does not impact preference ratings, hunger seems to lead

the choice towards more high calorie food items with a significant alteration of

preferences, suggesting a secondary role of affective factors (Finlayson et al.,

2007).

Preferences are not born in a vacuum, however. Social norms and habits

are a powerful determinants of preferences, especially when social emotions

such as shame or disgust can influence practices of food consumption, acting

as sort of implicit enforcers of norms without the need of a central authority

(Croker et al., 2009; Rozin, 1996). An example of this can be considered the

customary eating practices of religions such as islam (halal) or judaism (kosher)

that, although applied in some countries, do not need a central authority to

do that (Mukhtar and Mohsin Butt, 2012; Wu et al., 2014).

32



Taken together, affective processes include a variety of phenomena that

influence food choice on different levels. These include motivational aspects

(i.e., mood and stress), changes in the importance of different food items for

the decision-makers (i.e., preferences) and changes in the context in which

foods are consumed as well as the habits governing the eating process (i.e.,

social norms).

1.3.1.3 Cognition

While physiological and affective factors provide the motivational backbone

to the making of food choices, cognitive aspects provide a form of top-down

control on them. Wealth, social factors, personal and safety concerns about

food can all contribute here. Besides the obvious impact of price on food

choice, with lower prices increasing consumption of foods (extensively studied

in marketing and economics. See French, 2003; Giskes et al., 2007; Horgen and

Brownell, 2002; Steptoe et al., 1995), other relevant cognitive aspects of food

choice include dieting and food restraining practices, not only in the general

population but also considering special cases such as athletes and restrained

eaters. While their reasons might differ and involve different degrees of emo-

tional aspects (e.g., physical shape vs. body image concerns), both populations

include a strict control of food choice and intake, with heightened awareness of

food composition and health issues (Heaney et al., 2011; Tepper et al., 1997).

How information about food is provided matters as well. In line with

the results of framing on choice in general (Tversky and Kahneman, 1985),
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how the food is labeled seemed to have a significant impact on choice and

intake. For instance, Just and Wansink (2014) found that how the portion

of food was labeled (either “small” or “large”) influenced consumption and

willingness to pay with higher bids and less consumption for foods that were

labeled as “large”, regardless of the actual size of the portion. Whether the

food is labeled as “healthy” or “tasty” also seems to impact choice, as people

would tend to choose more food when the first item they consume is labeled

as “healthy” as compared to “tasty” (Finkelstein and Fishbach, 2010). As

they authors contend, this might be due to the perception of “healthy” as

mandatory and not rewarding. Healthy cues seemed to improve healthy food

choices as compared to tasty (and unhealthy) foods as shown by Hare et al.

(2011). In their study, they showed that having participants focus on the

healthiness of a food as compared to its tastiness influenced their choice pattern

towards healthier foods.

How attention is focused, in fact, seems to be crucial in driving choice.

Fixation time can be considered as a useful proxy for visual attention, which

undergoes both top-down and bottom-up control mechanisms (Orquin and

Loose, 2013). Stimulus-driven attention seems to play an important role in

driving the choice process, with several studies focus on different aspects that

affect the likelihood of choosing an item over others. Indeed saliency (Bialkova

and van Trijp, 2011; Orquin et al., 2012; Mormann et al., 2012), surface size

(Chandon et al., 2009; Orquin et al., 2012), position (Chandon et al., 2009)

and visual clutter (Visschers et al., 2010) all produce noticeable effects in the

choice. In line with this idea, Krajbich et al. (2010) investigated whether gaze
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fixation patterns would influence food choice in healthy participants. Using

eye-tracking measures and computational modeling they managed to show a

direct relationship between fixation time and choice, with a pattern of accu-

mulation of information towards the option with the more extended fixation

time. Moreover, they observed that the last option being fixated was predic-

tive of the actual choice. This model represents an improvement with respect

to previous hypotheses about the gaze fixation (e.g., the gaze cascade hypoth-

esis Shimojo et al., 2003). However, while the link between the accumulation

of information and choice seems to be backed up by other studies in the lit-

erature, the authors’ predictions have not been confirmed for what concerns

gaze allocation time being a causal factor in determining choice (Nittono and

Wada, 2009; Orquin and Loose, 2013). As Orquin and Loose (2013) conclude,

in commenting the down-stream effect of attention on decision-making:

“The observations suggest two underlying processes behind down-

stream effects: a soft evidence accumulation process, which leads to

higher choice likelihood for longer exposed alternatives, consistent

with the mere exposure effect, and a bottom up attention capture

process reducing the likelihood of nonattendance, i.e., that the al-

ternative is ignored in the decision process” (Orquin and Loose,

2013, p.201).

Risk. Despite not posing a large threat such as in the past, another un-

doubtedly important factor determining food choice are safety concerns, such

as food poisoning or contamination. Building upon a large literature on dual-
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processing systems (Epstein, 1994; Evans and Frankish, 2009; Sloman, 1996),

some authors have proposed that our brains deal with risky prospects relying

on two different mechanisms (Slovic et al., 2005). One, cognitive, brings logic

and reason to assess and manage risk (risk as analysis, Slovic et al., 2004).

The other, affective, refers to the fast, automatic response to a situation that

brings potential danger (risk as feelings, Loewenstein et al., 2001). According

to these authors, when it comes to risk, most people would rely on an “affect

heuristics”, which entails that “people base their judgments of an activity or a

technology not only on what they think about it but also on how they feel about

it” (Slovic et al., 2004, p.315). According to this theory, “if a general affective

view guides perceptions of risk and benefit, providing information about bene-

fit should change perception of risk and vice versa”(Slovic et al., 2004, p.315).

This is in line with studies finding that, despite risks and benefits being pos-

itively correlated in the reality, they tend be negatively so in the way people

perceive them (e.g., Alhakami and Slovic, 1994; Fischhoff et al., 1978). We

could thus argue that how risk is framed influence reactions and evaluation of

danger. Indeed, this conjunction of cognitive (framing) and affective (e.g., gut

reactions) aspects make risk an important element in decision-making. Food

is no exception in this aspect, as understanding the interplay of cognitive and

affective elements of risk in the case of food poisoning and contamination can

shed light on how these factors are taken into account when making decisions

about public safety.

Up to date, most studies in this direction have focused on public perception

and awareness of contamination issues (Liu et al., 1998; Rosati and Saba, 2004),
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but not many on food choice per se. Still largely unexplored, however, is the

mechanism underlying the decision processes when it comes to food that can be

contaminated, as well as how the brain integrates the information concerning

hazard and nutritional properties of the food.

All in all, cognitive aspects of food choice mostly focus on how the informa-

tion about food is elaborated and how this interacts with the other dimensions

(i.e., physiology and affect). While framing seems to impact on how foods

are perceived in terms of their benefits for the organism (i.e., healthiness), the

attentional focus influences how information on foods is acquired and thereby

the choice. Moreover, how risky the food is perceived to be for the organism

shapes choice by altering preferences and choice patterns.

1.3.2 Food choice in the lab

I have given in the previous pages a brief overview of the current state of the

literature on food choice. While these studies show we have an idea of how

different factors interact in shaping food choice, we still lack an overarching

picture. One that can benefit from actual models of how the process of food

choice unfolds and which psychological and neuroscientific mechanisms it em-

ploys, still largely unknown to date despite a not so small amount of knowledge

on the phenomenon itself (Shepherd and Raats, 2006). Conceptual models are

still the mainstay in the food choice literature (e.g., Furst et al., 1996; Macht,

2008), and the lack of a computational approach, compared to other fields of

decision-making (e.g., Rangel et al., 2008) is striking. On top of this, what

37



is also lacking is a way to quantify uncertainty. Given the profound context-

based nature of food choice, research on the topic could greatly benefit from

approaches assessing model reliability, an important example being Bayesian

Statistics (Gelman et al., 2014).

There are, however, a few examples of work using this type of approach.

These studies do not focus on food choice per se, but only as a specific instance

of value-based decision-making, leaving aside most of the complexity that con-

cerns food choice (Krajbich et al., 2015; Mormann et al., 2010; Towal et al.,

2013). Mormann et al. (2010) for instance, investigated whether time pressure

would affect food choice in a binary forced-choice task according to the predic-

tions of a computational model (drift-diffusion model, Ratcliff, 1978). While

they were able to find that a particular version of their model accounted best

for the responses under different time pressures, it is clear from their study

that food choice was not their main focus. Stimuli, in fact, were not matched

for variables of interest but were simply familiar to the participants. However,

the use of computational modelling allowed them to track specific task-related

variables onto different processes, allowing to quantify the relationship between

the two variables.

One of the strengths of these approaches is the use of binary forced-choice

paradigms, which allow to tightly control stimulus features, while allowing

enough computational power to test complex models of behavior, with some

limited sacrifice in terms of generalizability. Another is the fact that they

can account for uncertainty, a key aspect in food choices, given the many
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determinants that simultaneously can affect the process.

1.4 Research Aims

In the effort of characterizing how physiological, affective and cognitive factors

shape food choice, I designed three studies. My goal was to uncover some of

the neural and computational bases of cognitive mechanisms that are at play

when we choose among different foods, by maintaining a central focus on food

choice. To achieve this, I used a forced-choice design, a binary food-choice

(henceforth, BFC) paradigm that allowed to control for stimulus variables

while keeping the analysis computationally tractable and preserve some of the

ecological validity of the actual choice. Furthermore, I employed functional

magnetic resonance imaging (fMRI) alongside behavioral testing and compu-

tational modeling, taking advantage of different levels of explanation (e.g.,

biological, computational, cognitive, behavioral. Bechtel, 2008, 2009; Craver,

2007).

In Study 1, I investigated the interaction between cognitive and physiologi-

cal aspects, focusing in particular on how people understand and judge calories.

In order to do so I made participants perform a BFC task with foods that dif-

fered along the total number of calories (i.e., portion size, caloric content here)

and the number of calories specific to that food (i.e., food type, caloric density

here) asking them to maximize their calorie intake. I expected this would re-

sult in participants not only choosing foods with high calorie density but also

bigger portions (higher caloric content) overall. As these two measures have

39



often been conflated in the literature, I hoped to show that both dimensions

affect how calories are understood and how they both bias choices.

In Study 2, I aimed at uncovering the neurocognitive basis of a particualr

case of food choice, that is risky food choice. Given the interplay between

cognitive-affective (contamination risk) and physiological (calorie) aspects, it

represents a model of the interaction among the different dimensions of food

choice. In Study 2, I expected risk to strongly influence the choice and that

participants would forego most of the benefit of gaining calories. At the neural

level, I expected the activation of the insula to track risk prediction, while the

vmPFC to code for the reward value (i.e. its calories) of the options.

In Study 3, I wanted to address the interplay of hunger, calories and prefer-

ence using a computational approach that could disentangle the simultaneous

and combined contributions of each of these elements to food choice. In or-

der to do so, I employed a drift-diffusion modeling approach to information

accumulation in favor of either one or the other option of a within-subject

BFC, depending on the features of the food chosen. I expected that partici-

pants, while hungry, would choose food relying more on their calories (caloric

density), while they would rely more on preference and less on calories in the

condition in which they were not fed.

Taken together, with these studies I aim at showing that the neurocognitive

bases of food choices include a complex interplay of factors that can be inves-

tigated in an experimental setting. On top of this, I aim to demonstrate that

the we can propose and test mechanistic models about the process of choice
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focusing on different, controllable factors, drawing a bridge from value-based

decision-making work in cognitive neuroscience and the literature on food per-

ception and choice in consumer research and experimental psychology.
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2. Counting calories
1

2.1 Abstract

Calories provide the fuel needed by our brain and body to work. However,

to my knowledge, no author has hitherto clarified how people conceive and

interpret calories, whether as an absolute (i.e., total number) or a relative

(i.e., related to the type of food) quantity. This is important, as calories

provide our brains not only with important nutritional information about foods

(Nesheim and Nestle, 2012) but also influence our behavior in choosing among

different foods. In the present Study, I investigated how this is categorized

by asking 23 participants to maximize their caloric intake in a BFC task with

food items either differing in the number of total calories (caloric content) or

calories x 100g (caloric density). What the results show is that participants

tend to understand calories in term of their relative quantity (caloric density),

with little regard to the total number of the calories suggesting, in line with

other studies (Frobisher and Maxwell, 2003; Japur and Diez-Garcia, 2010),

1A version of this chapter is in preparation for publication: Garlasco P., Corradi-
Dell’Acqua C., Foroni F. & Rumiati R.I. The effect of Risk on Food Choice: Understanding
the caloric determinants of food choice and the effect of risk of contamination.
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that estimates of portion sizes can be biased.
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2.2 Introduction

By and large neuroscientists have investigated the perceptual features of food

that might guide our choices in everyday life (Verhagen and Engelen, 2006).

For instance, the ability to detect food caloric value is of paramount impor-

tance because we must be able to modulate our food intake depending on our

energetic needs. Several studies succeeded in tracking food processing in the

brain as a function of calorie content (e.g., Toepel et al., 2009). However, a

possible caveat remains since, to our knowledge, no author has hitherto in-

vestigated whether it is the type of food or the total amount of calories in a

portion - in other words how calories are framed - that drives the estimation

process (e.g., Frank et al., 2010; Killgore et al., 2003; Tang et al., 2014; Toepel

et al., 2009).

As some studies showed, portion size - and in particular meal size - can

have a biasing influence in estimating the calorie content of a particular food

(Wansink and Chandon, 2006), including the known effect of considering a

portion smaller when the plate is larger as compared to when the plate is

smaller (Figure 2.1,Van Ittersum and Wansink, 2011, named Delboef illusion

after the eponymous optical illusion Delboeuf, 1865). Also, the calorie content

of a food can bias the estimation of the total number of calories of a portion

(Japur and Diez-Garcia, 2010), even to the point that increasing a portion of a

food leads to higher energy intake through increased consumption (Rolls et al.,

2004a,b).
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Moreover, while some studies have shown that many factors such as food

liking, familiarity, expected satiation (Brogden and Almiron-Roig, 2010), gen-

der, dietary behavior and hunger (Brunstrom et al., 2008) seem to influence

portion size estimation, it is unknown whether it is the calories contained in

the portion (say a bowl of ice cream vs. a spoon of ice cream) or whether the

calories of a certain type of food (that fact that it ice cream or pasta) that

would be wrongly estimated.

Understanding which of these two options is preferentially processed, there-

fore, has implications on how the brain encodes calories, since both ways can

be interpreted as a reward (i.e., energy content). Furthermore, we know that

cognitive aspects - such as framing (Tversky and Kahneman, 1985) - are rel-

evant in decision-making in general (as explained in section 1.2.3.1) and food

choice is no exception, as studies in consumer science (Carels et al., 2007) and

cognitive neuroscience (Hare et al., 2011) have shown.

In this Study, we aimed at understanding the relative contribution of two

caloric variables - Caloric Content (CC) and Caloric Density (CD) - in making

a choice about food. CC is defined as the total amount of calories in a portion

(e.g., 160Kcal of chocolate), and CD corresponds to the amount of calories in

100 gr of a particular type of food (e.g., 515Kcal/100g in the case of chocolate)

might differently affect food choice. In order to better understand how calories

are understood, I decided to ask participants the explicit goal to maximize

them. If, notwithstanding the goal, participants would focus more on CD, as I

would expect from studies on portion sizes Diliberti et al. (2004); Frobisher and
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Figure 2.1: The Delboef illusion applied to portion size. As you can see for
yourself (top Figure) the size of the dish can influence the size of the same
portion. Adapted from Van Ittersum and Wansink (2011).

Maxwell (2003), then it would mean that the type of food matters more than

the total amount calories, making estimates of the total number of calories of a

portion (CC) biased, with significant implications for overeating (Rolls et al.,

2002).
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2.3 Materials & Methods

2.3.1 Participants

Participants were recruited through internet advertising. Prior to testing, they

all provided written informed consent and were informed that they could dis-

continue the study at any time and upon completion of the experimental

tasks. Twenty-eight (16F; Age: 24.38yrs, SD = 3.2) healthy, right-handed,

normal body-weight (Body mass Index (BMI): 21.49, SD = 1.95) and normal

or corrected-to-normal vision native Italian speakers, participated in the study.

All the participants had normal or corrected-to-normal vision, and were con-

trolled for satiety and thirst via pre-test questionnaires. Table 2.1 summarizes

the sample features. All participants but five had an omnivorous diet, were

non-restrained eaters and had no eating-disorders as assessed via the Restraint-

Scale (Ruderman, 1983) and the Eating Disorder Inventory (EDI-3, (Garner,

2004)) post-questionnaires. Therefore, data were analyzed for twenty-three

participants.

Participants’ information

Age Education BMI

mean 24.38 15.9 21.49
median 24 16 21.49

SD 3.2 2.37 1.95

Table 2.1: Participants’ demographic and questionnaires’ score. BMI = body
mass index; PSQI = Pittsburgh Sleep Quality Index; RS, Restraint Scale.

48



2.3.2 Stimuli

Forty food images were taken from a purposefully-made database, aimed to be

a continuation of the work on FRIDa (Foroni et al., 2013, see Figure 2.2). Half

of them (n=20) were depicted high caloric density (HCD: 324Kcal/100g, SD

= 130,) foods and the other half (n=20) depicted low caloric density (LCD,

50.85Kcal/100g, SD = 18.25) foods. Within each subset (HCD and LCD),

half of the stimuli had high (HCC, 160Kcal) and low caloric content (LCC,

80Kcal), producing four stimuli subsets (HCD-HCC, HCD-LCC, LCD-HCC,

LCD-LCC). Food stimuli were matched for variables of interest such as arousal,

typicality, hedonic value, familiarity, valence, RGB color and spatial frequency.

(Foroni et al., 2013).

Figure 2.2: An example of selected stimuli. Low caloric density (LCD) foods
on the left side and High caloric density (HCD) foods on the right; foods with
low caloric content (LCC) in top quadrants and foods with high caloric content
(HCC) in bottom quadrants.
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2.3.3 Task procedure

To untangle the contribution of either CC or CD in estimating the caloric

intake of a given food, a binary decision task (binary food choice, BFC) was

implemented. Participants had to choose between pairs of foods with differ-

ent CC or CD. Participants were instructed to maximize their caloric intake

in making their choices. The task was divided in four runs, with breaks in

between. A short training phase to help participants to get acquainted with

the setup and the stimuli used preceded the experiment.

Each trial was structured as follows: after a small fixation period (1000ms)

participants were presented with two food images on the screen. They pressed

either the “1” key or the “2” key to choose the left food or the right food

respectively. Participants had up to 5s to make their decision. After decision

was made, a feedback on the amount of calories gained was provided through

a self-filling bar. Participants were instructed to maximize their caloric intake

in making their choice (see Figure 2.3). Stimuli were presented electronically

using the E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA).

In order to identify the contribution of the single feature of interest, we

compared the caloric content (CC) and the caloric density (CD), each of which

was then divided in two levels: High and Low. In the case of CC, the quantity

(i.e., the total number of calories) was either 160Kcal (High) or 80Kcal (Low).

Given that different foods could hardly have the same CD, the two CD lev-

els corresponded to a range of values: up to 150Kcal/100g for Low and from

150Kcal to 600Kcal for High, with no values overlapping. These criteria were
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Figure 2.3: An example trial in Study 1.

in line with previous literature (Foroni et al., 2013) and allowed us to distin-

guish between foods having High CD and Low CD values. While there clearly

were differences in the CD within the same category (high or low), however,

these were considerably smaller as compared to differences between categories

(Wilcoxon signed-rank test, W = 36, p = 0.002). All the levels combined

produced a factorial design (2x2) with two conditions of two levels each. In

diffCD, stimuli had the same CC but different CD; within this condition, half

of the trials had high CC while the other half had low CC. Conversely, in dif-

fCC, stimuli had the same CD but different CC; within this condition, half of

the trials had high CD while the other half had low CD. Furthermore, Control

was included as a control condition in which stimuli were taken from the same

“group” - each group represented by a panel in Figure 2.2, giving a total of

4: LCD-LCC, HCD-LCC, LCD-HCC, HCD-HCC - and had the same CD and

CC values. This condition was devised to control whether the item choice was

balanced, i.e., participants would be choosing randomly between items within

the same category. The experiment was divided in four runs with 46 trials
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each, for a total of 184. diffCD and diffCC consisted of 60 trials each, while

the Control condition had 64 trials.

2.3.4 Data Analysis

Data were analyzed via a binomial linear mixed model using the statistical

package lme4 (Bates et al., 2014). Since not all conditions carried a correct

answer (foods having the same CC have, by definition, the same amount of

total calories, as in condition diffCD) we chose to use as dependent variable

the side of the chosen item (Left vs. Right). As independent variable we

split the conditions in the following five levels (summarized in Table 2.2):

1) Condition 3 with foods taken from the same group (given that in this

condition participants chose between items of same CC and CD, we expected

comparable amount of left/right responses); 2) and 3) conditions with foods

from Condition 1 (same CC, different CD), with the item of higher CD located

on the left and right sides on the screen, respectively; and 4) and 5) conditions

with foods from Condition 2 (same CD, different CC), with items with higher

calorie content located on the left and right sides of the screen, respectively. As

additional regressors, the model included participants’ age, gender and BMI.

In the analysis, we considered a significant threshold alpha level of 0.05. All

statistical tests were two-tailed.
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level variable

DV Left vs. Right
1 Control condition
2 diffCD - left
3 diffCD - right
4 diffCC - left
5 diffCC - right

Table 2.2: Study 1 Linear Mixed Model structure. DV = Dependent Variable.

2.4 Results

As indicated by the intercept value (i.e., the Control condition, 0.51, Table 2.3)

the experiment was well balanced, as participants chose randomly between

items of the same group. Age, gender and BMI did not seem to drive the

choice, not reaching significance (see Table 2.3: p = 0.971, p = 0.588 and

p = 0.123, respectively. See also Figure 2.4). Moreover, CD seems to have

had an effect on the participant’s choice. As it can be seen in Table 2.3 and

Figure 2.4, the effect in the case of Condition 1 was significant (p < 0.001), as

CD contributed to drive the choice either to the left (0.10, p < 0.001) or the

right (−0.15, p < 0.001) with respect to the control condition (intercept, see

Figure 2.4). A small effect can be observed also in Condition 2 (Condition 2

L: −0.07, p = 0.040) but only on the left and with a large error bar, while in

the case of Condition 2 R it was not statistically significant (0.05, p = 0.072,

see figure 2.4).
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Figure 2.4: Plot of the linear mixed model estimates for fixed effects. In dark
gray the Condition 1 and in light gray the estimates for Condition 2. All values
are compared against the value of the intercept (Condition 3).

Model
Beta Confidence Interval (CI) p value

Fixed Effects

(Intercept) 0.51 0.44 − 0.98 < .001
Age 0.00 0.00 − 0.01 0.791

Gender −0.01 −0.06 − 0.03 0.588
BMI −0.01 −0.02 − 0.00 0.123

DiffCC 2, L 0.05 0.00 − 0.10 0.072
DiffCC 2, R −0.07 −0.15 − 0.00 0.037
DiffCD, L 0.10 0.05 − 0.15 < .001
DiffCD, R −0.15 −0.21 −−0.09 < .001

Random Effects

Nsubjects 23
Observations 3131

Table 2.3: Binomial logistic regression predictors for Study 1. The intercept
represents the estimate for the Control condition.

2.5 Discussion

In this experiment we investigated how using different notions of calories, i.e.,

Caloric Content (CC, total number of calories) and Caloric Density (CD, num-
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ber of calories per 100 grams of food), influenced the participants’ understand-

ing of calories and food choice. This was achieved by employing a design in

which participants were asked to maximize their caloric intake with binary

choices. Stimuli were paired according to their high or low CC, and high or

low CD, and controlled for possible confounds such as arousal, valence, typi-

cality, familiarity and perceptual features such as color and spatial frequency.

This produced a factorial design plus an additional control condition (Condi-

tion 3) in which stimuli were matched for both CC and CD and expected to

be randomly chosen.

When asked to maximize their caloric intake, participants chose food based

mostly on CD. To our knowledge, our study is the first to show that type of

food (CD) but not the total number of calories (CC) matters in the evaluation

of the calories of a food. Previous studies have also mostly focused on CD but

did not assess whether CC was a confounding factor or not. For instance, in

Killgore et al. (2003) study, high and low calorie foods loosely corresponded

to what here we called high and low calorie density (CD) foods, and in Tang

et al. (2014) CD but not CC was investigated (but see also Frank et al., 2010;

Siep et al., 2009; Simmons et al., 2005, for other studies in which CC was not

taken into account).

The fact that calories are intended as a relative and not as an absolute

quantity seems to be in line with what found by other studies. Japur and

Diez-Garcia (2010), for instance, investigated the ability of nutrition students

to estimate the size of a portion given pictures of different foods. As the
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authors report, only a small minority (18.5%) of the estimates was correct

(more or less than 10% of the actual quantity). In particular, they found a

significant positive correlation (r = 0.8166; p = 0.0002) between calories (CD,

in our case) and portion size estimation. The higher the CD, the more it was

overestimated. As the test was performed with nutrition students, one would

speculate that lay people would make even bigger mistakes, or perhaps retain

a similar bias. This is indeed what has been found in other studies on different

populations (e.g., Frobisher and Maxwell, 2003, in adults and children), with

the same pattern of overestimation for foods with higher CD. One could argue

that these results are not really comparable, as estimating portion size (grams)

is different from estimating the total number of calories. However, as some

simple algebra shows, the first can be derived from the latter and vice versa,

using CD:

CC(cal) =
portion(g)

100
∗ CD(cal/100g)

While I do not expect participants to perform this small calculation, I think

we can safely assume that our brain might engage in some similar computa-

tions, explaining the pattern of results in the present study. In order to test

this explanation explicitly, though, further studies targeting directly the es-

timation process would be needed. Other studies involving food choice and

consumption with different portion sizes seem to help explaining our results.

For instance, Diliberti et al. (2004) investigated whether people would eat more

food by (covertly) increasing on different days of the week the portion of pasta

that they consumed regularly in the cafeteria. As their results show, people
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would tend to consume more calories, as they not only eat all the (larger) pasta,

but kept on purchasing the same other foods they would normally buy along

it (e.g., main course, dessert). Moreover, when asked whether they found they

had consumed more food, the participants were generally unaware of having

consumed more calories. Other authors replicated the experiment by giving

either medium or large popcorn portions to moviegoers. Even though the por-

tions were so big that nobody managed to finish them, still participants who

had the large portion ate 45% more (Wansink and Kim, 2005). Other studies,

such as Rolls et al. (2002), found that whether the subjects were either served

a plate or had to help themselves from a serving-plate, their consumption in-

creased as the portions increased. These results seem to suggest that portion

size can be largely irrelevant to the actual choice and consumption of food2.

Our study expands this clam by showing that even when the goal is to explic-

itly trying to maximize the calories the portion does not seem to matter more

than the type of food that is chosen. From an evolutionary point of view, one

could imagine that our ancestors’ brains that were better in estimating calories

of the type of food they found (or hunted) would have been selected3, while

CC or the portion size would have mattered less. After all, as the cafeteria

studies show, eating more is always the best strategy when food is scarce.

Notwithstanding the implications, as for most studies also this study is

not free from limitations. The first one is related to the difference in within-

2And can also explain why we so easily fall prey to the food version of the Delboeuf
illusion.

3Imagine you had the choice to go picking different varieties of nuts but could not get all
of them. I bet being able to estimate their CD would far better than trying to put together
a total number of calories by using different types of nut.
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category variability between CC and CD. As a matter of fact, it is very unlikely

to find two different food items with the same CD. Indeed, the only case we

have here is the one of whole-grain bread and raw ham (see Appendix A).

On the contrary, it is easier to find a portion with the same amount of CC,

as the total number calories can be, for instance, prescribed in a diet. The

fact that CC varied with only two values (80 and 160 Kcal) instead of varying

slightly clearly factors a limitation, but it is, I believe, unlikely to alter the

results significantly, as the order of magnitude of the mistakes in estimating

the size of portions in the aforementioned experiments show (e.g., Frobisher

and Maxwell, 2003). A second limitation stems from the fact that it is not

always possible to control for all variables of interest when selecting stimuli.

All the more so with food images, which are fairly complex visual stimuli. This

is the reason why controlling for some low-level variables, such as luminance or

contrast (Kohn, 2007), was not done. While it could be argued that controlling

for these variables would have rendered the images less ecological it remains

the fact that not enough is known about how which neurocognitive process

underlies calories estimation to rule out the possible effects of these variables.

This is a limitation that is partially related to the construction of the database

itself, but also a choice, as it would have implied not being able to control for

other variables such as Arousal or Valence, elements which were considered to

be more important for the scope of the experiment.

As I hope to have shown, the framing of calories - that is whether they

are understood as CD or CC - matters when choosing a food item. As the

calories appear to be perceived as a relative quantity, the type of food seems
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to matter more than the total number of calories, whose estimation can to be

easily biased and hardly be reliable. Indeed, the fact that CD is mostly used as

an estimator for the calorie intake, shows how important it is to control for CC

and portions, and this can have a profound impact on calorie consumption and

overeating (Rozin et al., 2011). Although this experiment does not evaluate

the role of other factors - e.g., affective aspects such as food preference - in

shaping food choice, nonetheless it rules out a possible confounding factor that

might bias results in experiments evaluating the role of calories in food choice.

It will serve as a starting point for the other Studies included in the present

thesis.

59



60



3. Contamination and risky food choices
1

3.1 Abstract

Every day we choose what to eat and in order to do so we evaluate food items

along several dimensions. Due to the complexity of the food-supply chain,

food safety might become an issue. Indeed, contamination can occur and this

represents a real risk for consumers. Here, we aimed at assessing the neural

bases of how the perception of risk contamination alters choice of foods with

different CC or CD. To this end, we had 19 healthy participants with normal

body mass index (BMI) repeatedly choose among two food items of different

caloric content while lying down in the scanner. Analyses were performed

using a linear mixed model with binary logistic regression and flexible factorial

second-level fMRI analysis. First, we found that with risk probability being

equal, participants chose high CD foods more frequently than low CD. This

behavior was associated with the right anterior insula (rAI), while activation

in the dorsal striatum varied parametrically with risk. The general tendency

1A version of this chapter is in preparation for publication: Garlasco P., Corradi-
Dell’Acqua C., Foroni F. & Rumiati R.I. The effect of Risk on Food Choice: Understanding
the caloric determinants of food choice and the effect of risk of contamination.

61



to avoid risk was partially counterbalanced by an increased approach towards

foods with high CD, suggesting that this type of food might reduce people’s

concern toward contamination. The activation of rAI is in line with other

studies showing its role in risk perception and prediction errors, while the

dorsal striatum has been found to code for reward value suggesting a different

perception of the calories of the food. Altogether, these results shed light on

the behavioral and neural bases of risk perception in food choice.
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3.2 Introduction

As efficiently as our brain seems to extract critical information about food from

perceptual cues, food choice requires the acquisition of further information

about what we intend to eat. Indeed a food, even a very palatable one, may

be poisoned, and therefore eating it may have serious or fatal consequences

to our health. Given this, it is not surprising that we are very sensitive to

perceptual cues that can indicate that the food we are about to consume is

spoiled or poisoned. A bitter taste, sour smell or bluish color indeed provide

our brain with cues that can be readily interpreted as a sign of danger and are

usually met with a reaction of disgust (Martins and Pliner, 2006; Rozin and

Fallon, 1987). Even when none of the perceptual features of food is sufficient

to alarm us, ingesting the food is usually sufficient for our brain to evaluate

the danger of the item consumed, however at the cost of harming us.

Different is the case where our assessing of the state of the food must rely on

other sources of information. Public perception of risk has changed as progress

in biotechnology has transformed the way we produce, store and distribute food

(Savadori et al., 2004). Like other aspects of communication, risk can also be

framed in different ways. And as we have seen in the introduction (section

1.2.3.1), the effects of framing (for instance in terms of gains or losses) can

produce large effects2. Indeed, based on a pool of 136 studies, Kühberger

(1998) analyzed whether framing had an effect on risky choices. What the

2However, this is not always the case. In their review Levin et al. (2002) show that
while framing seems to work for attributes and risky choice, results for goals are weak and
inconsistent.

63



author found was that the effect size was low to moderate, with variations

depending on the design, instructions and focus of the outcomes (reference

point vs. goal). Experimental research on risky choices, however, mostly

focuses on monetary gains and losses and, to my knowledge, the research on

risk in food choice is scant or not existent (with the exception of work in

non-human primates: Platt and Huettel, 2008). On the other hand, most

of the research on how we evaluate and discard foods that might be poisoned

is primarily focused on public perception of contamination hazards (e.g., Liu

et al., 1998; Rosati and Saba, 2004), leaving unexplored the neurocognitive

mechanisms underneath the choice process. Indeed, there seems to be no

research on the trade-off between calories and contamination in food choice

and, in particular, how it is modulated by different types of food (CD) or by

the total number of calories (CC).

In this Study, I investigated how food choice interacts with the risk of an

averse consequence (i.e., risk of contamination), potentially altering the value

of the food item, and the brain mechanisms that may drive the choice. In or-

der to do so, I employed a BFC, building on Study 1. Following the design by

Hunt et al. (2012), I decided to pair the food items with discrete probabilities

of contamination and use as the reward the CD of the food. Consistently with

the literature on framing, I expected that risk would have a general averse

effect on the choice. This would imply that participants would rather refrain

from choosing a food than risk being poisoned3. In fact, I expected partici-

pants to try and minimize the poison by choosing the safest option (a strategy

3This highlights an asymmetry between gains and losses. See section 3.5 for a discussion.
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known in decision theory as minimax, Von Neumann, 1959. A sort of “in-

surance against the worst case”, (Robert, 1994)). On top of this, I expected

that if CD influenced the choice, it would be by making high CD items more

salient and attractive, and participants would choose at least some of them.

This would show that the type of food is an important attribute in deter-

mining whether people would perceive it as safe in case of contamination. In

line with the results of Study 1, I did not expect to find any effect of CC

on the decision patterns. Despite the fact that I could not find any study

on risky food decision-making, I expected risk to activate the insula, usually

found in prediction-error and risky decision-making (Preuschoff et al., 2008) to-

gether with the inferior frontal gyrus (IFG), proposed to code for risky aversion

(Christopoulos et al., 2009), thereby extending the results of risky decision-

making to a different type of stimulus, i.e., food. Moreover, I would expect

to find the activation of the insula, usually tracking the CD of foods (Verha-

gen and Engelen, 2006). If the “common currency” hypothesis of value-based

decision-making is true4, I would also expect to find an activation in the ven-

tromedial prefrontal cortex (vmPFC), putative hub of the comparison process

of options with different values (Levy and Glimcher, 2011).

4This hypothesis states that, in order to decide which item to choose we need to compare
its value with others and after the comparison is made select the one with the highest value
(Levy and Glimcher, 2011; Rangel et al., 2008).
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3.3 Materials & Methods

3.3.1 Participants

Participants were recruited through internet advertising. Prior to testing, they

all provided written informed consent and were informed that they could dis-

continue the study at any time. Nineteen, right-handed, normal body-weight

(Age: 25yrs, SD = 3.5, BMI: 22, SD = 1.7, Education: 16.05yrs, SD = 2.78),

Italian native-speakers participated in the study. All the participants had

normal or corrected-to-normal vision, and were hungry as they were asked to

fast before the experiment. All but one had an omnivorous diet, were non-

restrained eaters and had no eating-disorders as assessed via the Restraint-

Scale(Ruderman, 1983) and the Eating Disorder Inventory (EDI-3, Garner,

2004) post-questionnaires. Therefore the final analysis involved 18 partici-

pants. able 3.1 summarizes the sample features.

Participants’ information

Age Education BMI

mean 25 16.05 22
median 25 16 22

SD 3.5 2.78 1.7

Table 3.1: Participants’ demographic and questionnaires’ score. BMI = body
mass index; PSQI = Pittsburgh Sleep Quality Index; RS, Restraint Scale.
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3.3.2 Stimuli

The 24 stimuli selected for Study 2 were taken from Study 1 and were matched

for variables of interest such as arousal, typicality, hedonic value, familiarity,

valence, RGB color and spatial frequency. (Foroni et al., 2013). The risk of

contamination took six different probability values (0%, 20%, 40%, 60%, 80%

and 100%) and each food had an associated value that was consistent within-

subjects but randomized between-subjects. The number of probability values

chosen represented a trade-off between having enough probability combination

while at the same time not increasing too much the number of trials, as the

trial length in the fMRI scanner was longer and the time constrained (see

section 3.3.3). The conditions were the same of Study 1 (diffCD, diffCC and

Control).

3.3.3 Task procedure

Participants arrived at the venue 20 minutes before the experiment and were

asked to fill-in two pre-experimental questionnaires to control for their state

of hunger and their handedness. Hence each participant’s expectation was

framed by reading one of three written stories about a realistic natural dis-

aster altering the state of the cultivations and food supply, and subsequently

answered different questions about how to cope in such a circumstance (e.g.,

“Which food would you avoid in these situations?”). This kind of framing has

been shown to be effective in significantly altering consumer’s behavior in cir-
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cumstances of scarcity and hopefully would work in case of danger, where food

would be scarce (see Shah et al., 2015). Hence, participants were instructed

about the task which was the same as in Experiment 1 (see also Hunt et al.,

2012). They were presented with pairs of food items, with the respective as-

sociated probability of contamination (risk) displayed underneath the image.

Participants had to choose one of the two foods in order to maximize their

caloric intake while minimizing the amount of poisoned food they could get.

Participants had up to 4s to make their choice, a time window that a sepa-

rated pilot study (n = 6) showed was long-enough in order to decide. In case

they did not succeed to choose on time, no food item was selected for that

trial. A feedback bar was displayed after each trial, increasing only in case of

a safe-food choice with an amount correspondent to the calories of the chosen

food. A choice was considered safe depending on the probability of the food

being contaminated (e.g., a food having 40% risk probability would be safe

in 60% of the cases). Every time the bar reached the end point it eventually

got back to start, adding bonus food gained, which was given as snack bars to

the participant after the experiment was completed. In order for the incentive

to be effective, participants were asked to abstain from eating for 90 minutes

before the experiment (Killgore et al., 2003). As in Study 1, stimuli were

presented electronically using the E-Prime 2.0 software (Psychology Software

Tools, Pittsburgh, PA).

Each participant had a total of 198 trials (72 for diffCD, 60 per diffCC,

plus 66 for Control condition) to perform, divided into 66 trials per run. Each

run lasted approximately 12-13 minutes with a total scanning time of approx-
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imately 50 minutes per participant. After the experiment, participants were

asked to fill three different questionnaires: a restraint-scale, an eating disorder

inventory, and a questionnaire about the preference for the food stimuli used,

including liking and frequency of consumption.

3.3.4 Scanning parameters

Scanning occurred on the premises of Azienda Ospedaliero-Universitaria “Santa

Maria della Misericordia” in Udine from May to July 2015. The scanner used

was a Philips Magneton Achieva 3T. TR was set to 2s, TE to 35ms with a

FOV of 230x230x136 and a FA of 90°. Voxel size was 3mm x 3.59mm x 4mm.

An MPRAGE sequence was performed after the functional runs in order to

acquire high-resolution T1-weighted anatomical images for coregistration.

3.3.5 Behavioral data analysis

Unless otherwise mentioned, the analysis of participants’ choices was the same

as in Study 1. The only difference in the model consisted in the addition of

the difference in Risk of the two options as factor, parameterized in 11 levels

(from -100 to +100), corresponding to the difference between the risk of the

left food and that of the right food. As an example, if a banana on the left

had a 40% probability of being contaminated and a chocolate bar had a 80%

probability, the difference would be 40 − 80 = −40.
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3.3.6 fMRI data analysis

Functional data were analyzed using SPM12. Preprocessing steps included

motion-correction algorithms with an exclusion criterion of 1mm of head mo-

tion in any direction (no participant exceeded it). Subsequently, data were

preprocessed with high-pass filtering (128 s) and then co-registered to the

anatomical T1 image. Images were resliced to 3x3x3 mm using sync interpo-

lation and then normalized to Montreal Neurological Institute (MNI) space.

Smoothing was performed with a Gaussian kernel filter (full width half maxi-

mum (FWHM) = 8). Preprocessed data were subsequently fitted into a Gen-

eral Linear Model (GLM) using as regressors all the conditions of interest

(diffCD, diffCC and Control) and motion-related regressors were included to

rule out any effect of motion on the data. For each condition its time deriva-

tive was additionally modeled. Additionally, two regressors were added for

the activity related to the feedback, one for safe choices (Safe) and one for

not safe choices (Unsafe). A last parametric set of regressors was used to

keep track of risk in each condition. I modeled the moment of the choice as

well as the feedback phase. A flexible factorial model was performed on the

first-level betas and planned second-level t-tests of contrasts of interest were

subsequently assessed. Namely, I was interested in disentangling the effect of

varying CC or CD on risk performance. To do so, I contrasted separately

the calorie conditions (diffCC > diffCD, diffCD > diffCC) and each of them

against the control condition (diffCD > Control, Control > diffCC, diffCD >

Control, Control > diffCD). The effect of risk was computed in two different
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ways. First, I assessed the difference between the risky options, by using the

absolute value of the difference between the two options (Risk Abs diff). The

absolute value was used to keep track of the difference between the two risk

values regardless of which one was eventually chosen. Second, to assess the

contribution of the general level of risk involved in the choice, I also computed

the risk as the mean of the two options, regardless of their difference (Risk

Mean). This is consistent with the view that the difference between two risky

prospects is not evaluated in the same way whether the risk is high or low

(e.g., Christopoulos et al., 2009; Kahneman and Tversky, 1979; Tversky and

Kahneman, 1985). All statistical parametric maps were corrected for multiple

comparisons using a FWE-cluster correction (Friston et al., 1994)5.

3.4 Results

3.4.1 Behavioral. Averse effect of risk, small effect of

CD.

As it is shown in Table 3.2, participants performed at chance level in the control

condition (0.53), suggesting that the control was effective. As expected, no

effect of age, gender or BMI on performance was observed. Furthermore, the

effect of liking and frequency of consumption was not significant (see Table 3.2

and Figure 3.1). As expected, risk seemed to induce a general averse effect on

5Previous studies have confirmed that this type of cluster correction, combined with a
smoothing kernel of 8mm, produces a percentage of false positives below 5% (Flandin and
Friston, 2016).
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the pattern of choices (−0.6, SD = 0.3, p < 0.001), confirming the hypothesis

that participants become generally risk averse when the mere possibility of

contamination is at stake. Interestingly, both a main effect and an interaction

were present in the case of diffCD (−0.05, p = 0.019; 0.1, p = 0.040) while

this was not true for diffCC, suggesting that the CD, that is the type of food,

might exert a different effect in counteracting the general effect of risk.

Figure 3.1: Plot of the linear mixed model estimates for fixed effects. In
dark gray the diffCD and in light gray the estimates for diffCC. All values are
compared against the value of the intercept (Condition 3).
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Model
Beta Confidence Interval (CI) p value

Fixed Effects

(Intercept) 0.53 0.49 − 0.57 < .001
Age 0.00 −0.00 − 0.02 0.521

Gender 0.02 −0.07 − 0.11 0.691
BMI 0.00 −0.02 − 0.02 0.941

Liking 0.04 −0.03 − 0.11 0.247
Consumption −0.01 −0.08 − 0.05 0.703

diffCC, L 0.01 −0.03 − 0.05 0.630
diffCC, R −0.01 −0.05 − 0.04 0.760
diffCD, L 0.02 −0.03 − 0.06 0.446
diffCD, R −0.05 −0.09 −−0.01 0.019

Risk 0.53 0.49 − 0.57 < .001
Risk: diffCC, L −0.05 −0.15 − 0.06 0.411
Risk: diffCC, R 0.06 −0.05 − 0.16 0.320
Risk: diffCD, L 0.10 0.00 − 0.20 0.040
Risk: diffCD, R 0.03 −0.07 − 0.12 0.603

Random Effects

Nsubjects 18
Observations 3462

Table 3.2: Binomial logistic regression predictors for Study 2. The intercept
represents the estimate for the Control condition.
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3.4.2 fMRI. Right anterior insula and pre-SMA activa-

tion.

The second level flexible factorial analysis allowed to contrast the effect of the

different conditions of interest through planned post-hoc t-test contrasts. Most

notably, I tested whether differences existed between the caloric conditions (1

and 2) and the control condition. The only contrast that yielded a robust,

FWE-cluster corrected (p < 0.05) activation was when contrasting the trials

where CC was varied and CD kept constant (diffCC), against the trials where

CD was varied and CC kept constant (diffCD). As apparent in Table 3.3 and

Figure 3.2, two extensive clusters around the right insula and the pre-SMA

were more active for diffCC when compared with diffCD.

Figure 3.2: diffCC > diffCD contrast activation for the second-level flexible
factorial analysis. A) You can see highlighted the clusters around the right
insula (anterior and posterior) and the pre-SMA (in the sagittal image) as well
as their parameter estimates (B and C).
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Cluster Coordinates T value Area
size (MNI) (peak)

diffCC > diffCD 269 36, 2, -1 5.17 Right Insula
133 -21, 2, 56 4.77 Pre-SMA

Table 3.3: Regions that showed higher activation while contrasting diffCC >
diffCD.

Cluster Coordinates T value Area
size (MNI) (peak)

diffCD > Control 251 18, -25, -7 4.94 Dorsal Striatum
183 57, -7, 41 4.25 Pre-motor cortex
104 -42,-10, 26 3.95 Ventral pred-motor

Table 3.4: Absolute Risk: Regions that showed higher activation while con-
trasting diffCD > Control.

3.4.2.1 Absolute risk difference. Risk-related activation in dorsal

striatum and pre-motor cortex.

When parametrized using the absolute difference between the two options, risk

survived the multiple comparison correction (FWE cluster size) when contrast-

ing diffCC against the control condition. Four clusters of activation were found

in the Dorsal Striatum, pre-motor cortex (PMC), corpus callosum and ventral

pre-motor cortex (vPMC, see Figure 3.3 and Table 3.4).
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Figure 3.3: diffCD > Control contrast activation in the parametrized Absolute
Risk for the second-level flexible factorial analysis. A) The highlighted clus-
ters are around the dorsal striatum and the premotor cortex as well as their
parameter estimates (B and C).

3.4.2.2 Mean of the two risks. Risk-related activation in left PCC.

When parametrized using the absolute difference between the two options, risk

survived the multiple comparison correction (FWE cluster size) in the diffCD

> Control contrast. A significant activation cluster was found in the posterior

cingulate area (see Figure 3.4 and Table 3.5). This area has been found to be

positively correlated to the perception of physical risk (Qin and Han, 2009) and

its activation supports our behavioral finding that risk is perceived differently

in the CD and control conditions.
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Figure 3.4: diffCD > Control contrast activation in the parametrized Mean
Risk for the second-level flexible factorial analysis. A) You can see highlighted
the cluster in the left PCC as well as their parameter estimates (B and C).

Cluster Coordinates T value Area
size (MNI) (peak)

diffCD > Control 167 -9, -55, 2 4.34 Left posterior cingulate -
Retrosplenial cortex

Table 3.5: Risk Mean: Regions that showed higher activation while contrasting
diffCD > Control.

3.5 Discussion

In this Study, I investigated how the perception of risk contamination affects

human choices about foods with different calories. To assess the effect of risk, I

introduced a probability of contamination associated with each stimulus (coun-

terbalanced between subjects) ranging from 0%, safe, to 100%, poisoned. This

event-related fMRI design allowed to disentangle the contribution of different

brain areas to the processing of risk probability as well as its interaction with

the caloric value (either CC or CD) of the food items.

In addition to an expected general averse effect of risk, I also found both a
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main effect for diffCD and an interaction of risk with diffCD. This supports the

idea, in agreement with other studies (see e.g., Frank et al., 2010; Nummenmaa

et al., 2012), that high calorie foods act as powerful rewards not only in obese

and overweight but also in individuals with normal BMI. More importantly,

the result has been obtained after controlling for the size of the portion (CC),

allowing us to attribute it to the effect of caloric density alone. The main

finding, however, is that CD seems to exert a partially counteracting effect

when associated with the risk of contamination, reducing its averse effect.

Importantly, this effect was not found for CC. Figure 3.5 schematizes the view

on how food choices are influenced by food characteristics (CC and CD) in the

event of food contamination (risk). Risk exerts an effect both directly on choice

and indirectly through CD. Moreover, while Study 1 clarified that participants

can also judge food calories by relying on CC, with no information about risk

of contamination, in Study 2, when risk of contamination is factored in, there

is no evidence that CC plays a role.
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Figure 3.5: A mechanistic model of the effect of Risk, CD and CC on food
choice. Risk influences CC, CD and choice; CD in turn influences choice, while
CC does not.

The fMRI results were able to distinguish a set of areas that are arguably

affected by risk and calories processing. The contrast between diffCD and

diffCC highlighted both the right anterior insula (rAI) and the pre-SMA. The

activation in these areas should represent the different effect on risk on the two

caloric measures of interest (CC and CD). In fact, in the trials of diffCD, where

CD was varied, the rAI was deactivated. In other words, rAi is activated more

when the absolute calories are tracked rather than when the relative calories

(CD) are.

Activation in the anterior insula has consistently been linked to the pre-

sentation of food cues in different modalities, including vision (Rolls, 2007;

Simmons et al., 2005; Small, 2010). The anterior insula has also been associ-

ated with risk prediction and prediction errors (Preuschoff et al., 2008; Rao

et al., 2008). I suggest that a lowered activation in the rAI might be related

to the reduced risk perception of CD. A hypothetical mechanistic explanation
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considers the putative role of anterior insula in representing not only risk but

risk prediction error (Preuschoff et al., 2008), with the purpose to help the

organism to adapt and learn fast the risk of an option with constant updating,

while comparing the real outcome with the predicted one and using the error

to fine-tune the evaluation process to the new stimuli. The difference in activa-

tion when comparing choices in diffCD and diffCC suggests that risk might be

perceived more correctly, and updated accordingly, when two foods differ in CC

(diffCC) than when they differ in CD (diffCD). On the other hand, pre-SMA

activation has been found in association with action decision and preparation,

especially when participants made their choice under time pressure (Forstmann

et al., 2008), as well as with working memory tasks (d’Esposito et al., 1998;

Pessoa et al., 2002; Petit et al., 1998). This might imply that making decisions

in diffCC was more demanding than in the diffCD, and that this extra process-

ing effort was due to the presence of risk. Taken together, the deactivation of

rAI and activation of pre-SMA suggest that risky decisions about foods equal

in total number of calories (i.e., same CC) but different in caloric density (i.e.,

High CD vs. Low CD) are easier to make. I hypothesize that the brain pays

less attention to the probability of contamination here, with the task being

easier (lower pre-SMA activation) and less risky (deactivation of rAI).

The possibility that risk could have differently been perceived with foods

of different CD seems to be consistent with the activation of the dorsal stria-

tum, pre-motor cortex (PMC) and left posterior cingulate (lPC) tracking the

absolute difference of the risk and its mean. The dorsal striatum has been

frequently found to be involved in reward computation and anticipation (e.g.,
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Schur et al., 2009) even in the context of food (Rothemund et al., 2007). Its

involvement has also been observed in coding for the magnitude of both actual

reward and punishment, particularly for the latter (Delgado et al., 2003). Its

activation seems to be consistent with the literature on the first representing

value of options of negative valence (Balleine et al., 2007). Since risk of con-

tamination is clearly averse, it could be treated as a sort of punishment, and

its presence when contrasting CD with the control condition, suggests that,

since in the Control condition the calories are similar, it might make the neg-

ative outcome more salient, driving the choice away from CD. The activation

of PMC and deactivation of dorsal striatum in diffCD – the latter found to

be involved in action-contingent learning, especially with appetitive stimuli

(O’Doherty et al., 2004) – here might signal the higher difficulty in learning

to associate options with high reward to different levels of risk, although this

evidence is hard to interpret. Even taking into account the effect of risk as the

mean of the two options (Risk Mean) the activation of the left posterior cingu-

late (lPC) seems to be consistent with its role in tracking subjective physical

danger (Qin and Han, 2009), since the higher the overall risk, the higher this

risk irrespective of the choice.

What I could not find in the results is the activation of IFG and vmPFC. A

possible explanation for the lack of activation in IFG, which should be expected

in line with Christopoulos et al. (2009), can be that the contrasts performed

did not allow to highlight a general averse effect of risk, as all the conditions I

had included risk and, as they were counterbalanced, they probably cancelled

out in the averaging process. On the other hand, the lack of activation of
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vmPFC can be arguably related to the possibility of participants not actually

comparing the options in term of their values. This opens the possibility for a

different mechanism, one that relies on the probability of contamination as a

main factor shaping the choice, with the possible, secondary, contribution of

CD to decide whether to choose one item of the other. However, this is mostly

speculative, and further studies would be needed to clarify this point.

The Study presented here has many limitations and a few biases. The first

bias could derive from the use of few stimuli, affording a reduced variability

and generalization of the results. Unfortunately, given the constraints of the

fMRI design, the reduced number of stimuli was a compromise, as even adding

two more stimuli per group (each with a different probability) would have

implied 122 more trials to balance all the comparisons. Another bias could

stem from the fact that, as in Study 1, not all the possible confounds were

accounted for (see section 2.5). Another limitation can stem from the fact

the task demanded to compare two very different things (calories and risk of

contamination) and there it is not clear as to what would be the strategy

employed to calculate the optimal outcome. One option would be to calculate

the expected value (EV, Von Neumann and Morgenstern, 1945), multiplying

the calories and the probability of obtaining them (that is, 1 - the probability

of the item being contaminated). However, it is not clear how the negative

consequence of eating contaminated food could be computed, and this is clearly

a limitation in the design. Another limitation is that I used only one framing

option. Future studies could investigate whether different framing scenarios

could influence the task. One interesting option would be to contrast the risk of
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contamination framing with a simple mathematical game with probabilities to

win food items. The difference in how probabilities are treated in the two cases

can provide interesting insights in how the brain handles risk and reward in

two very different context and determine what is specific about the perception

of food safety.

Taken together, these results confirm that risk of contamination is highly

averse: the higher the risk, the more it is considered akin to personal harm

(lPC). When the choice involves foods with different caloric density, however,

things get more complex. The type of food and arguably its history of posi-

tive reinforcement can partially counteract the negative effect of risk, making

certain foods look more attractive and therefore perceived as less risky (rAI),

hence lowering the cognitive load of the choice (pre-SMA). In this case, the

difference between the two foods could be perceived as more salient and risk

playing a larger role in discarding the item with lower CD (Dorsal Striatum).
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4. Accumulating information of calo-

rie, hunger, and preference to make

food choices
1

4.1 Abstract

Decision-making theories have long explained decisions as based on perfectly

rational value assignment, the decision strategy of the homo economicus. How-

ever, decisions based on affectively relevant stimuli, such as food items, hardly

follow strictly rational heuristics. Being hungry, the food’s caloric content and

subjective preferences are known factors to modulate food choices. Yet, how

these factors relatively and altogether contribute to the food choice process is

still rather unknown. Here, we ask 16 healthy young adults to choose among

800 food image pairs when satiated or hungry. The food items belonged to a

low or high-calorie density (CD) subgroups and their preference was assessed

1A version of this chapter is under review in Cognitive Science: Garlasco P., Parma V.
& Rumiati R.I. Hunger, calories and food preference predict food choice: a computational
model.
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for each participant. To simultaneously link the hunger state, the CD of the

food and their preference to the probability of subsequently choosing each item,

we applied a novel computational model, the hierarchical drift diffusion model

(HDDM). Results indicated that hunger, preference and calorie all affected the

speed of the food choice. The choice was faster towards low CD foods when

participants were fed and the food items were highly preferred. Conversely,

the choice was faster towards high CD foods when participants were hungry

and the foods were less preferred. All in all, these findings confirm the complex

nature of food choices and the need for nuanced computational models able

to account for multifaceted decision-making and value assessment processes,

such as those regarding food.
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4.2 Introduction

Accounting for multiple decision factors and ruling out the non-relevant noisy

information is argued to depend on a process called Bayesian Causal Inference

(Rohe and Noppeney, 2015), which consists in an estimate of the probability

of a cue based upon prior information and weighted by the current evidence.

Choice models have often capitalized on a family of models called drift-diffusion

models (DDM, Ratcliff (1978)). In a Bayesian framework, such models allow

to quantify the speed of the decision process based on other factors, such

as accuracy (e.g., Cavanagh et al., 2011; Vandekerckhove et al., 2011). The

DDM models assume that the subject is accumulating evidence for each of two

alternatives (i.e., two food items), until a threshold for a decision (i.e., food

choice) is met. Compared to classical frequentist analyses, these models allow

to quantify uncertainty based on the data and an informed prior distribution,

instead of relying on a theoretical (usually Gaussian) one. Furthermore, they

allow for the possibility to consider simultaneously, with different parameters,

the speed of the accumulation of information (drift-rate, v) and the point at

which the decision is made (threshold/boundary, a), a possible pre-existing

bias towards one of the two options (bias, z) and also non-decision related

components of the task (non-decision, t). Indeed, this approach favors the

joint investigation of critical aspects of the choice, rather than separating them

into different models (as the frequentist approach calls for).

A handful of studies has employed DDM to study specifically food choice.
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Krajbich et al. (2010) presented participants with food snacks in a BFC and

investigated how fixation patterns can contribute to the choice of one of them.

Both first gaze direction and total fixation time speeded up the accumulation

of information towards one of the two foods, contributing to the final food

choice. These data were extended by Towal et al. (2013) who investigated

whether and how bottom-up (perceptual salience) and top-down (subjective

value) processes influence fixation patterns and food choice. Their results in-

dicate that the fixation patterns modulate choice primarily in accordance with

the food item value, but also based on perceptual salience, again confirming a

complex interplay between bottom-up and top-down factors underlying even

the most basic food choices. Furthermore, Mormann et al. (2010) consider

whether limiting the decision time affects the way food items are chosen. They

devised a paradigm where subjects chose among pairs of food items randomly

assigned according to their subjective preference. Time constraints facilitated

the choice of preferred foods but made the subjects make more errors, both

elements captured by different model parameters. Still, when instructed to

minimize their choice time (Mormann et al., 2011), participants are able to re-

liably choose preferred food items in BFC with a 73% accuracy in only 404ms

on average, implying that food choice can be a quick and reliable decision

process.

As evident by this short summary of the literature, the DDM approach on

BFC has mostly considered one or two determinants of the decision at a time,

failing to address the complex interplay among the determinants contributing

to food choice which includes hunger, calories and food preference. Also, to our
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knowledge, most studies failed to use a clear-cut definition of calories, relying

on either caloric density (CD) or fat content. Here, we aim to fill this gap

by extending the investigation of the food choice information accumulation

patterns to physiological, i.e., hunger and calorie (CD), and subjective, i.e.,

preference, experiences.

To assess the effect of hunger, calories and food preference on food choice,

we employ a series of DDM: one complete model (hunger x preference) and two

main effect models (hunger only and preference only). To assess simultaneously

the role of hunger and calorie in food choice, we evaluated whether participants

chose high and low calorie food in function of their hunger state (hungry/fed)

and controlling for preference (high/low). We hypothesized that hunger would

affect the boundary position (a), by moving it closer to the starting point

of the drift when the subjects are hungry compared to satiated. This would

mean reducing the amount of information necessary to make the choice when

hungry as compared to when satiated. On the other hand, preference would

influence the bias term of the model (z), indicating whether participants tend

spontaneously to choose low- or high- calorie foods. We expected participants

to choose more rapidly low calorie foods when fed, as found in other studies

run in industrialized countries (Charbonnier et al., 2015). At last, we expected

the calorie content to influence the speed of information accumulation (i.e, the

drift rate, v) in function of hunger. In other words, we expected the drift

rate to be greater when participants are hungry then when they are fed. As

a control check, we did not expect the non decision parameter t to be any

different between the models.
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4.3 Materials & Methods

4.3.1 Participants

Participants were recruited through internet advertising. Prior to testing,

they all provided written informed consent and were informed that they could

discontinue the study at any time. Sixteen healthy (8F; Age: 24.53, SD =

2.85), right-handed, normal weight (BMI: 22.07, SD = 2.44), with normal or

corrected-to-normal vision and no eating disorder (assessed through the Eating

Disorder Inventory, EDI-3, Garner, 2004) Italian native-speakers participated

in two experimental sessions at the same hour but three days apart from each

other. Participants were omnivorous and had no dietary restriction. They

were all normal weight (BMI, 22.07, SD = 2.44) and unrestrained eaters, ac-

cording to the Restraint Scale questionnaires scores (RS, mean = 11.07, SD

= 5.09, restrainers > 15; Polivy et al., 1988; Nederkoorn et al., 2004). They

also exhibited regular sleep patterns and were not sleep deprived. This was

assessed using the Pittsburgh Sleeping Quality Index (PSQI, 10.69, SD = 3.13,

Buysse et al., 1989; in its validated Italian version, Curcio et al., 2013). Par-

ticipants had to fast (only water allowed) for the 12 hours before coming to

the laboratory. This was done in order for them to be hungry. Fasting time

in the literature ranges from 3hrs (Frank et al., 2010) to 18hrs (Siep et al.,

2009), with behavioral effects emerging already at its lowest end (i.e., 3hrs).

In one session (“hungry” condition) participants had to perform the task with-

out eating, while in the other (“fed” condition) they were offered cereal bars
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to eat up to satiety before performing the task. They were compensated with

e8 per session, e16 in total. Table 4.1 summarizes the sample features. One

participant (ID 2) was removed from final analyses given that her responses

were on average of 0.6s and could not be deemed accurate.

Participants’ information

Age Education BMI PSQI RS

mean 24.53 17.6 22.07 10.67 11.07
median 24 18 22.78 10 10

SD 2.85 1.35 2.44 3.13 5.09

Table 4.1: Participants’ demographic and questionnaires’ score. BMI = body
mass index; PSQI = Pittsburgh Sleep Quality Index; RS, Restraint Scale.

4.3.2 Stimuli

Forty images were selected from a validated database (FRIDa, Foroni et al.,

2013). Stimuli were divided in two groups of interest based on their caloric

density/100g: twenty of them were low CD (range from 0 to 150 Kcal/100g)

and twenty were high CD (range from 300 to 450 Kcal/100g). Within these

two groups, ten images were salty and ten were sweet, to account for any sweet

tooth or savory preferences, in line with other studies (Mormann et al., 2010,

see Table 4.2). Stimuli were matched for variables of interest such as arousal,

typicality, familiarity and valence (Foroni et al., 2013).

The use of food pictures instead of actual foods is well supported in the liter-

ature. Kringelbach and Rolls (2004) argued that OFC neurons respond more

strongly to the visual modality of foods, while Simmons et al. (2005) found

that food pictures, similarly to real food, activate areas of the primary gusta-
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tory cortex (Right Insula) and areas implicated in reward such as the lateral

OFC.

Low CD High CD

Salty

Sweet

Table 4.2: Examples of the stimuli used.

In order to compare high CD vs. low CD foods, food images were paired

into four different conditions: condition 1 had stimuli of high vs. high (200

trials), condition 2 stimuli of low vs. low (200 trials), condition 3 and 4 had

stimuli with high vs. low and low vs. high (400 trials). The total number of

trials per each session, 800, was in line with previous studies (Mormann et al.,

2010), and was meant to provide enough data points for the DDM to converge.

Stimuli presented were randomly paired using these conditions.

4.3.3 Task procedure

As already mentioned, participants were asked to come to the lab at a pre-

determined time (either 8:30, 9:30 or 10:30 in the morning). Before they began

the experiment, they were offered water and cereal snack bars in the “fed” and

water only in the “hungry” condition. The order of the “hungry” and “fed”

conditions was counterbalanced across participants. Eventually, they had to
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fill questionnaires on sleeping habits (PSQI) as well as rate their hunger, thirst

and tiredness on a 10-point visual analog scale (VAS). The ratings confirmed

that our manipulation between sessions was effective (hunger, p < 0.05; thirst,

p = 0.58, tiredness, p = 0.25).

After this, participants performed the BFC task sitting in front of a computer.

Stimuli were presented on a LCD screen (60 Hz) located approximately 80cm

from the participant using PsychoPy2 (Peirce, 2007)

The task was a food BFC, whereby they were shown pairs of food images and

they had to pick the one they preferred (see Figure 4.1) pressing either the

“z” key for left food or the “m” for right food (this was done to allow enough

physical space between the two keys). Before each trial, participants had to

fixate a cross for a random interval between 1 and 2 seconds. Participants had

a maximum of 3 seconds to make their choices, more than enough as shown by

published literature (e.g., Mormann et al., 2010). After this amount of time

was elapsed without a key press, the response was considered null. Reaction

times were measured as the time difference between the onset of the images

and the button press. The task lasted approximately 40 minutes, with three

breaks in between.

After the task, participants were asked to rate the food images according

to their preference and frequency of consumption. Eventually, they completed

the other questionnaires, EDI-3 (Garner, 2004) and Restraint Scale (RS, Ru-

derman (1983)). Total time of a session was around 1h-1h15’.
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Figure 4.1: The timeline of the procedure of the experiment for each session
(fasting/fed).

4.3.4 Data Analysis

4.3.4.1 Descriptives

We quantitatively inspected the BFC RTs distributions to assess whether any

participant was either too slow or too fast to be considered reliable. As previ-

ously mentioned, one participant was excluded.

4.3.4.2 DDM Analysis

The analysis was performed using a modified Bayesian version of a drift-

diffusion model: the Hierarchical Drift Diffusion Model (HDDM). A HDDM

employs Bayesian estimation of the model parameters providing a quantifica-
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tion of the reliability of such parameters (Vandekerckhove et al., 2011). Hier-

archical Bayesian estimation allows to constrain subject variability to a group-

level distribution (Lee and Wagenmakers, 2014; Regenbogen et al., 2016).

Model fitting Data analysis was performed using the hddm module for

Python3 (Wiecki et al., 2013). In the models, we assumed that the slope of

the drift increased linearly with the difference in hunger and preference between

the two to-be-chosen food items. The upper boundary represented here high

CD foods, while the lower boundary represented low CD foods. A negative

average drift (drift-rate) would therefore indicate a higher number of choices

for low CD food items, while a positive one just the opposite. The bias, instead,

indicated the starting distance from each of the two boundaries. In order to

obtain a 2x2 design we split preference ratings into Low Preference (ratings

from 1 to 4) and High Preference (ratings from 6 to 10). Hence, we estimated

the model a-posteriori distribution of the parameteres by using Monte-Carlo

Markov Chain simulation (MCMC) with gradient ascent optimization, drawing

10000 samples and burning the first 1000 to stabilize the model (Regenbogen

et al., 2016). To allow for convergence analyses, we repeated the simulations

5 times per model (Wiecki et al., 2013).

Model convergence Convergence of the models was inspected both visually

and numerically. We plotted the trace of the models, the auto-correlation and

the mean and distribution of the boundary, drift-rate, bias and non-decision

time (movement) parameters. A numerical estimate of the convergence used
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the Gelman-Rubin R̂ statistic (Gelman and Rubin, 1992), with values close to

1 indicating a small difference among the estimates of the different distribution

of samples, an index of the reliability of the simulations.

Model testing and comparison In order to assess the reliability in the

difference of the parameter estimates, we calculated the difference in mean

probabilities of the posterior estimates of the conditions of interest (as done in

Cavanagh et al., 2011; Wiecki et al., 2013). Moreover, null hypothesis signifi-

cant testing was performed with a rmANOVA with two within-factors (Hunger

and Preference) and two levels (High and Low). In case of significance, un-

planned bonferroni-corrected post-hoc tests were performed accordingly (as in

Regenbogen et al., 2016). Model comparison using the DIC (Deviance Informa-

tion Criterion, particularly suited for hierarchical models: Spiegelhalter et al.,

2002) allowed us to compare models including different parameters (e.g., only

hunger vs. hunger & preference), holding into account the complexity of the

model itself as a penalizing factor. With this criterion, lower values indicate a

better fit of the model.Importantly, the values of DIC make sense only relative

to each other, so there is meaningless to compare them with DICs from other

studies (Gelman et al., 2014; Spiegelhalter et al., 2002).
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4.4 Results

4.4.1 Descriptives

The distribution of RT was not normal and right-skewed, as expected, with an

overall mean of 0.76s and a SD of 0.28 (Kolmorov-Smirnov test, D = 0.65, p <

0.001).

Since the preference ratings were fundamental in our design, we evaluated

whether hunger changed the rated preference across sessions. Such difference

was not significant (Hungry vs. Fed, p = 0.13, Wilcoxon signed-rank test),

allowing us to safely use the ratings of each respective session in estimating

our models.

4.4.2 HDDM

4.4.2.1 Model convergence and comparison

Overall, our models converged satisfactorily. As you can see in Figure 4.2, the

auto-correlation of the last hundred trials was close to zero, as you can expect

from a Markov-Chain that has converged (Wiecki et al., 2013). This means

that the samples are independent draws from the posterior. On the upper left

panel, the trace is plotted as a function of the number of iterations. As you can

see, the iterations do not stray too far away from the mean of the distribution

(which is the point of highest probability of the posterior). The histogram on

the right confirms this.
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Figure 4.2: Convergence plots for a representative node of the model. On the
top left you can see the trace plot, on the bottom left the auto-correlation
while on the right the histogram of the estimates.

Moreover, the Gelman-Rubin statistics (R̂) for our models was mostly close

to 1, (mean = 1.0002, SD = 0.0004, for a total of 164 nodes per model)

allowing to infer that different simulations of the same model obtained similar

results, which is considered an index of robustness of the estimation itself.

Overall, estimated non-decision time (parameter t) lasted approximately 0.42s.

This is consistent with our data suggesting that given an average RT of 0.55s,

the participants took approximately 0.1s to decide on most images what to

choose.

Model comparison included all the three models we run (preference*hunger,

preference, hunger). As reported in Table 4.3, the model with preference*hunger

was the most reliable model (22710.46), whereas the hunger model was the one

with the highest DIC and thus the least reliable (25078.55). Given the lower

score of the all factor model, we decided to rely on it to decide in case of

incongruities between different models.
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Models’ DIC

Model DIC

preference*hunger 22710.46
preference 24029.13

hunger 25078.55

Table 4.3: DIC values for our three HDDM. Lowest values represent a better
fit. preference*hunger = model with hunger and preference; preference =
model with preference; hunger = model with hunger.

4.4.2.2 Model results

Boundary Contrary to our expectations, the effect of hunger, preference or

both factors together on the boundary parameter was close to chance level

(50 − 52%, see Table 4.4). A rmANOVA with the two within-factors (Hunger

and Preference) and two levels (High and Low) was not significant (F = 1.06,

p = 0.36). Therefore, the decision threshold for the high and low CD food can

be considered equidistant.

preference*hunger model boundary results

Contrast Probability

Preference
P(Fed - High Pref > Fed - Low Pref) 51%

P(Hungry - Low Pref > Hungry - High Pref) 52%

Hunger
P(Hungry - Low Pref > Fed - Low Pref) 51%
P(Fed - High Pref > Hungry - High Pref) 52%

Interactions
P(Hungry - Low Pref > Fed - High Pref) 51%
P(Fed - Low Pref > Hungry - High Pref) 51%

Table 4.4: preference*hunger model. Probability difference of posterior esti-
mates for boundary (a)

Drift-rate We found a main effect of hunger on the drift-rate. As it can be

seen in Figure 4.3a, participants chose more low CD foods and were overall
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faster in choosing them when fed as compared to when they were hungry, as it

evident from the more negative drift for the fed session (95%). Even preference

alone had an effect on the drift-rate, as displayed in Figure 4.3b. Low CD food

items seemed to be chosen faster when they were highly preferred (more neg-

ative drift), while more slowly when they were less preferred (79%). Including

preference*hunger (preference*hunger model), we could find both main effects

of hunger and preference, as well as their interaction (Table 4.5, Figure 4.3c).

A rmANOVA with the two within-factors (Hunger and Preference) and two

levels (High and Low) was in fact significant (F = 1240.75, p < 0.001). All six

post-hoc tests were significant and survived the multiple comparison correction

(p < 0.01 Bonferroni corrected). As you can see, different sessions seemed to

impact on the speed of information processing as well as on the direction of

the choice. Decisions taken when fed were overall faster towards low CD foods

with a high probability, 98% and 80%, for high and low preference respectively.

Interestingly a different pattern was observed when hungry. In this session,

participants choose overall more high CD items when they had a low prefer-

ence (70%), while high preferred items tended to move the decision towards

low CD (79%). Interestingly, the interaction between hunger and preference

(98%) sped up the accumulation of information in different directions. To-

wards low CD foods with high preference and being fed and towards high CD

foods with low preference and being hungry.

Bias No bias was retrieved in either model (Figure 4.4).
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preference*hunger model drift-rate results

Contrast Probability

Preference
P(Fed - Low Pref > Fed - High Pref) 86%

P(Hungry - Low Pref > Hungry - High Pref) 80%

Hunger
P(Hungry - Low Pref > Fed - Low Pref) 83%
P(Hungry - High Pref > Fed - High Pref) 88%

Interactions
P(Hungry - Low Pref > Fed - High Pref) 98%
P(Hungry - High Pref > Fed - Low Pref) 54%

Sign
P(Fed - Low Pref < 0) 80%
P(Fed - High Pref < 0) 98%

P(Hungry - Low Pref > 0) 70%
P(Hungry - High Pref < 0) 79%

Table 4.5: preference*hunger model. Probability difference of posterior esti-
mates for drift-rate (v)

4.5 Discussion

Food choice is a complex decision that requires the assessment of conflicting

information (Rangel, 2013). In this study we aimed to investigate food choice

by addressing the interplay of physiological, affective and cognitive factors. By

using a DDM approach, we assessed how hunger, calorie content and prefer-

ence shape the accumulation of information patterns in food choice. Having

participants fast for 12 hours successfully induced a state of hunger evident in

the subjective ratings and the speed of accumulation of information to reach

the choice. Conversely, subjective preference for the food items was not mod-

ulated by the hunger state.

The results reported here show that choosing high CD or low CD food is

equally probable, given that the boundary is equidistant from the starting

point and that there is no previous bias towards either choice. The analy-
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Figure 4.3: Posterior probability distribution of the drift-rate parameters (v).
a: preference*hunger model with hunger x preference. b: Main effect model
of preference. c: Main effect model of hunger. LP = Low Preference; HP =
High Preference.

sis of the posterior parameter distributions of the drift-rates instead showed

significant differences in the speed of the decision process. In other words, as

evident by the preference*hunger model, the speed was higher towards low CD
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Figure 4.4: Posterior probability distribution of the bias parameter depending
on CD for the preference*hunger model (z).

foods when participants were fed and the items were highly preferred, while

it was higher towards high CD foods when participants were hungry and the

foods were less preferred. This supports the assumption that low CD preferred

foods accumulated evidence for the food choice in a faster manner when fed.

Whereas, when hungry, accumulation of information was faster for high CD,

non preferred foods.

Here, we demonstrate for the first time that there is a complex interplay

of factors in food choice with effects going in different directions - i.e., hunger,

caloric content and preference - which the HDDM approach allows us to dis-

entangle and to point to specific aspects of the decision process.

In line with Charbonnier et al. (2015), our participants chose more often

low CD than high CD foods. The authors hypothesized that this was owed

to the fed state of their participants, which we confirm here by looking at

the differences in the accumulation of information patterns for low CD and

high CD foods when fed but not when hungry. Considering that there was
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no initial bias towards either food category based on CD, it can be argued

that the physiological state of hunger is responsible for this food choice pat-

tern. At the neural level, as suggested by Siep et al. (2009), these different

patterns of accumulation of information may be underlined by a greater activa-

tion in the right insula and medial orbitofrontal and ventromedial pre-frontal

cortex for high CD foods when hungry. This would be in line with the role of

orbitofrontal cortex in representing value-based decision alternatives, as pre-

viously contended (see Levy and Glimcher, 2011). An attempt to all together

consider hunger, preference and calorie can be found in the work by Finlayson

et al. (2007), who used food fat content as a proxy for CD. One of their main

results is that hunger unbalanced the choices of participants towards highly fat

foods (which can be equated to the high CD food items in our design). On the

other hand, while being satiated they were driven towards their preferred food

irrespective of calories. In contrast with their results, in our study, hunger did

not seem to affect our preference ratings. In spite of this, in our sample the

analysis of the posterior drift-rates let emerge an effect of preference on the

choice of low and high CD foods. This discrepancy in the subjective ratings

may be due to a methodological reason. When controlling for arousal, typi-

cality, familiarity and valence of the food images, the preference range may be

constrained, therefore reducing variability irrespective of hunger states (Foroni

et al., 2013). Furthermore, in line with Bielser et al. (2016), our data suggest

that liked foods tend to be chosen more often than non-liked food, even though

such pattern is not extremely skewed, due to a general preference for the the

food items presented. Such intuitive result confirms that liked items require
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lower decision times (Kahnt et al., 2014), even when the choice is forced among

two alternatives (Bielser et al., 2016).

All in all, the present findings extend the investigation of food choice which

has been mostly addressed via the analysis of self-report questionnaires or be-

haviorally via frequentist statistical approaches which allow only for the eval-

uation of one relevant factor at a time. Conversely, applying a computational

HDDM approach by simultaneously considering the effect of hunger, prefer-

ence and calorie on food choice, allows us to overcome this shortcoming. Our

results show that the food choice process deviates from the homo economicus

assumptions, in allowing the choice not to be uniquely determined by fixed -

i.e., exogenous - preferences but demonstrating that the real food choices are

malleable to changes in physiological and subjective states. Hereby we contend

that this approach is a strong candidate for the assessment of the complexities

of food choice, contributing to a nuanced view of value-based decision in a

unified framework (see Krajbich et al., 2015). The importance of being able to

experimentally model nuanced food value-based decisions seems to be reflected

at the neural level by greater activation in a network of regions known to pro-

cess salience-related information and cognitive control processes (Menon and

Uddin, 2010; Mitchell, 2011), including the insula, the dorsolateral pre-frontal

cortex, and the ventromedial pre-frontal cortex.

One might argue that the data are based on fictional food choices since they

were only mediated by food items that people visually inspected but were never

able to eat. If on the one hand this represents a limitation of the current study,
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it extends a flourishing literature demonstrating that visual features maximally

contribute to ecological food choices (see Foroni et al., 2013, 2016; Levy and

Glimcher, 2011). On the other hand a future extension of the present work

would consider the use of real food choices would significantly modulate the

accumulation of information patterns hereby found.

To conclude, I showed that food choices are complex decision processes

that require the assessment of conflicting information, including one’s hunger

state, the calories of the food item and the subjective preference for those

items. Furthermore, by capitalizing on the HDDM approach, this work sheds

light on how to nuanced computation models represent the next frontiers in

understanding multifaceted decision-making and value assessment processes,

such as those regarding food. The present work is to be included among

the efforts toward simultaneously understanding the computational basis of

decision-making in the context of the systems that serve as homeostatic reg-

ulators of feeding (Rangel, 2013). Given the complexity of the phenomenon,

I believe that this approach can help understand the contribution of factors

not considered in this study, such as socio-economical ones, food attitudes,

pathological behaviors towards food (e.g., obesity and anorexia) and sensory

features of foods.
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5. General Discussion

In this thesis I aimed to present you a template for the investigation of food

choice employing a set of different techniques, namely behavioral, computa-

tional and neuroimaging analyses. Food choice is in fact a complex, multifac-

torial, phenomenon and, to be studied, it needs to be broken down into its

main components, to investigate their interaction in different contexts. After

I introduced you to its main dimensions (physiology, affect and cognition), I

guided you through a set of studies aimed at investigating each of these di-

mensions as well as how they interact, to deepen our understanding of how

food choice are made.

In order to achieve the main goal, I tried to convey the idea that it is

possible to study food choice in an experimental setting without extremely

sacrificing its ecological and contextual validity. This has been done by try-

ing, on the one hand, to harness the ideas and concepts of decision-making

research in neuroscience (Levy and Glimcher, 2011) and experimental psychol-

ogy (Köster, 2003). This included a paradigm, BFC, which represents a good

compromise between ecology and rigor, alongside more control on confounding

variables and the stimuli employed, through the use of databases. On the other
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hand, this has been done by focusing on the specific dimensions of food choice

(physiology, affect and cognition) studied in the vast, sometimes qualitative,

research of food choice in ecological contexts of consumer research (Grunert,

2002).

In chapter 2 I showed that even with a theoretically simple physiological

variable such as calories, there are cognitive aspects that can change the way

they are understood altering choice behavior. As already pointed out, calories

represent a very important feature of food, as they provide nutrients for our

brains and bodies. However, many studies in the literature do not seem to

distinguish between two important ways of counting calories, and therefore

energy intake. One is a relative way and relies on the type of food (calories x

quantity), that we called caloric density (CD), the other one is absolute and

counts the total number of calories in a given portion of food, and we called

it caloric content (CC). In the BFC task, participants chose foods that were

combined along these two dimensions. As they were instructed to maximize

the calories, if they were to act according to some sort of utility maximization

principle (as the homo economicus would predict) they would try to maximize

CC, as this value represents the total calories they could get. However, this

was not the case, as participants chose mostly relying on CD. This pointed

to a possible bias in understanding how calorie are counted, as participants

would rely on the type of food to evaluate how many calories they have in front

of them, making how big is the portion secondary. This is a relevant point,

since relying on the relative number of calories of the food has been shown to

produce biased estimates of portion and meal size. As argued in chapter 2,
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this has been shown to cause significant overeating, mostly without peoples’

awareness (Rolls et al., 2002, 2004b,a; Diliberti et al., 2004).

After focusing on a powerful motivational factor in driving food choice

and consumption, namely calories, and how this is cognitively interpreted, I

wanted to investigate how a powerful motivational factor in controlling intake,

namely food safety, would impact food choice. In chapter 3 I investigated

how the risk of a food being contaminated would affect the participants’ food

choices between two options. Building on the design of Study 1, I devised a

BFC which included food images with different CC and CD as well varying

probabilities of contamination (from 0% to 100%). Here, the task was to

maximize calories while minimizing risk. I expected participants to try to avoid

poisoned food as much as possible, that is choosing the lowest risk. Such goal

may be achieved by implementing a minimax strategy (Von Neumann, 1959).

However, I doubted that participants would rely only on this conservative and

rational behavior and still choose more caloric items than you would expect

given this strategy. The results showed that this was the case. In fact the effect

of risk was partially diminished but, in line with Study 1, by relying on CD,

and not on CC. That is, the type of food seemed to make a difference in driving

the choice, while the total number of calories did not, which is what you might

have expected if participants had simply calculated the number of calories they

needed, pointing to a different mechanism. The fMRI results supported this

idea, with the deactivation of the rAI and activation of pre-SMA in diffCD

compared to diffCC and Control, respectively, highlighted differences in the

demands of the task as well as the role of risk.
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After having found that there is an interplay between cognitive and affective

components, I decided to test how a physiological component might impact on

the affective dimension. In chapter 4, I investigated whether hunger would

impact choice of food items based on preference. As the food images chosen

for the BFC varied along the CD dimension, I expected calories to impact on

preference as well. The results showed that hunger impacted choice patterns

significantly. As our HDDM results show, while hungry, participants tended

to focus more on the items’ CD, with the accumulation of information for the

high CD choice being faster for less preferred items. On the other hand, while

satiated, participants seemed to rely more on preference, as the information

accumulated more rapidly towards the more preferred and low CD food items.

5.1 Food choice in the lab (revised)

Food choice, as thoroughly explained in this work, is a complex and context-

dependent phenomenon. This seems at odds with studying it in a very con-

trolled environment such as a laboratory. While I agree in principle with this

remark, I still think most of the elements of food choice can be studied in

a laboratory with proper care. Although it is arguably very difficult to re-

produce the context of a meal at home or food shopping in a supermarket1,

we can approximate some of the features of the decision process that actually

take place in these context while, at the same time, taking advantage of the

control that a laboratory setting allows in order to reduce the noise in favor of

1One example in this direction exists, i.e. the “Restaurant of the Future” in Wageningen
University, but indeed represents a unicum in the food choice line of research.
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the signal. For instance, my participants had to choose among food pictures

instead of real food. While it is not the same, lacking the smell and texture,

many studies have shown that primate and human food selection relies mostly

on vision (Laska et al., 2007; Linné et al., 2002), and that the sight of food can

elicit a wide range of physiological, cognitive and emotional responses that are

related to food consumption (van der Laan et al., 2011). So, I would argue,

as long as it is food choice and not food intake that it is investigated, using

pictures represents an acceptable solution.

Employing a BFC can face similar criticisms. One might argue, in fact,

that everyday choices are seldom, if ever, binary. The typical choice among

different food items in a supermarket scaffolding is a representative example.

The same goes, in most cases, for a menu in a restaurant. However, real-world

equivalents of BFC are present and often encountered. Think, for instance,

about having lunch in a canteen. Here choices can be binary (e.g., pasta vs.

rice, chicken vs. frittata) and hunger does have an impact. If you compare

the same person on different days, on the first being hungry while on the

second not, there you have a real world scenario which is not too dissimilar

from study presented in chapter 4. However, the limitations of a BFC should

be acknowledged, and in fact it would be interesting to replicate and extend

the studies here to multiple forced-choice paradigms (simulating a choice from

a restaurant menu, for instance). There are already studies that extend the

DDM approach to multiple choice tasks (Krajbich and Rangel, 2011; Towal

et al., 2013). Interestingly, one of their conclusions is that, although the effect

is smaller, it is likely that the same computational model that works for binary
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choices can extend to ternary and other simple purchasing decisions (Krajbich

et al., 2012). However, these studies still face the same limitations of previ-

ous works in the same line (the aforementioned poor control of food-specific

variables). Nonetheless, this is a promising line of research, and the constant

improvement of computational modeling (Wiecki et al., 2013) offers hope to

make tasks more ”manageable”, such as, for instance, reducing the number of

trials needed for the model to converge2.

5.2 Calories do matter

Among other relevant variables in food choice that one could have focused on

(e.g., price, availability, color, etc...), we chose calories. Why? As pointed

out in the introduction, calories provide the fuel that our brains and bodies

require to function. The need to metabolize a lot of calories in a reliable and

efficient way is one of the goals that have shaped the evolution of our digestive

apparatus (Wrangham, 2009). However, one might question why focusing on

calories and not on more specific variables. After all, we do not seem to

spend much time consciously monitoring our energy intake, relying mostly on

non-conscious feeding mechanisms, such as hormonal regulation (e.g., ghrelin,

Wren et al., 2001) to guide our eating behavior. Moreover, although different

nutrients seem to have a differential impact on motivational aspects of eating

(e.g., craving for sugars but not for proteins), we did not investigate the effects

of macronutrients such as proteins, fats or carbohydrates in influencing food

2Which, right now, is fairly high, as seen in chapter 4, and poses serious limitation in
extending DDM to, for instance, fMRI.
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choice. Is the relative balance of macronutrients important for food choice? If

so, does it overshadow the role of calorie tracking?

This question is not new and, for what concerns weight management, the

answer would seem to be: not much. In their widely cited study, Kinsell

et al. (1964) had their obese patients undergo the same liquid-formula diet

totaling the same number of calories but with widely varying macronutrient

compositions (fat from 12 to 83 %, protein from 14 to 36% and carbohydrates

from 3 to 64 %). Their results showed that all obese patients lost weight at a

constant rate, no matter the relative composition of the diet. What matters, it

seemed, was just the number of calories. A 2001 review of several types of diets,

found that calorie balance was a major determinant of weight loss, and that all

diets were effective, regardless of their composition, provided they restricted

calorie intake to max 1500 per day (Freedman et al., 2001). A more recent

year-long clinical trial conducted by Gardner et al. (2007) comparing different

low-fat, high-fat and low-carbohydrate diets in roughly 300 overweight women

found the high fat diet more effective. However, the researchers note that the

difference was highest after six months and progressively reduced and it would

have likely waned if the study lasted longer. What these studies seem to point

out is that:

The source of the calories may make a small difference in weight

maintenance or loss, but it appears to be much less important than

the ability to resist pressures to overeat calories in general.(Nesheim

and Nestle, 2012, p.172).
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This reasoning goes into the same line as recent policies that try to address

the problem by actually acting on the calorie-rich environment in which we live,

on the one hand by increasing general awareness of calories with compulsory

calorie labeling 3, on the other by pressuring the food industry into reducing

portion sizes 4 which, as we have seen in chapter 2, often influence calorie

estimation on a par with the type of food itself.

5.3 Bayes in the plate. New approaches to

study food choices

Analogously to what is happening to the study of decision-making, it is prob-

ably time to study food choice more rigorously. The development of quan-

titative and computational models in cognitive neuroscience has reached the

stage where they can be successfully applied to more complex and multifarious

phenomena than what they used to in the beginning (i.e., memory retrieval

or perceptual decision-making for the DDMs, Heekeren et al. (2008); Rat-

cliff (1978)). The framework provided by Bayesian statistics, which provides

estimates of the uncertainty of models, and Dynamic Causal Inference, al-

lows modelling to take into account more than single factors of interest (such

as calorie and hunger) but also more complex socio-economical and personal

variables and investigate how these factors act together to shape the choice

3Such as with the initiatives of the food and drug administration (FDA) in the US, which
is trying to improve package labeling by requiring chain restaurants and vending machines
to provide nutrient information about the food they offer (Food et al., 2014).

4This is what happened, for instance, in New York City, where mayor Michael Bloomsberg
banned large sugary drinks for consumption (Grynbaum, 2012).
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process. This can capitalize on DDMs or race models (such as Linear Ballistic

Accumulators) in allowing to track how the accumulation of information in

favor of one out two or more options unfolds, depending on variables that map

psychological or neural processes. Interesting in this direction is the work by

Krajbich and colleagues, who use DDMs alongside eye-tracking and neuroimag-

ing data (Krajbich and Smith, 2015) to investigate the effects of attention and

gaze fixation on food choice. Indeed neuroimaging data can be included into

the computational model (see Wiecki’s group work with EEG and deep-brain

stimulation, DBS, Cavanagh et al., 2011), accounting for the variation and the

process underlying it as it influences the outcome. I believe applying these

methods to ask interesting and relevant questions about food choice and how

the bran implements them is important, as the large availability of food in

rich countries, the rising of obesity, climate and environmental concerns pose

significant issues to our well-being and survival of our species.

5.4 Epilogue

All in all, the results of the studies presented here show that it is possible to

study food choice tackling its different relevant dimensions and their interplay.

This can be done by using a framework that allows different questions to be

asked, while accounting for possible confounds and some limited sacrifice in

terms of its ecological validity. I have tried to achieve this by using a carefully

controlled task (BFC) and stimuli, alongside the use of a multitude of statistical

(such as linear mixed models, drift-diffusion models) and technical (behavioral,
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neuroimaging) approaches.

To convey this message I focused my attention on a few relevant dimensions

and their interplay. I believe the studies here managed to show that: a) calories

matter, and that we consider them as a relative quantity, focusing mostly on

the type of food (CD) with less regard to the total quantity (CC), which

has implications in terms of how much we eat; b) food safety produces risk

aversion, especially when it is framed in quantitative terms, but allows some

room to evaluate calories in terms of their CD. The fMRI results show that the

interplay of risk and CD seems to be tracked by the activity of the right anterior

insula and the pre-SMA, suggesting that risk is processed and as a result of

such elaboration, weights are assigned to different probabilities depending on

CD. c) hunger (and lack thereof) influence choice by acting differently on either

preference or calories, and this effect can be nicely captured by a computational

model (HDDM) that tracks how the information is accumulated during the

trial in favor of the different options.

Overall, the studies presented here provide a template to map a multi-

factorial, complex and context-dependent phenomenon such as food choice.

However, this is just a tiny step in the direction towards a more rigorous and

ecological investigation of how we actually choose food on a daily basis. Given

the stakes, though, I believe it is a good idea to walk this way.

116



Acknowledgements

Being grateful is more than just simply acknowledging, as an act of fairness,

who deserves to be so. Being grateful to me lies at the core of this very

existence, inasmuch as it act as a reminder, of not taking for granted what

you have, and the luxury to have met some more than decent people along the

way.

A PhD is a long journey through the abyss and back. You enter as a merry

and naive child and you come to the other side as a grown version of yourself.

Or you don’t. As it is not customary, but I feel very much needed, I want to

thank all the survivors first. All you guys who made it and, by virtue of your

example, inspired me in the darkest moments when I was about to throw in

the towel.

A towel which I would have thrown by now, saving me perhaps some pain

but alas also some priceless lesson, if it were not for those whose unrelenting

support was essential, very much like flour is to bread (unless you are coeliac,

of course). These include Raffaella, my supervisor, whose understanding and

kindness allow me to adapt to the transformations that happened through my

mind as I was sailing, most often lost, in the tempests of academic life. I

117



would not have made it through the doldrums, however, if it were not for my

captain, Valentina, whose knowledge of the winds has proven to be essential

for me, very much like a sailor who, stunned by the sirens’ chanting, would

have yielded to the temptations of an all too frequent easier way out. I would

have been far gone, like an Odysseus aghast in horror facing the mouths of

Charybdis, without Michele, whose firm reasoning and compassion have talked

me out of my demons more times than I can count, with the fondness of a friend

you can rarely find. I wish to thank my Family, my Southern Cross, whose

reassuring presence in a sky rife with unknown stars has lulled me through

endless days and nights. A man cannot navigate nor manage the ship of his

own life, let alone muster the courage to face the unknown, without his friends,

the crew, ”la compagnia picciola dalla qual non fui diserto” (Dante, Inferno,

XXVI). A man is nothing without them. Thanks Marco, Alessio, Patrizia,

Michele, Andrea, Daniele, Riccardo, Lorenzo, Erica. The list is already long,

but a special place, despite heading different ways, is for those people who

made my stay in Trieste a little less lonely, a little more meaningful, including

good time together hiking and climbing. Grazie Vlad, Arash, Sergey, Anna,

Sofia, Damiano, Ale, Sara, Alessandra, Matteo, Georgie, Yamil, Romain, Sina,

Andrea (x2), Eva, Davide, Mehdi, Franz, Stefano, Roberto, Cosimo, Cosetta,

Farida and Jana. I want to include a special, perhaps more academic, thanks,

to all those who worked with me and supported me. My lab here in Trieste,

Alessio for his IT support and help with my (usually) silly requests, and in

Geneva, with a special mention to Gil, Ilaria and my supervisor there Corrado.

I could not have pictured myself charting these seas in a better company.

118



And you are, truly, the best gift I had in these years. This is for you.

119



120



Bibliography

Alhakami, A. S. and Slovic, P. (1994). A psychological study of the inverse

relationship between perceived risk and perceived benefit. Risk analysis,

14(6):1085–1096.

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: cri-

tique des postulats et axiomes de l’école américaine. Econometrica, 21:503–

546.

Arrow, K. J. (1959). Rational choice functions and orderings. Economica,

26(102):121–127.

Balleine, B. W., Delgado, M. R., and Hikosaka, O. (2007). The role of the

dorsal striatum in reward and decision-making. Journal of Neuroscience,

27(31):8161–8165.

Barbaro, L., Peelen, M. V., and Hickey, C. (2017). Valence, not utility, under-

lies reward-driven prioritization in human vision. Journal of Neuroscience,

37(43):10438–10450.
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