
A first order system of differential equations for covariant σ models
C. Reina, M. Martellini, and P. Sodano

Citation: Journal of Mathematical Physics 20, 2619 (1979);
View online: https://doi.org/10.1063/1.524024
View Table of Contents: http://aip.scitation.org/toc/jmp/20/12
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/659683075/x01/AIP-PT/JMP_ArticleDL_0117/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Reina%2C+C
http://aip.scitation.org/author/Martellini%2C+M
http://aip.scitation.org/author/Sodano%2C+P
/loi/jmp
https://doi.org/10.1063/1.524024
http://aip.scitation.org/toc/jmp/20/12
http://aip.scitation.org/publisher/


A first order system of differential equations for covariant (j models 
C.Reina 
Istituto di Fisica dell'Universita, Milano, Italy 

M. Martellini8
) and P. Sodanob) 

Department of Physics, University of Alberta, Edmonton T6G 2J1 Canada 

(Received 22 May 1979; accepted for publication 21 August 1979) 

A first order system of differential equations is obtained for a covariant 0" model defined on a 
Riemannian (or pseudo-Riemannian) manifold of arbitrary dimension n. In the case of compact 
groups, i.e., 80(n), the first order system coincides with the one yielded by topological 
arguments. Our considerations hold true also for 80(p ,q), p + q = n + 1, invariance groups. 
The scale invariance of the problem is discussed. 

1. INTRODUCTION 

It is well known that the solutions for the 80(3) nonlin­
ear (T model found by Belavin and Polyakov through topo­
logical arguments can also be derived by means of purely 
local tools. l-l The same local approach yields a class of solu­
tions even for the noncompact problem with the same di­
mensionality, i.e., for the 80(2,1) invariant problem defined 
by R 2. In fact, parametrizing the field variables in complex 
stereo graphic coordinates, the action becomes 

S = f sztz + Sziz dzA di, 
(1 + aSS) 

(1) 

where a = + 1 for SO(3) and a = - 1 for SO(2, 1). Writing 
the field equations as the divergence of the energy-momen­
tum tensor, one has the first order system 

(2) 

wheref(z) is analytic. For the compact case (a = 1), regular­
ity and the finite action condition amount to imposing that 
fez) = 0 (see Ref. 2) and therefore the system (2) reduces to 
the Cauchy-Riemann equation for the field S. The noncom­
pact case (a = - 1) is equivalent to the problem of finding 
axisymmetric solutions of the vacuum Einstein equations 
which are of the Petrov type N. 4 In this case there is no 
physical reason for the action to be finite. Nevertheless, one 
can show that the only relevant solutions are still given by 
Sf = 0 as in the compact case. 

The aim of this paper is to show that, independently of 
the compactedness of the group and the dimension of the 
base space, it is possible to find a first order system (f.o.s) 
naturally associated to a certain class of (T models. 

In the next section we obtain the general form of the 
f.o.s. for a generally covariant (T model defined on a Rieman­
nian or pseudo-Riemannian manifold of arbitrary dimen­
sion. The third section is devoted to the analysis of our result 
in the physically interesting case of n = 4. 

2. GENERALIZED (J' MODELS 

In this section we study a generally covariant (T model 
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defined on a Riemannian (or pseudo-Riemannian) manifold 
M of arbitrary dimension n. The invariance group of the 
model is taken to be 80(p,q) withp + q = n + 1. Let <P be a 
map 

<P:M_Rp+q (3) 

invariant under the action of SOC p,q) on R p + q. The action 
of the problem is 

S= J * d<paA d<Pa = J A. (4) 

with the constraint 

(5) 

where the internal indices are saturated with the Killing 
form ofSO(p,q), d is the exterior differential, A is the wedge 
product, and * is the Hodge duality operator. 

Since the action is a geometrical object on the manifold 
M, it is manifestly covariant under the general group 
GL(n,R ). By varying the action (4) and taking into account 
the condition (5), one has the following field equations: 

d* d<Pa + <Pa(d<pbA* d<Pb) = O. (6) 

In the case of compact invariance groups (i.e., when q = 0 
and <P:M_S") it is relevant to consider the following n form: 

(7) 

which upon integration onM gives the homotopy class of the 
map <P: 

Q = J *p E ""(M,S"). (8) 

For instance, when n = 2 and M = S 2, one has that 
QElliS 2) = Z is the "topological charge" introduced by Be­
lavin and Polyakov. In this case one has also the remarkable 
inequality S>Q. The condition 

(9) 

yields S "7 Q and therefore it is sufficient for satisfying the 
field equations. It is also necessary if one restricts oneself to 
search for finite action solutions. Note that Eq. (9) yields 
A = *p. In the noncom pact case the topological argument 
given above does not apply any more. Nevertheless there is a 
local reason why the condition A = *p, which yields the 
f.o.s. 
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is still relevant from the mathematical point of view, since 
every solution (if any) of the system (10) is also a solution of 
the field equations (6). Of course, the converse may not be 
true. The proof is given in two steps. First, note that for a 
field satisfying condition (10) one has the identity 

dcfJ h'A··.A dcfJ h" , '= (- I)q Eo,a,b,- .. h"., cfJ *dcfJ (11) 
(n _ I)! 0, u,' 

where q is the number of negative eigenvalues of the Killing 
form ofSO(p,q). The second step amounts to substituting 
Eq. (10) into the field equations. The Laplacian of cfJ reads 

d* dcfJh, = - Eh,b"b, ,dcfJ b'A .. ·A dcfJ "" . , (12) 

Using Eq. (11), one has that 

d*dcfJb, = - 8~:~; cfJa, dcfJ "'A*dcfJu, 

= - cfJbJdcfJ "A*dcfJb), (13) 

showing that the field equations are satisfied. 

Let us end this section noting that the f.o.s. (10) is scale 
invariant whenever the action (4) is. It is well known that 
this is equivalent to the nondimensionality of the constraint 
(5), which in turn implies a constraint on the dimension n of 
the basic space. In fact, assuming that the background covar­
iant metric tensor has dimension n - 2 as in general relativi­
tity, one has 

{

dim [dcfJ uJ = dim [cfJ OJ, 

(14) 

dim[*dcfJuj = (~ - 3n + 4) + dim[cfJ°J. 

Accordingly, if dim[ cfJ aJ = 0, the action is nondimensional 
only for n = 2,4. 

3. CLOSING REMARKS 

The construction given above naturally introduces a 
f.o.s. of differential equations as a sufficient condition for the 
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solution of the second order system (6). It would be very 
interesting to ascertain the hypotheses restricting the class of 
fields for which Eq. (10) is also a necessary condition for the 
solution of the field equations. Note that for n = 2 solutions 
of Eq (10) have been already found both for the compact] 
and the noncompact case. s From the physical point of view, 
however, the only interesting case is a four dimensional co­
variant problem, with group SO(5) or SO(4, 1). De Alfaro, 
Fubini, and Furlan· first studied such models, coupling the 
cfJ field with the gravitational field in a generally invariant 
fashion. In their approach the gravitational field is a dynami­
cal variable coupled to the energy-momentum tensor of the 
cfJ 's through the Einstein equations. Here the metric field is 
considered as a background field, and no corrections to the 
curvature due to the presence of the cfJ 's is introduced. 

As an example, for the SO(5) a model on the instanton 
background given by" 

2aX/l 
cfJ" = 2 2' 

a +X 
satisfies the f.o.s. 
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