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1 Introduction

The black hole entropy calculation in the framework of loop quantum gravity [1–4] is based

on the effective description of the quantum gravitational degrees of freedom at the black

hole horizon obtained from a suitable quantization of the classical phase space describing

isolated horizons (see [5] and references therein). In these models the degrees of freedom

at the horizon are described by Chern-Simons theories with SU(2) (or U(1)) structure

groups [6–10]. The simplest models are those where spherical symmetry is imposed already

at the classical level. In this case it is natural (although not necessary) to consider SU(2)

(or U(1)) Chern-Simons theory with a level that scales with the macroscopic classical area

k ∝ aH . This makes the state-counting (necessary for the computation of the entropy)

a combinatorial problem which can be entirely formulated in terms of the representation

theory of the classical group SU(2) (or U(1)): for practical purposes one can take k = ∞
from the starting point [11–24].

However, the perspective considered above can be completely changed if one studies

the models in the recently introduced SU(2) Chern-Simons formulation [8–10]. The neces-

sity of an SU(2) gauge invariant formulation comes from the requirement that the isolated

horizon quantum constraints be consistently imposed in the quantum theory (in [8] it is

shown how the U(1) treatment leads to an artificially larger entropy due to the fact that

some of the second class constraints arising from the SU(2)-to-U(1) gauge fixing can only
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be imposed weakly). However, the SU(2) formulation is not unique as there is a one pa-

rameter family of classically equivalent SU(2) connections parametrizations of the horizon

degrees of freedom. More precisely, in the passage from Palatini-like variables to connection

variables that is necessary for the description of the horizon degrees of freedom in terms of

Chern-Simons theory (central for the quantization), an ambiguity parameter arises [9, 10].

This is completely analogous to the situation in the bulk where the Immirzi parameter

reflects an ambiguity in the choice of SU(2) variables in the passage from Palatini vari-

ables to Ashtekar-Barbero connections (central for the quantization in the loop quantum

gravity approach). In the case of the parametrization of the isolated horizon degrees of

freedom, this ambiguity can be encoded in the value of the Chern-Simons level k, which, in

addition to the Immirzi parameter, becomes an independent free parameter of the classical

formulation of the isolated horizon-bulk system.

Therefore, it is no longer natural (nor necessary) to take k ∝ aH . On the contrary, it

seems more natural to exploit the existence of this ambiguity by letting k be arbitrary.1

In this way the SU(2) classical representation theory involved in previous calculations

should be replaced by the representation theory of the quantum group Uq(su(2)) with

q a non-trivial root of unity. Thus quantum group corrections become central for the

state-counting problem. In this paper we study the finite k counting problem by means

of simple asymptotic methods. The powerful methods that have been developed for the

resolution of the counting problem in the k = ∞ [18–24] are perhaps generalizable to the

finite k case. Here we follow a less rigorous and more physical approach. The formulation

is partly inspired from a combination of ideas stemming from different calculations in the

literature [13–17, 25–31].

In the first section, we review some basic facts concerning the quantization of SU(2)

Chern-Simons theory whose physical states are built from the representation theory of the

quantum group Uq(su(2)) when q is a root of unity. For that reason, we recall some prop-

erties of the representation theory of Uq(su(2)), which allows us to compute the dimension

of the Chern-Simons theory Hilbert space HCS when the space is a punctured two-sphere.

In the second section, we give a new integral formulation of the dimension of HCS which

appear to be much more convenient to compute black hole entropy. In the last section,

we compute the leading term of the SU(2)-black hole entropy and its logarithmic correc-

tions first for the spherically symmetric black hole and then for the distorted black hole.

We adapt the techniques used in [18–22] and firstly introduced in [11, 12] to compute the

entropy of a black hole. We are not going into the mathematical details of these tech-

niques which has been very well exposed in [18–22] and which are in fact very well-known

in the domain of probabilities and used to understand some properties of random walks.

We recover that in the spherically symmetric and distorted black holes, the leading term

of the entropy is proportional to the area and the first corrections are still logarithmic:

S(a) ∼ αa + β log a. In the spherically symmetric case, α depends on the level k and

1It is a good thing that the effective treatment contains a free parameter arising at the boundary from

exactly the analogous reason as the Immirzi parameter in the bulk parametrization of the phase space.

This keeps open the possibility that dynamical considerations could lead to cancelation of both ambiguities

producing Immirzi parameter independent predictions.
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reaches the value obtained in previous calculations when k goes to infinity; concerning β

it is independent of k and is given by the value −3/2 as expected. In the distorted case, α

grows logarithmically with k and β is fixed to the value −3. We finish with a discussion.

2 The Chern-Simons Hilbert space

The Chern-Simons theory associated to the group SU(2) is a gauge theory on a three

dimensional manifold M governed by the action

Sk[A] =
k

4π

∫

M
〈A ∧ dA+

2

3
A ∧A ∧A〉 (2.1)

where k is called the level of the action, A is the local SU(2)-connection field and 〈·, ·〉 is

a notation for the su(2) Killing form. The Chern-Simons theory became really important

when first it was shown to be closely related to three dimensional gravity [32, 33] and

above all when Witten showed [34] its amazing relation to manifold and knots invariants.

Indeed, the Chern-Simons path integral is a manifold invariant whereas the mean values

of quantum observables naturally lead to Jones polynomials. For all these reasons, Chern-

Simons theory has been the center of a lot of interests and its quantization is now very

well-known when the gauge group is compact, and in particular when the gauge group is

SU(2).

The covariant (path integral) and canonical quantizations offer the two main strategies

to quantize the Chern-Simons theory. These approaches are complementary: the covariant

quantization leads easily to the fact that the level k must be an integer when the gauge

group is compact [34]; the canonical quantization leads to a precise description of the

Hilbert space when the gauge group is compact but not only (see [35] for an introduction

of the combinatorial quantization for example). Both quantizations are necessary to un-

derstand how the mean value of Wilson loops observables are related to knots polynomials

like the (colored) Jones polynomial or its generalizations.

Here we are exclusively interested in the description of the Hilbert space of Chern-

Simons theory when the space is a two-sphere punctured with a number p of particles. At

the classical level, each puncture, labelled by ℓ ∈ [1, p], comes with an unitary irreducible

representation jℓ of the gauge group SU(2). At the quantum level, one shows that the

classical group gauge symmetry is replaced by a quantum group symmetry and the Hilbert

space is constructed from the representation theory of the quantum group Uq(su(2)) where

q = exp(iπ/(k + 2)) is necessarily a root of unity. An immediate consequence is that the

SU(2) representations labeling the classical punctures become Uq(su(2)) representations

which concretely implies a cut-off on the punctures’ representations which cannot be higher

than k/2. Then, the associated Hilbert space is the vector space

Hk(j1, · · · , jp) = Inv(⊗ℓjℓ) (2.2)

of invariant tensors in the tensor product ⊗ℓjℓ of Uq(su(2)) representations endowed with

a Hilbert structure defined, as in the classical case, from the Haar measure on the quantum

group. However, we will not be interested in the Hilbert structure of Hk(j1, · · · , jℓ) in the
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j1j1

j2j2

j3j3

Figure 1. Pictorial representation of the 3-valent intertwiner ι(j1, j2; j3) and its adjoint operator

ι(j3; j1, j2).

rest of the paper but rather in its vector space structure and more precisely in its dimension.

Indeed, the computation of the SU(2) black hole entropy in Loop Quantum Gravity needs

to be done precisely the calculation of the dimension of the previous vector space.

The calculation of the Hilbert space dimension makes use of the Verlinde coefficients.

In order to introduce these coefficients, we start by recalling some basic facts concerning

the representation theory of Uq(su(2)).

2.1 Basics of the representation theory of Uq(su(2))

This section is devoted to recall some basic results on the quantum group Uq(su(2)) we

will need in the sequel. We are not going to give a precise definition of this quantum group

and a complete description of its properties. Furthermore we will be interested only on

some aspects concerning its representations theory and its recoupling theory.

The (standard) unitary irreducible representations of Uq(su(2)) are labelled by integers

j ≤ k/2. The dimension dj of the j-representation is the same as in the classical theory

and then we have dj = 2j + 1. Given an element ξ ∈ Uq(su(2)), its representation πj(ξ) is

an endomorphism of the vector space Vj . Many formulae coming from the representation

theory of Uq(su(2)) are expressed in terms of q-numbers [x] defined for any complex number

x by the relation:

[x] =
qx − q−x

q − q−1
=

sin
(

π
k+2x

)

sin
(

π
k+2

) .

Invariant Uq(su(2))-tensors are defined, by analogy with the classical situation, as

tensors which are invariant under the adjoint action. Note however that the adjoint action

is deformed compared to the classical case and makes use of the antipode instead of the

inverse. Among the invariant tensors, the 3-valent ones

ι(j1, j2; j3) : Vj1 ⊗ Vj2 −→ Vj3

are particularly interesting because all invariant tensors decompose into 3-valent intertwin-

ers. Three-valent intertwiners are represented as usual by a vertex between three lines

colored by the representations jℓ as illustrated in the figure 1. Contrary to what happens

in the classical case where one can make a certain choice of normalization such that the

matrix elements of ι(j1, j2; j3) are invariant under the permutations of (j1, j2), the order be-

tween the representations in ι(j1, j2, j3) does matter because of the presence of a non-trivial

braiding in the quantum case.
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j3 j3

j3

==

=

=
∑

j3
[dj3 ]

Y (j1, j2, j3)

Y (j1, j2, j3)[dj3 ]
−1

Figure 2. Illustration of the normalization properties: the three relations are in fact equivalent to

the condition that the θ-graph is normalized to one.

In the sequel, we fix the normalization of ι(j1, j2; j3) such that it satisfies the following

fusion rule: ∑

j3

[dj3 ] i(j1, j2; j3) · i(j3; j1, j2) = Ij1⊗j2 (2.3)

where Ij1⊗j2 is the identity map in the tensor product of the two representations j1 and

j2 and ι(j3; j1, j2) : Vj3 → Vj1 ⊗ Vj2 is the adjoint of ι(j1, j2; j3). This relation implies that

the so-called θ-graph is normalized to one

Trj1⊗j2(ι(j1, j2; j3) · ι(j3; j1, j2)) = Trj3(ι(j3; j1, j2) · ι(j1, j2; j3)) = Y (j1, j2, j3) , (2.4)

which is equivalent to

ι(j3; j1, j2) · ι(j1, j2; j3) =
1

[dj3]
Y (j1, j2, j3) Ij3 . (2.5)

We made used of the notation Y (j1, j2, j3) ∈ {0, 1} which is one only when (j1, j2, j3)

satisfy the triangular inequalities, otherwise it vanishes. These identities are graphically

represented in the figure 2.

Of particular interest for the quantization of Chern-Simons theory is the fact that

Uq(su(2)) is quasi-triangular and therefore admits an universal R-matrix which is at the

origin of the braiding properties associated to the quantum groups. Without entering too

much into the details, let us recall that R ∈ Uq(su(2)) ⊗ Uq(su(2)) satisfies in particular

the so-called quantum Yang-Baxter equation and other defining properties that one can

find in [36] for example.

The evaluation of the R-matrix in the tensor product of representations j1 ⊗ j2 is

denoted Rj1j2 = (πj1 ⊗ πj2)(R) and defines a braiding operator from Vj1 ⊗ Vj2 to the

opposite tensor product Vj2 ⊗Vj1. It is useful to represent the R-matrix as in the picture 3:

if R is represented by an under-crossing (the up-line undercrosses the down-line) then its

inverse R−1 is represented by an over-crossing (the up-line overcrosses the down-line). It is

clear from this representation that the product of R by its inverse is the identity because

the braiding has been unknoted.
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j1

j1

j1

j1 j2

j2

j2

j2

R R−1

Figure 3. Pictorial representation of the R-matrix and its inverse R−1. Both R-matrices are

evaluated in j1 ⊗ j2.

≡

Figure 4. Representation of the Hopf-link. The evaluation of the associated quantum spin-network

colored with the representations j1 and j2 gives the un-normalized Verlinde coefficient S̃j1j2 .

2.2 From Verlinde coefficients to the Hilbert space dimension

Now, we have all the ingredients to construct the Verlinde coefficients. These coefficients

appeared first [37] in the context of conformal field theory and then it has been realized

that they have a very simple algebraic interpretation in the context of quantum groups.

Here we will give only their algebraic definition and some of their properties which are

important in the calculation of the dimension of the Hilbert space Hk(j1, · · · , jℓ).
Given two unitary irreducible representations j1 and j2, one defines the Verlinde coef-

ficient Sj1j2 = Sj2j1 as the real number determined by the trace on Vj1 ⊗Vj2 of the operator

R2 up to a normalization factor:

Sj1j2 = Z Tr (Rj2j1Rj1j2) (2.6)

where

Z =

√
2

k + 2
sin

(
π

k + 2

)
(2.7)

is in fact the partition function of the SU(2) Chern-Simons theory on the 3-sphere S3.

It will be useful in the sequel to use the “un-normalized” Verlinde coefficient S̃j1j2 =

Tr (Rj2j1Rj1j2) and the choice of the normalization factor will appear clear soon. Note

that S̃j1j2 is the evaluation on the Hopf-link embedded into the 3-sphere. The Hopf-link is

represented in the figure 4.

The explicit expression of the R-matrix implies that

S̃j1j2 = [dj1dj2] =
sin
(

πdj1
dj2

k+2

)

sin
(

π
k+2

) . (2.8)

These coefficients satisfy many interesting properties which are important to compute

the dimension of the physical Hilbert space Hk(j1, · · · , jℓ) presented above. The properties
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j1

j1

j1

j2

j2

j2

j2

j3

j3j3

j3

j3

j3 ℓ

=

= [dj3 ]
−1

∑
ℓ Y (j1, j2, ℓ)

Figure 5. Pictorial proof of the fusion relation. We start with the graph on the left. The two

arrows are identities: the first one is obtained applying the decomposition of the identity “along

the vertical dashed line”; the second one is obtained applying the decomposition of the identity

“along the horizontal dashed line”. Both lead to equivalent expressions and the equality between

the evaluations of the graphs on the right is exactly the fusion relation. We made used of the

identities represented in the picture (2).

we will need are given below:

The normalization relation:
∑

j3

S̃j1j3S̃j3j2 =
δj1j2

Z2
; (2.9)

The fusion relation: S̃j1j3S̃j2j3 = [dj3 ]
∑

ℓ

Y (j1, j2, ℓ) S̃j3ℓ; (2.10)

The recursive relation:

n−1∏

i=1

S̃jijn = [djn ]n−2
∑

ℓ1,··· ,ℓn

δℓ1,0

n−1∏

i=1

Y (ji, ℓi, ℓi+1)S̃ℓnjn . (2.11)

The definition of the normalized Verlinde coefficient becomes clear from the normalization

relation. The recursive relation is a generalization of the fusion relation to any number of

unitary irreducible representations j = (j1, · · · , jp). The fusion and recursive relation are

really easy to prove using the graphical representations of the Verlinde coefficients. The

proof of the fusion relation is given in the picture 5; the proof of the recursive relation is

done along exactly the same lines.

Verlinde coefficients and their properties are particularly interesting to obtain useful

formulae for the dimension of the Hilbert space Hk(j1, · · · , jp). Indeed, the dimension

Nk(j) = dim(Hk(j1, · · · , jp)) is

Nk(j) =
∑

ℓ1,··· ,ℓp

δℓ1,0δℓp+1,0

p∏

i=1

Y (ℓi, ji, ℓi+1) (2.12)

and can be expressed in terms of Verlinde coefficients using the recursive relation (2.11)

combined with the normalization relation (2.9). Some trivial calculations lead to the ex-

pression:

Nk(j) =
2

k + 2
sin2

(
π

k + 2

)∑

ℓ

[dℓ]
2−p

p∏

i=1

S̃jiℓ (2.13)
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which reduces, after using the explicit formula of Verlinde coefficients (2.8), to the following

well-known formula:

Nk(j) =
2

k + 2

∑

ℓ

(
sin

(
πdℓ

k + 2

))2−p p∏

i=1

sin

(
πdℓdji

k + 2

)
. (2.14)

3 Equivalent formulae for the Hilbert space dimension

The expression (2.14) for the dimension of the SU(2) Chern-Simons Hilbert space is not

very useful to compute the entropy of a Black Hole. We propose here to give equivalent

more interesting formulae.

3.1 Chern-Simons Hilbert space and random walk

The fact that the coefficient Nk(j) are closely related to random walks have been noted

and investigated in [28–31] in the classical case, namely when k becomes infinite. Here we

show that even in the quantum case (i.e. for a finite k) this link between Chern-Simons

and random walk still exists and appears very interesting for the calculation of the entropy.

Some of our formulae have been derived in [25–27] where however only the classical case

(infinite k) has been studied at the end. For obvious reasons of notations, we will consider

Ñk(d) ≡ Nk−2(j) in the sequel. We will also make use of the notations di = dji = 2ji + 1

and d = (d1, · · · , dp).

This section is devoted to propose a random walk interpretation of the dimension

Ñk(d). For that purpose, we proceed in four steps.

a) Ñk(d) as a difference of Bk(d)-type functions. To do so, we first use the identities

sin2 θ = 1 − cos2 θ and cos θ = sin(2θ)/(2 sin2 θ) in the formula

Ñk(d) =
2

k

∑

ℓ

(
sin

(
πdℓ

k

))2 p∏

i=1

sin
(

πdℓdji
k

)

sin
(

πdℓ
k

) (3.1)

to write it as the difference

Ñk(d) = Bk(d) − 1

4
Bk(d+) (3.2)

where the function Bk which depends on a family of representations d = (d1, · · · , dp) or

d+ = (d1, · · · , dp, 2, 2) reads

Bk(d) =
2

k

k−1∑

d=0

∏

ℓ

sin
(

πd
k dℓ

)

sin
(

πd
k

) . (3.3)

The product runs over ℓ ∈ [0, p] or ℓ ∈ [0, p + 2] depending whether we are considering

Bk(d) or Bk(d+). Note that d+ is the union of the family of dimensions d with two more

equal elements corresponding to the dimension of the fundamental representation d1/2 = 2.

– 8 –
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b) Combinatorial expression of Bk(d). Now we concentrate on the function Bk(d).

In particular, we want to exhibit the fact, as in the classical case, that Bk(d) admits a

random walks interpretation. To show this is indeed the case, we replace each term of the

product in (3.3) by the following expression:

sin
(

πd
k dℓ

)

sin
(

πd
k

) = ei
πd
k

(dℓ−1)
dℓ−1∑

nℓ=0

e−2i πd
k

nℓ . (3.4)

As a result, the function (3.3) can be rexpressed as follows:

Bk(d) =
2

k

k−1∑

d=0

p∏

ℓ=1

dℓ−1∑

nℓ=0

ei
πd
k

(dℓ−1−2nℓ) =
2

k

k−1∑

d=0

∑

{n1,··· ,np}

ei
πd
k

(∆p−2N) (3.5)

where we introduced the notations ∆p =
∑p

ℓ=1(dℓ − 1) and N =
∑p

ℓ=1 nℓ. Note that the

second sum runs over families of integers {n1, · · · , np} such that each component ni ∈
[0, di − 1]. Permuting the two sums and summing over the variable d lead to:

Bk(d) =
2

k

∑

{n1,··· ,np}

1 − eiπ(∆p−2N)

1 − ei
π
k
(∆p−2N)

=
2

k

∑

{n1,··· ,np}

1 − eiπ∆p

1 − ei
π
k
(∆p−2N)

(3.6)

To go further into the calculation, we distinguish the case where ∆ℓ is odd from the case

where ∆ℓ is even.

c) ∆ℓ odd implies that Ñk(d) = 0. The first case, ∆ℓ odd, is simpler. Indeed, in that

case, 1 − eiπ∆p = 2 and then the function Bk(d) reduces to the form:

Bk(d) =
4

k

∑

{n1,··· ,np}

1

1 − ei
π
k
(∆p−2N)

. (3.7)

From the beginning, we know that Bk(d) is a real-valued function and therefore it equals

its real part, i.e. Bk(d) = Re(Bk(d)) where Re(z) denotes the real part of z ∈ C. Moreover,

for any value of θ (different from 0[2π]), the following equality holds:

1

1 − eiθ
=

1

2
+
i

2
cotan

θ

2
. (3.8)

As a consequence, the expression of the function Bk(d) simplifies drastically and reduces

to:

Bk(d) =
4

k

1

2

∑

{n1,··· ,np}

1 =
2

k

p∏

ℓ=1

dℓ . (3.9)

Therefore, Bk(d+) = 4Bk(d) and then the dimension of the Hilbert space (3.2) vanishes in

that case. The meaning of this result is simple: there is no invariant tensor in the tensor

product ⊗ℓjℓ when ∆p =
∑

ℓ(dℓ − 1) is odd. As an example, let us consider the case

where all the spins equal 1/2: ∆p = p odd means that there is an odd number of spins;

as expected there is no trivial representation in the tensor product of an odd number of

1/2 representations.
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d) ∆ℓ even: random-walk interpretation of Ñk(d) = 0. The second case, ∆p

even, is far more interesting. In that situation, we would naively say that Bk(d) vanishes

because all the terms in the numerator of the formula (3.6) are 1− eiπ∆p = 0. But a more

careful analysis shows that the denominator can also lead to a singularity. As a result,

the non-vanishing contributions to the sum (3.6) are those where both the numerator and

denominator vanish. For this to happen, there must exist s ∈ Z such that ∆p − 2N = 2sk.

Therefore, we have:

Bk(d) = 2
∑

{n1,··· ,np}

δ∆p−2N [2k] (3.10)

where δn[2k] takes the value one if there exists an integer s such that n = 2ks, otherwise

it is null. Here comes the random walk interpretation of the dimension of the Chern-

Simons Hilbert space. We proceed to a changing of variables: instead of summing over

non-negative integers ni ∈ [0, di−1], we sum over half-integers mi = ni− di−1
2 ∈ [1−di

2 , 1+di
2 ]

(with mi+1 = mi + 1). Then, the formula (3.10) becomes

Bk(d) = 2
∑

{m1,··· ,mp}

δm1+···+mp[k] . (3.11)

A similar formula has been found in [25–27] and its classical counterpart has been estab-

lished and studied in [28–31]. As a result, the Bk function appears to be the number of

ways to start from the origin 0 at the Z axe and come back at a point 0[k] after p steps mi,

each step being bounded as follows mi ∈ [1−di
2 , 1+di

2 ]. These functions have been deeply

and precisely studied in the domain of random walks. And this analogy was used as a

central tool in [28–31] to obtain asymptotics behavior of some entropy. In order to be a

bit more explicit, we introduce the variable r = [∆p/(2k)] where [x] is the floor function

and then:

Bk(d) = 2
∑

{m1,··· ,mp}

r∑

q=−r

δm1+···+mp−qk . (3.12)

Let us recall now that we are interested in the number of states Ñk and not in the function

Bk itself. Using previous formulae, we have for Ñk the expression:

Ñk(d) = 2
∑

{m1,··· ,mp}




r∑

q=−r

δm1+···+mp−qk −
1

4

∑

a,b∈{− 1

2
, 1
2
}

s∑

q=−s

δm1+···+mp+a+b−qk




where s = [(∆p + 2)/(2k)]. It is clear that s belongs to the set {r, r + 1} and to avoid

complications we assume that r = s. The case s = r + 1 would introduce extra terms

which are not important at all for what we want to do. In that case, the previous formula

simplifies and after summing over the variables a and b one obtains:

Ñk(d)=
∑

{m1,··· ,mp}

r∑

q=−r

(
δm1+···+mp−qk−

1

2
δm1+···+mp−qk+1−

1

2
δm1+···+mp−qk−1

)
. (3.13)

This expression generalizes the one obtained in the classical case (which corresponds in

fact to r = 0 in our notations). It is useful to study the asymptotic behavior of the number

of states and also to study the effect of a finite k.
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3.2 Integral formula

Very often, one identifies the number of states Ñk to the dimension of the invariant tensors

space in the tensor product ⊗ℓjℓ between representations of the classical group SU(2). This

is only true when the ratio r = 0 which also coincides with the classical limit k goes to

infinity. In that case, Ñk = Ñ∞ is expressed as an integral over SU(2) conjugacy classes,

or equivalently over an angle θ. We proposed to generalize this integral formula to the case

where r 6= 0.

For that purpose, we start with the relation:

δm1+···+mp+a =
1

2π

∫ 2π

0
dθ eiθ(m1+···+mp+a) (3.14)

defined for any integer a ∈ Z. It easily leads to the relation:

∑

{m1,··· ,mp}

δm1+···+mp+a =
1

2π

∫ 2π

0
dθ cos(aθ)

p∏

ℓ=1

sin
(
dℓ

θ
2

)

sin θ
2

. (3.15)

where the sum runs over mℓ ∈ [1−dℓ
2 , 1+dℓ

2 ]. Using this last identity and after some trivial

calculations, one shows that the number of states is given by the integral:

Ñk(d) =
1

π

∫ 2π

0
dθ

(
r∑

q=−r

cos(θqk)

)
sin2

(
θ

2

) p∏

ℓ=1

sin
(
dℓ

θ
2

)

sin θ
2

. (3.16)

One more simplification occurs due to the trigonometric identity

r∑

q=−r

cos(θqk) = 1 + 2

r∑

q=1

cos(qkθ) =
sin
((
r + 1

2

)
kθ
)

sin kθ
2

. (3.17)

As a result, the number of states Ñk takes the form:

Ñk(d) =
1

π

∫ 2π

0
dθ sin2

(
θ

2

)
sin
((
r + 1

2

)
kθ
)

sin kθ
2

p∏

ℓ=1

sin
(
dℓ

θ
2

)

sin θ
2

. (3.18)

This formula generalizes, as announced in the introduction of that section, the classical

one. We see, as expected, that Ñk(d) coincides with the classical formula when r = 0, i.e.

when ∆p < 2k. This particular case can be recovered from different arguments: if ∆p < 2k,

then each representations in the tensor product ⊗ℓjℓ has a spin s < k/2 and therefore one

never sees the effect of the cut-off k. When the condition r = 0 is not satisfied the integral

formula defining the number of states differs from the classical one by a different integration

measure on the SU(2) conjugacy class. The presence of this new measure might have an

effect on the black hole entropy.

3.3 An example: all spins equal 1/2

To get an intuition of previous formulae, we consider a particular example: we assume that

dℓ = 2 for all punctures ℓ ∈ {1, · · · , p}, i.e. all the spins equal 1/2. Furthermore, we assume

that ∆p = p is even.
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a) Classical case: r = 0 [25–31]. To start with, we also consider first the case ∆p < 2k,

i.e. r = 0 in the previous notations. This case has been studied deeply in [28–31].

From the random walk expression of the number of states (3.13), one obtains that

Ñk(2, · · · , 2) ≡ N2(p) is given by:

N2(p) =
∑

{m1,··· ,mp}

(δm1+···+mp − δm1+···+mp+1) =

(
p

p/2

)
−
(

p

p/2 − 1

)
. (3.19)

We have omitted to mention k because Ñk does not in fact depend on k when r = 0. The

last equality is a result of a trivial combinatorial analysis: given an integer a ≤ p/2, the

number of ways to have n1 + · · · + np = a where ni ∈ {−1/2, 1/2} is given by the number

of ways to choose (p/2 + a) elements from a set of p elements which is precisely given by

the binomial coefficient
( p
p/2+a

)
. From the expression of the binomial coefficients in terms

of factorials, one ends up with the following formula:

N2(p) =
2

p+ 2

p!

((p/2)!)2
(3.20)

We obtain an exact combinatoric formula for the number of states in that particular case.

The asymptotic of N2(p) is therefore straightforward to obtain from the stirling formula

which states that:

p! ∼
√

2πp(p/e)p for large values of p. (3.21)

Using this very well-known result, one shows the following asymptotic behavior:

N2(p) ∼
√

8

π
p−3/22p . (3.22)

This formula coincides with the one found in [25–27] from different arguments. In par-

ticular, we recover the same leading order and the same sub-leading corrections to the

“entropy”:

S1/2(p) ≡ logN2(p) = 2p − 3

2
log p + O(1). (3.23)

b) Quantum corrections: r > 0. Let us now relax the condition that ∆p < 2k, i.e.

r = [p/(2k)] is now a non-zero integer. In that case, it is a bit more involved to obtain a

combinatoric expression for the number of states but, using similar arguments as previously,

one can show that:

N2(p) =

r∑

q=−r

(
p

p/2 − qk

)
− 1

2

(
p

p/2 − qk − 1

)
− 1

2

(
p

p/2 − qk + 1

)
. (3.24)

Note that we still omit to mention explicitly the dependence in k even if now N2(p) does

depend on k. To go further, we separate the q = 0 contribution from the others in the sum

and, using trivial symmetries properties of binomial coefficients, we get:

N2(p) =

(
p

p/2

)
−
(

p

p/2 − 1

)

+

r∑

q=1

2

(
p

p/2 − qk

)
−
(

p

p/2 − qk − 1

)
−
(

p

p/2 − qk + 1

)
. (3.25)
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Thus, we obtain a correction to the previous classical case (3.19) and each term (for a

given value of q ∈ [1, r]) in the remaining sum is a finite linear combination of binomial

coefficients which reduces to the following form after some calculations:

2
1 − p− 2q2k2

(p/2 + 1)2 − q2k2

(
p

p/2 − qk

)
. (3.26)

As a result, the asymptotic behavior of each term in the previous sum is governed by

the asymptotic behavior of the binomial coefficient
( p
p/2−qk

)
. We are interested in the

asymptotic for a large value of p but also a large value of k such that these two numbers

have the same scaling namely p/k remains constant. Indeed, in the black hole context,

both p and k are proportional to the area of the horizon which tends to infinity (in unit

of Planck area). Thus, the leading term in the asymptotic expansion of (3.26) is given by

the leading term of the expansion of binomial coefficient of the form
( p
αp

)
for large values

of p where α ∈ [0, 1/2[. From Stirling formula (3.21), one shows that

(
p

αp

)
∼ 1√

2πα(1 − α)p
g(α)−p with g(α) = αα(1 − α)1−α . (3.27)

It is straightforward to show that the function g satisfies the bound g(α) > 1/2 and

therefore the previous binomial coefficient grows like g(α)−p < 2p. As a consequence, the

“classical term” dominates the asymptotics in the sense that:

(
p

αp

)
/

(
p

p/2

)
∼ (2g(α))−p → 0 (3.28)

for α < 1/2. This result shows that the quantum corrections (due to the finiteness of

k) do not affect the asymptotic expansion of N2(p) neither at the leading neither at the

subleading order.

4 Entropy of the SU(2) black hole

Here we adapt the techniques used in [18–22] and firstly introduced in [11, 12] to compute

the entropy of a black hole. We are not going into the mathematical details of these

techniques which has been very well exposed in [18–22] and which are in fact very well-

known in the domain of probabilities and used to understand some properties of random

walks. We propose to reproduce these results in a more “intuitive” or physical way: we will

omit many mathematical details which appear in a first time non necessary. In particular,

we show that it is not necessary to go to complex analysis and number theory to get the

asymptotic behavior of the entropy.

Before going to the details of the entropy calculation, let us briefly recall how black

holes are described in loop quantum gravity and how we compute the entropy. In the

context of LQG, a local definition of a black hole is introduced through the concept of

isolated horizons (IH), regarded as a sector of the phase-space of GR containing a horizon

in equilibrium with the external matter and gravitational degrees of freedom. This local

definition is used for the black-hole entropy calculation since the quantization of such a
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system allows to define a Hilbert space which is the tensor product of a boundary and a

bulk terms. The entropy of the IH is then computed by the formula S = tr(ρIH log ρIH),

where the density matrix ρIH is obtained by tracing over the bulk d.o.f., while restricting

to horizon states that are compatible with the macroscopic area parameter a. Assuming

that there exists at least one solution of the bulk constraints for every admissible state

on the boundary, the entropy is given by S = log(N(a)) where N(a) is the number of

horizon states. Since the theory on the horizon is associated to Chen-Simons theory with

punctures, the entropy calculation problem boils down to the counting, in the large horizon

area limit, of the dimension of the Hilbert space (2.2), which, for a given configuration of

punctures spins d = (d1, · · · , dp), is expressed by the formula (3.18).

4.1 The Laplace transform method: basic idea

The Laplace transform method allows in certain cases to obtain the asymptotic behavior

of a function F (p) for large values of p. For simplicity, we assume that the function F

is defined for p integers but the method applies in the case where F is a function of a

real number x. The idea consists first in considering the Laplace transform F̃ (s) defined a

priori for s ≥ 0 by:

F̃ (s) =

∞∑

p=0

e−psF (p) . (4.1)

The Laplace transform appears as a series and therefore might be not defined at all or it

might be defined for some values of the real positive variable s only. To understand if the

series is convergent or divergent, one looks at the asymptotic behavior of F (p) at large p.

To be more concrete, let us propose some examples.

1. If F (p) ∼ pα for some real number α, then the series (4.1) is convergent for any values

of s.

2. If F (p) ∼ eαp2

for some positive real number α, then the series (4.1) is divergent for

any values of s and then the Laplace transform is never defined. On the contrary, if

α is negative, then the series in convergent and the Laplace transform is well defined

for all values of s.

3. If F (p) ∼ eαp for some positive real number α, then the series is convergent for s > α.

In the case where s < α, the series diverges and therefore is ill-defined. The case

s = α is critical: the convergence properties of F̃ in that regime depends on the

subleading behavior of F (p).

We are particularly interested in the last case because in the context of black hole entropy

the number N(a) of microstates corresponding to a given macroscopic area a is exponential

in a, namely N(a) ∼ eαa and all the problem is to find the coefficient α. Let us now come

back to the general discussion. If we find α > 0 such that F̃ (s) is defined for s > α

and undefined for s < α, then we conclude that F (p) ∼ eαp for large p. This is more a

physical argument than a rigorous proof because we assume the asymptotic behavior of

F (p). However, it is also possible to prove rigorously the asymptotic behavior as it was

– 14 –
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done in [11, 12] and [18–22] where the reader can find the mathematical details. In the

language of probabilities, sc = α is called the critical exponent of F (p).

Before going further, let us recall that, in the particular case where F (p) ∼ eαp, it

is possible to invert the Laplace transform and to recover to function F (p) from F̃ (s)

according to:

F (p) =
es0p

2π

∫ 2π

0
dx F̃ (s0 + ix)eixp (4.2)

where s0 > α is a real number.

In fact, it is possible to extend this technique to obtain also the subleading terms in

the asymptotics expansion of F (p). To understand this point, we assume that F behaves

as follows F (p) ∼ eαpQ(p) where Q(p) is an algebraic function whose dominant term at

large p is Q(p) ∼ pβ where β is a real number. We generalize the Laplace transform to the

following function of the two real variables s and t:

F̃ (s, t) =

∞∑

p=1

e−ps p−t F (p) . (4.3)

When t = 0, this function coincides with the standard Laplace transform up to the constant

F (0). The point is to evaluate it at the critical value sc = α. Indeed, e−αpF (p) ∼ pβ

and therefore the convergence properties of the series F̃ (α, t) depends on the asymptotic

behavior of pβ−t: if β−t > −1, the series is divergent; if β−t < −1, the series is convergent.

Therefore, we proceed as we do to obtain α, we define the critical value tc as the minimal

value of t such that F̃ (α, t) is well-defined. Thus, the coefficient β is fixed by β = tc − 1.

Of course, we can repeat this technique to obtain recursively all the corrections to the

leading term in the asymptotic expansion of F (p). But, for this method to work, we must

know the form of the asymptotic behavior of the function F (p). Once we know that the

function F (p) ∼ eαppβ at large p, our method allows to obtain the critical exponents α and

β.

4.2 A simple application of the Laplace transform method

Let us show that we can use this very simple technique to obtain the asymptotic behavior

of the number of states Ñk(d) when all the spins are equal. To that aim, we introduce the

notation Fd(p) = Ñk(d) with j1 = · · · = jp = j and d = 2j + 1:

Fd(p) =

∫ π

0
dθ µk(θ)

(
sin(dθ)

sin θ

)p

(4.4)

where µk(θ) is a continuous non singular function obtain directly from (3.18):

µk(θ) =
2

π
sin2 θ

sin((2r + 1)kθ)

sin(kθ)
. (4.5)

We omit to mention the dependence in k of µk(θ) and of Fd(p) for clarity reasons. Fur-

thermore, we know, from random walks arguments, that the asymptotics of Fd(p) is dom-

inated by its classical part only; in other words, we consider r = 0 in the sequel. We
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will discuss the quantum corrections later. Now, we assume that Fd(p) ∼ eαp for large

values of p. If the asymptotic behavior assumption is true, then the Laplace transform

F̃d(s) =
∑∞

p=0 e
−spF (d, p) is well-defined for s > α and not-defined for s < α. To obtain

the critical exponent α, we need to simplify the expression of F̃d(s). To do so, we exchange

the sum defining F̃d and the integral over θ in the definition of Fd (4.4). We obtain the

following expression:

F̃d(s) =
2

π

∫ π

0
dθ sin2 θ

∞∑

p=0

(
e−s sin(dθ)

sin θ

)p

(4.6)

Then, assuming that s is large enough, we perform the sum over p and then:

F̃d(s) =
2

π

∫ π

0
dθ sin2 θ Z(s, θ) with Z(s, θ) =

(
1 − e−s sin(dθ)

sin θ

)−1

(4.7)

The next step consists in analyzing the structure of the singularities of F̃d(s). It is clear

that its singularities come from the poles of the function Z(s, θ) viewed as a function of θ.

We immediately see that Z(s, θ) admits a pole (viewed as a function of θ) if and only if

e−s ≥ d−1, i.e. s ≤ log d. More precisely, we have the following:

1. When s = log d, then Z(s, θ) admits an unique pole which is θ0 = 0.

2. When s < log d, then Z(s, θ) admits also at least one pole θ0 6= 0[π]. At the vicinity

of θ0, the (inverse of the) function Z behaves as follows:

Z−1(s, θ0 + ε) ≃ −ε(dcotan(dθ0) − cotan(θ0)).

As a consequence, the integral (4.6) is divergent.

As expected, F̃ (d, s) is defined only for s > log d. Therefore, sc = log d is the critical

exponent and we have the asymptotic behavior:

Fd(p) ∼ dp . (4.8)

Before computing the sub-leading corrections, let us make some important remarks.

In the first remark, we come back to the exchange of the sum over p and the integral

over θ in the computation of the Laplace transform (4.6). This step can be justified in our

case but this is not always the case. More precisely, the exchange makes sense if the sum

over p is defined, namely if |e−s sin(dθ)/ sin θ| < 1 for all θ. This is exactly the condition

we obtained to compute the critical exponent.

In the second and last remark, we come back to the “quantum corrections” of Fd(p).

We know that the number of states is given by:

Fd(p) =
2

π

∫ π

0
dθ sin2 θ

(
sin(dθ)

sin θ

)p

+
4

π

r∑

q=1

∫ π

0
dθ sin2 θ cos(qkθ)

(
sin(dθ)

sin θ

)p

. (4.9)
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The first term is the classical contribution and the rest are the quantum corrections. We

want to compute the asymptotic behavior of these corrections at the large p limit, and

we take, at the same time, k large as well with a fixed ratio ρ = p/2k. As a consequence

the number r = [ρ] remains fixed in this limit. Therefore, the contribution of Fd(p)

corresponding to q 6= 0 reads:

4

π

r∑

q=1

∫ π

0
dθ sin2 θ cos

(
qθ

2ρ
p

)(
sin(dθ)

sin θ

)p

. (4.10)

The calculation of the Laplace transform is more involved in that situation due to the

presence of a fast oscillating function in the integrand. A consequence is that the naive

exchange of the infinite sum over p and the integral over θ is not justified.

Now, we go further and compute the sub-leading terms. For that purpose, we concen-

trate on the classical contribution only (formally we take t = 0) and we define the general

Laplace transform of Fd(p) (4.3):

F̃d(s, t) =
∞∑

p=0

e−ps p−t Fd(p) . (4.11)

Permuting the integral with the sum leads to the expression:

F̃d(s, t) =

∫ π

0
µk(θ)

∞∑

p=0

p−t

(
e−s sin(dθ)

sin θ

)p

=

∫ π

0
µk(θ) Lit

(
sin(dθ)

d sin θ

)
. (4.12)

Indeed, we recognize the polylogarithm function Lit(z) defined for any couple of complex

numbers (t, z) such that |z| < 1 by the series:

Lit(z) =

∞∑

p=1

p−t zp . (4.13)

Following the general idea we described above, we first evaluate F̃d(s, t) at the critical

value sc = log d. Then, we look for the critical value tc such that F̃d(sc, t) is well-defined

for t > tc but not defined if t < tc. We know that F̃d(sc, t) might be not defined because

of the singularity of the integrand Lit

(
sin(dθ)
d sin θ

)
at θ = 0. To compute tc, we analyze the

behavior of the integrand around θ = 0:

Lit

(
sin(dθ)

d sin θ

)
∼ Lit

(
θ21 − d2

6

)

∼ Lit

(
e

1−d2

6
θ2

)

∼ Γ(1 − t)

(
d2 − 1

6

)t−1

θ2(t−1)

where Γ(t) is the Gamma function. We used some asymptotic properties of the polyloga-

rithm function. As a consequence, at the vicinity of θ = 0, the integrand of (4.12) behaves

as:

µk(θ) Γ(1 − t)

(
d2 − 1

6

)t−1

θ2(t−1) ∼ 2

π
Γ(1 − t)

(
d2 − 1

6

)t−1

θ2t (4.14)
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because µk(θ) ≃ 2
πθ

2 for θ small. Therefore, the integral over θ is defined when 2t > −1

and not defined when 2t < −1; then the critical value of t is tc = −1/2. As a consequence,

we obtain the value of the second critical exponent

β = −1 + tc = −3/2

which is independent of the dimension d. Finally, we can establish that:

Fd(p) ∼ dpp−3/2 then logFd(p) = p log d− 3

2
log p+ O(1) . (4.15)

In particular, we recover from another method the asymptotic behavior of F2(p) given

in (3.22). This asymptotics has been obtained in [28–31] from random walks arguments.

The case d = 2 has also been consider in [25–27].

4.3 Asymptotic of the entropy

We apply, the method illustrated above to compute the asymptotic behavior of a spherically

symmetric and a distorted SU(2) black hole entropy in loop quantum gravity.

a) The spherically symmetric Black Hole. The calculation of the entropy of the

spherically symmetric SU(2) black hole has been done precisely in [18–22] and has been

investigated earlier in [25–27] when the level in infinite. In [9, 10], we have shown that

the level k and the area a can be considered as independent variables. For that reason,

we are going to reformulate the results obtained in [18–22] when k is finite focussing on

physical arguments and avoiding the number theory and the complex analysis aspects.

These aspects are not necessary to get the main ideas and the main results if one assumes

that the number of states grows exponentially with the area.

The entropy S(a) = logN(a) of a spherically symmetric black hole of macroscopic

(adimensionalized) area a is defined from the number of states

N(a) =
∞∑

p=0

k+1∑

d1,··· ,dp

δ(a−
∑p

ℓ=1

√
(dℓ − 1)(dℓ + 1)

2
)Ñk(j) . (4.16)

The finiteness of the level k appears in two different places: in the sums which run from 2

to k+ 1 and in the expression of Ñk(j). It is important to note again that we will consider

k and a as independent variables and we will study the entropy for large a but finite k.

This consideration allows us to define the Laplace transform of N(a)

Ñ(s) =

∫ ∞

0
da e−asN(a) . (4.17)

One difference with the previous section is that now the variable a is continuous. After some
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Figure 6. Increasing critical values of the exponent α for different k ∈ N. Already for k ≥ 4 an

asymptotic value is reached.

calculations and assuming that s is large enough, we end up with the following expression:

Ñ(s) =

∞∑

p=0

k+1∑

d1,··· ,dp

∫ π

0
dθ µk(θ)

(
p∏

ℓ=1

sin(dℓθ)

sin θ
e−

s
2

√
(dℓ−1)(dℓ+1)

)
(4.18)

=
∞∑

p=0

∫ π

0
dθ µk(θ)

(
k+1∑

d=2

sin dθ

sin θ
e−

s
2

√
(d−1)(d+1)

)p

(4.19)

=

∫ π

0
dθ µk(θ)

(
1 −

k∑

d=1

sin(d+ 1)θ

sin θ
e−

s
2

√
d(d+2)

)−1

(4.20)

Again, we exchanged the sums over the variables dℓ and p with the integral over θ. We

proceed as in the previous section and conclude that the critical value of s is the highest

zero of the function

1 −
k∑

d=1

sin(d+ 1)θ

sin θ
e−

s
2

√
d(d+2) (4.21)

which is reached for θ = 0. Therefore, the critical exponent α is the unique solution of the

equation

1 −
k∑

d=1

(d+ 1) e−
α
2

√
d(d+2) = 0 . (4.22)

With that definition, α depends on the level k. For increasing values of the level k, the

solutions α of the previous equation reach fast an asymptotic value as plotted in figure 6.

The asymptotic value coincides as expected with the value α∞ found in [18–22] when

k → ∞. Furthermore, we can estimate how the difference ∆α = α∞ − α decreases when

k increases. ∆α decreases exponentially with k in the sense that it exits two real positive

constants A and B such that

|αk − α∞| < Ae−Bk .

Next, we compute the subleading corrections. The difficulty of this problem is that we

could not find a way to put the generalized Laplace transform in a “suitable” form as it
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was the case for the ”toy-example” we considered above. We will nonetheless circumvent

this difficulty as follows. First, we will evaluate Ñ(s) at the vicinity of the critical value

α, i.e. s = α+ ε for ε small, and then we will compute the generalized Laplace transform

Ñ(α,−t) at the critical value α as follows:

Ñ(α,−t) =
∂tÑ(α + ε)

∂εt
|ε=0 .

assuming that t is an integer. Finally, we will see that it makes sense to extend the obtained

formula to half-integers (and also real numbers in fact) which will allows us to extract the

sub-leading corrections to the entropy.

Let us start, as announced, by the following calculation:

Ñ(α+ ε) ≃
∫ π

0
dθ µk(θ)

(
1 −

k∑

d=1

sin(d+ 1)θ

sin θ
e−

α
2

√
d(d+2)

(
1 − ε

2

√
d(d+ 2)

))−1

(4.23)

We know that the singularity of Ñ(s + ε) when ε goes to zero is due to the singularity of

the integrand

fε(θ) = µk(θ)

(
1 −

k∑

d=1

sin(d+ 1)θ

sin θ
e−

α
2

√
d(d+2)

(
1 − ε

2

√
d(d + 2)

))−1

in (4.23) when θ goes to zero. Therefore, we concentrate on the behavior of fε(θ) at the

vicinity of θ = 0:

fε(θ) ≃ (2r + 1)
2θ2

π

(
k∑

d=1

(ε(d + 1)
√
d(d+ 2) +

θ2

6
d(d+ 1)(d + 2))e−

α
2

√
d(d+2)

)−1

Now, we start from this expression to study the singularities of the generalized Laplace

transform Ñ(α, t) evaluated at the critical value. Indeed, when t is a positive integer, we

can compute:

Ñ(α,−t) =
∂tÑ(α+ ε)

∂εt
|ε=0 (4.24)

The last quantity is expressed as an integral over the variable θ whose eventual singularity

is due to the behavior of the integrand around θ = 0 given by:

∂tfε(θ)|ε=0

∂εt
≃ (−1)tt!

2θ2

π

(∑k
d=1(d+ 1)

√
d(d+ 2)e−

α
2

√
d(d+2)

)t

(
θ2

6

∑k
d=1 d(d+ 1)(d + 2)e−

α
2

√
d(d+2)

)t+1

∼ θ2 1

θ2(t+1)
= θ−2t .

We assume that the behavior of the integrand of Ñ(α,−t) remains the same even if t is any

real number. As a consequence, Ñ(α, t) is singular when 2t > 1 and the critical value of t

is tc = 1/2. Then, the critical exponent β = −tc−1 = −3/2 and we recover the asymptotic

expansion [18–22]:

N(a) ∼ eαa a−3/2 for large a, (4.25)
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with α given as in figure 6. Again, the finiteness of k does not modify the sub-leading

corrections when k is large.

Let us finish this section by two remarks. The first one concerns the effect of the

finiteness of the level k in the entropy. As we have just seen, k does modify the leading but

does not modify the subleading corrections of the entropy. In that sense, the logarithmic

corrections seems to be universal and independent of the Immirzi parameter even in the

SU(2) spherically symmetric black hole. The second one concerns the techniques we used:

our calculations have to be viewed more as “physical” arguments than rigorous proofs of

the asymptotic behavior of the entropy. The nice point is that we can recover the “right”

results very easily without entering too much into technical aspects.

b) The distorted black hole. In the distorted case [10], the black hole is described in

terms of two commuting Chern-Simons theories associated to the same level k. As in the

symmetric case, the area a of the black hole and the level k are considered as independent

variables. At the fundamental level, the description of the distorted black hole in terms of

microstates is rather different from the description of the symmetric black hole. Indeed,

each puncture colored with a SU(2) representation j coming from the bulk decomposes into

two SU(2) representations j+ and j− when it crosses the black hole. A macroscopic state is

therefore characterized by the number p of punctures and a family (jℓ, j
+
ℓ , j

ℓ
−)ℓ (ℓ ∈ [1, p])

of 3p representations of SU(2) such that (jℓ, j
+
ℓ , j

−
ℓ ) satisfy the triangular inequality for

each ℓ and an additional constraint.

To describe this additional constraint, we associate canonically the SU(2) generators

J i
+, J i

−, and J i to each puncture: the Casimir of these operators J2
± and J2 are fixed by

the representations j± and j in the standard way. The constraint reads

Ci(p) = J i
− − J i

+ − α(J i
+ + J i

−) = 0. (4.26)

with

α ≡ J2
+ − J2

−

J2
, (4.27)

Now Ci and Di = J i
+ + J i

− + J i = 0 (implicitly imposed above) cannot be simultaneously

strongly imposed as they do not form a Lie algebra. One has to impose them weakly and

there are two possibilities.

In order to see this let us exploit the fact that there is a strict analogy with the way

the simplicity constraints are imposed in the EPRL-FK model [38, 39]. Observe first that

equation (4.26) has the very same form of the linear simplicity constraints of the EPRL-FK

models where the role of the Immirzi parameter is here played by α.

The first possibility of weak imposition consists of taking

j± = (1 ± α)j/2 (4.28)

implying

j = j+ + j−. (4.29)
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It can be checked that this choice is consistent with alpha as given in (4.27). With this

then one can check that for an admissible state |ψ〉 one has

C2|ψ〉 = ~
2(1 − α2)j|ψ〉,

which vanishes in the (semiclassical) limit ~ → 0, j → ∞ with ~j kept constant. Moreover,

one has that

〈φ|Ci|ψ〉 = 0 (4.30)

for arbitrary pairs of admissible states. In other words, in this first possibility the constraint

Ci are satisfied strongly in the semiclassical limit, and weakly in the sense of matrix

elements in general.

The second possibility is not to impose the condition (4.28) and leave j± completely

free and only constrained by the triangular inequalities with j. In that case it has been

shown [40] that (4.30) is still satisfied. This second possibility is still compatible with the

classical limit but is weaker than the previous one.

Entropy calculation A. In this case we impose condition (4.28) and hence j = j+ + j−.

Such a state characterizes a black hole of macroscopic area

a =
1

2

p∑

ℓ=1

√
(d+

ℓ + d−ℓ − 1)(d+
ℓ + d−ℓ + 1)

in unit of ℓ2p. As a consequence, the number of microstates N(a) associated to a distorted

black hole of area a is given by the formula:

N(a) =
∞∑

p=0

∑

d±
1

,··· ,d±p

δ(a−
∑p

ℓ=1

√
(d+

ℓ + d−ℓ − 1)(d+
ℓ + d−ℓ + 1)

2
) Ñk(j

+)Ñk(j
−), (4.31)

where d±ℓ = 2j±ℓ + 1. Following the steps of the previous section, we introduce the Laplace

transform Ñ(s) of the number of states N(a). It is given by:

Ñ(s) =

∞∑

p=0

k+1∑

d+,d−

∫ π

0
dθ+ µk(θ

+)

∫ π

0
dθ− µk(θ

−)

·




p∏

ℓ=1

sin(
d+

ℓ θ+

2 )

sin θ+

2

sin(
d−ℓ θ−

2 )

sin θ−
2

e
− s

2

q

(d+

ℓ +d−ℓ −1)(d+

ℓ +d−ℓ +1)


 ,

where the sums run over the families d± = (d±1 , · · · , d±p ) of representations dimensions.

Following the same strategy as in the spherically symmetric case, the previous expression
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Figure 7. In the figure, we have plotted the values of the exponent α as function of k ∈ N for the

first integers. The plot shows as, similarly to the spherically symmetric black hole counting, in the

case of a weak imposition of the constraint Ci = 0 through the relation j = j+ + j
−

, an asymptotic

value for α is quickly reached as k ≥ 4.

can be simplified as follows:

Ñ(s) =
∞∑

p=0

∫ π

0
dθ+ µk(θ

+)

∫ π

0
dθ− µk(θ

−)

·




k+1∑

d+,d−=1

sin(d+θ+

2 )

sin θ+

2

sin(d−θ−
2 )

sin θ−
2

e
− s

2

q

(d+

ℓ +d−ℓ −1)(d+

ℓ +d−ℓ +1)




p

=

∫ π

0
dθ+

∫ π

0
dθ−

µk(θ
+)µk(θ

−)

DA
k (θ+, θ−; s)

,

with

DA
k (θ+, θ−; s) = 1 −

k∑

d±=0

sin
(

(d++1)θ+

2

)

sin θ+

2

sin
(

(d−+1)θ−

2

)

sin θ−
2

e
− s

2

q

(d+

ℓ +d−ℓ +1)(d+

ℓ +d−ℓ +3)
. (4.32)

In the definition ofDA
k , the sums run over d± ∈ [0, k], which are related to the spin variables

j± by the relation d± = 2j± due to the changing of variables.

As in the spherically symmetric case, we conclude that the critical value of s is the

highest value for which DA
k , viewed as a function of the angles θ±, admits a zero. It is

reached when DA
k admits one zero at θ± = 0. Therefore, the critical exponent α is the

unique solution of the equation

1 −
k∑

d±=0

(d+ + 1)(d− + 1)e
−α

2

q

(d+

ℓ +d−ℓ +1)(d+

ℓ +d−ℓ +3)
= 0 . (4.33)

The exponent α depends on k as in the spherically symmetric case and the numerical

solution has been plotted in figure 7.
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Entropy calculation B. Let us now concentrate on the case of the weaker imposition

of the constraint Ci = 0, where all pairs of admissible states are taken into account. In

this case, the black hole of macroscopic area is

a =
1

2

p∑

ℓ=1

√
(dℓ − 1)(dℓ + 1)

in unit of ℓ2p. As a consequence, the number of microstates N(a) associated to a distorted

black hole of area a is given by the formula:

N(a) =

∞∑

p=0

∑

d1,··· ,dp

δ(a−
∑p

ℓ=1

√
(dℓ − 1)(dℓ + 1)

2
)

·
k+1∑

d±
1

,··· ,d±p =1

(
p∏

ℓ=1

Y (jℓ, j
+
ℓ , j

−
ℓ )

)
Ñk(j

+)Ñk(j
−), (4.34)

where d±ℓ = 2j±ℓ + 1 and we recall that, in order to implement the admissibility condition,

Y (jℓ, j
+
ℓ , j

−
ℓ ) = 1 if (jℓ, j

+
ℓ , j

−
ℓ ) satisfy the triangular inequality, it vanishes otherwise.

Following the steps of the previous case A, we introduce the Laplace transform Ñ(s)

of the number of states N(a). It is given by:

Ñ(s) =

∞∑

p=0

∑

d

k+1∑

d+,d−

∫ π

0
dθ+ µk(θ

+)

∫ π

0
dθ− µk(θ

−)

·




p∏

ℓ=1

Y (jℓ, j
+
ℓ , j

−
ℓ )

sin(
d+

ℓ θ+

2 )

sin θ+

2

sin(
d−ℓ θ−

2 )

sin θ−
2

e−
s
2

√
(dℓ−1)(dℓ+1)


 .

Following the same strategy as in the case A, the previous expression can be simplified as

follows:

Ñ(s) =

∞∑

p=0

∫ π

0
dθ+ µk(θ

+)

∫ π

0
dθ− µk(θ

−)

·


∑

d

k+1∑

d+,d−=1

Y (jℓ, j
+
ℓ , j

−
ℓ )

sin(d+θ+

2 )

sin θ+

2

sin(d−θ−
2 )

sin θ−
2

e−
s
2

√
(d−1)(d+1)




p

=

∫ π

0
dθ+

∫ π

0
dθ−

µk(θ
+)µk(θ

−)

DB
k (θ+, θ−; s)

,

with now

DB
k (θ+, θ−; s) = 1 −

∑

d

k∑

d±=0

Y (jℓ, j
+
ℓ , j

−
ℓ )

sin
(

(d++1)θ+

2

)

sin θ+

2

sin
(

(d−+1)θ−

2

)

sin θ−
2

e−
s
2

√
d(d+2) .

(4.35)

Again, the spins variables j± are related to the sums variables by d± = 2j± due to the

changing of variables. The variable d is also related to the spin variable j by d = 2j.
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Figure 8. In the plot, the circles indicate the values of the exponent α as function of k ∈ N for

the first integers; the squares represent values of the function c log k for the same values of k, where

c = 2
√

3 +O(1/k).

Similarly to the previous cases, we conclude that the critical value of s is the highest

value for which DB
k , viewed as a function of the angles θ±, admits a zero. It is reached

when DB
k admits one zero at θ± = 0. Therefore, the critical exponent α is the unique

solution of the equation

1 −
∑

d

k∑

d±=0

Y (jℓ, j
+
ℓ , j

−
ℓ ) (d+ + 1)(d− + 1)e−

α
2

√
d(d+2) = 0 . (4.36)

The exponent α again depends on k and the numerical solutions has been plotted in figure 8.

To have a more physical intuition of the behavior of α as a function of k, let us assume

that all the spins j are fixed to 1/2: this means that the edges of the spin-network in the

bulk which intersect the black hole surface are colored by 1/2-spins. This assumption will

give us the “shape” of the function α(k) for large values of k since the main contributions

to the entropy come from small values of the bulk spin jℓ. Let us call α1/2 the value of α

where only j = 1/2 spins contribute and α1/2 satisfies:

k∑

d+=0

d++1∑

d−=d+−1

(d+ + 1)(d− + 1)e−α1/2

√
3

2 = 1 . (4.37)

A straightforward calculation leads to the following expression relating α1/2 and k:

eα1/2

√
3

2 = 3
k+1∑

n=1

n2 =
(k + 1)(k + 2)(2k + 3)

2
. (4.38)

As a consequence, in the limit where k is large

α1/2 ∼ 2
√

3 log k
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which means that α grows logarithmically with k. Further evidence of this behavior of

α is given by the numerical solution of eq. (4.36) plotted above (figure 8) where all spins

are taken into account and not only 1/2 spins. Note that the numerical value c in the

asymptotic formula α ∼ c log k is such that c = 2
√

3 +O(1/k) as expected.

Let us now concentrate on the sub-leading corrections. We proceed exactly as in the

spherically symmetric case: we first evaluate Ñ(s) at the vicinity of the critical point α,

i.e. s = α+ ε for a small ε; we can then study the singularities of the generalized Laplace

transform Ñ(α, t) evaluated at the critical value through the relation (4.24), by expanding

the integrand fε(θ
+, θ−) around θ+ = 0 = θ−; finally, we look at the maximal value of tc

for which Ñ(α, t) is well-defined. The critical exponent β is then given by β = −tc − 1.

More precisely, in the distorted case we have

∂tfε(θ
+, θ−)|ε=0

∂εt
∼ θ+2θ−2

(θ+2(t+1) + θ−2(t+1))
=

ρ4

ρ2(t+1)

sin2(ϕ) cos2(ϕ)

(sin2(t+1)(ϕ) + cos2(t+1)(ϕ))
,

where in the last equality we have changed to polar coordinates θ+ = ρ sin(ϕ), θ− =

ρ cos(ϕ). From the previous equation we get that

Ñ(α,−t) ≃
∫
dρ ρ−2t+3.

Consequently, Ñ(α, t) is singular when t > 2, in this case the critical value of t is tc = 2.

Therefore, the critical exponent now is β = −tc − 1 = −3 and the asymptotic expansion

reads:

N(a) ∼ eαa a−3 , (4.39)

where α is given in figure 7 or 8 according to the prescription that defines the allowed states.

From the previous expression for the Laplace transform, we see that, in the distorted case,

the constant factor in front of the logarithmic corrections becomes 3.

5 Conclusion

This paper has been devoted to the calculation of leading and sub-leading terms of the

SU(2) black hole entropy in Loop Quantum Gravity when the black hole is spherically

symmetric [8, 9] and when it is distorted [10]. To reach this aim, we derived first, by

means of the recoupling theory of the quantum group Uq(su(2)), a new integral formula,

resulting to be very useful, for the dimension of the Hilbert space of SU(2) Chern-Simons

theory on a punctured two-sphere, which enters the definition of the Hilbert space of the

SU(2) spherically symmetric and distorted black hole as derived in [9, 10]. Successively, we

revised the technique of the Laplace transform method, exposed in detail in [18–22] and

firstly introduced in [11, 12], to study the asymptotic behavior (in the large area limit) of

the entropy associated to these two statistic mechanical ensembles.

The entropy of a SU(2) spherically symmetric black hole has been already studied

in [18–22] when the level k is infinite. Here, following a paradigm-shift introduced in [10],

we considered the case where the level k of the Chern-Simons theory and the macroscopic
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area of the black hole a are independent variables and we studied the effect of a finite

k. We showed that, if one takes into account the finiteness of the level, the entropy of

type I isolated horizons is not modified at least up to the subleading corrections, therefore

recovering the results of [18–22]. Moreover, the critical exponent of the leading order α,

which is now a function of the level k, reaches fast an asymptotic value for large k, as

shown in the plot in figure 6.

Concerning the entropy of a distorted SU(2) black hole, this is something which has

never been studied before. In this case, for each puncture coming from the bulk, there

are two punctures associated to it on the horizon and the Hilbert space becomes now the

direct product of two SU(2) Chern-Simons Hilbert spaces with same level k [10]. The SU(2)

symmetry is implemented by the insertion of an intertwiner between the three punctures

(one from the bulk and two from the horizon), therefore, the area constraint still plays

an important role. Using the techniques developed for the spherically symmetric case, we

have performed the counting of the enlarged Hilbert space number of states and shown

that the entropy is again proportional to the horizon area to the leading order. In the

distorted case, one can distinguish two different models according to the way second class

constraints are imposed weakly. In the strongest imposition of the constraints the results

do not differ in a qualitative sense from those obtained in the spherically symmetric case.

However, if the second class constraints are only imposed weakly, in the Gupta-Bleurer

sense, then the critical exponent α does not go to an asymptotic value for increasing values

of the level k but grows logarithmically with it, as shown in figure 8. In that sense, our

model is consistent with “any” value of the Immirzi parameter.

Acknowledgments

This project was partially supported by the ANR. D.P. was supported by the Marie Curie

EU-NCG network.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report,

Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [SPIRES].

[2] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge U.K. (2004) [SPIRES].

[3] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press,

Cambridge U.K. (2007).

[4] A. Perez, Introduction to loop quantum gravity and spin foams, gr-qc/0409061 [SPIRES].

[5] A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living

Rev. Rel. 7 (2004) 10 [gr-qc/0407042] [SPIRES].

– 27 –

http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://arxiv.org/abs/gr-qc/0404018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0404018
http://www.slac.stanford.edu/spires/find/hep/www?irn=5994683
http://arxiv.org/abs/gr-qc/0409061
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0409061
http://arxiv.org/abs/gr-qc/0407042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0407042


J
H
E
P
0
5
(
2
0
1
1
)
0
1
6

[6] A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black

hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [SPIRES].

[7] C. Beetle and J. Engle, Generic isolated horizons in loop quantum gravity,

Class. Quant. Grav. 27 (2010) 235024 [arXiv:1007.2768] [SPIRES].

[8] J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory,

Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [SPIRES].

[9] J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant

formulation of Type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634]

[SPIRES].

[10] A. Perez and D. Pranzetti, Static isolated horizons: SU(2) invariant phase space,

quantization and black hole entropy, arXiv:1011.2961 [SPIRES].

[11] K.A. Meissner, Black hole entropy in loop quantum gravity,

Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [SPIRES].

[12] M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry,

Class. Quant. Grav. 21 (2004) 5233 [gr-qc/0407051] [SPIRES].

[13] A. Ghosh and P. Mitra, Fine-grained state counting for black holes in loop quantum gravity,

Phys. Rev. Lett. 102 (2009) 141302 [arXiv:0809.4170] [SPIRES].

[14] A. Ghosh and P. Mitra, Counting black hole microscopic states in loop quantum gravity,

Phys. Rev. D 74 (2006) 064026 [hep-th/0605125] [SPIRES].

[15] A. Ghosh and P. Mitra, Counting of black hole microstates, Indian J. Phys. 80 (2006) 867

[gr-qc/0603029] [SPIRES].

[16] A. Ghosh and P. Mitra, An improved lower bound on black hole entropy in the quantum

geometry approach, Phys. Lett. B 616 (2005) 114 [gr-qc/0411035] [SPIRES].

[17] A. Ghosh and P. Mitra, A bound on the log correction to the black hole area law,

Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070] [SPIRES].

[18] I. Agullo, J. Fernando Barbero, E.F. Borja, J. Dı́az-Polo and E.J.S. Villasenor, Detailed black

hole state counting in loop quantum gravity, Phys. Rev. D 82 (2010) 084029

[arXiv:1101.3660] [SPIRES].

[19] I. Agullo, G.J. Fernando Barbero, E.F. Borja, J. Dı́az-Polo and E.J.S. Villasenor, The

combinatorics of the SU(2) black hole entropy in loop quantum gravity,

Phys. Rev. D 80 (2009) 084006 [arXiv:0906.4529] [SPIRES].

[20] J.F. Barbero G. and E.J.S. Villasenor, On the computation of black hole entropy in loop

quantum gravity, Class. Quant. Grav. 26 (2009) 035017 [arXiv:0810.1599] [SPIRES].

[21] J.F. Barbero G. and E.J.S. Villasenor, Generating functions for black hole entropy in Loop

Quantum Gravity, Phys. Rev. D 77 (2008) 121502 [arXiv:0804.4784] [SPIRES].

[22] I. Agullo, J.F. Barbero G., J. Dı́az-Polo, E. Fernández-Borja and E.J.S. Villasenor, Black

hole state counting in LQG: A number theoretical approach,

Phys. Rev. Lett. 100 (2008) 211301 [arXiv:0802.4077] [SPIRES].

[23] H. Sahlmann, Entropy calculation for a toy black hole, Class. Quant. Grav. 25 (2008) 055004

[arXiv:0709.0076] [SPIRES].

[24] H. Sahlmann, Toward explaining black hole entropy quantization in loop quantum gravity,

Phys. Rev. D 76 (2007) 104050 [arXiv:0709.2433] [SPIRES].

– 28 –

http://arxiv.org/abs/gr-qc/0005126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0005126
http://dx.doi.org/10.1088/0264-9381/27/23/235024
http://arxiv.org/abs/1007.2768
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.2768
http://dx.doi.org/10.1103/PhysRevLett.105.031302
http://arxiv.org/abs/0905.3168
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.3168
http://dx.doi.org/10.1103/PhysRevD.82.044050
http://arxiv.org/abs/1006.0634
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.0634
http://arxiv.org/abs/1011.2961
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.2961
http://dx.doi.org/10.1088/0264-9381/21/22/015
http://arxiv.org/abs/gr-qc/0407052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0407052
http://dx.doi.org/10.1088/0264-9381/21/22/014
http://arxiv.org/abs/gr-qc/0407051
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0407051
http://dx.doi.org/10.1103/PhysRevLett.102.141302
http://arxiv.org/abs/0809.4170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4170
http://dx.doi.org/10.1103/PhysRevD.74.064026
http://arxiv.org/abs/hep-th/0605125
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605125
http://arxiv.org/abs/gr-qc/0603029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0603029
http://dx.doi.org/10.1016/j.physletb.2005.05.003
http://arxiv.org/abs/gr-qc/0411035
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0411035
http://dx.doi.org/10.1103/PhysRevD.71.027502
http://arxiv.org/abs/gr-qc/0401070
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0401070
http://dx.doi.org/10.1103/PhysRevD.82.084029
http://arxiv.org/abs/1101.3660
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1101.3660
http://dx.doi.org/10.1103/PhysRevD.80.084006
http://arxiv.org/abs/0906.4529
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.4529
http://dx.doi.org/10.1088/0264-9381/26/3/035017
http://arxiv.org/abs/0810.1599
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1599
http://dx.doi.org/10.1103/PhysRevD.77.121502
http://arxiv.org/abs/0804.4784
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.4784
http://dx.doi.org/10.1103/PhysRevLett.100.211301
http://arxiv.org/abs/0802.4077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.4077
http://dx.doi.org/10.1088/0264-9381/25/5/055004
http://arxiv.org/abs/0709.0076
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.0076
http://dx.doi.org/10.1103/PhysRevD.76.104050
http://arxiv.org/abs/0709.2433
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.2433


J
H
E
P
0
5
(
2
0
1
1
)
0
1
6

[25] R.K. Kaul and P. Majumdar, Quantum black hole entropy, Phys. Lett. B 439 (1998) 267

[gr-qc/9801080] [SPIRES].

[26] R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy,

Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [SPIRES].

[27] S. Das, R.K. Kaul and P. Majumdar, A new holographic entropy bound from quantum

geometry, Phys. Rev. D 63 (2001) 044019 [hep-th/0006211] [SPIRES].

[28] E.R. Livine and D.R. Terno, Quantum black holes: Entropy and entanglement on the

horizon, Nucl. Phys. B 741 (2006) 131 [gr-qc/0508085] [SPIRES].

[29] L. Freidel and E.R. Livine, The Fine Structure of SU(2) Intertwiners from U(N)

Representations, J. Math. Phys. 51 (2010) 082502 [arXiv:0911.3553] [SPIRES].

[30] E.R. Livine and D.R. Terno, The entropic boundary law in BF theory,

Nucl. Phys. B 806 (2009) 715 [arXiv:0805.2536] [SPIRES].

[31] E.R. Livine and D.R. Terno, Bulk Entropy in Loop Quantum Gravity,

Nucl. Phys. B 794 (2008) 138 [arXiv:0706.0985] [SPIRES].

[32] A. Achucarro and P. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter

supergravity theories, Phys. Lett. B 180 (1986) 85 [SPIRES].

[33] E. Witten, 2+1 dimensional gravity as an exactly soluble system,

Nucl. Phys. B 311 (1988) 46 [SPIRES].

[34] E. Witten, Quantum field theory and the Jones polynomial,

Commun. Math. Phys. 121 (1989) 351 [SPIRES].

[35] C. Meusburger and K. Noui, Combinatorial quantisation of the Euclidean torus universe,

Nucl. Phys. B 841 (2010) 463 [arXiv:1007.4615] [SPIRES].

[36] V. Chary and A. Pressley, A guide to quantum groups, Cambridge University Press (1994).

[37] E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory,

Nucl. Phys. B 300 (1988) 360 [SPIRES].

[38] J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter,

Nucl. Phys. B 799 (2008) 136 [arXiv:0711.0146] [SPIRES].

[39] L. Freidel and K. Krasnov, A New Spin Foam Model for 4d Gravity,

Class. Quant. Grav. 25 (2008) 125018 [arXiv:0708.1595] [SPIRES].

[40] Y. Ding, M. Han and C. Rovelli, Generalized Spinfoams, [arXiv:1011.2149] [SPIRES].

– 29 –

http://dx.doi.org/10.1016/S0370-2693(98)01030-2
http://arxiv.org/abs/gr-qc/9801080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9801080
http://dx.doi.org/10.1103/PhysRevLett.84.5255
http://arxiv.org/abs/gr-qc/0002040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0002040
http://dx.doi.org/10.1103/PhysRevD.63.044019
http://arxiv.org/abs/hep-th/0006211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0006211
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.012
http://arxiv.org/abs/gr-qc/0508085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0508085
http://dx.doi.org/10.1063/1.3473786
http://arxiv.org/abs/0911.3553
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.3553
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.004
http://arxiv.org/abs/0805.2536
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2536
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.027
http://arxiv.org/abs/0706.0985
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.0985
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B180,89
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B311,46
http://dx.doi.org/10.1007/BF01217730
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,121,351
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.014
http://arxiv.org/abs/1007.4615
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.4615
http://dx.doi.org/10.1016/0550-3213(88)90603-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B300,360
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://arxiv.org/abs/0711.0146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0146
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://arxiv.org/abs/0708.1595
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1595
http://arxiv.org/abs/1011.2149
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.2149

	Introduction
	The Chern-Simons Hilbert space
	Basics of the representation theory of U(q)(su(2))
	From Verlinde coefficients to the Hilbert space dimension

	Equivalent formulae for the Hilbert space dimension
	Chern-Simons Hilbert space and random walk
	Integral formula
	An example: all spins equal 1/2

	Entropy of the SU(2) black hole
	The Laplace transform method: basic idea
	A simple application of the Laplace transform method
	Asymptotic of the entropy

	Conclusion

