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Abstract

The main object of this thesis is the design of structured distributed memories for the purpose of

studying their storage and retrieval properties in large scale cortical auto-associative networks. For

this, an autoassociative network of Potts units, coupled via tensor connections, has been proposed

and analyzed as an effective model of an extensive cortical network with distinct short and long-range

synaptic connections. Recently, we have clarified in what sense it can be regarded as an effective

model. While the fully-connected (FC) and the very sparsely connected, that is, highly diluted

(HD) limits of the model have thoroughly analyzed, the realistic case of the intermediate partial

connectivity has been simply assumed to interpolate the FC and HD cases. In this thesis, we first

study the storage capacity of Potts network with such intermediate connectivity. We corroborate

the outcome of the analysis by showing that the resulting mean field equations are consistent with

the FC and HD equations under the appropriate limits. The mean-field equations are only derived

for randomly diluted connectivity (RD). Through simulations, we also study symmetric dilution (SD)

and state dependent random dilution (SDRD). We find that the Potts network has a higher capacity

for symmetric than for random dilution.

We then turn to the core question: how to use a model originally conceived for the storage of p

unrelated patterns of activity, in order to study semantic memory, which is organized in terms of the

relations between the facts and the attributes of real-world knowledge. To proceed, we first formulate

a mathematical model of generating patterns with correlations, as an extension of a hierarchical

procedure for generating ultrametrically organized patterns. The model ascribes the correlations

between patterns to the influence of underlying "factors"; if many factors act with comparable

strength, their influences balance out and correlations are low; whereas if a few factors dominate,

which in the model occurs for increasing values of a control parameter ζ, correlations between

memory patterns can become much stronger. We show that the extension allows for correlations

between patterns that are neither trivial (as in the random case) nor a plain tree (as in the ultrametric

case), but that are highly sensitive to the values of the correlation parameters that we define.

Next, we study the storage capacity of the Potts network when the patterns are correlated

by way of our algorithm. We show that fewer correlated patterns can be stored and retrieved

than random ones, and that the higher the degree of correlation, the lower the capacity. We find

that the mean-field equations yielding the storage capacity are different from those obtained with
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uncorrelated patterns through only an additional term in the noise, proportional to the number of

learned patterns p and to the difference between the average correlation between correlated patterns

and independently generated patterns of the same sparsity.

Of particular interest is the role played by the parameter we have introduced, ζ, which controls

the strength of the influences of different factors (the "parents") in generating the memory patterns

(the "children"). In particular, we find that for high values of ζ, so that only a handful of parents

are effective, the network exhibits correlated retrieval, in which the network, though not being able

to retrieve the pattern cued, settles into a configuration of high overlap with another pattern. This

behavior of the network can be interpreted as reflecting the semantic structure of the correlations, in

which even after capacity collapse, what the network can still do is to recognize the strongest features

associated with the pattern. This observation is better quantified using the mutual information

between the pattern cued and the configuration the network settles into, after retrieval dynamics.

This information is found to increase from zero to a non-zero value abruptly when increasing the

parameter ζ, akin to a phase transition. Two alternative phases are then identified, ζ < ζc, in which

many factors are on equal footing and there is not much structure. In this phase, when the network

fails to retrieve, it fails to retrieve any learned configuration. For ζ > ζc, memories form clusters,

such that while the specifics of the cued pattern cannot be retrieved, some of the structure informing

the cluster of memories can still be retrieved.

In a final short chapter, we attempt to understand the implications of having stored correlated

memories on latching dynamics, the spontaneous behavior which has been proposed to be an emer-

gent property, beyond the simple cued retrieval paradigm, of large cortical networks. Progress made

in this direction, studying the Potts network, has so far focused on uncorrelated memories. Intro-

ducing correlations, we find a rich phase space of behaviors, from sequential retrieval of memories, to

parallel retrieval of clusters of highly correlated memories and oscillations, depending on the various

correlation parameters. The parameters of our algorithm may be found to emerge as critical control

parameters, corresponding to the statistical features in human semantic memory most important in

determining the dynamics of our trains of thoughts.
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1

Introduction

One of the most fascinating aspects of the human brain is its ability to ascribe to and recognize

meaning in objects, events and to more generally make sense of the world. Semantic memory,

comprising our acquired knowledge about the world, has been argued to reside in the cortex, the

newest addition of evolution to our brain. The cortex has been found to function according to

principles that are functionally different from older memory systems, such as the hippocampus. Both

systems, comprising long term memory, have been proposed to make independent contributions to

memory storage and retrieval.

According to David Marr [Marr et al., 1991], the hippocampal network, the final constituent

of the mediotemporal lobe memory stream, operates as a content-addressable memory. The CA3

region of the hippocampus has been described as an auto-associator that processes the retrieval of

stored information from a partial cue [McNaughton and Morris, 1987,Rolls, 1989]. In this picture,

representations pertaining to new information to be stored in the CA3 are equivalently arbitrary.

Mammals have been hypothesized to have evolved circuits involving the dentate gyrus, specifically

to assign to a new item, represented as a distributed pattern of activity of neocortical pyramidal

neurons, a new arbitrary representation composed of CA3 pyramidal neurons [Treves and Rolls,

1992, Leutgeb et al., 2007]. Therefore, any two items, regardless of their similarity in content and

degree of overlap in their neocortical representations, will tend to have a similar level of overlap in

CA3 [Leutgeb et al., 2004].
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Contrary to memory representations in the hippocampus, representations in the cortex tend

to be more distributed and operate over a larger area comprising different areas, with a graded

usage of modality specific to highly multimodal association areas [Braitenberg and Schüz, 1991]. A

memory item is then composed of subparts, or features, each associated with a non-arbitrary, stable

representation within a cortical area. Items with overlapping content are therefore represented

in the cortex as spatio-temporal activity patterns with a corresponding strength of correlation.

The intrinsic consistency of memories sharing overlapping anatomical substrates, in contrast to the

arbitrariness of hippocampal memories, underlies the semantic structure of cortical, as opposed

to hippocampal, representations. Meaning is then reflected in the complex set of association and

abstraction or correlation between cortical representations (Fig. 1.1).

However, it is the statistical independence of memory patterns that has made available most

of the mathematically sophisticated analyses. If they have been successfully used to describe the

CA3 circuit for example, they are irrelevant to semantic memory, which has in the shared structure

between memories its raison d’être. Some progress in this direction has been made by the fruitful

body of research instigated by the Hopfield model. Though initially featuring uncorrelated patterns,

extensions for the storage of correlated patterns were eventually made. One of the earliest attempts

to introduce correlations was through an algorithm that arranged patterns on an ultrametric tree

[Parga and Virasoro, 1987,Gutfreund, 1988]. It was found that storing correlated patterns reduces

the storage capacity, i.e. the maximal number of activity patterns that can be stored and retrieved,

when a standard Hebbian plasticity learning rule is used; however, making modifications to the

learning rule, the storage capacity was found to be restored to some extent. Further attempts include,

for example, the study of the retrieval properties of the Hopfield network when the memorized

patterns are statistically correlated in pairs [Tamarit and Curado, 1991]. In this study, there is a

finite correlation between the memories of each pair, but memories of different pairs are uncorrelated.

In particular, they find two retrieval regimes: for low temperature, the network retrieves the stored

patterns, while for higher temperature the network is able to recognize pairs, but it is not able to

distinguish between its two patterns. Other methods involve the generation of memories through

Markov chains and have been used, for instance, to study variants of the Hopfield model [Löwe,

1998].

However, are such simple schemes suitable statistical models of the organization of semantic

memory? The object of most of the earlier theoretical studies (e.g ultrametrically organized pat-
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terns) were oversimplified models which fail to capture many of the relevant features of semantic

memory. With a somewhat opposite approach, the parallel-distributed processing (PDP) framework,

with a largely data driven basis, focused on computer simulations that could qualitatively reproduce

results in agreement with patterns of deficits seen in the neuropsychological literature; no frame-

work, however, has been proposed for more theoretical questions of a quantitative scope [Rumelhart

et al., 1986,Farah and McClelland, 1991,Rogers et al., 2004,Plaut, 1995]. As a critical step in this

direction, in this thesis, we formulate an algorithm designed to capture some of the key elements

in the organization of semantic memory, before turning to the network storage of such semantically

correlated patterns.

The analytical tools allowing for a complete analysis have been applied to fully connected or else

partially connected networks, in which the average connectivity between the units vanishes. These

models have been thoroughly analyzed and scaling relations have been found for the storage capacity

as a function of the mean connectivity and the sparsity of the network. Remarkably, such scaling

relation holds, when activity is sparse, for both limit cases of full connectivity and extremely sparse

connectivity. Does it mean that it holds also for any connectivity in between, including realistic

models of cortical connectivity?

From the point of view of plausibility, such studies of randomly wired networks fall short of

describing some features of the anatomy of cortical connectivity. For example, it has been shown

[Hellwig, 2000] that in layers II and III of mouse visual cortex the probability of connection falls

from 50−80 percent for directly adjacent neurons to 0−15 percent at a distance of 500 micrometers.

Building on such observations, the properties of an autoassociative network of threshold-linear units

whose synaptic connectivity is spatially structured has also been investigated [Roudi and Treves,

2004].

Other studies however, have evidenced that at a larger scale, cortical connectivity is not randomly

distributed, not even after allowing for a distance-dependent parameter. For example, it has been

shown that in the prefrontal cortex of monkeys, patches of a few hundred microns make connections

to and from other discrete patches of cortex of the same size [Pucak et al., 1996]. A patch is

connected to about 15 − 20 other patches in its proximity via grey matter connections, and to at

least 15− 20 more distant patches connected via white matter connections.

Variant models of associative memory networks that implement this separation of scale between

dense local connectivity and sparse long-range connectivity have been studied [O’Kane and Treves,
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1992a,O’Kane and Treves, 1992b,Mari and Treves, 1998,Dubreuil and Brunel, 2016]. This study

is in line with such an approach, in that it aims at describing each patch of cortex, a functional

voxel of a few mm2, comprising some roughly 105 neurons, as one local network interacting through

the B system, whose activity is coarsely subsumed into a Potts unit. The Potts network, aimed

at describing the cortex, or a large part of it, is comprised of N such units, constituting the A-

system. We refer to [Naim et al., 2017] for a detailed analysis of the approximate thermodynamic

and dynamic equivalence of the full multi-modular model and the Potts network.

The organization of this thesis is as follows. We will start by introducing the Potts network in

Chap. 2. In Chap. 3, we study the storage capacity of the Potts network for different models of

connectivity, a first step we take towards cortical plausibility. In Chap. 4, after a brief overview of

the principal theories of semantic organization and some of the empirical evidence, we will introduce

an original algorithm, designed to capture some of the resulting key concepts, in order to produce

patterns of activity relevant to semantic memory. In Chap. 5, we will study the storage capacity of

the Potts network with patterns correlated by way of our algorithm. Finally, in Chap. 6, we begin to

assess how the correlated nature of semantic memories impacts on latching dynamics, which can be

studied in Potts networks that include models of adaptation and inhibition; this brings us beyond

simple associative cued retrieval, into more complex thought processes and into language.
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Fig. 1.1: Correlation between neural repre-
sentations as measured by fMRI. Figure and
caption from [Haxby et al., 2001]. The func-
tional architecture of the object vision pathway
in the human brain was investigated using func-
tional magnetic resonance imaging to measure
patterns of response in ventral temporal cortex
while subjects viewed sets of faces, cats, man-
made objects, and nonsense pictures. A distinct
pattern of response was found for each stim-
ulus set. The distinctiveness of the response
to a given set was not due simply to the re-
gions that responded maximally to that set, be-
cause the set being viewed also could be iden-
tified on the basis of the pattern of response
when those regions were excluded from the anal-
ysis. Patterns of response that discriminated
among all sets were found even within corti-
cal regions that responded maximally to only
one set. These results indicate that the rep-
resentations of faces and objects in ventral tem-
poral cortex are widely distributed and overlap-
ping. Reported in the figure: mean within-set
and between-set correlations (+−SE) between
patterns of response across all subjects for all
ventral temporal object-selective cortex (red and
dark blue) and for ventral temporal cortex ex-
cluding the cortex that responded maximally to
either of two sets of objects being compared (or-
ange and light blue).
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2

Potts networks for semantic memory

2.1. The cerebral cortex

The cortex is the outer layer of the brain characterized by a folded shape, displaying ridges (gyri)

and fissures (sulci), providing a greater surface area in the confined volume of the cranium. The

cerebral cortex is entirely made of gray matter, consisting mainly of neuron bodies contrasting with

the underlying white matter, which consists mainly of myelinated axons traveling to and from the

cortex. One of the organizational features of the cortex is the division, parallel to the surface,

into functional areas that serve various sensory, motor and cognitive functions. Another is the

subdivision, perpendicular to the surface, into several layers that organize the input and output

connectivity of the neurons. The cerebral cortex has been hypothesized to play key roles in memory,

attention, perception, cognition, awareness, thought and language, among others.

A detailed study of the statistical neuroanatomy of the cortex by Braitenberg (see Fig. 2.1) has

resulted in some key structural observations that can be drawn on. In the human brain, the number

of neurons exceeds the number of input channels by at least 3 orders of magnitude, suggesting that

the information capacity of the cortex is not related in any simple way to the capacity of the sensory

channels. It may be that the number of neurons have been optimized to encode the number of

situations and concepts the mammal comes to deal with in its lifetime.
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Fig. 2.1: Statistical neuroanatomy of the cortex by Braitenberg. From [Braitenberg and Schüz,
1991]: Schematic summary of the structure of the reasoning. "The quantities measured are shown
on the left, the theoretical conclusions on the right and the deductions which led to them in between.
[...] the idea which fits the cortical network most admirably is that of an associative memory."
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Fig. 2.2: The A and B systems of Braitenberg. Figure and caption from [Anderson, 1997]. An
outline of some major cells and their pattern of innervation in the "skeleton cortex". There are some
exceptional regions (O, the olfactory cortex, M, the motor cortex and S, the primary sensory areas) but
the general case is the cortex with long-range, ametric subcortical connections and with short-range,
metrically dependent, intracortical connections (A and B system in Braitenberg’s terminology). B,
divergence of the axons projecting into the white matter; C, convergence of fibers from the whole
cortex onto a small region (A-system).

Moreover, the vast majority of neurons are interneurons, in the sense that they are neither directly

under the influence of sensory input, nor involved in producing motor output. Even in layers where

the input enters most prominently, such as in the fourth layer of sensory regions, "at least 4/5 of

the afferent synapses of cortical neurons do not have an input fiber but presumably another cortical

neuron as their presynaptic element". This suggests that the majority of information transmission

occurs between neurons that communicate with one another, much more than they do with the

outside world.

In addition, the global organization of the cortex provides further evidence against serial pro-

cessing. The architecture of the cortex is that of a three-dimensional sheet of neurons in which a

differential organization exists only in one direction, that along which cortical layers are stacked on

top of each other. The input areas are arranged in parallel with the output layers, and not along

the different layers. In the words of Braitenberg "the flow of information from the sensory to the

motor areas, if there is such a thing, traverses the cortex in a direction of the cortical plane which

is not distinguished by any special "wiring"".

Synapses between pyramidal cells, that constitute the majority of all synapses in the cortex, are
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excitatory and are made through dendritic spines. It has been argued that modifiable excitatory

synapses constitute the main mechanism for learning, in which cell assemblies are established through

the coincident activity of neurons strengthening their synaptic coupling: Hebbian learning. Evidence

for this comes from STDP [Markram et al., 2012] as well as more recently electron microscopy of

synapses 1.

Pyramidal cells, being the majority of cortical neurons, can be seen as the "skeleton cortex":

with their long axons and high variability in size, they have been hypothesized to be the major

neurons connecting different regions of the cortex together. A key feature of pyramidal cells is that

their dendritic tree branches in two directions: basal dendrites collect input mainly from local axon

collaterals, while apical dendrites, branching into the upper layers of the cortex, receive input largely

from long-range cortico-cortical connections coming from other cortical regions.

Braitenberg and Schuz have elegantly synthesized this dual local and global characteristic of

the cortex in terms of the A and B systems (referring to apical and basal dendrites) [Braitenberg

and Schüz, 1991]. They suggest regarding the whole cortex as a memory machine, in which the

B-systems encode a set of memories as local attractors and the A-system encodes global attractors,

by virtue of long-range connections (see Fig. 2.2).

2.2. The cortex as a Potts network?

How can we study the statistical properties of model networks, organized with distinct local and

global connections? Early attempts have found it challenging to deal simultaneously with the two

levels of organization [O’Kane and Treves, 1992b]. In a recent contribution, however, [Naim et al.,

2017], we elaborate on the correspondence between a multi-modular neural network and a coarse

grained Potts network [Kanter, 1988], by grounding the Hamiltonian of the Potts network in the

multi-modular one 2.

In the multi-modular model, units are taken to be threshold-linear, and they are fully connected

1Though multiple contacts between a pair of neurons is rare, sometimes a presynaptic neuron axon makes contact
with multiple spines of the same postsynaptic neuron. Since spine head volumes belonging to a single dendritic tree
have been found to be highly variable, the significant coincidence in spine head volumes of these spines residing on
the same dendritic tree has been argued to provide evidence of co-activity [Bartol Jr et al., 2015].

2The Potts network is inspired from the standard Potts model of statistical physics. In the standard Potts model,
states that can take q values, corresponding to the vertices of a q − 1 dimensional simplex. It differs from n-vector
models, in which the state of each unit can take continuous values lying on a hypersphere – notable examples include
the XY model (n = 2) and the Heisenberg model (n = 3) – and reduces to the Ising model for q = 2.
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within a module, with Hebbian [Hebb, 2005] synaptic weights. Sparse connectivity links units that

belong to different modules, via synapses that in the cortex impinge primarily on the apical dendrites,

after their axons have traveled through the white matter. The Potts states relate then to the overlap

or correlation between the activity state in a module and the local memory patterns, i.e., to weighted

combinations of the activity of its threshold-linear units. The long range interactions between the

modules roughly correspond, after suitable assumptions about inhibition, to the tensorial couplings

between Potts units in the Potts Hamiltonian.

The Potts neural network [Kanter, 1988,Bollé et al., 1991,Bollé et al., 1992,Bollé et al., 1993], can

be therefore regarded as an effective model of a global memory network comprised of local modules.

Each of these modules is subsumed into a Potts unit. In the simplest version of the model, each Potts

unit, which may be taken to represent the activity of a small patch of cortex, can be in S equivalent

states, each representing the local attractors of the full model. A quiescent state can be added to

the S active states to represent a situation of no local retrieval of any specific cell assembly. This

model has been studied analytically with replica tools in [Kanter, 1988], where the author finds an

S2 behavior of the storage capacity for low values of S. Later, a logarithmic correction was derived

in the high S limit, such that the maximal number of patterns that can be stored and retrieved

relative to the number of connections, αc ≈ ln(S)−1S2 [Kropff and Treves, 2005]. A slightly more

realistic model, allowing for a quiescent state and therefore globally sparse representations, shows

a higher capacity, scaling as αc ≈ {a ln(1/(a/S))}−1S2 in the a/S � 1 limit, where a denotes the

sparsity of the global representations [Kropff and Treves, 2005].

However, these analyses have been constrained to the limiting cases of fully connected and highly

diluted networks. The latter case, in which the mean connectivity per unit cm is much smaller than

the number of units, has been studied in [Kropff and Treves, 2005] and the storage capacity has

been found to scale as pc ≈
cmS

2

a ln(1/a)
for very sparse networks, i.e. a � 1, in the thermodynamic

limit, i.e. N , p →∞ with p/N finite. All these analyses are valid only for independently generated

memory patterns, that is, in the absence of any semantic structure.

In Chap. 3, in order to complement this previous work, we study the storage capacity of the

Potts network with general "diluted" connectivity, through the self-consistent signal to noise analysis.

This technique was first applied to the Hopfield network in cases where the replica technique was

not applicable [Shiino and Fukai, 1993] and later to networks with threshold-linear units [Roudi and

Treves, 2004], yielding results which reduce to the replica ones in the fully connected and highly
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diluted limits.

The aim of such a calculation is two-fold. The first is to obtain a generalization of the mean-field

equations yielding the storage capacity for arbitrary diluted connectivity, recovering, at the fully-

connected and highly-diluted limits, the same equations as those obtained in [Kropff and Treves,

2005]. The second is to later apply this same analysis to the case of correlated patterns that we

report in Chap. 5. In the next section, we first introduce and define the model.

(a) (b)

Fig. 2.3: From local networks to Potts units. The Potts network, here intended as a model of
semantic memory, is a coarse description of the cortex in terms of local patches of dense connectivity,
which store activity patterns corresponding to local attractors (a). Each patch is a small local network
characterized by high connectivity; diluted connections are instead present between units of different
patches. The configuration of the individual patch is assmued to converge to a local attractor,
synthetically captured by a Potts state. Each Potts unit, depicted in (b) can be in any of S states,
where green, orange, blue and red represent the active states (S = 4). The white circle at the center
corresponds to the quiescent state, aimed at capturing a situation of no retrieval of the underlying
local network.

2.3. Introducing the Potts network

The Potts neural network is a generalization of Hopfield’s binary autoassociative network [Hopfield,

1982]. A Potts unit can be either in the quiescent state or else in one of the S equivalent active

states. By convention, we label these states with numbers from 0 to S, where k = 0 indicates

the quiescent state and k = 1...S the active ones, representing the possible local attractors (see

Fig. (2.3)). Due to stochastic fluctuations, a unit can be, with a non-vanishing probability, in any
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of the S + 1 states, so that the activity of unit i is a distribution over k = 0...S, denoted by σki . By

network state, or configuration, we refer to the collection of local states assigned to all units, {σki },

where i ∈ {1, . . . N}, N being the number of units in the network.

Couplings between states of distinct units are defined, which are denoted by Jij : they represent

the strength with which connected units connected influence each other. In the case of the Hopfield

network, the couplings Jij are just scalars. In the Potts network, these couplings are matrices Jklij ,

which contain the strength of the coupling for the pair of units i and j being, respectively, in state

k and l.

Of crucial importance in the definition of the network model is the learning rule, which prescribes

how the couplings in the model depend on a given training data set. In the model that is dealt with

in this thesis, the training data set consists of a certain number p of network configurations, denoted

by {ξ̄µ}pµ=1. We refer to these configurations as patterns.

The way the patterns ξ̄µ are generated, i.e. their probability distribution, has effects on the

"retrieval properties" of the network, i.e. the ability to retrieve with good accuracy one of the

training patterns, if this is partially cued. A quantitative measure of this ability of the network is

the storage capacity, the number of patterns the network is able to store and retrieve, relative to the

number of synaptic connections per unit.

The learning rule according to which the patterns are used to build the synaptic connections

between units is a Potts-adapted version of Hebbian learning:

cijJ
kl
ij =

cij
cma(1− a

S )

p∑
µ=1

(
δξµi k −

a

S

)(
δξµj l −

a

S

)
(1− δk0)(1− δl0) , (2.1)

where the factor cij denotes the of the (i, j)-th entry of the adjacency matrix of the connectivity

(graph), being equal to 1 if an edge exists from j to i and 0 otherwise. The constant cm is the

average degree of this graph, i.e. the average number of connections at a given random node, so that

one has 〈cij〉 = cm/N . The symbol δ here indicates the Kronecker δ-function, which evaluates to 1

when the two indices are equal and 0 if they are different. The subtraction of the mean activity by

state, a/S, ensures a higher storage capacity, as initially shown for the Hopfield network in [Tsodyks

and Feigel’Man, 1988] and for the Potts neural network in [Kropff and Treves, 2005].

The fully connected network, in which cij = 1 for all pairs (i, j) is the one which allows for a

full-fledged analytic approach, by means of techniques borrowed from spin glass physics [Mézard
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et al., 1987]. It has been shown, as reviewed in [Amit, 1992], that such connectivity ensures that

each of these configurations, if they are not too many, becomes a stable configuration, or an attractor

of the energy function

H = −1

2

N∑
i,j 6=i

S∑
k,l=1

Jklij σ
k
i σ

l
j + U

N∑
i

S∑
k

σki . (2.2)

where σki is referred to as the activity of unit i in state k. The variable σki can be interpreted as

the probability with which the local network, synthesized into the Potts unit i, finds itself in the

attractor k. This probability is given by the Boltzmann distribution with inverse temperature β:

σki =
eβh

k
i

eβU +
S∑
l=1

eβh
l
i

, (2.3)

where hki , referred to as the field received by unit i in state k, is determined by the activity of all the

Potts units in a way that will specified in later sections. From Eq. (2.3), it follows that
∑S

k=0 σ
k
i = 1

at all times.

It is possible to define a stochastic dynamics on the Potts network. This is introduced by

asynchronous updating of the units according to Eq. (2.3) [Russo and Treves, 2012] and is referred

to as retrieval dynamics. Initializing the network in a partially degraded or incomplete pattern, this

dynamics can drive the configuration of the Potts network into one of the global attractors. If this

attractor corresponds to the pattern that has been cued, we then have pattern completion (retrieval).

In the rest of the thesis, we will be concerned with the limit β → ∞, in which the memory about

the cued pattern is retained with maximum fidelity during the retrieval dynamics.
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3

Storage capacity of the Potts network with

uncorrelated patterns

In this chapter we study the storage capacity of the Potts network, for the case of uncorrelated

and identically distributed training patterns. Formally, this means that the p patterns {ξ̄µ} are

generated according to a probability distribution which is factorized into p identical distributions of

the individual patterns. With little abuse of notation, this writes

P (ξ̄1 . . . ξ̄p) = P (ξ̄1) · . . . · P (ξ̄p) . (3.1)

In turn, units in each pattern are also independent and identically distributed:

P (ξ̄µ) ≡ P (ξµ1 . . . ξ
µ
N ) = P (ξµ1 ) · . . . · P (ξµN ) . (3.2)

Moreover, every unit in each pattern is taken to be in the inactive one with probability 1 − a, the

remaining probability being shared uniformly by the S active states. P (ξµi = 0) = 1− a

P (ξµi = k) = ã ≡ a/S
(3.3)

14



The probability of a unit being in any of the active states, a, is called the sparsity of the patterns.

The sparsity obviously defines the average relative number of units being active in a given pattern.

3.1. Fully connected network

In this section, we report the main results regarding the storage capacity of the Potts network with

full connectivity using the classic replica method. The full derivation can be found in [Naim et al.,

2017] and [Kropff and Treves, 2005]. Let us consider the Hamiltonian defined in Eq. (2.2). The free

energy writes

f = − 1

β

〈
lnZ

〉
. (3.4)

where Z is the partition function of the system, and β is the inverse temperature. The main idea

behind the replica technique is the identity

lnZ = lim
n→0

〈
Zn
〉
− 1

n
(3.5)

known as the "replica trick", where the complicated problem of calculating the average of a loga-

rithm of a disordered quantity can be simplified by applying this identity, reducing the problem to

calculating 〈Zn〉, where n is assumed to be an integer.

Applying the replica technique ( [Sherrington and Kirkpatrick, 1975,Mézard et al., 1987]), fol-

lowing [Amit et al., 1985,Amit et al., 1987,Kanter, 1988], the free energy of N Potts units in replica

theory writes

f = − 1

β
lim
n→0

lim
N→∞

〈
Zn
〉
− 1

Nn
, (3.6)

where 〈·〉 is an average over the quenched disorder (represented by the randomness of the patterns

defined by Eq. (3.3)). The replica symmetric free energy, under the assumption that the replicas are
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identical as in [Sherrington and Kirkpatrick, 1975], can be written as

f =
a (1− ã)

2
m2 +

α

2β

[
ln (a (1− ã)) + ln (1− ãC)− βãq

(1− ãC)

]
+

+
αβã2

2
(r̃q̃ − rq) + ãq̃

[α
2

+ SU
]

+

− 1

β

〈∫
Dz ln

1 +
∑
l( 6=0)

exp
[
βHξl

]〉 (3.7)

where C = β (q̃ − q) and

Hξl = mvξl −
αaβ (r − r̃)

2S2
(1− δl0) +

S∑
k=1

√
αrPk

S (1− ã)
zkvkl . (3.8)

C and Hξl are both quantities that are typical of a replica analysis. Hξl is the mean field with

which the network affects state l in a given unit if it is in the same state as condensed pattern ξ

(note that Hξ0 = 0). No such interpretation can be given to C: it measures the difference between q̃,

the mean square activity in a given replica, and q, the coactivation between two different replicas.

Note that in the zero temperature limit (β → ∞), this difference goes to 0, such that C is always

of order 1. It will be clarified in Sect. 3.3, through a separate analysis, that C is related to the

derivative of the output of an average neuron with respect to variations in its mean field.

The self-consistent mean field equations in the limit of β → ∞ are obtained by taking the

derivatives of f with respect to the three replica symmetric variational parameters, m, q and r:

m =
1

a(1− ã)

〈∫
DSz

∑
l 6=0

vξl
1

1 +
∑
n 6=l

exp
[
β
(
Hξl −H

ξ
n

)]〉

→ 1

a (1− ã)

∑
l 6=0

〈∫
DSz vξl

∏
n6=l

Θ
[
Hξl −H

ξ
n

]〉
(3.9)

q → q̃ =
1

a

∑
l 6=0

〈∫
DSz

∏
n6=l

Θ(Hξl −H
ξ
n)

〉
(3.10)

C =
1

ã2
√
αr

∑
l 6=0

∑
k

〈∫
DSz

√
Pk

S (1− ã)
vklzk

∏
n6=l

Θ(Hξl −H
ξ
n)

〉
(3.11)
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r̃ → r =
q

(1− ãC)2 (3.12)

β (r − r̃) = 2

(
U
S2

aα
− C

1− ãC

)
(3.13)

where ∫
Dz =

∫
dz

exp (−z2/2)√
2π

. (3.14)

The differences between r and r̃ and between q and q̃ are of order 1/β. From the last equation it

can be seen that the threshold U has the effect of changing the sign of (r − r̃) such that α ∼ S2/a

with the variables C, r and r̃ of order 1 with respect to a and S.

The above averages can be calculated analytically and we refer to [Kropff and Treves, 2005]

and [Naim et al., 2017] for their expressions. The resulting integrals are complicated but the highly

sparse limit case a � 1 allows for an approximate simple expression of the storage capacity to be

obtained. It is found that

αc ≈
S2

4a ln

(
2

ã

√
ln

1

ã

) . (3.15)

While the S2/a behavior of the capacity can be intuitively understood as having its origin in the

scaling of the number of synapses Eq. (2.1) as well as sparse coding, the logarithmic corrections

may be understood from an information storage perspective, as reported in [Kropff and Treves,

2005]. The upper bound on the information carried by p patterns comprised of N units each can be

computed using Shannon’s information and Eq. (3.3)

I ≤ pN {−(1− a) log2(1− a) + a log2(S/a)} , (3.16)

In the limit of a � 1, the first term can be neglected. On the other hand, the number of synaptic

variables is N · cm · S2, such that the amount of information per synapse can be approximated as

Isyn ≤
αa log2(S/a)

S2
, (3.17)

This is consistent with the idea that the maximal information that can be stored in an auto-

associative network is at most a fraction of a bit per synapse, and we retrieve the logarithmic

correction given by Eq. (3.15).
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3.2. Highly diluted network

In the previous section we summarized the steps taken to obtain the set of equations that determine

the storage capacity of the fully connected network. A more biologically plausible case is that

of the diluted network where the number of connections per unit cm is less than N . Specifically,

we consider connections of the form cijJij , where Jij is the usual symmetric matrix derived from

Hebbian learning. cij equals 0 or 1 according to a given probability distribution and we denote

with λ = 〈cij〉 = cm/N the dilution parameter. In general, cij can be different from cji, leading to

asymmetry in the connections between units.

Given the connectivity of the network, the probability distribution of the cij plays a crucial role.

We will consider three different distributions. The first is referred to as random dilution (RD), which

is

P (cij , cji) = P (cij)P (cji) (3.18)

with

P (cij) = λδ(cij − 1) + (1− λ)δ(cij) . (3.19)

The second is the symmetric dilution (SD), defined by

P (cij , cji) = λδ(cij − 1)δ(cji − 1) + (1− λ)δ(cij)δ(cji) . (3.20)

The third is what we call state dependent random dilution (SDRD), specific to the Potts network,

in which

P (cklij ) = λδ(cklij − 1) + (1− λ)δ(cklij ) ; (3.21)

we note that in this case the connectivity coefficients are state-dependent.

We have performed simulations with all three types of connectivity, but will focus the analysis

onto the RD type, which is the simplest to treat analytically. RD and SD are known in the literature

as Erdos-Renyi graphs, respectively, directed and undirected. Many properties are known about

such random graph models [Erdös and Rényi, 1960, Engel et al., 2004]. It is known that for λ

below a critical value, essentially all connected components of the graph are trees, while for λ above

this critical value, loops are present. In particular, a graph with cm < log(N) (with N → ∞)

almost surely contains isolated vertices and is disconnected, while with cm > log(N) it is almost

18



surely connected. log(N) is a threshold for the connectedness of the graph, distinguishing the highly

diluted limit, for which a simplified analysis of the storage capacity is possible, from the intermediate

case of the next section, for which a complete analysis is necessary.

The capacity cannot be analyzed through the replica method, as the symmetry of interactions

is a necessary condition for the existence of an energy function, and hence for the application of the

thermodynamic formalism. We therefore apply the signal to noise analysis. The local field of unit i

in state k writes

hki =
∑
j

∑
l

cijJ
kl
ij σ

l
j − U (1− δk,0) (3.22)

where the coupling strength between two states of two different units is defined as

Jklij =
1

cma(1− ã)

∑
µ

vξµi kvξ
µ
j l
. (3.23)

In the highly diluted limit cm ∼ log(N) (cp. next section for more details), the assumption is that

the field can be written simply as the sum of two terms, signal and noise. While the signal is what

pushes the activity of the unit such that the network configuration converges to an attractor, the

noise, or the crosstalk from all of the other patterns, is what deflects the network towards a random

direction, usually away from the cued memory pattern. The noise term writes

nki =
1

cma(1− ã)

p∑
µ>1

N∑
j(6=i)

cij
∑
l

vξµi kvξ
µ
j l
σlj , (3.24)

it is the contribution to the weights Jklij by all non-condensed patterns. By virtue of the subtraction

of the mean activity in each state ã, the noise has vanishing average:

〈nki 〉P (ξ) =
1

cma(1− ã)

p∑
µ>1

N∑
j(6=i)

cij
∑
l

〈vξµi ,k〉〈vξµj ,lσ
l
j〉 = 0 . (3.25)

The variance of the noise can be written in the following way:

〈(nki )2〉 =
1

(cma(1− ã))2

p∑
µ>1

N∑
j(6=i)=1

∑
l

p∑
µ′>1

N∑
j′(6=i)=1

∑
l′

cijcij′〈vξµi ,k vξµ′i ,k
〉〈vξµj ,l vξµ′

j′ ,l
′ σ

l
jσ
l′
j′〉 , (3.26)

where statistical independence between units has been used. For uncorrelated patterns, all terms
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but µ = µ′ vanish. Having identified the non-zero term, we can proceed with the capacity analysis.

We can express the field using the overlap parameter, and single out, without loss of generality, the

pattern µ = 1 as the one to be retrieved:

hki = vξ1i k
m1
i +

∑
µ>1

vξµi km
µ
i − U(1− δk0). (3.27)

where we define the local overlap mi as

mi =
1

cma(1− ã)

∑
j

∑
l

cijvξ1j l
σj . (3.28)

We now write ∑
µ>1

vξµi ,km
µ
i ≡

S∑
n=1

vn,k ρ
n zni (3.29)

where ρ is a positive constant and zni is a standard Gaussian variable. Indeed in highly diluted

networks the l.h.s., i.e. the contribution to the field from all of the non-condensed patterns µ > 1,

is approximately a normally distributed random variable, as it is the sum of a large number of

uncorrelated quantities. ρ can be computed to find

ρn =

√
αPn

(1− ã)S
q (3.30)

where we have defined

q =

〈
1

Na

∑
j

∑
l

(σlj)
2

〉
. (3.31)

The mean field then writes

hki = vξ1i k
m+

S∑
n=1

vn,k

√
αPn

(1− ã)S
qzn − U(1− δk0) . (3.32)

Averagingmi and q over the connectivity and the distribution of the Gaussian noise z, and taking

the β → ∞ we get to the mean field equations that characterize the fixed points of the dynamics,

Eqs.(3.9) and (3.10). In the highly diluted limit, however, we do not obtain the last equation of the

fully connected replica analysis, Eq. (3.12).

The difference between fully connected and diluted cases must vanish in the ã� 1 limit, as shown
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in [Kropff and Treves, 2005,Derrida et al., 1987]. In this limit we have x = U/
√
α̃q, y = m/

√
α̃q,

while Eqs.(3.9) and (3.10) remain identical. That is, one recovers the equations of the fully connected

case, but with C = 0.

3.3. Network with partial connectivity

Let us consider now cases where the connectivity is not full but not too sparse either. As in the

previous section, we can express the field using the overlap parameter, and single out the contribution

from the pattern to be retrieved, that we label as µ = 1, as in Eq. (3.27). However, with high enough

connectivity one must revise Eq. (3.29): the mean field has to be computed in a more refined way,

through a self-consistent method, that we present here.

At the root of the self-consistent signal to noise analysis (SCSNA), [Roudi and Treves, 2004,

Kropff, 2009,Shiino and Fukai, 1993], there is the assumption that the noise term can be expressed

as the sum of two terms, one proportional to the activity of unit i and the other being a Gaussian

random variable, ∑
µ>1

vξµi ,km
µ
i = γki σ

k
i +

S∑
n=1

vn,k ρ
n
i z

n
i ; (3.33)

zni are standard Gaussian variables, and γki and ρni are positive constants to be determined self-

consistently. The first term, proportional to σki , represents the noise resulting from the activity of

unit i on itself, after having reverberated in the loops of the network; the second term contains the

noise which propagates from units other than i. The activation function writes

σki =
eβh

k
i∑

l

eβh
l
i

≡ F k
(
{yli + γliσ

l
i}l
)
. (3.34)

where yli = vξ1i ,l
m1
i +
∑

n vn,lρ
n
i z

n
i −U(1− δl,0). The activity σki is then determined self-consistently

as the solution of Eq. (3.34):

σki = Gk
(
{yli}l

)
, (3.35)

where Gk are functions solving Eq. (3.34) for σki . However, Eq. (3.34) cannot be solved explicitly.

Instead we make the assumption that {σli} enters the fields {hli} only through their mean value 〈σli〉,
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so that we write

Gk
(
{yli}l

)
' F k

(
{yli + γli〈σli〉}l

)
. (3.36)

The coefficients in the SCSNA ansatz, Eq. (3.34), γki = γ and ρki = ρk are found to be

γ =
α

S
λ

Ω/S

1− Ω/S
(3.37)

and

(ρn)2 =
αPn

S(1− ã)
q
{

1 + 2λΨ + λΨ2
}
. (3.38)

where α = p/cm and Ω, q and Ψ are found to be

Ω =

〈
1

N

∑
j

∑
l

∂Glj
∂yl

〉
, (3.39)

q =

〈
1

Na

∑
j,l

(Glj)
2

〉
, (3.40)

Ψ =
Ω/S

1− Ω/S
. (3.41)

where 〈·〉 indicates the average over all patterns. The derivation of Eqs.(3.39)-(3.41) is reported in

detail in App. A. The mean field received by a unit is then

Hξk = vξ,km+
α

S
λΨ(1− δk,0) +

S∑
n=1

vn,kz
n

√
αPn

S(1− ã)
q
{

1 + 2λΨ + λΨ2
}
− U(1− δk,0) . (3.42)

Taking the average over the non-condensed patterns (the average over the Gaussian noise z), followed

by the average over the condensed pattern µ = 1 (denoted by 〈·〉ξ), in the limit β →∞, we get the

self-consistent equations satisfied by the order parameters

m =
1

a(1− ã)

〈∫
DSz

∑
l(6=0)

vξ,l
∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

, (3.43)

q =
1

a

〈∫
DSz

∑
l( 6=0)

∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

, (3.44)
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Ω =

〈∫
DSz

∑
l(6=0)

∑
k

zk
∂zk

∂yl

∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

. (3.45)

Note the similarities to the equations (Eqs.(3.9)-(3.11)) obtained through the replica method

for the fully connected case. The equations just found constitute a generalization to λ < 1. In

particular, in the highly diluted limit λ → 0, we get γ → 0 and (ρn)2 → αPn
(1−ã)S q, which are the

results obtained in the previous section. In the fully connected case, λ = 1, Eqs.(3.43)-(3.44) are

apparently equivalent to their corresponding expressions from the replica calculation. With a little

algebra, also the expression for Ω can be shown to be consistent with the replica result. Indeed,

from the following identity,

ρ2 =
αPn

S(1− ã)
q(1 + Ψ)2 , (3.46)

by using the replica variable r = q/(1− ãC)2 we get

ρ2 =
αPn

S(1− ã)
r(1− ãC)2(1 + Ψ)2 . (3.47)

By comparing this with Eq. (3.8), the mean field, we get an equivalent expression for Ψ,

Ψ =
ãC

1− ãC
. (3.48)

From the original definition of Ψ in Eq. (3.41), it follows that the order parameter C, obtained

through the replica method, is equivalent to Ω, up to a multiplicative constant that is the sparsity:

C = Ω/a . (3.49)

We can show that Eq. (3.45) coincides with Eq. (3.11). Moreover, by comparing the SCSNA result

for γ to the replica one, we must have

α

S
Ψ− U = −αaβ(r − r̃)

2S2
(3.50)

from which

β(r − r̃) = 2

(
U
S2

αa
− C

1− ãC

)
, (3.51)

identical to Eq. (3.13).
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(a) (b) (c)

Fig. 3.1: Storage load and threshold, phase diagrams. (a) How often a fully connected Potts
network retrieves memories, as a function of the threshold U (x-axis) and the storage load p (y-axis).
Color represents the fraction of simulations in which the overlap between the configuration of network
and a stored pattern is ≥ 0.9. The solid lines are obtained by numerical solution of Eqs.(3.9)-(3.11).
The optimal threshold, defined as one in which the network has highest capacity is found to be around
U = 0.5. (b) Mean overlap of network configuration with pattern cued. For thresholds below the
optimal, the network settles in a configuration with non-zero but low overlap with the pattern cued.
This can be explained by (c), where we see the sparsity of network configuration at the end of retrieval
dynamics. The suboptimal threshold means that the network goes into "overheating", where many
quiescent units become active. This results in the residual overlap with the cued pattern, seen in
(b). Network parameters are N = 1000, S = 7, a = 0.25, β = 200.

3.4. Simulation results

3.4.1 The effect of network parameters

In Fig. 3.1, we show the comparison between the analytical results presented above and numerical

simulations, focusing on the effects of the threshold U and the storage load α = p/cm. In all of the

quantities of interest we find good agreement between analytical and numerical results.

In Fig. 3.1a we show the storage capacity. The maximum storage capacity αc (where α ≡ p/cm,

or α ≡ p/N for a fully connected Potts network) is found at approximately U = 0.5, as can also

be shown through a simple signal to noise analysis. It is possible to compute approximately the

standard deviation γki of the field, Eq. (3.22), with respect to the distribution of all the patterns, as

well as as the connectivity cij , by making the assumption that all units are aligned with a specific

pattern to be retrieved σlj = ξ1
j . We further discriminate units that are in active states ξ1

i 6= 0 from
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those that are in the quiescent states ξ1
i = 0 in the retrieved pattern µ = 1.

γki ≡
√
〈(hki )2〉 − 〈hki 〉2 =

√√√√(p− 1)a

cmS2
+ (δξ1i ,k

− ã)2

(
1

cma
− 1

N

)
. (3.52)

The optimal threshold U0 is one that separates the two distributions, the fields of active units and the

fields of quiescent units most effectively, such that the minimal number of units in either distribution

reach the threshold to go in the wrong state

U0 − 〈hki |ξ1i=0〉
γki |ξ1i=0

= −
U0 − 〈hki |ξ1i 6=0〉

γki |ξ1i 6=0

(3.53)

U0 =
γki |ξ1i=0

γki |ξ1i=0+γki |ξ1i 6=0

− a

S
. (3.54)

We can see that U0 −→ 1/2 − ã for γki |ξ1i=0∼ γki |ξ1i 6=0, consistent with the replica analysis and

simulations in Fig. 3.1a. This result is also consistent with [Tsodyks and Feigel’Man, 1988], in which

the authors have shown an enhanced storage capacity with low activity levels by the addition of

a suitable threshold. Based on a similar signal to noise analysis in [Amit, 1992], this threshold is

found to be 1/2 − a, similar to what we have found. The addition of this threshold ensures that

"the state of total inactivity becomes an attractor and has been proposed [Buhmann et al., 1989] as

a cognitive identifier of non-recognition, the expectation being that stimuli which are too far from

the memorized patterns flow to this unique, special attractor" [Amit, 1992].

In Fig. 3.1b, we plot the phase diagram of the average overlap of the network with the pattern

cued. The portion of phase space (U, p) for which this quantity is maximal corresponds perfectly to

that for which the fraction of retrievals is also maximal, as shown in Fig. 3.1a. For lower values of

the threshold U and higher values of p, the average overlap is rather high and not zero. This can be

understood by looking at Fig. 3.1c, where we see the phase diagram of the sparsity of the network,

at the end of retrieval dynamics. Here we see that for low values of the threshold U and high values

of p, the network goes into "overheating", where many more units become active than they should

be, hence lowering the mean overlap.

The two connectivity limit cases are illustrated in Fig. 3.2. In Fig. 3.2a, the dependence of the

storage capacity α on the sparsity a in the fully connected and diluted networks is shown, with
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(a) (b) (c)

Fig. 3.2: Storage capacity as a function of the sparsity and the number of Potts states.
(a) Storage capacity αc as a function of the sparsity a, for S = 5. The capacity is a monotonically
decreasing function of the sparsity a. Curves are obtained by numerical solution of Eqs.(3.9)-(3.11) for
the two limit connectivity cases, while points correspond to simulations of a network with intermediate
RD connectivity, set at cm/N = 0.1. One can see that a network with this level of dilution is
roughly intermediate between the two limit cases. (b) Storage capacity as a function of S with
same parameters as in (a) and with a = 0.1. The storage capacity scales quadratically with S.
(c) S = 50, illustrating the highly sparse limit case for which the two curves coalesce. When not
explicitly varied, simulations were performed with N = 2000, cm/N = 0.1, S = 5, a = 0.1 and
β = 200.

U = 0.5 and S = 5. The data points correspond to the simulations for the intermediate case of RD

connectivity, with λ = 0.1. In Fig. 3.2b instead, S is varied and in Fig. 3.2c S = 50, corresponding

to the highly sparse limit ã� 1. While for S = 5 the two curves are distinct, for the highly sparse

network with S = 50 the two curves coalesce. The curves are obtained by numerically solving

Eqs.(3.9)-(3.11). Moreover, the storage capacity curve for the fully connected case in Fig. 3.2a

matches very well with Fig. 2 of [Kropff and Treves, 2005]. Diluted curves are always above the fully

connected ones in both Fig. 3.2a and Fig. 3.2b, as found in [Kropff and Treves, 2005].

3.4.2 The effect of the different connectivity models

In Fig. 3.3 we show the modulation of the storage capacity across the connectivity models introduced

earlier. The RD and SDRD networks seem to have almost identical capacity. All models have the

same capacity in the fully connected case, as they should. Note in particular the very limited

decrease of αc = p/cm with cm/N increasing up to almost full connectivity, with all three models.

Our results can be contrasted to the storage capacity with the same connectivity models (RD

and SD; SDRD is not relevant) of the Hopfield model. For the Hopfield model, the effects of SD were
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investigated and it was found that the capacity decreases monotonically from the value ' 0.4 for

highly diluted to the well-known value of αc ' 0.14 for the fully connected network [Sompolinsky,

1986]. In [Derrida et al., 1987], instead, the highly diluted limit of RD was studied and a value of

αc = 2/π ' 0.64 was found. If we plausibly assume that the intermediate RD values interpolate

those of the highly diluted αc ' 0.64 and fully connected αc ' 0.14 limit cases, the Hopfield network

then has higher capacity for RD than for SD.

However, it is important to note that the overlap with which the network retrieves at αc, mc,

is not the same in the two models (RD and SD). In the highly diluted RD model [Derrida et al.,

1987], the authors find that at zero temperature (which is the only case we consider), mc undergoes

a second order phase transition with control parameter α such that mc '
√

3(αc − α): close to αc,

mc is small, and not comparable to the values of mc for the highly diluted SD model [Sompolinsky,

1986] that we report in the left y-axis of Fig. 3.4: at cm/N ' 0.0024, mc ' 0.64. If we require

the same precision of retrieval from the RD model, the above equation yielding the mc gives us a

value α ' 0.5, still higher than the SD value of 0.4. However, through simulations in Fig. 3.4 of the

next section we have found that the network has a higher capacity (> 0.6) than the one predicted

analytically (0.4).

When taking into consideration, for the Hopfield model, the increased capacity of the SD model

with respect to what is predicted analytically, as well as the precision of retrieval, we find that

both models behave qualitatively similarly. We clarify this in the next section by making the Potts-

Hopfield correspondence exact.

3.4.3 Special case of the Potts network yields the Hopfield model

We can rewrite the Potts Hamiltonian, Eq. (2.2) with S = 1, a = 0.5 and U = 0 such that:

H = −1

2

N∑
i,j 6=i

Jijσiσj , (3.55)

Jij =
4

cm

p∑
µ=1

(
ξµi −

1

2

)(
ξµj −

1

2

)
. (3.56)

where σ and ξ take the values {0, 1}. We can rewrite the the latter quantities using the spin

formulation {−1,+1} using the transformation 2σi = si + 1
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Fig. 3.3: Storage capacity with different di-
lution graphs. Storage capacity curves, ob-
tained through simulations, as a function of the
mean connectivity per unit cm/N , for three dif-
ferent types of connectivity graphs, namely the
random dilution (RD), symmetric dilution (SD)
and state-dependent random dilution (SDRD).
We find that SD has higher capacity than RD.
The capacity for all three models coalesces at
the fully connected limit, as the models become
equivalent. Simulations carried out for two sets
of parameters: (N = 5000, S = 2, a = 0.2) and
(N = 2000, S = 5, a = 0.5). U = 0.5 and
β = 200.

H̃ = −1

8

N∑
i,j 6=i

cij J̃ijsisj −
1

8

N∑
i,j 6=i

cij J̃ij(si + sj)−
1

8

N∑
i,j 6=i

cij J̃ij , (3.57)

J̃ij =
1

cm

p∑
µ=1

ηµi η
µ
j . (3.58)

We note now that the first term in Eq. (3.57) is the Hopfield Hamiltonian for storing unbiased

patterns, modulo a multiplicative term 1/4 [Amit et al., 1985]; at zero-temperature, however, an

overall rescaling of the energies leaves the statistics of the system unchanged, so that we can consider

the first term in Eq. (3.57) as exactly the Hopfield Hamiltonian. The last term is an additive

constant that can be neglected, while the second term can be made to vanish by the addition of a

unit dependent threshold term to Eq. (3.57)

Ũi =
1

8

N∑
j(6=i)

(cij + cji)J̃ij (3.59)

or equivalently, to Eq. (3.55) using the binary formulation

H = −1

2

N∑
i,j 6=i

Jijσiσj +
N∑
i

1

4

N∑
j(6=i)

(cij + cji)Jij

σi (3.60)

Considering cij to be of the SD type such that cij = cji, this is the Hamiltonian considered

by Sompolinsky [Sompolinsky, 1986]. The system with Hamiltonian given by Eq. (3.60) can be
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Fig. 3.4: Special case of Potts network yields the
Hopfield model. Setting S = 1, a = 0.5 and the
threshold to be unit dependent (U = Ui) the Hamil-
tonians of the two models become equivalent. Dots
correspond to simulations of the Potts network with
the latter parameters, while the uninterrupted line
corresponds to analytical results obtained by Som-
polinsky. The dashed line, to be read with the right
y-axis, corresponds to the overlap at the critical ca-
pacity. For intermediate values of the connectivity,
up to cm/N = 0.1, our simulation results fit the an-
alytical curve well, for higher levels of dilution, we
find a greater capacity. Simulations performed with
a network of N = 2000 units.

simulated by setting the parameters of the Potts network to S = 1, a = 0.5 and U = Ui and

the results compared to the analytical results derived in the latter study. We have carried out the

simulations to reproduce these results, that we report in Fig. (3.4). Instead, considering cij to be of

the RD type yields the model studied by [Derrida et al., 1987] at the highly diluted limit.

The unit-dependent threshold that correlates with the learned patterns (and in our case with

the diluted connectivity), for the equivalence of the two formulations of the Hamiltonians with spin

and binary variables, was first found to be significant when the storage of biased patterns was

considered [Tsodyks and Feigel’Man, 1988].

3.5. The storage capacity parameters

In the end, the storage capacity of the Potts network is primarily a function of a few parameters, cm,

S and a, that suffice to broadly characterize the model, with minor adjustments due to other factors.

How can these parameters be considered to reflect cortically relevant quantities? This a critical issue,

if we are to make cortical sense of the distinct thermodynamic phases that can be analysed with the

Potts model, and to develop informed conjectures about cortical phase transitions [Treves, 2005].

Let us consider a multi-modular Hopfield network of Nm modules [O’Kane and Treves, 1992a,

O’Kane and Treves, 1992b,Mari and Treves, 1998], each comprised of Nu neurons, each of which is

connected to all Nu−1 other neurons within the same module, and to CA other neurons distributed

randomly throughout all the other modules.

Equivalently [Naim et al., 2017], in the Potts network, if there are Nm Potts variables, in the fully
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connected case, Nm · (Nm − 1) · S2/2 connection variables are required (since weights are taken to

be symmetric we have to divide by 2). In the diluted case, we would have Nm · cm ·S2 variables (the

factor 2 is no longer relevant, at least for cm → 0). The multi-modular Hopfield network, has only

Nm ·Nu ·CA long-range synaptic weights. This diluted connectivity between modules is summarily

represented in the Potts network by the tensorial weights. Therefore, the number of Potts weights

cannot be larger than the total number of underlying synaptic weights it represents. Then cm · S2

cannot be larger than CA ·Nu.

In the simple Braitenberg model of mammalian cortical connectivity [Braitenberg, 1978b], which

motivated the multi-modular network model [O’Kane and Treves, 1992a], Nu ' Nm ∼ 103− 105, as

the total number of pyramidal cells ranges from ∼ 106 in a small mammalian brain to ∼ 1010 in a

large one. In a large, e.g. human cortex, a module may be taken to correspond to roughly 1mm2 of

cortical surface, also estimated to include Nu ∼ 105 pyramidal cells [Braitenberg, 1978a]. A module,

however, cannot be plausibly considered to be fully connected; the available measures suggest that,

even at the shortest distance, the connection probability between pyramidal cells is at most of order

1/10. Therefore we can write, departing from the assumption CB = Nu−1 in the simplest version of

Braitenberg’s model, that CB ' 0.1Nu. If we were to keep the approximate equivalence CA ' CB,

that would imply also CA ' 0.1Nu.

What about cm and S? What values would be compatible with associative storage? The number

S of local patterns on Nu neurons receiving CB connections from each other can at most be, given

sparsity au, of order CB/au. If we assume that local storage tends to saturate this capacity bound

(an assumption one may or may not consider), and we take CA ' CB, we have S · au ' CB ' CA,

but in turn we have, above, CA ·Nu > cm · S2, hence

cm · S < Nu · au

which would lead, if we take again au ∼ 0.1, to cm and S to be at most of order 101 − 102 over

mammalian cortices of different scale, essentially scaling like the fourth root of the total number of

pyramidal cells, which appears like a plausible, if rough, modelling assumption. We could take these

range of values, together with the approximate formula [Kropff and Treves, 2005]

pc ∼ 0.15
cmS

2

a ln(S/a)
(3.61)
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to yield estimates of the actual capacity the cortex of a given species. The major factor that such

estimates do not take into account, however, is the correlation among the memory patterns. All the

analyses reported here apply to randomly assigned memory patterns.

The above considerations may sound rather vague. They neglect, inter alia, the large variability

in the number of spines, hence probably in synapses, among cortical areas within the same species

[Elston, 2000]. They capture, however, the quantitative change of perspective afforded by the coarse

graining inherent in the Potts model. We can simplify the argument by neglecting sparse coding

as well as the exact value of the numerical pre-factor k (which is around 0.15 in Eq. (3.61). The

Potts model uses NmcmS
2 weights to store up to kcmS2/lnS memory patterns, each containing

of order Nm lnS bits of information, therefore storing up to k bits per weight. In this respect,

and in keeping with the Frolov conjecture [Frolov et al., 1997], it is not different from any other

associative memory network based on Hebb-like plasticity, including the multi-modular model which

it effectively represents. In the multi-modular model, however, (in its simplest version) the 2kN2
uNm

bits available are allocated to memory patterns that are specified in single-neuron detail, and hence

contain of order NuNm bits of information each. The network can store and retrieve up to a number

pc of them, which has been argued in [O’Kane and Treves, 1992b] to be limited by the memory glass

problem to be of the same order of magnitude as the number S of local attractors, itself limited to

be (at most) of order Nu or perhaps, as argued above,
√
Nu.

By glossing over the single-neuron resolution, the Potts model forfeits the locally extensive char-

acter of the information contained in each pattern, losing a factor Nu/lnS, but it gains the factor

cmS
2/(2Nu lnS) in the number of patterns. Whether S scales with Nu or with

√
Nu or in between,

the upshot is more, but less informative, memories. Therefore, by focusing on long range interactions

the Potts model misses out in information, but effectively circumvents the memory glass issue, which

had plagued the earlier incarnation of the Braitenberg idea [Braitenberg, 1978a], and stores more

patterns. How is that possible, if the Potts model is a reduced description of the underlying multi-

modular model? The trick is likely in the Hebbian form of the tensor interactions, Eq. (2.1), which

is not a straightforward reduction – it implies a fine inhibitory regulation that the multi-modular

model had not attempted to achieve.

This argument can be expanded and made more precise by considering a more plausible scenario

with correlated memories, the object of the next chapter.
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4

Generating correlated representations

4.1. Some insights from the organization of semantic memory

The field of neuropsychology has been a stepping stone to the study of the organization of the

semantic system. Two of the key disorders that have offered a wealth of insights are semantic

dementia and herpes simplex encephalitis. One of the observations in patients of herpes encephalitis

has been a number of category specific deficits they display in a variety of tasks [Lambon Ralph et al.,

2007]. A major double dissociation of historical importance has been the observation of a differential

deficit in recognizing living and non-living entities, first observed in four herpes encephalitis patients

[Warrington and Shallice, 1984]. This initial discovery, taken at face value, seemed to support the

view that semantic knowledge is explicitly stored in independent systems according to category or

domain.

However, Shallice and colleagues had a different interpretation: they proposed [Warrington and

Shallice, 1984] the sensory-functional hypothesis, in that living entities usually rely more on sensory

properties while nonliving entities rely more on functional properties. This account suggested that

conceptual knowledge is distributed across functionally and neuroanatomically distinct systems,

that may be modality specific, i.e. dedicated to the storage and processing of specific types of

information (visual, motor, etc.). The seemingly category-specific deficit would then presumably

be a consequence of predominant damage to one of these systems. Among others, one line of
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evidence for this account came from a herpes encephalitis patient displaying deficits in functional

features compared to sensory features, independent of category [Borgo and Shallice, 2003, Shallice

and Cooper, 2011]. However, it is argued that evidence problematic for this account comes from

observations that category-specific deficits are not necessarily associated with a difficulty in the

analysis of either sensory or functional properties, as in patient EW [Caramazza and Shelton, 1998].

An alternative commonly held perspective is the domain-specific view by Caramazza and col-

leagues, in which they argue that evolutionary pressures have resulted in specialized neural systems

for concepts in a number of domains, such as animals, fruit and vegetables, conspecifics, and tools.

The authors claim that the relevant adaptations might include dedicated neural circuits or special-

ized cognitive processes for processing information about animals and plants. The evidence for their

theory comes from patients displaying fractionations within the living things category [Caramazza

and Shelton, 1998]. However, it has been evidenced that the disruption of conceptual knowledge

does not always follow domain boundaries. For instance, some patients with a deficit for living

things also have trouble with musical instruments, gemstones, or food; on the other hand, other

patients with a deficit for nonliving things show poor performance on parts of the body [Silveri and

Gainotti, 1988].

While evidence from neuropsychology remains tentative, from which it is difficult to draw any

definite conclusion, arguably the most interesting and revealing result is the fact that "most pa-

tients with category-specific semantic deficits show a graded impairment rather than an all-or-none

dissociation" [Tyler and Moss, 2001]. That is, few patients are within the normal range in their

"preserved" category or modality across the semantic tasks on which they are tested. Clear disso-

ciations are outliers in that the few patients whose performance is consistently within the normal

range for the preserved category are the exception rather than the rule [Patterson and Plaut, 2009].

How can graded impairments arise from a lesion to a distinct, dedicated neural system for a specific

category/domain or modality?

One possibility is that the neural circuits lie in proximity of each other within the brain, in such

a way that lesions affect more than one system, but to differing extents. However, this argument

remains untestable unless precise predictions are made, based on neuroanatomic grounds. So far

though, the evidence on the correlation of specific areas with specific functions has not reached

wide consensus [Tyler and Moss, 2001]. The theories just described fit into one of the two broad

interpretations of category-specific deficits, the neural structure principle.
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A second class of theories, the correlated structure principle, purports the organization of semantic

memory as reflecting the statistical co-occurrence of object properties. One theory in this class was

the OUCH - the Organized Unitary Content Hypothesis [Caramazza et al., 1990]. In this account,

objects in conceptual space would tend to cluster, and if damage occurs on such a site, a category-

specific deficit ensues [Capitani et al., 2003]. Yet others emphasize the co-occurrence of feature types

that facilitate categorical knowledge and identification [EilingYee and Thompson-Schill, 2013].

According to the conceptual structure account of Tyler and colleagues [Tyler and Moss, 2001],

categories have different internal structures based on feature correlations and distinctiveness. They

argue that highly correlated features support categorical knowledge as a whole, whereas feature

distinctiveness allows for the accurate discrimination between objects. Similarly, Cree and colleagues

[Cree and McRae, 2003] claim that category-specific deficits can be explained through the sharedness

and the distinctness of the features associated to the concepts within categories. In the same spirit

Humphrey and colleagues [Humphreys and Forde, 2001] point out that living things share more

common features than do nonliving things and that this greater similarity in features among living

entities may create a "crowding" effect resulting in low discriminability, accounting for the typically

disproportionate deficit in living object identification. The featural representation approach has,

so far, been successful in explaining several findings related to semantic memory, such as similarity

priming, feature verification, categorization and conceptual combination [McRae et al., 2005,McRae

et al., 1997].

The graded property of semantic disorders is an observation of fundamental value that points

at the importance of looking beyond approximate categories and boxes, into smaller, finer-grained

properties and into concept features. As such, we draw on some of the key concepts [Vinson and

Vigliocco, 2008] as a basis for our model of semantic memory:

• sharedness of features across concepts, features that are common to more than one entity (e.g.,

"live" applies to all living things)

• distinctiveness of features (i.e., features that are unique to a specific entity e.g., "hear" is

unique to ears among body parts),

• correlation (i.e., co-occurrence of features among concepts e.g., entities that have a "tail" are

likely to have "four legs").
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In this chapter, after a brief elaboration on uncorrelated patterns used as model neural repre-

sentations for the studies of Chap.3, we will first describe a procedure for generating ultrametrically

organized patterns, as a model of generating activity patterns that belong to distinct categories. We

will show that such patterns have limited correlation and fail to reproduce the "fuzzy" categories of

semantic memory. Based on this limitation, we will extend and generalize the algorithm, the idea of

which was first formulated in [Treves, 2005]. We will show that this generalization allows to generate

representations of arbitrary scope and correlation. The activity patterns thus generated are a simple

concrete way to go beyond hierarchical trees, toward models which envisage multiple influences.

4.2. Uncorrelated patterns

The initial studies of the capacity estimates of the Potts network [Kropff and Treves, 2005] as well

as the analyses in the previous Chap. 3 featured patterns that were uncorrelated. Uncorrelated

patterns are generated by drawing Potts states for different units of different patterns identically

and independently from Eq. (3.3). This means that Eqs.(3.2) and (3.1) hold. For any two patterns

µ 6= ν, C0 is the fraction of quiescent units they share, Cas is the fraction of active units that are in

the same state and Cad the fraction of active units which are in different states. Finally Ca0 is the

number of units quiescent in µ and active in ν:

Cµν0 =
1

Na

N∑
i=1

δξµi ,ξνi δξ
ν
i ,0

(4.1)

Cµνas =
1

N(1− a)

N∑
i=1

δξµi ,ξνi (1− δξνi ,0) (4.2)

Cµνad =
1

Na

N∑
i=1

(1− δξµi ,ξνi )(1− δξµi ,0)(1− δξνi ,0) (4.3)

Cµνa0 =
1

Na

N∑
i=1

(1− δξµi ,ξνi )δξµi ,0(1− δξνi ,0) (4.4)

The distributions of these correlation values are straightforward and given by binomial distributions

with different success probabilities:

P (C0) = N(1− a)B
(

(N(1− a)C0;N, (1− a)2
)

(4.5)
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P (Cas) = NaB
(
NaCas;N,

a2

S

)
(4.6)

P (Cad) = NaB
(
NaCad;N,

(S − 1)a2

S

)
(4.7)

P (Ca0) = NaB
(
NaCa0;N, a(1− a)

)
(4.8)

where B(k;N, p) ≡
(
N
k

)
pk(1− p)N−k.

Fig. 4.1: Pdfs of the patternwise correlations with uncorrelated patterns.Probability density
functions of P (C0), P (Cas), and P (Cad) with uncorrelated patterns. While bars indicate results
from simulations, solid lines represent the density functions. Here N = 2000, a = 0.3 and S = 5.

4.3. Single parents and ultrametrically organized children

The interest in ultrametrically organized patterns was largely due to the discovery of an ultrametric

hierarchy of the free energy minima in the formal solution of the Sherrington-Kirkpatrick model of

a spin glass [Mézard et al., 1987]. Subsequently a selectionist (as opposed to an empiricist tabula

rasa) hypothesis of learning was proposed: the initial configuration of the network is a complex

landscape with an abundance of valleys typical of spin glasses and learning consists of the progressive

pruning or smoothening of this landscape [Toulouse et al., 1987]. It was then found that spin-glass

ultrametricity is too sensitive to the effects of a stored pattern, but the appeal of its clarity had

already set independent researchers to explore the possibility of storing ultrametrically organized

patterns. In particular, the Hopfield model of neural networks was extended to allow for the storage
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and retrieval of hierarchically correlated patterns [Gutfreund, 1988].

In this study [Gutfreund, 1988], a set of random patterns, called parents are characterized by

independent units, active with probability a

P (ξπi ) = a δ(ξπi − 1) + (1− a)δ(ξπi ) , (4.9)

where ξπi denote the activity of unit i of parent π and 0 < a < 1 is the sparsity of the parents. In

the next step, "child" patterns are drawn from the following distribution

P (ξπµi ) =

{
a+ b(ξπi − a)

}
δ(ξπµi − 1) +

{
1− a− b(ξπi − a)

}
δ(ξπµi ) , (4.10)

where ξπµi denotes the activity of unit i of child µ branching from parent π. 0 < b < 1 parametrizes

to what degree children are biased toward their (single) parent. For b = 0, child patterns become

uncorrelated with no dependence on the parent, while for b = 1 the child patterns become identical

to their single parent. Given the distributions above, we can compute the average activity of parents

and child patterns 1:

〈ξπ〉 = a (4.11)

〈ξπµ〉 = a (4.12)

as well as child-parent correlations:

〈ξπµξπ′〉 =


a2 + ba− ba2 π = π′

a2 π 6= π′
(4.13)

As expected, children of the same branch have higher similarity to their own parent (π = π′), than

to a parent of another branch (π 6= π′). We can also compute the correlation between two children

of the same parent (π = π′) and that of two children belonging to distinct parents (π 6= π′)

〈ξπµξπ′µ′〉 =


a2 + a(1− a)b2 π = π′

a2 π 6= π′
(4.14)

1The state of each unit i is drawn identically from the same distribution, such that we can drop the index i.
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(a) (b)

Fig. 4.2: Ultrametric relations and strong triangle inequality. (a) A tree, reproduced from
[Mézard et al., 1987]. 1, 2, 3, 4, 5, and 6 are at the same level of the hierarchy. If we consider the
nodes 1, 3 and 6, they are each at a distance of 2 of each other, the distance being defined as the
distance to the nearest common branching point. If we consider nodes 3, 4 and 5, then they are
each at a distance of 1 of each other, such that we get again an equilateral triangle. If we consider
1, 2 and 3, then d12 = 1 while d13 = d23 = 2, such that we get an isosceles triangle with two long
edges. The alternative, an isosceles triangle with two short edges is impossible to realize, there are
no intermediate points between 1 and 3 or 2 and 3, as shown in (b).

It trivially follows that

〈ξπµξπµ′〉 − 〈ξπµξπ′µ′〉 = a(1− a)b2 . (4.15)

This is one of the characteristics of this algorithm: it is possible to properly define a distance d

(see Sect. 4.6) such that three patterns (x, y, z = ξπµ, ξπµ
′
, ξπ

′µ′) at the same level of the hierarchy

can be seen to satisfy the strong triangle inequality d(x, z) ≤ max(d(x, y), d(y, z)). An alternative

definition can be formulated in terms of a tree: starting from two nodes at the same level of the

hierarchy, the number of steps one has to go up the hierarchy to find the first common forefather.

As illustrated in Fig. 4.2a, with such a definition, triplets of patterns can only be in one of the two

triangle relations: equilateral and isosceles with two long edges, in other words, an ultrametric space

has no node intermediate between any two nodes (Fig. 4.2b).

From the point of view of semantics, this is an implausible situation: if one considers the cate-

gories as the single archetypal parent from which all concepts descend, it becomes clear that such an

ultrametric structure is unsuitable in describing all the semantic relations in which the ultrametric

inequality is not satisfied: for example when a concept finds itself simply "in between" two equally

distant concepts.

On the other hand, the very meaning of a concept can be thought of as the set of features that

are associated to it. It may then be more sensible to consider the features characterizing a concept

as its building blocks, hence its parents. In the following, what we will describe is an algorithm first

38



(a) (b)

Fig. 4.3: Schematic representations of hierarchical versus multi-parent pattern generation
algorithms. (a) The workings of a hierarchical algorithm with 3 parents and 3 child patterns per
parent. Colors correspond to active Potts states while black denotes the quiescent states. S = 3.
(b) The workings of the multi-parent algorithm with Π = 3 parents and ppar = 3 child patterns
per parent and 5 total child patterns with number of parents 2, 1, 3, 1, 2. Black arrows and their
thickness denote strength of input. The main difference with the hierarchical algorithm is that each
child pattern can receive input from multiple parents. If each parent is to represent a feature and each
child a concept, the algorithm entails the generation of a concept from multiple features. Quantities
such as number of features, their sharedness, their distinctiveness and correlation between concepts
can be mapped onto variables in our model, such as the number of parents, the number of common
parents, patternwise correlation.

sketched in [Treves, 2005] in which each child pattern is generated from multiple parents (features),

more specifically a random subset of the total group of parents.

4.4. Multiple parents and non-trivially organized children

In the previous section, we elaborated on the observation that parents, playing the role of categories,

were insufficient to capture the correlational structure of semantic memory. On the other hand,

insights from experimental studies, mentioned at the beginning of this chapter, pointed to the role

that a number of quantitative variables, such as the number, the sharedness and distinctiveness

of features and correlations, play in describing semantic memory. How can we incorporate such

observations into our model of semantic memory? In a simplified scenario, one may consider features

as the parents from which the concept children are to descend. We can then map quantities such

as the number of features, the sharedness, the distinctiveness to variables in our model, respectively

the number of parents, the number of common parents, and the distinctiveness of each parent.

The multi-parent pattern generation algorithm works in three stages. In the first stage, a set
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of Π random patterns are generated to act as parents. In the second stage, each of the Π parents

are assigned to ppar randomly chosen children. Then, a "child" pattern is generated: each pattern,

receiving the influence of its parents, aligns itself, unit by unit, in the direction of the largest field.

In the third and final step, a fraction a of the units with the highest fields is set to become active in

each child pattern. A schematic representation can be seen in Fig. 4.3b. In this section we will give

a quantitative description of this procedure.

4.4.1 The algorithm operating on simple binary units

One relevant quantity that helps to mathematically describe each child pattern is the number of

parents acting on it. Each parent is assigned ppar children out of a total of p. The probability

distribution that a given child has np parents, out of a total pool of Π is given by a binomial, with

f = ppar/p

P (np) =

(
Π

np

)
f np(1− f)Π−np (4.16)

The algorithm draws, for the input xπ→µi from unit i of parent π to unit i of pattern µ, a uniformly

distributed random number in the interval (0, 1] with probability ap and zero with probability 1−ap

such that we can write:

P (xπ→µi ) = ap U(0,1](x
π
i ) + (1− ap)δ(xπi ) (4.17)

ap is analogous to the a parameter in Eq. (4.9). If ap ∼ 0 then a child pattern is very unlikely to

receive, on a particular unit, the contribution from one of its parents. On the other hand, if ap ∼ 1

then all parents influencing a child contribute to its field, whichever the unit. U(0,1] denotes the

uniform distribution, such that input from parents is graded, contrary to the previous section.

Importantly, we have made the choice of non-sparse parents, but sparse input from parents,

aimed at decorrelating units, while conserving correlations between patterns. This choice will prove

to be crucial in Sect. 3.3, where statistical independence between units will lead to a vanishing mean

noise, using only a simple covariance rule. For S = 1, this means that the patterns generated by

the algorithm are uncorrelated, but the importance of having non-sparse parents with sparse input

from them becomes important when dealing with more than one Potts state. Nevertheless, in this

section, we proceed with the calculation with S = 1 as it provides warm-up exercise to then treat

genuine Potts units.

The main difference with respect to the single-parent algorithm is that here, one must compute
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the total field hµi that a unit i of pattern µ receives from all parents

hµi =
Π∑
π=1

xπ→µi IΩµ(π) + ε . (4.18)

where Ωµ is the set of all parents acting on pattern µ and where we have that |Ωµ|= np(µ). IΩµ(π)

is the indicator function that is 1 if parent π is assigned to pattern µ and 0 otherwise. ε is a small

random input (ε� ap) allowing for there to be some input when ap � 1.

The fields of all units of all patterns are drawn from the same distribution. In App. B, the

full derivation of the probability distribution for the field hµi is reported in detail. We note in

passing that such a distribution has a non-trivial expression and, to our knowledge, it can only be

evaluated numerically. However, a very simple analytic expression can be given for the moments of

the distribution of hµi , as shown in Fig. 4.4b.

〈h〉 = np
ap
2

(4.19)

σh =

√
np ap

(
1

3
− ap

4

)
. (4.20)

In Fig. 4.4a, where we see that the analytical results match tightly those from implementation of

the algorithm. As a last step, a fraction a of the units within a given pattern having fields above

a threshold hm are set to become active. The threshold hm is then implicitly given in terms of the

cumulative distribution function

P (h′ < hm |np) = 1− a . (4.21)

For a given child pattern µ with number of parents np, we can now define the probability that it

will be activated, given the field that it receives. If this field is greater than the threshold hm, it will

become activated:

P (ξµi = 1 |hµi ) = Θ(hµi − hm) . (4.22)

4.4.2 The algorithm operating on genuine Potts units

With genuine Potts states, the main difference with respect to the previous results is that the input

from a parent π to the field of a pattern µ can be to any one of S states with equal probability. This

means that only a subset Ωk of the total parents will contribute to state k. We denote the number
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Fig. 4.4: Field from a number of parents with S = 1. (a) Solid lines correspond to the analytical
distributions of the field, Eq. (B.8), in blue is the distribution of the fields produced by a simulation
of the algorithm for np = 15. The parameters are N = 2000, S = 1, ap = 0.4, np = 15 . . . 50 and
Π = 100. (b) The mean and standard deviation of the field as a function of the number of parents.

of parents in the subset as |Ωk|= nk. The joint distribution of number of parents by state is

P (n1, ..., nS) =
np!

Snp
S∏
k=1

nk!

. (4.23)

such that the constraint
S∑
k=1

nk = np is satisfied. We can then write the field of unit i in state k of

pattern µ:

hµi,k =

Π∑
π=1

xπ→µi,k IΩkµ(π) + ε . (4.24)

Then, the algorithm is such that it selects, unit by unit, the state receiving the maximal input.

Following some calculations shown in App. C, we can compute the distribution of the fields of those

states having received maximal input H (Fig. 4.5a). We can then compute, exactly as before, the

threshold above which the unit becomes activated.

P (H ′ < Hm |np) =

Hm∫
−∞

P (H ′ |np) dh′ = 1− a . (4.25)
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(a) (b)

Fig. 4.5: Field from a number of parents with S = 2. (a) Distribution of the maximal fields
for S = 2 and np = 30. In blue is the distribution of the fields produced by the algorithm and the
black line is Eq. (C.7). (b) The x-axis corresponds to patterns with different number of parents
and the y-axis to the fields of the units in that pattern. Red point correspond to units that are
set to quiescent and green to those that are activated. The boundary between the green and the
red corresponds to hm, the minimum field required for a unit to be set to active. Parameters are
N = 2000, S = 2, ap = 0.4 and Π = 100.

Having obtained the minimal field Hm required to activate a unit (Fig. 4.5b), we now need only

the distribution of the field given the number of parents in that state P (hk|nk), which is none other

than Eq. (B.8) (replacing np with nk). We finally get to the distribution of activity across units and

states, given the field received

P (ξµik = 1 |hµik) = Θ(hµik −Hm) . (4.26)

Given the algorithm we have just described, the main mechanism determining the state of a unit

in a given pattern is the extent to which the units belonging to parents affecting a child are in the

same state. If parent units are all aligned, this entails a high number of parents by state nk, making

the unit receive a higher mean field in a single state, making it more probable to become activated.

On the other hand, lower alignment between parents will entail the field received by a child unit

to be spread among the different states, and make it less probable for the child unit to find itself

among those with maximal fields, as given by Eq. (C.7).

In the description above, we have aimed at describing the mechanism through which individual
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(a) (b)

Fig. 4.6: Sample patterns for Potts networks. (a) 9 sample patterns generated independently
following Eq. (3.3). Each subplot corresponds to one pattern. Each colored square to one unit,
the colors indicating active states and white indicating the quiescent state. (b) Same as (a) but
generated from one run of the multi-parent algorithm. The uniform sampling of the different Potts
states is such that Eq. (3.3) holds. By design, also Eq. (3.2) holds (see text) while (3.1) does
not hold anymore. Correlation parameters are ap = 1, f = 0.05 and Π = 150 common parents.
Parameters are S = 5 and a = 0.3.

child patterns are generated. At this level of description, in order to determine whether or not a

unit of a pattern will become activated, the only relevant parameter is the number of parents and

their degree of alignment in Potts space. From the point of view of an individual child pattern

then, all parents are equivalent and can be considered as identical and independently distributed,

a property we have thoroughly exploited in the previous sections. In the next section, we turn to

the correlations between patterns. We study how the correlations generated by the algorithm differ

from those obtained by a random procedure, as in Sect. 4.2 In particular, are they dominated by

the number of parents that a pair of child patterns have in common? Is this a plausible model for

semantic memory?

4.4.3 Resulting patterns and their correlations

In Fig. 4.6a and Fig. 4.6b we can see sample patterns generated randomly and with the algorithm

from a common set of Π parents, respectively. Patterns generated by the algorithm sample different

active states uniformly, such that Eq. (3.3) still holds. However, the joint distribution P (ξ̄1 . . . ξ̄p) is

not factorizable anymore, as in Eq. (3.1). However, due to the way the algorithm works, units are

still identical and independent (see Sect. 4.4). In Sect. 4.2 we defined the patternwise correlation as
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the fraction of units that are co-active and in the same state in both patterns 2

Cµν =
1

Na

N∑
i

S∑
k

δξµi ,kδξ
ν
i ,k

. (4.27)

Analogously, we define the unitwise correlation as the fraction of patterns in which two units are

co-active and in the same state

Cij =
1

pa

p∑
µ

S∑
k

δξµi ,kδξ
µ
j ,k

. (4.28)

In Fig. 4.7 we can see the distributions of Cµν and Cij for nine different combinations of the param-

eters ap and f . The distributions are very sensitive to the specific values of the parameters. For low

values of ap and f , pairs of Potts units have uncorrelated activity when averaged across patterns,

in the sense that the distribution Cij has zero covariance. Pairs of patterns, instead, are correlated

with a distribution Cµν of non-zero covariance, that is positively skewed. On the other hand, high

values of ap and f seem to make both distributions more positively skewed. Low values of ap and

high values of f result in both distributions becoming more and more normal, while high values of

ap and low values of f result in a normally distributed correlation between units and a highly skewed

multi-modal distribution between patterns.

To assess these observations more systematically, in Fig. 4.9a we can see boxplots of the Cµν

distributions for different values of ap keeping f = 0.05 fixed. While the mean correlation seems to

be unaffected by increasing ap, the standard deviation and the skewness increase.

In 4.9b, conversely, we can see boxplots of Cµν distributions for different values of f keeping

ap = 0.4 fixed. Increasing f increases the mean of the correlation distribution, without affecting

the standard deviation and the skewness. These effects can be understood intuitively because of the

different roles that these parameters play in the algorithm. ap is the parameter that increases the

probability that a child parent receives input from a parent unit, increasing the overall similarity of

a child to its parents. This means that those children that have common parents will be more similar

and more highly correlated, giving rise to the higher values in the distribution. f , on the other hand,

is ratio of the pool of children affected by one parent to the total number of children. Increasing the

pool of children that are to be affected by a given parent, means that all children share, on average,

more parents, leading to a shift in the overall distribution. This effect is seen in Fig. 4.8, where we

2We drop the subscript "as" in order to simplify the notation
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Fig. 4.7: Pdfs of pairwise correlation between patterns and units of the multi-parent al-
gorithm. Probability density function of correlations between units (in red) and between patterns
(in green) and three different values of f , corresponding to an average of 1.5, 4.5 and 7.5 parents
per pattern. The black vertical line corresponds to the average correlation with uncorrelated pat-
terns distributed independently according to Eq. (3.3). Parameters are S = 5, a = 0.3, ap = 1.0

and Π = 150. The algorithm produces correlations between patterns with high variability relative
to the correlation between units, in line with candidate patterns for semantic memory. The green
distribution can be compared to Fig. 4.1, i.e. the patternwise correlation distributions obtained with
independently generated patterns of the same sparsity and number of Potts states. Note that the
algorithm is sensitive to the parameters and produces a wide variety of correlation between patterns.
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plot, as a function of the number of common parents, in the left and right y-axes respectively, the

fraction of pairs of patterns and the mean correlation between those pairs of patterns. This is shown

in more detail in Fig. 4.10, in which pairs of patterns are decomposed into different distributions

sharing an increasing number of parents. It can be seen that the correlation distribution shifts

to the right with increasing number of common parents. While the mean correlation seems to be

determined by the number of parents two children have in common, it is not the only factor in play.

Children have variable number of parents, and the number of total, unshared parents, can lower the

mean correlation between pairs of children. The two parameters ap and f therefore play different

roles in generating the correlations.

4.4.4 The ultrametric limit

It is interesting to note a limit case of the algorithm. If 〈np〉µ = Πf ∼ 1 as in Fig. 4.7 (f = 0.01,

Π = 150), on average, most children will have a single parent, which effectively produces ultrametric

patterns. Indeed, for these parameters, since the number of total parents Π = 150 is smaller than

the total number of children generated, p = 1000, many children share a given single parent. The

mean value of their correlation, at a/S, is the same as the mean correlation between uncorrelated

patterns, as is predicted by Eq. (4.14). Note that the distribution is multimodal. The values forming

the second mode of the distribution consist of the correlation between children belonging to the same

(single) parent.

4.4.5 The random limit

Another limit is the random limit in which ap � 1. In this case, most units will not receive input

from their respective parents, regardless of how many they are, and the unit will align itself in the

direction of a random Potts state given by the input ε. In this way, it is possible to parametrically

generate patterns ranging from independent (ap � 1) to ultrametric (ap = 1, fΠ = 1).
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Fig. 4.8: More common parents lead to higher patternwise correlation. Fraction of pairs
of patterns (left y-axis) and mean correlation between those pairs (right y-axis) as a function of
number of common parents for three different values of f . The black horizontal line corresponds to
the average correlation with uncorrelated patterns distributed according to Eq. (3.3). Those pairs of
patterns having more common parents (features) are more highly correlated, on average. The other
correlation parameters are ap = 0.4 and Π = 150.

(a) (b)

Fig. 4.9: Boxplots of patternwise correlations. (a) Boxplots of Cµν for different values of ap,
with f = 0.05 fixed. (b) Boxplots of Cµν for different values of f with ap = 0.4 fixed. The two
figures display the different roles that the parameters ap and f play in generating the correlations.
Increasing ap increases the overall similarity of a child to the parent from which it receives input,
such that those children having common parents will be more highly correlated, as evidenced by the
increasing skewness of the distributions. In contrast, f is the ratio of the pool of children attributed
to one parent over the total number of children. Increasing f leads to an increase in the mean number
of common parents, such that all children will be more correlated, as evidenced by the shift in the
overall distribution. The black vertical line corresponds to the average correlation with uncorrelated
patterns distributed according to Eq. (3.3). Other parameters are a = 0.3, S = 5 and Π = 150.
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Fig. 4.10: Distributions of patternwise cor-
relations with increasing number of shared
parents. This figure is another depiction of
the correlation distribution of Fig. 4.7 with
f = 0.05 and ap = 0.4. Here, all patternwise
correlation values are decomposed into those
that have an increasing number of common par-
ents. It can be seen that the corresponding dis-
tributions shift to the right, corroborating the
results of Fig. 4.8.

4.5. Correlation in a sample of 60 nouns

(a) (b) (c)

Fig. 4.11: Correlation matrices of nouns, under different hypotheses. (a) Null-hypothesis
correlation matrix between nouns, obtained through shuffling, feature by feature, the feature weights
across all nouns, resulting in a matrix with a near perfect homogeneity in correlation values and
devoid of any structure. (b) Hierarchical hypothesis correlation matrix, obtained through shuffling,
feature by feature, the feature weights only among nouns belonging to eight clusters that we de-
fine after applying a clustering algorithm to the original correlation matrix (see (c)). The seven
clusters correspond to the seven warm colored blocks along the diagonal, as well as one light blue,
corresponding to nouns that did not belong to any cluster. (c) Original correlation matrix.

In the previous section, we studied the correlation properties of the patterns generated by the multi-

parent algorithm, intended to model patterns of semantic memory. In an ideal scenario, these could
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be contrasted to patterns of multi-voxel activity associated to a semantic retrieval task. In a slightly

less ideal scenario, it is not implausible to assume that some of the correlational structure of semantic

memory may be reflected in language.

In [Mitchell et al., 2008], the authors trained a computational model that predicts the fMRI

neural activation associated with words. Their model is trained with a combination of data from

a trillion-word text corpus and observed fMRI data associated with viewing several dozen concrete

nouns. Once trained, the model predicts fMRI activation for other concrete nouns in the text corpus,

with highly significant accuracy over 60 nouns.

Based on the significant accuracy with which the model, trained partially with corpus data,

predicted fMRI activation, we took the N = 60 nouns used in the above study. We computed the

pairwise correlation between these nouns, as measured by a set of intermediate or surrogate features,

such as the co-occurrence with specific verbs within a sentence in the corpus. We denote by fik the

co-occurrence frequency of noun i with verb k. Then, in order to express each concept as a feature

vector, we normalized each co-occurrence frequency to obtain feature weights such that

wij =
fij√
M∑
k=1

f2
ik

(4.29)

In this way each noun is expressed as a vector of M = 25 features such that ni = (wi1, wi2, ..., wiM )

is normalized to 1. We can then compute the correlation between nouns i and j as

Cij =
M∑
k=1

wikwjk (4.30)

In Fig. 4.11c, we report the correlation matrix of the nouns. In Fig. 4.11b, we compute the correlation

between the nouns, after having shuffled the feature weights across nouns within eight distinct

clusters obtained through a clustering algorithm. One of the eight clusters (second, light blue, along

the diagonal) groups those nouns that did not have a significant correlation with any of the other

nouns, such that some of the off-block values are higher than within block values. For all of the

other blocks though, the ultrametric structure is evident. All in-block values are higher than off-block

values. It is apparent from the comparison with Fig. 4.11c, that the ultrametricity assumption fails

to represent the non-negligible number of off-block values with high correlation, nor account for off-
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Fig. 4.12: Correlation distribu-
tion between nouns. Pairwise cor-
relation between a set of N =

60 nouns in a corpus, as mea-
sured by their co-occurrence with a
set of intermediate features (verbs).
The distribution consists of the
same values reported as a matrix in
Fig. 4.11c.

block entries with correlation values in between that of nouns belonging to two distinct clusters. In

Fig. 4.11a instead, we shuffle the feature weights across all nouns, resulting in a homogenous matrix

with very little variability. This simple example illustrates the strong and implausible assumption

of a hierarchical hypothesis. The correlation distribution can be seen in Fig. 4.12.

4.6. Ultrametric content

A further characterization of the resulting patterns is in terms of a distance. A distance measure

can be derived from the correlation following the same procedure as [Treves, 1997]. We first define

a so-called "confusion" matrix

P (µ|ν) =
Cµν
p∑

µ=0
Cµν

. (4.31)

where Cµν is an element of the correlation matrix and where P , the confusion matrix, is obtained by

normalizing each element of the correlation matrix appropriately. Next, we symmetrize the above

function to obtain

d(µ, ν) = − log

(
P (ν|µ)P (µ|ν)

P (µ|µ)P (ν|ν)

)
, (4.32)

a quasi-distance, in the sense that it satisfies only the reflective and symmetric properties, d(µ, µ) = 0

and d(µ, ν) = d(ν, µ). The triangular inequality d(µ, ν)+d(µ, ρ) ≤ d(µ, ρ) does not necessarily hold.

It can be made to hold by raising d to a sufficiently small power d→ d1/p, called the "trivialization" of

d, as has been explained in detail in [Treves, 1997]. Using this procedure, distances between triplets

of patterns {µ, ν, ρ} can be computed. If we note by dmin the edge of minimal length, dmax the edge

of maximal length and dmed the edge of intermediate length, then we can plot, in a two-dimensional

graph, the ratios δ1 = dmin/dmax and δ2 = dmed/dmax. In Fig. 4.13, we report these plots for
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(a) (b) (c)

Fig. 4.13: Distance relations between triplets of correlated patterns. Two-dimensional his-
tograms of δ1 = dmin/dmax against δ2 = dmed/dmax for three values of the correlation parameters
f = 0.01, 0.03 and 0.05. The other parameters are ap = 1.0 and Π = 150.

patterns generated with the multi-parent algorithm, for three different values of the parameter f ,

for which we also report the correlation distributions in Fig. 4.7. As can be anticipated from those

distributions, increasing f strengthens the overall correlation between patterns and reduces the

distances between them.

Triplets that satisfy the triangular inequality lie above the line δ1 = 1 − δ2, while triplets that

satisfy the ultrametric inequality lie on the vertical line where δ2 = 1. Among these, triplets that

are equilateral triangles lie at the point δ1 = δ2 = 1. To measure the overall closeness of the cloud

of triplets to the fully ultrametric limit one can define the ultrametric content

λum =

〈
log δ1 − log δ2

log δ1 + log δ2

〉
(4.33)

where 〈·〉 denotes the mean over all triplets. This quantity does not depend on the trivialization of

d and it ranges from 0 (for triplets forming isosceles triangles with two short sides) to 1 (for a fully

ultrametric set: equilateral triangles and isosceles triangles with two long sides).

Can we compare distance relations thus obtained with those of nouns, under different hypotheses?

In Fig. 4.14a, we can see the ratios δ1 against δ2 for triplets in Fig. 4.11a. The little fluctuation in

the correlation is reflected in the distance relation between triplets of nouns, where they all tend to

cluster toward the value δ1 = δ2 = 1. The ultrametric content, as defined by Eq. (4.33) is λum = 0.4.
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In Fig. 4.14b instead, we can see that nouns largely categorize into clusters, so that triplets span

two regions: δ1 ∼ δ2 for triplets that belong to the same cluster, and the ridge δ1 = 1 for triplets

that belong to distinct clusters. The ultrametric content is found to be λum = 0.61, still far from the

limit value λ = 1, but significantly higher than when nearly all metricity is destroyed, as achieved

with the shuffling of Fig. 4.14a. In Fig. 4.14c instead, we can see the distance scatter obtained from

the original correlation matrix between the nouns: these values span much of the area below δ1 = δ2.

Notably, the triplets do not only lie around the vertical line δ2 = 1, but span the right triangle,

implying triplets forming all kinds of triangles, ranging from isosceles with two long sides to isosceles

with two short sides on the line δ1 = δ2, with an intermediate ultrametric content of λum ∼ 0.52.

(a) (b) (c)

Fig. 4.14: Distance relations between triplets of nouns, under different hypotheses. (a)
Two-dimensional histograms of δ1 = dmin/dmax against δ2 = dmed/dmax for triplets of 60 nouns
taken from corpus after full reshuffling of feature weights. λum ∼ 0.4 (b) same as (a), after within-
cluster reshuffling (the ultrametric hypothesis). λum ∼ 0.61 (c) Distance relations obtained from
the original correlation matrix. λum ∼ 0.52.

4.7. Semantic distinctiveness

How important is each individual feature, across all nouns? We can compute a simple measure of

semantic "distinctiveness", by simply summing the feature weights of all nouns sj =
∑N

i wij .

In Fig. 4.15, we report the summed weights of the M = 50 features across all the nouns consid-

ered, sorted and plotted on a semi-log scale. Remarkably, given the very small dataset used, it can

be approximated to a good extent by an exponential law. The suboptimal fit may conceivably be
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the result of limited and unbalanced sampling. Indeed the words, the nouns or the verbs were not

chosen with comparable frequency. This measure is therefore only approximative, in that it is an

aggregate measure of "distinctiveness"; however at the resolution of the description of the model,

it is sufficient as such. Our measure is related to the measure called "semantic relevance" used by

Sartori and colleagues [Sartori and Lombardi, 2004] as well as "semantic differential" used by Os-

good [Osgood, 1964]. The difference with the latter measure, however, is that ours is a cumulative

measure across all of the nouns derived from co-occurrence statistics in a corpus, while semantic

differential refers to a scale in which individuals rate the connotative meaning of objects, events,

and concepts 3.

Fig. 4.15: Semantic distinctiveness of features. The x-axis enumerates all of the features used
to compute the correlation between the nouns, sorted according to their summed weights across all
nouns (reported on a semi-logarithmic y-axis).

To take into account this observation, we consider a more refined model in which the parents

in our algorithm (the features), ranked from 1 to Π, have the strength of their inputs damped

exponentially with rate ζ, such that Eq. (4.24) is revised in the following way

hµi,k =

Π∑
π=1

xπ→µi,k IΩkµ(π) exp(−ζπ) + ε . (4.34)

3It is likely that the two measures are related, however, in order to avoid confusion, we do not use the same term
to refer to our measure.
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Fig. 4.16: Multi-parent algorithm incorporating semantic distinctiveness. One sample repre-
sentation of parent-child relations. The squares on the top row represent parents, while the circles at
the bottom row represent children. Black lines represent input from the parents to the children. The
strength with which each parent affects its children is proportional to exp(−ζπ), where π indexes
the parents, as explained in the text. The parameters are Π = 10 parents, ppar = 5 children per
parent and p = 50 total children. For simplicity, each square and each circle represent parents and
children as entities, without the individual units.

where xπ→µi is the input from parent π to child pattern µ, Ωµ is the set of all parents acting on

pattern µ and IΩµ(π) is the indicator function that is 1 if parent π is assigned to pattern µ and 0

otherwise. The limit ζ → 0 corresponds to the algorithm described in the previous sections such

that we recover Eq. (4.18). In this way, we introduce a parameter, ζ, which can be related to the

slope seen in distinctiveness distributions observed in real data, such as the one in Fig. 4.15.

In Fig. 4.16 we can see a schematic representation of this new algorithm. In previous sections, we

investigated the role played by ap, the sparsity of input that a child-unit receives from a parent-unit.

This input takes graded values in the range (0, 1) across different units, leading to variability of

input across units of a pattern. The parameter ζ, though also affecting the strength of input, plays

a different role, as it affects the global strength with which each parent affects its children, leading

to variability of input across all units of different patterns. A high value of ζ contributes to highly

unbalanced input from all parents influencing a child pattern, such that most units of a pattern

align with the most powerful parent, or the most "distinctive" feature.

How are the correlations affected by ζ? In Fig. 4.17 we report the distributions for three different

values of ζ. While for low values of ζ, i.e. parents homogeneous in their strengths, the pattern-

wise correlation is unaffected (see Fig. 4.7), increasing ζ, we see the emergence of a tail of highly

correlated patterns. For small f , this has the effect of smearing the bi-modal distribution, while for

larger f , the already existing tail becomes fatter.
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Fig. 4.17: Pdfs of pairwise correlation between patterns and units of the multi-parent
algorithm. Probability density function of correlations between units (in red) and between patterns
(in green) for three different values of the parameter ζ and f , keeping ap = 0.4 constant. For the
low value of ζ = 0.001, this figure is reproduces the middle panel of Fig. 4.7. For higher values of
ζ, where the parents become highly heterogeneous, we see the emergence of very high correlations.

4.8. Discussion

Tree-like models have for a long time remained an important way of thinking about semantic orga-

nization, prompted by early studies of category specific deficits. Subsequently, it was clarified that

other arrangements of distributed representations could also lead to such deficits [Farah and McClel-

land, 1991], but to date, a plausible model of generating such representations, amenable to further
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studies, has been largely lacking. To make progress in this direction, we have given a quantitative

description of a novel algorithm, with a crucial conceptual difference from that of previous attempts:

our algorithm allows for child patterns to receive input from multiple parents. The parents, can be

thought of as semantic features, or else semantic category generators, and lead to correlations that

are highly sensitive to the values of the parameters.

We have made many simplifications, also at variance with earlier attempts. For one thing, we

have adopted an algorithm that defines the activity of parents over all units of subsets of patterns,

a difference with [Treves, 2005]. In the latter algorithm, it was the inverse: parents were defined

over subsets of units of all patterns. This detail made a difference in that the latter algorithm

produced patterns that tended to correlate units. The motivation behind the latter algorithm was

one of plausibility: features are usually associated to different modalities such as sensory, motor,

visual etc. and are known to be represented in patches of cortex that are sometimes anatomically

segregated. Such motivation remains valid, and further versions of the pattern generation algorithm

should be explored. Such attempts can be taken by for example defining the parents over more

realistic distributions of patterns and units.

Moreover, we have considered parents as comprising only active states, and the input from parents

to be sparse. This approximation is far from being realistic, but has the advantage of decorrelating

units, allowing for the mean field equations determining the storage capacity to take a simple form,

as we show in Chap. 5. Notwithstanding all of the simplifications, the resulting correlations are

shown to be sensitive to the values of the correlation parameters and are rich enough to allow for

interesting further work.

The architecture of our algorithm bears some resemblance to restricted Boltzmann machines

(RBMs), in that the parents (representing the features) play the same role as the hidden variables,

while the children (the nouns, or concepts) play the role of the visible variables. The parameters

which define the rules with which children are generated from the parents are related to the weights

of the links, in the RBM, between visible and hidden units. One interesting property of RBMs is that

their weights can be trained in such a way that the hidden variables extract relevant features from

data in an unsupervised way. After the training, the network can be used as a generative model to

produce new data: this is what also our algorithm does. The part missing in our generative model,

or at least in the way we use it, is the training part: given the structure of the connections, it might

be included in our scheme. This might be an interesting direction in which to extend our algorithm.
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5

Storage capacity of the Potts network with

correlated patterns

After having studied in some detail the algorithm which generates correlated patterns, we can turn to

study the storage capacity and how it is affected by the correlations. We have carried out numerical

simulations with the standard "Hebbian" or closely related "covariance" learning rule for Potts

networks [Kropff and Treves, 2005] with the learning rule in Eq. (2.1), and have observed that the

storage capacity is diminished in the case of correlated patterns, a result that has been obtained

analytically by others [Löwe, 1998,Engel, 1990], albeit for different sources of correlations.

In Chap. 3 and App. A, we discussed the application of the SCSNA technique to the Potts

network with uncorrelated patterns. In the following sections we extend this analysis to the case of

correlated patterns and try to get estimates of the storage capacity accounting for these correlations

in an effective way. In this case, the variability of the noise has to be re-examined. We saw in

Chap. 3 that the variance of the noise can be approximately written in the following way:

〈(nki )2〉 =
1

(cma(1− ã))2

p∑
µ>1

N∑
j(6=i)=1

∑
l

p∑
µ′>1

N∑
j′( 6=i)=1

∑
l′

cijcij′〈vξµi ,k vξµ′i ,k
〉〈vξµj ,l vξµ′

j′ ,l
′ σ

l
jσ
l′
j′〉 , (5.1)

where statistical independence between units is implicitly used. While in the case of uncorrelated

patterns, all terms but µ = µ′, j = j′ and l = l′ vanish, with correlated patterns this is not the case.
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In this latter case, the additional terms µ 6= µ′, j = j′ and l = l′ must be considered. Given the

statistical independence of units, however, all other terms are zero.

5.1. Self-consistent signal to noise analysis

The calculation is for the most part identical to the one for uncorrelated patterns, we therefore refer

to App. A. Following the same procedure as in Chap. 3, we can compute γki = γ and ρki = ρ. The

expression for γ is exactly the same as with uncorrelated patterns

γ =
α

S
λ

Ω/S

1− Ω/S
. (5.2)

For the calculation of ρ however, considering the additional terms, one finds

(ρn)2 =
αPn

S(1− ã)
q
{

1 +
pCas

S(1− ã)

(
Cas − ã

)}{
1 + 2λΨ + λΨ2

}
. (5.3)

where α = p/cm as before, and where Cas, defined in Sect. 4.2, is the fraction of units that are in

the same Potts state, normalized by a. For uncorrelated patterns, this quantity is on average ã,

such that the second quantity in the first curly brackets is zero, and we recover the same quantity

as Eq. (3.38). Note that this additional term scales with p and is larger for higher-than-random (ã)

mean correlation between patterns. In Fig. 4.7 and more synthetically in Fig. 4.9 the patternwise

correlation distribution can be seen for different values of the correlation parameters. This increase is

the source of the decrease in capacity, with the most dramatic decrease being predicted by increasing

the parameter f , affecting the mean of the patternwise correlation distribution (see Fig. (4.9b)). Ω,

q and Ψ are found to be, as in Chap. 3,

Ω =

〈
1

N

∑
j

∑
l

∂Glj
∂yl

〉
, (5.4)

q =

〈
1

Na

∑
j,l

(Glj)
2

〉
, (5.5)

Ψ =
Ω/S

1− Ω/S
. (5.6)
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where 〈·〉 indicates the average over all patterns. The mean field received by a unit is then

Hξk = vξ,km+
α

S
λΨ(1− δk,0) +

S∑
n=1

vn,kz
n

√
αPn

S(1− ã)
q
{

1 +
pCas

S(1− ã)

(
Cas − ã

)}{
1 + 2λΨ + λΨ2

}
− U(1− δk,0) . (5.7)

Taking the average over the non-condensed patterns (the average over the Gaussian noise z), followed

by the average over the condensed pattern µ = 1 (denoted by 〈·〉ξ), in the limit β →∞, we get the

self-consistent equations satisfied by the order parameters

m =
1

a(1− ã)

〈∫
DSz

∑
l(6=0)

vξ,l
∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

, (5.8)

q =
1

a

〈∫
DSz

∑
l( 6=0)

∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

, (5.9)

Ω =

〈∫
DSz

∑
l(6=0)

∑
k

zk
∂zk

∂yl

∏
n(6=l)

Θ(Hξl −H
ξ
n)

〉
ξ

. (5.10)

The equations can be solved numerically as before; however, the values of Cas must be extracted

from simulations, as the exact dependence of Cas on the various correlation parameters (ap, f, ζ)

cannot be derived.

5.2. Simulation Results

5.2.1 Network parameters a, S and cm

In Fig. 5.1 we show the storage capacity for correlated patterns, for different values of the correlation

parameters. As can be seen, increasing both of these parameters is detrimental to the capacity. The

decrease in capacity brought on by the correlations is due to the variance of the noise, that has an

additional term, scaling with p. However, there seems to be a qualitative change in the capacity

behavior with a: increasing correlations, the capacity first decreases and soon reaches a constant

level, and then increases with a (ap = 1, f = 0.2), as can be seen in Fig. 5.1a. In Fig. 5.1b

instead, we can see the capacity as a function of the the number of Potts states S. For S = 1,
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as the algorithm produces uncorrelated patterns, the capacity remains the same, regardless of the

correlation parameters. For higher values of S, on the other hand, the capacity strongly depends

on the values of the correlation parameters f and ap. Another interesting point is the behavior

of the capacity as a function of cm. The simulations of Fig. 5.1c have been carried out with RD.

In Chap. 3, we saw that with uncorrelated patterns, increased connectivity does not impact the

capacity of the network as shown in Fig. 3.3. With correlations, this seems not to be the case:

increasing the connectivity affects the ability of the network to retrieve.

The increased variability of the noise with correlated patterns, scaling with p, may require a

higher threshold U in order for the network to not go into overactivity. The analysis of computing

the optimal threshold, carried out in Sect. 3.4.1 for uncorrelated patterns, may not hold anymore.

To check for this possibility, we carried out the same simulations as in Fig. 3.1 for correlated patterns

with parameters ap = 0.4 and f = 0.05.

(a) (b) (c)

Fig. 5.1: Storage capacity of correlated patterns. (a) Storage capacity αc as a function of the
sparsity a for different values of the correlation parameters ap and f . The storage capacity is defined
as the critical storage at which half of all cued patterns are retrieved with overlap of 0.7 and above.
Increasing ap and f are generally both detrimental to the capacity. While for low values of ap and f
(green curve) the capacity behaves qualitatively like that of uncorrelated patterns, for higher values
of the parameters, even the qualitative behavior is different. For intermediate values of ap and f
after an initial decrease in capacity, the curves remain quasi constant with increasing a. For high
values of ap and f though, increasing the sparsity seems to even increase the capacity. (b) αc as
a function of the number of Potts states S for a = 0.1. (c) αc as a function of the connectivity
cm for RD with the same parameters as above but S = 5 and a = 0.1. The capacity decreases
as a function of increasing connectivity. This can be contrasted to uncorrelated patterns, where
for this model it is found that the capacity remains quasi-constant with increasing cm, at least for
the parameters for which simulations were carried out. When not explicitly varied, parameters are
N = 2000, cm = 200, a = 0.1, S = 5, U = 0.5, β = 200, ζ = 10−6 and Π = 150.
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5.2.2 The threshold U

In Fig. 5.2 we show the phase diagram of the fraction of retrievals in the (U, p) space. One can see

that the optimal threshold computed in Sect. 3.4.1 is not optimal in the case of correlated patterns,

but nevertheless, increasing the threshold does not dramatically increase the capacity.

(a) (b)

Fig. 5.2: Storage load and threshold, phase diagram for correlated patterns. (a) Phase
diagram of the fraction of successful retrievals, defined as those trials where the cued pattern is
retrieved with an overlap higher than 0.7. (b) Sparsity of the network, at the end of the retrieval
dynamics. Network parameters are N = 2000, cm = 200, a = 0.1, S = 5. Correlation parameters
are ap = 0.4, f = 0.05, ζ = 10−6 and Π = 150.

5.2.3 Correlation parameters f , ap and ζ

In Fig. 5.3 we can see the storage capacity as a function of the three different correlation parameters

ap, f and ζ. We can see that increasing each of these parameters decreases capacity, albeit in very

different manners. αc decreases approximately linearly with increasing ap, as shown in Fig. 5.3a. As

we saw in the Chap. 4, ap is the degree to which children are similar to each of their individual parents.

Increasing this parameter increases the similarity between those children receiving input from the

same parents, increasing their overall similarity and therefore decreasing their discriminability. The

dependence of αc on f is shown in Fig. 5.3b and it is somewhat similar to the effect of ap.

On the other hand, αc decreases dramatically with increasing ζ. High values of ζ correspond to

only a handful of parents out of the total giving significant weight to the activity of the children.

Intuitively one might expect a behavior akin to that of small f . Its effect, however, is different:
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when f is small, the mean number of parents is affected. Increasing ζ, the mean number of parents

stays the same, only that for any given child, only the strongest are effective. This means that the

strongest parent can still affect many children, increasing the correlation between a higher number

of children, as opposed to a scenario in which f is small and any one parent affects a small number of

children. For very high ζ, the strongest parents dominate the activity to an extent that those children

affected by the strongest parents tend to become increasingly identical, but a small fluctuation in

the activity away from the cued pattern will result in the trial of the simulation to be discarded as a

successful cued retrieval, and instead counted as a correlated retrieval, as we show in more in detail

in the next section.

(a) (b) (c)

Fig. 5.3: Storage capacity of correlated patterns, correlation parameters. Storage capacity
curves as a function of various correlation parameters. (a) αc as a function of ap. (b) αc as a
function of f . (c) αc a sa function of ζ. When not explicitly varied, the correlation parameters
are ap = 0.4, f = 0.05, ζ = 10−6 and Π = 150. Network parameters are N = 2000, cm = 200,
a = 0.1, S = 5.

5.2.4 Correlated retrieval

In the previous section we saw that correlations decrease the capacity of the network to retrieve. But

when the network fails to retrieve the cue, what is the configuration that it settles into? Correlations

cause basins of attraction to get closer in configuration space and possibly to merge, raising the

possibility that other patterns, similar to the ones cued, are retrieved. We carried out simulations

with correlated patterns for different values of ζ. On the left y-axis of Fig. 5.4a, we can see the

fraction retrieved with overlap above m∗ = 0.9 as a function of increasing α. It becomes apparent

that with low values of ζ the fraction retrieved falls abruptly after the capacity limit is reached,

while for larger values of ζ, the fraction retrieved falls more slowly, but starting at smaller values of
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the loading α.

On the right y-axis of the same figure, we can see the fraction of retrieved patterns, with overlap

above m∗ = 0.9, different from the ones cued. In this figure, this fraction remains identically

zero. In Fig. 5.4b however, we plot the fraction retrieved with overlap above m∗ = 0.7. Reducing

the threshold for successful retrieval m∗, we observe correlated retrieval. The fraction of patterns

retrieved, but not cued, increases and reaches 1. This effect happens abruptly with ζ, in the sense

that while for ζ = 0.01 the network does not retrieve at all, already for ζ = 0.02, the fraction

retrieved of a second, correlated pattern reaches 1. The network can retrieve patterns only with an

approximate upper precision, that we can attempt to roughly estimate by analyzing the overlap, the

order parameter with which we measure "successful retrieval". The overlap writes:

mµ =
1

Na(1− ã)

N∑
i=1

S∑
k=1

(δξµi ,k − ã)σki (5.11)

where µ denotes the pattern to be retrieved (m = O(1)) and σki the activity in state k of unit i of

the network. During retrieval dynamics, under the effect of noise (Eq. (5.3)), units switch from cued

states to other states. We can, however, make the approximation that transitions occur only between

active and quiescent states and neglect the potential transitions occurring between one active state

and another active state 1.

The sums over δξµi ,k σ
k
i yield at most Na. In this case all units that are active in the pattern

remain active in the network, and in the same state. If among those that are active in the pattern,

a fraction b become quiescent, then the sums over δξµi ,k σ
k
i yield Na(1 − b). This is one way the

overlap is diminished. The other possibility is "overheating", meaning that among those that are

quiescent in the pattern, a fraction c become active: the sums over ãσki yield N(1− a)c, so we can

1This approximation is based on the mean values of the fields in the direction of the different states: units that
should be in a given active state receive both the signal 1− a/S as well as noise, while an active state that should not
be active in the pattern receives only noise of mean zero. The threshold, that we set here to 0.5 is in between, such
that transitions occur more frequently between active and quiescent states.
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rewrite the overlap using the two quantities b and c2 :

m(b, c) =
1

(1− ã)

{
1− b− 1

S
(a+ (1− a)c)

}
(5.12)

To compute approximately the upper precision of retrieval3, we are in the situation in which all

units become active (b = 0 and c = 1) such that we get mu ≡ m(b = 0, c = 1) =
(1− 1/S)

(1− a/S)
. With

the parameters of the simulations (a = 0.1, S = 5), mu ∼ 0.82. In Fig. 5.4a and Fig. 5.4b, we plot

the fraction of cued retrieval and correlated retrieval for two different criteria of successful retrieval,

m∗ = 0.9 and 0.7, respectively above and below the upper precision of retrieval. It is apparent from

the figure that decreasing the criterion from m∗ = 0.9 to 0.7, the fraction of correlated retrieval goes

from 0 to 1, consistent with the value of 0.82 we estimated.

Note that the resulting overlap (m) after retrieval dynamics is a random variable with a distribu-

tion P (m) from which the fraction retrieved can be defined as fr =
1∫

m∗
dmP (m) and is a cumulative

quantity that depends on m∗. It may then be useful to use a measure that is independent of the

exact values with which we definem∗. One such measure is the mutual information between the cued

pattern and the configuration the network settles into. Information measures have the advantage

of being computed using the probability distributions themselves, and as logarithmic measures, are

highly sensitive to the higher order moments of the distributions.

5.3. Information

The mutual information between the pattern cued (c) and the configuration in which the network

settles (r) writes:

I(c, r) =

S∑
k,l=0

Ckl(c, r) log2

(
Ckl(c, r)

Ck(c)C l(r)

)
(5.13)

2Looking at the limit cases of the average overlap: m(b = c = 0) = 1. and m(b = c = 1) = − 1
S(1−a/S) . Indeed if

all units that should be active stay active and all those that stay quiescent stay quiescent, then the network activity
corresponds to a pattern. In contrast, the inverse situation yields a low, negative value of the overlap, that is practically
never seen in simulations, for reasonable values of the parameters. The most common situation is "overheating", when
b = 0 and c = 1.

3The crucial observation is that beyond a certain value of the loading p, the network is not able to keep the
sparsity at the constant level of the patterns, as shown in Fig. 5.5: the sparsity ramps until reaching the maximal
value possible of 1.
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(a) m∗ = 0.9 (b) m∗ = 0.7

Fig. 5.4: Cued and correlated retrieval. (a) Left y-axis: the fraction of retrieved patterns (with
overlap higher than 0.9), as a function of the storage load α, for different values of ζ. While for low
values of ζ, the fraction retrieved falls abruptly after a critical value of the loading, for higher values
of ζ, the capacity falls more slowly, though starting at smaller values of the storage load α. (b) Left
y-axis: the fraction of retrieved patterns (with overlap higher than 0.7), as a function of the storage
load α. Right y-axis: fraction of retrieved patterns, not corresponding to those cued. Note that
with the more stringent criterion for successful retrieval as in (a), there is no correlated retrieval.
Network parameters are N = 2000, cm = 200, S = 5, a = 0.1, U = 0.5, β = 200. Correlation
parameters are ap = 0.4, f = 0.05 and ζ = 10−6.

Fig. 5.5: "Overheating" of the network. The sparsity of the network, as a function of the storage
load of the network, for four different values of the parameter ζ. For low values of ζ, the sparsity
increases abruptly when capacity is reached. For higher values of ζ, the sparsity increases more
slowly, but starting at lower values of the loading α. Parameters are identical to those of Fig. 5.4.
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where

Ckl(c, r) =
1

N

N∑
i=1

δξci ,kσ
l
i , (5.14)

Ck(c) =
1

N

N∑
i=1

δξci ,k , (5.15)

C l(r) =
1

N

N∑
i=1

σli . (5.16)

The maximum value of this quantity is attained when the cued pattern is also the one retrieved:

c = r. In this case the mutual information reduces to

I(c) =
S∑
k=0

Ck(c) log2

(
1

Ck(c)

)
=
{
− (1− a) log2(1− a) + a log2(S/a)

}
, (5.17)

that we recognize to be the entropy of the cued pattern. In Fig. 5.6a we can see the mutual

information as a function of the loading α for different values of the parameter ζ, averaged across

cued retrieval of many patterns. The effects of ζ on the mutual information is analogous to the effect

observed for the fraction retrieved. The mutual information has a sharp fall-off upon increasing α,

which is more and more abrupt as ζ decreases. For small values of α, the mutual information which

is a plateau does not depend on ζ: the value of the mutual information at this plateau corresponds

to the entropy.

Perhaps the most interesting observation is the residual information, the remaining constant

information, after capacity collapse. In Fig. 5.6b, this residual information is plotted as a function

of the parameter ζ, and it can be seen that it increases sharply at ζc ∼ 0.02, before saturating at a

given value. This effect is reminiscent of a phase transition with control parameter ζ and where the

information plays the role of the order parameter. Below the critical value of ζc, once the capacity

is depassed, there is no more retrievable information at all. Above ζc however, the network retrieves

some information about the cued pattern. This non-zero residual information is tightly linked to

correlated retrieval of the previous section, and the saturation of the information is linked to the

upper precision of the overlap that we approximately computed.
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(a) (b)

Fig. 5.6: Information (a) Information per synapse as a function of the storage load α, for different
values of the parameter ζ. For low values of ζ, the information decays abruptly, at a value of the
storage load α, while for larger values of ζ, we observe a more gradual decay, starting at lower
values of the storage load. For high enough values of ζ however, the information does not go to
zero, but rather saturates at a given constant value. We call this residual information. In (b), we
plot this residual information as a function of ζ. The sharp increase of this residual information
at ζc ∼ 0.02 suggests a phase transition giving rise to two regimes. In the first, with ζ < ζc, the
residual information is approximately zero. In the second, ζ > ζc, this information is non-zero and
reflects that the network, though not being able to retrieve the fine structure of the memory cued,
still manages to retrieve the gross structure. Simulations carried out with parameters identical to
those of Fig. 5.4.

5.4. Discussion

The findings of this chapter have interesting interpretations for both the question of encoding and

that of retrieval within the more general framework of learning. There is now a growing consensual

view of the cortex as a slow memory system that uses overlapping distributed representations to

represent the general statistical structure of the environment.

How does the cortex extract and encode the general statistical structure of the ensemble of stim-

uli that it receives? Far from having a definitive answer to this question, it has been suggested that

the interaction between the hippocampus and the cortex is a crucial element in the consolidation of

memories. The general idea is that memories are first stored in the hippocampal system via synaptic

changes and that these support the reinstatement of recent memories in the neocortex. Neocortical

synapses are slightly modified on each reinstatement and the gradual, neocortical changes accumu-

lating over time encode remote memory. This organization hypothetically allows the hippocampal

system to rapidly encode new items without disrupting this structure, and allows the cortex to
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slowly integrate memories in a structured way from ensembles of experiences that are otherwise not

necessarily organized in any way. This view is in particular supported by evidence that damage to

the hippocampal system results in recent memory disruption but leaves remote memory intact.

However, early modelling attempts typically resorted to backpropagation to account for the struc-

tured learning of the cortex [McClelland et al., 1995]. Backpropagation has been widely challenged

on the basis that it lacks a plausible biological mechanism 4 [Crick, 1989,Zipser, 1988]. While hip-

pocampal learning in these accounts was taken to fit the framework of learning unrelated patterns

of activity, it remains unclear how to model neocortical learning. Our account offers a plausible

framework for neocortical learning, in which semantic structure is extracted progressively from the

statistics of parents and encoded in the cortex via Hebbian learning.

Taken at face value, the diminished capacity accompanied by the emergence of correlated re-

trieval suggests that this ability for generalization comes at the cost of losing the resolution with

which we can retrieve the individual memories. However, this result as such is incomplete, and must

be taken also in relation to the differential role of other memory structures and in particular the

hippocampus in retrieval. For example, in humans, it has been shown that the ventral hippocampus

projects directly to the medial prefrontal cortex, providing an immediate route for hippocampal

representations to arrive to the prefrontal cortex, suggesting a model of bidirectional hippocam-

pus/prefrontal cortex interactions that support context-dependent memory retrieval [Preston and

Eichenbaum, 2013].

It should be noted that correlated retrieval does not imply the complete loss of information

about the cued memory item, as evidenced by the residual information. The residual information is

specifically the semantic component of the cued memory, in that even when the specifics about it is

compromised, the gross information about it is still retrievable.

4From [O’Reilly and Rudy, 2001]: "Specifically, backpropagation requires that an error value is propagated back-
wards from the dendrite of a receiving neuron, across the synapse, into the axon terminal of the sending neuron, down
the axon of this neuron, and then integrated and multiplied by some kind of derivative, and then propagated back
out of its dendrites."
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6

Latching dynamics

In the previous chapters we have studied the properties of the Potts network, operating solely under

retrieval dynamics. It has been noted that incorporating time-dependent thresholds to the dynamics

of units that depend on their activity, one observes a destabilization of the memory attractors, that

can lead to the dynamic activation of other memories [Horn and Usher, 1989,Herrmann et al., 1993].

Such time-dependent thresholds have been intended as models of adaptation and inhibition and have

been used to study the Potts network [Treves, 2005,Kropff and Treves, 2007,Russo et al., 2008]. We

revise the simple updating rule, Eq. (2.3) to

σki =
exp (βrki )∑S

l=1 exp (βrli) + exp [β(θ0
i + U)]

(6.1)

and

σ0
i =

exp [β(θ0
i + U)]∑S

l=1 exp (βrli) + exp [β(θ0
i + U)]

, (6.2)

where rki is the input to (active) state k of unit i integrated over a time scale τ1, while U and θ0
i are,

respectively, the constant and time-varying component of the effective overall threshold for unit i,

which in practice act as inverse thresholds on its quiescent state. θ0
i varies with time constant τ3,

to describe local network adaptation and inhibitory effects. The stiffness of the local dynamics is

parametrized by the inverse "temperature" β (or T−1), which is then distinct from the standard
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notion of thermodynamic noise. The input-output relations Eq. (6.1) and Eq. (6.2) ensure that

S∑
k=0

σki = 1.

In addition to the overall threshold, θki is the threshold for unit i specific to state k, and it

varies with time constant τ2, representing adaptation of the individual neurons active in that state,

i.e., their neural or even synaptic fatigue. The time evolution of the network is then governed by

equations that include three distinct time constants:

τ1
drki (t)

dt
= hki (t)− θki (t)− rki (t), (6.3)

τ2
dθki (t)

dt
= σki (t)− θki (t), (6.4)

τ3
dθ0
i (t)

dt
=

S∑
k=1

σki (t)− θ0
i (t), (6.5)

where the field that the unit i in state k experiences is

hki =
N∑
j 6=i

S∑
l=1

Jklij σ
l
j + w

(
σki −

1

S

S∑
l=1

σli

)
. (6.6)

The local feedback term w is a parameter, first introduced in [Russo and Treves, 2012], that

modulates the inherent stability of Potts states, i.e., that of local attractors in the underlying

network model. It helps the network converge to an attractor faster by giving positive feedback to

the most active states and so it effectively deepens their basins of attraction. Note that, in this

formulation, feedback is effectively spread over (at least) three time scales: w is positive feedback

mediated by collective attractor effects at the neural activity time scale τ1, θki is negative feedback

mediated by fatigue at the slower time scale τ2, while θ0
i is also negative, and it can be used to model

both fast (GABAA) and slow (GABAB) inhibition; for analytical clarity, we consider the two options

separately, as the slowly adapting regime, with τ3 > τ2, and the fast adapting regime, with τ3 < τ1.

It would be easy, of course, to introduce additional time scales, for example by distinguishing a

component of θ0
i that varies rapidly from one that varies slowly, but it would greatly complicate the

observations presented in the following.
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Under such dynamics, the main behavior of the network is that of spontaneous hopping of the

network from one attractor to another, guided, among others, in the slow regime, by correlations

between the different memory attractors, as shown in Fig. 6.1. One of the properties studied in

[Russo and Treves, 2012] was the length of the latching sequences as a function of various network

parameters. In particular, phase boundaries were found in the w − T plane, marking the onset of

different latching regimes, no latching, finite latching and infinite latching.

More recently, [Kang et al., 2017] found bands in p−S and p−C planes, where lengthy latching

sequences co-exist together with good retrieval of each individual attractor visited by the network.

In Fig. 6.3 we show phase diagrams of a quantity, the normalized latching length, multiplied by the

average overlap of the network with the attractors visited. Co-existence of high sequence length

with good retrieval is possible in a confined area of the phase space of parameters. An example of a

latching sequence can be seen in Fig. 6.1. Increasing the number of learned patterns, from p = 50 to

p = 90 to p = 200, the length of the latching sequence increases, but eventually to the detriment of

the quality of retrieval. [Russo and Treves, 2012] and more recently we have obtained detailed phase

diagrams of the statistical properties of latching dynamics, extending their simulations to patterns

correlated by the way of our algorithm [Kang et al., 2017]. However, apart from phase diagrams,

simple plots of the evolution of the overlaps suggest a rich and qualitatively different behavior of the

latching network, depending on the correlation parameters, that need a more comprehensive analysis

by introduction of order parameters, beyond the aggregate measures we studied. It should be noted

that latching-like behavior with correlations have been studied in binary networks [Herrmann et al.,

1993], but for a different structure of correlations.

6.1. Latching with uncorrelated patterns

In Sect. 3.3, we computed the standard deviation of the noise received by unit i in state k, Eq. (3.38).

Under the assumption of good retrieval we have, approximately that q ∼ 1, and Ω ∼ 0, such that

Ψ ∼ 0. We can then write

ρ ∼

√
(p− 1)a

cmS2
. (6.7)

This approximate relation holds under the assumption of uncorrelated patterns. We can define a

"modified" signal, one that incorporates the field in the direction of another pattern ρ, the one that
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(a) p = 50 (b) p = 90 (c) p = 200

Fig. 6.1: Latching sequences of uncorrelated patterns. Three sample latching sequences with
uncorrelated patterns of a network in the slow latching regime (τ1 = 3.33, τ2 = 100 and τ3 = 106).
The x-axis corresponds to time, as measured by units of network updates. The y-axis corresponds
to the overlap. Different colors correspond to different patterns. Increasing p, one observes different
latching regimes. For too low p, in the no latching regime, there is only retrieval and the network
cannot latch onto another pattern. Increasing p, one reaches the finite latching regime, where one
observes a finite sequence of well retrieved patterns. Increasing p even further, one reaches the
infinite latching regime, where sequences are indefinitely long but where the network cannot retrieve
any of them very well. Network parameters are N = 1000, S = 5, a = 0.25, cm = 150, U = 0.1,
β = 11, w = 0.8.

(a) p = 100 (b) p = 150 (c) p = 200

Fig. 6.2: Scatter of correlation with uncorrelated patterns. Cas versus Cad for all pairs of
patterns (black points) and only those pairs with a latching transition (yellow points). We consider
a latching transition between two patterns to have occurred if one pattern overcomes another with
an overlap of 0.5 or higher. The blue vertical and horizontal lines correspond to, respectively the
average Cas and Cad. For low values of loading p, the transitions span the lower right quadrant
where Cas is higher than average, and Cad is lower than average. As loading increases, transitions
start to span the space of correlations more evenly.
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(a) (b)

Fig. 6.3: Phase diagrams of retrieval and latching co-existence. Phase diagram of a measure
of latching ability multiplied with retrieval ability. Warmer colors correspond to regions in which the
network is able to both retrieve patterns well (with high correlation with a memory item) and latch
onto others, forming long sequences of transitions.

is most highly correlated with the one cued, ν:

ski =
1

Ca(1− ã)

{
vξνi ,k(1− ã)

N∑
j(6=i)

S∑
l=1

cijδξνj ,l + vξρi ,k

N∑
j( 6=i)

S∑
l=1

cijvξρj ,ξνj δξ
ν
j ,l

}
(6.8)

This can be rewritten using the correlation measures we defined in Sect. 4.2:

ski ∼ vξνi ,k +
vξρi ,k

(1− ã)

[
Cas(1− ã) + Cad(−ã) + Ca0(−ã)

]
, (6.9)

where Cas, Cad, and Ca0 have been defined in Sect. 4.2. Normalizing these values with the expecta-

tion value for uncorrelated patterns, we define:

Γas =
Cas
a/S

Γad =
Cad

a(S − 1)/S

Γa0 =
Ca0

(1− a)
, (6.10)
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such that we can rewrite the signal

ski ∼ vξνi ,k +
vξρi ,k

(1− ã)

[
(Γas − Γa0)

a(1− a)

S
+ (Γas − Γad)

a2(S − 1)

S2

]
(6.11)

Let us consider those units that are inactive in the current attractor ν and active in the upcoming

attractor ρ. We then have:

s ∼ ã{−1 + (Γas − Γa0)(1− a) + (Γas − Γad)ã(S − 1)} (6.12)

It turns out that with uncorrelated patterns, the increased field in the direction of a second, highly

correlated pattern is what leads the transitions, as can be seen in Fig. 6.2. In this figure, a scatterplot

Cas versus Cad for all pairs of patterns (black points) and only those pairs with a latching transition

(yellow points) can be seen. For low values of loading p, the transitions span the lower right quadrant

where Cas is higher than average, and Cad is lower than average. As loading increases, transitions

start to span the space of correlations more evenly. [Russo et al., 2008], [Russo and Treves, 2012]

studied the onset of latching in the w − T plane as well as a detailed study of the dependence of

latching length as a function of network parameters. In Chap. 5, we have shown the capacity of the

network to be lower with correlated patterns. We have shown recently [Kang et al., 2017] however,

that the network can also latch in the presence of correlations, but it remains unclear whether the

latching sequences are in any way different from those of uncorrelated patterns.

6.2. Latching with correlated patterns

In Sect. 5.1 we saw that with correlations, the variability of the noise scales differently. In the regime

of good retrieval, we can write

ρ ∼

√
(p− 1)a

cmS2

{
1 +

pCas
S(1− ã)

(
Cas − ã

)}
. (6.13)

The signal writes as

s ∼ −ã+ (Γas − Γa0)
a(1− a)

S
+ (Γas − Γad)

a2(S − 1)

S2
. (6.14)
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6.2.1 The effect of f

These approximate values of the modified signal and the noise indicate a quantitative change with

respect to uncorrelated patterns, but the figures reported to App. D suggest some qualitative dif-

ferences in the kinds of sequences generated by the network. In the figure, we observe latching

sequences for three different values of the loading p, truncated to 1000 network updates. An obser-

vation proper to this value of f is parallel retrieval of patterns. In the same figure, a scatterplot of

the Cas versus Cad correlations suggest that parallel retrieval occurs with patterns that are highly

correlated with one another. For this value of f , however, the corresponding average number of

parents per pattern is np ∼ 1.5 and many patterns have single parents and share this parent, as in a

hierarchical setting. The high clustering of the correlation entails parallel retrieval of those patterns

being in the same cluster: the network does not discriminate between the different patterns in the

same cluster. The same sequence, truncated to 5000 network updates can be seen in Fig. 6.4a.

The multi-parent algorithm benefits then from additional motivation, from the perspective of

latching dynamics. Allowing for f , and with it the average number of parents np to increase, one does

not observe this behavior anymore, as shown in the same figure. The network now latches between

different patterns, and those that are highly correlated with one another, as shown in the scatterplots

in App. D. Increasing this parameter f even further, the storage capacity is compromised, and with

it the quality of latching [Kang et al., 2017].

6.2.2 The effect of ap

In Fig. 6.5 we report latching sequences for three different values of ap, for higher loading p = 200.

While for lower values of ap = 0.1, we have a sequential activation of memories (though with lower

quality, due to the higher loading), for higher values of ap, especially with ap = 1.0, we have the

appearance of oscillations: the same cluster of patterns is periodically activated.

6.2.3 The effect of ζ

In Fig. 6.6, we report latching sequences for three different values of ζ, chosen to be before and

after the cusp of transition shown in Fig. 5.6b. For lower values of ζ = 0.01, we see a activation of

clusters, or parallel retrieval, but with a more variable distribution of the overlaps than what one

observes in Fig.6.4a. At the cusp, ζ = 0.015, we observe a very interesting behavior: the network
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(a) f = 0.01

(b) f = 0.03

(c) f = 0.05

Fig. 6.4: Latching chains. (a) One example of a latching chain with f = 0.01 and p = 150. We
observe parallel retrieval of patterns, or clusters. One such cluster that appears frequently is the
(yellow-orange-brown). Another is (yellow-green). Yet another is (pink-brown). With this value of
the f parameter, many children share a single common parent, such that they form clusters. They
are retrieved with high overlap. Transitions between clusters, or patterns tend to occur between those
that do not share common parents, and are therefore randomly correlated. (b) Latching chain with
f = 0.03. Patterns are not retrieved in parallel anymore, and when they are, are typically retrieved
with lower overlap. (c) Latching chain with f = 0.05. Another decrease in the frequency of patterns
retrieved with high overlap, respect to Fig. 6.4b. The oscillatory behavior of the uncondensed patterns
starts to manifest itself. Network parameters are identical as in Fig. 6.1, correlation parameters are
ap = 0.4, ζ = 0 and Π = 150.
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(a) ap = 0.1

(b) ap = 0.4

(c) ap = 1.0

Fig. 6.5: Latching chains. (a) Latching chain with ap = 0.1 and p = 200. The network cannot
retrieve individual patterns very well, due to the (relatively) high loading. (b) Latching chain with
higher sparsity of input from parents ap = 0.4. (c) ap = 1.0. We observe oscillations of clusters of
highly correlated patterns. Network parameters are identical as in Fig. 6.1, and correlation parameters
are f = 0.03, ζ = 0 and Π = 150.
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retrieves clusters, but there are bouts in which it oscillates around a cluster of patterns. Increasing

ζ further, the network goes into a regime in which it is not able to retrieve any pattern anymore,

but oscillates indefinitely around the same cluster of patterns.

6.2.4 The emergence of a new, oscillatory phase?

One observation, proper to sequences of latching with correlated patterns, is the appearance of

oscillatory behavior of the non-condensed overlaps, appearing notably at higher loading. We have

computed two quantities:

σ0(t) =
1

N

N∑
i=1

σ0
i (t) , (6.15)

q(t) =
1

N

N∑
i=1

S∑
k=1

(σki (t))2

(1− σ0
i (t))

2
(6.16)

that measure respectively, the mean activity in the null state and the mean spread of the activity

in the different Potts states. High values of q means that activity is concentrated in a few Potts

states, while a low value means that activity is spread in different Potts states. We have plotted

these two values for the loading p = 200 for the correlation parameters ap = 0.4 and f = 0.05,

and as a control, for uncorrelated patterns. Figs. 6.7a and 6.7b suggest that this behavior is proper

to correlated patterns. The appearance of such oscillations is probably linked to the additional

noise: as the network attempts to retrieve a pattern, correlations increase the noisy activity, and it

takes a while for the adaptive thresholds to lower this noisy activity. From the resulting "attractor

ruins" [Tsuda, 2001], the network then retrieves a new pattern, one that has been subjected to a

less harsh treatment from the adaptive thresholds.

The simulations presented in this chapter, while purely descriptive, point therefore to a rich

latching behavior of even the simplest version of the Potts network, once it operates with correlated

patterns. It is possible that new dynamical phases be identified, and that a quantitative analysis

along the lines just sketched here may be developed and applied to characterize a novel phase

transition, potentially relevant to understand real cortical dynamics.
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(a) ζ = 0.01

(b) ζ = 0.015

(c) ζ = 0.02

Fig. 6.6: Latching chains. (a) One example of a latching chain with ζ = 0.001 and p = 150.
The network retrieves clusters of highly correlated patterns. (b) Latching chain with ζ = 0.015: at
the cusp of the transition of the residual information (see Fig. 5.6b), the network retrieves clusters,
with bouts in which it oscillates around an attractor without being able to completely destabilize it.
(c) The network is not able to completely destabilize an attractor it visits, leading to oscillations in
the overlap. Network parameters are identical to Fig. 6.1, and correlation parameters are f = 0.03,
ap = 0.4 and Π = 150.
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(a)

(b)

Fig. 6.7: Oscillations? (a) The activity of the network, as measured by σ0 and q (see text) for
f = 0.05 and p = 200. Both quantities oscillate in time. (b) The activity of the network, as
measured by σ0 and q (see text) for uncorrelated patterns.
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7

Entering a new phase with correlated

memories

In recent years, the Potts network has been proposed as an effective model of a network organized

with distinct local and global properties. Many physical aspects of the model have been studied

in detail, under many simplifying assumptions, including that of full or highly diluted connectivity.

One of the additional steps explored in this thesis are the properties of differing global connectivity

on the storage capacity, namely the RD, SD and SDRD models. In [Kropff and Treves, 2005], the

fully connected network (in which the connectivity models become equivalent) and the highly diluted

(HD) limits were investigated. We have corroborated the outcome of previous analyses by showing

that the intermediate connectivity indeed interpolates the fully connected and highly diluted limits.

The second and more crucial element in the direction of cortical plausibility has been that of

correlations. Most of the studies of auto-associative networks have featured uncorrelated patterns,

or else correlations that are hardly plausible, irrelevant for the study of semantic memory. The

various feats of "mind-reading", achieved with fMRI studies (e.g. [Haxby et al., 2001,Norman et al.,

2006,Mitchell et al., 2008]), are reminders that correlations between memories are not details with

somewhat diminishing analytical returns, but may be reflective of the core capacity of the cortex as

a machine for encoding structured information. The study the statistical and dynamical properties

of the Potts network encoding correlated patterns then arises naturally. In order to make progress in
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this direction, however, it becomes crucial to devise a plausible way of generating correlations. The

question of plausibility taps directly into the ability of the cortex to learn and perform generaliza-

tion, and any algorithm aimed at producing memories that are semantically relevant must produce

patterns of activity that are representative of such computation.

We have attempted this by designing the multi-parent pattern generation algorithm. In the

algorithm, the patterns are generated through a series of factors, that can be considered as semantic

category generators, or else features in a somewhat looser sense, that carry information on the sta-

tistical co-occurrence of events. Through a competition, those events that co-occur most frequently

together (as reflected in the parameter f), their absolute (parametrized by ap) and relative strengths

(parametrized by ζ) construct the statistical structure of the memories.

We further studied the storage capacity of the network as a function of both network parameters

and correlation parameters through extensive simulations and find that with a Hebbian rule for

the storage of patterns, we can store and retrieve fewer patterns, a result that is well-known in

the literature. Other, Hebbian derived prescriptions for learning, enhancing the capacity may be

explored and studied, and we leave such studies for future investigations. However, though all of

the correlation parameters, at least for reasonably low values of the sparsity, decrease the storage

capacity of the network, the effect of ζ is particularly interesting. ζ is the parameter that mediates

the strength of input of different parents. ζ ∼ 0 corresponds to a situation in which all parents

are at equal footing, and none of them has a higher relative influence, while the opposite limit

corresponds to only a handful out of the total being relevant. For high enough values of ζ, we

observe correlated retrieval, in that with the decrease of the fraction retrieved, the fraction retrieved

of another, correlated pattern, different from the one cued, increases. In terms of the mutual

information between the cued pattern and the final configuration of the network, after retrieval

dynamics, that is independent of the criterion set for retrieval, we observe that the information does

not go to zero, but stabilizes at a constant value, after the capacity limit has been reached. We call

this remaining information the residual information. The residual information displays a nontrivial

dependence on ζ. It is found that for ζ < ζc = 0.02, this residual information is approximately

zero. At ζc, there is a sharp increase in the residual information that stabilizes at large values of

ζ, when only a handful of parents become relevant. This sharp increase is reminiscent of a phase

transition, in which the residual information is the order parameter and ζ is the control parameter.

The residual information has an interesting interpretation: it can be thought of as the information
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pertaining to the gross, core semantic component of the memories, after the fine details have been

compromised.

This result, however, has to be considered also in complement to the potential contribution of

other memory structures to the retrieval of memories. In [Lauro-Grotto et al., 1997], for example, it

was found that different access modes to information stored in long-term memory lead to different

distributions of classification errors of different groups with memory disorders. An information

derived measure, the metric content, quantifying the concentration of errors was computed: high

levels of metric content are indicative of a strong dependence on perceived relations among the set

of stimuli, and therefore of a relatively preferred semantic access mode, while low levels (and similar

correct performance), suggest a preferential episodic access mode.

It was found that compared with normal controls, the metric content index was increased in

patients with Alzheimer’s disease, decreased in patients with herpes encephalitis, and unvaried in

patients with damage to the prefrontal cortex. Moreover, a significant correlation between the metric

content and measures quantifying episodic and semantic retrieval mode in the remember/know

paradigm introduced by Tulving [Tulving, 2002] was found. If we think of the access modes, to a

first approximation, as being the result of a differential reliance on a given memory structure, the

distribution of errors may then be a window into understanding the relative contributions of each

of them. Within this larger picture, the loss of the ability of the Potts network to perform perfect

memory recall may be somewhat mitigated by a complementary episodic mode of access, supported

by other structures.

In a final short descriptive chapter, we embark on the dynamical properties of the Potts network

with correlated patterns, as a last step towards cortical plausibility. We find that the latching chains

cannot be fully described in terms of their length [Russo and Treves, 2012] or their quality [Kang

et al., 2017] even though the latter studies have already been quite exhaustive. The qualitative

changes in the structure of the patterns with correlations give rise to some interesting behaviors

that we have only begun to study. We find that for parameters in which there exist highly cor-

related patterns, obtained with values of f for which the algorithm corresponds, statistically, to

a hierarchical algorithm, the network retrieves clusters, or patterns in parallel. This gives addi-

tional motivation to the study of the multi-parent algorithm. Increasing this parameter, latching

resembles more the uncorrelated type (sequential retrieval), though the network also half-retrieves

other patterns simultaneously. Increasing the correlations even further, latching becomes noisy, but
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concerted oscillatory behavior of the aggregate uncondensed patterns starts to manifest itself. Such

oscillatory behavior is also found by increasing ap; we observe the periodic retrieval of clusters of

highly correlated patterns. Perhaps the most interesting behavior is observed at the cusp of the

transition of the residual information when increasing ζ. We observe, below the transition, parallel

retrieval of patterns; at the cusp of the transition, the network retrieves clusters of patterns, but

there are bouts in which it oscillates around a memory pattern and in which the adaptive thresholds

are not strong enough to reduce the activity of the network. After the cusp, the network goes into

a state of indefinite oscillatory behavior around a cluster of patterns.

In [Russo and Treves, 2012], the possibility of such various types of dynamics, as a consequence

from complexity, but not as an added ingredient, was evoked. Here we find some preliminary evidence

of such behavior. The emergence of such abundant types of behavior, allowed by rethinking semantic

memories, opens new, unexpected perspectives warranting further investigation.

85



Appendices

A. Self consistent signal to noise analysis

In this section we outline the important steps in the calculation of the mean field equations yielding

the storage capacity through the method of the self-consistent signal to noise analysis. We start

from Eq. (3.33). Since the l.h.s. includes p− 1� 1 terms, the ansatz is still valid also when singling

out one of these many contributions, so that we can equivalently write it as

∑
ν>1

vξνi ,km
ν
i = vξµi ,km

µ
i +

∑
ν 6=1,µ

vξνi ,km
ν
i = vξµi ,km

µ
i + γki 〈σki 〉+

∑
n

vn,k ρ
n
i z

n
i , (A.1)

where γki and ρni are independent of µ. The contribution from the non-condensed pattern µ 6= 1 is

assumed to be small, so that we can expand Gki to first order in vξµi ,km
µ
i :

σlj =Gl
[{
vξ1j ,k

m1
j +

∑
n

vn,kρ
n
j z

n
j − U(1− δk,0)

}S
k=0

]
+
∑
n

vξµj ,nm
µ
j

∂Gl

∂yn

[{
vξ1j ,k

m1
i +

∑
n

vn,kρ
n
j z

n
j − U(1− δk,0)

}]
. (A.2)

Reinserting the expansion into the r.h.s of Eq. (3.28) we recognize a relation of the form

mµ
i = Lµi +

∑
j

Kµ
ijm

µ
j (A.3)
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where

Kµ
ij ≡

1

cma(1− ã)

∑
l,n

cijvξµj ,lvξ
µ
j ,n

∂Glj
∂yn

, (A.4)

Lµi ≡
1

cma(1− ã)

∑
j

∑
l

cijvξµj ,lG
l
j . (A.5)

The overlap mµ
i can be found by iterating Eq. (A.3),

mµ
i = Lµi +

∑
j1

Lµj1

{
Kµ
ij1

+
∑
j2

Kµ
ij2
Kµ
j2j1

+
∑
j2

∑
j3

Kµ
ij2
Kµ
j2j3

Kµ
j3j1

+ ...

}
. (A.6)

Therefore, the noise term can be written explicitly as

∑
µ>1

vξµi ,km
µ
i =

∑
n

vn,k
∑
µ>1

{∑
j

∑
l

1

cma(1− ã)
cijδξµi ,nvξ

µ
j ,l
Glj +

+
∑
j1

∑
j

∑
l

1

cma(1− ã)
cj1jδξµi ,nvξ

µ
j ,l
Glj

(∑
l1,n1

1

cma(1− ã)
cij1vξµj1 ,l1

vξµj1 ,n1

∂Gl1j1
∂yn1

+ ...

)}
.

In order to obtain the expression for γki , in Eq. (3.33) we consider only the terms with j = i and

l = k, and take the average over the connectivity and the patterns:

γki =
α

S
λ

〈
1

S

1

N

∑
j1

∑
l1

∂Gl1j1
∂yl1

+ ...

〉
(A.7)

=
α

S
λ
{

Ω/S + (Ω/S)2 + ...
}

=
α

S
λ

Ω/S

1− Ω/S

where we use the fact that cii = 0, α = p/cm, 〈·〉 indicates the average over all patterns and where

we have defined

Ω =

〈
1

N

∑
j1

∑
l1

∂Gl1j1
∂yl1

〉
. (A.8)

By virtue of the statistical independence of units, the average over the non-condensed patterns for

the i 6= j terms vanishes. From the variance of the noise term one reads

(ρni )2 =
αPn

S(1− ã)
q
{

1 + 2λΨ + λΨ2
}
, (A.9)
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where

q =

〈
1

Na

∑
j,l

(Glj)
2

〉
(A.10)

and

Ψ =
Ω/S

1− Ω/S
. (A.11)

The mean field received by a unit is then

Hξk = vξ,km+
α

S
λΨ(1− δk,0) +

∑
n

vn,kz
n

√
αPn

S(1− ã)
q
{

1 + 2λΨ + λΨ2
}
− U(1− δk,0) . (A.12)

B. Calculation of the probability distribution of the field S = 1

In this section we outline the important steps in deriving Eq. (4.22). Given that the derivation is

rather cumbersome and do not add to the comprehensibility of the main ideas presented in Chap. 4,

we report them here. The distribution for hµ can be computed by making use of the probability

generating function

G(s) ≡ L{P (x = ξπi )} =

∞∫
0

dxP (x) e−sx =
ap
s

(1− e−s) + (1− ap) . (B.1)

ξπi being identically and independently distributed for all π, we can use the following property

P (hµ |np) = L−1{G(s)np} . (B.2)

The number of parents as well as the total field received by a pattern is i.i.d, so we drop the index

µ for hµ.

P (h |np) = lim
γ→∞

1

2πi

c+iγ∫
c−iγ

ds{1− ap +
ap
s

(1− e−s)}np esh (B.3)

Using the binomial theorem

{1− ap +
ap
s

(1− e−s)}np =

np∑
k=0

(
np
k

)
(1− ap)np−k

akp
sk

k∑
j=0

(−1)je−sj . (B.4)
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P (h |np)(h) = lim
γ→∞

1

2πi

c+iγ∫
c−iγ

np∑
k=0

k∑
j=0

(−1)j
(
np
k

)(
k

j

)
(1− ap)np−k

akp
sk
es(h−j)ds (B.5)

We can carry out the integral to find

I(k = 0) = δ(h) , (B.6)

I(k ≥ 1) =
(h− j)k−1

(k − 1)!
. (B.7)

The distribution of the field h for a given number of parents np is then

P (h |np) = (1− ap)npδ(h) +

np∑
k=1

k∑
j=0

(−1)j np! a
k
p (1− ap)np−k

(np − k)! (k − j)! j! (k − 1)!
(h− j)k−1 Θ(h− j) . (B.8)

The first term in this equation expresses the fact that the only way to get zero field is if all np

parents contribute zero field and this occurs with probability (1−ap)np . For a given pattern µ, with

np parents, the field of each unit is distributed according to Fig. 4.4.

The cumulative distribution function writes

P (h′ < h |np) =

h∫
−∞

dh′ P (h′ |np) (B.9)

= (1− ap)npΘ(h) +

np∑
k=1

k∑
j=0

(−1)j np! a
k
p (1− ap)np−k

(np − k)! (k − j)! j! k!
(h− j)k Θ(h− j) . (B.10)

hm is the value for which the cumulative probability is equal to 1− a.

P (h′ < hm |np) = 1− a . (B.11)
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C. Calculation of the probability distribution of the field S = 2

In this section we outline the important steps in deriving Eq. (4.26). We start with the joint

distribution of number of parents by state

P (n̂1 = n1, ..., n̂S = nS) =
np!

Snp
S∏
k=1

nk!

. (C.1)

Note that we define the field to be identically distributed across states. The probability that the

fields of all states are below that of the first is given by

P (h = h1) =

h∫
0

P (h1, ..., hS)
S∏
k=2

dhk . (C.2)

The probability distribution of the maximal field is given by S times the one above

P (hmax) = S

h1∫
0

P (h1, ..., hS)
S∏
k=2

dhk . (C.3)

The joint distribution of the fields across states writes

P (h1, ..., hS |np) =
np!

Snp

S∏
k=1

np∑
nk=1

P (hk|nk)
nk!

δ
np,

S∑
k=0

nk
, (C.4)

where the constraint np =
S∑
k=0

nk has been included in the last line. P (hk|nk) is given by Eq. (B.8),

replacing np with nk.

P (h1, ..., hS |np) =
np!

Snp

S∏
k=1

np∑
nk=1

{
(1− ap)n

k

nk!
δ(hk)+ (C.5)

+
nk∑
i=1

i∑
j=0

(−1)j
(ap)

i (1− ap)n
k−i

(nk − i)! (i− j)! j!
(hk − j)i−1

(i− 1)!
Θ(hk − j)

}
δ
np,

S∑
k=0

nk
(C.6)

For S = 1 all contributions go to a single state, so we automatically have n1 = np, then the first

sum disappears and we fall back onto Eq. (B.8). For S = 2 we have, denoting the state receiving
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the maximal field by H.

P (H |np) =
np!

2np−1

np∑
n1=1

{
(1− ap)n

1

n1!
δ(H) +

n1∑
i=1

i∑
j=0

(−1)j(ap)
i (1− ap)n

1−i

(n1 − i)! (i− j)! j! (i− 1)!
(H − j)i−1 Θ(H − j)
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1
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(H − j′)i′Θ(H − j′)

}
(C.7)

where we drop the indices denoting the units (they are drawn from the same distribution). Note

that the state does not appear in this expression because it is the distribution of the state receiving

maximal input, regardless of which one it is. The µ dependence is through np = np(µ).

P (H ′ < Hm |np) =

Hm∫
−∞

P (H ′ |np) dH ′ = 1− a (C.8)

Finally

P (H ′ < H |np) =
np!

2np−1

np∑
n1=1
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(1− ap)np

n1! (np − n1)! 2

+
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.

where max{j, j′} = j∗

I(H, i, i′, j = j′) =
(H − j)i+i′

i+ i′
Θ(H − j)

I(H, i, i′, j 6= j′) =

=


i′! (i− 1)!
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]
i− 1 < i′

(C.10)
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D. Latching dynamics with correlated patterns

In this section, we report several figures of latching chains with correlated patterns, accompanied by

scatterplots in which black points denote correlation between all possible pairs of patterns learned

by the network and yellow dots represent only those pairs between which a latching transition has

occurred.
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(a) f = 0.01, p = 100 (b) p = 150 (c) p = 200

(d) f = 0.03 (e) (f)

(g) f = 0.05 (h) (i)
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