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Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been 
a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a re-
gion well outside the black hole horizon by calculating the effective radius of a radiating body via the 
Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this 
claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that 
the Hawking quanta originate from what might be called a quantum atmosphere around the black hole 
with energy density and fluxes of particles peaked at about 4MG , running contrary to the popular belief 
that these originate from the ultra high energy excitations very close to the horizon. This long distance 
origin of Hawking radiation could have a profound impact on our understanding of the information and 
transplanckian problems.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of Hawking radiation [1] changed our perspec-
tive towards black holes, giving us a deeper insight about the 
microscopic nature of gravity. At the same time, within the semi-
classical framework, the current understanding of such process 
still leaves open several issues. Of course, a well known unre-
solved problem of black hole physics is the information loss para-
dox [2–4], i.e. the apparent incompatibility between the complete 
thermal evaporation of a black hole endowed with an event hori-
zon and unitary evolution as prescribed by quantum mechanics.

For restoring unitarity of Hawking radiation and addressing the 
information loss problem correctly, it is important (among other 
things) to know from where the Hawking quanta originate. For ex-
ample, if one assumes a near horizon origin of the Hawking radia-
tion, then one way to restore unitarity is by conjecturing some sort 
of UV-dependent entanglement between partner Hawking quanta 
which would enable the late time Hawking flux to retrieve the 
information in the early stages of the evaporation process. Such 
scenario seems to lead to the so called “firewall” argument as the 
conjectured lack of maximal entanglement between the Hawking 
pairs makes the near horizon state singular and eventually de-
mands some drastic modification of the near horizon geometry [5]. 
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On the other hand, if one believes in a longer distance origin of the 
Hawking quanta, some effect must be operational at a larger scale 
for restoring unitarity rather than near the horizon, avoiding the 
“firewall”.

A similar open issue is the transplanckian origin of Hawking 
quanta. Hawking’s original calculation indicates that the quanta 
originate near the black hole horizon in a highly blue-shifted state 
requiring an assumption on the UV completion of the effective 
field theory used for the computation and on the lack of back-
reaction on the underlying geometry.1 While it was debated for a 
while if Hawking quanta could originate initially, during the star 
collapse, and later released over a very long time, it was convinc-
ingly argued in [8] that this cannot be the case if an event hori-
zon indeed forms. This leads to the conclusion that the Hawking 
quanta are generated in a region outside the horizon. A conclusion 
corroborated by studies of the Hawking modes correlation struc-
ture where it was shown that mode conversion happens over a 
long distance from the horizon [9]. A more recent claim in this di-
rection, based on calculating the size of the radiating body via the 
Stefan–Boltzmann law, showed that the Hawking quanta originate 
in a near horizon quantum region, a sort of black hole “atmo-
sphere” [10]. It is a well known fact that the typical wavelength 
of the radiated quanta is comparable to the size of the black hole, 

1 See, for instance, Refs. [6,7] for a black hole evaporation analysis where these 
issues can be addressed in a quantum gravity context.
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so one might think that the point particle description is not very 
accurate. However, as measured by a local observer near the hori-
zon, the wavelength is highly blue-shifted when traced back from 
infinity to the horizon, thus validating the point particle descrip-
tion.

The Hawking process can be explained heuristically as-well, for 
example via a tunneling mechanism where the particle tunnels out 
of the horizon or the anti particle (propagating backwards in time) 
tunnels into the horizon and as a result of this we get the constant 
Hawking flux at infinity [11]. Alternatively, one popular picture is 
to imagine that the strong tidal force near the black hole horizon 
stops the annihilation of the particle and anti-particle pairs that 
are formed spontaneously from the vacuum. Once the antiparticle 
is “hidden” within the black hole horizon, having a negative energy 
effectively, the other particle can materialize and escape to infinity 
[12,13].

In this paper we shall explicitly make use of this latter heuristic 
picture as well as of a full calculation of the stress energy ten-
sor in 1 + 1 dimensions. We shall see that both methods seem to 
agree in suggesting that the Hawking quanta originate from the 
black hole atmosphere and not from a region very close to the 
horizon. In section 2, based on the heuristic picture of Hawking 
radiation described above and invoking the uncertainty principle 
and tidal forces, we show that most of the contribution to the ra-
diation spectrum comes from a region far away from the horizon. 
In section 3 we further strengthen our claim by a detailed calcu-
lation of the renormalized stress energy tensor, which indicates a 
similar result.

2. A gravitational Schwinger effect argument

One ingredient of our heuristic argument to identify a quantum 
atmosphere outside the black hole horizon, where particle creation 
takes place, is the uncertainty principle. However, the use of the 
uncertainty principle alone, as originally suggested by Parker [14], 
does not contain any physically relevant information about the lo-
cation of particle production and why smaller black holes should 
be hotter. Indeed, the uncertainty principle in this case provides 
a rough estimate of the region of particle production as inversely 
proportional to the energy of the Hawking quanta when they are 
produced, but it does not take into account any dynamical mecha-
nism to estimate the probability of spontaneous emission.

Thus one can improve this argument by invoking a physical 
process of creation of the Hawking quanta and using the uncer-
tainty principle as a complementary tool to estimate the region of 
origin of the quanta. In this section, we try to achieve this goal by 
relying on tidal forces.

Let us then consider a situation where a virtual pair, consisting 
of a particle and anti-particle, pops out of the vacuum sponta-
neously for a very short time interval and then annihilates itself. 
In the Schwinger effect [15] a static electric field is assumed to 
act on a virtual electron–positron pair until the two partners are 
torn apart once the threshold energy necessary to become a real 
electron–positron pair is provided by the field. Energy is conserved 
due to the fact that the electric potential energy has opposite sign 
for partners with opposite charge. However, in its gravitational 
counterpart a priori only vacuum polarization can be induced by 
a static field in the absence of an horizon.

In fact, only in the presence of the latter one has both the char-
acteristic peeling structure of geodesics (diverging away from the 
horizon on both its sides) as well as the presence of an ergoregion 
behind it.2 The presence of an ergoregion is crucial for energy con-

2 This is strictly true only for non-rotating black holes, for rotating ones the 
ergoregion lies outside of the horizon allowing for the classical phenomenon of 
servation as it allows for negative energy states given that in it the 
norm of the timelike Killing vector, with respect to which we com-
pute energy, changes sign.

Indeed, if a Schwinger-like process takes place near the black 
hole horizon, due to the tidal force of the black hole and the 
peeling of geodesics, the pair can get spatially separated and one 
partner can enter the black hole horizon following a timelike or 
null curve with negative energy while the other particle can es-
cape to infinity and contribute to the Hawking flux. In this picture, 
we are implicitly assuming that virtual particles in the vicinity of a 
black hole horizon move along geodesics when they are just about 
to go on-shell.

Therefore, the physical scenario we want to envisage is that of a 
particle–antiparticle pair pulled apart by the black hole tidal force 
outside the horizon until they go on-shell as one of them reaches 
the horizon3 located at rs = 2GM/c2 (actually an infinitesimal dis-
tance inside it so that the geodesic motion will drag it further 
inside) while the other particle is at a radial coordinate distance 
r = r∗ . Once on-shell, the outgoing particle eventually reaches in-
finity and contributes to the Hawking spectrum. In order to do so 
though, it has to be created with an energy corresponding to the 
energy of the Hawking quanta at a distance r∗ > rs from the cen-
ter of the black hole as measured by a local static observer; this 
can be reconstructed by noticing that

ωr = ω∞√
g00

, (1)

where ω∞ is the energy at infinity and we are using the 
(+, −, −, −) signature. At infinity, the thermal spectrum of Hawk-
ing radiation gives

ω∞ = γ
kB T H

h̄
, (2)

where the Hawking temperature for a black hole of mass M reads 
kB T H = h̄c3

8πGM , and γ is a numerical factor spanning the energy 
range of the quanta giving rise to the radiation thermal spectrum. 
At the peak of the spectrum γ ≈ 2.82.

Thus, we get

ω∞ = γ
c3

8πGM
(3)

and

ωr = γ
c

4πrs

1√
1 − rs

r

. (4)

This energy is provided by the work done by the gravitational 
field to pull the two partners apart. We can compute this work in 
the static frame outside a black hole and compare it with ω(r∗). 
Using this relation, we can determine the region from which the 
Hawking quanta originate. This is the process we now want to 
implement. Although in the rest of this Section we present the 
detailed derivation of the relation between the outgoing particle 
energy and the radial distance at which it goes on-shell for the 
massive case, our result holds also for massless particles. We com-
ment at the end of this Section on how the same Schwinger effect 

superradiance. However, the quantum emission still requires the peculiar peeling 
structure of geodesics typical of the horizon.

3 One could also consider the case where the ingoing particle tunnels through the 
horizon and goes on-shell well inside the horizon (as e.g. suggested by the results 
of [9]); however, since in our analysis below we are interested in the tidal force 
as computed in the outgoing particle rest frame, this should not affect the final 
expression for the force. Thus, from the point of view of an outside static observer, 
the work done by the gravitational field on the pair (in our heuristic derivation) is 
insensitive to the exact location where the ingoing particle becomes real.
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argument can be implemented straightforwardly to the massless 
case.

Let us clarify that, in a general relativistic framework, the 
geodesic deviation equation does not describe the force acting 
on a particle moving along a geodesic. Rather, it expresses how 
the spacetime curvature influences two nearby geodesics, making 
them either diverge or converge, i.e. it effectively measures tidal 
effects. Therefore, we can interpret these effects as the pull of the 
gravitational force on particles and talk about the work done by 
the gravitational field only in an heuristic sense. Nevertheless, in 
the case considered here where the test particles have a mass 
much smaller than the black hole and we can neglect back-reaction 
effects, we expect this interpretation of the gravitational field ef-
fects to capture some relevant aspects of black hole physics. With 
these assumptions spelled out, let us proceed.

In the rest frame of the outgoing particle, one would see the 
antiparticle accelerating towards the horizon due to the tidal force. 
This radial acceleration in the rest frame of the particle can be 
computed using the geodesic deviation equation, namely

ar
∣∣
r∗ ≡ Dnr

Dτ 2

∣∣∣∣
r∗

= Rr
μνρuμuνnρ

∣∣
r∗ , (5)

where the r.h.s. is expressed in terms of the Riemann tensor 
components, nr denotes the separation between the two radially 
infalling geodesics followed by the pair of particles and uμ =
[1, 0, 0, 0] in the rest frame of the particle.

The separation between the particle and the anti-particle when 
the pair forms spontaneously (i.e. they go “on-shell”) is given by 
their Compton wavelength, namely nρ = [0, nr, 0, 0] where nr ∼
λC = h̄/mc, and m � M is the particles rest mass (from now on we 
shall work in units where h̄ = c = 1). So in the end, Eq. (5) implies 
that the radial component of the tidal acceleration (as computed 
in the rest frame of the particle at coordinate r∗) is given by4

ar |r∗ = 2MG

r3∗
λC (6)

Our aim is to determine the work done on the spontaneously 
created particle pair by the tidal force in the static frame outside 
the black hole. For this we need to compute the tidal force as mea-
sured by a static observer outside the black hole at the instant 
when the outgoing partner goes on shell. This can be achieved by 
considering the particle rest frame and the static observer frame 
as locally two inertial frames: The latter sees the particle as mov-
ing with outward velocity given by the radial component of the 
geodesic tangent vector ur = dr/dτ . Once this is known, we can 
derive the radial acceleration observed by the static observer by 
performing a boost with rapidity ζ = tanh−1(ur).

We thus need to determine the instantaneous radial component 
of the free fall velocity of the outgoing particle when it goes on-
shell. This can be computed from the geodesic equation and it is 
given by

ur = dr

dτ
=

√
2MG

r

(
1 − r

r0

)
, (7)

where r0 comes as an integration constant corresponding to the 
coordinate distance at which the particle velocity goes to zero. 
Since we are interested in the value of the radial component of the 

4 For computation of the acceleration in the rest frame of the particle we need 
the Riemann tensor in the inertial frame of the particle. One can compute the Rie-
mann tensor in the static Schwarzschild coordinates and then boost it using the 
free-fall velocity of the particle as measured in the static frame. A feature of the 
Schwarzschild geometry is that the components of the Riemann tensor remain in-
variant under such a boost [16]. Thus, in (5) we have Rrttr = −2MG/r3.
geodesic tangent vector at the instant when the outgoing particle 
goes on-shell and becomes an Hawking quantum which eventu-
ally reaches infinity, we can take the integration constant r0 → ∞, 
i.e. Hawking quanta can be created with zero velocity only at in-
finity. Hence, we get

ur
∣∣
r∗ =

√
2MG

r∗
. (8)

We can now boost the acceleration vector aμ = (0, ar, 0, 0), 
where ar given by (6), with a velocity parameter given by (8), in 
order to determine the tidal force in the static frame ar

st. We get 
ar

st = ar cosh(ζ ) = ar(1 − 2MG/r)−1 so that the radial component 
of the force under this transformation is given by

F r
tidal−st

∣∣
r∗ = mar

st

(1 − 2MG/r)

∣∣∣∣
r∗
= mλC

(1 − 2MG/r∗)2

2MG

r3∗
, (9)

where we have rescaled the mass in the rest frame by the appro-
priate Lorentz factor, (1 − 2MG/r∗)−1. Finally, using the fact that 
λC ∼ 1/m, the magnitude of the force is given by

||F r
tidal−st|| =

2MG

r3∗

(
1 − rs

r∗

)− 3
2

. (10)

In analogy with the Schwinger effect, we shall now assume that 
the work done by the tidal force to split the virtual pair can be ap-
proximated by the product of the force computed above with the 
distance over which it appears to have acted, i.e. the separation 
of the two Hawking quanta as they go on-shell as measured by a 
static observer at r∗ . Given that we have assumed that the ingoing 
Hawking quantum goes on shell as soon as it can do so, i.e. at hori-
zon crossing, this distance will coincide with the static observer’s 
proper distance to the horizon d(r∗).

Therefore, the work required by the tidal force to split the pair 
apart is given by5

W tidal ∼ ||F r
tidal−st||d(r∗) = 2MG

r3∗

(
1 − rs

r∗

)− 3
2

d(r∗) , (11)

where d(r∗) is given by

d(r∗) =
r∗∫

rs

√
grrdr′ (12)

=rs

⎛
⎝√

α(α − 1) + 1

2
log

⎡
⎣α

(
1 +

√
1 − 1

α

)2
⎤
⎦
⎞
⎠ ,

and we have defined α ≡ r∗/rs .
We can then equate this work to the total energy of the two 

Hawking quanta being created, namely W tidal = 2ωr . This gives us

2MG

r3∗

(
1 − 2MG

r∗

)− 3
2

d(r∗) = γ

2πrs

(
1 − 2MG

r∗

)− 1
2

. (13)

Finally, from eq. (13) we get

γ = 2π

α2

(
1 − 1

α

)− 1
2

(14)

·
⎛
⎝1 + 1

2
√

α2 − α
log

⎡
⎣α

(
1+

√
1 − 1

α

)2
⎤
⎦

⎞
⎠ .

5 Alternatively, we could introduce a 4-vector �μ = (0, �r , 0, 0), with ||�|| =√
gμν�μ�ν = d(r∗), and compute the work as W tidal ∼ grr F r

tidal−st�
r
∣∣∣
r∗

. This would 
give the same result.
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Fig. 1. This plot shows the variation of γ with respect to the radial distance from 
the center of the black hole. The red dashed line corresponds to the horizon location 
at α = 1 where the expression for the tidal force work diverges, indicating that 
the quanta in the far UV tail of the Hawking spectrum originate from very near 
the horizon. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

The relation between γ and α, i.e. the radial distance scaled as 
r∗/rs , is better illustrated in Fig. 1. It is clear from the plot that 
the part of the Hawking thermal spectrum around the peak (γ ∼
2.82), where most of the radiation is concentrated, corresponds to 
a region which extends far outside the horizon, up to around 2rs
(at the peak r∗ ≈ 4.38 MG).

The plot above also shows how, in this tidal force derivation, 
the quanta with higher velocity (kinetic energy) are produced 
closer to the horizon. This is consistent with our analysis since 
the higher the initial radial velocity the stronger the Lorentz con-
traction of the outgoing particles distance from the horizon in their 
rest frame, given by λC , resulting in a shorter proper distance d(r∗)
at which they are detected.

Also, by using Eq. (12) and expressing the rest of Eq. (11) in 
terms of α, we can see that the work doable at fixed α by the 
tidal forces scales as the inverse of the mass of the black hole so 
making evident that smaller holes can produce hotter particles at 
the same relative distance from the horizon.

In the Schwinger effect argument we described in this Section 
we have considered the case of a massive test particle. However, 
in the physical context of a 4D Schwarzschild black hole, most of 
the radiation is emitted by massless particles. A generalization of 
our argument to the massless case can be achieved in a straight-
forward manner. In fact, despite the lack of a rest mass frame of 
one of the two partners, one can always study the Schwinger-like 
effect in a local inertial frame in the vicinity of the horizon and 
compute the radial acceleration (5) considering two radially in-
falling null geodesics with 4-velocity uμ = [1, 1, 0, 0] in such given 
frame; due to the symmetries of the Riemann tensor, this leads 
to the same expression (6) but with the Compton wavelength λC
replaced by the massless particle de Broglie wavelength λB . The 
acceleration as measured by a static observer outside the black 
hole then proceeds along the same lines as in the massive case, 
since the boost between the two frames, locally both inertial, is 
the same as in the massive case; we can thus compute the ra-
dial component of the tidal force as in (9), where on the r.h.s. we 
replace the combination mλC with EλB , E being the massless par-
ticle energy, as measured by the static observer, which is related to 
the de Broglie wavelength by the standard relation E = 1/λB (re-
call that we switched to units where h̄ = c = 1). In this way, we 
recover the expression (10), which is independent of the test par-
ticle mass. Therefore, the plot in Fig. 1 applies also to the case of 
radiation being emitted by massless particles.

Let us stress again the heuristic nature of our argument. We 
are considering the instantaneous value of the tidal force observed 
by the outgoing partner at a given coordinate distance r∗ where 
it goes on-shell. However, we then use this instantaneous value to 
compute the work done by the gravitational field over a distance 
d(r∗), as if the force was actually at work with the same constant 
value throughout the whole splitting process. A similar approach 
was also used in [17] to give an estimate of the wavelength of the 
Hawking quanta as produced by the gravitational tidal force.

So, although the analogy with the Schwinger effect for the 
electron–positron pair production by an electric field may be ad-
vocated to lend support to our description of Hawking quanta pro-
duction from a quantum atmosphere that extends well beyond the 
horizon, we now want to present a more sound analysis based on 
the renormalized stress energy tensor in order to confirm this pic-
ture.

3. Stress-energy tensor

By analyzing the renormalized stress energy tensor (RSET) in 
the 2-dimensional case, one can understand Hawking radiation in 
a better way as this is a local object which can help to probe the 
physics in the vicinity of the black hole. The derivation of the RSET 
components has been considered in many places in the literature 
[18–22], here we build on these previous results and compute the 
energy density and flux as seen by an observer which has zero 
radial velocity (thus giving rise to no kinematical effects) and zero 
acceleration at the horizon.

3.1. Computation of RSET

Following [23], let us introduce a set of globally defined affine 
coordinates U , V on I −

left, I
−

right respectively. Restricting to the 
radial and time dimensions, the metric reads

ds2 = C(U , V )dUdV . (15)

In (1 +1) dimensions the renormalized stress energy tensor for any 
massless scalar field in terms of these affine null coordinates can 
be easily computed using the conformal anomaly [18–20,24,25]. 
The components of the RSET computed in some arbitrary vacuum 
state are given as:

〈TU U 〉 = − 1

12π
C1/2∂2

U C−1/2

= 1

24π

[
C,U U

C
− 3

2

(C,U )2

C2

]
, (16)

〈T V V 〉 = − 1

12π
C1/2∂2

V C−1/2

= 1

24π

[
C,V V

C
− 3

2

(C,V )2

C2

]
, (17)

〈TU V 〉 = RC

96π
= 1

24π
∂U ∂V ln C , (18)

where C is the conformal factor introduced in the above metric 
and R is the scalar curvature.

Now let us also introduce a null coordinate u affine on I +
right

such that

U = p(u) ; (19)

from this we get

∂U = ṗ−1∂u . (20)

In terms of the set (u, V ), the metric reads

ds2 = C̄(u, V )dudV , (21)

with
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C̄(u, V ) = ṗ(u)C(U , V ) . (22)

Assuming that the observer is always outside the collapsing 
star, C̄(u, V ) would be the metric component of a static spacetime. 
In terms of this newly defined null coordinate, a simple computa-
tion shows that TU U is given as

〈TU U 〉 = − ṗ−2

12π

[
C̄1/2∂2

u C̄−1/2 − ṗ1/2∂2
u ṗ−1/2

]
. (23)

Now T V V will have only a static contribution if V = v but if 
the affine null coordinate on I +

left is defined as

V = q(v) (24)

and we define C ′(U , v) = q̇(v)C(U , V ), T V V is given as

〈T V V 〉 = − q̇−2

12π

[
C ′ 1/2∂2

v C ′ −1/2 − q̇1/2∂2
v q̇−1/2

]
. (25)

As mentioned earlier C̄(u, V ) is the metric component of a 
static spacetime, so all the dynamics of the collapsing geometry 
is captured in the ṗ term of (23). In the above analysis, by using 
another affine null coordinate, we can differentiate between the 
static contribution to the RSET and the one due to the dynamics 
associated with the collapse [23].

3.2. RSET for different vacuum states

Capturing the dependence at different radii of the RSET com-
ponents would require a knowledge of the full p(u) at any value 
of u, i.e. to specify a collapse history. However, this would lead 
to the inclusion of transient effects which are not relevant for 
the present discussion. For this reason, we shall here rely on the 
fact that, well after the collapse has settle down, the black hole 
geometry is formally indistinguishable from that of an eternal con-
figuration [26,27] (where the form of p(u) is simply fixed by the 
geometry, see (A.2)).

So, in order to extract physical information from the RSET, we 
shall compute the energy density and the flux experienced by an 
observer at constant Kruskal position long after the collapse has 
taken place in the two physically relevant states for Hawking ra-
diation in the eternal black hole case, namely the Unruh and the 
Hartle–Hawking states. We shall start in this Section by explicitly 
evaluating the general expressions for the RSET components ex-
pectation values.

Using (A.2), we get the relations

ṗ(u) ≡ ∂u p(u) = − p(u)

2rs
, (26)

p̈(u) = p(u)

4r2
s

= − ṗ(u)

2rs
. (27)

For computing the first term of (23) we can write

C̄1/2∂2
u C̄−1/2 = 3

4
C̄−2 (

∂uC̄
)2 − 1

2
C̄−1∂2

u C̄ . (28)

Using the metric conformal factor C from (A.1) we get

∂uC̄ = ∂u[ṗ(u)C] = p̈C + ṗ∂uC

= ṗ(u)

(
− 1

2rs
+ r2 − r2

s

2r2rs

)
C

= − rs

2r2
C̄ , (29)

and

∂2
u C̄ = −1

rs∂u

(
C̄
2

)
= r2

s
4

C̄ − 1 rs f (r)C̄
3

. (30)

2 r 4r 2 r
Using the above relation in (28) we have

C̄1/2∂2
u C̄−1/2 = 3

4
C̄−2

[
r2

s

4r4
C̄2

]

− 1

2
C̄−1

[
r2

s

4r4
C̄ − 1

2

rs f (r)C̄

r3

]

= − 3

16

r2
s

r4
+ rs

4r3
− 3

4

M2G2

r4
+ MG

2r3
, (31)

where f (r) is given in (A.8) and we used rs = 2MG in the last step. 
For the second term on the r.h.s. of (23), we have

ṗ1/2∂2
u ṗ−1/2 = − ṗ1/2

2
∂u

(
p̈

ṗ3/2

)
= 1

(8MG)2
. (32)

We are now ready to compute explicitly the expectation value of 
the different RSET components for the Hartle–Hawking (|H〉) and 
Unruh (|U 〉) states.

We can start by observing that for the TU U and TU V compo-
nents, the expectation values are the same in the two vacuum 
states [20]. Therefore, in the following we simply denote

〈TU U 〉 ≡ 〈H|TU U |H〉 = 〈U |TU U |U 〉 , (33)

〈TU V 〉 ≡ 〈H|TU V |H〉 = 〈U |TU V |U 〉 . (34)

By means of (31), (32), 〈TU U 〉 is given by

〈TU U 〉 = ṗ−2

24π

[
3

2

M2G2

r4
− MG

r3
+ 1

32M2G2

]

= (768π M2G2)−1 V 2

4r2
e−r/MG

·
[

1 + 4MG

r
+ 12M2G2

r2

]
. (35)

To compute 〈TU V 〉 we use (18), from which

〈TU V 〉 = 1

24π
∂U ∂V ln C = 1

24π
(ṗq̇)−1∂u∂v ln C

= − 1

96π
(ṗq̇)−1C∂2

r C . (36)

Using C(t, r) from (A.1) and the exact values of q(u) and p(v), we 
get

〈TU V 〉 = − M2G2

12πr4
e−r/2MG . (37)

On the other hand, the dependence of 〈T V V 〉 on the state in 
which we are computing the expectation value is important. For 
the Hartle–Hawking state (eternal black hole scenario, non-singular 
vacuum state in both past and future horizons) in Kruskal coordi-
nates the modes are given by e−iωU , e−iωV , where we defined V
as

V ≡ q(v) = 2rsev/2rs . (38)

Using this definition of V we can proceed in a similar way as 
for the computation of 〈TU U 〉. From (25), we obtain

〈H|T V V |H〉 = q̇−2

24π

[
3

2

MG2

r4
− MG

r3
+ 1

32MG2

]

= (768π M2G2)−1 U 2

4r2
e− r

MG

·
[

1 + 4MG + 12M2G2

2

]
. (39)
r r
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Fig. 2. Plot of the energy density at a given time as a function of the radial distance 
from the center of the black hole in Unruh state at a given instant of time.

For the Unruh state in Kruskal coordinates, the modes are given 
by e−iωU , e−iωv and there is no regularization condition imposed 
in the past horizon. The expectation value of the T V V component 
can be obtained from the relation

〈U |T V V |U 〉 = 16MG2q̇−2〈U |T v v |U 〉 , (40)

where 〈U |T v v |U 〉 can be computed from

〈U |T v v |U 〉 = − 1

12π
f (r)1/2∂2

v f (r)−1/2 (41)

using f (r) = (
1 − 2MG

r

)
, as follows from the metric of a black hole 

in static Schwarzschild coordinates. We have

〈U |T v v |U 〉 = 1

24π

[
3M2G2

2r4
− MG

r3

]
, (42)

and from (40) we get

〈U |T V V |U 〉 = 1

6π

M2G2

V 2

[
3M2G2

2r4
− MG

r3

]
. (43)

3.3. Energy density

We now have all the ingredients to extract physical information 
from the RSET. Let us first analyze the energy density as measured 
in the frame of an observer moving along fixed position in Kruskal 
coordinates.

Let us consider an observer at a given Kruskal position with 
2-velocity vμ = C−1/2(1, 0) (in [T , X] coordinates).6 The energy 
density, ρ , measured by this observer for the Unruh state is given 
by

ρ = 〈U |Tμν |U 〉vμvν = C−1〈U |T T T |U 〉
= C−1〈U |T V V + TU U + 2TU V |U 〉 . (44)

Using (35), (37), (43) we can compute the energy density exactly 
and we plot it in Fig. 2 (where α ≡ r/rs).

The energy density (44) blows up at the horizon (r = 2M) since 
we are computing the energy density as observed by a free falling 
(in Kruskal coordinates) observer in the Unruh state which is well 
known to be ill defined on the past horizon. Such divergence arises 

6 This choice of trajectory is not geodesic; however the acceleration that the ob-
server experiences is irrelevant compared to the Hawking temperature and one can 
show easily that the acceleration vanishes at the horizon. One might think that a 
free falling observer would have been a better choice. However, the problem with 
such choice would be the non-zero radial velocity of the free falling observer at the 
horizon, as well as near the horizon. In that case, it would then be difficult to sep-
arate out the Hawking radiation contribution from other kinematical effects [28].
Fig. 3. Near horizon behavior of the energy density in the Unruh state at different 
times. The first plot corresponds to the same instant of time as the plot in Fig. 2; 
the second one to a close instant after.

from the 1/V 2 term in the component (43) when V = 0, i.e. at the 
past horizon. The horizon location condition in Schwarzschild ra-
dial coordinate, α = 1, cannot distinguish between past and future 
horizons and thus the divergent contribution would enter in the 
plot above of the energy density expression (44) when evaluated 
at α = 1. However, a free falling observer at the future horizon 
would not see this divergence, which is just an artifact of Kruskal 
coordinates.7 This is a well known fact already pointed in [19]. For 
this reason, we have removed the point α = 1 in the plot shown 
in Fig. 2.

Near the horizon the energy density becomes negative; these 
negative values are attained closer to the horizon as the energy 
density is measured at later times. We show this near horizon be-
havior in the two plots in Fig. 3, where the first is evaluated at 
the same time as the plot in Fig. 2 and the second one at a close 
instant after (a similar behavior was found also in [29]); the neg-
ative divergent behavior of the energy density at the horizon is 
clear from the plots.

However, let us remark again that this divergence is just ficti-
tious for an observer crossing the future horizon U = 0 at a given 
value of V > 0 and it is an inevitable feature of plotting the energy 
density in the Unruh state as a function of r for a fixed instant of 
time t .

One way to avoid this misleading behavior of the energy den-
sity plot at the horizon could be to show it as a function of U
for given V = const > 0; this would indeed remove the singular-
ity from the plot since the point α = 1 would now correspond to 
U = 0, i.e. to the future horizon where the Unruh state is regular. 
However, from such plot it would be very difficult to extrapolate 
the information about how the energy density is distributed in the 

7 Let us stress that also the calculation in [23] of the RSET components in the col-
lapse scenario shows that at the white hole horizon the Unruh state will necessarily 
be singular. This can be easily realized by applying time reversal to the subdomi-
nant terms in the dynamical contribution (32) derived in [23] (see Eq. (52) there), 
which then shows an exponentially growing flux at the white horizon which very 
rapidly would create a divergence in the TU U component of the RSET soon after 
horizon formation.
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Fig. 4. Plot of the variation of energy density computed in Hartle–Hawking state 
with respect to the radial distance from the center of the black hole at fixed time 
measured in the static frame. Notice that close to the horizon the energy density 
is negative also in this case, but it remains finite at the horizon due to the non-
divergent behavior of the T V V component (39) in the Hartle–Hawking vacuum.

r coordinate for fixed time t , since fixing V and letting U run im-
ply that different values of U correspond to different values of r
and t .

The significant aspect of the plot in Fig. 2 for us is the peak in 
the distribution of ρ that is obtained outside the horizon which is 
at r ≈ 4.32MG . Quite in agreement with our heuristic prediction 
based on the gravitational analogue of the Schwinger effect. Let 
us point out that, although we have shown the plot at a given 
instant of Killing time, the behavior of the energy density remains 
the same at any time, in particular the presence of the peak at the 
same location persists; the only difference is that the value of the 
energy density increases since it accumulates, given that we are 
not taking into account the effect of back-reaction.

To get a non-singular energy density plot for the free falling ob-
server we should consider the Hartle–Hawking state. This is given 
by

ρ = 〈H|Tμν |H〉vμvν = C−1〈H|T T T |U 〉
= C−1〈H|T V V + TU U + 2TU V |H〉 . (45)

Using the expectation values given in (35), (37), (39), we can 
plot the energy density (45) with respect to radial distance 
parametrized by α. This is shown in Fig. 4, where we see a sim-
ilar nature of the distribution with a peak outside the horizon; 
however, as expected, in this case the energy density is regular ev-
erywhere. Remarkably, the peak is located at r ≈ 4.37MG , in close 
agreement with our heuristic findings.

These results strongly support our previous claim that the ra-
diation density is maximized in a region outside the horizon. We 
now show that a similar behavior with a peak away from the hori-
zon is exhibited also by the flux part of the RSET.

3.4. Flux

The flux of the Hawking radiation in the Unruh vacuum is given 
by [30]8

F = −〈U |Tμν |U 〉vμzν , (46)

where vμ is the velocity of the observer and zν is the con-
travariant component of the normal to the observer. Let us con-
sider a static observer at fixed distance in a Kruskal frame with 
vμ = C−1/2[1, 0] and indicate the normal vector as zν = [A, B]. The 
latter has to satisfy the following conditions

8 In the Hartle–Hawking vacuum the flux vanishes due to the thermal equilibrium 
of the state.
Fig. 5. This plot shows the variation of the flux of Hawking radiation with respect to 
the radial distance as measured by an observer in the Unruh state at a given instant 
of time.

gμν zμzν = −1, zμvμ = 0 . (47)

Using the second relation we get A = 0 and from the first relation 
we get B = C−1/2. Therefore, zν = C−1/2[0, 1].

Using these expressions for vμ , zν , we get

F = −C−1〈U |T T X |U 〉 = C−1〈U |[−T V V + TU U ]|U 〉 . (48)

Plugging in the expectation values (35), (43) found above, we 
can plot the flux as a function of α. This is shown in Fig. 5. Also in 
this case the plot of the flux would receive a fictitious (for a free 
falling observer at the future horizon) divergent contribution from 
the component (43), and we have thus removed the point α = 1
from the plot, thus avoiding the divergence at the past horizon 
V = 0. We see that the flux has a maximum at r = 4.32MG and 
most of the contribution to the Hawking radiation comes from a 
region between the horizon and r ≈ 6MG .

Let us remark that our findings are in line with the analysis of 
the 2-dimensional RSET done in [10] where it was shown that the 
ingoing and outgoing null components of the stress tensor would 
build up to their asymptotic values in a region outside the horizon. 
In our analysis we have been more precise in confirming this result 
by choosing an observer and explicitly computing the values of the 
energy density and the flux outside the horizon as measured by 
the observer.

4. Summary and discussion

It has been widely believed that Hawking radiation originates 
from the excitations close to the horizon and this eventually sug-
gested some drastic modification of the states in the near horizon 
regime as a resolution to the information loss paradox [5,31–33]. 
One of the primary reasons for such an argument is based on the 
way Hawking did his original calculation, tracing back the modes 
all the way from future infinity to the past null infinity through 
the collapsing matter so that one has a vacuum state at the hori-
zon for a free-falling observers.

The other disturbing feature about this argument is, when the 
modes are traced back they become highly blueshifted near the 
horizon and we are not well aware of the laws of physics in such 
high transplanckian domain. Some resolutions to the above prob-
lem have been proposed several times in the literature [34–36]
but they all demand some challenging modification to our present 
knowledge of gravitation or quantum field theory.

Let us stress, however, that the UV departures from Lorentz 
invariance through the introduction of a fundamental cutoff pos-
tulated in [37,38] are relevant only very close to the horizon for 
large black holes (in units of the Lorentz breaking scale). Hence, 
even contemplating such scenario, our analysis in section 3 would 
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be basically unchanged and unaffected away from the horizon, as 
also stressed in the similar analysis carried out in [39].

In this paper we have shown evidence that the Hawking quanta 
originate from a region which is far outside the horizon, which can 
be called a black hole atmosphere. More precisely, from the plots of 
the energy density and the flux in the Unruh state we get a maxi-
mum at r ≈ 4.32MG , for the energy density in the Hartle–Hawking 
state the peak is at r ≈ 4.37MG . This is strikingly close to our 
previous finding for an origin at about r ≈ 4.38MG for the peak 
of the thermal spectrum using the heuristic argument based on 
tidal forces. By large this is also in agreement with some previous 
claims using various other methods, such as calculating the effec-
tive radius of a radiating body using the Stefan–Boltzmann law or 
computing the effective Tolman temperature [10,40–42], as well 
as in close correspondence with the results of the study of the 
null component of the stress-energy tensor in the Unruh vacuum 
of [43].

Given the presence of a quantum atmosphere where the Hawk-
ing quanta are generated and which extends well beyond the black 
hole horizon, as originally suggested in [10], it would be inter-
esting to investigate how its effective radius is affected by going 
to higher dimensions. Applying the Stefan–Boltzmann radiation 
law argument proposed in [10] for the (3 + 1)-dimensional case 
to (D + 1)-dimensional Schwarzschild black holes, it was found 
in [40] that the effective radius gets squeezed towards the black 
hole horizon as the number of spatial dimensions increases.

Given that there is no derivation of the RSET components in di-
mensions higher than (1 + 1), we cannot apply the argument pre-
sented in Section 3 to confirm this result. However, the heuristic 
derivation that we presented in Section 2 could be easily general-
ized for any arbitrary number of dimensions. Without presenting 
a complete derivation, we can understand in a qualitative way 
how the quantum atmosphere can be effected by going to ar-
bitrary (D + 1) higher dimensions by considering the fact that 
the Hawking temperature scales as T B H = (D−2)h̄

8π MG , where D is the 
number of spatial dimensions. It can be shown that this dimen-
sional scaling of the temperature, along with the modification of 
the Schwarzschild metric for an arbitrary D , would yield, for given 
r = r∗ , a higher value of ωr (1) as D increases. At the same time, 
it can be shown from dimensional arguments that the work done 
by the tidal force must decrease in value for the same given r as 
D increases. This implies that, for a fixed D > 3, the peak of the 
Hawking radiation spectrum corresponds to an higher value of en-
ergy than in the D = 3 case and, in order for the gravitational field 
to be able to provide enough work to reach such amount of en-
ergy, the outgoing partners comprising the bulk of the spectrum 
at infinity must go on-shell closer to the horizon. Our Schwinger 
effect argument thus confirms in a qualitative way the relation ob-
tained in [40] for the decrease of the effective radius in the regime 
D 
 1.

If the radiation has a long distance origin then we might not 
need to worry about the transplanckian issue at the horizon. More-
over, concerning the fundamental issue of unitarity of black hole 
evaporation, this result suggests to consider some effect opera-
tional at this new scale in order to eventually restore unitarity of 
Hawking radiation. A possible scenario is the one of non-violent 
nonlocality advocated in [44,45]; see also the proposal of [46,47]. 
We hope that the present contribution will stimulate further in-
vestigations in these directions.
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Appendix A. Kruskal frame

We want to examine the components of the RSET in a globally 
well defined coordinate system free of any pathological behavior 
(other than a true curvature singularity, like in the center of a 
black hole). For this purpose the Kruskal coordinate frame is an 
appropriate choice. The Kruskal metric is given as

ds2 = rs

r
e−r/rs dUdV , (A.1)

where rs is the radius of the event horizon. For this coordinate 
system we have

U = p(u) = −2rse−u/2rs , (A.2)

V = q(v) = 2rsev/2rs . (A.3)

The affine null coordinate u, v in terms of radial distance from 
the center of the black hole, “r”, and time, “t”, as measured by a 
static observer is given as

u = t − r∗ = t −
[

r + rs ln

(
r

rs
− 1

)]
, (A.4)

v = t + r∗ = t +
[

r + rs ln

(
r

rs
− 1

)]
, (A.5)

also

∂u = ∂r∗
∂u

∂r∗ = −1

2
∂r∗ = −1

2
f (r)∂r , (A.6)

∂v = ∂r∗
∂v

∂r∗ = 1

2
∂r∗ = 1

2
f (r)∂r, (A.7)

where we used

dr∗
dr

= [ f (r)]−1 =
(

1 − rs

r

)−1

. (A.8)

We can also define a set of time like and radial coordinates (T , X)

as

T = 1

2
(V + U ), X = 1

2
(V − U ). (A.9)

Using this metric (A.1) is given as

ds2 = rs

r
e−r/rs (dT 2 − dX2) . (A.10)
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