ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Scattering of an “infraparticle”:
the one-particle sector of
‘Nelson’s massless model

CANDIDATE

Alessandro Pizzo

Thesis submitted for the degree of “Doctor Philosophiz”.
Academic Year 2000/2001.

SISSA - SCUOLA
NTERNAZIONALE
SUPERIORE
STUDI AVANZATI ‘ TRIESTE

TRIESTE
Via Beirut 2-4







To the memory of my aunt Caterina






Contents

Introduction. pag.1l

Part I : The infrared problem in Q.E.D. pag. 3
0.1 Infrared divergences in Feynman diagrams. pag. 3

e Block and Nordsieck’s transformation. Classical current model. Classical regularization.
Chung’s proposal. Kulish and Fadeev’s asymptotic dynamics.

0.2 Analysis of models. pag. 8

e Nelson’s massless model. Approzimation of fized charge. Simplified spectral model. Pauli-
Fierz-Blanchard model. Froehlich’s analysis of Nelson’s model.

Part II : Spectral analysis. pag. 20

1 Construction of the sequence {1y’ }. pag. 23

2 Convergence of the ground states of the transformed hamiltonians Hg .. pag. 31

e 2.1 Transformed hamiltonians Hg , . pag. 32

e 2.2 Convergent sequence. pag. 34
3 Regularity. pag. 45
Part II : Scattering theory. pag. 51
4 Approximating vector vy, (t). pag. 55

e 4.1 Control of the norm of ¥y, (t). pag. 57

e 4.2 Strong convergence of ¥y, (t) for t — +o0. pag. 62

5 Scattering subspaces and asymptotic observables. pag. 72

Appendix A pag. 77
Appendix B pag. 84







Introduction

The main topic of this thesis is the scattering theory in the one-particle sector of Nelson’s mass-
less model. The physical motivations come from the infrared problem in Q.E.D., in particular, from
the difficulties arising even in explaining the interaction between the radiation field and a single
charged particle.

The infrared problem in Q.E.D. (Feynman-Dyson-Schwinger formulation) arises with the divergence
of some diagrams in the S-matrix, as the internal photons’ momenta go to zero. Because of such
divergences the transition amplitudes between states consisting of electrons (and/or positrons) and
a finite number of photons are not defined order by order. The removal of the infrared divergences
is achieved by treating the problem in terms of “inclusive” cross sections: it consists in the sum
over all possible final states accounting for the unobserved soft photons which escape out of the
experimental measures. In fact, the divergences of order n in o (the fine structure constant) due to
the internal photons are balanced by the emission of n photons of total energy below an observabil-
ity threshold Ae, as suggested by the so called classical models, starting from the paper by Block
and Nordsieck [1]. The classical procedure for removing the infrared divergences provide transition
probabilities P2¢ at the order n, which are finite and Ae—dependent in such a way that they are
positive only if Ae is not too small. The sum over all the orders provides a total probability which
is estimated O (Ae) for Ae — 0.

In the task of defining the correct scattering amplitudes of the theory, the rigorous study of models
of quantum mechanical matter interacting with the radiation field clarifies the structure of the soft
photon cloud “attached” to each charged particle in the asymptotic states. It is a significant step
since the non-Fock representation of the asymptotic electromagnetic field in the Hilbert space of the
system is displayed in a rigorous hamiltonian framework. Unfortunately, in the infrared unregular-
ized case, all these models are brought under control at the price of imposing a given (asymptotically
free) dynamics for the electron. The removal of the unphysical hypothesis of no radiative reaction
is indeed an open problem. It is clearly a prerequisite to understand the asymptotic decoupling in
the presence of infinitely many soft photons.

The interest in Nelson’s massless model [2] is due to the fact that it is a simplified version of non-
relativistic Q.E.D. with a non trivial S-matrix, which retains many features of the infrared problem
in electrodynamics as it will be clearer in the next chapters (see also the preliminary discussion in
3]).

The non-relativistic approximation implies that pair production is neglected. However it is reason-
ably not-significant at low energies and therefore does not interfere with the infrared behavior. The
interaction is further simplified in the sense that it is scalar rather than vectorial. Indeed, spin-
less non-relativistic quantum particles and neutral scalar massless bosons are supposed to interact.
Nevertheless, such a difference is suspected to be qualitatively not dramatic for the aspects we are
interested in:

- the absence of one-particle states for the electron (which defines an “infraparticle”, see [4]), that
are states on which the hamiltonian acts as a function of the total momentum;

-the related effects on the asymptotic dynamics.

The thesis is organized in three parts.

Part I is introductory and contains a brief critical review of the infrared problem in Q.E.D., mainly
focused on the aspects which enter in the following constructions. Following the developments in
this subject, it will help to correctly define the protlems faced in Nelson’s model afterwards and it
should provide a background for the ideas exploited in the model analysis.




Part 1T is devoted to spectral issues connected with the absence of one-particle states in Nelson’s
massless model. The results are not completely new, except for the method performed in the con-
struction of the ground state of the hamiltonians at fixed total momentum.

In Part III, starting from the spectral results in Part I and from an assumption on the regularity
of the ground energy (as a function of the total momentum), the scattering states are constructed.
The convergence of the asymptotic dynamical variables, both for the field and the non relativistic
particle, is eventually obtained on the scattering subspaces.

In the appendixes A and B many lengthy proofs are collected, which are related to Part II and Part
III respectively.

The mathematical tools employed in this thesis only require some knowledge of the theory of oper-
ators in Hilbert space and of techniques in Fock space [30].
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Part 1
The infrared problem in Q.E.D..

The following review about the infrared problem in Q.E.D. is not surely exhaustive. We only present
a selection of aspects and related investigations that is influenced and restricted by the particular
problems that we want to discuss in Nelson’s massless model. The relation between infrared as-
pects and indefinite metric or the role of Gauss law are left out of discussion, and more emphasis
is devoted to the rigorous analysis of (non-relativistic) models.

0.1 Infrared divergences in Feynman diagrams.

Let us consider, for instance, a generic scattering process involving an incoming electron with mo-
mentum p and an outgoing electron of momentum p’, whose basic diagram is not infrared divergent
and has the corresponding matrix element :

Mo =7 (p")Q (p,p)u(p) .

‘The notations are as in [5], chapter 16, T, u normalized spinors with Tyu; = 6,5 , 7,8 = 1,2.
The radiative corrections to the first order in « are diagrams obtained by inserting an internal photon
line in all possible ways. Some of them are infrared divergent, so that the transition probability to
the first order in « corresponds to: '
dlk :

ol (1+ aco.) - [ T +aa o1 )
where ¢ (p,p")and d(p,p') are not divergent. Then the transition probability to the first order in
@ is not defined because of the factor [ ill'%}" The mechanism, by which the infrared divergences
appear, is reproduced at higher orders for proper configurations of the internal photon lines that
we add to the basic diagram.

Now, let us quickly have a look at some of the main contributions to solve the infrared prob-
lem, which appeared in literature starting from the paper of Block and Nordsieck.
Block and Nordsieck’s transformation.

In a famous paper [1], Block and Nordsieck discussed a simplified model of Q.E.D which how-
ever captures the nature of the infrared divergences. They consider an electron interacting with the




radiation field ( described by E*", H) according to the hamiltonian

H= c{a% -b(p = ZA (r)) +ﬁmc} + g; / (E”zﬂ— Hz) dv

where @ and 3 are the usual Dirac matrices, r,p the electron position and momentum operator
respectively; A is the vector potential (in Coulomb gauge) in a cubic box of volume 2, with periodic
boundary conditions:

A(r)=2c <%h-) Zws_%é\s,k (Psacos (k1) + Qs,xsin (k-1))
5, A

where ;) are polarization vectors, s € 7?3 space of the box momenta, w; = |ks|, and the following
canonical commutation relations hold

[Psx, Qs 3] = —10s,5: 65, x
[P,P1=(Q,Q]=0

Their purpose is to study the scattering in the presence of an external potential V (x), by following
this procedure:

- the solutions of H1 = Et are found with some approximation on H (see [1]), by considering an
electron freely moving with velocity v;

- the transition probabilities between states at different asymptotic velocities are computed in the
Born approximation for V' (x).

The interesting results of their analysis are:

- the approximate solutions of the equation H 1 = F1 can be easily discussed after having per-
formed a canonical transformation as follows

P}y = Psx — 05,5 (v) cos (k-r)

le,A = Qs ~0s5,x (v)sin (k- 1)

r=r

P (v) =p + s (v) (Psacos (k- 1) + Qs rsin (k- 1))

—
where 05 (V) = n(uf]'—fs‘,\-ks)’ ]T:{ = 2e (-g—g‘—) 5% and T = ¥; the reason is that the approximate

solutions are factorized. As far the photon part is concerned, a base for the solutions is given by
the eigenvectors of the number operator referred to the transformed photon variables

N = Z (PQ,A + iQ;,A) (Ps/,,\ - ZQ;,A)_
B 5,2 \/i \/—i ’

- the transition probabilities between states at different vy, and Voy: and with a “finite number of
photons” ( with respect to IV) are vanishing.




Classical current model.

In this model, the quantized electromagnetic field A, (z) interacts with a current J, (z) € R which
is disconnected from A, (z) and commutes with 4, (z) thereby. In the formal treatment of pertu-
bative calculus, once the interaction lagrangian l;; = J, (z) A* (z) is given, the scattering matrix
S =T — exp (i [ d*zlin: (z)) is analytically computable to each order since [J, (z), A4, (z)] = 0,
which implies that the A, (z) couplings only survive in the Wick expansion. The considered cur-
rents correspond to asymptotic momenta p;, and pj,; , for t = —oco and for ¢ — 400 respectively,
ie.
— pgizt p?iin L1

J#(k)—-ze<m m> for k¥ —=0.
The first result of the computations is that the transition amplitudes between states with a finite
asymptotic photons’ number vanish. To extract predictive results with respect to the experimental
data, it is necessary to consider the “inclusive cross sections” with energy resolution Ae: that are
the transition probabilities summed over all final states which contain an arbitrary number of pho-
tons of total energy below Ae. The inclusive cross sections are finite and the unobserved emission
appears as a multiplicative constant b (Ae), vanishing for Ae — 0 (see [5]).

Classical regularization.

The results in the previous models suggest that only taking into account the soft emission it is
possible to obtain finite transition probabilities. The classical regularization procedure of Q.E.D.
diagrams exploit indeed the fact that the infrared divergences due to the radiative corrections are
neutralized by the same divergences arising from the soft radiation. In particular, the order n
divergences in the transition probabilities are exactly compensated by the emission of n unobserved
soft photons.

The structure of the infrared regularization in the Q.E.D. diagrams was initially studied by Jauch
and Rohrlich and then it was generalized in many works. Among them, the paper by Yennie,
Frautschi and Suura [6] is particularly interesting. In this paper the infrared divergences are factor-
ized in the following way: if My is a not-infrared divergent diagram and if we add n virtual photons
to My, we obtain the diagrams M,,,

- a-B)
anzmn—r‘(“';‘r)—a

r=0

where the m; are not divergent and are of order of , B diverges logarithmically in the photon mass
which is the regularization parameter. It formally follows that the complete matrix element is

]\/I:exp(a-B)Zmn.

n=0
The standard treatment is affected by computational and conceptual problems:
- if we fix a perturbative order n, the experimental cross section is a polynomial in «ln (Ae) of

order n; therefore it is not positive for small resolution energies any more and it is necessary to con-
sider further orders to obtain meaningful cross sections. Moreover, according to the conjecture by



Schwinger, the total transition probability (sum over all the orders) is estimated O (Ae). Therefore
Ae is not a removable cutoff;

- the computation of the inclusive cross sections implies a sum over final states with respect to
quantum numbers that we cannot observe. The perturbative calculus is assumed inside the Fock
space for the asymptotic particles, so that it implicitly requires that only a finite number of photons
escapes from the observation because of the threshold Ae. On the other hand, the perturbative
results contradict the underlying hypothesis by excluding a description in terms of Fock asymptotic
photon states.

A better understanding of the electrodynamic (charged) states’ structure was therefore necessary.
In this direction, two important contributions were:

- Chung’s proposal [7] for the asymptotic states,which was a first attempt towards obtaining finite
scattering amplitudes to each order in a;

- the recipe by Kulish and Fadeev [8] to derive the new asymptotic states from the hamiltonian.

Chung’s proposal.

Chung successfully applies the results by Bloch and Nordsieck to the perturbative series of Q.E.D.
He considers the following asymptotic states, for one electron, depending on the infrared cut-off ¢

e_.x__l2 Lo B | - 7 s ol 3
= p( ) [, st ) dk) exp (;‘ [ 509 (109 -0l 09) k) .

(analogous recipe for v5,,;) where

- k,p € R*, e (k) transverse polarization vectors, al,aJr annihilation and creation operator of the
D ’ 1

electromagnetic field;

- S (k) ~ ¢ pineill) g0 k5 0, and L? (d°k) —integrable outside k = 0;
mn ( ) (2(277)3,;60)% k-pin ( ) g
- 4y, wave function of an electron with momentum pin.

Chung’s computations prove that the new S-matrix elements formally exist to each order, in the
limit € — 0, in the case of scattering from an external potential. Because of the states’ dependence
on pin and poy:, scattering implies the emission of an infinite number of photons for pin # Pout-
These results provide a strong evidence for the conjecture that the asymptotic states of Q.E.D. are
generalized coherent states in the infrared region; nevertheless, there are reasons of uneasiness:

- it is not clear if the state’s dependence on the asymptotic electron momentum introduces some
superselection rule; the choice of asymptotic states is arbitrary to some extent, a physically relevant
space should be specified (see also [9]);

- in the approach by Chung, the coherent states are disconnected from the rest of theory, that is
they cannot be reconcile with the ansatz of the perturbative theory which assumes the free theory
states as the asymptotic states.



Kulish and Fadeev’s aéympi’oi'z'c dynamics.

A different point of view inspires the work by Kulish and Fadeev. Their aim is not only to re-
formulate the perturbative treatment by the definition of generalized transition amplitudes not
plagued by infrared divergences; they want to convince us that the asymptotic space of non-Fock
coherent states (in the infrared region) is the direct result of a corrected asymptotic dynamics,
which is necessary in the presence of massless particles. In this sense, they adapt Dollard’s treat-
ment of Coulomb scattering [10] to Q.E.D.: the claim is that the asymptotic hamiltonian is not
necessarily the free hamiltonian but it depends on the interaction if it is a long range one. The
proposed asymptotic hamiltonian is:

Ha, (1) = Ho + Vas (2)

where

Vas (8 = (2m) 7 [ (3 () + af, (—10) T (I 1) Lk

-ty (k,t) = —e [ php (p) exp (Z‘;—O“t) L2, and p(p) = ¥, (b (p) bn (p) — df, (p) dy (p)) (for fur-

ther details about definitions see [8]).

The so obtained wave operators lead to an S-matrix which is free of infrared divergences when
it acts on new asymptotic state which are a generalization of Chung’s states for more than one
fermion. By the new S-matrix, the infinite Coulomb phase is balanced. In this context all the
derivations are formal and the perturbative theory supports the consistency of the construction.

The analysis by Kulish and Fadeev points out some issues. ;

In their treatment the convergence of the asymptotic limits seems to be solved by the “Dollard’s
dynamical correction”, the new problem is localized in the characterization of the asymptotic states
to which that dynamics leads. To satisfy the Gupta condition on the asymptotic states, a problem
arises in the Lorentz invariance of the asymptotic spaces. A sharp mass-shell for the electron seems
to be missing.

There is no mathematical control of the existence of the fields asymptotic limits in the Heisenberg
picture, inside the Hilbert space where the theory is defined at finite times.

From the results in the previous works it has become clear that:

- it is necessary to overcome the perturbative approach to complete and justify them since the yet
open problems require an approach to the infrared problem not restricted to the scattering matrix
or to the identification of the scattering space at most;

- the various aspects of the infrared problem present many relations, so that they require a more
insight into the structure of the theory.

Therefore the previous results stimulated both a general study in the context of Wigthman’s ap-
proach to quantum field theory (see [11], [12], [13], [14], [15], [16]) and a rigorous analysis, inside
the hamiltonian scheme, of models describing quantum mechanical matter interacting with the ra-



diation field.

0.2 Analysis of models.

The inquired models are simplified versions of Q.E.D. with the following general features:

- the interaction between the current and the e.m. field is not the interaction of quantized fields
because the charge is not described by a field, so that in this approximation pair production disap-
pears;

- to avoid ultraviolet divergences an ultraviolet cut-off is (generally) performed in the interaction.
The underlying conjecture is that, in spite of the approximations above, these models retain the
main infrared features of Q.E.D., in the asymptotic limit |t| — oo and for low energy configurations.
Another source of interest in studying these models is directly connected with the realm of phe-
nomena related to atomic physics. In this context, many studies are recently devoted to a rigorous
analysis of binding ([17], [18], [19], [20], {21]), scattering by light and the relaxation to the ground
state for isolated atoms ([22], [23], [25], [26]), all phenomena where the zero photon mass implies
not-trivial spectral problems.

In this thesis we aim to shed light on the infrared difficulties related to the translation invariant
case, for only one charged particle; namely, we aim at a rigorous treatment of “Compton scattering”
in a scalar infrared model: Nelson’s massless model.

Our analysis will be focused on the relation between the absence of one-particle states and the
asymptotic dynamics, both for the photon field and for the charged particle.

In order to define the conceptual and the technical problems we will discuss later, we briefly review
and compare the answers given by various infrared models, many of them solvable. As we point
out in the next lines, important indications come from these models but, at the same time ,the
analysis is clearly affected by too strong approximations and the answers are not completely clear
and satisfactory thereby.

In this direction we consider both the scalar and the vectorial interaction between non-relativistic
particles and massless bosons, at different levels of approximation. Many of these models are solv-
able, they are approximate versions of (fully) interacting models like Nelson’s massless model and
non-relativistic Q.E.D.. Since in the rest of the thesis we discuss Nelson’s massless model in details,
we now provide its mathematical definition and then we turn to the approximate versions already
considered in literature. A remark on notation: we will call both the spin 1 and spin 0 massless
bosons as photons, the charged particle as electron.

Nelson’s massless model.

The physical system consists of a non-relativistic spin-less quantum particle of mass m, linearly
coupled to the massless scalar quantized boson field. The non-relativistic particle is described by
position and momentum variables with usual canonical commutation rules (c.cx.) [z;,p;] = i0s,;
(h = 1) ; the (scalar) boson field at time ¢ = 0 is:

1 ¥ —iky | g ey Ok
\/_2_773 /(a k)e ™Y +ak)e y)———\/m,

A0,y) =



(¢ =h=1), where af (k),a (k) are standard creation and annihilation operator valued tempered
distributions obeying the c.c.r. ’ ) ~

[a(k),a (q)] = 6° (k- q) , [a(K),a(q)] = [af (k) ,al (q)] = 0.
The spatial translations are implemented by the total momentum

P:p—f—/ka*(k)a(k)d?’k.

The dynamics of the system is generated by the covariant hamiltonian ([H,P]=0)

p2 K ( (k) ik T ( ) K ) dBk th
H:-——-—f—g/ a e F 4 al (k) etk —_—
2m 0 V2 k|2

where « is the ultraviolet cut-off, g is the coupling constant and HP" is the free hamiltonian of the
(scalar) photon field

/lk[ af (k) a (k) &k .

The Hilbert space of the system is H= L2 k(R3) ® F where F is the Fock space with respect to
the creation and annihilation operator valued distributions {at (k),a (k)}. An element of H is a
sequence {¥n} of functions on R***! with [j4)|| < oo, where

) = Z/zb" (%, ke, . kn)Y™ (%, k1, . Kn) ki ...d° kpd®
n=0

and each ¥" (x,ky,.k,) is symmetric in kq,..k,. The n = 0 component belongs to the tensor
product of the vacuum subspace with the non-relativistic particle space L2 (Rg).

Standard results about H and P:
i) The operators P =p ® 1+ 1® [ka' (k) a (k) d®k are essentially self-adjoint (e.s.a.) in

D= \/ hey"

neN
which is the set of finite linear combinations of vectors of wave function A (x) Y™ (kq, ..ky,), where
h(x) € S(R?), Y™ (ki,..kn) € S (R?") is symmetric and n € N. Since p and Jkat (k) a (k) d®k
are e.s.a. in S (R?) and \/, . ¥™ respectively, the result easily follows for the P operators.

ii) The interaction term in the hamiltonian is a Kato’s infinitesimal small perturbation with re-
spect to

p2
Hy=— + g,
2m

Therefore H is es.a. in D = Vinex B ® 9™ and its self-adjointness domain, D (H ), coincides with
D (Hy).



i) The eroups e Pand ¢ ¥ ( 7,0 € R ) commute.
b \ .

iv) The joined spectral decomposition of the Hilbert space with respect to the P operators is
H= [ ®1pd3 P where Hp is isomorphic to F'.
Indeed, to the improper eigenvectors (of the P operators) ¥p

Y8 (x, ki, kn) = (27) % eiPla—mka) Xyl (k) k) OB (k,kn) €5 (R*") and simm.

we can relate a natural scalar product: (¢B,VE) = 6nm [ 63 (ks - kn)Pp (K1, k) A3k PRy,
The vector space \/ oy ¥ is obtained as the closure of the finite linear combinations of the ¥p, in
the norm which arises from the scalar product (0). Starting from this space we uniquely define the
linear application

Ip: \/ v > F
neN

by the prescription:
1
Ip (U3 (x,k1, . kn)) = ﬁ/m (K1) ...b" (k) ¥R (K1, -Kn) Bky..dknibo

where b (k) , bt (k) formally correspond to a (k) ek x gt (k) e~™*. They are annihilation and cre-

ation operator-valued tempered distributions in the Fock space F® = F . The norm given by (0)
for 3 is equal to || Ip (WB) iz ( [lllp is the Fock norm).

v) Since [H,P] = 0, we have H = [ Hpd®P, where Hp : Hp — Hp is es.a. in D* =V, cy¥B; in
terms of the variables P, b (k) ,bf (k), the operator Hp is written as follows:

- (P:Dh _ P)2 K ; A3k oh
Hp = ~——F—" +g/0 (bk)+0b (k))\/m+H

Approzimation of fized charge.

As first approximation we consider the particle energy independent on momentum, i.e. 2%% - m:
* ikx | o1 iy Ak R
Hp=m+g [ (ak)e ™ +a'(k)e ) — + H?
0 V2 INE

The hamiltonian Hn, is e.s.a. in L? (R?) ® \/ ey ¥" The approximation makes the model (explic-
itly) solvable: the electron dynamics is trivial, there is no scattering.

From the differential equation for distributions

da (k, 1) . x5 (k) e~k
27— 4lk —_ e
7 ifkla(k,t) — 19~ 7= i

10



we obtain ) 4
Xg (k) e—ikx 1 e—z]k[t

VTR

a(k, ) =ak)e Kl g

analogous result for af (k,t). :
The asymptotic field is defined starting from the L.S.Z. (Lehmann, Symanzik and Zimmermann)

smeared fields
giHt =il / ab (k) B (k) ke F e He 0l (k) = a (k) oral (k) and (k) € S (R?)

and taking into account the solution af (k, ).
The above expression converges for t — oo on L? (R?) ® \/,,cy ™. In the case of a (k, ), the limit

is A
xb (k) e ™%

~ 3 —~
/a(k)cp(k)d k+g/go(k) —_——|k|\/2—|l_(T d°k

xo (k) e~x

g—F——
k| /2 k]| _
Starting from the joined spectral decomposition of H with respect the x operators H= [ EBchl‘ga:, it

is simple to check that each x-fiber space carries a non-Fock coherent representation of the asymp-
totic Weyl algebra. These representations are however equivalent each other.

from which
a®* (k) = o™ k) =a(k)+

The expression of H,, at fixed total momentum P is

t gxo b 9x6 37, 2 "l &3
/|k| (b (k)+———\/§lk!%><(k)—i———-——ﬁlkl%)dk g/O S

from which derives that the hamiltonian H,, admits a one-particle state if we perform the following
non Fock coherent transformation on {b (k) ,b' (k)}:

b(k) — b(k) - —L— k: 0<kl<
1) =809 - —Sy fork: 0l <n

(it is sufficient in a neighbourhood of k = 0).

The claim is justified considering that:
- the hamiltonian has the following expression

/[k[ aoutT (k) aaut (k) dSk _ 92/ 1
0

~d®k +m,
2[k[”

in terms of the asymptotic field operators;

- after the coherent transformation, each Hy carries a Fock representation of the Weyl algebra as-
sociated to the asymptotic field.

The main interest has been generally concentrated on the described renormalization of the one-
particle states. For our purpose, this transformation is however not very interesting to discuss since

11




in the fully interacting model the analogous transformation is physically meaningless (superselec-
tion of the total momentum). Because of that, we are interested in a physical description inside
the Hilbert space H which is assumed in the definition of the model, with a Fock representation for
the interacting field. Having in mind the final result of this thesis, we now present a construction
for the generic asymptotic state, in Heisenberg picture, that can be considered as the zero order in
the ———expansmn of the “minimal asymptotic electron” constructed in Part III.

We want to describe an electron out of the scattering with the always present soft photons cloud
linked to the non-Fock representation of the asymptotic field in the Hilbert space H.

Let us start from a one-particle state for the hamiltonian H,, , (i.e with an infrared cut-off o in
the interaction)

gf” b b)) a3k
/ Wioph (P)d°P = - VA [ Yo ph (P)d°P
where h (P) is the wave function in the total momentum P and %o p is the vacuum related to the
fiber space Hp (in other formulas, sometimes, we implicitly assume the isomorphism Ip and we use
1o for Yo p). The above vector has the property

® p)—bl (k) _48g K & op(k) bt (k) a8y
Hm,,,egff T 2k ¢0ph(P)d3 = (m_gz/ —Z_I—k—l_ > gf VT ¢,0Ph(P)du

Now we consider the time dependent vector (0 < k1 < k, E° =m—g* [© gﬁl(—'gdsk):

T a8k ® b —bt () a3k

iHt o~ iHP ‘9f” 2 Vi gmiH =BTt gf VAR [y ph (P)dPP =

' _gfn ae)eilklt _at e —ilklt 43y fﬂ bk)=bT (k) a3k
= eiHtg Tk] /27K] e—zHcr - [k 21k f¢0,Ph (P) dBP ==

that for ¢ — 0 has a well defined limit

y—at (i) _adk f& b —bt () a3k

zg2 f ! sin(k-x) &k Ikld —ig® f sin(k-x—|k|t) &£ lkl3 -9 f;l 2l Tk ﬁﬁ:e Tk V21k| wa ph(P) B3P

which converges for ¢t — +00 to the following expression

s ] Colintie) et TR L e SES AN S PN
o -9 ), Tl \/ET‘—‘_egf"l VAN [ho,ph (P)d*P

_ 1_f 1 sin(k- x)lklg 4mig? f sm(fq[)
We remark that the above construction is extremely simplified because the ground energy “E (P)” is
independent of P (E = m—g~ fo 2lkl ~1-d%k) so that VE (P) = 0. It implies that the “static” coherent

factor and the “dynamical” one trivially coincide: the first one is associated to the {b k), bt (k) }
representation in which the one-particle states are defined, the second one is related to the rep-
resentation of the asymptotic field in H. We will see that a less trivial relation holds in the fully
interacting case, where the coherent factors are not c-numbers but depend on an operator.
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Simplified spectral model.

Regarding the behavior at the infimum of the spectrum of the hamiltonians Hp, a better qual-
itative approximation of Nelson's massless model is provided by the following solvable model (see
also [3]): consider for each P: |P| < m the operator

prh’
2m

HP,U‘ = HP,U -

that after a simple manipulation can be expressed as

/1k| (1_§.£) b4 9 bag 95 dsk__gz/ 1 Fh
m valE (1-k-2) Vaj? (1-k- 2) - 2 (1-% - 2)

where xJ is the characteristic function of the set {k: o < k| < }.
The ground state of Hp ,, in the Fock space F' (F ~Hp), is the coherent state (¢ is the vacuum

state):
ng b(ao) bl (1) a3
o T 2
WiP)ygeme - MOTE) VI,

In the limit o — 0, this vector goes weakly to zero. The ground state belongs to a P—dependent
representation of {bf,b}, not equivalent to the Fock one and each other for different P.

The phenomenon can also be seen in terms of the transformed hamiltonians HP - acting on F' and
obtained according to the Weyl transformation W, (P)

1
1—E.§)

— I
B, =W (P) o Wi (R) =1 — ¢ [ — Sk,
o 2 k| (

If we call 5{, the corresponding ground states, we have %{D = 1) for each 0 < ¢ < k; in particular,
the “limit” vector for o — 0 is still in F' with an obvious property of regularity in P.

As we will check in Part II, an analogous phenomenon happens in Nelson’s massless model. We
define a sequence of ground eigenvectors ¢% of properly transformed hamiltonians Hg , according
to a P—dependent Weyl operator which becomes an intertwiner in the limit o — 0, and we prove
that ¢% is strong convergent in Hp~ F for ¢ — 0. As straightforward consequence, in the limit
o —+ 0, the ground eigenvector 1§ of Hp , has a coherent non-Fock behavior for k — 0 and goes
weakly to zero in Hp~ F.

This simplified spectral model is not however interesting as far as asymptotic fields are concerned.
Differently from the fixed charge approximation, the last one does not admit an asymptotic field.

Pauli-Fierz-Blanchard model.

The model was proposed by Pauli and Fierz [27] and later studied by Blanchard [28]. It is a
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model where an electron interacts with the radiation field according to the minimal coupling in the
dipole approximation: :
(p —eAl) ®)°  p® ep AP (0)
2m - 2m m

where

d®k
/2 K|
is the vector potential in Coulomb gauge, é; (k) are the polarizations, s = 1,2, c.c.r. are assumed
for {a! (k),as (k)}, and p is a form factor to avoid ultraviolet divergences.
At the same time a potential V (x) is considered, so that the dynamics is not trivial. V' (x) should
mimic the effect of the radiation reaction. Because of the dipole approximation and of the potential
V (x), the model is not translationally invariant.
We discuss the model in a formalism and with an interest slightly different from Blanchard’s original
paper; it is suggested by the general analysis of the infrared problem in the Wightman framework
[14].
We assume working in L? (R®) ® F , where F is now the Fock space with respect to the creation
and annihilation operator valued distributions {a} (k) ,as (k)}, and we consider first the model in
Heisenberg picture and without the potential V' (x). Given the hamiltonian

A =2 / & (k) {as (k) €Y +af (k) e~ ™V}

2 . A(P) ‘
= B AP
2m m

2
. . ) .
the corresponding evolution is provided by e~iHat = g=iHote™ omm® e~ P Alt) where

Ay=-£%, [ I—k'?ﬂ—l—\/%g (&) {as (k) u (k| ) + a} Q)T (|, 0)} &K

— 1 _ 28 220K sin([k[t)\ 3
= e O (1 2
u(]k] ,t) =1 (€_i|k|t — 1) , Js (k) — % (p 3 é; (k)) (k)

[k[+/2[k|

At time t, the Hy- evolved dynamical variables are:

x = x+ Bt + A(l)

p—=p
as (k) — as (k) e~ it +4ig; (k) u (k| ,t) (af (k,t) by complex conjugation).

Blanchard observed that the hamiltonian Hy plays the role of the “free” hamiltonian with respect
to H = Hy + V (x) for proper potentials V (x) (for details see [28]), namely the limits

s — lim ethe—int
t—rtoo

are well defined on the dense set of H, \/, ., h ® ¥ where h € C§° (R®) and 9™ defined as for
Nelson’s model apart from the polarizations (omitted in the notation) . Therefore it is important
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to specify which are the “free” or asymptotic configurations of this scattering problem. Such a
characterization is the most important point for our purposes. The problem consists in expressing

g tHat, pE \/ h@y™
neN

in terms of the asymptotic variables related to the “free” evolution provided by Hy:

out — Sin — e L2 ’/;(lk[)
Qg (k) = Q4 (k) = Qs (k) e (P €s (k)) k20K
p and { N
. ’; k p( kf)
(& 09) g o
where {aZ""™ (k) o™ (k)} are obtained from the asymptotic limit of the L.S.Z. smeared
fields. The expression of Hy in terms of the asymptotic fields is the following: :

al? (k) = a™™ (k) = af (k) ~

Hy = H;):t(in) + H;;;t(in)
where

w0 = B Y [ aop e 2 e =3 [ el 090z 09

2m  2m?2

and m’ > 0 by constraints on p. Now let us consider the state e~*H4t1y @ h, for instance. It formally
corresponds to

—i out(in) out(in)
e (Hch ’|’th )t/I/VprZbO,ph (p) d3p

o eutao—asutl g 43,
where Wp, E J2 = (st ® Pl VA and [ Wioph (p) d®p is a vacuum state for

the a,symptotlc operator valued distributions a2% (k).
The emerging physical picture is that of an asymptotic electron f W’M/;O h (p) d®p surrounded by
a cloud of soft photons represented by the not- umtary Weyl operators Wp, which are freely moving

according the energy dispersion laws E_, (p) = £ and w (k) = [k| respectively.

Since the asymptotic particle momentum p changes in the scattering because of the potential V' (x),
the in and out states differ for an infinite number of photons, as pointed out by Chung in his pro-
posal for the Q.E.D scattering amplitudes.

The models discussed so far contain the simplifying hypothesis of a trivial dynamics for the charged
particle which is not realistic and makes completely unclear the interaction charge-radiation as far
as the radiation reaction is concerned. This approximation is also at the origin of the coherent
states’ appearance.

An important step towards a more complete picture of the scattering configurations is contained in
a paper by Hoegh-Krohn [29] where the existence of the asymptotic boson field for a class of fully
interacting scalar models is proved by Cook’s argument. His results can be easily exported to the
vectorial interaction case.
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Asymptotic fields in (fully) interacting models.

The general situation considered by Hoegh-Krohn [29] is that of a scalar boson field locally in-
teracting with a fixed number N of non-relativistic particles.

The L.S.7Z. smeared field converges by proving the norm integrability in ¢ of

-

N
d ( ;g _ipek - iHPRE i _
- {elme iH t/a(k) 2k| -3 (k) ket e Ht} =Y o (),t) @k eS (R
j=1
where o (x; (1) 1) = [ eMlt=x®F (k) d°k (analogous quantities for the smeared creation opera-
tor). The Hilbert norm of the single multiplication operator ¢ (x; (t),t) is

sup o (xj,1)]
Xj ERS

which is simple to estimate, by stationary phase methods.
At this point a remark about Hoegh-Krohn’s results is in order:

i) Cook’s argument, described so far, is completely sufficient for massive bosons, in this case the

dispersion law
w (k|) = 1/[K]* +m?

guarantees a decrease at an integrable rate for supy cps | (x4,t)] (see [30]);

ii) in the massless case, it is necessary “to avoid” the light cone directions |x;| = t where the
decrease of |¢ (x;,t)| is only of order l%_l’ not integrable thereby.

For a relativistic electron, due to the energy dispersion law, such a region is automatically avoided.
Indeed, a propagation estimate for the evolved x; () particle position operators yields a fast de-
crease outside any region contained in the light-cone for a dense set of states.

For a non-relativistic electron, a subspace in the Hilbert space has to be singled out corresponding
to asymptotic electrons “inside” the light-cone except fast time-decreasing tails. In [24] it is proved
for the subspace corresponding to hamiltonian spectral values below %(c = 1), in agreement with
the classical situation. An analogous condition is exploited in the scattering states constructed in
Part III for the one-particle sector of Nelson’s massless model, by imposing an electron asymptotic
mean velocity less than 1, already in the construction. The result relies on the propagation estimate

. x i
eHf (2) e psen f(VE(P))
for proper functions f, as it will be explained later.
Froehlich’s analysis of Nelson’s model.

The first systematic analysis of the fully interacting and translationally invariant Nelson’s model
was performed in two papers [3] and [31], which strongly inspired the present thesis. In such a
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study the previous information from solvable models is mastered, several concepts for a collision
theory are developed and many technical tools are provided. The following cases are investigated
and compared: : ‘ - '

- the massive and the massless cases as far as the boson field is concerned;

- both the non-relativistic and the relativistic dispersion law for the charged particle energy .

The scattering problem is studied in the “Haag-Ruelle” framework [32] adapted to the mixed char-
acter of the actual model which joins quantum mechanical matter and a quantum relativistic field.
This approach is satisfactory as far as one particle states for the charge are available: it happens in
the massive case and for an infrared-cut interaction in the massless case. By the one-particle states
and the asymptotic limit of the L.S.Z smeared field, the asymptotic picture, in the one-particle
sector, is simply given by a free electron and free bosons in Fock representation.

Such a physical picture fails in the true (without any infrared regularization) Nelson’s massless
model and two alternative scattering descriptions are considered in the paper.

The first one tries a generalized Haag-Ruelle theory, by a limiting construction analogous to the
one already showed in the “fixed charge approximation” of the model. This approach is discussed
and developed in the next sections of the present thesis, where it is proved to be consistent.

The second one assumes the existence of the asymptotic boson free algebra to define the generators
of time-space translations of the asymptotic charge as a difference (for details see [3]). Similar
concepts were later exploited for Q.E.D. (see [14]) in the Wightman framework of quantum field
theory .

The first approach requires a careful analysis of the one-particle improper states or in other words
of the one-particle states corresponding to smaller and smaller infrared-cutoff o. The “spectrally
simplified model” indeed hints at the absence of one-particle state and a coherent structure less
trivial than in the “fixed charge approximation” model.

The study of the ground state of the hamiltonians Hp is performed by a method already used by
Glimm and Jaffe [33]. Very roughly, the method consists in (for details see [31]):

- the discretization of the photon momentum space, which implies that the free hamiltonian (Hg =

P-prh)? - : N . -
= (——QT;J— + HP" ) spectrum is discrete; since the (discretized) interaction is a small Kato-

perturbation, the (discretized) hamiltonian Hp has discrete spectrum as well and, in particular, it
has a non-degenerate ground state;

- the removal of the discretization, which is the difficult step.

For Nelson’s massless model, the main achieved results are:

- the absence, in the not-infrared regularized case, of the ground state for Hp in the Hilbert space
Hp =~ F and its existence in the P—dependent coherent representation of {b(k),b" (k)} with
coherent function:

— g or
\/§]k|%(1—E.VE(P)) Jor k=0

- the following properties for the ground energy E (P):
e E(P) = E(|P]|) is absolutely continuous :5—51115—) exists almost everywhere;

8E(P)

® |7

’ < 1 for |P| < m in the non-relativistic case, for each P in the relativistic case
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(v/p? + m? instead of % in the hamiltonian).

Other important properties for £ (F) are mentioned and used in chapter 1.

A crucial technical ingredient enters in the above results: the pull-through formula. It is concerned
with the action of b (k) on the ground state ¥% of the hamiltonian Hp ,(i.e. with a o infrared-cut
interaction):

1
b (k) Yf = —=

V2 K| <E" (P) — [k
The formula above plays an important role (also in next chapters) because it contains a structural
information about the logarithmic divergence, in the infrared limit, of the boson number evaluated

on the ground state. It also accounts for the “gsymptotic free” infrared character of the model, and
of Q.E.D. by analogy.

g <kl <k.
‘_HP——I(,0> P o< |kl <

As far as the scattering is concerned, the (first) approach in [3] consists in the removal of the
infrared cut-off ¢ in a time-dependent expression, ¥, (t), explained below. The limiting vector
lim; 00 ¥y, (), has to represent, in Heisenberg picture, a freely moving electron surrounded by a
freely moving soft photon cloud. The wave function for the asymptotic photons is suggested by
the spectral analysis, according to the same reasoning discussed in the approximated models. The
comparison with perturbative results provides further confirmations for the considered construction.
To construct the wave function of such a generic vector that we call ¥, (t), let us start from the
wave function of a one-particle state with respect to the charged particle position operator and the
photon momentum variables. Let it be given by the sequence

{,(/}cr(") (x,kl,...,kn>} (;/

n 2
7™ (%, ke, . kn)| Pzdky..d®En < 00)

where
b (x,kl,...,kn)=/eip'xqu(ﬂ) (i, kn) @0 957 (ky, ooy kn) simm.

(in v (t), the h is referred to the wave function in P of the one-particle state according to
the notations later used in chapter 4; in the above expression the P-dependence is hidden in

~
TP{;’, ) (kla ;kn))
By the substitutionp =P —k; — ... — k,

" (x,kq, o k) = / giPxgmillkit k) x o™ (1o, k) dp = / P xe— P xp (P o™ (kL k,) d°P

where

~ (n) 1 o) . (™) 2 3 3

Doppere—ter, (K1 k) = 5 )%h(P)sz (ki,onkn)  with > [ |0p | dhid’ka =1
™ n

Since we know the action of {a (k) ,at (k)} on Jg("’ (ki, ..., ky), we can consider an expression like

o iP-x ,—iPP".x 1 aha'™
(27:)% J[ak) \/‘g’lk]%(glx_oéﬁEa(P))e PP xp (P) g (i, Kn) d*Pd’k =
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= 1 9x35 (k) iPx ,—iPP".x o (") k ) dBPd3k —
(2m) % JJal) VakE (1-kvee(e) ¢ © wP—klfn—kn (k1,0 kn) d ,

— 1 iP-x ,—iPPh.x k) e—ikx 9xq (k) () i ...k BPBE =
(~2-7~T—)—%—fe e J a( ) \/§Ik|% (1—§~VE’(P)) Tﬁp_kl_u_kn ( 15 Kn)
— 1 iPPh.x_—iP.x 9x4 (k) —ik-x (™) k. k. k. k; k,.) d3kd3
g;)-g;\/ﬁfe ¢ / ﬁlklg(l-ﬁ.VEa(P))e VB ket —kgpr ok (1K1 K K, k) d°Rd°P
analogous reasonings for the action of [ af (k) 9% (k) d?k and of HP",

Valk| 3 (1-k-vE-(P))
On the basis of these definitions, after having expanded the exponential, an expression like

g [* — aic)—af (1) 23k (n)
. - rrph “ —k-VET(P - rph o . -oph
(e-lHt’d}h (t)) (n) (X,kl, “kn) :/ e_,HP te 2|k| (1 VET( )) ezHP to—iE (P)tezP~xe—zPP xp (P) ¥p a3p (kl, Lk
K1 a(k)eilklt—ikex _ t oy, ~ilklt4ik-x (n)
___gf (Xk) - (k) d3k
D _;prPh. 4 VZk|2 (1—-k-VET (P —iE°
— [ePxg-iPThx [ o ( ®) e PR (P e | PP (ki,.kn)

can be handled.

For a fixed infrared cut-off o, the time convergence of 1y, (t), is obtained according to Heep’s
method [34]. The proof is possible thanks to the estimates for the action of polynomials of {b(k)}
on the ground state 1% (generalized pull-through formula, see [3]) and because of an implicit prop-
agation estimate for the electron, contained in the constraint |VE? (P)| < 1.

The difficulties in handling the analogous expression without the cut-off o are discussed in Part 111,
where an alternative expression is constructed to avoid technical obstructions.
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Part 11
Spectral analysis.

In this section, we shall mainly concern ourselves with the fate of one-particle states in Nelson’s
massless model, when no infrared regularization is considered in the interaction. Such a study con-
sists in the determination of the limit for ¢ — 0 of the ground states of the hamiltonians at a fixed
total momentum P and with an infrared cut-off o (in the interaction term). For this purpose, we
use an iterative procedure different from the operatorial renormalization group [35]. It provides the
strong convergence of the ground state, with an error estimable in terms of the infrared cut-off that
we have to remove, if the hamiltonians are properly transformed and for small coupling constant
g. Our method is based on the analytic perturbation; it exploits the “smallness” of the variation of
the interaction term when we slightly modify the infrared energy scale.

The strong convergence proved in this section is a fundamental ingredient for our discussion of
scattering in chapters 4 and 5. In addition, the performed constructive method aims at shedding
light on the physical content of the limit states, which have been already found non-constructively
[3]. By this method, we intend to partially answer simple questions, in particular, how two ground
states at different cut-off or at different P are related, in which sense and to what extent the ex-
pected regularity, of certain physical quantities, is conserved.

Survey of results
Taking into account the definition of Nelson’s model (Part I, pag 8), our first concern (chapter

1) is to construct the ground eigenvectors @b;" of the hamiltonians Hp ,, acting on Hp >~ F' and
with an infrared cut-off o; in the interaction term

_ (ph-P)’ K ; Bk N
Hpo; = B — +g/aj (b(k) +b' (k) -——\/m + HP

where P belongsto S = {P: |P|< &}, 05 = ket jeN,0<e< (%)8 and for small values of g
(uniform in j).
In this construction, the underlying idea is to break the interaction and to construct the vector 5 ™
in terms of g’ by iteration of the analytic perturbation. The “small” and analytic perturbation for
the hamiltonian Hp ., is represented by the difference of the interaction terms

A«H'P lg;_‘_lz HP,O'j+1 - HP,O‘j
at subsequent infrared cutoffs o; and at fixed coupling constant g.
In developing this technique, the tensorial structure of the Fock space is crucial: it means that if
the one-particle Hilbert space h is a direct sum hy & hs, then the bosonic Hilbert space F' over A,
F (h), is isomorphic to Fy ® F3, where F} is the Fock space over hy and Fj is the Fock space over
ha.
The technique substantially relies on the comparison between the resolvents of the hamiltonians
Hp,,and Hp s;,,; it recursively uses the Kato-Rellich theorem on the analytic perturbation of
isolated eigenvalues (of self adjoint operators) to relate the corresponding ground eigenvectors 7,[)?,5
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and g .
At each step two pieces of information are required:

1) a lower bound for the gap of the hamiltonian Hp ,; restricted to the subspace

Fa—'t+1 =F(h) h=1L (RB \ Off;+1’ ) 0o =1kt [k <oy}
2) an estimate of the difference AHp [o},,= Hp o, | FE ., —Hp,; |p+ between two subse-
741

quent infrared cutoff hamiltonians; this is small with respect to Hp o; | p+  in a generalized sense,
i+l
which means that it is possible to expand the spectral projection of Hp 41 |+ _» on the ground
741

eigenvalue, in a perturbative series in terms of the resolvent of Hp o, | r+  and of the difference
T4l

AHp |3,,.

The requirement 1) is provided by lemma 1.1, concerning the study of the ground eigenvector
of the operator Hp,,, restricted to the subspace F;;H. The result is that, if w;ﬁ is the unique

(up to a phase) ground eigenvector of Hp ,, |p+ of energy Ef’ with gap bigger than %, then
T <

Hp o, |p+ has unique ground eigenvector ¥y ® g (Yo vacuum state) with a gap bigger than

3 J+1

B'O'J_}_l.

The meaning of this result is that, if the operator Hp, +; is applied on the larger space FF erepmg

fixed the interaction till the cutoff o;, the contrlbumon of the new terms which appear is positive
in such a way that the ground state is the same as for Hp ,, | F, and the gap has a substantially

“free” behavior (i.e is of order gj41).

The requirement 2) is provided by lemma 1.3. Except for an ordinary factorization (see [35])
in the series expansion of the resolvent and a crucial consideration based on the joined spectral
decomposition of commuting observables, the result is only due to the relevant estimate

[0 /1) o

(where the expression on the right side is supposed to be well deﬁned)

Thanks to lemma 1.3, we can establish in theorem 1.4 that T—I—:—— has an analytic expan-
R o

HPh2 )

— and the difference AHp |57,,, at small, but fixed, coupling constant

Ti+1 X
g and for a properly chosen E. Then we define ¢f’** as P, ,vg’, where P,,,, is the spectral

projection associated to Hp ,,,, and centered on the ground eigenvalue of Hp o,

sion in terms of
Hp o511

Tip1

L 271'27{HPUJ+1~—E

where E belongs to a proper circle of integration in the complex plane according to the estimate
of the gap. We obtain 15" as ¥g’ plus a finite g—dependent reminder of order 1. Moreover the
gap associated to g’ ™" is bigger than 1 505 and ”’z,ba”l H > c“w H where 0 < ¢ < 1, provided g is

dE ¢
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sufficiently small. Such results allow us to implement the iteration and to construct the sequence
{y% } thereby.

Then (chapter 2) we deal with the problem of the convergence of {yg’} and we are forced to
discuss a related sequence {@g } .

Mathematically, we are faced with a problem of perturbation of eigenvalues at the threshold of the
continuum spectrum, more specifically of the ground eigenvalue of the hamiltonian

o (PP
Hp = o + HP"
If the exponent of k| in the interaction term of the hamiltonian Hp were larger than —%, the
norm estimates about the resolvents would be sufficient not only to construct the sequence {@b;j }
but also to gain the convergence. The relativistic fleld case —1 is a limiting case which requires
inequivalent representations of the variables {b (k) ,0f (k)} at different P. After having performed
the required coherent transformation, a strong estimate of the series expansion of the difference
between two subsequent ground eigenvectors is sufficient to prove the convergence. The known
coherent transformation (in this respect see [3]) is reobtained thanks to an heuristic proof based on
a virial type argument. Starting from the assumption of a ground state “coherent in the infrared
region”, such an argument works out the representation given by the following intertwiner

® o blag—bl (k) a3k

W (VE (P)) = eﬁg o i (1-leveE)) VR

where VE (P) is the gradient of the ground energy (as a function of the total momentum P).
Taking care of the above expression and by analogy with the simplified spectral model (Part I,
paragraph 0.2) we turn to consider the transformed hamiltonians .

HE, =W, (VE° (P)) Hp W] (VE? (P))

f__bm-btog gl
94, 1| (1~,1:~VE°‘(1:-)) 2| k|
where W, (VE? (P)) =e .
Then we realize that Hg , can be rearranged in the following “canonical” form:

2 )
1 1 a a < a
%<HP,0—W~<¢P,HP,0¢P>) + [ (=1 BT (@) ()50 @k + e (o)

where

_prh _ g e K(p0OTTM0) gy
o llp, =P gfa ﬁ|k1%(1—§-VE”(P))d

e ¢% is the (unique) ground eigenvector of Hg , (note that no problem with the normalization
and the phase of ¢% arises in the above expression)

e cp (o) is an additive constant.
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An iteration procedure as in section 1 can be performed on the hamiltonians Hg . to construct

the sequence of the corresponding ground states ¢% , using the spectral information known for the E
hamiltonians Hp ;. We find that thanks to the property '

I, ¢y — e b, 0% ) ¢p p Loy i=1,2,3
{ iI¢H (o )} i

the remainder ¢g*" — ;’ is of order of some positive power of ¢;, in contrast to the sequence

{y¢ }. The final result is the content of theorem 2.3 and corollary 2.4 in which we prove the
strong convergence of the sequence {¢% } to a vector ¢p in Hp ~ F.

As already seen in the simplified spectral model, we obtain that the sequence {ng } goes weakly
to zero in Hp and it converges to a vector ¢p in the representation of {b(k),b! (k)} given by
the non-Fock coherent transformation W (VE (P)). Since the representations of {b (k),b! (k)},
associated to the intertwiners W (VE (P)), are not equivalent for different P, the construction of
a state “ [ 9pd® P” is physically meaningless (it requires the superselection of the total momenturm)
[3]. For the construction of the vector [ ¢pd®P in H, we define a strong convergent vector ¢p for
o — 0, where o lies in the continuum. It carries a (strong) Hoelder property with respect to P,
uniformly in ¢. All this matter is discussed in chapter 3. Such points are crucial in the construc-
tion of the asymptotic states in the scattering theory developed in Part III, chapters 4,5 (see also [3]).

1 Construction of the sequence {ng }

In the present section we only construct the sequence of eigenvectors of the hamiltonians Hp ;- In
order to do it, we introduce some preliminary lemmas (1.1, 1.2, 1.3) which are necessary to perform
the iterative procedure in theorem 1.4. Finally in corollary 1.5 the sequence {wp ,JE€N } is con-
structed. Lemma 1.3 is crucial in the proof of theorem 1.4. Starting from the relation between the
resolvents of the hamiltonians Hp ,,,, and Hp ,, , it allows us to establish that the norm difference
between the corresponding ground eigenvectors ¢4’ ** and g is of order 1.

The initial hypotheses are:

1) the considered infrared cut-off are oj = ket where 0 < e < (%)8, jEN;
II) the momenta P are 'restmcted to the set L= {P: [P| < &1,
III) the relation 2wg?k + nez < 555 has to be satisfied.

We synthesize the content of the three lemmas:

- in lemma 1.1 we study the operator Hp ,; restricted to the subspace Fr 1) under the initial

assumptions, we prove that if 7,1)?3 is the unique ground eigenvector of Hp g, | 5., with gap bigger
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than %, then ¥ ® v is the unique ground eigenvector of Hp o, |p+ of energy EZ’ and the
Z Ti+1

corresponding gap is bigger than gajﬂ;
- in lemma 1.2 the ground energy is checked to be not decreasing in the infrared cut-off: B > EZ™H;
- in lemma 1.3 the meaning of the “smallness” of

L — —
AHp |77, = Hp,oj1 |F;Lj+1 Hp o IF,:‘J.+1

with respect to Hp s, |p+ is explained.
Ti+1

Remark

The ultraviolet cut-off « and the mass m, with the initial constraints, are fixed. The value of
g (g > 0) will be constrained several times during the procedure; at each time we call g the max-
imum value such that the constraint under examination as well as the previous constraints are
satisfied. In chapter 2. we have to assume a small ratio 2 to prove the convergence of the trans-
formed sequence {¢p } .

Lemma 1.1

If 45 is the unique ground eigenvector of Hp o; | F with corresponding gap bigger than %,
then ¢y ® o is the unique ground eigenvector of Hp,q; |py _with the same eigenvalue Ef’ and
Ti+1

its gap is bigger than 2oj1.
Proof.

Let us decompose Ff, | as Fjt, ® Fy),,, where Fgi,, is the tensorial sub-product defined as follows

Foi =F(h) , hELz(O"f d3k),0"i ={k: oj41 < K| <0} .

Ti+1 oi+1’ Tj+1

Clearly the vector g’ ®4p is an eigenvector of Hp,q; |+  with eigenvalue Eg’ and also we have
71

that
Hpo;  Ff 0 {ug @} = Ff, 0 {dF @0} -

where {13’ ® 1o} denotes the subspace generated by Pp ® .
For this reason the gap that we want to estimate can be analyzed starting from in fspec < Hp o, | p+ (v : ’
’ 7it1 IS ®1/10}
if the latter quantity is larger than Eg. In this case, the gap corresponds to
. o
in f spec {Hp,gj | o+ 6wl oo} “EP]} .

Tit1
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Since it is useful in lemma 1.3, we prove a stronger result:

U FURN L B
infspec {JTLP,UJ. !szjJrl@{w;j@wo} __5 HPM |7 JJPJ} > 505+ -
For this purpose, note that [Hp o, N |77,,] = 0 where N |1, = f:}’+ b (k) b (k) d®k; it implies
that our search of the infimum can be restricted to the analysis of the mean value of
o —Z[gph
He .o, IFﬂ++1 o{vy o} 5 o3

on normalized vectors like v ® 7 (¢ ® nLYg ® 1), where ¢ € Ff is in the domain of Hp s,

n € Fy7,, is in the domain of HPh .
At this point two different proofs are available. The ﬁrst proof that we present is selfcontained in

this paper but it requires a constraint on the ratio £ “(zmtzal hypothesis IIT). The second one re-
quires no constraint for x and it relies on some properties of the ground energy E (P) proved in [31]*.

First proof.
We distinguish two different regimes depending on ¢ = (n,HP? |5, n):

1)g< 3
it implies [VE? (P')| < £ where |P’| < |P| + ¢, so that we can estimate

1 )
os _—fyph . nid
(so ®n {Hp,aj Irx, o{vsiow) —5H |54 —BY }so ® 77)

from below in terms of

(1 . o;
min {5‘73' ) anq:%%EIQ|ZU:’+1 {EP —-q Ey + ¢ 'CII}}

i

due to the fact that the gap of Hp s; |p+ is bigger than =, by hypothesis. Moreover from the
o
constraint on the gradient and being %O‘j > %ajﬂ, the above quantity is always larger than %aj_H.

2)q> 3
in this case, let us start observing that

Heo; lpy  —HPM |7, +27g° > 0
741

Tj+1

to provide the bound

) 4 _m
h o 2 a 2 J
<(P®77,{HP o; IF++16{¢P ®vo} SHP 7., EPJ}gp@n) > gq—27rg k—Ef > 53—27rg P
Now, from the initial hypotheses and from next lemma 1.2 we have

m o; 2 3 3
> — — - > i S >
o - 21g%k — Ep 5% 2ng°k — Eg° > % 2mg%K i 2 01 > 50,_,_1

1 am indebted with J.Frohlich for having suggested me such proof and for an helpful discussion of this lemma.
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Conclusion ' '

infspecd Hp o, | ot o ——1—th 9 —Ep ¢ > §0j+1 )
I FVj+1e{'¢'P ®¢0} 5 T3+l -5

Second proof.

It starts with the observation that

. 1h e j
infspec {HP‘UJ" |F+ 8{1b;j @0 } —ngh l”j’+1 _EIU’ }

Ti+1

can be estimated in terms of
min {%U:i s iNfalal>054 {Elij—-q - Elc;j + % lcﬂ}} .
Then we exploit the property
{qu:IQIZUjH {Eg’j—q — By + % |q|}} 2 % lal > %‘UH

which holds for P € ¥ and derives from the concavity of t(P,0;) = Ef' — f—; and from the in-

equalities EZ > Eg’, ¢ (0,04) > t (P, 0;5); both the two properties are discussed in [31].

Lemma 1.2
The following relation between By’ and BEg** (ground energy of Hp o, ., | FZ, ) holds:
Ti41

EZ > EgH > Ef —10mg’o; .

Proof.

. o; Sy
Considering that Hp q;,, iF:er: Hp,o, IF;LHI +1® gfﬂj+1 (b (k) + bt (K)) \fgiklé’ the expecta-

. o
tion value of Hp 5,4 |F;r'+lon Yy ® o
2

( ;j ®w07 -HP,D'J'+1 lFrj;_(_l T)b;;" ® wﬂ)
[vg ©wol’

coincides with EZ. Eg'*' is the infimum of the mean value of Hp,q;,, |p+ on the normalized
o1

vectors in F  belonging to the operator domain, by definition. Therefore Eg* < Ef and in
general EZ? < Eg' for 01 > 03 . Moreover:

e as proved in the previous lemma

Tj+1

1 )
inf spec | Hp,o; | p+ —ZHPh |73 > E{;’,]
" T Wi B
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e being a square

aj G‘Sk
H]” IUJ+1 / (b (k) -+ bT (k)) -\—/jl—— + 107’g (O‘_} 0‘j+1) 2 0

i+1 I"

so that

BEZ* = inf spec (Hp,gj =, +g [;7 | (b(K) +bf (k) k12> >

> inf spec (Hp,gj lp+  —2HPM |G, 107rg‘c7j) > Eg — 10mg%0;.
7i41

Lemma 1.3

For fixed and properly small g, (AHp)? =g [% (b(k) + bt (k) is small of order 1 with
lkl

Oji+1 Tit1
respect t0 Hp s, |+  in the following sense:
Ti+1

given E (j + 1) € C such that |E (j + 1) — inf spec (Hp o; IF;L+1> = IE(] +1)—-Ep | Lo

+oco

1 | _ 1 Z
Hpo; + (AHP)U i1 —E(+1) 77, Hpo; —E(j+1) n—=0

where 0 < C'(g,m) < £ is a constant independent of 0.

( (BHP)oss HpaJ—E(jH)) s

and "
L 20(C(g,m)

Tj+1

1 . 1 "
— (AHp)??
HP,O'j - E(] + 1) ( ( P)Uj+1 HP,O'J' - E(] -+ 1)> Ft

Proof.
Let us analyze the n*” term of the sum

o 1 "
Hp’a-j — j -+ 1) Z ( <AHP a""l H E(j -+ 1)) |F‘;’}+1

(AHp)??

(" = mn (AHP)Z, gy R e

= (V" (memm) - (o) | (AER)Z, (z2e0em)

where ( m) *is defined starting from the spectral representation of Hp ; by using the

[

s
B

L
2

1
- (Hp,,j —EGH )

convention to take the branch of the square root with smaller argument in (—m,m].
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¥

3 3
Study of the norm of {(-g;;%z;;r) (AHP)G-J+1 (m) } IF;;H.

(o)

1
2

W=

aHe)?,., (e emr)

F+

Ti+1
1 L
2 )2 + 3 S S
= H (Hp',j—E(j+1)> (9 fgm \/_Ikl - (b(k) +0f (k) d k‘) ( p,,j—E(j+1)) . <
Fr
N :_12- j+1
S S 2 3
< 29 H HP g (]+1 H ( Oj41 \/_1k|2 ( ) d k) (HP o —E(]+l))
.7+1 F;er
if the quantities written above exist.
The following estimate holds:
73 d®k 1 2 1
b (k) ( - ) 107 -0} . (1)
/054-1 V21K \HPo; — E(G+1) Fj+1

Indeed for vectors ¢ € DY F, aHl (Db = \/" B, see point V), pag. 10,):

=

ph |73 1
) H |0‘j+1 (HP,aj -—E(j—{»—l))

12
aj 2’k 1 2 B 1
fﬂj«H b (k) /2 /K| (HP,aj —E(j+1)) ¥ o+ < 2mo; ((Hp.oj —E(j+1))
Ti4+1

171 1
h |03 1 2 1 2
HP |ojia [(Hp,,,j—E<j+1)) ] (Hp,g,.—E(m)) 14

< 270; - |ll| -

+
Ti+1
aj

(note that [Hp o, H?" ] = 0)-

The operator norm of

1 i 1 H
ph . .
" I‘TJ‘H [(HP,UJ‘ -FE (J + 1)) j‘ <HP,0’]' - F (.7 + 1)) }F:H'l

can be studied separately on g’ ® 1 and on Fif | © {vg ® o}
The operator vanishes on Yy @ o (put H ph |23, on the right). The discussion is then restricted
to the subspace Fyf.., © {45 ® Yo}

As already seen in lemma 1.1, we have

1 .3
inf spec (Hp o IF;rJrl -—5 HPh O |C,J+1> >Eg + 041

from which

3
it spec (Hros g3, ~5H™ Gl ~ReB(+ D) 2 doi - ggon >0.
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Going to the joined spectral representation of Hps; and HPM |77, | we obtain

B I, [(Hp,gj —:tE(ijl))-} (Hp,q —iﬂ(jwtl)) =2 @

+
Foim

b=

Conclusion

W=

For g sufficiently small the thesis is proved since

is of order ( 0,1 )

J+1

R
He,, ~E(G+1)

+
foi41

Theorem 1.4

The hamiltonian Hp ., |+ has a unique ground eigenvector ¥g' ™' of energy EZ* and the
i+l

corresponding gap is bigger than 2L the (unnormalized) vector Py ™ is so defined
T = __Lj{ ! dE (j + 1) v (3)
P T i) He,,, ~E(G+1) P

where E(j +1) € Cand |E(j +1) - B | = SO
Proof.

Continuity argument.

BF)

oip10 and we de-

We distinguish the coupling constant g in Hp s, |p+ from that one in (AHp)
Ti41

note the latter by g*. Kato-Rellich theorem ensures that (3) is verified for sufficiently small g¥,
since the gap of Hp ,; |7+ is bigger or equal to 4041 and (AHp (g‘i))a’%1 is a small Kato per-
Ti+1 93

turbation with respect to Hp,s; |p+ . Now look at the figure
Ti+1
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ImE(j+1)

—]

sigma_j+1
E_PJ“»U

. 3Ssigma_j+1 ReE(+1)
~11120sigam_j+1

if gt increases, the equation (3) is valid till the cigenvalue Eg™* (g*) remains inside the circle of
integration and the remaining spectrum of Hp ;4 | = remains outside of the circle of integration.

There exists a limiting value g# for which the expression —z [ Femrled, 5o | 4F (F+1)
diverges, because the spectrum intersects the circle of integration.
According to the estimates given in lemma 1.3, we can conclude that:
1 : ; .
1. the integral —5= § Torriler, . —z5 || 4B (j+1) exists for 0 < g" < g5
7
2. the ground state of Hp o4, |p+  is unique and it is not zero since
7541
+o00 1 n
T = —(AHp)Y dE(j+1
P P 2’T’I, %HP’% _ ] +1) ( ( P)Uj+1 HP,O'J‘ —-E(J +1)) (.7 -+ )
| @)
where the norm of the remainder is less than Il%%—((%% ”7,[);3’ H, therefore
llC g m) —12C (g,m
0'J+1 > J > J > 0
log ™ 2 el - =gy WP 1 2 ~—~———~C( o Hog |

3. since for lemma 1.3 Ef'"* < EY,
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Corollary 1.5
The sequence {1,[);’: ,j € N} is well defined.
Proof.

Thanks to the results of lemmas 1.1, 1.2, 1.3 and theorem 1.4, it is possible to iterate the pro-
jection at fixed g, starting from the vacuum state 1o at the level j = 0 . The iteration is consistent
and does not stop since the vector obtained at the step j + 1 has norm bigger than a fixed fraction
of the norm of the vector at the j step. At each step the infrared cut-off is reduced by a factor €3.

2 Convergence of the ground states of the transformed hamiltonians
iL:’U,CJ‘j *

By analogy with the simplified spectral model, we conjecture that the hamiltonians Hp have a ground
state for representations of {b (k) , b (k)} which are coherent in the infrared region (k — 0). Then
an argument is developed which explicitly identifies the expected coherent factor in the case P = 0
and implicitly in the case P # 0, P € X. Such an heuristic information is then used in a rigorous
proof which is based on the iterative procedure of construction of the ground state.

Derivation of the coherent factor?.

Let us assume that ip is an eigenvector of Hp and that it is “coherent in the infrared region”,
which means

b(k)ve ~ fp (k) ¢p for k=0

where the meaning of the limit is given only “a posteriori”. Then the coherent function fp (k) has
to be such that the following relation is satisfied:

(¢vp,[Hp,b(k)]¢p) =0 fork —0.

From computations the expected behavior for fp (k) is
1 g 1

e (k) Rkoo ——2— - =— : .
2 i k- ,prh /
V2K (lk| + o~ B (Zl-aiw;lwﬁp)) 21 [ 4 2 . (P"(P”h)wp>
2m ] m

the coherent factor is therefore labelled by

(Y, PP p)
ll¢e I

%I am indebted with G.Morchio for having suggested me this nice argument and for many discussions and advice.

P—(P"), =P-
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The argument proves that if the ground state is “coherent in the infrared region”, it does not belong
to the Fock space. Starting from this result we act with a proper coherent transformation on the
variables {b (k) ,b (k) } of the hamiltonian Hp and we look for a ground state of the so transformed
hamiltonian in Hp.

2.1 Transformed hamiltonians Hg , .

Let us consider the coherent transformation

b (k) — b(k) —

fork: o<|k[<&

m

g
 P_(PF),,
V2 k|2 (1—1{-—-——?—2)

obtained by the unitary operator

b(k)—bt (k) a3k

~ P‘<Pph)¢;> V2Kl

- f"
P — (PPhY ™ (1—1:» _
Wo’ < < >'¢ p‘) =€

m

(5)

which becomes an intertwiner between inequivalent representations (of {b (k) ,bf (k)}) in the limit
¢ =0 . From the perturbation of the isolated eigenvalue Ef of Hp s |p+ (see [3]) , one can easily

check that P — <Pph>w, corresponds to mVE’ (P).
P

Note that VE? (P) satisfies the equation:

(B, = P~ mVE" (P) = —— (68, Tip.068) 4" | k £% (6)

- 3 = 2
Ve llo |l 2 |k|? (l—k-VE” (P))
where ¢% is ground eigenvector of the transformed hamiltonian

We (VEU (P)) HP,U'W; (VEU (P))

L(b(k)+b' (k) Bk

and llp, =P 9J; Valk|? (1-k VE“(P))

Transformed hamiltonian W, (VE? (P)) Hp , W} (VE’ (P)).
Let us rewrite Hp,,, P = mVE’ (P) + (P?") ,, as
P

(mVE"(P)+(P”")¢d)‘P”"
P

2 ph2 K 3
He = i ~ ™ + B g [y (b () + 0T () e+ H =

ey w0 i B (B) 8 (R) () doK

2m 2m m
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B+

B (k) +

rH — Lk .\VET (D) / Tr g i . “L
o (K =k VB (@) ‘\b (k) + \/'2'|k|%(1—£VEv(P))/ < ﬁlk[?(l—k-VE’(P)))

+Jy (k| — k- VE* (P)) 6T (k) b (k) dk — g2 [* 2|k|2(1—k1~VE‘7(P)) &k .

Performing the coherent transformation (5):
Wo (VE? (P)) Hp,, W} (VE® (P)) =

2
= 1 ph __ k k t 3 2 R _k 8
2m (P g fg \/§[k|% (1-'/1;-VE"(P)) (b (k) + b (k)) d’k -+ g fa 2]kl3 (l-—k»VE”(P))‘d ]{?> -+

(P, :
- N4 ph __ e k T 3 2 re k 3
m P gfa' \/_2—11(’% (I—E-VE”(P)) (b (k) + b (k)) d k + g fo- glkla (I—Q-VE"(P))z d k +
o7 (el = de- VET (B)) 0 ()b k) e + £ - 7 7 v ) b

By substitution we obtain

Hg , =W, (VE’ (P)) Hp ,W} (VE® (P)) =
2

1 1 - " - 00 i ]
"o (HP’”_ g .(¢P’HP’”¢P)> +/D (k| =k - VE (P)) b (k)b (k) d)k + cp (o) (7)

where cp (U) = 5131737. — 5’71,"; [P —mVE® (P)]2 - g2 f: mdsk .

From lemma A2, point 1, (appendix A), |cp (o)| is bounded uniformly in o for P € X. The
selfadjointness (s.a.) domain of the transformed hamiltonian Hg , coincides with D® (Hp ,) (see
an analogous proof in [2]).

Definitions
i) To compress formulas in next steps we will use the notation
o; : a;
(¢P’ ’H:ZP,G'J' P )
o 12
[low |

ii) In proving the convergence of the sequence {gb;j } we take advantage of the intermediate hamil-
tonians:

i — TT¢
FP,G'J' = HP,UJ' -

-

= W0j+1 (VE7 (P)) HP:UHI Wi

Ti+1

(VE? (P)) =

w
P,ojp
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=W,

Ti+1

(VE® (P)) WS, | (VE+ (P) HE . Woy,, (VE (P W], (VE7 (P)) =

Oj+1 Ti+1

2
_ 1 T k(b(k)+bT (k) B+ g? [T k Bk :
= am |\ [P gf‘”“ V3| ? (1-k- VB (P)) T Jojn 2lk® (1-k VE ®)° "
+ [ (k| - k- VET (P))bT (k) b (k) d®k+7¢p(j+1)

-~ . 2 a; % :‘
where 8p (j + 1) = £= — 2 [P —mVE” ()" = ¢* [, ziklg(l_ﬂ.lw:’f ®)) ok

iii) Analogously we define

bosen = Waya (VE (P)) Wi, (VEo+ (P) I, Woyp, (VET* P)Ywi,, (VE7 (P)) =
_ ppht _ [ K (b0)+bT(K) 3y, g% [ K 31, _ 92 [F K 3.
P gfva'+1 ﬂgk[%(l-ﬁ-vE;J‘)d k5 Jojm |k|3(1—§.VE;J')2d k=3 fﬂa’+1 |k|3(1—i<\»VE;j+1)2d k;
i = I — (Crashy PR where ¢% 1! is ground eigenvector of Hy and i
Pojp1 — TP ”(”;;jﬂ 2 ? P & € P,oj+1 18

defined in the iterative procedure explained in the next paragraph.
Remarks

1) Note that the two transformations

Hp,; — Hp,, = W, (VE (P)) Hp,ajW;'j (VE? (P))

HP7Uj+1 - ﬁg,dj+1 = Wa‘j—i-l (Von (P)) HP,O']'+1WT

Ti+1

(VE“ (P))

are different in the infrared cutoff but not in the coherent factor.

2) The hamiltonians Hp o Hp,,, and ﬁf;"‘aj are s.a. on the same domain and the formal rela-
tions are well defined from an operatorial point of view.

2.2 Convergent sequence.

Tn order to arrive at a strongly convergent sequence {qﬁi’,j } of ground eigenvectors, we start from the
vector 1), Yo vacuum state. From the results of the previous chapter and by unitarity the following
properties hold Vj (these properties are exploited in lemma Al, appendix A):

i) H{;’,ai | it has ground eigenvalue El? with the corresponding gap bigger than %;
ii) Hp | ., has ground eigenvalue Eg’ with the corresponding gap bigger than g—aﬂ_l.

Comparing the resolvents of the hamiltonians Hg , and ﬁ{é’} oy, We can build $%*in terms of

qﬁg by projection, thanks to the estimates cointained in Lemma Al, in Appendix, which is the
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analogue of lemma 1.3 for the hamiltonians HE

77541 ) 1 N\ Lr,jA o :
T %ZH% EJ+1)< (& P)ule —E(j+1)> P AE(G+1) . (8)

where (AHE)? =HY, +cp(j)—cp(j+1) - HE, .
Then we define

Titl — i
P W‘73+1

(VE®#+ (P)) W} (VE" (P)) T+ .

The construction of { qS } is therefore performed by the same method described in the previous
section (in some sense it is already given in terms of {yp }).

0+1(

Outline of the proof of the convergence.

In inquiring the (strong) convergence of the vectors ¢p’ for j — oo, we have to compare the
following vectors one after the other:

iy ¢ Tj+1 N ¢‘7J+1 - ¢UJ+2 - ¢f3j+2

(in the special case P = 0, there is a simplification because ¢f = AU' , being VE? (0) = 0).
First note that one needs a more refined estimate of the difference between the generic vectors ¢g’

and qzﬁd’“ At this point a crucial difference with respect the previous sequence {a,bp } emerges. In
particular, break the interaction

(AHP)U' 41 = Hg,aj.{_l +cp (.7) - El; (] =+ 1) - Hl'é’u,a'j

in

miz quad.
[amm)z, ™ + [z, ]
where
[(AH )ad ]mmzrp I k(b0 +7 (1)) Bk + £ [7 k Kk | +cec.
Plojtr I 2m Jojq \/§|k;%(1~i.vmj(p)) 2m Jojys z;k|3(1—E.VE°'J‘(p))1

and consider again the expression (8).
Due to the mixed terms the norm estimate provided in lemma Al for

1 3 1 1
(Hﬁ”,gj -E{G+ 1)) ( (AHP)UJH) <H%’”,aj “EG T 1))

is only of order 1, so that it is not sufficient to evaluate the norm vector “qﬁ St — op

with a

quantity of order a positive power of the cutoff g;; .
We are able to give a more refined estimate of the norm of ¢ BT — ¢p by a careful analysis of the
first factor in each term of the sum in (8)

3 . .
(ngv)aj —lE(j + 1)> ( <(AHP)<’ +1)) (Hgm ~-E(j+ 1)> op
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In particular note that if for the vector

1 3 [( Hw) ]miz 1 o
HE, —E(j+1) Ploj HE, -E(G+1) °F

the following inequalities were true

=

i i "
1 - miz 1 2 v 6273*
<
(Hﬂw —EG+ 1)> [(AHP)U’“] (Hé”,aj “E(G+ 1)> 7| =g 9)

i+l

7+t — ¢F || would be less than or equal to 7% .

the estimate for Id)
Indeed, from lemma A1, we know that the norm of the contribution due to the quadratic terms can

.7+
be bounded by -

1 1 .
1 2 quad 1 2 o el;g_l
. : [amz,. T’ 7l <
HE, ~E(G+1) i+ HE, —E(G+1) 40

We know also from Lemma A1 how to bound the norm of the other factors of the product corre-
sponding to each term of the sum: such a norm is of order 1, in particular less than 13- Therefore
we would have

(for a proper g) :

n
0 1 g o 7j
'anl Hgﬂj—E(jﬂ)( (AH“’)U;“ HE o E(j+1)> quJ <
1 1
_;_2,___1____2.;1.00;;_1_"—1__1__.1—1
B = T
Ti+1

. i+i . ‘
¢C’:+1 — ¢%|| < €5 implies the con-

P

Finally, as it is shown in corollary 2.4, an estimate like

vergence of the sequence {¢g }.

The conclusion of the previous reasoning is that, turning to strong estimates for the first factor
in all the terms of the series expansion in (8), we are able to prove the convergence of the sequence

mix
if the inequality (9) holds. Taking care of the expression of [(AH Wy +1] , after a few steps one
can check that the inequality (9) is implied by the following

] i 1 I*lz T
PP\ HE,, ~BG+D )

( where E (j + 1) is s.t. |E (G+1)— E;"| = H4;,1) where const means uniform in j and it is supposed
sufficiently small.
We arrive at (10) by two technical lemmas: lemma 2.1 and lemma 2.2. In lemma 2.1 we start from

g2

< const - (i)% (10)

0j
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of the spectral representation of the operator Hy «; — ReE (j + 1) and we provide a form bound of

the type ‘ ‘
o) < cons -
©, < const - || ¢, ,
Hg, —E(+1)

for ¢ belonging to the subspace of F;; orthogonal to the ground state ¢f’ and such that the two
quantities are well defined; at this point we take advantage of it and of the canonical form (7) of
the hamiltonian Hp ,, which was rearranged to exploit the property

1
Hg, —E(+1)

. X 1
%’,ang = {H%,o(ﬁ% (¢P7 P (T(b%) ¢i'3} L ¢%
(3R

In lemma 2.2 we deal with the relevant term in (9); by calling a term “relevant” we mean to say
that the other ones have a better infrared behavior or can be reduced to the “relevant term” plus
smaller terms. We estimate the norm

1 X %
( ; ) A AL kT ( ;
1 = 03 w . . P
Hp o, =BG+D ) Jors V2 (1- - VE ) HY, —E(G+1)

It requires the study of the series expansion linked to the commutation of fg i Vo G ’EVEV ) bt (k) d®k

with from the right side. At this point we assume £ sufficiently small. Being stan-

1
HE , —BG+)
dard computations, they are done in appendix A.

The last step is theorem 2.3, in which, by induction, we provide the estimate (10).

Lemma 2.1

The following inequalities hold:

I o; k'l (k) — BETI 105
) (fﬂw Vel (@) PR 0P

B bT(k) k* b'(k) A3k Tt aj
< Vv 122 (foﬁ,l \/_lk' ( ) P T ¢P ) H‘” —E(J+1)-[ Oi41 \/.lkl— (A) ‘I"PPﬁjép >(

1 T kbt (k) 3 ;P o
Hg ., ~EG+1) I ¢ ke, PJ) <

7it1 Ve Fag (k)

Fip,ajqﬁi':'j) <Q(e)- '(T%,aj¢i§j, AT =BG P ooy i'>j>

m (rlg 8%

1
YWHE  —E(i+1)
B

where ag’ (E) = (1 ~k-VE" (P)), Qe) =4/1+ (101_11\16/2)2 .
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Proof

Let us define the wave functions (r (z), Crr (2), respectlvely of. fa 7 :}"l_ltlgi—ﬁ(-j Bk F ¢ " and
Pro; ¢p , in the spectral variable of the operator Hg ,. —ReE (j + 1) (we do not explicit the other

degrees of freedom).

Note that:
- the operator H , — ReE(j+ 1), applied to the vector f:jil ﬁ%—g—(—)—ds -5 » takes

spectral values bigger or equal to 0541 (= 20j41 — 15;41) because of lemma 1.1

10—11/€
20

- the operator Hf , —ReE (j + 1) takes spectral values bigger or equal to oj (= %05 — $50541)

if applied to the vector Fipﬁj rbi',j because of theorem 1.4.

Let us write the scalar products I) and II) by using the spectral representation of the operator
Hg , — ReE (j + 1) with spectral measure du () and ignoring the remaining degrees of freedom.
Tn the chosen spectral representation, the following inequalities are clear:

(S

l¢rrr ()17 z[¢rrr(2) ? ; 2 lerar (=) 2
|fz T B l {lf ‘—“—'_’"“Tzz_}_ BT (z)l +[Im (B (G +1))] ’f +[ITInHE(J+1))] du (z)1 } >
[¢r.r(2))? z Zmin [¢r.r1(2)]?
> . d > d >
- ‘f VEAHIMEGH)E V2 +HIm(BG+D))P wi)| 2 \/mm+iE(J+1) E7| 22+ [Im(B(j+1))) )| 2
> Zmin A I¢rrr(2)? d
) \[ +|EG+1) - B If VK2 2lk| 2 HIm(EG+1)) w(2)
It follows that:
e in the case I), being zmin > 350541, Zmin -%5
NPT
[¢x( [¢r(2)]?
| el ()] < VI | iy )
e in the case II), being zmin > 10- 2101‘/_ o3, Zmin > L = Ql
\/m+IE(a+1> -5 [’ \/1"'(1‘6‘1:1—1\{2\/2)2 “
¢ (2)]° ¢ (2)? . [Srr(=
|f\/2+|k[2+9|k|7+ Im(E(G+1)? 'u(z)‘ < lf V22 H[Im(E(+1))]? K (2) <Q( f "—1Im(E(J+1)) 1 (2)|-
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Lemma 2.2

The following inequality holds for a sﬂ;‘ﬁcientiy small Tatio *:

2 .
755 ) o K 3y
$2:Q(e)- V122 {fffﬂrl md L}

Proof

<

1 1
1 o kb7 (k) 37, . T 1 ? o
<Hg,o-j —E(]—{-l)) fcrj+1 \/«;ﬂklg a;j (’I;) d’k I-‘P,a]- <Hg,a_j —E(j+1)> ¢P

l (F%,aj o5 (W) Th o, ¢i’nj> l

1
By —B(j+1)

See lemma A3 in appendix A.

Theorem 2.3

For g and = sufficiently small the inequality

1 % w0 miz 1 3 o €
(ngu,o'j _ E(] + 1)) [(AHP)UJ'-H] (m) ¢P < 1 (11)

holds uniformly in j.
Proof

Due to the result of lemma 2.2 and the previous discussion about the convergence, the inequal-
ity (11) is true if the following estimate holds:

2 i o; 1 ; o M ) '
Tk .. 08, - e, 00 || < — 1=1,2,3 12
g ( P,a, P (H‘zﬁj,gj _E(] +1) P, i P 6% ( ) ( )
where M is a proper constant uniform in j.
The inequality (12) implies the thesis of the theorem and also the bound ; B =g | < ¢, as

discussed so far in Qutline of the proof of the convergence.

In order to prove the inequality (12) we start applying to both the factors of the scalar product the
unitary operator
W, (VE -1 (P)) W] (VE” (P))

(such an operation is not required if P = 0) to obtain

SO 1 i e
T, 6%, = T, 0% ] . 13

Oj—1

Adding and subtracting I‘i‘;.#,j_l p_ on the left and on the right of the scalar product (13), we
bound the new terms that we get, using elementary properties of the scalar product:
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g

9 fz :‘T‘Tf: _ 1 ¢ag\.
Pofpo\ Ty, s | P /
b

~. o~ . ) 1 ~: . .
2 4 o i Oj—1 <7] i i1
= 2g (rp’o’j PJ I P] ) <ﬁ]’é’u,ﬂj - E(J + 1)) (rp 73 Pooj— PJ )> ! (14)
‘ 1 : )
+292 q ' Tj— 1, _ T ' Tj—1 15
( Pen % o\ By, —BG ey ) P (9)

At this point, what we want to do is to reduce the quantity (15) to the (12) at the level j—1, times

a constant less than 1, and to estimate the remainder (14) by a quantity of order —-
€ 4

Treatment of the remainder (14)

Ai:- 05 _Pi Tj—1 1 (fi’ I‘wij 0'.7'—-1)
i TP Pooj—1 7P 2 H;.crj_Hg,v,'—l'*'Hg.vj—l—E(j"‘l) 173 0i-1 TP

(for g sufficiently small, taking into account lemma 1.2 and using a procedure as in lemma Al)

<

24>

<4 < iP’Uj ;'j - iP:ffrl an*l’ W ( ip"’f ;j = iP"’J'*l UPj—l)>I s
1 2 1 .

< 8¢2 1 (P oo i 05 842 1 : T s oj-1

<39 HE,  -BGHD) Po;®p ~1po PP )| 09 HE,  -EGHD) Po;_1 \PP — ¢p ) <

;;j $%i-1 2
<mw  mw | 1] Rl
=3 X3 458

where R, (g) and Ry (g) are independent of j and vanish for ¢ — 0. They are obtained con-
sidering the following facts:
i) from the relation (6) pag. 32 and the definition of ﬁip’aHl at pag. 34:
=~ i oi—1 k"(b(k)'f‘bf(k)) dSk VE% (P — VE%i-1 gi—1 k 3

bo; =Thos 9 /s, Valki® (1-kvEy ) e ® =gk k o

2k (1-k-VES (P))2

<

_;_
T4 o T ;
(Tf——%—m) ( b9 — Py P’)
_______1_____ fa, 1 & (b(k)+bT (k) d3k$"f
HE oy = B0+ g Va2 (1-k vEF?) P
1

1 2
R —E(j+1) P

40

ii)

<

+|mVE® (P) = mV +




(I

AR P N p— &k
SREY 2[k]’ (1-k-VE (P))

R SO o
H;’,C,j_l =& (j+1) P

iii) the following estimates hold with constants CVE C’,C" uniform in j for g sufficiently small

65"}
P

|VE? (P)— VE’i-1 (P)| < CVE (“ﬂ%—ﬂ = T

+ 6%> (see lemma A2 )

faj_l K (b(k)'f'b1 (k)) d3 ]{I 1 z
% Vil (1-kvEFT) Hy o;, ~BG+Y)

for the result in lemma 1.2)

<Clef (by steps as in lemma A1 and
Fi
M

[N
(MO

< -—-C; (by steps as in
FE €
2

1 i i P S
° <ng —E(j—l—l)) I s Thois (Hfa’c- -E(i+1)>
vt ot i1
73

lemma, A1 and for the result in lemma 1.2)

1
2 o~ o~
1 i T 1 0i-1 o 40i-1
° <H“g“;‘_“——E(j+1)") Iboss ( P~ ?p ) ¢p P
PTG

CII
<
€4

Treatment of (15)

Tho, 687 : Tho, 057

j— ? Tw w w ; 3T j—

2Ti—1 Hp,a]- “Hp,aj_1+HP,Vj,1_E(J+1) -1

(for g sufficiently small, taking into account lemma 1.2 and using a procedure as in lemma Al)
i Ti-1 1 i oi-1

<FP,05_1 P <Hg)a]__1 —E(j+1)> FP,Uj_1 P >
i oj-1 1 i gj-1

(FP,UJ'-J P ’(Hgv”j—l —E(j+1)>FP,cr,'_1 P )

i oj—1 1 l—\z Tj—1
Po; 1 ¥YP H;"’j—l_E(j) P,o;.1 TP

Tj—1 Tj—1

where b < 2; the last step is due to the fact that <¢P aFiP,Uj_lﬁbp ) = 0 and ¢ is sufficiently
small, on this respect see the figure below

<

292

<

< 4g°

<

<4g9%-Q (e)

<4g%-b-Q%(e)
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ImE(+11

120sigma_j

E_Psigma_j E_fPsigma_j-1

3/Ssigma ]

JUSIDRIII SIS SR

“11720kigma_j+1

Now let us analyze the norm Hqﬁapj - o7

; note that

¥ =W, (VES (P) W, (VET (P) g7

by definition, from which
log ~ 2] = 7., (VB @) Wi, (VB () 6 ~ G¥
= [ Wi, (VB Y W, (VES (®) vg — v |

Our upper estimate of the norm above is given by

9-Z-|VEg - VE™|

In (e%) '
where

- 7 is a constant dependent on m, x and uniform in j;

- the logarithmically divergent quantity arises from

([ 1500 9mc, ")
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taking into account that b (k) e ,; = ﬁ (Eaj(P),lkll_HP“k — ) Yp oy for {k:o; < k| < K} (see
2 - 7
[3]) and |j¢p,., | < 1 and from '
X
2 Z

L A3k ;

/a,. (ﬁuﬁ (1-k-vE" (P

) (1=K vEu= (P)) )

- the (infinitesimal) quantity |VER — VEZ ™| is connected to the difference between the coherent
factors in the Weyl operators.

Now, let be g sufficiently small such that

In (e'§‘>. < —13

- the previous constraints hold, in particular the bound (12) is valid for j = 1 and

SGP =Y g Z-4CVF €3

0<Ri(g)+Ra(9) =R(g) < (1-0Q%()e}) - M

where 4b- Q2 (¢) e} « 1for b<2and 0 < e < (3)°.
inductive hypothesis

Let us assume that for the chosen value of g the property (12) holds for j — 1 and that

677" - %)) < 924075 |in () | +'F 4 g 24CT P et

i ()]

ln 62 l-l—es —Z€8+GJ -1

where GI™t =g Y971 Z.4CVE . 5

thesis

As a consequence of the inductive hypothesis we have

w[x:

8 — g™

<e

< 3¢# since Hd)‘j’ 1” >1- “gb”’ ! ¢§>°|[ > 1~

”W |¢; 1|| <2“"!W|

2

b

o |VEZ — VEg~ 1] < 4CVE . €F (see lemma A2).
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Then

0L 4% 1 TL g%
( P,aj(pP; H:tg,dj—E(j+l) P,o; ¥P

R 2 i Tj—1 1 i—
—(_ffl +4¢%-b-Q? (e) ' (1"’”137(,],ﬁ1 B> ﬁ) I'bois % ]>| <

€ Ti—-1

2

g <

IN

3

<B4 4p.Q2(e) P < M

€d e 4 €4
Moreover
log — ol < 7% - o7 || + |85 — 07| + ez~ - o7 <

<g-Z-4CVE .t

In (e%) \ peb I e+ G <YL, €5 +Gi.

Corollary 2.4

Given the result of theorem 2.3, the sequence {¢g } (63 = 1o, %o vacuum state) converges strongly
to a non-vanishing vector for a sufficiently small coupling constant g.

Proof

By the estimates of theorem 2.3 we easily conclude that {qﬁgf } is a Cauchy sequence: Vi,j [ >j

l
; k ! itl 1 "
o — sl 3 ¥ 4G < () + G
n:j+1
The limit does not vanish, since
€8 2
|1¢1?121~( 1+fo°> > 2.
1—e5¥ 3
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3 Regularity.

In this section we define a normalized vector $%, that is ground state of Hg , ip+ (v < ke). It has
to possess a regularity property in P to be exploited in the construction of the scattering states in
chapter 4. We arrive at the vector ¢% through an intermediate (not normalized) vector ¢P %
and ¢P may differ only by a phase term, apart from the normalization. The phase is fixed with an
eye to the following:

- the norm convergence of the vector ¢% to a vector ¢p, for o — 0;

- the Hoelder property, with respect to P:

6800 — 63| < ClAP|TS

for P,P+AP € X and AP € I, I C ¥ is a set defined in the next lines and C is uniform in P, AP
and o.

For these purposes we consider infrared sequences starting from {xe': ke > ke’ > key/e} and a
couplmg constant g such that it is possible to perform the iterative procedure uniformly in ¢,

€ > € >e/e and in P € T, with the properties already shown in the case of the factor e. There—
fore, we assume the results of theorem 2.3 and corollary 2.4. We also require that for the chosen

value g:
/ 1
‘(gbl'ff ,%)1 >2 Ve e>e>e/e, YPET.
Definition of E;

. . . o i
Given a o ranging between o; and g;41, j > 2, we can always write it as ke’Z where ¢ = ¢’ (o) =

2
= (£)7. By performing the iteration shown in the previous section, we define

¢ _¢ns (0')2

Lemma 3.1
(5;71/10) #0 Vo <ke VP eZ.

Proof

— o5

Knowing that ] < & from corollary 2.4, we have:

l(¢p,¢op>¢|(¢w )| =] (3 - 65| | >0
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Definition of ¢%.

Since ¢p is ground eigenvector of Hy , |p+with a gap bigger than % by construction, thanks
to lemma 3.1 the normalized vector

omngw —5dE o
A By

(where E € C and s.t. |[E— E3|= %) is ground state of Hp IF;‘

Theorem 3.2
For P € ¥ the limits s — limy—0 ¢% (= ¢p) and lim, 0 £p exist.
Proof

Again write ¢p — dp in the following way

71

5 < % cer(01) % ae)® o
b =T =T o g e g gy

Now, given an arbitrarily small ¢, there exist 1(6),m (8) sufficiently large and a phase ei1(d) for
which

¢;61(a'1)% 5)(}5}»62(09)% < <§

This is essentially due to the convergence established in corollary 2.4 and because the ground state
is unique until there is a cut-off, by construction.

_ P 1 L
Therefore the norm “qﬁ;f — e~ i@ g “ can be bounded with a quantity of order o5 + al‘l‘ + 6.
Moreover we have that

| Byes o~ Pwo| = |65 (35 0) — 35 (5 w0) | <

< %8 (3% w0) - Gy (Eﬁ’,wo) o7 (=037 40) - 3% (3% o) | <

< | - @32 | | (35 vo) Aholl - e OFE B

It follows that g% = 25 converges strongly to a vector ¢p in Hp, with an error of order

P;; Yo H

o%. The convergence of Eg easily follows from the iterative construction.
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Lemma 3.3
The following Hoelder estimate on ti;e ground energy gradient holds:
|VE® (P) - VE® (P + AP)| < C|AP|T
where the constant C' is uniform in 0 < ¢ < ke , in P,P + AP € ¥ and AP ¢ f, where

8

- 3

1= {AP : 1»%{1 < (%\) } and C7is a constant sufficiently larger than 1.
I

Proof

The idea is to perturb, in P, the gradient

1 1 p—_prh 1
velsrit (p) = (e, 22 gper)

1
where w;APH is the (normalized) ground eigenvector of H P which we simply denote as

1
miap|t

; +
HP,[ apjd (analogous notation for FI ap|} ).

For this purpose we use the series expansion of the resolvent

1

H -
piapapt e, —F
|lap3

1 8 1
(where E € C and s.t. |E — ELAP' = ﬁi‘i:fl‘*—) on the basis of the following information:
- = —AP pph 4 AP AP,
HP+AP,;AP;% Hp,mpl% == PP P+ S
1 1
® HP |ap|} |+  has unique ground state 1,/1{?13]4 of energy EILAPK‘l and its gap is bounded

1aP|

3 1
from below by —"—’—4—]—?—13;—4 (theorem 1.4 in the continuum case);

(S

i i
E H (P —P* ) 1 : : :
e the norm m3 IAP l T PR is uniformly bounded in
4 P,lAP|4 1
jap| 4
P,P + AP € %; therefore, we have that
1 1
2 ( h1) 2
1 pi_pp
|1 1 AP 1 -3
zlorl ot | () (| <ot
PlaP(i ¥ plapidt F' 4
|laP|Z |ap|4
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1
1 |AP|T
771 f‘ H 1 —EdE de

P+AP, AP 4

o )]

From the above considerations it follows that:

3 n
>1-3% (IAP3J4 '.CT> > }2— for AP belonging to

1
AP|4
ap — f " p B
4 q .
. ¢P+A‘P = Prap.abls is ground state of H, o \pi3
ST S ol
271 H 1 —E “P
P+AP,|AP|Z
where C’ is a constant uniform in P, an
{ﬁ}’AP 12214 < o1 |AP|E where C tant unif P,P+AP € T and
AP eT.
Since:

m

i 3 % . % P %
1) VEIAP[i (P + AP)_vElAPI4 (P) = <¢{)A+PAIP, P+AP-PP? @bliPAlP> _( ;DAPH , P—le "¢!P1)3Pk )

prr_p)?
2) HP|AP|J“ +27g%k — L“zﬁ“_ >0,
we can conclude that
1 1
1\7E|AP*4 (P) — VEAPIE (P 4 AP)' <C"|AP|? (16)

where C" is a constant uniform in P, P+ AP € ¥ and AP € T.

1
If o < mi|AP|%, in order to prove the claim of the lemma, we take advantage of the result of
lemma A2 (in appendix A) together with theorem 2.3 :

‘VE'API% (P) — VE° (P)l <CIAP|®  for PeX

Ifo >ms [AP]%, an estimate analogous to (16) holds.

Theorem 3.4

Under the hypotheses of lemma 3.3, the norm difference between ¢% and ¢% Ap is Hoelder in
|AP| with coefficient Tlﬁ-, the multiplicative constant is uniform in 0 < ¢ < k¢, in P,P + AP € X

and APeICT.

Proof
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Preliminary definitions:

S Fw

P+AP |AP|T P ap|t
= cesap (mi|AP|F)—cp (m¥ |AP[F) 4] (- vEILPIE (P) — k. vEIAPIE (P 4 AP)) bt (k) b (k) d*k+

2

4ok (gf;%mm% ) (b(k)+b(k)f) d3k+AHP’IAP|%) +

I k(i'VE 'AP’%(P)“E'VE‘AP'%(P+AP)> (b (k) b(k)T) Bk + ATl
1 Y i — + -+ 1|+
9Imt|apit Vil & (1—~kvVE|APlE(P+AP)) (1—k.VEIAPI%(P)) P.lap(s

~ 1 ~ 1
k(kVElAP' 4 (P)-k-VEIAPIT (pLAP)

~ A ~ 1
V3K 3 (1—k-VElAPl 1 (P+AP)) (1—k.VEIAP1 1(p)

1
+ 2mTP lap|i’

k (E-VEIAH% (P)—Q-VEIA”% (P+AP) A s
4 : - — YRSV S
9t flapid VaK| 2 (1—E-VEIAP|3(P+AP)) (1—k~VE|APIZ(P)) ( () 5 (k) > P|AP[s

R
3m” p,|aP|%

|AP|% |AP|% |AP|Z |AP|E
where ALl JaP|E (P Ip api 9P > <¢P+AP’ P+AP,|AP|%¢P+AP>

Considering that for |AP| € T

e the estimate (16) in lemma 3.3 holds: }VE'AP'% (P) - VEIAPIE (P + AP)' < ]AP{%;

1 1
|AP|T AP|Z |AP|T |aP|T | . .
® ( 5 [ ,H;’IAP’% !P | ) (¢P+AP, ;+AP [APIL¢P+AP> is bounded by a quantity of
order |AP|® (see equation (6) pag.32)
HY L -HY
e the operator PJ’AP"TZ';[Q 2A8PLE i form-bounded with respect to H;’I Pk uniformly in
8 3
|AP];
2, o1
e the gap of E'A K (as ground energy of HP app |p+ ) is bounded from below by 1‘*_]%2!_4
|aP|3
N - § W‘—"FEdE Yo N .
the vector gﬁiPA_:X; = e (where E € C and s.t. |E — ELAfA’;‘ = Tﬁ%ﬂ"‘_)
~zh § m————pdB %
P+AP,|AP[J4"

i ~
can be obtained perturbing qb'PA P for |AP| € I C I, I sufficiently small.

From the perturbation we have the estimate:

|AP|E |AP|%
¢P+AP I

< C"|AP|T (17)
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where the constant C"”' is uniform in P,P + AP € ¥ and |AP| € I.
For o < mi ]AP}i, the thesis is proved using theorem 3.2 and the inequality:

1 1 1 1
" e AP} |AP| Ap|i |ap|}
H¢P+AP - ¢p ” = U¢P+AP - ¢IP—|—AP + ¢P+AiP - g? + ¢p - 9%

1
JAP|4
P%1ap — PPpiap

<

1 1 1
APl4 AP|4 AP
< + (| PEEE — gl P+ el T — g

If o >mi ]AP[% an estimate analogous to (17) holds.
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Part 111
o :
Scattering theory.

The infrared features of the model produce some difficulties in understanding the scattering:

- due to the arbitrarily large number of photons involved in the scattering, a problem of consistency
might apparently arise between the total emission in time of an infinite number of massless particles
and a “free” asymptotic dynamics for the electron;

- because of the massless dispersion, it is not clear if the L.S.Z. Weyl photon operators

ethe—-iHP"tei(a(ﬂﬂ)-l-a’f(g;))eiHPhte_th 0 (y) = /e—ikya(k) Pres (R3)
converge for ¢ — 0o on generic vectors of the Hilbert space, as pointed out in Part I.

In Part 1 we outlined the physical situation emerging from perturbative computations and from
rigorous results in solvable models. We saw how all this information give an intuitive picture for
asymptotic states consisting of a “free” electron surrounded by a cloud of asymptotic bosons, whose
distribution in the photon momenta space is linked to the electron asymptotic velocity according
to “Bloch and Nordsieck” type factors (depending on the considered interactions). The spectral
counterpart is the absence of one-particle states, which avoids any asymptotic description inspired
by the Haag-Ruelle collision theory for quantum fields. For Nelson’s massless model, in the paper
by Froehlich, starting from this intuitive picture, a tentative recipe is provided for the generic vector
Yn (t), whose limit, for ¢ — co, has to correspond to an asymptotic electron (Heisenberg picture),
as described in Part 1. The convergence of the vector 1y, (¢), without any infrared cut-off, would
provide a definition of “free” dynamics for the infraparticle (the electron), which is the main open
problem.

In our opinion, the way drawn in [3] is the correct one to understand the scattering behavior.
In some sense, it is already the physical answer. Therefore we reconsider this work with the aim
to overcome the technical difficulties in the proof of the convergence, by clarifying some aspects in
the definition of the approximating vector 1, () and developing some new ideas, namely:

- a stronger use of the “non-relativistic locality”, since the decoupling mechanism in the Haag-Ruelle
theory can be reproduced in terms of fixed time locality properties of the photon field and of the
“current density field” of the electron;

- a convergence by a diagonal limiting procedure, that means that the infrared cut-off in the ap-
proximating vectors is removed only asymptotically.

The purposes of such a construction is twofold:

- the first is to provide a minimal (with respect to the photon cloud) description of the electron out
of the scattering;

- the second one consists in picking out a subspace of states which will be used to prove the asymp-
totic convergence of the massless field. This subspace can be seen as an one-particle subspace, up
to an energy threshold for the photons.

The final result is that, once we are given the strong convergence in time of the approximating
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vectors Yy, (t), it is simple to define in and out subspaces where the asymptotic boson field and the
asymptotic mean velocity of the electron are well defined. :

Analysis of the minimal asymptotic electron.

Let us consider again the proposal by Froehlich (Part I). No problem arises in the norm con-
trol and in the convergence of 1y, (t) till o # 0, since we can control the series expansion of the
Weyl operators and the regularity properties in P of ¢g (notations as in Part I). The situation
changes for ¢ = 0. There is already a problem at the level of definition of the vector: namely the
existence of the integral when the infrared cutoff ¢ is removed. The previous control of the norm
is not available because of divergences appearing in the terms obtained from the expansion of the
Weyl operators. The need of the series expansion is technically forced by the fact that the Weyl
operators

K1 a(k)—al (k) 3
-9 = d°k
‘f’ \/Equ (1-k~VE”(P))
e

do not preserve the P—fibers. The definition is well founded by assuming the regularity properties
of certain functions (see for details [3]) which can probably be reconciled with the existence of the
second derivative of the ground energy F (P) and which are confirmed by perturbative computa-
tions. In this respect, the existence of the second derivative of the ground energy has recently been
proved by Chen [36] for non-relativistic Q.E.D..

Our proposal to avoid such technical obstructions is to consider a time dependent cut-off ¢, which
is removed only asymptotically at a rate faster than % in accordance with the uncertainty principle,
and to transform the integral (in d®P) in a Riemann sum by a (time dependent) cell-partition of
the P-momentum space. The time dependent cut-off o; and the Riemann sum can be considered as
regularization tools to define an integral in the limit, which might exist anyway but that we are not
able to control otherwise. Another step towards the convergence consists in using a phase factor

already present in the tentative construction by Froehlich for the case o = 0.
Let us see in details the reasons and the expected advantages of these constructive modifications.

1) By introducing a time-dependent cut-off ¢, we aim at having a better control on quantities
like the norm of ¥y, (t). Our conjecture relies on two facts:

- the unitarity property of the Weyl operators with a cut-off oy can provide an a-priori estimate on
sums of contributions which are divergent in the infrared limit;

- the infrared divergences in electrodynamics are poor ones because of their logarithmic growth
so that our task should become easier since we do not need optimal estimates of the vanishing
quantities.

2) The transformation of the integral to a Riemann sum is a tool towards the same purpose,
because:

- we get a well defined expression in terms of bounded operators in Hilbert space for all finite times,
that we can control without considering any particular wave function representation (except for
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certain estimates);
- it allows us to replace the series expansion of the Weyl operators by a “cell-expansion” which can
be more easily controlled; in this sense it is a “regularization” of the fiber-cha ging.

8) The phase factor is employed in the applications of Cook’s argument. From this point of view
there is an analogy with Dollard’s treatment of Coulomb scattering even if the present phase factor
is only a technical tool. It is convergent in the limit (¢ —+ co) differently from the Coulomb phase. It
is probably avoidable even if it is helpful in our framework because provides some useful subtractions.

What we have described represent the building blocks of a strategy employed to control the log-
arithmic divergences. More technically, this strategy requires the use of different time scales. In
particular, we trigger the rate of the partition (governed by an exponent €) and another regular-
ization parameter (4) according to the time scale arising from Cook’s argument, since the latter is
substantially independent of the regularization devices. Moreover by the asymptotic removal of the
cut-off o; we can extend to the limit some properties which hold for the model with a fixed infrared
cut-off. More specifically:

- the propagation estimate for proper functions f

eifft f (?) emift Ly, f(VE)

starting from the analogous property on one-particle states corresponding to a fixed o—cutoff dy-
namics (already used in semiclassical analysis [37]);

- the fact that for a fixed o—cutoff dynamics the one particle states are vacua for the annilihation
operator of the asymptotic bosonic field; by using 1t we can treat the off- dlagonal terms, with
respect to the partition, of the squared norm ||y, (£)||* and || (ta) — vm (t)]

The main difference with the analogous construction by Froehlich [3] is that, in the new recipe
for the vector ¢y, (t), the infrared cut-off removal is an “a posteriori” result and a byproduct of the
decoupling. Therefore, in our opinion, it is simpler to use locality by the support properties of
functions of the electron position x (t) (in such a way we exploit Huyghens’ principle for our ob-
servables, at fixed time ¢). Our construction should be hopefully made simpler in order to consider
generalizations, for instance more than one electron. Some regularization device is not probably
necessary in a modified framework of construction. However the present construction may be a
starting point for simpler descriptions of the asymptotic decoupling and for a more precise analysis
of the involved time scales. We have to stress that, in our construction, we assume an hypothesis
(see pag. 55) on the second derivative of the ground energy, which is not proved in the spectral
analysis contained in chapters 2 and 3.

Mathematical scheme.

The generic vector 1, (t) is constructed starting from a one-particle state for the hamiltonian
H,,, of wave function h in P—variables.

A P-dependent L.S.Z. Weyl operator, in properly evolved photon variables is applied on the con-
sidered one-particle state. The smearing function in Weyl operator has frequency support from o,
(oz — 0 for |t| — +0c0) to an arbitrarily small &, # 0. Its spectral distribution, near k = 0, is
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labelled by the asymptotic electron mean velocity (constructed “a posteriori”). The relation with
the woherent “static” factor ~ 1

—.g[k{\/m<1—~f<-VE>

is clarified if we consider a o—cut-off dynamics and the corresponding asymptotic electron mean
velocity first. This operator coincides with VE¢ if it is applied on the one -particle states. Through
a non-rigorous removal of the cut-off, the coherent factor can be thought of as a function of the
asymptotic electron mean velocity to be constructed.

All this is converted in a Riemann sum by a time dependent cell-partition of the P—space, which
implies the discretization of the “velocity” VE7*.

Having constructed the generic vector 1 (), we prove the existence of the limit

. _ (1
= i (0 =97

By analogy with the regularized case, we define the invariant (under space-time translation) sub-
spaces

Hlout(in) = {\/ w;:ut(in) ]’L(P) c Cg’- (R3 \O) ,P € E} .

On these states the functions f, continuous and of compact support, of the electron mean velocity
have limit :

1 g g (5) T =t o (5) )

The next step consists in adding “hard” asymptotic photons as result of the limits

- lim_ e (aleral(0) g™ gty () = ) o(y) = [ WG9k 50 € OF (R\0

t—doo

The proposed scattering subspaces are then

Hotin) = [\ 4207 b e O} (R9\0),F € O° (B*\ 0) .

A remark is necessary at this point. These definitions are indeed arbitrary in some sense, especially
the coherent function in the definition of the minimal asymptotic electron states, which is arbitrary
except at the infrared limit. Nevertheless, through the (artificial) separation between Hlout(in)
and Hou(") we want to point out that:

- from a technical point of view, our construction of the scattering subspaces is based on some Htout(in)
(arbitrary to some extent);
5

- from a physical point of view, even if the photon cloud described by the smearing functions
¢ is totally removable, the photon cloud linked to the vectors in H**#(i") is not completely remov-
able; all the scattering states always contain asymptotic photons, precisely those ones of the spaces
Hout(in) involved in the construction of the spaces Ho¥(M),
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Content of the chapters.

In chapter 4, the approximating vector v (¢) for the generic state of minimal asymptotic elec-
tron is defined. Then we study its norm in time, and finally we prove the strong convergence for
t — oo (paragraphs 4.1 and 4.2).

Chapter 5 contains the construction of the scattering subspaces H°¥("). On these subspace the
asymptotic limits of the functions, continuous and of compact support, of the electron mean velocity
and of the asymptotic limits of L.S.Z. Weyl operators are proved and their commutation properties
are discussed.

The construction will be explicitly performed in the case “out”. The case “in” is completely analo-
gous.

4  Approximating vector ¢y, (£).

Let us consider a cubic region of volume V = L? in the P—space, inside & = {P: |[P| < Z}. For
P in this region, we have:

e the existence of the ground state of Hp , with the properties which follow from the results in
chapters 2 and 3;

e small electron velocities [VE? (P)| <1 Vo (see lemma A2);

o [VE” (P+k)| <1 Vo,fork:0< k|l <k <1 (% is supposed sufficiently small).

We also assume the following hypothesis , that is physically reasonable and strongly supported by
Chen’s result [Ch]:
hypothesis BI  3m, >0 st Vo, ¥Pex 220 > [Pl g 2@ > L

=~ mnp

Starting from this hypothesis, we obtain that the application J, : P — VE? (P) is one to one
and that the determinant of the jacobian satisfies the inequality:

detdJ, =

1 (8E°(P)\* &*E°(P) _ 1
]P12< aTP| ) P = md

(E° (P), as function of P, is invariant under rotations and belongs to C* (R?) ( for ¢ > 0), see [3]).

Now we consider a time-dependent, ¢ 3> 1, cell-partition of the volume V = L2, defined as fol-
lows: at time %, the linear dimension of each cell is EL,—; where n € N, n > 1, is such that

1
&

(2M)7 <t< (27F1) €>0
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and the exponent ¢ is fixed only “a posteriori”.

Such definition implies that the total number of cells is IV (t) = (27)° at time ¢, where n = [log, t].
We call T'; the j** cell, centered in P;. :

Constructive prescription of ¥y, (t).

1) We start from the vector ¢( ) = fr]- h (P) ¥p s, d® P, where:

- h(P) € C§ (R®\ 0) has support inside the volume V" ;

- g% =W (VE" (P)) ¢% is the ground state of Hp o,;

warning: we use the index b in W” in order to distinguish it from the dressing Weyl operators in
the {a,a'} variables. W2 (VE? (P)) corresponds to the operator W, (VE® (P)) of chapter 2.

o=

®

Jiot

= (fr,» |h (P)]? cl3P) is of order

- (t) is referred to the partition at time ¢; note that Hi/)
(N (#)7%.

2) We dress each wj ). by the proper “e*t emiH Y, (v)) e iH™"t o—iHz, 17 by this operation the
so obtained vector remains inside the Hilbert space H under the removal of the infrared cut-off oy.

In particular we define:

N(t)
on (£) = ethe-iHPht Z Wy, (v5) einhtei’yot(Vj,VE”(P),t)e~iE‘” (P)t¢§2t

=1

N(t)

— iHt Z W,, (Vj,t) ei"{at(vj,VEUt (P):t)e—-iEvitw;i)”
Jj=1
being
_ f”l ak)~al(l) a8k
\4 v A4 k =Y . . .
o W,, (vj) =e ¢ teifamevs) VI I, where v; = VE” (P]’) is the velocity corresponding to

the center P; of the cell T'; (belonging to the cell-partition at time t), k1 (0 < k1 < 1) is the
integration upper bound for the frequency;

_ f"l u(k)e‘]klt_aT(k)e—tlklt 28
v [kl
o Wo, (vj,1) = e H W, (vy) et = ¢ (ko) VAT

© Yo (v, VET (P), 1) = = J; {g Jo7 coale V" (Phe—lid) dSA} dr =

(1 -k v,)
t 2 7oy cos(q:VEt(P)—l|q ]
f]‘ { f It . (1 qu) e }

i1 (Vi -VE7 (P).t) ig g phase factor whose origin and definition comes from Cook’s argument.
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At this point we only comment the two integration bounds for |k|. The integration bound o
is a “slow” cut-off, 02= 77 where « is a positive number sufficiently less than 1. The “fast”
cut-off o, is of order 777, where 3 is sufficiently bigger than 1. To get more easily uniform
estimates, the derivative of the phase factor has the role of killing a term arising from Cook’s
argument. In the proofs, we consider o = % from the beginning. On the basis of partial
estimates, eventually J is chosen equal to 128 in order to gain the strong convergence of the
vector ¥y, (t).

4.1 Control of the norm of vy (1).

The squared norm (¢ (¢),vn (¢)) corresponds to
N()
W, (Vh t) etYee (Vi,VET (P),t)e—-an tlbl(j;)'i W, (Vj: t) eiver (v, VET (P),t)e—qu t¢§f;t) .
Lj=1
In proving that the 1, (¢) squared norm has a not vanishing limit for ¢ — +o0, our strategy starts
from the diagonal terms in the above sum. The diagonal terms are easily under control because
their sum is constant in time, indeed

N(t) N(t)

2 2
> (wlou) =3 [ m@rer= [ perer
=1 j=1 lj‘j 14

The next and more difficult step consists in proving that each mixed term in the sum Z{E@l (we
mean off-diagonal term) asymptotically vanishes with an order in ¢ substantially independent on
the dimension of the cell. For this purpose, we take advantage of the time dependent cut-off o; . At

the end, we obtain that the sum of the mixed terms Efyj(i)l’l#j vanishes for ¢ —+ +o0, by properly
choosing the exponent e that determines the growth rate of the total number of cells, N (t) < t3 .

Remarks on the notations.

1)In the estimates that we produce later, we generically call C all the multiplica-
tive constants which are uniform in the infrared cut-off and in the cells partition of
the volume V. The provided bounds are intended from above, up to a different explicit
warning. The time ¢ is intended much greater than 1.

2) The operators, VE° (P), Wt (VE’ (P)), are functions of the total momentum P.
For reasons of space the dependence on P is not always explicit.

Control of the mized terms
The generic mixed term is (I # j)

My () = (7o (VB P00 iBaityyy | (1) e (5 VT (B).0) it 1y (1) )

- 2,0t
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®1 a(k)etl Kl —al()e ikl b (R R N
- hi,; k _a kR __ —~ k o
b o 2o OB () =
: ' : ) —kvypil-kw

Now, let us consider M ; (¢) as a two-variable function, by distinguishing the time variable ¢,
which parameterizes the partition and infrared cut-off oy, from the time variable s of the dynamical
evolution. For this purpose, we define for s > ¢ :

]/\;jl,j (t, S) = (ei""’t (vx,VE”t(P),s),l/)l(,tgt ’ eiHU‘SVVat,l,j (S) i1t (v; , VE“t (P)’s)e—iH"‘s’l/)(t) )

Jyoe

where

_39 oy
B fs {92 fr-r 40 cos(q:VE! (P) Iqi)glj‘__q} dr fors: S—%g- > o

1 70t (1—61‘\/1

Vo (i, VE? (P) ,5)

I
—_~

=3

__fl‘fz_ {gz f:;:% cos(q~(Vlf_‘3%"‘(:))—MI)ij_‘1} dr fors: s < ot
the property ]/V-fl,j (t,t) = M,,; (t) follows by definition.

We verify that:

1) My (¢, +00) = limg s ioo My (t,8) =0

I0) [ My (8)] = [ (88) = M (1 +00) | <

< U:—oo 4 (ei%t (v,,VE"t,s)?’bl(’fg_t,eiH(,tsWa_hl’j (s) e (vJ‘,VE’*,s)e—iH,ts,lp;f;t) dsl < G-t

where some constraints on ¢ and on another regularization parameter (J) are assumed.

Proof of I)
For s > t, let us consider

M ; (\tys) = (e”"‘(""VE” (P)’s)wz(,tgt , eHos Ty | (s) el VeV ET (P),8) g =i, 51 )

7ot

©1 a()eilkls _atqge=ilkls o 48y
- TT h; (k)

where W) ;. (s)=e V2 and A is a real parameter.

From the derivative with respect to the real parameter A, we arrive at the differential equation:

CdM; (\t,s)

- = —A\Cyj - Myj (\t,8) + 70 (Mt 9)

(note that ¥\") € D(H,,), then it belongs to D (a(f)) and D (at (f)), f € L* (R®), and the

7,01
derivative with respect to \ is therefore well defined)
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where

' 2
— e LY dk
Crj= fa: Ihl,j (k) 3R
Te, (AT, 8) =
by o, (vI,VEt (P —iHg,s w1 a(k)eilkls =\ ik - VEt(P —iH, ¢
(Wafz () eiTee (Vi (P).s) =il o, 1/,<m o a( ﬁ] i <k> \/Z!_kew : (vi) (P)ys) g—i ts¢;3t)+
K)eilkls ~ e - _iH, e B (p —iE,
+<f:¢1 a( ﬁl hug (k> 42]1;'617,( LVETE(P)s) ths¢(dt’ tlj(s) 7o, (vi VETE(P)s) 1Hts,¢)](t;t)

The solution of the differential equation at A = 1 is

—~ Cli —— 1 Crj ”
My (1,t,8) = e 2 1 (O,t,s)—l—/ roy (N1, 8) e= 2 (=X g (18)
0

Now, note that:

o M, ;(0,t,8) =0 Vi, s, since the P—supports of ¢( and ’lﬁl(’to),t (I # 7) are disjoint;

2,0t

e thanks to theorem B6 (appendix B) one can verify the existence of

iHg,, s [f1 a(k)e ikl 1 &’k ~—1.Hc, $ o 1Ve, (v, VETE(P),s) —_
t f e 18ty (Vj

s —limgyp0€ T hyj 2|k[ J Ut =

40
Yo, (Vj,VE“f (P),o, 39) ()
) e

Jyo

o lim, 1007y, (A ,8) = 0 since the vector v,b . is a vacuum vector for {ag" (k)} (see theorem
B7, appendix B). ’

Therefore, starting from the equation (18), we have

— — 1 c 2 J 12
M (t,+00) = My ; (A = 1,t, +00) = / ro, (N, 8, +00) e~ 2= (=) g\ = 0.
0

Proof of IT)

Let us consider:

d iHgy 5 Yoy (Vi,VETt(P),s -—z,FL7 (t) _
(-:l;(e WG’t (vl7 ) ¢ )wlat—

d’YO’t (Vl7 on—t (P) ) 5)) ei')",t (Vz,vEdt (P),S)e—‘ng-t sqr/}l(t) (19)
Ot

= ieiH"*SWm (Vl7 3) (QOCH Vi (X’S) + dS

k1 cos(k: x-|k[s) B
(1-kv
Now we discuss some preliminary quantities to estimate the norm of the expression (19):

where ;, v, (x,8) = g* [
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i) from the definition 7,, (vi, VE,s) = — [/ {92 [7

By

L
10 cos(q-VE“t—|q|) d®q
Y okl =4 bdr , we have

(-av)

_40
fors<o, ¥

Ao, (vi, VE?*, 5) g‘z/Sm cos (q - VE? —|q|) d°g

ds (1-9-v) s
=0 fors> 0;3—3
by analogy we define
deO‘ (Vl) 2:'75) 2 3_4% CO8 (q - ‘q]) d3q | -3
DAL N R A A _—__gd/ — s = fors<o;®
ds s (I—a-vi) s

40
=0 fors>o, ®

ii) the function @g, v, (X, s) can be decomposed in @}, ,, (X,s) + ¢2, v, (X, ), which are so defined

1
o 835 cos(k-Z—|k|) 435 —40
g’ fsﬂe __x(l—l:-w) e fO'f' s < oy 3
goi't,‘vl (X, 8) = { 0
0 for s>o0, %

_40
g2 f"_lég i cos(kex—lkls) s3p fors<a; ®
s 40

(1)
‘Pghv; (X, 5) = Por,vy (%, 5) - (p}rt Vi (X7 '5) = { 0
Doy vy (X, 8) fors>o, *®
iii) for technical estimates we have to consider a “regularized characteristic function” of each cell:
for this purpose, in appendix B, the generic function Xs,t,) (VE“,s) is defined with the following
property:
sttl) (VE“ (P) 75) —s—+o0 1F1 (P)

where 1r, (P) is the characteristic function of the I'; cell. In particular an exponent é, parameter
of the regularization, is introduced, to which a scale length ¢t~5 corresponds . This scale length
has to be less than the (e—dependent) linear dimension of the cell I'; in order to be consistent (see

definition B1, appendix B).

What we want to check is that the norm of (19) goes to zero independently on the partition
in a sense made clear by the next estimates. For this purpose we break the expression (19) in
many contributions which exploit the decomposition of ¢, v, (X,s) in oy vy (X, 8) + w2, v (%,8)

and the “regularized characteristic function” X&") (VE°,s). We can disregard the unitary operator
eesTW, (vy,s) in order to study the norm of the expression (19).

Analysis of the expression (19) :
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Pouv (%,5) €

—-iE"f(P)seiw',t(v,,VE"f,s)d)l(t) + d"rnt(v:,dE"*(P ):8)  ~iE7(P)s z'y,t(vl,VE”f s)w(t) -
. y O s . [

= Pou (x,5) 7 Peite (0 TETS) (10 (B) — o) (VET (P),5)) w0, +

+ DT RS i, (VB 8) =357 (s (1, (P) — 3 (VB () ,5) ) i), +

ds i O't

F Py vy (%, 5) (Xx(rtz) (VE" (P),s) — thl) (s7 )) —iE7t (P)s ;ive, (Vi,VE" ,s)w(’fm
'Hpcn . (x,3) le (% ) _iE”(P)Se”“(V”VEat’S)ll’l(fgt+
+ (Sﬂat v, (%,8) ngz) (%,5) + ih (vi, %) X (%, s)) et (P)sgive, (vi,VET, 5)1/’(,21

T (0 %05) () (3,9) = (VE (P), 5)) emiB7 Phsehrns (. TE  0hyf®) o

+ (_% (Vl, §7 S) + dve, (vi,VE(P), s)) —iE°t (P)SXS’tI) (VE°:,s) i, (vi,VET? ,3)1/);’5)

ds Ot

In lemma B8 each term is discussed. The asymptotic behavior is governed by:

- the “physical rate” (we term it physical because of the connection with the asymptotic decou-
pling) which is estimated from above by

!supx (Wi,w (X,s);d}i)( s))’ PRy

- the rate connected with the propagation estimate

1

” X(t) VE® (P),s) lbz(tgt - x¥ (§’S>) e”iEq(P)se”"t("”VEW’S)TP& ” <CsTmsWIngy |7 F

- the rate linked to the regularization of 1r, (P)

TS

The important fact is that the physical rate, the propagation estimate rate and the §—regularization
scale are substantially independent on the partition, so that by assuming the constraints

e 6> T2
o 20 +4e< ﬁ
we obtain:
My ()] = | M5 (t,2) = Wi (8, +00)| <

77 2 (e B e 0 0 ]
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<2 ds < C -t

d {eiH’isVVgt (v, ) P (v:,ant(P),s)e—iHatswl(zt}l. ’W;&

as
i

Provided the constraints for €,d are satisfied, as it is assumed in the following paragraphs, the
sum of the mixed terms is bounded by C - t™¢ thereby.

4.2 Strong convergence of ¢ (t) for ¢t — +co.

We display the Cauchy property of ¥ (t), by studying the norm of the vector:

Yn (t2) — Un (t1)

for arbitrary times t3 >t > 1.

For 5 — t; sufficiently large we have that N (t2) # N (1), i.e. different partitions correspond to t»
and t; respectively. The to—partition sum, Z?[:(?), is therefore generally written as Z;V:(il) 2G)
where [ (j) is the index which counts the sub-cells, relative to the ¢z —partition, which are contained

in the j%* cell of the #, —partition, 1 < {(j) < M.

With the notations above, the vector ¥y, (t2) — ¥ (t1) corresponds to

N(t1)

. - N VET2 (P)ta) —iHa, ta (¢
e S S Wa, (vigy ta) 17 (M VD) Tl g )
=1 U(4)
N(t1)
! Ve j “t1 ’ —iHo i
_e'LHtl § I/VC‘_21 (Vj,tl)ez’r t (VJ VEt1 (P) t1)e H, 4 thp‘g’;zl

j=1
Our final goal is to prove that ||¢n (¢2) — ¥u (t)|| < C - U—“—tiﬁ, p > 0, so that we can easily prove
g tl yp

the strong Cauchy property of 9y, (t) by a telescopic argument.

To estimate the norm difference we perform some intermediate steps from 1y, (t2) to ¥ (t1) and we
study the norm of each contribution. In the next lines, for the considered intermediate variations,
D1),D2),D3), D4.1), D4.2) and D4.3, we point out which quantities are involved and which physical
properties and technical tools are exploited to estimate their norms (from above) by a quantity of

2
order less or equal to ﬂ%ﬂ— .
1

As first step we consider the variation of the “dressing” term W,,, (v;,t2) and of the phase factor
oty (Vi VET2 (P)t2) ohon the cell-partition changes from ¢ to ¢;, remaining fixed all other vari-

ables:
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D1)

N(tl)
i Ve i, VET2 (P), —iHs, ta
giHte Z ZI/T]UtQ (Vl(j);t2) ooty (Vz(,) ( )tz)e i 2t2¢l((j)),gt2 N
=1 1(j)
N(tl)
N ez’Htg Z I/Vﬂ't (Vj to)e”"fz (Vj,VE“tz (P),tg)e—ian t2¢(t1)
2 1 Ya

j:otg
i=t

After the change of the partition, we separately consider the time evolution and the infrared cut-off
variation.

The backwards time evolution, at fixed cut-off o,, corresponds to
D2)

. N 3 o .o - ;. . ot e
Z e’th VVQE (Vj, tz) eiVoty (v, JVEt2 ,tg)e-.zE to t2¢(t1) — Z elHtl T/VU:Q (vj’ tl) PR (vJ,VE 2 ,tl)e_zE to tlw(tl)
7 -

Otg Jrotq
J

the study of the above quantity requires Cook’s argument.

In the analysis of the variation of the infrared cut-off, o4, — oy,

ZeiHh WCH (Vj;t:L) ei7’t2 (vj,VE”z ,tl)e—-iE"tQ tlw('tl) s Zethl I’Va't (Vj,tl) ei’ygtl (Vj,VE"'tl :tl)e—iE"il tl'l,[}('h)
2 1

1.0ty Wty
J ' J

for convenience, we consider each vector in the (first) sum as the product of two blocks

[ethl Wo., (v 1) I/Vclf):z (VE* )] ) [ei"yat,z (vi,VE 2 ,il)e—iE‘"tz 1 T’ng (VE ) @b‘g,t;i ] ,

—»T 35
_gf" (k) —b (k) a3k

Tt k| (1—k~v3"f2 (P)) V2ik

where Wc’,’t2 (VE= (P)) =e ' Let us term “dressing” block the first one

and “regular” block the second one.
The contribution due to the infrared cut-off variation o;, — oy, consists of :
- a very simple part concerned with the convergence of the “regular” block in the limit ¢ — 0

D3)

. X ot R . A ot o
eVt (V1 VET2 1) —iE t”lWathz (VEdtz)wg(t;BZ s goe (v VET ) —iB gy WOb't1

(VE7) p{f2)

71,0ty
- a more delicate one which comes from the variation of the “dressing” block
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D4)
W, (vit) WL (VE®2) = W, (v, t1) WE, (VE"S).

Let us analyze the variation D4) in details. It can be written as

t

T T t 1 o
W, (i t) W2 (v)) WE, (V) WE, (VET) = W, (vi,t1) W5, (Vi) We,, (vi) Wo,, (VE™)
e e -btoo 68
gf,t lkl(l—av,-) 2|i|

{where Wgh (vj)=e ) so that we can perform three smaller steps:

D4.1)
W, (vjota) WL (vi) WE, (vy) WEL (VE"2) = W, (vy,00) Wol, (vi) W2, (vj) W2, (VET=2)

Tig Otg

this step is controlled thanks to the strong Hoelder property in P of the “regular” block

€i7’t1 (v_.,«,VE’fl ’tl)e—iEatltl I’Vgu (VEml) "vb](fél
that neutralizes the logarithmic divergence arising from the variation of the lower bound of the
Weyl operator Wo,, (vj,t1) W' (v));

t7t2

D4.2)

t .- 1 o bt i o
Woa,, (vist1) WE, (V) Wo,, (vj) Wy, (VET2) = W, (vi, 1) W (V) W2, (Vi) W5, (VE’)
D4.3)

f Tt i ot
Wo,, (vi ) WE (vi) W, (v)) We, (VE?) = W, (Vi b)) WE (v) WE, (V) WS, (VE™)

which account for the difference between the gradient VE?2 (P) and the mean velocity v, corre-
sponding to the cell center Pj.

analysis of D1)

Let us examine the square norm:

N(t1)

R . X Tto ; . Tty —i 9
EZHUQ " Z Z (VV‘T‘z (vl(j)’ tz) ez (v‘(])’VE (P)’tz) - WUtz (Vj»t'l) et (VJ'VE (P),m)) e otz "pl((t;)),o'tz
i=1 ()

To compress the formulas, let us define Wy, (v: 1) = Wo,, (Vj,t2 e T7e (v N ’tz); the square
tz( i 2) to J q
norm above corresponds to

N(t1)
—iHg,, t t Tt e = = —iHg, .
Z Z (e iHoy, Wf(f)),%’ (W(;t2 (Vi t2) —ij (vj,tg)) (Wm2 (Vi) ta) = W, (vj,,t2)> e ‘2“%(&3)/),”2)

J3r=110),1(51)
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.70'\*.

(note that 1) = Jo, () 5, &P = Ty i, 1 (P) bp o, d*P by definition).

The sum of the terms where j' # j and [’ {j) # 1 (j) vanishes, for t — +oo. Its rate is surely
bounded (from above) by of a quantity of order ¢ ¢, as we can estimate by the same procedure used
in the norm control of ¥y, (¢). The remainder is given by terms of this type

(eHeatayy (2 = Wi, (vi,t2) Way, (Vi) t2) = Wi, (vity) t2) Wo, (V:‘:tz)> Tty %)

Let us examine:

—iHg, to (¢ —iYe,, (v;, VE!2 15 Yor (Vi) VET2 to —iHoy, ta (t2)
( Wit 2101((;),% e () )W;tg (vi:t2) Wa, (i), t2) € (V1o Yo it l(;),atz) -

As in the norm control, for s > ¢ we consider
—iH, ta) —iYe,. (v;, VE t2 5 Yoy, (Vi(s ,VE®t2 5) —iH,, s ,(t2)
( oyt e o (Vi )PV;Q (v4,8) Wa,, (Viizy,8) e o (Vi )= tHos, AN )

l(]) a'f') Z(J)V‘ng

The limit for s — 400 of the above expression is:

_SiG [ ey (VJ,VE 2 (P),o,,° ) (=) 7'70'1‘. <V1(1) VE2 (P),o,, ) (t2)
e : (e ’ wl(]) Tty ’ wl(;) Tty

fél‘o‘

2
N d®k

) (k) 2R -

Summing over the cells, the total error is surely bounded by a quantity of order ¢; ©. Then the

discussion is restricted to

where Cj 5 = [

l(j)vatg ’

N(t1) ) - Citig . o )

Z w(ig) 9 _ e, (Vi Vi VET2 1) L@ ifyo,, (Vi=vig) VB2 t2) = —250) ¢(t?)
l(J):Utg

=1 1

40

40
. Tio ~ivg i \VETt2 g, 39 - vVE® @)

(where "277¢2 (vimvi VE™2 t2) = 7770 (VJ 7 )ew 2 (v;(J) e ) that we can con-
trol by

N(t1) 2

t = — o — -t
> (tlwui,% O |In mn) <C-6F |in (o)
i=1 1(j)

since

. |2
* Citiyg = [y, M) (k)
vj — vy(;) and because of lemma 3.3 ;

;ﬁ%"% is bounded by C - t;ﬁ - |In (o1,)| because of the difference

¢80, (Vi) =vi VB2, 2) | i b ounded by C-t’;i% ‘/In (o,)| uniformly in P € X (see lemma B2).
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analysis of D2)

The term D2) corresponds to

N(t1)
iHt Vor, (Vi VETS2 t2) —iE7t2t,  (t1) iHt
{ QYVO't Vj, tQ) e 7t ( ’ )6 °¢j,0g2 - IT,VU'iQ
j=1

By Cook’s argument we estimate the contribution for each cell by expressing the difference of the
two vectors as the following integral from ¢; to t2:

t"

= d : ; . Tig st t

/ E_S_ {eszI/thQ (Vj, S) PR (VJ:VE ,s)e iE 23,('[};;_22 } ds
[31

The integral is bounded by the integral of the norm of the following derivative:

a {eiHs'[/Va_tg (Vj: S) el"/nq (VJ VE“t2 s) —~iE7t2 sw (t1) } —

ds Jiots
) dy vi, VE72 (P),s) . E——. ime
_ ielHSx,sz (Vj’ 3) (saat? . (x, 3) I Ttg ( Js e ( ) e’t"lnz (VJ)VE ,i2)e iETt2 sw](f;; =+ (20)
e Wy, (v3,8) (H = Hoyy) €10 (1307572 0 mi8 ey fin) 1)

The formal steps are operatorially well defined because zpj or, € D (H%) = D (H)(see also lemma
B8).

estimate of (20)
Analogously to the proof of II) in paragraph 4.1, we decompose ¢y, v; (X,8) in

(pingi (X, S) + Sog-tz,v,— (X’ 3)

having defined:

39

8) =g fs 40 f cos(k-x—|k|s) dﬂd|k!

Tty (l—i;v.,‘)

o @2, (x,8) = g7 [y [ 2 anq k).

=)

By a procedure analogous to the one used in proof II) of paragraph 4.1, we obtain the following
estimate for the norm of the expression (20):

1
® o, s (

C -7 (Inoy,)’
estimate of (21)

The norm of the vector

¢ d*k
‘L iy A\’ ,VE 2 t — k3 o V],VE tz t
(B ) i (T8 ) yl) g (B2 [T (00 81 00) o)
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can be estimated in the following way:

i

Tty T a3k tl) Tig (tl) Tty (t1)
“ b(k) + b7 (k) Zt=tyi, Hgfo b(k) ), “j b _7[1(@/;]’;2 <
Tty -4
< (s f sﬂL) Jul | <o) 7

(note that b (k) {2} =0fork: |k|<oy).
Therefore the norm of the term D2) is bounded by a quantity of order

< 3¢
17 (Inoy,)” + 2 - (04,) - £

(remember that the constraint 26 + 4e < 135 is assumed).

analysis of D3)
N(tl) . + . ot - ) . o P
Z [ethl Wﬂ'cz (Vj, tl) I/VUbtg (VEcrig )] [el’}'o—tg (Vj,VE 2 ’tI)VV:‘Q (VEaz:,) e—zE 2¢1 PRl (v_,',VE‘ 1 ,tl)W:il (VEdtl) e__iE 1
j=1

Let us analyze the difference for a single cell. Its norm vanishes with a rate related to the decrease

of the cut-off. In fact

ei'y,tz (Vj,VEUt? ,tl)e_iE"fz 1 ngtz (VEgtz ) w(‘tl) _ e'i"yr,tl (Vj,VEw‘l ,fl) —i BTt g Wb

720ty Tty

(VE™)p{l2)

1,0ty

< [|era (s VE R ) miBTat gyt (g o) gl _ giten (v VET ) pin ey , (VE7=) i) 4
- 2 ¥ig 2
e (T ) ey (9 ), — e (T )i g (v ) |+
y 1 2
e G g (B yl) e (5T gy (9 ) )
2 1 10t

first term of the sum

The absolute value of 772 (Vi-VET2:01) _ ive,, (v VE™t1) (o be estimated in terms of the abso-
lute value of the difference between the arguments of the exponentials (lemma B2):

1
I70t2 (VjﬂVEat?' (P) 7t1) _f}/dtl (Vj)VEatl (P) 7t1)! < c- (Utl)% / T“%dT +C- i - Oty
1

where P € 3. .
Then we surely have a bound by a quantity of order #; - (oy,)%.

second term of the sum
Taking in account the iterative procedure (P € X)

e P _ B P < 0 (g4,
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third term of the sum

|

e, B(B) (W2, (T () iy = WE,, (VE™ (P)) Yo P S O (o) -6

gFiees (VBT ) miB B gyt (G o) plf) g (9 TET S )BT gt (VETS)yf)

Ttq 7,04

=

as follows from theorem 3.2.
Therefore, the norm of D3) is surely bounded by:

Be 1
C'tf + - (O’tl)‘l1 .

analysis of D4.1)

iHty i ¥ ot Yoy, (vi,VE L, —iEt N
SN H g, (v, 1) W () WE, () WEL (VB o (0T da) BT gy, (77 ) i) +

_ ZN(h iHt, Wml (Vj, t) WbZ (Vj) Wgtz (Vj) Wvg; (VELHQ) P (v;, VE™H 1) e—iB7 L ch?:l (VE) w (t1)

ot 7,01y

Having defined

o5 = W, (vy) WEL (VE7a) e (VB ) B gyt (VB ) )

2.0t
the expression above can be written as:
N(t1) , .
S € (W, (v3,00) W2, (v3) = W, (v3,00) W2, (%)) &
Jj=1 ‘

We can restrict the analysis to a single cell. For this purpose we examine

W, (Vi) WE (v5) = Way, (Vi) WE (v;) =

9 [oiy sin(lklti—lkex) sz, [t a(k)(ﬁiikltl—-eik"‘)—ﬂf(k)(e'ilkul—e_ik"‘) 43k
9 fa't2 2{k|3 (1_;.Vj)d ke gf"tg |k](1—’l:'Vj) V2[k|

= I/le (Vj, t]_) I/Vg:l (Vj) e —-I| =

a(k)(eilkltl _eik'x)_af(k)(e—i[kltl __e—~ik»x) Sk

|k1(1—;<\<v3-) V2%

ig? [t sin(klt; —k-x) i3 —g f"'tl
e e
Tig 2|k[3(1—k‘vj) Tty

= Watl (Vjvtl) o',_l (VJ) € -1

izf"tl sin(lk|t]:\k-x) dsk

+Wo't1 (vj7 tl) VV;:I (VJ) e Tty 2]k|3 (l_k"’j) -7
Since the vector ¢; belongs to the domain of the generator, we have
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o, a(k)(ei|k|t1 _eik»x)_af(k)(g~i|k]t1 _a—ik~x) .

e—gf’tg |k|(1—;vi) V2lk 7 0 =

—gkfnl a(k)(e“k[tl—aik'x>~ai(\k)(e"ifk|il—e"ik'x) B
1 Tto \/2lk ‘7‘1 a(k) 1[k“l—e‘kx)-—cc Bk

- _fo e 2 |kl(1—k-"j) f [k[(l ka) \/;[—EQDJ

O't1 (k)(ei]k[tl_eier)__cc
Pj
Gto [k[(l—k~Vj) \/9}1(
j“fiz aT(k)( —ilkt; _ e-—-t.kx) £k
Tiy x| (1 kv,) 2IK| ©i
gf”"l b(k) z]k[tl—ikx 1) 4 ilkjty eik'x‘2

2
Sk ) o1q ie — 3 ]
O (% Eava el <%’g Jo 2[k|? (1—§~vj)2d m)

In lemma B9 the vanishing of the two expressions above is studied. Moreover the norm

“ "t1 a(k qkm ikx) Pk

stz k| (1-kwv;) 1/2|1<|€0j

+;g

1

Cf sin(lklty —k-x) 85,
ol iy een LA ,

Pj

can be easily reconciled with the second term in the expression above.

At the end we obtain that the norm of the term D4. 1) is surely bounded by a quantity of or-

der: .
i1 - t%e ' “no'izl : (Jtl)-l—s

analysis of D4.2)

EN(tl) iHt, Wi, (vi,t1) Wg; (v;) ng (v;) Walgj (VE“:=) elTory (vi, VEH tl) —iETt 4y Wgtl (VE”“WYQ

— Z;\i_-(il) eiHﬁlwgtl (vj, 1) W((;:I (v;) W£¢ (v;)V Vbt (VEo1)e Wey, (Vi VET ,t1)e—iEot1 t1 Wb (VE‘T‘I ) wy(:f(ln1
For a single cell, by a reasoning used in lemma B9, we have

| (w2, (7B = Wi, (vE) ) Wi, (vE)wi) | <O (o)t o7

so that the norm of D4.2) is bounded by

3e 1
C'tf . (Ut1)4 - Ilnaizl.

analysis of D4.3)
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SV gttt gy, (vy, t) WO (Vi) W, (vi) Wh, (VE":) e (v VBT i) gmiB™t b (Vo))

Jj= 5oty

- Zj\/:(il) e1Ht1 VV‘”1 (Vj, tl) e lou (VJ,VE 1 ,t1)e—zE%1 t1 wi‘;zl

This variation can be written as

N

—

t1)

ijcl

ST, (vi,t) (Wb 172 (v5) Wt T (TEo) - I) oiteuy (V30 By ,tl)e—z‘E,tltlw(tl)

j=1

with the definitions

« WITE (v) =W (V)W (vi)=e 7 b (1-lev; ) V2R

Oto

a b(k)—bT (k 3
_gffq (o) =b (k) _d%

oty b(g—bl 0 3%

g =
Ttg |kt(1-kv5‘”1) V2ik

o WY [z (VE) = WL (VE™)Wp, (VE™) =e

The discussion of this contribution requires the study of the squared norm and the control of the
mixed terms, with respect to the cell-partition, in the corresponding scalar product. We verify that
the sum of the mixed terms vanishes and we estimate the rate. Then we turn to the diagonals terms.

mized terms

Let us consider the generic 1-j term. We observe that it is possible to reply the same procedure
as in par.4.1. Indeed, for the given expression, the (annihilation) operators, that we obtain from the

derivative with respect to the real parameter ), substantially pass through (Wb ,‘;g (vj) W' |‘;§§ (VE = )) ,

in the limit s — co. By similar steps an analogous estimate can be obtained: the sum of the abso-
lute values of the mixed terms is bounded by C'-#;*.

diagonal terms

Considering that:

e the norm

Jioty

| vt i35 W I (VET () = D) g

can be estimated by a quantity of order

_3e
sup |v; — VE? (P)|-[In Ot 1y 2
Pel;

o supper, |[VEs (P) — VEou (P;)| < C - supper, P - Fj‘}f“ﬁ <C-t,

(for the last step, see lemma 3.3)
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the sum of the diagonal terms provides a contribution bounded by
_Eg

C-iy !
Therefore it follows that the norm of the term D4.3) is bounded by

lnoy,| .

C-t% lnoy,| .

Theorem 4.1

The vector 9y, (t) converges strongly for + — 400, with an error of order &

properly small coefficient.

Proof

Let us consider the bounds obtained for the norms of the quantities D1,...

the time scales related to eand § in accordance with the constraints
e T2e<d.

® 25+4€<119

where p > 0 is a

D4.3. Having tuned

and after having chosen o; = t7'?8 for instance, we can observe that each term D1,..D4.3 is

bounded by a quantity of order

2
In (tg)
37
where p > 0. Then we can estimate

I (22) = (1)) < © (ﬁ?ﬁ” )

1

where p > 0 e C' > 0 are independent of ¢; and ¢, (forta >ty >T>> 1).

Now, let us consider the sequence #1,7,%5,.....t7, ... and put ¢} < t5 < 770

properties, it follows that:

Due to the norm

¥n (t2) = ¥n (t)11 < ||9on (£2) — ¥n ()| + ||von (83) — o )] + oo+ l1n (t2) — v (82)]] <

IA

2 2 9
C - {(%‘E(PB_)_) + (32?%1)) + (42;(;;)) R _|_ n+1 ln t1 } <

S%-{(p I“t(ﬁ”) +(p'°'7-‘—’—‘§,f—1))2+(tp ‘“fﬁ”) o, +(tnp-

|_.

)

For t; sufficiently large, ¢ > &; > 7 > 1, the series inside the brackets is convergent, and it is
bounded by a constant less than 1. We can conclude that th,tg, where 12 > t; > tl,

lbn (t2) = ¥ (t1)]] < —.
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5  Scattering subspaces and asymptotic observables.

In this chapter, at first we construct the subspace Hlout(in) a5 the norm closure of the finite linear

. . . (i . . . . .
combinations of the vectors {1/),3” (in) } The invariance requirement, under space-time translations,

for the space He“4(i?) implies a more general definition of the vector wZUt(i”)

each given wzwf(m) we consider the family of vectors 1/);“:(;") corresponding to the evolution in the

time 7 and to the translation of a quantity a of the previous vector.
Then, we verify that on the subspace Hlout(in) = {V wzuf(;n) heCh(R3\0), supph C X, TE€R,a¢€ R3}

, in the sense that for

the strong limits of the functions, continuous and of compact support, of the electron mean ve-
locity exist and the strong limits of the L.S.Z. Weyl operator associated to the photon field as well.

Due to these results, we can define the vectors zp;ﬁ“”) (t,a are omitted) obtained by applying

the L.S.Z. Wey! operators, with smearing functions {¢ : & (k) € C§° (R®\ 0) }, to the total set of
Hlout(in)'
The norm closure of the finite linear combinations of the {1[12?‘;“”) } is a reasonable candidate for the

scattering subspaces Hout(in)  The physical meaning of this definition is in the characterization of
the HOu(in) gtates in terms of quantum numbers of the asymptotic variables which are well defined
on them: the asymptotic photon Weyl operators and the asymptotic electron mean velocity.

For sure, the spectral restriction on the electron velocity (strictly less than 1) implies a restriction
of Howt(in) a5 subspaces of H, explained with the partial non-relativistic character of the model.

In theorem 5.1, the vectors {Qﬂﬁ;(m)} are constructed. In theorem 5.2, we prove the convergence

of continuous and of compact support functions of the electron mean velocity on the vectors of
Hout(in) | The corollary 5.3 is a check of the fact that on Heut(in) the strong limits of the L.S.Z.
Weyl operators generate a canonic Weyl algebra Aeut(in) | to which a free massless scalar fleld is
associated .

Definition of the vector ¥7% ..

Applying the operator e~ Fe~*7 to the generic vector out  we obtain:
ying P g h

—ia-P ,—iH7,/0out —
e e TP =

- _iaP _—i i N(t e i . T — BTt (t— —iE° t
=5 — liM¢—st00 € iaPg iHT giHt ij(l) WO’z (Vi,t) eivo: (vi, VE?t(P)t) p—iE t(t—1)g—iE 2T¢§)3t

-—-gfml a(k)eik'ag"lk'(t"'f)—c.c. a3k
) ) Nt Tigr |k[(1—§-v~) VaIR VETt+T (P),t —iaP _—iETt+T¢ _iE°t
= s—lims—s 400 cillt Zj=(1+r) e i eoitr (vj (®) +'r)e ia P —iB 7t Tt —iBTtHTr J(t(;);z

=85 hmt—-)—i—oo 'l/)h,r,a (t)
where 9, 7 a (t) corresponds to the approximating vector ¥y, (t) with translated wave function.

The last equality follows by the same proof provided for ¢g**, apart from some little marginal
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differences. The definition
—iaP_—iH
wguﬁa~e ia e 1 T¢Zut
is meaningtul, thereby.

The subspace of the minimal asymptotic electron states is defined as Ho%= \/wg?fa where we

simply denote {1¢“*} the total set that generates Hout,
Theorem 5.1
The strong limits

5 — limt->+oo€thei(a(‘“)+aT(9"“))e_th@bzm
exist, where & (k) € C§° (R3\ 0), ¢t (y) = [e ¥ +ilkltG (k) @3k and af (@) = (a (v))! = (Ja(k) @ (k) d3k)T.
Proof

The convergence follows from the integrability of the norm

d(ethei(a(w)-f-aT(w))e_in>
z 7

ez’(a(<pe)+af(<,ot))90 (x, ) e~ iHtpout

< o (e 8) 7 (g = dn @) + oo (x, 1) e Feup (1)
where ¢ (x,t) = g [ ((5 (k) etlkli=ikex L Zx) e—ilklt-}-'ik'x) _\/g_;_l_;?!_

Both the two norms on the right hand side are bounded by quantities of order 3= , p' > 0:
- the first one because sup, [¢ (x,t)] < & and [|(¥g* — ¥ (1) < £ (M and C are constants);

- as regards the second one, starting from the identity
o (x,1) e"thiﬁh (t) = o (x,1) ZN(t) W,, (v, t) eies (Vj,VE"’f(P),t)e—-iE"it,(/)gg_t -
= S0 Wo, (v5,8) 0 (x,8) €70 (50 VE D)= [y (P) gpp o, 3P =

= T3 Wa, (v, 1) 0 (5,8) (I, (P) = ) (VB 1)) s (0 VBT PU0G=iB [ (B, 8 Pt
&

+ 250 Wo (v 0 0, ) (3 (VB 1) — ) (3.8 ))e"”“f("f’VE”‘P””e"‘E’”frjh<P>wp7atd3P+<>
11

2D Wa (v 1) 0 (x,) 348 (5,4) eee (s VBT PU0iEE [ (P) hp 5, d° P ()
111

we exploit lemma B1 for (I), lemma B3 for (II), and Huygens’ principle in order to estimate
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supy | (x,t) XS? (%,t)l in the expression (III) .

The scattering subspaces HO®() =\/ 1/)21; (in) are invariant under space-time translations because
the subspaces H'(i") are invariant, by construction.

Theorem 5.2

The continuous and of compact support functions f of the electron mean velocity have strong
limits in H°* for t — oo, in particular

. b'd .
— lim eth (__) —iHt,out _ ,rout
S t—+0c0 f : € Yhoo T/Jh‘f#7

where f (P) = lim,—of (VE? (P)).
Proof

Tt is sufficient to prove it on the vectors wgfg for functions f € C§° (Rg). Exploiting theorem

5.1 and the uniform boundness in ¢ of the operators f (¥) and gifltgi(alw)+al(00) g—iHt e obtain

. . , . . . ; .
5 — szt_)_l_ooemHtf (%) e—thwz«ﬁ =g5— llmt—>+oo€ZHtf (%) ez(a(tpe)+a (Sot))e th,lp’olut —

=5— limt_>+ooethei(a(m)-lraT(%))f (%) e—iHbyout —

. . . + .
=5~ lzmH_Fooethez(a(%Ha (v) g thwZ%
(the last step is proved by the technique used in lemma B3).

The extension to all of H°¥ is automatic since f (¥) is uniformly bounded in ¢ and the set Vg
is dense in Ho¥, by construction of Ho% .

Corollary 5.3

In the space H°“*, the asymptotic photon algebra Aot ig defined as the norm closure of the *alge-
bra generated by the set of unitary operators {W°* (u) : i € C§° (R3®\ 0)} constructed in H** as

follows:

out —e— I iHt ji(alpe)+ol (1)) —iH1
W (u) = s t_l}gxooe e e (22)

The following properties hold:

1) the generators { WU (u) : i € C§° (R® \ 0)} satisfy the Weyl commutation rules
Wout (N) Wout (77) — Wout (77) Wout (/J,) e—h(u,n)
where h (u,n) = 2iIm [ i (k)7 (k) d°k;
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2) for each fixed region R®\ O, where O, is a ball of radius r # 0 , centered in the origin of
R3, the group generated by the operators W% (u), i € C§° (R*\ O,), is strongly continuous with
respect to [ in the L* (2% \ O,, d*k)-norm, '

3) given the T-evolved generators

W:ui (/J,) =s— lim eiH(t+T)ei(a(ﬁbt)+a«T(Ht))e“iH(t+T) — WGU't (/_L,T) (23)

(where u_, is the freely evolved test function y, in the time 7) an automorphism a, of 4°% is
uniquely defined starting from

ar (WU () = W (u_.).
Therefore, we can conclude that A°%* is the Weyl algebra associated to the scalar massless field.

4) the algebra A°“ commutes with the asymptotic electron mean velocity defined through the-
orem 5.2.

Proof

The existence of s — limt—>+oo e":Htei(a’(”t)'I-at(“‘))e—thwZ’:‘g is substantially the content of theo-
rem 5.1. The bounded operators W°“ (1) can be linearly extended from the dense set \/ Pt to
all of H°“, by continuity. They leave the space H°% invariant and they are unitary in H“,

1) The operators in W% () WUt (p) : H°“* —H°“ is the time limit, at the same time t, of
the product of the corresponding approximating operators (22). The last ones satisfy the Weyl
rules by construction. Therefore, the property is satisfied in the limit.

2) Let us start proving that W°“ (u) is strongly continuous with respect to [ if it is applied
to the total set {ngg}.

‘We know that:

- Jout (1) ,l/)zué =5 — limy—tco ethei(a(m)—i-a’f(#t))e—-thwh’q’ t);
- at fixed ¢, the vector ei(“(’“)'“ﬂ(“‘))e“imwh,w (t) is strongly continuous with respect to 1 €
Cg° (R*\ O,), as follows from the identity

, N(#)
H45760) 317, ;1) 15 TE PGBy )
Jj=1
N () 1
20 ot 1 00) ) it 0 90 B )
Jj=1 ’
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~ 1
(where £ (v;,k) = —7;97___.’?;2_“‘):__)) and from the fact that wj(.tgt is in the domain of the generator
2|2 (1-Tv; ‘ :

of erlatuo)+al (ue)).

Being fi; € C§° (R*\ Or) and [|Bellr2(ro\0, a2k = Bl L2(ro\0,,2%)» the vector W (u) 7t is
strongly continuous with respect to fi.

Since ||W Ut (1)|| = 1, the property holds for each vector in H*.

3) The T-evolved generators e?#7 W% (1) e *H7 are well defined on Ho% because e "7 :How - Hout,
By inserting the expression (22) for W°“ (1), we easily arrive at (23). The Weyl commutation rules
are conserved by «, since

(s yr) = 2iTm [ BOQT0) & = h ()

4) Such a property is implicit in the construction of the asymptotic electron mean velocity (theorem
5.2).
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APPENDIX A

Preliminary remark on lemma Al
As in lemma. 1.3, we want to prove that the operator

(AHE)ZLJ = H:’LF’U,O'J'_}.I + CP (j) - EP (.7 + 1) - Hg,ﬁj
is small of order 1 with respect to Hp , |p+ in a generalized sense, for g sufficiently small. We
’ Ti41

aim at expanding the resolvent

1
Sw . ~ . - [F;r_ )
Hg ooy — (EG+D+ep(G+1)—cp(j) 7+
. . % — o4 ~ . _ N 2 poj 1 3
(where E (j + 1) € Cst. |[E(j+1) — B’ | = 25, and 2 (j + V—cp () = ~¢° [ | (e E (P))d k)

. 1 W\
in te e nd (AHE)? .
rms of TE, ~EGH) [Ff,'“ and ( P>U’j+1

Lemma Al

Given the spectral properties pointed out in paragraph 2.1 pag. 35, (AHS)Z;H is small with respect
to Hf,”yaj for sufficiently small g and P € ¥, in the following sense:

given E(j +1) € Cs.t.|E(j+ 1) — By | = §50541,

1
) — + funed
Hy . ~(B@G+H)+ee(i+1)—cr(d) |F«j+1
1
= e . . . . - . + =
HE o; "‘(AH;),;H—CP(J)+CP(J+1)—(E(J+1)—CP(J)+CP(J+1)) iF"j+1

n

N S 1 e [ AFwY o1

Hy , —EG+D) lF;‘}+1 +Hg_6j~E(j+1) 2 n=1 ( (AHg), ., H"’,,j—E(j-l-l)) |F$+1
where

i (C(g,m))
1 - w\O3 1 20(C(g,m)™
) Mo —EG+) ( (AHP)U5+1 HE o) —E(+1 ) + s Tj+1
7j+1

e 0<C(g9,m)< 55 .

Proof

7



As in lemma 1.3, we discuss the norm of

1
Hp,, —E(G+1)

[RIY

1 \:
AH
(AHE) <H‘§’10j —E(j+1)) e

where
- miz - quad.
(AHR)S | = [(AH{;’)U +1] + [(A w)ajH]
; 2
quad. k(b(k)+b (k) 2 [0; k
w _ 1 3t _ A2 i 3 1.
[(AHP)"JH] oo2m (gfﬁl Va3 (1-kvE° P))d k=g f%‘+1 2]k13(1—E~VE":'(P))2d Bl (a1)
miz
[(AHP)UJH] = (a2)

_ . (b(k)+b" (k) 3 k 37,
= {Fp o ( 9 f|1<| (1-k-vE"i (P)) *k+g [ 2k ? (1—’12‘VE"J‘(P))2d h) +C‘c'}

In order to control the above quantities, we use the following estimate again and again

< &k 1 : 5 L
/ k*b (k) < ) < < V10m-o?,
oit k| /2 K] (1 ~k-VE® (P)) —E({+1) 4

F+

which substantially comes from the estimate (1) of lemma 1.3, by performing an unitary transfor-
mation. So we can provide a bound of order o; for the norm of the “quadratic terms™

1 1
1 : - qauad 1 :
AHE)? <o
(Hgm —EG+ 1)) (am)7,.] (Hg,dj —“EG+ 1)) < - Culg;m)

o

For the mixed terms (a2) containing the I'p o,, we exploit the fact that of the norm

1

3 17
w : 1-‘P,a'- = P,o; o p
HP,O'J‘ - E(j + 1) ! ! ‘HP,a'j - E(] + 1)
rt

Fia T4
are of order a;%, which follows from the form inequality
(Th.,)" <2m (2, —e0 ().
Therefore a bound of order 1 is worked out for the mixed part:
3 . )
(Hfa“,(,j —1E(J' + 1)) (am)7, ] (Hg,a,. —E(+ 1)> o =Glom
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Conclusion

If g is less than a maximum value, the oj—independent constants Ci (y,m) can be tuned in
order to arrive at the thesis.

Lemma A2
Results about VE? (P), where P € %:

1) |[VE? (P)] < v™® < = Vo (better estimates independent of the ultraviolet cut-off x are
provided in [28]);

~ o

¢j+1 A

. —
o= llesll

2) |VEi+: (P) — VE% (P)|< CVE . (‘

uniform in j;

l -+ e%> for g sufficiently small and CVE

1)

=

Joo

o pi Rt o \2
[Ei(“/}p’P —-P7 ¢p)} <||qp;n[zm(w;,Hp,,+2wgznw;)]% <\/7[(¢;7HP,U+27T92K'¢;H%

VEU P == ]
VE” (®)] = - e S ym ozl

According to the initial hypotheses at pag.23, we have

Lk B tBl < (o, Heo o)l = 55 < 75
P

|(v8,27¢° s 3|
2
[R%4]

m
< 2-100

so that the thesis is proved.

2)
Let us analyze the difference between the gradients of the ground energy at subsequent infrared
cutoffs. Starting from the relation (at pag. 32)

T3 aj I3
mVE§j=P~(P’HP’Uj¢P)—92/ k dsk,

) ~ N\ 2
I | 20k (1-k-VER)
we obtain
LEA Ti+1 2[R k 3 2 rk k Bk =
=~ - T =~ N2
mVEg —mVEp g faj+1 2]k|3(1-—k.VE;’+1)2d k+9 ), 2)k® (1-kVE )"

= et (3% Bley 7™ ) = e (67 TIe, 07) -
o 162
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By simple steps

i1 e i\ o D) o eint
k(-k VBT 4k VED ) (2-k VB —k VEZ

) g3 =
2[k‘3(1_’12.VE;J'+1)2(1*§.VE;J.)2 d°k =

mVEg - mVEG* +¢2 [

= T Zb\;j-!—l _ _‘é:l:'i__ k dSk
ld’ o <¢P HP’JHI( IA:-ﬁl “ e || T f‘”“ 2kf? (1- _kVE J“)” +
+ 1 (Ao'jﬂ’ﬁ . Uj) L ( %+ Tlp o, >+
e e 5 et = sy (P et

+ "V 1 s H o; ,H O .
it [”¢ ” (¢ P,o;¥p ) H¢ ,” (¢P P pr )
Considering that

. i —
HP N RN} - HP,UJ' -

[ k"(”(kHbT(k) Bl L [F
- T3+l /2]k|Z (1 kVE;) k+ % Jo,

the equation (a3) can be written in the following way

k(K VEZ Tk VEY) (2-k VEL ~k VEH)

aj _ Ti+1 2 3

mVEP mvEPJ +9 o ‘7[k]3(1 kVE J+1) (1 k VE ])2 d k+
_ 1 oIt 4O k(-kVEZ 4k VED ) (2-kvEY “kvEJ) o
‘ ¢pj+1 ”‘15; ” ((b J ) g f 4|k|3 (1~/1;-VE;j+1)2(1—i{\ VEa-j)z d’k =

_ ¢ ﬁ < ;;U.J"f-l B ¢01: Y o FTi+1 B ¢;_7: . 6% ) +
oo :+1 P P,ojt1 W “¢;.7” ”¢;:“ ||¢ J+1H ||¢;JH »iP,o;Pp
k ‘79+1 ( ’*‘bt(k)) 31,4035
NS vy o <¢ 9o Zangt revmg) e

On the left hand side of the equation, there is a quantity whose absolute value is bigger than

C- |VE1? ~VEY “] for g — 0, where C is a positive constant that is uniform in j and converges
to m for g — 0. It is due to the result in point 1).

On the right hand side, there is a quantity whose module is bounded by a g—dependent constant

times
7o; Tj i
e o | B

leEll

It follows taking into account the bounds below:

Boi+1 .(b(k)+bf(k)) 31 495 | . [ FOi+1 aj kb7 (k) 37, 405 | _
AN B e Ll Il KON M ey o e L o
P .
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=97 L (B it (1R vEp) 09 7 ) <

ek (1-k VB )

tafesl

1
(ki)g 3 ’ 7041 BRIy 1 31 2o 7 || o
<g (f ) (B8 S = ke VB (B 09509 4% ) ezl <
3
(x)’ 3 Tivl (s 3 (Foi+ Foie B o
_9<fgj;1mdk (Bg —2 G+ 1) (357.857) loF |
o [, 05| = [Mh 0| < | Prrtwp || + const - o+ <
<Voem- (2rgPk + EU“” |l ||+ const - ||op I
Lemma A3
The following inequality holds for a sufficiently small ratio -:
1 oy b7 (k) 35 . T 1 ? o
(Hl‘;’,dj—E(j+1)> faj+1 ﬁlklgagpj (’l;)d k FP,U’j (Hg,%—E(J‘H)) P <
199 . K 3 1 ; o5 1 i (]
< 2- Q 122 {f0'3+1 2'1{]3 (] (E)Qd k E;j—E(j—i—l) Fi:’,aquP’ Hg’vj —-E(j+1) PP,D’,‘ P
(having defined o2/ (k) = (1 ~R.vE (P)) ).
Proof
Let us start from
1 1 2
2 o kb (k) 3 i 1 gy —
H Pd —E(J+1)> faj+1 ﬁ[k[§a;j (E)d k- Fp’aj ng’.aj-E(j"'l) P =
o; k'b! (k) 3 1 o 5 t 3.1 Y
ETTEGD (fw WL P R 098 |\ B =BG | o Zanter @) (9 R, > :
Now, from lemma 2.1
o; kbt (k) 34T oj 1 K pt 3.7 ;
(f T+l \alk|E el ( )d PP’”J' P\ Hp , —E(+1) f0;+1 \/—[k]% 75 (’\) bt (k) d kI‘P,O‘jqu ) <
A re kb (k) 3 1 ; Eo (k)  g3ppi 4%
> (f A et (e ) o T e )%
Starting from the expression ngu,a,- = I‘P o T [ k| ap ( ) bt (k)b (k) d®k+cp (j), the following
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Identity holds in a distributional sense, for {k : |k| < o;}:

1 1
e | b () = b (k) ; = =
(Hp,aj —EG+ 1)> s (Cpo, +K)7 + [ K| (k) bt (k)b (k) + |k| a2 (k) tep(j+1)=E(j+1)

Moreover, for Z sufficiently small, for the assumptions made on IE;j -E(+ 1)| and being
gj+1 < k| < oy, the following bound holds in the subspace Fi:

[~

1
L Lk .Tp, +£ 1 <i.
(Hg,,jﬂkm? (k)~E<a‘+1>> (F-Teo, +45) (Hs.a,.ﬂkmp’ (k)~E<j+1)> Ll
i (ad)
Therefore the series expansion
3 1 n =
7 (Do +k) *+ [[klag? (K)ot ()b(k)+klag? (k) +ep (j+1) - E(+1)
n
— 1 +oo [ (14, . k2 1_
- <<H;Jj+|k]a;j (k)—E(g‘+1)> n=°< (mk Tpo; + Qm) HE +Ikloy (k)—E(j+1)> ) .
is well defined in Ft.
Then we can write (note that b(k) o5’ =0 for [k| < 0;):
7 E bt (k) 3 7.1 o; 1 ‘ 75 E'bT (k) 3 1.7 o | _
<f0j+1 vk % agl (TZ) d kFP,anSP ’ <H§,aj—E(J'+1)> f05+1 V2| % ol (’12) d AFP’U—j P> - (a5)

=y e kK
> o
n=00511 gjk)3ar] (¥)

N VR 1 ~(Lk - Tp, + £ 1 Ty 8% | dBr.
< Pt (Hga*“"“;’ (k)_E(””) < (e T £) g, ey () -BG+ P O
s ]

Now we prove that the module of the nt® term of the series can be reduced to the one of the
first term, so that the whole sum is of the same order of the term at n = 0.

Exploiting the Schwartz inequality, we have that

n
T, 87, s ~ (Fk T, + & Lo T, ¢
( P.oj PP <H‘p”,.+|kl°‘;] (k)~E(j+1)) ( (33 Tew; + £57) g, ey (1) -BG+) ARG
VT 75

17t
2
(%k . FP.O'j + 25"7) (Hg,+|k|a;jl(,k\)—E(j+1))

2
3
< 1 1"; _¢"j L —
Hg,aj+[k|a;7 (k)—E(j+1) a5 PP H‘Pﬁ’,gj-i-lki“;J (k)_E(Hl)

<

n

[
[N

Therefore, due to the estimate (a4) and to lemma 2.1, the absolute value of the scalar product
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(ab) is bounded by

s

) o I
Zn:O {fa'j:_l Qlkiﬂa;j (’1‘(*)'2

ko (3)" <

2
Lo Ty | ¢p
Hy , +klog (k) ~EG+1) P.o; TP

2

1 I\i a5

k( . Hlkleg (k )“E(J‘H)> P.oi 7P
<2-Q(e)- [ ——:‘—)Tdk ‘(Tip,aqu;j’(’ﬂ?;%mm)%,aﬁg)l'

i1 afkfPay (k

2

T k 3
- fo'j]—i-l glkIBQ"pJ' (’1:)2 d°k <
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APPENDIX B

Preliminary remark

In the next lemmas we assume an hypothesis which is not proved in the spectral analysis but
that is physically reasonable and strongly supported by Chen’s result [CH]:

for P € ¥, there exists a constant El: such that the following inequalities hold, uniformly in o > 0:
hypothesis B1 aE[’lﬁf) > P

mn

8%2E" (P) 1
and  “HErt 2 m;

Starting from this hypothesis, we obtain that the application J, : P — VE? (P) is one to one
and that the determinant of the jacobian satisfies the inequality:

1

detd, = 5
m'f’

19 <8E” (P)>2 9E° (P) S

P> \ 9P| 9*|P|
(the function E° (P) is invariant under rotations and belongs to C* (R?) , see [3]) . Then, for

Op C ¥ and the corresponding region Oy g in the VE? —space, Op = J;! (Ovg-), we have the
following relation between their volumes:

3
Voe < My Voggo -

Remark on the notations

As in the previous chapters, we use the convention to generically call C' the constants which are
uniform in the variables we are treating. The bounds are intended from above, up to a different
explicit warning.

Definition of XE,? (VE“ s).

The function Xs,tj) (VE“t,s) has to approximate the characteristic function of the set J,, (T';) for
s — +oo where s is bigger or equal to the ¢ (3> 1) of the partition (the most general expression is
ngl) (VE“:2, s) where the constraint is s > ¢;).

In particular, in order to approximate the region J,, (I';) from inside, we define

X (VE™, )= 3 1) (VE™,s)

Vn(3)
m(5)

where suppv ge: X&,? (VE°:,s) C suppd,, (I';) and the functions Ts,z(].) (VE“t,s) are constructed
to fill the region J,, (I';), starting from the “model” function

T® (z,8) = TO (21,5) - TP (2, 8) - T (23, 5)
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i )
—83zp + 87 - L5 fOT“-lg‘+‘—3'<ZL<

® 256 2586 2s 5
— 1 1
T" (Zk,S):{ :! fo 5+ 5 <7]\< hadiy o
E 2
5 5 1, ’)561 52 - _sS 132
§22p + 82 -~ for———;—<zk<———§—+—g
258 256 256 52

through a translation z — z—V,(;). The sum 2om(;) 18 clearly s and ¢ dependent, since the number

of sub-functions Tvmm (VE°, s) 1s order & = (the support of J,, (I';) has a volume of order 3= ).

In order to have a well defined XVi (VE°t, s) two requirements are necessary:

- the inequality § > 6¢ ; .
- a finite scale factor (related to m,) for the variable zj in the functions T( (zk, 5); to simplify the
notations we assume this factor equal to 1.

The Tgi(j) (a, s) behavior is therefore analogous to T® (q,s) = ‘fﬁ” (¢1,9) é) (g2,8) - T( ) (g3, )

where -
FO (g, 8) o oF cos (q’” (”1— B %)) o8 (q" ' “17)

so that we can easily consider the bounds

V>
[SIE
>

f \T(t) (aq, 5)1 dBg<C-s%% | [ 1T(t) (q, s)ld‘q’q <C-i
In lemma B3 we exploit the inequalities

J

f-!-oo
a

7 q,S)‘qu < Zm(j)”?ﬁfim q,s)ldﬂq <C L. <0 s¥

) (a,9) |d‘°’q<Z J)flTvm<,)(q,8)\d3q<C A58t st <Copes

Lemma Bl

The norm “ (lrj (r) - Xﬁfj) (VE°: (P) ,s)> wﬂt is bounded by a quantlty of order 4~ -¢7¢.

512

Proof
We define J;* (5%]5”) = {P cXN:VE (P) e supvaJ (VE?:,s) andx(t) (VE,s) # 1}.
Taking into account:

- the definition of the application J,, (Jo, (P) &< P) and the hypothesis B1;
- the definition of X(t) (VE°,s);

the volume J ! (5{7 E,t) is bounded by a quantity of order —IT -t—3¢. On the other hand, the volume
of the region suppJ,, (I';) \ suppvge: xv) (VE:,s) is bounded by a quantity of order —; -2

Therefore
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2 2 -
= Jo, 10, ) -8 7B ) b (P e P <

| (1r, @) = ¥ (VB (B) . 9)) w2,

from which the thesis follows .

Lemma B2

Results about the phase factor “e?” (being P € I'; C ¥):
i)

where v; and v;(;) are referred to the partitions at time ¢; and t; respectively;

You, (vj,w_::mz (P) ,(%)"%3') — Yo, (vl(j),VE‘“z (P), (%)—%)} < C-|v; = v | Inor,

11) |70’:2 (VjJVEUtZ (P) 7t1) — Yoy (VJ7VEUt1 (P) 7t1)[ < c- (0'151)% 113

1 L
3

eiet (Vi VETH (R)s) _ ¢iei (Vi VET (P+2)s) | < 0. s=7h for q - lg| < szo

iii)
(notation warning: in the expressions below, o7 = =30 is the slow cut-off).

Proof

i)
40

o ("f’VE”” ®), (00)" %) =70, (Vi VE (P), () )

| ploey) cos(k-VE"27(P)—|k|r)  cos(k-VE":2(P)—|k|r) _
= fl g fa'ig I (1 kv) (1—k-v;(j)) dQd k| »dr| =
40

= |flo=)7 {gz Il f( ( (v ki) )-cos(k-VE"tz (P)T—!k[r)dﬂd|k[}d¢ -

l—k~V_7') (lwk‘v,(j))

40

= fl(a'zz) 3 {g fro_tz ff( QVJ th(;)) )) . COS (lq[a, VYV E 2 (P) _ IQDdQlﬂq!} (i_‘r <

—qVJ 1 qu( )

_<_ C |Vj haad Vl(j)[ . |h’10’t2!

i)
Yos, (Vj7 VE: (P) :tl) — Yoo, (vj7 VET™ (P) 7t1) =

. T2 k| ) — VEIH o k[T
g g g pemtemEe )b M) g s

Tig

cos(k VE 2r—|k|T

{f%f e )dndlkg}dr_:
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5

. . sin( 5 )
=2[' S [ [ s = : dQd k| p dr+

gt [ g2 g ooV ERE ) b L g
1 7 o (k)

- - - -
k~(VEPt2—VEP£1)1—) ) <kv(VEPt2+VEptl)f—2|k[.-
sin -

from which:

You, (v, VE®2 (P),t1) = Yo, (v, VE (P),1)| < C-|[VE®= (P) = VE?™ (P)]- [ (08)? rdr+
+C -ty oy, <C-(o1,)* 1

(the bound for IVEI?2 — VEg™| comes from lemma A2, oy, = t7? where 8 >> 1, by hypothe-
sis).

iii)

. ] ot Yo, (Vj,VE”‘ q ,s) .
70, (V5. VER'8) _ ¢ P+3 can be estimated by the

_a0
For s < g, ®°, the absolute value of le

absolute value of the difference of the exponents:

oS cos(k-VEg! T—[k|r)~cos <k-VEfrt

R ) p_3~-r—[k}7')
Jiq9° ), (== E dQd K] b dr| =

. Tt Tt . ot Tt -

k (VEP VEP—S)T k (VEP +VEP~3)1- 2|k|r
H S H )

sin 5 sin 3

E O'S )
=12k ) = dQd k| p dr| <

1 |16
<C-|VEg - VEg |- [ (05)? rdr < C-|3|* . [PrBar<C- |

_40
The same estimate clearly holds for s > o, *

Lemma B3
In the constructive hypotheses fixed at the beginning of chapter 4, we have

<

“f)?gj) (q,5) (e—iq-VE"‘ (P) _ g=iar¥) dBge—iE" (P)s gine, (v, VE (P),s)¢(t)

7,0t

where s > t and v; is referred to the partition at time ¢.
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Proof

Let us start from the following Hilbert inequality:

<[ £ 7 (@) (emiarTET®) — (BT OB (P))0) gagetnes (04, VE™ P y(0).

inrJ) (q,5) (e—quE‘” (P) _ g—iq:2 ) dBqe—iB" (P)sgive, (vi, VET (P), s),l/)

Jiot

BT (P)s | 555,? (q,5) (77 VETP) _ e=ia¥) 8 ge—iB" (P)s give, (v, VET(P),5) w§f;t

5 () £ PIBT (P 2 (it 1) igeten 0B Py

3,0t

To estimate the above integrals we distinguish “large” and “small”
2 (q, s)| d

- for small q, |q] < $35, we exploit the Holder property in P of VE° (P) and of 1/)
expressions 1) and ii) respectlvely

- for large q, i.e for |g| > 521_0 we exploit the estimate of +°°
ge q, q

J.oe

i) Hf ) (q,9) (e*iq'VE” (P) _ (H(B™ (®)=E" (P+3))s )d3q<a”’f (vi VB 8) )

|,_‘

+oo
520

Sy e[|+
5%

S i6

<o |

9 (a, 8); d*q+C- Htﬁﬁ
as follows from:

o sE° (P) —sE” (P + 5;-) = —q- VE (P') where P’ satisfies |[P —P'| < |2

ml"

o for lemma 3.3: |[VE (P) — VE (P')| < C-|P - P'|™ < (- |2]7;

”S,tj) (q, s)l d®q < C-s* and f:'oo ’5{9} (q, 3)1 d®q < C-1.5% by construction.

Then term i) is surely bounded by a quantity of order sz 820 .t~ F,

i) | 5 (q ) (57 =BT (P4 )e . (miat 1) g geines (v VBT B) )0

< |75 R (4, 7 BT (D) (it 1) etV E @yl |

+ f052° th]) (q,5) ez'(E"t (P)—E"t (P+32))s (e—‘iq-f- _ 1) quez"y,t(Vj,VE"(P),s)w(f;t
term (b1)
It is bounded by [, [ - /5% (q,s)‘ d®q then by

1 3
C-s72 .5 477,
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ii)



term (02)

This term is controlled by adding and subtracting quantities to eventually obtain three expres-
sions which can be estimated by:

- the convergence rate of the vector ¢%;

- the regularity properties in P of h (P) and E”* (P);

- the (vanishing) volume Oa which is the difference between the cell I'; and the same cell translated
of a quantity 2.

In the expression below, take care of the following facts:

- both the vectorsyp_a 4, , e~ 59p , belong to the same fiber space Hp_a;
-Ip_a (e'iq'fdip,gt) = Ip (¥p,s,) (the isomorphism Ip is defined at pag.10);

. . (BT (P)— B a Yo (v-,VE”* ,S) . .
- in an expression like fr' (B (P)-E {(P+2))sp, (Pe TR p_a -, d°P, P is a variable
3J s?

of integration.

BT (R)=B7 (P+2))s . (gmias _ 1) goqeltes (v VE" ) l0)

J.0t

127 50 (q,5) €'l

. . o Tt q ; x ; . il
fog_o %S,tJ) (q) S) frj ez(E‘ (P)-FE (P—{—g))s . (e—zq‘? _ 1) h(P) ez (VJ,VEP‘,s)wP’UtdBPdSQ —

% 7 (0,8) Jy, €0 P st () s (0 T Dy Pl

Tt
VJ'JVEP_Q_ ,8

— [ 55@ (a,9) frj BT P)=E7 (P+2))sp (P) emq( : )QT/)P”%,UtdSPdgq+

. -8
Vo, <Vj,VEP‘5_ a8

+ 177 %) (a,9) Jr, BT (®)=B7 (P+2))sp (P) e g )QﬁP—%mdSPqu“‘

Yoy (Vj,VEo-t
e

3 R (@ 8) Jo, AT PR (P - 9) 4 o P

0
s o (P9 _ ot Yoy . VETt _,s
+f0520 %‘(,1;) (q, S) fr‘j ez(E (P a) E (P))sh (P—— %) el"/ (v, p-2 )@Z}P—%,agdBPqu—*"
2 . oy ot . . oyt
— [T R (a,0) fr, TP (PR (P) ¢ (5 TER Sy, P P | <
sy}
| . - iva, | v5, VET? ,s)
<f X‘('t")(q’s)| fl‘j |h () e%t(v"’mpt's)fp(TPP,m)—67t(j P-3 Ip_a <¢p—%m) B3PS dPq+
' F (b3.1)
i i(E° ot o o q 2 . 2 —é—
T T N e TR 0 P
| 3.2)
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toj

X (a9

L
+ 57

term (b3.1)

{f L W) e (e oIl 4P } &g - (b3.3)

Knowing that P € I'; C X, let us estimate:

it (Vj,VE;‘,s)IP (Wp.o,) — eiﬂ’” (Vj’VE;‘-%’S) Ip_s (@bp_%m) <
< ||e#rer (Vj,VE;‘,s)IP (Wp 5,) — et (VjaVE;t>3)IP__% (qpp_%ﬂ)H:-k
+ |[efree (v VERS ’S)IP—E (¢P—%,az) - ew"t ("J VB )Ip 2 (wP“%‘”) =
<||m (W2 (VEE) WS, (VEE) ves) - To_a (W2 (VEZ_s) W2, (VE i s)vp-so) |+

) ) ot Ve, <Vj,VE”"_5,s>
+ e’L'Y«rz (V],VEP 15) —e P2 |IIP_S (¢P—3,ag “

IA

|10 (W2, (VB vp.o) ~ oo (W2, (VER o) vesa )|, +

3

+re-g ((we vmg) Wil (VE_y)) W2 (VEEs ) vp-s.o, )|+

. - Ve, | Vi, VE ,s)
+ |etree (vi,VEL!,s) _ e ‘( J p-9g

[7e-5 (ve-2.)

|+

Note that:

- the norm | Ie (W2, (VEE) ¥e.0) — To—a (W2, (VEZ_ ) p_s.s.)

|Fis bounded by a quantity

A
of order (L‘:—I) * (see theorem 3.4, consider the difference of notation for the Weyl operator).

- the norm of ”IP_% (wel vEg) -wl (VEz o)) W2, (VEZ o) ve-s.0) “ (b4)

F

can be estimated by the norm of

gf;t k- (VEt (P)-VE (P-2)) (b (k) — bt (k) \/WIP__ (Wb (VE* (P — 9)) wp_%m)

k| (1-k-VE7(P)) (1-k- VB (P-2))

then it is substantially the product of the following quantities:

1
2 2
p gk-(VE" (P)-VEt (P-2)) 5
® (fcn (\/ﬂk{%(lvi‘(\-VE"t(P)) (1*?-VE"¢(P—-§)) d°k

it is bounded by C'- [VE? (P — 2) - VE* (P)| - [Inoy|* < C - ls-% !

- In atlé (see lemma
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3.3);

- (U

El

b 09 o (W5, (VE™ (P = ) bpg,0. )| %) =

=

2

[ e (W2 (VB (P = 9)) | b (k) + —— 2o Yprao || k|
ot \/itk[f(1-k-VE;f_q> : .

3

by using techniques like in [3], it is possible to provide a bound uniformly in ¢ and in s. For
1 . .

our purposes, a bound of order |Ino;|? (uniform in s) is sufficient. For P € X, it comes from

the formula obtained in [3]

__9 1 :
b(k) QpP,O‘: = \/5‘1(—! (EU” (P) — Ikl _ HP——k,cw) wP,o't or < |k1 <kK;

. ) o Yoy (vi,VE”" 3,3) 5 . B
- finally {e*7°¢ (v VEBRs) _ ¢ Frs < C-s~ 13 as proved in lemma B2, ii).

Term (b3.1) is therefore bounded by

1

C- (s'%%)ﬁ A e (s—

3e

- ln oy +C-sTz g% F

o
wl@

IS

1
0)16 .326.-[-_

so that a leading order is

£

R T

term (b3.2)

Being h € C} (R?\ 0) and using lemma 3.3 to estimate

ei(Eﬂ't (P——%)—E"t (P))s _ ei(Eac (P)~E°t (P+%))8
we can provide a bound with the quantity

1
16
C-lql- (M) s F <O s

S
N
[V
|
m[p—n
ol
N’
o
w»
™
=
o
|
m|‘,;’
IN
Q
[Va)
]
[
v,
|
-
o Y
t
o~
1
mlf

S

term (b3.8)

Starting from a difference between volumes, the expression (b3.3) is bounded by a quantity of

1
2 19
order (lfj—') L2 e < gm0 %0 e
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Conclusion

The sum of the terms i) and ii) is surely bounded by
C.s Tz . g%, [In o T

(the constraint 26 + 4e < 535 is assumed).

Corollary B4

For s >> 1 and such that s 8 > 0y, the norm of

5.5 40 x s+s” 0
/‘ //cos q- |QI deIql _ / //cos q- VEfft [q[)dﬂdlql ~zE"tsel’7dz (vJ VEZ,s )w](tc),t
s

is surely bounded by a quantity of order s™* - 57Tz - 520 . [ln gy - ¢

Lemma B5

In this lemma we provide some upper estimates for the absolute value of the function P-a v, (X,1)

(t> land s > 1)
k
Pima v, (X,8) = g° / //COS }i ! | )de|k]
= -k-

where a > 0.

Proof

We provide the estimates by performing elementary integrations.
Estimate uniform in x € R3.

For x in the set {x: |x| < (1 —=17)s, 0 <7y <1}, we easily obtain

sm Is‘,lk x—ms)——sin(t”"‘ﬁ-x—t_“ws) 1 9 2
(oo 0] = |o* [ [ (1-Fv,) (kox—s) w5 f] gr)(l—ﬁ‘v,) "

For x in the set {x: |x| > (1 —n)s, 0 <n < 1} we first integrate by parts with respect to dcos$,

having set & (E, v,;) =£(0,p,v;) = 0 Note that since |v;| <v™** <1

1
1—k4V_7') ’

3 M>0,M >0 = .f(l?,vi) < M.

[6 (07 2 Vi)]

d
dcos@

<M and l
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‘We obtain

g2 [ [ [eos (k-5 — ki) - £ (K, vy ) dOd k| =
— :_1& f Sin(|k|'||::][+|k|$) . E(ﬂ’iﬁf"j)dlkb do + f’ila f 3in(|k|'[|)>:|t“|k[3> . E(Ow'ii"j)d k| dep+

(b5)

S R g 160Vl did .

each term on the right hand side can be easily bounded by a quantity of order ;_’_‘;5 thereby.
In conclusion there exists a cost ant C, that is uniform in v;, |v;] <™ <1, such that

Int
- vx € R®.

i, (9] <O -

Estimate restricted to the set {x: (1-n)s<|x|<(1-7)s,0<n<7n'< 1}

To investigate the behavior of -« v, (x,8) for (1—7')s < [x| < (1-7)s, 0 < 7 < 7 < 1,
let us start from the expression (b5).
We now provide an estimate for the first term

[ fsin(k] x|+ K s) €m0, vy)
// B o e

which however holds for the others by analogous steps, taking into account

[x|cosf —s<|x|—s<(l-n)s—s = [x|cosf—s<-7ns = [|x|cos@ — s| > ns.

Our estimate derives from a simple integration by parts with respect to d [k

K1 sin(|k|- k 7T, Vi k k|s Vi _
ol S ||':|‘+' 2 . & o Ldlk|de = [2 [ 4 (COS(I IIXI|+| H) g(ﬁfs)ugldmld‘p_

p cos(ny[xltRis) | Emovi) cos(t™ |47 5)  g(mapvi)
= [t e de — ] sy et

(lk x k|s P, Vi
f f003| [-|xl+1k]s) ([E |+ﬁ)|k1)2d|k| dy

where each term on the right hand side is bounded by a quantity of order *;;—
Conclusion: in the region (1 —17')s < |x| < (1 —n) s we have that
ta
l‘Pt"“,vi (Xa 5)‘ S Cn,n’ . '8‘5 .
Theorem B6

Taking into account lemma B3, one can prove the existence of

‘ ] K1 g (k ei[k[s = Bk
s — lim e’H"*s/ —L-l—-—-'hl,j (k> T ‘zH”si//y g =0 OUt (hag) b Jm

k| /2 K]|

i
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The vectors a3*"™ (h, ;) wﬂt belong to D (H,,).
Proof

We check that the following quantity is integrable with respect to s:

d{ iHg, s f/‘vl a(k)ellkls hl,j (E) d3k —zH,tsevy,t(Vj,VE°¢(P),s)7/)(f) }

e
k| /2K 1,0¢
ds
Formally:
d EiH,tse_iHPh,a(h ,)eiHPhse—iH,ta . .
1, _ d(etHaisa(hl‘js)e—szls) _
dt - dt -

=6iH"is{’L'fC:1 El,j( ) z(]k[s k-x) 1[ 1 Bk }e—z‘Ho.is

The formal expression is well defined from an operatorial point of view in D (H,,) (see the Note in
lemma BS).

Having defined f;; (x,s) = {z s e (k) ei(|k|5“k‘x)ﬁd3k}, we turn to consider the Hilbert
inequality:

d(eiH,t a(hy ;. )e~ Ho s) )

dt 5,0 |} —
< [P 5.9) (1r, (@) = x4 (VB 5)) emifloss(®), s G5 (2 (VB 9) = 8 (%,9)) ey ® | 4
e ) (3, >e-’stw§t3c <
< sup, hl] x s)' ” (lrJ X\(/?( E"',S)) e'iH"’sd’](',tc)rt +
+supy | (%, 5 ' “ XV (VE™, ) — X (s’s)) et J(tr)n +

+8UPxey, (1)) lhl,j (%,8) - Xv; (f,s)‘ : ”d’,@n

Because of lemmas B1, B2 B3 and B5 the first two terms on the rlght hand side are respec—
tively bounded by C' 5~ 5. 2ol y=e (5> 72¢) and by C- 571 577 - 52 4% . (Ino,)? (the
constraint 26 + 4e < 135 is assumed) As regards the third term, the hypotheses on h(P)and v;,
the hypothesis B1 and Huyghens’ principle ensure an integrable rate, for s — +co.

The vectors a2 ™™ (h, ;) $). belong to D (H).

2J 1.0t

For each s, the vector H,,e*f=t%a (hy ;) e *iHnsy(; is well defined because a (h; ; s) e * e swz o
D (H,,). Therefore, since H,, is a closed operator, it is sufficient to prove the convergence, for
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s — +o0, of:

iHo iH o eiHo ) ~iH, (t) _
Ho‘zelHtsa’(hl,js) - ‘S(b tsHUta’(hhjs)c H“Sulgt -

1,0¢

= {eiHc‘sa (huija) e o B (PY ) 4+ eiees [H,, — HPM a(huys)] e Hoesyplt) + etfoes [HP o (hij0)] e

1,0

Looking at the first part of the theorem and being [HP*,a (b ;5)] = — [, a(k)e ”klsil/gf_tl)d%

each term in the above expression has limit.

Theorem B7
If f h PinT; and f h ki s (k), T (K) O 1 (k), it ha that
; or eac. m i ens
or eac in I'y an e supphy,; 1, lkI\/;IY o PP a
P+ ke X, then

agtt " (5) g9, =0

Loy =

Proof

Starting from the spectral decomposition with respect to P operators, we obtain that

[ oz ks () (wf2,),, &

is a vector in Hp and that it belongs to the domain of Hp ,,. Then the procedure consists in
studying the mean value of the positive operator Hp s, — E°* (P) + ¢ (6 arbitrarily small positive

number) on it. Taking into account the condition [VE? |piq| < 1Vq € supphy; 4 (if P € ¥) which
implies the estimate E° (P + k) — |k| — E7* (P) < 0, we can conclude that the vector is zero.

Lemma B8

In this lemma we justify the derivation of the expression (19) in paragraph 4.1 and the upper
bound for its norm estimate in time.

Proof

The term ie*Ho:5W,, (v1,8) Qo, v, (X, 5) €77 (Vi VET8) g=illo;s i formally obtained from:

_ f'q a(k)e‘lkls—u’f(k)g—zikl 43k
. 1] {1~k V2lk| _
ietfless | H,, — HPR e (1) emiles =

—9 f”l a(r)eilkls —at () —ilkle 43,

1l (1t ) VAR | i,

— jpiHo K1 ik- ~ik- &k
=gt g [* (a (k) e™* +al (k) e~ x)\/—;i—k——'ﬂf

-lHa-t 'I/J(t)

1,0

J



gf:cl a(k)etlkls _atye=ilkls 3,
iH. s Tt |k|(1—k.v,) V2lk|

. 2 R k-x—|k —
= jeitloitg Pl f——m-—((l _’iv'l)ls)dﬂd|k|e oo

the last step follows from the commutator:

. . 3 ilkls _ —ilk|s L
g J7 (a (k) e + af (k) emikx) Lhe g = alle —oa (0700 dk |

20k’ ot k| (1-kvi) V/2]k]
— 92 f.:;l f coslk—':lc{-.—|k|s) delkl

)

Note
The formal steps are well defined in D (H,,) from the operatorial point of view, because:

o H,,, H?h Hy = %’%—I—th and g [ (a (k) e®* + af (k) e=x) \/i;% have a common domain

D of essential selfadjointness;

d(eiHP}"se—iHUt .s)
o — 7/

r is closable;

e the sequences, which are obtained from the formal calculus by approximating (in the norm
[|Ho|| + ||]]) the vectors in D (H,,) with vectors in D, are convergent.

Norm estimate of the expression (19) :

We exploit the decomposition of ¢g, v, (x,5) in ¢, ,, (x,5) + @2, ,, (X,5) (paragraph 4.1) and
the approximated characteristic function X&,t,) (VE?,s). Indeed:

e—iE"*(P)seim,t(v,,VE"f(P),s),Lpl(ta) + d*/q(Vl,VdE“‘(P)ws)e——iE’i(P)seify,t(vz,VE‘”(P),s)wl(t) -
1Tt S

»Ot

QDUt,Vz (X7 S)
= o v, (x,) €75 Preire COVET R (10, (P) — () (VE™ (P) ) ) 9l +
+ £ TET RN e, (v, VBT (P).6) g=iB7 (P)o (11“1 (P) — x4 (VE* (P) ,s)) io,+
o (%,5) (7 (VE? (P),5) = 5] (%,5)) 787 ®roeirm (VB Pha)yfl) 4
02, v, (%,8) X (2, 5) em BT (P)sgine, (vi, VBT (P)s)y(8) 4

dvo, x _iE°t ; v
(0w G (%,8) + G2 (v, %,8) 67 (3, 9)) 7 PIoeirns (0T BT @10yl0) 4

ds s? 0t

~ D (vi,5,8) (X (2,8) - 8 (VB (P) ,s)) 6B (P)s gite, (Vi VB (B),8) (D) 4

+ <__ d;’ct (V x 8) + dYa, (vi,VET? (P):5)> X‘(/tz) (VE®! (P) ,S) e tE7 (P)s give, (Vi,VE (P),s),‘pl(t)

s g ds T

Now we explain how to control each term:
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i) and ii) because of lemma’Bl and of lemma B5 these terms are bounded by

1

S1

lh (0';5) _
5

-

7 (6> T2€);

[01

IS

iii) we exploit the inequalities
In (O’t)

S

H (Xv, VE°: (P), s)p® X (ES‘_,S)) o= 1Bt (P)s i, (v;,VE"?,s)I‘bl(’tu)‘t

l,os

l(zom,vz (X73)l _<_ C-

1

< C s % |Ingy| -t ¥

discussed in lemma B5 and in lemma B3 respectively;

iv) the support restriction due to x( ) (S ) leads to the estimate contained in lemma B§

—g 3¢
(Prfrg,v,(xvs)xg,)<5 )lSC’s 2-540;
v) this term is identically zero since we defined

dfyﬂ' t

x
p— —_— — 1 .
7 (vl, s,s) = —@g v, (X,8) ;

vi) we exploit the inequalities
dYe, (v b4 s)
ds \ Vs’

H XEZ) (VE* (P),s) v, - th{)( ’ )) =B (P)a gine, (i VBT 9)y (1)

for which we use lemma B5 and lemma B3 respectively.

In (o)
s

= |5, v (:8)[ < C-

?

1

< C-s7 122 |In 0t|-t‘§2‘ ;

m

vi) from Corollary B4 a bound of order s71. g7z . 2 . |lnoy -t~ % follows.

Lemma B9
In this lemma we provide the proofs of the estimates used in the control of D4.1.

Analysis of

/O'tl b (k) (ei|k|t1—ik-x _ 1) Bk

= Pj
no K(1-k- vi) V2K
1) We first check that the expression

b(k) oy = b(K) WY, (v) WEL (VEow) ¢ (5T ET 0 ) g=iB ™ tgh (G B ) 4]

Tty
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is a well defined vector in H and that it is strongly continuous in k.
Then we easily get the following inequality:

aiy b()(fIMltHex 1) ey oy bt ot ooy (VI VETI t1) —iET ¢ b Tty Y (1)
fmz 1] (1-kvy ) \/2_1?1W”‘2 (Vi) We, (VETS2) e ¢ Wor, (VET2) 9

: <
Ity Doty || =

o~ -1
o 1—-k-v; . . i v 4 T
< fa: J Hb (k) (ezlkltl e ikx _ 1) ch?tz (v4) Wrb“ (VE“®2)e 7¢7t1( §HVETH ’tl)e iE7t1 ¢y Wwe (VEVH ) w](f;t)l

d°k
|2 vE 7r2 7

==

2) The second step is the estimate of

“b (k) (ei]kltle»ik-x _ 1) I/detz (Vj) I/V:; (VEGQ) ei"r“fl (vj,VE"'tl ,tl)e—iE‘”l th ngtl (antl ) ,l/)(tl)

j:ﬂ'tl

I

==
1) In distributional sense, the following equality holds:

t

b(k) WP, (v) Wh, (VE™ (P)) = W2,_ (v;) Wh (VE™= (P)) (b(k) + f (k,v;, P))

9xay, (K) 9x5,, (%)
K E(1-Kv;) Ik (1-kvET P)

where f(k,v;,P) =
{k: oy, <[kl < 5});

( thz characteristic function of the set

Being |k| < ov,, we have b (k) W2, (VE®: (P))%{") =0 and then

7,04

Joey T

bk) W, (vy) Wﬁ; (VE“=2)e"n (vi:VET1 (P),t1) j—iB 1 1y W(gﬂ (VE"H)@Z)(“) -

2,04 "

= f(k, Vi, P) I/Vgtz (Vj) W;; (VE“=) eTor (vi,VE 1 (P),tl)e__iEﬂq 4 Wgtl (VE“n) w(h)

The strong continuity in k , 03, < [k| < oy,, comes from the continuity of the function f (k, v;, P).

2) Starting from the identity:

eMnTE (v W (VEZ2,) v (907 Brdot) omiBLt £ (1 vy P 4 K) e~ kXl (VE™ (P))yit) 4

2,0t

70ty

~WE, (v)) WY (VE" (P)) el (o TE™ P0t) Bl ¢ (1c v PYWE, (VE" (P)) ) =

: a Yo i ot -1 ot —ik-
=elMtwe (vywe (VERZ,) ™™ (v Y ERon) -imphn F,vi, P+ k) e ™ W, (VE  (P))yl) 4+

Jroty
. . (b6)
—WE,, (vi)Wa, (VETt2 (P)) ¢/t (3 VE BUia) o —iB™s Phns (1 - Py =iyt (9B (P)) ) 1

JiTty
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LR (v W2 (VBT (P)) e o (3T BT BIn)miBT I £ (1 vy P e R XWL, (VET () 45, +

ey
WL, (vi) WL (VB (P)) Tows (5 T T U)o BT O £ (1 vy YW, (VET (B)) ¥y v
we exploit the known continuity properties with respect to k in order to control the differences
(b6) and (b7).
Estimate of (b6)
Considering that:

LW, (VB (P +10) - WL, (VB (P)) £ (k, v, P+ K) e WE, (VE™ (P) 93], | <

€

< C-(In(04,) - In (o3, ))% by ¥ |k|11_s . lkl'% (it is proved starting from an estimate analogous
to (b4) in lemma B3 and from the fact that k| < oy, < 1);

oiToty (Vi VET (PHl)ta) _ iy, (v VETH (P).t1)

2. < C-|k|™ %, see lemma B2 (P € T; C T);

3. |eilklts — 1] < 2t - ks

sk

4. |f (&, v;,P) = £ (kv P+ 1K) < C- B (P eT; € 2);

5. le”"E”l(P“‘)tl —emiET (P < O ]k|ilg -1y, see lemma 3.3 (P € T'; C X);
for [k| < oy, < 1, one can conclude that (b6) is bounded by

Cok| k2 b £ T |, -

Estimate of (b7)

The norm of the expression (b7) is equal to

e Hex / h(PYW} (VE™" (P)) ¥p,o,, &*°P — / h(P)W? (VE" (P))%p,o,, &P
T; ! T !

J

As in lemma B3 (discussion of term (b2) ) we observe that
e—-—ik-X'Wolztl (VE;;“) llubP,D'tl E HP-—k

and that the following equality holds in F":

T (W2, (VER") v, ) = Ip (W, (VER) Upe, )-

At this point we can easily handle the difference below
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e—ikx f h I/Vb (VEUtl ( )) Up o B3P — fl" I/Vb (VEU‘I (P)) ,lpPJq B3P =
= frj h(P) e~tkx {W",btl (VE: (P)) t/,p,gtl' } d*P - frj h(P) I/Vgn (VE?: (F —k)) Yp_i,q,, d* P+
+ fo, @YWL, (VE?: (P = K)) ¥poieo, &P i h (P —K) W2, (VE™ (P —K))9hp_i,0,, d* P+

+ frj WP —X) W2, (VE™ (P —X))Ypt, &P — [ h(P) W), (VE™ (P))ypo, d°F .

‘We deduce that

- term (I) can be estimated starting from

| oo (e { w2, (vE"u (P))wp,%}) ~Toic (W2, (VE™ (P =10) Yrico, )|

and then it is norm bounded by C - k| s tl , for theorem 3.4 (P € T'; C X);

- being G € C§ (R?\ 0), the norm of the term (II) is bounded by C - k]| - tl—%i;

- estlmatlng a volume difference, the norm of the term (III) is bounded by a quantity of or-

der lk|

rofee

In conclusion, the norm of the expression (b7) is bounded by C - |k|% - k|

( i|klt1—ik~x___1)

o k.
gf ' Ikl (1-kv:) 2

Then .<_C't1'tl_e.llno'tzl'(o—tl)il—a‘

Analysis of

(MO

Ty ilk|ts _ nikex |2
w,gz/ et eA | S dkyp;
s 2]k (1 —-k-vj)

By analogous steps as in the previous discussion, one obtains that

| (eme=tex — 1) Wi, (v WL (VB) 1o (5 VT ) miB eyt (g o) plia)

is bounded by a quantity of order IkiTlg by -7 Inogy).

Now, note that |efkltr — gilex|” = 9 _ g=ilklts gikx _ gilkltig~ikx  Gince |k| < oy, the following

inequality follows :

1
2

) a1y [ez|k[t1 _ otk xl 5 1 e 1
ond [T dke | <0t % (o !
o 2|K| (1—k~vj)
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