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Introduction

Ropes or yarns, especially when disorderly packed, are prone to develop knots.
Polymers are no exception to this rule and, in fact, rigorous mathematical results
have been proved regarding the "statistical necessity" that sufficiently-long circular
chains are knotted. The current surge of scientific interest in knotted polymers, and
especially biopolymers, is prompted by the need to understand the profound im-
plications that these forms of entanglement can have on the mechanical, dynamical
and conformational properties of polymer chains.

For proteins, for instance, a long standing problem is how exactly the knotting
properties of naturally-occurring proteins differ from those of general, non-specific,
polymer models. This question has, in fact, motivated studies in several directions,
from surveying and classifying systematically the repertoire of knots in peptide
chains, to establishing the details of the folding route. For genomic DNA instead,
it has long been known that it can be highly entangled due to the high packing de-
gree that it attains in all organisms, from viruses to eukaryotic cells. In this case, the
advent of single-molecule manipulation techniques, which are routinely applied to
DNA filaments of various length, has opened new, and still largely unexplored, per-
spectives for detecting or controlling the spontaneous knotting properties of DNA.

In this thesis, I will use theoretical and computational techniques to tackle vari-
ous aspects of the aforementioned issues.

In Chapter 1, I will provide a primer on knots, which sets a reference for concepts
and methods used in subsequent chapters. I will in particular present a small resume
of knot theory, focusing mainly on notions useful in our context. Afterwards, I will
introduce some of the computational techniques used to detect and pinpoint knots
along closed and open chains.

In Chapter 2, I will discuss our recent survey of the entire protein data bank,
where we searched for all instances of knotted protein chains. The analysis yielded
an up-to-date information about the overall knotting probability, the repertoire of
knot types, as well as insight on the length and sequence position of knots in peptide
chains.

In Chapter 3, I will use a general polyelectrolyte chain model, mapped to DNA,
to study the dynamical mechanisms governing knot formation when DNA is con-
fined inside a nanopore channel with size compatible with the DNA persistence
length. I will shown that the deep looping and back-folding of the chain ends will
be responsible for the knot formation and destruction. Upon increasing the chain
length, the knotting probability of DNA increases due to the growing time a knot
can diffuse alongside the chain. Instead unknotted lifetimes level off to a constant
because they are ruled by the backfolding process.

In chapter 4, I will present the translocation of flexible and knotted polyelec-
trolyte chains, parametrized after single-stranded DNA, inside a pore too narrow to
allow knot passage. This out-of-equilibrium process, which can affect the polymer
translocation in complex and counter-intuitive ways, depends deeply on the knot
topology. We tackled the resulting translocation compliance in a simple framework



2 Contents

based on how the pulling force, applied only inside the pore, propagates along and
past the knot, and how it is related to the structural properties of different knot types.
In chapter 5, I will discuss the translocation of double-stranded DNA chains
through wide nanopores. The study is motivated by a recent experimental break-
through, for which we provide key insight and explanations for the observed phe-
nomenology.
The material presented in this thesis is largely based on the following published

papers:

e Jackson, S. E. Suma, A. Micheletti, C. “How to fold intricately: using theory
and experiments to unravel the properties of knotted proteins”. Current Opin-
ion in Structural Biology 42 (2017), pp. 6-14.

e Suma, A. Orlandini, E. Micheletti, C. “Knotting dynamics of DNA chains of
different length confined in nanochannels”. Journal of Physics: Condensed Matter
27.35 (2015), p. 354102.

e Suma, A. Rosa, A. Micheletti, C. “Pore Translocation of Knotted Polymer Chains:
How Friction Depends on Knot Complexity”. ACS Macro Letters 4.12 (2015),
pp. 1420-1424.

e Suma, A. Micheletti, C. “Pore translocation of knotted DNA rings”. Proceedings
of the National Academy of Sciences 114.15 (2017), E2991-E2997.

In addition to these published studies I have been involved in two more projects
for which we are writing up the results in the following manuscripts that we expect
to submit by the end of November 2017:

e Suma, A. Di Stefano, M. Micheletti, C. “Long lived folded states in polyelec-
trolytes subject to strong electric fields”.

e Coronel, L. Suma, A. Micheletti, C. “Dynamics of highly knotted supercoiled
DNA”.









Chapter 1

Knots in polymer physics

1.1 Introduction

Polymers are filamentous molecules composed by a succession of modular units,
or monomers, bound by covalent bonds. The monomers can be strung together in
linear, circular or branched polymer structures.

Mayans were one of the first recorded civilizations that exploited polymers to
produce various utensils, using the latex extracted from the rubber tree. However,
it was only in 1920 that the chemist Hermann Staudinger inferred the existence of
materials formed by many covalently-bonded subunits, in order to explain the prop-
erties of molecules with high molar masses. Thereafter, scientists developed vari-
ous chemical reactions to synthetize polymers with different chemical and physical
properties, and brought about an important technological revolution in the twenti-
eth century. Today we are all familiar with the ubiquity of synthetic organic poly-
mers, such as polyethylene, polypropylene, polystyrene, that surround us in the
guise of plastic objects of various shapes and sizes.

The key molecules of life are also polymeric. They are mainly polysaccharides,
with forms ranging from linear to highly branched, proteins and RNA, which are
typically linear, and DNA, that can be organized in both linear and circular forms [1,
2].

Polymers, similarly to sufficiently long ropes and yarn that are carelessly stowed
away, can be prone to develop various forms of entanglement, including knots.

As a matter of facts, in a celebrated mathematical conjecture, Frisch, Wasser-
man and Delbruck [3, 4] posited in the early 1960’s that asymptotically-long ran-
dom walks had to be knotted except for a set of measure zero. In 1988, nearly 30
years after its formulation, Sumners and Whittington proved this conjecture [5, 6] by
demonstrating that long self-avoiding walks on a cubic lattice are bound to feature
tight knots. The self-avoiding constraint prevents these tight knots to be threaded
through and hence be undone by other parts of the chains. This demonstrated the
"statistical necessity" of knots occurrence in sufficiently long polymers first formal-
ized by Frisch and colleagues.

Several pioneering experiments and structural surveys demonstrated that knots
can appear in biopolymers such as RNA [7], proteins [8-10] and DNA [11-15]. These
discoveries brought forth several questions concerning how knots can be selected by
evolution [9, 16, 17] and how they reverberate in-vivo [18].

In the next sections I will provide a self-contained primer on knots that will serve
as introduction to the results of the following chapters, which are focussed mainly
on knots in proteins and DNA. I will start with the definition and characterization
of knots in closed, ring-like chains, and then discuss how the concepts extend to the
case of open, linear chains. The algorithms that can be used to detect and pinpoint
knots in both cases will be briefly described.



6 Chapter 1. Knots in polymer physics

D D

1. <«—>
twist untwist
I
2 )| — |
|
poke unpoke
| |
N K <> I/
| slide

FIGURE 1.1: Reidemeister moves, conserving the knot type on a knot
diagram.

3,-knot

FIGURE 1.2: Simplification of a knot diagram into its minimal rep-
resentation, through a combination of the available Reidemeister
moves. Other moves cannot further reduce the number of crossings.

1.2 Knot theory

In topology, knots are embeddings of closed curves in Euclidean 3-dimensional
space R3, whose properties are preserved under ambient isotopies. These are con-
tinuous, non singular deformations of the curve that do not lead to self-crossings.
The deformations include bending, twisting, stretching but not cutting and gluing.
Curves of different geometries are topologically equivalent if they can be trans-
formed one into the other through ambient isotopies, and these classes of equiva-
lence define the different knot types.

A convenient way to represent and visualize a knot is to project the curve on a
plane, tracking the over- and under-passes. In such representations, ambient iso-
topies can be obtained by combining a suitable succession of the three Reidemeister
moves [19], a basis set of deformations shown in Fig. 1.1. Two closed curves are
therefore equivalent if it is possible to pass from one planar projection to the other
using a combination of Reidemeister moves. Furthermore, if any set of Reidemeister
moves cannot further reduce the number of crossings of a given knot, these cross-
ings will be termed essentials, and the diagram will be in its minimal representation,
see Fig. 1.2 for an example.

It is always possibile to introduce two or more knots in the same ring, producing
a composite knot or connected sum of knots, see Fig. 1.3 for an example. Instead,
knots that cannot be further decomposed in terms of a non-trivial connected sum
are called prime knots.
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FIGURE 1.3: Example of composite knot construction.

Prime knot are traditionally labelled with n;, where n is the number of essential
crossings, and i is a conventional index used to distinguish different knot types with
the same number of essential crossings n [20]. For example, the trefoil knot appear-
ing in Fig. 1.2 is indicated with 3;. Composite knots formed by two or more knots
n;, mj, ..., lj, are instead labelled with n;#m;#...#l.

") S

FIGURE 1.4: Knot table up to eight crossing, from [21].

Fig. 1.4 shows all prime knots up to n = 8 crossings, in their minimal repre-
sentations, excluding the trivial case with zero crossings 01, which corresponds to a
circle.

The simplest non-trivial knot is the trefoil knot or 3;-knot, which has three es-
sential crossings. The 3; is a chiral knot, because it has in its minimal representation
two mirror forms: the left-handed, shown in Fig. 1.4, and the right-handed, and they
are not deformable continuously into each other. The second case is a 4;-knot with
four-crossings, also known as figure-of-eight knot. This knot is achiral because it is
deformable continuously in its mirrored image. The next two prime knots have five
crossing and are both chiral: the pentafoil knot or 5; and the 53-knot.
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FIGURE 1.5: Torus knot (trefoil 3;) constructed on the surface of a
torus.

) OO

() ()

FIGURE 1.6: Twist knot construction steps.

The number of distinct knot types steadily increases with the number of minimal
crossings n: we find three knot types with n = 6, seven with n = 7 and twenty-one
with n = 8. In fact, the number of knot types for a fixed number of crossings grows
approximatively exponentially [22, 23], and they have presently been tabulated up
to n = 16 crossings [24], for a total amount of about 1.7 million.

Prime knots can also be grouped in families according to various criteria. Two
salient families are the torus and twist ones, which will be discussed in subsequent
chapters. Torus knots can be obtained by winding a curve a number of times around
the equator and the meridians of a torus, see Fig. 1.5, and include 31,51, 71, 819, 91.
Twist knots are obtained by twisting a closed 0; ring repeatedly and then by making
a clasp passage of the two end loops, see Fig. 1.6. They include 31,41, 52,61, 72, 81.
Note that the simplest knot type 3; belongs to both families.

Assigning the knotted state of a curve from one of its possible diagrammatic
representations can be a daunting task, even if the knot is a tabulated one. For this
purpose, topological invariants —algebraic quantities unaffected by the different ge-
ometries in which a given knotted ring presents itself— are commonly used.

In this thesis we will mostly use the Alexander invariant [25], because it is com-
putationally efficient. The algorithm that computes such invariant requires several
steps: an orientation is attached to the curve, and then the crossings are classified as
positive or negative by a right-hand rule. Afterwards, a matrix is built assigning to
each element a monomial, related to the crossing type, and the determinant of the
matrix is computed. The result is the so called Alexander polynomial associated to
the given topology [26, 27].

The resulting polynomial is independent of the chosen projection and the differ-
ent geometries the knot can present itself, allowing to distinguish between different
knot types, but not different chiral forms. There are however several counterexam-
ples showing that genuinely complex knot types can have the same polynomial of
simpler knot types, and even of the unknot. Nevertheless, the cases we shall en-
counter will be simply enough to not display such ambiguity. There also exist other
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polynomials, such as HOMFLY, that can discriminate these cases, although compu-
tationally more demanding.

1.3 Defining and detecting knots in open chains

Suppose to tie several knots on a linear rope and wish to quantify its degree of en-
tanglement. This is a task that eludes a strict mathematical formulation, because
no matter the complexity of the tangle, there will exists always a set of continuous
deformations, not involving strand crossings, that transform it into a linear, hence
unknotted, segment.

Nevertheless, we are all familiar with the mechanical effects that knots tied on an
open chain can have: for example, a knotted fishing line has a much lower rupture
force than an unknotted one [28]. Hence, these kind of knots, even thought they lack
a strict mathematical definition, are relevant and are usually referred to as physical
knots.

In the microscopic domain, as well as the macroscopic one, physical knots can
similarly affect the chain’s metric and dynamical properties, and can be long-lived
in sufficiently long liner polymers, as we will see in Chapter 3.

An intuitive way to characterize the degree of entanglement of an open chain
is by joining the two ends with an auxiliary arc. This operation fixes the chain’s
topological state and traps the physical entanglement on a ring, allowing to measure
the Alexander invariant.

In principle, the way the two ends are joined together can give different knot
types. The procedures listed in the following are designed to be simply and trans-
parent:

e Historically, the first procedure conceived was the stochastic closure to infin-
ity [9]: the two ends are joined together, with two segments, on a random point
taken on a sphere, with the sphere centered around the chain’s center of mass
and with radius much larger than its gyration radius, see Fig. 1.7a. Different
random points will generally yield different types of knots, so for this reason
one can take the most common topology out of the many closures as the rep-
resentative one.

e The second procedure, called minimally-interfering closure [29], compares the
arc lengths introduced by two different closure schemes. The first scheme
joins the two ends with a straight line, and is hence called direct bridging,
see Fig. 1.7b. The second scheme prolongs the ends to their respective closest
point at the convex hull and then joins them together with an arc at infinity, see
Fig. 1.7c. The scheme with the shortest total arc length (excluding the closure
at infinity for the second scheme) is selected, in order to introduce the least
amount of spurious crossings.

Both methods have advantages and disadvantages: the stochastic closure pro-
vides a more complete statistics on the possible topologies of the chain, but needs
the calculation of many knot invariants, while the minimally-interfering closure re-
quires a single calculation and generally gives the same dominant type [29]. We will
use the latter method for computational effectiveness.
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Closure to infinity Minimally-interfering closure

a) b)

Direct bridging Closure at the convex hull

FIGURE 1.7: Examples of different closure schemes, from [29]. (a)

Stochastic closure at infinity, (b)-(c) Minimally-interfering closure,

choosing the shortest arc length between the direct bridging (b) and
the closure at the convex hull (c).

1.4 Knot localization schemes

The closure schemes introduced in the previous section can be used to pinpoint
where exactly the knot resides along the chain. The idea is to find the minimal open
portion of the chain with the same topology as the whole chain, and can be applied
both to open and closed chains.

Two search schemes are possibile [29-32]:

e The bottom-up scheme starts by considering all the possibile arcs with a min-
imal length (the shortest that can contain a knot after closure) along the chain.
Then for each arc, after closure, the topological state is checked to be the same
as the whole chain, and that its complementary arc is instead unknotted. If
no arc satisfies this criteria, the arc length is increased. The procedure ends
when one arc satisfies the aforementioned criteria, and it will be considered
the shortest knotted arc of the whole chain.

e The top-down approach instead considers all the possibile arcs of given length
[, starting from the maximum possible one (the whole chain), and identifies

a) Cf\—/g b) C/‘i/?) c) C/‘\‘/?)

FIGURE 1.8: Knot localization schemes, from [29], applied over a tre-

foil knotted configuration a). b) The bottom-up approach detects the

shortest length over which topological complexity appears. c) The

top-down approach detects the shortest length to which topology can

be maintained. The two approaches identify in this case a different
knotted portion.
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the arcs that have the same topology as the entire chain. Only the arcs sat-
isfying this criterion will be then subdivided in smaller arcs of length [ — 1,
while the others will be discarded. The surviving arcs will be again checked
with the same criterium, and the arcs satisfying it will be selected and further
subdivided. The procedure ends if, after a subdivision, no one of the arcs has
the same topology of the entire chain. Then, the arc that survived the previous
iteration will be considered the shortest continuously-knotted portion of the
ring.

The knotted arc found with the two procedures might generally differ when the
chain is in a compact state, see Fig. 1.8. Since we will look for the shortest possible
knotted portion, we will use in our case the bottom-up approach.
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Chapter 2

Knotted proteins: an up-to-date
survey

2.1 Introduction

Proteins are linear biopolymers that perform essential functions inside living organ-
isms: they can act as cellular scaffolds, can catalyze thousands of metabolic reactions,
serve as molecular machines, and in general are key to cell signalling processes.

The amino-acids (a.a.) are the protein monomeric units, assembling in sequence
through covalent bonds. There are 20 main types of naturally occurring amino acids,
which can be arranged in different sequence orders, thus providing a huge combi-
natorial space for protein sequences.

The different types of amino acids share a common chemical backbone, and are
distinguished by the side-chain or residue group (R-group), see Fig. 2.1, which is
attached to a pivoting carbon atom of the backbone (a-carbon or C,,).

Naturally occurring proteins have sequences spanning only a small subset of the
20 amino acids full combinatorial space. Evolutionary pressure has arguably opti-
mized sequences to have a unique native fold that minimizes the protein’s free en-
ergy. In addition, sequences have been optimized for specific functions and catalytic
activities, to fold fast enough to avoid proteosomal degradation, etc.

For decades, the scientific community held a strong belief that proteins had to be
knot free on the ground that, if a protein was prone to form knots during the folding
process, then it would need to backtrack from these states in order to fold into the
correct native state. Knots would therefore be kinetic traps that hinder the folding

R, ~sidechains— R,

~
/ \
/ ﬁ\
C, /N C \ c
/INAN N /SN packbone
aminic end ¢ | Cu | N Carboxylic end
(group) | | (group)
o |\ /
\ / . .
\ . R, ) /am|8gitamd

FIGURE 2.1: Schematic composition of a protein.
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FIGURE 2.2: On the left, the first deeply knotted protein discov-

ered [10]: a figure of eight (4,) knot with the knot ends distant 245 a.a.

from the N-terminus, and 70 a.a. from the C-terminus. On the right,
a view of the knotted core, starting from the C-terminus, from [10].

process, which needs instead to be as efficient as possible, in order for the protein to
avoid degradation.

However, as more protein structures were released in the PDB, several proteins
were eventually found to be knotted. The first documented instance was a carbonic
anhydrase [8, 9], found in 1977, featuring a shallow 3;-knot, with just few residues
threading through a wide loop. The second case was an acetohydroxy acid iso-
meroreductase, found in 2000, featuring a 4; knot [10], see Fig. 2.2. In this case, the
knot ends were distant 245 a.a. and 70 a.a. from the termini, providing a compelling
evidence that proteins can fold into deeply knotted structures. This discovery posed
new questions about the steps that coordinate the folding process [33-36] and about
knotted proteins evolutionary and functional putative advantages over non-knotted
homologs [17, 37].

The ongoing growth of structures available in the PDB poses the need for a con-
tinuous search for new knotted protein families and new knot types. For this rea-
son, we have undertook in 2016 a survey of the PDB in search for all knotted protein
structures, their representatives and their similarities or differences with the case of
generic polymers.

The main findings of this chapter are based on the recent review article of Ref. [38].

2.2 Knotted proteins representative list construction

Our survey of the PDB involved the following steps, which are also sketched in the
flow-chart of Fig. 2.3.

A: Fetch of all protein crystal structures available
First, we downloaded the entire set of PDB structures available as of June 2016, re-
trieving all the entries containing proteins, which yielded about 5 - 105 individual
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Knotted proteins representative list construction

A B C D
Remove chains Remove chains Knot analysis
(~ 1%?%32\;:1”5;?”8) =3 with missing residues —3p = with buried ends and
P (4.5A cutoff) (perceptron algorithm) localization
E F G
5 - Cluster sequences with
EImE (Eeliinek > 10% identity threshold — Remove possibile
proteins with 100% (cd-hit algorithm and artifactual representatives
sequence identity BLAST alignement)

FIGURE 2.3: Block diagram with the knotted protein survey proce-
dure.

peptide chains counting separately all models of structures solved by NMR or X-ray
solution scattering.

B: Remove chains with missing residues
For each protein chain, we retained only the a-carbon atoms, as representatives of
the protein backbone.

We considered only chains without missing intermediate residues. This check
was done by computing the distance between the consecutive a-carbons along the
chain. In particular, a residue was considered missing if two consecutive a-carbons
were distant more than 4.5A. This value was selected considering that in the typical
trans case the average distance is 3.8A and its standard deviation 0.04A [39] (the
rarer cis case has a lower average distance).

We have used the same cutoff distance to check if some structure, such as the
cyclotide, had a cyclized backbone, where the N-terminus is covalently bonded to
the C-terminus.

C: Remove chains with deeply buried ends

We processed separately chains with a cyclized, circular, backbone, and open ones.
In the former case, we can in fact probe the topological state directly by calculating
the Alexander determinant. In the latter, instead, we need first to close the chain by
connecting the ends with an auxiliary arc, in order to turn it into a ring and then
establish its topology by computing the Alexander determinant.

The auxiliary arc, as we discussed in Chapter one, is not uniquely defined, and
different topological states might be inferred if we change the arc’s position. This
is particularly true for proteins, because they are typically compact and might have
one or both ends deeply buried inside.

To ensure that the auxiliary arc does not introduce spurious entanglement, we
selected only structures with both termini exposed. In this way, the ends can be
bridged univocally with an arc at infinity.

Assessing whether a terminal is exposed amounts to finding a plane, passing
through the terminal, such that all the amino-acids are included in one of the two
semi-space identified by the plane, see Fig. 2.4. This is equivalent to find a vector
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FIGURE 2.4: Protein with exposed ends: for each terminal, there exists
a plane, passing through the terminal, such that all the amino-acids
are included in one of the two semi-space identified by the plane.

w (the normal of the aforementioned plane) pointing in the opposite direction of all
the distance vectors between the terminal and each a-carbons of the chain.

The existence (or non-existence) of w can be proved using a linear binary classi-
tier algorithm (perceptron), described in the following.

Suppose we have a protein chain with N residues and where x; are the a-carbon
coordinates, with index 7 = 0, ... N — 1. Without loss of generality, we now focus on
the first end with index i = 0. The vector w can then be found through the following
procedure:

1. Initialize w as a random unit vector

2. Compute the projections d; of all the distances x; — xo onto w, d; = w-(x; — Xo)
fori=1,...N —1

3. Find the largest projection, defined as dj, = max{d; };=1,.n—1

4. Take as new vector w = w — €(xy — Xg), with ¢ = 1073 and restart from step 2.

The end will be considered exposed if, after a certain maximum number of itera-
tion steps (in our case 105N), the largest projection yields dj, > 0, which means that
all distance vectors, x; — xo, point in the opposite direction of w. Instead, in the case
in which d;, < 0, the end will be considered buried.

If a separating plane exists, the perceptron algorithm is guaranteed to converge
to the optimal solution through a finite number of iterations proportional to the
largest (x; — xo)2.

The whole procedure can then be applied to terminal ¢ = N — 1 to check if it is
exposed or not.

D: Knot analysis and localization
After having identified the protein entries with exposed termini, we proceeded to
bridge their termini using the minimally-interfering closing procedure.
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2KOA:A(2) 2KOA:A(3) 2K0A:A(4) 2K0A:A(5) 2KO0A:A(7) 2KO0A:A(9) 2KOA:A(10) | 2KOA:A(12) | 2KOA:A(15)
2KOA:A(16) | 2KOA:A(19) | 2KOA:A(20) | 2LEN:A() 2LEN:A(2) 2LEN:A(3) JLEN:A(d) 2LEN:A(6) 2LEN:A(7)
2LEN:A(8) 2LEN:A(9) 2LEN:A(10) 2LEN:A(11) 2LEN:A(12) 2LEN:A(14) 2LEN:A(15) 2LEN:A(17) 2LEN:A(18)
2LEN:A(19) | 2LEN:A(20) | 3KKX:A(D) 4GOC:A(T) 2Q49:A(T) AYOJ:A(1) TA42:A TAM6:A TAVN:A
1AZM:A 1BCD:A 1BIC:A 1BNT:A 1BN4:A 1BNM:A 1BNN:A 1BNQ:A 1BNT:A
1BNU:A 1BNV:A 1BNW:A 1BV3:A 1BZM:A 1CA2:A 1CAH:A 1CALA 1CAJ:A
1CAK:A 1CAL:A 1CAM:A 1CAY:A 1CAZ:A 1CIL:A 1CIM:A 1CIN:A 1CNG:A
1CNH:A 1CNLA 1CNJ:A 1CNW:A 1CNX:A 1CNY:A 1CRA:A 1CZM:A 1DMX:A
1DMX:B 1DMY:A 1DMY:B 1EOU:A 1F2W:A 1FLJ:A 1FOQN:A 1FQR:A 1FR4:A
1FSN:A 1FSN:B 1FSQ:A 1FSQ:B 1FSR:A 1FSR:B 1FUG:B 1GOE:A 1GOF:A
1G1D:A 1G3Z:A 1G4J:A 1G40:A 1G45:A 1G46:A 1G48:A 1G52:A 1G53:A
1G54:A 1GZ0:A 1GZ0:B 1GZ0:C 1GZ0:D 1GZ0:E 1GZ0:F 1GZ0:G 1GZ0:H
1H4N:A 1HON:A 1HCB:A 1HEA:A 1HEC:A 1HUH:A 118Z:A 119L:A 119M:A
1I9N:A 1190:A 1I9P:A 119Q:A 1190:A 1191:A 1IF4:A 1IF5:A 1IF6:A
1IF7:A 1IF8:A 1IF9:A 1J9W:A 1JCZ:B 1JVO:A 1KEQ:A 1KEQ:B 1KWQ:A
1KWR:A 1LG5:A 1LG6:A 1LGD:A IMUA:A INXZ:A INXZ:B 106D:A 10KM:A
10Q5:A 1P7L:A 1P7L:B 1P7L:C 1P7L:D 1QMG:A 1QMG:D 1RAY:A 1RAZ:A
1RG9:A 1RG9:B 1RG9:C 1RG9:D 1IRJ5:A 1IRJ6:A 1IRZA:A 1RZB:A 1RZC:A
1RZD:A 1RZE:A 1TIN:A 1TBO:A 1TBT:A 1TE3:A 1TEQ:A 1TEU:A 1TG3:A
1TGY9:A 1TH9:A 1THK:A 1TTM:A 1UGA:A 1UGB:A 1UGC:A 1UGD:A 1UGE:A
1UGE:A 1UGG:A 1URT:A 1VI9E:A 1V9E:B 1VOLA 1VHO:A 1VHO:B 1VHO0:C
1VHO:E 1X70:A 1X7P:A 1XD3:A 1XD3:C 1XEG:A 1IXEV:A 1XEV:B 1XEV:C
1XEV:D 1XPZ:A 1XQO0:A 1YDD:A 1YO0:A 1YOLA 1YO2:A 1YVE:A 1YVE:D
1Z29Y:A 1Z93:A 1297:A 1ZE8:A 1ZFQ:A 1ZGE:A 1ZGFA 1ZH9:A 1ZJR:A
1ZSA:A 1ZSB:A 1ZSC:A 2ABE:A 2AWLA 2AX2:A 2CA2:A 2CBA:A 2CBB:A
2CBC:A 2CBD:A 2EFV:A 2EGV:A 2EGV:B 2ETL:A 2ETL:B 2EU2:A 2EU3:A
2EZ7:A 2F14:A 2FG6:A 2FG6:B 2FG6:C 2FG6:D 2FG6:E 2FG6:F 2FG7:A
2FG7:B 2FG7:.C 2FG7:D 2FG7:E 2FG7:F 2FMG:A 2FMZ:A 2FNK:A 2FNM:A
2FNN:A 2FOQ:A 2FOS:A 2FOV:A 2FOY:B 2FW4:A 2G7M:A 2G7M:B 2G7M:C
2G7M:D 2G7M:E 2G7M:F 2GEH:A 2H4N:A 2H15:A 2HAS:A 2HD6:A 2HKK:A
2HL4:A 2HNC:A 2HOC:A 2ILE:A 2NMX:A 2NMX:B 2NNL:A 2NNI1:B 2NN7:A
2NN7:B 2NNG:A 2NNO:A 2NNS:A 2NNV:A 2NWO:A 2NWP:A 2NWYA 2NWZ:A
2NXR:A 2NXS:A 2NXT:A 204Z:A 209C:A 20BV:A 20SF:A 20SM:A 2P02:A
2POU:A 2POV:A 2POW:A 2Q1B:A 2Q1Q:A 2Q38:A 2QMM:A 2QMM:B 2Q08:A
2Q0A:A 2QP6:A 2RH3:A 2VVA:A 2VVB:A 2WD3:A 2WEG:A 2WEH:A 2WEJ:A
2WEO:A 2X7T:A 2X7U:A 3B4F:A 3BBD:A 3BBD:B 3BBE:A 3BBE:B 3BBH:A
3BBH:B 3BJX:B 3BJX:C 3BLO:A 3BLL:A 3C7P:A 3CAJ:A 3CYU:A 3CZV:A
3CZV:B 3DON:A 3DON:B 3D8W:A 3D9Z:A 3D92:A 3D93:A 3DA2:A 3DAZ:A
3DBU:A 3DC3:A 3DC9:A 3DCC:A 3DCS:A 3DCW:A 3DD0:A 3DD8:A 3DV7:A
3DVB:A 3DVC:A 3DVD:A 3EFLA 3EFT:A 3F4X:A 3F8E:A 3FFP:A 3GZ0:A
3HFP:A 3HKN:A 3HKQ:A 3HKT:A 3HKU:A 3HLJ:A 3HS4:A 3IALA 3IALB
3IALLC 3IALLD 3IBLA 3IBL:A 3IBN:A 3IBU:A 3IEO:A 3IFW:A 3IGP:A
3IRT:A 3IRT:B 3JXF:A 3JXF:B 3K2F:A 3K7K:A 3K34:A 3KIG:A 3KNE:A
3KOK:A 3KON:A 3KS3:A 3KTY:B 3KTY:C 3KVE:A 3KW5:A 3KWA:A 3KZK:A
3L14:A 3MI1J:A 3MIK:A 3MIQ:A 3M2N:A 3M2X:A 3M2Y:A 3M2Z:A 3M3X:A
3M5E:A 3M5S:A 3M5T:A 3M14:A 3M40:A 3M67:A 3M96:A 3M98:A 3MDZ:A
3MHC:A 3MHLA 3MHL:A 3SMHM:A 3MHO:A 3ML2:A 3MMF:A 3MNA:A 3MNH:A
3MNLA 3MNJ:A 3MNK:A 3MNU:A SMWO:A 3MWO:B 3MYQ:A 3MZC:A 3NON:A
3N2P:A 3N3J:A 3N4B:A 3N4J:A 3N4K:A 3N4K:B 3NB5:A 3NI5:A 3NJ9:A
3NK7:B 307B:A 30IK:A 30IL:A 30IM:A 30KU:A 30KV:A 30NP:A 30Y0:A
30YQ:A 30YS:A 3P3H:A 3P3J:A 3P4V:A 3P5A:A 3P5L:A 3P44:A 3P55:A
3P58:A 3PJJ:A 3PO6:A 3PYK:A 3QYK:A 3R16:A 3R17:A 3RG4A 3RJ7:A
3RLD:A 3RYJ:A 3RYV:A 3RYX:A 3RYY:A 3RYZ:A 3RZ0:A 3RZ1:A 3RZ5:A
3RZ7:A 3RZ8:A 3S8X:A 3S9T:A 3S71:A 3572:A 3573:A 3S74:A 3575:A
3576:A 3S77:A 3578:A 3SAP:A 3SAX:A 3SBH:A 3SBLA 3T5U:A 3T5Z:A
3T82:A 3T83:A 3T84:A 3T85:A 3TMJ:A 3TVN:A 3TVO:A 3U3A:A 3U7C:A
3U45:A 3U47:A 3ULK:A 3ULK:B 3UYN:A 3UYQ:A 3V2J:A 3V2M:A 3V3F:A
3V3G:A 3V3H:A 3V3LA 3V3J:A 3V5G:A 3V7X:A 3VBD:A 3WJ8:A 3W]8:B
3WJ8:C 3WJ8:D 3WJS:E 3WJ8:F 37ZP9:A 37Q5:A 4BCW:A 4BF1:A 4BF6:A
4CAC:A 4CND:A 4CNE:A 4CNR:B 4CNR:D 4CNV:A 4CNW:A 4CNW:B 4DM9:A
4DM9:B 4DZ7:A 4DZ9:A 4E3D:A 4E3F:A 4E3G:A 4E3H:A 4E04:A 4E04:B
4E4A:A 4E5Q:A 4E8B:A 4E49:A 4FAK:A 4FIK:A 4FL7:A 4FPT:A 4FRC:A
4FU5:A 4FVN:A 4FVO:A 4G7A:A 4G7A:B 4GLT:A 4GW9:A 4H3Z:B 4HBA:A
4HEW:A 4HEY:A 4HEZ:A 4HF3:A 4HTO:A 4HUT:A 4HU1:B 4IDR:A 41G6:A
4ILXA 4ITO:A 41TP:A 4IWZ:A 4JAK:A 4JAK:B 4JAL:A 4JAL:B 4]JK]J:A
4JKJ:B 4]S6:A 4JSA:A 4JSS:A 4JSW:A 4JSZ:A 4JWE:A 4JWE:B 4JWGA
4JWJ:A 4JWJ:B 4K0S:A 4K0T:A 4K1Q:A 4K13:A 4KAP:A 4KGN:C 4KGN:F
4KNLA 4KNJ:A 4KNM:A 4KPP:A 4KTT:B 4KTT:D 4KTV:B 4KTV:D 4KUW:A
4KUY:A 4KVO0:A 4L5U:A 4L5V:A 4L5W:A 4LHLA 4LP6:B 4LRV:A 4LRV:B
4LRV:C 4LRV:D 4LRV:F 4LRV:G 4LRV:H 4LRVY] 4LRV:0 4LU3:A 4M2R:A
AM2U:A 4AM2V:A AM2W:A 4MDG:A 4MDL:A 4MDM:A AMLT:A AMLX:A 4MOS8:A
AMTY:A ANOX:A AN2X:A 4AN2X:B 4N2X:C 4AN2X:D 4AN2X:E 4AN2X:F 4AN16:A
4NDN:B 4NDN:D 40DJ:A 4PXX:A 4PYX:A 4PYY:A 4PZH:A 4Q06:A 4Q6D:A
IQ6E:A 1Q07-A 1Q7P-A 1Q7SA 1Q7VA IQ7W-A 2Q08:A 1Q8X:A IQ8Y-A
1Q8Z:A 1Q09:A 4Q9Y-A 1Q78:A 4Q8T:A 1Q83:A 1Q87:A 1Q90:A 2Q99:A
41QEF:A 10IY-A 10IY'B 10IY-C 1QIY:D 1QM:A 10KT:A 10K2:A 1QK3:A
4QSA:A 4QSB:A 4QSLA 4QSJ:B 4QTL:A 4QY3:A 4R5B:A 4R59:A 4RFC:A
4RFD:A 4RH2:A 4RIU:A 4RIV:A 4RN4:A 4RUX:A 4RUY:A 4RUZ:A AWL4:A
4WR7:A 4WR7:B 4WUP:B 4AWUQ:A 4WUQ:B AWWe6:A 4X3L:A 4X3L:B 4X3M:A
4X3M:B 4XELA 4XFW:A 4XFW:B 4XZ5:A 4XZ5:B 4XZ5:.C 4XZ5:D 4Y3LA
4Y5F:A 4YGF:A 4YGF:C 4YGF:E 4YGF.G 4YGJ:A 4YGK:A 4YGL:A 4YGN:A
4YHA:C 4YVI:B 4YV]:B 4YVK:B 4YVY:A 4YX4:A 4YXEA 4YXO:A 4YXU:A
4YYTA 420Q:A 4Z1E:A 4Z1]:A 4Z1K:A 4ZIN:A 4ZAO:A 4ZWXA 4ZWY:A
4ZWZ:A 47ZX0:A 4ZX1:A 5A1G:A 5A1LA 5A25:A 5A25:B 5AMD:A 5AMG:A
5AML:A 5BNL:A 5BRV:A 5BRW:A 5BU6:A 5BU6:B 5BYLA 5CAC:A 5CJF:A
5CLUA 5DSL:A 5DSJ:A 5DSK:A 5DSL:A 5DSM:A 5DSN:A 5DSO:A 5DSP:A
5DSQ:A 5DSR:A 5E2K:A 5E2S:A 5E28:A 5EH8:A 5EHV:A SEHW:A 5EKH:A
5EKJ:A S5EKM:A 5FAL:A 5FDC:A S5FDLA 5FLO:A 5FLP:A S5FLQ:A 5FLR:A
5FLS:A 5FLT:A 5FNG:A 5FNH:A 5FNLA 5FNJ:A 5FNK:A 5FNM:A S5SHWY:A

TABLE 2.1: Complete list of knotted proteins. The nomenclature is
the following: PDB name:protein chain(model).
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We have then computed for both open (after closure) and cyclized candidates
the Alexander determinant to characterize the chain’s topological state, and local-
ized the position of the knot using the bottom-up approach. All the aforementioned
methods were characterized in Chapter 1.

Following this procedure, we found about 800 knotted protein chains, which are
listed in Table 2.1.

E-F: Identify the representatives

The list of table 2.1 is partly redundant. This is because the PDB usually contains
homologs entries, as well as multiple structures of the same proteins in different
conditions of temperature, pH, and possibly alternative models for the same entry.
Accordingly, we started by removing redundant proteins with exactly the same se-
quence.

We have then clustered the remaining sequences by performing pairwise se-
quence alignments, in order to identify a minimally-redundant set of representative
knotted proteins. The degree of sequence alignment between two sequences was
assessed using the BLAST score [40], while the clustering was performed using the
cd-hit suite [41], which identifies as representative for a given cluster its longest se-
quence. In particular, we have grouped together proteins with a sequence identity
larger than a 10% threshold.

G: Elimination of artifactual knots
The set of representatives was further analyzed for artifactual knots that can possibly
arise due to a limited experimental resolution in structure determination.

Indeed, based on detail inspection of the knotted region and its characteristics,
we have identified various putative artifactual proteins listed in Table 2.2, for rea-
sons discussed below.

PDB code Method Knot type Knot Chain N-terminal C-terminal
length (a.a.) length (a.a.) knotdepth knotdepth
4V4B:1 El.Micr. 31 9 139 93 37
4V1A:U El.Micr. 31 63 387 186 138
5AJ4:1C El.Micr. 31 63 387 186 138
2LXD:A(3) NMR 31 50 123 58 15
1J20:A(14) NMR 44 52 114 42 20
2KC2:A(2) NMR 31 68 128 56 4
2KQU:A(200 NMR 31 42 169 53 74
2KN4:A(2) NMR 41 80 158 71 7
2Q77Z:A(5) Sol.Scat. 31 123 1931 1225 583
3GAU:A(2)  Sol.Scat. 31 720 1213 138 355
3GAW:A(2)  Sol.Scat. 31 354 1213 426 433
3GAV:A(8)  Sol.Scat. 44 479 1213 319 415
3GAU:A(7)  Sol.Scat. 77 385 1213 403 425
3GAV:A(2)  Sol.Scat. 77 393 1213 396 424
3GAV:A(7)  Sol.Scat. 818 476 1213 518 219

TABLE 2.2: List of possibly artifactual protein representatives,

bolded, along with their clustered homologs and ordered by resolv-

ing method and knot complexity. Note the presence of unlikely very

complex knot topologies in the X-ray solution scattering case. For the
PDB nomenclature, see Table 2.1.
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4V4B:| 2LXD:A(3) 3GAU:A(7)

FIGURE 2.5: Three examples of artifactual proteins, taken from Ta-
ble 2.2. The first example is a protein chain belonging to the Sac-
charomyces cerevisiae ribosome complex (PDB code 4V4B:1), resolved
with cryo-EM, that contains a very narrow knotted core. The second
example is a regulatory protein (PDB code 2LXD:A(3)) from solution
NMR. The third example is a complement factor H resolved structure
(PDB code 3GAU:A(7)) from X-ray solution scattering, with a com-
plex topology.

The first three instances presented in Table 2.2 were resolved with cryo-EM. The
first one is a protein chain of the Saccharomyces cerevisiae ribosome complex (PDB
code 4V4B:I). The protein structure, shown in Fig. 2.5, presents an unrealistically
tight knot of only 9a.a. that violates the steric hindrance of the protein residues.
Moreover, it can be noted that a single clasp passage between two near strand can
unknot the configuration, suggesting that the knot could have been formed by two
near strands wrongly resolved. The second protein of Table 2.2, a mitoribosomal pro-
tein structure (PDB code 5AJ4:IC), was excluded along its clustered homolog (third
in the list), as we cannot safely assess for the same reasons if the knot is genuine or
artifactual.

The second group of instances presented in Table 2.2 were resolved with solu-
tion NMR. This method computationally reconstructs the protein structure based
on several distance, angle and orientation restraints between atoms, and provides
an ensemble of probable conformations (models). These instances were selected be-
cause there is not a consensus on the topology across the set of alternative models
provided for the same structure, and in particular only some of them are knotted.
We can also observe that in every case there are unstructured parts, see Fig. 2.5 for
an example. Thus, these knotted proteins might be either artifactual or part of a
wider configurational ensemble, e.g. of disordered proteins which genuinely could
include both knotted and unknotted configurations. For this inherent ambiguity we
omitted them from further analysis.

The last group of Table 2.2 is resolved with X-ray solution scattering. This method
reconstructs the protein structure from an X-ray scattering pattern in solution, with
the reconstruction of the three-dimensional structure providing several possible mod-
els. Similarly to solution NMR, only some of the models are knotted, thus creating
the same ambiguity discussed above. Interestingly, in this case much more compli-
cated topologies can appear, see Fig. 2.5.
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Representatives
The minimally-redundant representative set, excluding the possible artifactual knot-
ted proteins, is shown in Table 2.3. This table is built by ranking the representatives
in order of topological complexity, then in order of functionality, and finally with the
number of represented structures.

All representatives reported here are well documented from previous surveys [17,
37,42, 43].

2.3 Knotted protein characteristics

From the analysis of the entire set of individual peptide chains in the PDB, several
facts emerge.

The first is that the number of knotted chains in the PDB (about 800) is much
smaller than the total number of chains (about 5 - 105). Keeping in mind that both
sets are redundant, the ratio between these two numbers provides an estimate of the
proteins knotting probability which is of the order of 800/5 - 10° ~ 1%.

It is of particular interest to compare this number, which is small but still non-
negligible, to simpler models reproducing the same globular characteristics of pro-
teins.

In this regard, Lua and Grosberg [44] compared the protein’s knotting proba-
bility to that of self-avoiding random walks on a lattice. In particular, the authors
constructed walks with the same average end-to-end distance of proteins, and found
that these walks had a much larger knotting probability than proteins. Next, the au-
thors concluded that the difference in knotting probability could be ascribed to a dif-
ferent sub-chain structural organization: segments of the proteins with intermediate
lengths have a stronger statistical tendency to fold back on themselves than those of
the self-avoiding random walks. This suggests that in proteins the interpenetration
of sub-chains is suppressed and, consequently, knot formation too.

These results are compatible with the intuitive expectations that knots have been
selected against in naturally occurring proteins, to promote rapid folding, though
not ruled out entirely.

The second property emerges by comparing the knot length of each knotted pro-
tein /;, to the total chain length N. This comparison provides an insight into the
polymeric nature of a protein. The plot in Fig. 2.6 of [}, versus N, using only data
from the representatives (in order to have an unbiased set) shows a significant cor-
relation between [, and N, in agreement with the I, o« N law of general flexible
chains [45, 46]. In particular, the fitted o = 0.86 can be compared with the values
a = 0.63 and 1.04 for a polyethylene chain model up to N = 1000 in coil (good
solvent) and globular (bad solvent) form [45], and with o = 0.44 for a freely-jointed
chain up to N = 15000 [46]. We thus conclude that, although proteins have a differ-
ent structural organization than general random polymer models, they too feature a
concomitant increase of I, with V.

The third property is obtained by measuring which terminal is closer to the knot-
ted region, again considering only the representative proteins. Interestingly, we did
not find any overwhelming preference over one of the two termini, as shown in
Fig. 2.6. Because knots are formed by threading one terminus at least once over a
loop, both termini can be involved in the knot formation, if we suppose the nearest
terminus is the one responsible for the threading process. This result, in return, runs
against the expectations that the C-terminus should be privileged, as the proteins
fold in-vivo co-translationally starting from this terminus.
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N- c-
PDB oligomeric Knot Chain terminal terminal
Knot type Protein or protein function code sgtate length 1length knot knot
(a.a.) (a.a.) depth depth
(a.a.) (a.a.)
Carbonic anhydrase 3MDZ:A Monomeric 230 259 26 3
RNA methyltransferase 1X70:A Homodimeric 44 267 190 33
RNA methyltransferase 4H3Z:B Homodimeric 49 256 89 118
RNA methyltransferase 4CND:A Homodimeric 57 169 79 33
RNA methyltransferase 4E8B:A Homodimeric 49 242 164 29
RNA methyltransferase 307B:A Homodimeric 47 216 143 26
RNA methyltransferase 4JAK:A Homodimeric 44 155 77 34
RNA methyltransferase 4JWF:A Monomeric 46 187 98 43
RNA methyltransferase 20MM:A Homodimeric 45 195 124 26
S-adenosylmethionine 40DJ:A Homodimeric 258 386 16 112
31 synthetase
Carbamoyltransferase 3KZK:A Homodimeric 83 334 169 82
Hypothetical RNA 106D:A Homodimeric 50 147 67 30
\) methyltransferase
Hypothetical protein N . .
MJ0366 2EFV:A Homodimeric 63 82 10 9
H+/Ca2+ exchanger 4KPP:A Monomeric 218 395 72 105
Na+/Ca2+ exchanger SHWY:A Monomeric 197 300 33 70
N-acetylglucosamine 5BU6:A  Monomeric 249 264 10 5
deacetylase
DNA binding protein 2RH3:A Monomeric 102 121 7 12
DNA binding protein 4LRV:A Homo—. 88 107 8 11
octameric
Met;al bJ..ndlng protein JKOA:A Spliceosome 52 109 21 36
(zinc-finger ) component
41 Bacteriophytochrome 4GW9:A Homodimeric 243 628 20 365
/) Ketol-acid 1QMG:A Homodimeric 210 514 236 68
reductoisomerase
52
. A Monomeric
8\ Ubiquitin carboxy- 2LEN:A or 217 231 2 12
L)/ terminal hydrolase . .
homodimeric
61
o-Haloacid dehalogenase I 3BJX:B Homodimeric 216 295 59 20

&3

TABLE 2.3: Representative knotted proteins. This up-to-date, non-
redundant list of knotted representatives is based on a PDB survey
specifically carried out for our review [38]. The entries are presented
in order of increasing complexity of the knot and, for each knot type,
they are listed in order of decreasing number of represented ho-
mologs (number of PDB entries with sequence identity larger than
10%). The oligomeric state is based on the PDB and UNIPROT anno-
tations. For a stringent determination of physical knots, chains with
structural gaps, or with termini not exposed at the protein surface
were excluded from survey. For the PDB nomenclature, see Table 2.1.
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FIGURE 2.6: Length and depth of knots in proteins. The scatter plot

presents the knot length versus protein length for the 23 minimally

redundant representatives of Table 2.3. The Kendall’s correlation co-

efficient, 7 = 0.31 and the one-sided p-value is 0.018. The red curve

is a best fit of the I, = aN® function, with ¢ = 1 and « = 0.86. Of the

23 instances, 9 have the knotted region closest to the N terminus and
14 to the C one, see inset.

The last aspect emerges from the different knot types found in Table 2.3, which
correspond to the simplest instances of twist knots (31, 41, 52 and 61). The preference
for this knot family might be related to the fact that different knot types require a
different minimum number of threading processes [42]: the twist knot family require
only one threading passage (see Sec. 1.2), while torus knots for example require in
general more passages, aside from the 3; (which is also a twist knot). However, other
knot types, not presently observed, cannot be ruled out entirely, because the PDB is
still growing adding new resolved structures everyday.

2.4 Details of notable knotted protein case studies

I will review here some notable cases of knotted proteins present in Table 2.1.

Carbamoyltransferases

The representative proteins in Table 2.3 contain a Carbamoyltransferase protein,
which is an enzyme with a 3;-knot, see Fig. 2.7a. These kind of enzymes are impor-
tant because they have unknotted homologs, and are an evolutionary sub-branch of
the latter. Thus, knotted and unknotted homologs can be compared structurally, to
see the actual differences and if there is some evolutionary pattern that brought forth
a knotted fold.

In this regard, Virnau et al. [17] observed that the knotted Carbamoyltransferase
have a rigid loop through which the knot is threaded, and which encompasses the
active site of the protein, possibly altering the enzyme’s catalytic activity. After-
wards, Potestio et al. [37] observed that there are two short loops inside the knot-
ted Carbamoyltransferase, whose virtual excision eliminates the knot altogether, see
Fig. 2.7b, and that this aspect is common to other knotted proteins with unknotted
homologs, concluding that these loops might promote knot formation.
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a) Carbamoyltransferase b) Knotted and Unknotted Carbamoyltransferases
3104:A 2fg6:C (knotted) 1ort:A (unknotted)

FIGURE 2.7: Selected examples of knotted proteins, from [38]. In

panels (a, ¢, d) a smoothed structural representation is used to high-

light the knot. Panel (b) presents a knotted /unknotted pair of car-

bamoyltransferases [37]. A virtual excision of either or both of the

highlighted loops (coloured in yellow and orange) unties the knotted
variant.

YibK and YbeA
Several representatives belong to the family of methyltransferases, and all are trefoil
knots.

Most of the experimental investigations [47-51] of these knotted enzymes were
carried out by the group of S. Jackson, who focussed on two of the smallest proteins
of the methyltransferase family, YibK, shown in Fig. 2.7¢c, and YbeA. Jackson and
coworkers were in particular interested on the robustness of knotted structure after
denaturation, the role of chaperonine molecules in the aid of folding, and a possible
characterization of the folding process.

Both YibK and YbeA were unfolded with high concentrations of chemical de-
naturant and cyclized thereafter in order to fix their topology. The denaturant was
then removed and the protein refolded. The experiments showed that both proteins
retained the same initial topological state 31, demonstrating that the knotted portion
can be highly resilient to degradation.

In another experiment [51] an extra 91-residue thermophilic protein, Archaeoglobus
fulgidus ThiS, was fused with each or both protein ends. The ThiS protein folds faster
than YibK and YbeA, and into a compact globule, constituting a possible obstacle
for the threading process. By trying all possible combination of ThiS attached only
to one of the two ends or both, it was possible to investigate whether a preferred
threading terminus exists. In particular, the folding rate was showed to slow down
by up to a factor of three when the ThiS plug was attached to the C terminus. No
appreciable slowing down was observed when the plug was present solely at the
N terminus. These results suggested that the rate-determining folding and knot-
ting events involve the C terminus, close to the location of the knotted region in the
native state.
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The same experiment [51] showed that chaperonines, which are rescue proteins,
give also a dramatic increase in the folding efficiency of the knotted proteins. This
evidence might hint at how knotted proteins might have withstood evolutionary
pressure in order to have an efficient folding.

Complex knotted proteins: UCHs

The ubiquitin C-terminal hydrolase (UCH) family is characterized by a 5, topology,
located only a few residues from the N terminus. Both UCH-L1, shown in Fig. 2.7d,
and UCH-L3 have been probed with several techniques. UCH-L1, in particular, con-
stitute the most abundant protein in the brain (2% ot the total number of brain’s
protein), and its mutation may cause a partial loss of its catalytic activity and may
lead to protein’s aggregation, associated with Parkinson’s disease [52, 53]. Thus the
knot, which spans the substrate binding and catalytic site, has been hypothesized to
be instrumental in the protein avoiding proteasomal degradation [43].

Structural comparisons with unknotted homologs showed, similarly to Carba-
moyltransferases, the presence of additional short loops compared to the unknotted
cases [37].

It was experimentally shown that refolding after unfolding with chemical denat-
urants occurs via two parallel pathways, each with a metastable intermediate [54—
56], neither of which was knotted, consistent with the rate-limiting step associated
with the threading event required to establish eventually the 52 topology.

An hint about knotting causing difficulties in proteasomal degradation comes
from simulations performed with a proteasome machinery represented by an effec-
tive potential with an added pulling force [57]. The presence of a knot is shown to
hinder and sometimes even jams the process. It is likely that 52-knotted proteins
such as UCH-L1, which have much larger twist knots in their denatured states will
have an even greater effect, as observed in the systematic pore translocation compu-
tational study of Ref. [58], which will be discussed in Chapter 4.

Experiments showed also that mutants associated with an increased risk of Par-
kinson’s disease, might be subtly related to different internal arrangement of the
side chains, with exposure of hydrophobic surface area with an associated increase
in in-vivo aggregation and other in-vivo aberrant interactions [54].

2.5 Conclusions

Protein native folds were long believed to be knot free, because the formation of
knots during the folding process might introduce kinetic traps that could slow down
folding. Despite this belief, several knotted proteins with increasing complexity
were found, starting from the first systematic survey of 1994 [9].

The ever increasing size of the PDB motivated us to carry out an up-to-date sur-
vey of the knotted entries present in the PDB. We found 800 knotted entries out of
5 - 10° processed peptide chains. After removing sequence redundancy, the result-
ing knotted protein families were about 23. The survey highlighted the presence of
several knotted proteins that are likely artifactual products of limited experimental
resolutions, and therefore excluded from the analysis.

Afterwards, I considered several characteristics of knotted proteins. We found a
knotting probability for proteins of about 1%, consistent with previous studies. Such
probability is intriguingly smaller than the expected theoretical one based on mod-
els that reproduce the structural salient properties of proteins. In particular, it was
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argued that the difference could arise from the different sub-chain structural organi-
zation of proteins compared to that of generic self-avoiding walks, which might rule
out as much as possible knotted conformations. However, proteins still preserve a
degree of knot localization compatible with that of general polymer chains, because
there is a significant correlation between the knot length and the entire chain length
considering the knotted representatives.

We also inferred properties regarding the kinetics of knot formation, which in-
volves the passage of at least one terminal through a loop formed by the protein
chain. In particular, there does not seem to be a preferred terminus nearer to the
knot, and this probably implies that both termini can be equally involved in the
threading process depending on the specificity of the protein sequence. At the same
time, we also have observed that the current knotted topologies present in the PDB
are remarkably all twist knots. Their common aspect is that they can all be formed
with a strand passage, contrary to other knot types not present.

We concluded by discussing notable example of knotted entries, for which ex-
tensive experiments or numerical results are available.
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Chapter 3

Knotting dynamics of DNA chains
confined in nanochannels

In this chapter, I will characterize, by molecular dynamics simulations, the typical
mechanisms governing the spontaneous tying, untying and the dynamical evolution
of knots for model DNA chains confined in nanochannels.

The chapter is organized as follows: first I will summarise the established phe-
nomenology of DNA knotting in various contexts and motivate the relevance of ex-
tending considerations to DNA chains inside nanochannels. Next, after introducing
our coarse-grained model of choice for DNA, I will present a detailed analysis of the
Langevin dynamics simulations and discuss how the interplay of DNA length and
chain confinement affects the kinetics of formation and untying of knots and their
lifetimes.

The content of this chapter is based on the work published in Ref. [59].

3.1 Introduction

3.1.1 DNA and knots

After the celebrated work of Watson, Crick, Franklin and Wilkins, DNA has been
commonly regarded as the polymer of life par excellence because the genetic infor-
mation of any organism is encoded in the chemical composition of its DNA. DNA is
typically found in the double-stranded form, resulting from the intertwining of two
chemically-complementary filaments, each consisting of a sequence of four different
types of nucleotides (adenine, thymine, guanine and cytosine or A T G C).

In all organisms, DNA is subject to a significant degree of spatial compactifica-
tion because it is confined in regions whose transverse size is much smaller than the
DNA contour length.

The total contour length of DNA filaments (chromosomes) in eukaryotic cells is
in the range of [1072 — 1]m (corresponding to [107 — 10!!] base pairs (bps), and is all
kept inside the nucleus whose diameter is only about ~ 6um.

In prokaryotic cells such as bacteria, the genome is typically [0.034 —3.4]mm-long
(corresponding to [10° — 107]bp) and is packed in a region of transverse size of about
~ pm.

Finally, bacteriophages DNA, which is several microns long, is kept inside viral
capsids that have a diameter of about 50-80nm, which is comparable to the per-
sistence length of DNA. We recall that latter is the arclength over which the direc-
tional correlation of DNA persists. More precisely, it is the charachteristic decay
arclength of the tangent-tangent correlation. At 300K, the persistence length of ds-
DNA is about [, = 50nm, or about 150 bps.
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Considering the degree of spatial compactification of the genome inside all or-
ganisms, it appears inevitable that DNA filaments in vivo must experience significant
amounts of entanglement and knotting [11-13, 15, 60-64].

Indeed, a considerable amount of experimental evidences for DNA knotting has
been gathered in the past decades, especially for viral DNA. The genome of viruses,
in fact, is short enough that its topological state can be assessed directly, with elec-
tron microscopy, or indirectly using gel electrophoresis. The latter technique, in par-
ticular, can separate different knot types in chains with the same length: knots mi-
grate along the gel with different velocities according to their topology, because they
engage with and negotiate the gel obstacles in different manners, see Fig. 3.1.

and B

FIGURE 3.1: On the left, separation of the knotted DNA species using

agarose gel electrophoresis in different bands related to the number

of crossings. On the right, an electron microscopy image of knotted

DNA molecules with 3 and 5 nodes, recovered from band A and B

and coated with RecA protein in order to enlarge their radius size.
From [65].

Knots were first directly observed on a circular phage DNA (composed by a
single strand) in 1976 [11]. Thereafter, the abundance of knots was quantitatively
measured by performing random circularization on linear P4 DNA [12, 60] and in
plasmids purified directly from Escherichia coli bacteria [65].

In the case of DNA-viruses, which are much more simpler than bacteria or Eu-
karyotic cells, some insight about the organization process was given by studying
in-vivo abundance of DNA knots [14, 61, 66, 67] and combining it with molecular
dynamic simulations [68, 69].

3.1.2 Knotting of DNA inside nanochannels

In recent years, there has been much interest in characterizing the behaviour and
physical properties of DNA under spatial confinement [70-76]. The intrinsic con-
straints of DNA, such as the persistence length, contour length and excluded vol-
ume, in relation to the geometric constraints of the environment, such as its size
and dimensionality, may greatly influence the metric, kinetic and topological prop-
erties of the chain. The confining environment can be of different kinds: sphere [14],
slit [77, 78] or channels [70].

DNA confinement inside nano-channels offers in particular a test-ground for
polymer’s theory, because it creates a competition between different length-scales
that are both intrinsic to the chain and extrinsic. The former include the chain con-
tour length L., the gyration radius R,;, which measures the polymer’s size and the
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persistence length [,. The extrinsic length in this case is the channel diameter D,
imposed on the chain. Such competition between lengths, in turn, produces various
metric scaling regimes for the longitudinal chain extension.

Two limiting scaling regimes have been particularly studied, see Fig. 3.2.

For D >> [, and D smaller than the gyration radius of the chain in bulk, the
polymer is in the so-called de Gennes scaling regime [79], developing a series of
consecutive blobs that repel each other, see Fig. 3.2a. The longitudinal chain span
scales as L.(D/1,) .

If D is, instead, reduced well below [, the back-folding is energetically dis-
favoured, and the chain elongates as much as possibile, with a series of deflections
from the wall, see Fig. 3.2b. In this case, the span scales as L.(1 — A(D/l,)*?) and
we are in the Odijk deflection regime [80].

These two limiting regimes are bridged by a crossover region, where further dif-
ferent scaling mechanisms have been argued to exist [74, 81-86].

Besides considering metric properties, relevant insight on channel-confined DNA
can be obtained by profiling its self-entanglement, and particularly knotting [87-
90]. This is both interesting from the fundamental point of view of polymer theory,
as well as for its practical implications, because knots can potentially interfere and
limit the scope of nano-manipulation techniques based on nanochannels, such as
DNA length sorting or DNA fingerprinting using barcoding techniques [91-94].

Nanochannel scaling regimes

(a)
de Gennes
D >> Ip

Odijk (b) f TN D
D <<I N S
p 0 S~

FIGURE 3.2: Different scaling regimes of a polymer of persistence

length [, confined inside a nanochannel. a) De Gennes regime, with

D >> 1,. The polymer is subdivided in a series of blob of size L;

that repel each other. b) Odijk regime, with D << [,. The polymer

has an elongation that depends on the number of deflections made by

the polymer with the walls, with A\ = (D?1,)3, and with back-folding
energetically unfavored. Image from [76].

In this regard, we expect that the bulk knotting probability of DNA should drop
to zero in the Odijk regime, because back-folding and so the threading process will
be suppressed altogether. However, Micheletti and Orlandini observed, with Monte
Carlo simulations [87], that the knotting probability is a non monotonic function
varying the channel width, see Fig 3.3. In particular, for a given chain length, pino
was found to first increase steadily from its bulk value as D was reduced, reaching
its maximum value for D ~ 80nm, which approximately corresponds to the onset of
the crossover to the Odijk regime. Upon further reducing D below 80nm, an abrupt
drop of the knotting probability was finally observed.

The insight offered by this equilibrium study was complemented by a study of
the dynamical mechanisms governing the spontaneous appearance and untying of
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FIGURE 3.3: Equilibrium knotting probability of DNA as a function
of channel width D and chain length, from [87].

knots in DNA chain inside nano-channels [95]. In this study the chain length L. =
4.8um was kept fixed and the channel width D varied, clarifying that by decreasing
D knots were suppressed due to a a shallower and more infrequent back-folding
process.

The latter study [95] did not clarified, however, the dynamical mechanisms re-
sponsible for the increase in the knotting probability increasing the chain length L...

To address this open question, I will use molecular dynamic simulations to char-
acterize chains of varying length, from 1.2 to 4.8um, inside a channel of fixed width
below the pyy.t crossover region. In particular, I will study the knotting dynamics
of the chain by evaluating the length dependence of the depth at which knots are
formed or untied, as well as the lifetimes of unknotted and knotted states.

The content of the chapter is based on Ref. [59].

3.2 Methods

3.2.1 Model and simulation details

DNA is modelled as a self-avoiding chain of IV beads of diameter equal to o, mapped
to a value of 2.5nm (equal to the hydration radius of double stranded DNA) and
endowed with a bending rigidity set by the phenomenological persistence length,
l, = 50nm. The chain potential energy is accordingly given by three terms:
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In the above expression, d; ; = |; — 7j| represents the distance between two beads
centers 7 and j, b; = 741 — 7; is the vector bond connecting two consecutive beads
of the chain and @ is the Heaviside function (f(z) = 0if z < 0 and #(x) = 1 if = > 0).
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e is the characteristic unit of energy of the system, set equal to the thermal energy,
kT.

Uy is a truncated and shifted Lennard-Jones potential accomplishing the ex-
cluded volume interaction between any pair of beads, including consecutive ones:
two beads start to repel if their distance is less than 2'/6¢, which correspond to the
minimum of the potential.

The FENE potential Urgng [96] is a spring potential that enforces the connectivity
of the chain, so that two consecutive particles cannot distance more than Ry = 1.50.

Ubend is the bending energy, which penalizing consecutive bond vectors that are
not parallel. The latter in particular enforces that the persistence length is the right
one at a given temperature.

In addition the chain is subject to the excluded volume interaction with the walls
of the confining channel of width D, and axis corresponding to the = Cartesian axis.
This interaction is described with a truncated and shifted Lennard-Jones potential

too:
N o 12 o 6 9
Uﬁmﬂ 212;346 <5i> — (51) +-Z

where §; = % — A; and A, is the distance of the ith bead from the channel axis.
The dynamical evolution of the chain (initially prepared in an perfectly straight
conformation lying along the channel axis), is described with a Langevin dynamics:

0(2"%¢ — §;), (3.2)

mi'; = —i; — VU + if (3.3)

where ~ is the friction and 77 is the noise, a Gaussian random variable with zero
mean and delta-correlated variance. The variance of each component of the noise

o% = 2vkpT satisfies the fluctuation-dissipation relation. We also choose m/vy =

2715, with 71,5 = a\/ m/e = 0\/ m/kpT being the characteristic simulation time (see
[96]).

We considered individual chains of N=480, 960, 1437 and 1922 beads (or equiva-
lently of contour length L. = 1.2,2.4,3.6,4.8um) confined inside channels of width
D = 56nm.

The dynamical equation is integrated numerically using the LAMMPS simula-
tion package [97], setting as customary kg7 = ¢ = 1, m = 1 and o = 1. We chose as
integration timestep 0.01277,7, sampling the chain configuration every 10° timesteps.

For each chain length we collected about 10 independent trajectory, covering a
total of 10!! integration time steps. For the case N = 1437 the analysis included 3
trajectories for a total of 3 x 1010 integration time steps that were originally collected
for the publication of ref. [95] . All other simulations were specifically carried out for
this study.

We can map time from simulation units to physical units considering the self-
diffusion coefficient of an isolated bead D = £2T and matching it to Dgsopes = 6:5%/2,
estimated by applying Stoke’s law to a bead of diameter ¢ = 2.5nm immersed in a
fluid of viscosity equal to water, n = 1cP. By using this nominal mapping (which
neglects hydrodynamic and wall-proximity effects), and assuming 7' = 300K, one
6mno’

€

obtains that 777 = = T74ns, or equivalently a single timestep 0.01277,; ~ 1ns.
Throughout the manuscripts we shall use this mapping to provide time in physical
units.



32 Chapter 3. Knotting dynamics of DNA chains confined in nanochannels

3.2.2 Knotting properties: type and location

To establish the knotted state of a given configuration, we first closed the open chain
with an auxiliary arc selected using the minimally-interfering closing procedure and
then detected the knot type with the Alexander determinant. These methods are
described in Chapter 1. In this way we assign a definite topological state to each
configuration sampled in the MD trajectory.

We enhanced the robustness of the identified topological state by establishing it
through a majority rule applied to 21 consecutive sampled conformations (each sam-
pled every 100us), following Ref. [95]. In this way, we removed ephemeral changes
of topology lasting for less than 1ms, that might be due to slight repositionings of the
chain ends during the trajectory, or to the uncertainty in the chain closure procedure
if one or both ends is buried, as occurred in proteins.

We also identified the portion of the chain that accommodates the physical knot
with the bottom-up approach. In this way we can infer the starting and ending bead
of the knot, along with its average position along the chain and the contour length
it occupies. In order to characterize in an absolute way the depth at which the knot
is present, we defined it as the shortest contour length between its average position
and one of the two terminal beads of the chain. So this value can range between 0
and L./2.

3.3 Results and discussion

3.3.1 Knotting probability

We analysed the dynamical evolution of knots in DNA chains of length L. = 1.2,
2.4, 3.6 and 4.8um individually confined inside a channel of width D = 56nm. This
width is comparable with the DNA persistence length, /[, = 50nm and hence lies at
the crossover between the de Gennes and Odijk metric scaling regimes, where chain
back-foldings are disfavored but not completely suppressed. Typical knotted and
unknotted configurations of the confined DNA are shown in Fig. 3.4.

- Y ¥ - % D=56nm
@) Le=1.2um

e N — e

(b) Le=4.8um

(c) 31 knot

FIGURE 3.4: Typical equilibrium configuration of the shortest (a) and

longest (b) chain considered in our study (L. = 1.2,4.8um) inside a

channel of width D = 56nm. The configuration in panel (b) accom-
modates the trefoil, or 3;-knot shown in panel (c).

In order to have an estimate of the knotting probability that is unbiased with
respect to the initial, unknotted, configuration we discard the set of samples preced-
ing the first knotting event; this ensures that the overall sampling is topologically
equilibrated and the unknotted events are independent on the initial configurations.
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The average knotting probability, pr,.:, was computed by computing the num-
ber of knotted configuration and dividing it by the total number of configurations,
sampled across all trajectories and at each value of L.. The resulting probability
profile is shown in Fig. 3.5a and displays a marked growth from 2% to 13% upon
increasing the chain length from 1.2um to 4.8um. This is qualitatively understood
with the intuitive argument that, at fixed D, longer chains can accommodate more
knots than shorter ones.

Although the limitations of the few dataset points should be borne in mind, pjt
appears to have a noticeable non-linear dependence on L. over the considered range
of chain lengths. In fact, its best-fit power law, pypor ~ aLg, shown in Fig. 3.5a, is
associated to the exponent b = 1.5 4+ 0.2. At all considered chain lengths, the most
abundant knot type is the 3, or trefoil knot, which represents between 76% (for the
longest chains) and 88% (for the shortest ones) of the knotted configurations.
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FIGURE 3.5: (a) Knotting probability, pinot, as a function of the con-
tour length, L., of the channel-confined chains. The dashed (green)
curve is the best-fit power law, aLl;, where a = 0.012 £ 0.004 and
b = 1.52 £ 0.24. The associated probability distributions of the knot
length [}, are shown in panel (b). The inset shows the contour length
dependence of various statistical properties of I, such as its mean
value (blue diamond) the median one (central red dash) and first and
second quartile (top and bottom red dashes). Notice that () levels
off as L. is increased.

A further relevant equilibrium property is the average knot length, (l;), which
is shown in Fig. 3.5b. It is noteworthy that, at the considered channel width D,
(lg) does not vary significantly across the various chain lengths. In fact, even the
normalised probability distribution of [ is well consistent at L. = 2.4,3.6,4.8um.
This represents a major qualitative difference with respect to the bulk (unconfined)
case where (lj;) is known to increase appreciably with L. following a sublinear trend,
(k) ~ Lt with t ~ 0.70 [32, 98, 99].

It is worth pointing out that the average knot length, which is about 1um repre-
sents a significant fraction of the contour length of the shortest chain.

3.3.2 Lifetimes of knotted and unknotted states

To clarify the relationship of chain knotting equilibrium properties with the dynam-
ics inside the channel, we analysed several observables.
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As a first step we analysed the length dependence of the duration of knotted
and unknotted states, which will be denoted with 7, and 7, respectively. These two
quantities are, in fact, directly related to the knotting probability through pin.: =
(1)/ ({T%) + (Tu)), where (- - -) denotes the average of different knotted or unknotted
intervals.
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FIGURE 3.6: Probability distribution of the time duration of knotted
(a) and unknotted (b) events. (a) For knotted states note that, as L.

increases, there are events that contribute to extend the tail of the dis-

tribution (long lived events) which decays approximately as 7, %, as

indicated by the black solid line. This decay was obtained by fitting

the data points for 7, > 10ms with a power-law. By contrast, the

longest duration of unknots does not significantly depend on L., see

panel (b), and the probability distribution decays approximately as
7., !, as indicated by the black solid line.

u

It is seen from Fig. 3.6 that the probability distributions of both knots and un-
knots lifetimes have a monotonically decreasing trend that is largely consistent at
the various chain lengths (particularly excluding the case Lc = 1.2um where the
chain length closely competes with the average knot length).

It is noteworthy that the decay of the knots curve is well described by a power
law, 7, 18 This, in turn, implies that, for any given L., the average knot duration is
dominated by the relatively rare long-lived knots rather than by the frequent short-
lived ones. At a general level, this observation crucially highlights the necessity to
collect extensive dynamical trajectories for a reliable characterization of the salient
knotting properties.

More specifically, the fact that in Fig. 3.6a the longest knot durations, i.e. the
curves endpoints, increase very rapidly with L. implies that the average knots life-
times should grow significantly with L.. By contrast, no appreciable length depen-
dence is observed for the lifetime of unknots, see Fig. 3.6b, so that the average dura-
tion of unknots is expected to vary only modestly with L.

These expectations are, in fact, supported by the direct calculation of the average
knots and unknots durations, which are shown in Fig. 3.7. As L¢ increases, the
lifetime of unknots gradually levels off with a decreasing trend, while the lifetime of
knots keeps increasing.

It should be noted that the growth of the average knots duration is paralleled
by the increase of its estimated error. This is consistent with the observation made
above that the average knots lifetime is mostly controlled by the longest-lived knots
which, as L. increases, require longer and longer simulations to be reliably sampled.
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FIGURE 3.7: Mean duration of knots (a) and unknots (b) as a function
of the contour length L.

3.3.3 Tying and untying dynamics of knots

The data presented so far aptly complement the equilibrium properties shown in
Fig. 3.5a (average knotting probability), by showing that, at a given (moderate) level
of channel confinement, the knotting probability increases with L. mostly due to the
increased lifetime of knots, while that of unknots varies to a lesser extent.

We can further clarify these properties by examining where, along the chain,
knots typically dwell, or are tied and untied. Notice that the tying and untying
event can be treated on equal footing because Langevin trajectories are statistically
time-reversible.

The data shown in Fig. 3.8a clarify that most events leading to the spontaneous
tying or untying of knots, occur close to the ends at a depth that is about independent
on chain length. The shown data clarify that the same conclusion is reached by
limiting considerations to knots with duration longer than 10ms (i.e. by excluding
the short-lived knots that, though frequent, do not contribute appreciably to the
average knotting probability).

By contrast, the average depth at which knots are observed during their whole
lifetime increases steadily with L., see Fig. 3.8b.

These two aspects can be seamlessly rationalised along with the recent results
of ref. [95], which focused on the knotting dynamics of chains of fixed length L. =
3.6um but confined in channels of varying width. The latter study of Micheletti
and Orlandini clarified the typical knotting mechanisms occurring at confinements
within the de Gennes-Odijk metric crossover region. These involve the formation of
a simple knot via back-folding at one of the chain ends and its subsequent stochas-
tic motion along the chain contour until it is eventually untied at one of the ends,
again via chain back-folding (possibly after accumulating and releasing additional
entanglement).

This observation, in fact implies that the lifetime of unknots, being the typical
waiting time between two knotting events, should depend on the rate at which sig-
nificant back-foldings of the ends are created. As this process is mostly localized
near the chain ends, the duration of unknots should be largely independent on L..
The lifetime of knots, instead, is largely controlled by their stochastic motion along
the contour of the chains that are elongated inside the confining channel. As a mat-
ter of fact, the behaviour is similar to the observed diffusive-like motion of knots in
mechanically-tensioned chains [100-105]. For this reason, knots that form in longer
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FIGURE 3.8: (a) Mean position at which knots are tied or untied (blue
diamonds), along with the corresponding median and first and sec-
ond quartile (red bars). The green squares indicate the mean depth
at which knots of duration longer than 10ms, are tied or untied. The
consistency with the mean depth computed over all knots suggests
that, at the given level of confinement, the duration of knots does not
significantly depend on the depth at which they are tied or untied. (b)
Mean depth of knots (blue diamonds) averaged over their entire life-
time, i.e. averaged over all sampled knotted configurations. Again
median, first and second quartile are shown as red bars. Notice the
increase of the average knot depth with the chain length. The knot
depth is calculated as the contour length separating the knot mid-
point from the nearest chain end.

chains can, on average, reach more deeply the inside of the chain, and this, in turn,
expectedly reflects in a significant growth of their lifetime with L.

An analogy can be drawn with a stochastic survival process where a particle,
representing the knot, is created at a position z inside a segment, representing the
elongated chain, covering the [0, L.| interval and then freely diffuses on it until it is
absorbed by one of the segment ends. In such case, it can be shown that the average
particle lifetime, 7, is proportional to (L. — x) [106] and hence grows systematically
with the segment length L.. In particular, in the special cases where z is located in
the middle of the chain or at a fixed small distance from a segment end, one has
that 7 depends, respectively, quadratically or linearly on L.. Although the analogy
holds only approximately (for instance because both the knot size and the chain
configuration evolve with time) the argument gives a heuristic support to the more-
than-linear increase of knots lifetimes portrayed in Fig. 3.7.

3.4 Conclusions

By using Langevin dynamics simulation we studied the spontaneous creation and
subsequent evolution of knots in coarse-grained models of DNA chains confined in
channels of fixed width D = 56nm. By varying the contour length L. of the chain
our simulations indicate that the duration of unknotted events varies only modestly
with L., while the average duration of knots (dominated by the relatively rare long-
lived knots) grows significantly with L..

4

4.5

5
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These properties can be rationalised by examining in detail the mechanism of
knot formation and evolution along the chain. In particular it is found that chain un-
knotting depends mostly on the occurrence of significant back-folding of the chain
ends, a process that is largely independent of L.. On the other hand knots, al-
though created /untied by the same back-foldings of the termini, subsequently move
stochastically along the chain and hence their lifetime increases in parallel with the
available contour length.

Based on these considerations one could predict that, at fixed D, the average
knotting probability, which depends on the interplay of knots and unknots lifetimes,
ought to grow with L, mostly for the increased knots lifetime. This prediction is
indeed in accord with the data of Figs. 3.6 and 3.7 and with the earlier conclusions of
ref. [95] which addressed the dependence of the nanochannel width on the knotting
unknotting dynamics of DNA strands of fixed contour length.
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Chapter 4

Pore translocation of flexible chains
with complex knots

In Chapter 3, I focussed on equilibrium knotting properties of DNA confined in
nano-channels. In this chapter, instead, I will focus on an inherently out-of-equi-
librium problem, that is the driven translocation through a nanopore of a knotted
flexible polymer chain.

The motivation for this study is provided by ongoing efforts to use nanopore
translocation as a means to sequence single-stranded DNA (ssDNA) filaments. The
contour length of successfully-sequenced ssDNA runs has increased steadily in pre-
vious years [107] and pushing it significantly beyond the current limit of 50Kbps will
inevitably lead to the frequent formation of knots. It therefore becomes of interest to
map out how different knot types will impact the translocation compliance of model
ssDNA chains.

This Chapter is organized as follows: after an introductory motivation and over-
view of the driven pore translocation of flexible chains, I will introduce our ssDNA
model, which is based on a general model for flexible polyelectrolytes. I will then
present the setup used to compare the translocation compliance of a wide range of
knot types, included composite ones. I will finally show that the rich and seemingly
disparate phenomenology can be captured in a seamless framework based on the
mechanism by which the tractive force is propagated along and past the knots.

The content of this chapter is based on the work published in Ref. [58].

4.1 Introduction

The driven translocation of filamentous molecules through narrow pores is increas-
ingly investigated in the context of polymer physics, molecular biology and single-
molecule experiments [15, 72, 76, 107-126]. This translocation process naturally oc-
curs in living organisms, where DNA [72, 127], RNA [128] and protein chains [129]
are actively driven through biological pores, but is nowadays exploited to develop
sequencing methods of single-stranded DNA filaments [107, 130-137] by measuring
the ionic current blockaded [137, 138], or the electrical current perpendicular to the
DNA backbone [135].

Because knots are inevitably formed in long equilibrated polymers [5, 45, 63, 139,
140], a relevant question is how the translocation compliance of a chain is affected
by physical knots which are too cumbersome to pass through the pore [14, 15, 57,
67-69, 114, 141-145].

As a reference term we recall that several studies have shown that the time 7,
required to translocate an unknotted chain through a narrow pore typically scales
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as 7 oc N1/ f [109-111], where f is the dragging force, N is the number of chain
monomers and v is the metric exponent of a self-avoiding polymer [146].

How this behaviour is affected by the presence of knots, was first studied by
Rosa et al. [142]. By considering the two simplest knot types, 3;- and 4;-knots, they
found a surprising behaviour: while at high driving forces the presence of a knot
jams the translocation process, at sufficiently low forces the translocation proceeds
unhindered, and is indistinguishable from the case of unknotted chains.

The results of Rosa et al. posed several questions. For instance: beyond the sim-
plest knot types, how does the translocation compliance vary with knot complexity?
Also: what is the precise mechanism responsible for the onset of the topological
friction, eventually leading to jamming, at high forces?

In this chapter, I will address these questions, especially regarding the mecha-
nism by which the tractive force is propagated along and past the knots. The mate-
rial presented is based on the study of Ref [58].

4.2 Methods

4.2.1 Model and simulation details

Inspired by the eletrophoretic driving of polyeletrolytes through nanopores [15, 107,
117, 121, 147-150] we model the translocating polymer as a flexible chain of beads
with screened electrostatic self-repulsion. Specifically we considered chains of N =
15,000 identical beads of diameter o and charge g.

In order to match single strand DNA (ssDNA) characteristics in a solution with
0.1M monovalent salt, it is possibile to set ¢ = 1nm, which is the nominal ssDNA
thickness with each bead corresponding to about three nucleotides, and ¢ = —1.5¢~
to the effective phosphates electrostatic charge, due to the counterions screening [151].

The chain internal energy consists of the sum of three terms: the chain connec-
tivity term, UrgnE, the electrostatic screened self-repulsion, Upp, and a truncated
and shifted Lennard-Jones potential for the steric effects, Uy, ;:

(@) () +
zg di,j 4
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Uy = 246173

1,J>1
N-1 d: - 2
Urexe = — 3 KR3ln 1—< P;) ] (4.1)
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d; j is the distance of beads i and j, while € is the energy unit and ¢; ; is equal to 2.33¢
for consecutive beads (j = ¢ & 1) and simply equal to € otherwise. In the Lennard-
Jones potential, § is the Heaviside function, while in the FENE potential the stiffness
is set to K = 70¢/0? and the maximum bond length is Ry = 1.50. In the Debye-
Hiickel potential, e, is the dielectric constant and Ap g is the Debye screening length.

The typical energy scale, ¢, is set to match the system thermal energy € = kgT,
while L = 1.6 and Apy = o, respectively. For o ~ Inm, a typical coarse-graining
level for polymers and biopolymers, these settings yield Bjerrum and Debye screen-
ing lengths of about Inm, comparable to properties of water solutions with 0.1M
monovalent salt at 7" = 300K.
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All model parameters were set to match those of the earlier study of pore translo-
cation of 3;- and 4;-knotted chain [142], except for the amplitudes of the bonding
potential energy constants between consecutive beads. The latter have been re-
duced in order to decrease the statistical fluctuations of the bonding forces, which
in equilibrium are roughly proportional to the square root of the potential curva-
ture at the minimum. In particular the FENE elastic constant has been reduced from
K = 300¢/0? to 70¢/0? , and the repulsive Lenard-Jones interaction between consec-
utive beads from 10e to 2.33¢, so that the location of the bonding potential minimum
remains unchanged. The limited bonding-force fluctuations are useful in the present
context as they reduces the statistical error of the average traction forces that will be
defined later on.

}y @ cis

TRANS

FIGURE 4.1: Schematic geometry of the nanopore of diameter D =
2.80 carved in a slab of height H = 100.

The pore is embedded in an impenetrable slab separating the cis (upper) and
trans (lower) regions, see Fig. 4.1, and is narrow enough for only a single strand to
pass through, thus preventing the passage of physical knots. The nanopore nominal
diameter and longitudinal span are set equal to D=2.80¢ and H=100, respectively,
compatibly with experimental setups [151, 152]. The interactions with the slab and
the pore are regulated by a truncated and shifted Lennard-Jones potential:
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where §; = % — A; and A; is the distance of the ith bead from the pore axis. This
setting leaves up a discontinuity in the borders of the pore, taken care by coating
them with beads, kept fixed in their position, and interacting with the chain beads
with their same Lennard-Jones potential.

The translocation is driven by a uniform longitudinal electric field active only
within the pore and which pulls each bead inside it with a force f. The unit force ©
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corresponds to about 4pNN in real units.

The dynamical evolution of the chain is described with a constant-temperature
Langevin dynamics, already mentioned in Chapter 3, and integrated with the
LAMMPS [97] simulation package with default, standard parameters and with inte-
gration time step equal to 0.00577, 7, where 77,7 = U\/? is the characteristic Lennard-
Jones time unit. If we compare the diffusion of a single bead with Stokes law in
water for a particle of 1nm diameter, 777 corresponds to about 4.5ns in real unit.
The Debye-Hiickel potential has a cutoff set at 6o.

The translocation is followed for a timespan sufficient to reach (and often over-
come) the reference translocated fraction of the chain, z = 0.3. Depending on the
force and knot topologies, the required timespan ranges from 1037, ; to 1077. For
computing various observables we considered instantaneous snapshots sampled ev-
ery 5007..

All the results will be presented in simulation units.

4.2.2 Setup of initial configurations

The translocation process of a knotted chain, accommodating 3;- or 4;-knots, has
been previously studied by Rosa et al. [142]. In equilibrated flexible chains, knots are
located in the interior of the chain and can span thousands of monomers. For such
typical configurations, at least two distinct regimes are observed as translocation
progresses.

In the first regime, the mechanical tension propagates along the chain until it
reaches the knotted region, and drags and tightens it at the pore entrance. Through-
out this timespan, whose duration depends on the position and length of the knot,
the translocation is essentially the same as for an unknotted chain.

After this first stage, the translocation can be hindered or jammed completely, if
the dragging force causes a large enough friction in the tight knot trapped at the pore
entrance (due to tightly interdigitating or interlocked chain monomers). The overall
frictional effect would be qualitatively similar to the one observed in two tied ropes
that are pulled apart [102].

These two distinct translocation stages are clearly observed in Fig. 4.2, which
shows the translocation traces of two equilibrated chains tied in a 3;- and 5;-knot
(generated with Monte Carlo sampling [27]).

For our study we wished to focus on the second stage, because it is dominated by
topological friction, unlike the first stage that is more dependent on the chain geom-
etry, which clearly varies from sample to sample. For this reason, we prearranged a
tightened versions of the knots of our interest at the pore entrance, and attached to
such leads (typically 100-monomer long) various instances of equilibrated — unknot-
ted — chains generated with a Monte Carlo sampling procedure. A typical setup is
illustrated in Fig. 4.3.

For each lead topology we considered at least 5 independent, equilibrated con-
figurations of the attached chain. For the purpose of computing averages and statis-
tical errors, data from different trajectories are treated as statistically independent.
Finally, to avoid including the initial transient in the observables, the initial time
interval of 500077,y was disregarded.
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FIGURE 4.2: Driven translocation of equilibrated knotted chains ac-
commodating 3;- and 5;-knots. The initial configurations of these
knotted chains were obtained by Monte Carlo sampling. Hence, the
position and length of the knots are dictated by canonical equilib-
rium. In particular, (a) shows the initial configuration for the tre-
foil knot, highlighted in green, before being pulled inside the pore
through the slab, in gray. The translocation process at f = 5¢/o is
characterised by the time evolution of the translocated fraction of the
chain (c), z, and of the position of the knot along the chain contour
(b). The knot position is conveyed by the relative location on the
chain contour of the two ends of the knotted region. For each knot
type, two distinct translocation regimes are readily visible. The first
one covers the time span required for the knotted region to reach the
pore entrance, where it becomes tight. The duration of this timespan,
where the behavior is the same as for unknotted chains, is different for
the two chains because their knots are in different chain locations. Af-
ter this transient, the translocation is hindered by the tightened knots.
The different topological friction associated to 3; and 5; knots is read-
ily noticed.

FIGURE 4.3: Initial configurational setup, composed in sequence by a
short lead, up to 100-beads long (in yellow), a tight knot (in red), and
an equilibrated unknotted chain (in green).
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4.2.3 Considered knot types

The considered repertoire of knots is sketched in Fig 4.4 and extends significantly be-
yond the 3; and 4, instances considered in Ref. [142]. The set is ordered for increas-
ing nominal complexity, i.e. the number of crossings in the minimal two-dimensional
projection, which is generally a key determinant of topological friction [100-105, 114,

153, 154].

»g’ TRANS‘ 7‘]7 T]fi

FIGURE 4.4: Snapshot of an early stage of translocation of a knotted
chain. Inset: repertoire of knots prepositioned at the pore entrance.
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The repertoire of knots includes a sizeable number of representatives from the
two main topological families of simple prime knots: twist knots and torus knots,
introduced in Chapter 1. The former group includes the 31, 41, 53 and 6; knots, while
the latter includes the 31, 51, 71 and 9; knots. Notice that the 3; topology appears in
both classes.

In addition, we consider composite knots resulting from the serial addition of
prime knots. We recall that composite knots are the most common form of entangle-
ment in sufficiently long chains [27].

The position of knots was detected in the usual way using the Alexander poly-
nomial and the bottom-up approach to identify the shortest portion accommodating
the chain.

4.3 Results and discussion

4.3.1 Translocation compliance for different knot types

The translocation compliance across the knots repertoire was studied for values of f
in the 0.1-8 ¢/ range.

The results are shown in Fig. 4.5 and pertain to the average translocation veloc-
ity, v, measured at z = 0.1,0.3,0.5, with z being the chain fraction already passed
through the pore. The behaviour is analogous independently of the reference chain
fraction.

The reference case of unknotted chains is always shown in a separate panel, be-
cause of its wider range of velocities, and v has the expected linear dependence on
f at fixed z [109].

By contrast, the knotted chain translocation speed presents several unexpected
tiers of complexity upon varying both the applied force and the knot type.

First, at any of the considered forces, the average velocities do not systematically
decrease with knot complexity. Secondly, only few of the prime knots display the
non-monotonic v versus f dependence signalling the onset of jamming. These are
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FIGURE 4.5: Average translocation speed, v, measured, at 10%,30%
and 50% translocated fraction, for various applied forces, f. Across
all cases the relative error on v is always smaller than 10% and equal
to ~ 5% on average. The behaviour is analogous in the three cases
shown. Only minor differences are discernible for the x = 0.1 case
when the translocation time is short enough to compete with the ini-
tial transient during which the system adjusts to the sudden appli-
cation of the electrophoretic force at the beginning of the simulation.
Also, because of the exceedingly slow translocation process of some
jammed knots, the data for some forces are not present for x = 0.5
due to incomplete translocations.

knots belonging to the twist family. Even increasing the force applied to each of
the about 10 beads in the channel up to f ~ 8¢/o, the largest that FENE bonds can
withstand in the simulation protocol, the onset of jamming is not seen for the 54,
71 and 9; torus knots. To our knowledge, this interesting qualitative dicotomy has
been previously found only in a specific context, namely for low- or moderately-
tensioned knotted chains in a surrounding fluid (with 3; knot behaving as a torus
rather than as a twist knot) [153, 154]. In these cases torus and twist knots still have
comparable mobilities, while here their high-force translocation velocities can vary
by an order of magnitude, see Fig. 4.5.

Finally, the translocation behaviour of compositely-knotted chains is unexpect-
edly rich and intriguing, too. In fact, their hindrance can be comparable and even
lower than for chains hosting only one of their components, see e.g. 31#3; vs 31 and
61#31 vs 31, and it is distinctly non-commutative in the knots order, see 6;#3; vs
31#61. Morover, the sequential order of the initially separate and tigthened prime
components is preserved at all times in our simulations. In fact, the applied forces
and pore/slab impenetrability prevent the prime components from fluctuating in
size enough to pass through each other, unlike what can happen in untensioned
chains [155].

We notice that the considered forces are all large enough to have prime knots
stay closely localised at the pore entrance. This is clearly illustrated in Fig. 4.6 which
shows the distance of the first bead of the knotted region from the pore (Fig. 4.6a)
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and the contour length of the knotted region too (Fig. 4.6b). For composite knots,
the first knot component nearest to the pore remains tightened, while the second
one feels a lower pulling force increasing f. This is reflected by observing a growth
in the knot length, see Fig. 4.6c.
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FIGURE 4.6: (a) Distance from the pore of the first bead of the knotted
region and (b) knot length for prime knots as a function of the pulling
force f. The contour length of few composite knots is shown in panel

(o).

4.3.2 Traction force before and past the knot

These seemingly disparate properties can be quantitatively accounted for by a seam-
less framework based on how the driving force is propagated along and past the
knot trapped at the pore entrance.

Following the spirit of the Euler-Eytelwein analysis of tension and friction in a
rope wound around a capstan [156] we profile the relationship between the chain
tractive force measured immediately before and after the knot (or simply before and
after the pore for unknotted chains). These two key quantities will be denoted with
tin and t,u respectively. The former is obtained by multiplying f by the average
number, n ~ 10, of beads in the pore: t;, = n f, and is clearly constant during
the translocation process. t,,; is instead the average tractive force experienced by
chain beads immediately past the knot and is measured directly. For one of these
beads, with index i, the instantaneous traction is obtained by computing the total
deterministic force exerted on it by all preceding beads, 1,2,...7 — 1 (index 1 is for
the chain terminal primed in the pore lumen at the beginning of the simulation) and
by projecting it on the i, + 1 bond direction.

To reduce statistical errors, ¢, is averaged over the simulation time and over the
first ten beads of the region immediately past the knot (or past the pore for unknotted
chains). The error on ¢, is estimated by treating as independent the average tractive
forces computed for each run. The fact that t,,; does not vary appreciably during
the translocation is confirmed a posteriori, see Fig. 4.7.
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FIGURE 4.7: t,,; measured at fixed translocated fraction, z, for un-
knotted and trefoil-knotted chains.
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FIGURE 4.8: (a) Average chain tractive force at the beginning (¢;,)

and end (¢,y:) of various prime knots. Beyond the circled data points

chain breaks occur systematically. Sketch: the tractive force, t,,:, on

the yellow bead immediately past the knot is given by the total longi-

tudinal force exerted on it by the preceding part of the chain (circled,

green). (b) Translocation speed at 30% translocated fraction versus
tout for all considered prime knots.

The relationship between ¢;, and ¢, is shown in Fig. 4.8a for all considered
prime knots. The significant reduction of the transmitted traction operated by any
of the prime knots vividly emerges from the comparison with the unknotted case.
More important, however, is the substantial spread of the output traction across the
knots repertoire. This heterogeneity originates from the very diverse response of
torus knots from twist ones. It is clearly the latter that produce the largest topolog-
ical friction and, due to the rapid decrease of ¢, with t;,, can eventually halt the
translocation process at the largest applied forces, unlike torus knots.

The force transmission, or force reduction, curves, which to our knowledge have
not been previously introduced in this context, are key to characterize the varied
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behaviour of prime knots in Fig. 4.8a, and to predict that of composite ones.

To this end we note that the complex translocation phenomenology across all
knots in Fig. 4.8a is underpinned by a simple linear relationship between v and
tout, see Fig. 4.8b. Notice that the data include the case of unknotted chains too.
Therefore, the behaviour of chains accommodating very different knots is practi-
cally equivalent to that of an entanglement-free chain translocated by a total force
equal to toy.

4.3.3 Tension and strain inside the knotted region

The detailed mechanisms governing the dissipative transmission of traction along
the knot contour can be gleaned from the bond strain profiles of the chain portion
near the pore.

To compute the bond strain profile we first consider each instantaneous con-
figuration and assign to each bead a sequence index relative to its pore proximity.
Specifically, for each sampled configuration, the cis bead closest to the pore entrance
is assigned index 0; the other beads are then sequentially indexed, with trans bead
having negative indexes, and cis beads having positive ones. Clearly, this relative
indexing is dynamical, in that it changes during the translocation process. The bond
strain profile is then computed by averaging, over all sampled configurations, the
length of bonds connecting beads with the same relative indexing.

bond index

FIGURE 4.9: Profile of the average length, d, of chain bonds proximal

to the pore for three types of knotted chains pulled at f = 5.5; in-

dex zero denotes the first cis bond. Bonds with the peak elongation
(circled) are highlighted in the snapshots.

Typical examples are shown in Fig. 4.9 and additional ones are provided in
Fig. 4.10. Compared to the smoothly decreasing strain of the unknotted case, the
strain profile is riddled with peaks in the knotted region and falls to negligible val-
ues immediately outside it. Unlike equilibrated chains pulled at both termini [157],
the peaks profile is noticeably asymmetric with respect to the knot midpoint, with
the highest strain occuring almost invariably at the pore entrance.
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Considering that the bond strain reflects the chain self-friction along the knot
contour, one may envisage that the largest dissipation of the input traction should
occur at the point with the highest strain.
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FIGURE 4.10: Strain profiles for different prime knots and for unknot-
ted chains too. The same scale is used in all plots.

This is confirmed by Fig. 4.11a where the topological friction, as captured by the
traction reduction coefficient, r = tout/tin, is plotted against the maximum (peak)
bond extension, d;,.,. Again, the behaviour of torus and twist knots are neatly sep-
arated, and the dispersion within either of the two families is much reduced com-
pared to Fig. 4.8a.

Mapping out the strain peaks on the actual conformations of the tightened knots
clarifies the origin of the major difference between torus and twist knots. As exem-
plified by the snapshots shown in Fig. 4.9, torus knots have a single region, namely
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FIGURE 4.11: (a) Traction reduction ratio, r = tout/tin, versus the
maximum bond length, d;;,q,. The dashed line is the fit of the torus
knots data points using, empirically, a double-exponential: r(d) =
0.57 exp[—(d — d°)/0.020] + 0.34 exp[—(d — d°)/0.23] with d° = 0.97.
(b) Predicted versus measured traction reduction ratio for twist knots.

the knot entrance, where the strain peaks overcome the reference profile of the un-
knotted case. Twist knots instead have two distinct regions: the knot entrance plus
the exit.

This suggests that the much higher hindrance offered by twist knots results from
the combination of two distinct dissipative mechanisms, as opposed to the single
one of torus knots.

To verify this hypothesis we parametrize the functional dependence of the trac-
tion reduction ratio of torus knots, r versus d,,q,, see dashed line in Fig. 4.11a, and
used it to predict the traction drop of twist knots. Specifically, we assumed for sim-
plicity that the two distinct friction regions are independent and acting as the single
friction point of torus knots. Accordingly, the predicted traction reduction of twist
knots is given by the multiplicative composition of the individual frictional effects:
Tpred = 7(d1) - 7(d2) where d; and dy are the peak bond elongations at the knot en-
trance and exit.

As shown by Fig. 4.11b, the predicted traction reduction is in very good agree-
ment with the measured one. We note that the predictions are practically determin-
istic, since no tunable parameter is involved. This further supports the use of the
traction reduction at highly-strained points as the dominant mechanism for captur-
ing and unifying the observed disparate phenomenology of Fig. 4.5.

Indeed, the same concept can be used to predict, and hence rationalize the two
key features of the overall hindrance offered by composite knots, namely that it can
be smaller than that of their individual components and that it is non-commutative,
see Fig. 4.5.

Notably, both aspects are straightforwardly recovered from the peak strain anal-
ysis or equivalently and more simply, from the traction transmission curves of prime
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knots.

4.3.4 Prediction for composite knots

The same concepts used for the predictions for Fig. 4.11 can be transferred to com-
posite knots, by assuming that the global output traction of composite knots, shown
in Fig. 4.12a, mostly results from the multiplicative combination of the frictional ef-
fects of their prime components when these are tightened separately and kept in
contact near the pore entrance by a pulling force.

For instance, for given f (and hence t;,) the predicted output traction of the
31#61 knot is obtained by using the curves in Fig. 4.8a to (i) establish the tractive
force tou:,3, immediately past the first (31) knotted component, then (ii) using it as
tin for the second (61) component, and finally computing the corresponding t,.:,
which yields the predicted output force. Notice that this scheme is intrinsically non-
commutative and hence has a priori the potential of accounting for both of the afore-
mentioned effects. Indeed, the predicted output forces are in very good agreement
with the actual measurements for all considered composite knots, see Fig. 4.12b.

We emphasize that the predictions are based only on a spline interpolation of the
data in Fig. 4.8a with no free adjustable parameters.

4.3.5 Conclusions

In conclusion, we have shown that the complex and varied phenomenology of knot-
ted chains translocation can be seamlessly captured in a transparent, quantitative
framework based on the mechanism by which the tractive force is propagated along
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and past knots. This scheme, here studied for a generic model of flexible polyelec-
trolytes, ought to be useful in applicative contexts such as nanopore translocation of
nucleic acids filaments [15, 107, 117, 121, 137, 147-150], especially the flexible single-
stranded ones. In particular, it could be useful for inferring the general topology
of chains based on their translocation response or for harnessing their topological
friction to optimally reduce and control their translocation speed.
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Chapter 5

Pore translocation of knotted DNA
rings

In this Chapter, I will dwell further on the driven translocation of knotted polymers
through a nanopore, but I will shift the focus from fully-flexible chains (Chapter 4)
to semi-flexible ones.

As 1 discuss below, the main motivation for such extension is a recent set of
groundbreaking experiments that have allowed Dekker and co-workers to profile
with unprecedented detail the properties of knotted DNA molecules pulled through
solid-state nanopores [15]. More precisely the DNA knotting features were estab-
lished indirectly from the time-modulation of the ionic current flowing through the
pore.

Here, I will report on the use of a detailed mesoscopic DNA model to reproduce
in silico the typical experimental conditions and show how the results can be used
to improve substantially the interpretation of experimental measurements as well as
indicating promising directions for more advanced characterizations.

The results I will present have been recently published in Ref. [158], which pro-
vides the basis for the present chapter.

5.1 Introduction

In a breakthrough experiment [15], Plesa et al. used an electric field to drive sponta-
neously knotted DNA chains of 2, 20, 50 and 160 Kbps through solid state nanopores
with diameter between 10 and 20nm, measuring the recurrence of knots. Unlike pre-
vious techniques, such as gel electrophoresis, which can be used to identify knots in
DNA chains of up to 10Kbps, nanopores can in principle be used to detect knots in
DNA filaments of arbitrary length.

In the experiments, the pore size was purposely chosen to be smaller than the
DNA persistence length, [, = 50nm, and yet wide enough to accommodate several
double-stranded DNA (dsDNA) strands, so that knots could pass through it rather
than being trapped at the pore entrance.

A surprisingly rich phenomenology emerged from the analysis of the main mon-
itored observable, namely the time-dependence of the ionic current amplitude. As
it is shown in Fig. 5.1, the inspection of the ionic current modulation allowed for
timing when the chain entered and exited the pore, whether the chain translocation
was accompanied by a knot-passage event, when exactly the latter occurred and
how long it lasted.

These measurements carry a wealth of information about the knotting properties
of DNA. Arguably, the most direct information regards the DNA knotting probabil-
ity in equilibrium, which is given by the percentage of chain translocation events that
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FIGURE 5.1: a) Probability distribution of the elapsed time at which
the pore was obstructed by the passing knot. b) Duration of the ob-
struction event. From [15].

bear the distinctive drop in ionic current that is the hallmark of a (multistrand) knot
passage event. Other properties of interest, and particularly the contour length of the
knotted region and its positioning along the chain — for which theoretical predictions
have been made [159] — can be related only indirectly to the timing measurements.

These considerations motivated our study [158], based on molecular dynamics
simulations of oxDNA, an accurate mesoscopic DNA model [160-164]. Specifically,
we investigated in detail the translocation process and put forward novel interpre-
tative schemes for the associated interplay of DNA geometry and topology.

5.2 Methods

5.2.1 Model

For an accurate, mesoscopic description of double-stranded DNA we used oxDNA [161-
164]. In this model, depicted in Fig. 5.2, each nucleotide is described by three inter-
action centers kept in a precise, rigid, geometrical relationship. The potential energy
includes terms that account for the chain connectivity, bending rigidity, base-pairing,

Base stacking site

/

Normal
vector

Backbone /base Hydrogen Bonding /
repulsion sites cross-stacking site

FIGURE 5.2: On the left, a duplex as represented by the oxDNA
model. On the right, detailed structure of a single nucleotide, com-
posed by three interaction centers rigidly connected. From [160].
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screened electrostatic interactions and stacking effects. These terms are parametrised
to reproduce the salient structural and equilibrium properties of nucleic acids fila-
ments, such as the helical pitch, persistence length, and torsional stiffness of double-
stranded molecules, at various values of the system temperature and salt concentra-
tion, here set to 7" = 300K and 1M NaCl, respectively.

The simulation unit length corresponds here to ¢ = 0.85nm. The nanopore is em-
bedded in a slab 10nm wide and 10nm long, parametrized with the same potential
used in Chapter 4.

We carried out Langevin dynamics simulations at constant-temperature 7' =
300K, without hydrodynamic effects, with a time step of 0.00577,;, where 77,5 is the
standard Lennard-Jones time unit for the simulations. We set the simulation param-
eter as the system’s default.

An approximate mapping with real time can be obtained by measuring the dif-
fusion coefficient of a small oxDNA fragment of 4bps D = 0.31 %, with shape re-
sembling a sphere of about 1.27nm, and matching it with the diffusion coefficient in
water for an actual bead of the same diameter D pres = 3- 10_10%2. The comparison
yields 77,7 ~ 0.7ns.

The translocation is driven by a longitudinal electric field exerting a force of
0.2pN on each nucleotide inside the pore. This value was selected after the experi-
ments of Ref. [165], where the total pulling force applied on a 48Kbps chain through
a pore, with a 100mV electric field and in 1M NaCl solution, was about 24pN. Be-
cause the average number of nucleotides occupying the pore at any given time is
120, this correspond to have each nucleotide pulled with 0.2pN.

For simplicity, we neglect the action of the field outside the pore [166, 167] that,
in actual realizations, can facilitate the capture and pore insertion of the knotted
chains [112, 168, 169].

5.2.2 Setup of initial configurations

The initial conformations of the 10Kbp-long DNA rings to be translocated through
the pore were obtained with a three-tier modelling procedure.

First, we used a topology-unrestricted Monte Carlo scheme to sample efficiently
the conformational space of 10kbp-long DNA rings in equilibrium in bulk and then
extract a posteriori tens of distinct (uncorrelated) knotted instances.

For such stochastic exploration we resorted, as is customary [12, 27, 170], to mod-
elling the DNA rings as rings of 340 cylinders. The length of the cylinder axis was
set equal to 10nm, while the cylinder diameter was set to 2.5nm, see Fig. 5.3a. Non-
consecutive cylinders are subject to excluded volume interactions, while consecutive
cylinders interact via a bending energy term whose strength is appropriate to repro-
duce the know DNA persistence length, [, = 50nm. At these ring lengths, the knot
spectrum is vastly dominated by trefoil knots [62, 145, 170], and hence we singled
out from the MC sample tens of uncorrelated trefoil-knotted rings.

These rings of cylinders were then subjected to a first level of fine-graining, by
lining the centerline of the cylinders with contacting beads of nominal diameter
equal to 0.34nm, the typical basepair distance. The resulting ring of beads, whose
potential energy again included steric interactions and a bending rigidity matching
the DNA known persistence length, was next relaxed with a Langevin molecular
dynamics for a time interval of (10*7;;). The stochastic dynamics was integrated
with the LAMMPS software package, with a protocol analogous to that described in
Chapter 3. An example of the resulting relaxed configurations is shown in Fig. 5.3b.
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a) Chain of cylinders b) Intermediate fine-graining ¢) OxDNA model
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FIGURE 5.3: Three-step procedure to obtain the initial conformations.

a) Chain of cylinders, obtained by the Monte Carlo sampling, with

each cylinder corresponding to about 30 nucloetides. b) Chain of

beads, with each bead corresponding to a single base-pair. c) OXDNA
starting configuration, formed by a double-helix.

The ring of beads were finally fine-grained at the level of the oxDNA model, by
interpolating the centerline of the chain of beads with two model DNA strands, see
Fig. 5.3c.

Note that, because the experiments were carried out on nicked DNA, the model
oxDNA configurations that we sought to generate had to be torsionally-relaxed. For
unknotted rings arranged in a planar circle, this prescription amounts to introducing
1 turn of the double helix every 10.5bp. For our 10kbp-long rings, this corresponds
to a total twist of T'w = 952 turns.

For a general unknotted chain, placed on a plane, Tw also coincides with the total
linking number Ly, because the writhe amounts to zero Wr = 0 and the general
formula Ly, = Tw + Wr holds [171]. In the general case of unknotted non-planar
configurations, however, the writhe will be different from zero, and the twist needs
to be computed as Tw = Ly, — Wr.

For knotted chains, that can never be arranged as a planar circle, a further cor-
rection term to the formula connecting link, twist and writhe is needed [172], and
corresponds to the subtraction of the chain’s average writhe [173].

We therefore used these prescriptions to impose the correct number of turns on
each chain of beads, to obtain torsionally-relaxed double-stranded oxDNA rings.
The writhe was calculated using the numerical recipe of Ref. [174]. The global twist
was equally divided along all the bases, with the helix constructed again using the
method of Ref. [174].

To mimic experiments, such rings were finally nicked by removing one base from
a single base-pair of the chain, as in typical experiments [15, 165]. This implies that
only a ssDNA filament has a full chain connectivity. We verified a posteriori that the
oxDNA rings remained structurally stable during the simulation, and did not fray
at the nicks.
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FIGURE 5.4: Typical configuration of a knotted double-stranded DNA

ring translocating through a nanopore. The knot approaching the

pore entrance is highlighted in the inset. The ring, which is modelled

with oxDNA, is 10Kbp-long and the pore, which is 10nm wide, is em-

bedded in an impenetrable 10nm-thick slab. A translocating force of
0.2pN is applied to each nucleotide inside the pore.

The lowest z-axis nucleotide was chosen, for simplicity, as the starting root of
the translocation process, and was positioned over the pore by translating the whole
chain. We then applied a small extra electric field outside the pore, in order to pull
the first base-pairs inside it, and turned it off during the normal translocation proce-
dure.

The translocation dynamics was studied for 50 different equilibrated knotted
DNA configurations. A typical configuration is shown in Fig. 5.4. The simulations
were carried out using GPUs [163], and each run required about 100 computational
hours.

5.2.3 Observables

The passage of a knot, or of its essential crossings, through the pore was revealed
by monitoring the number of nucleotides inside the pore and detecting increases by
more than 30% from the baseline value, which is about equal to 60bp. This threshold
criteria, which was validated by supervised visual inspection, was also used to es-
tablish the duration of the time interval associated to the passage of the knot through
the pore.

For each instantaneous configuration, the location of the knot was identified with
a bottom-up search, described in Chapter 1, identifying the shortest portion of the
ring that, after suitable closure, has the same topology of the original ring. The
search is limited to the trans or cis parts of the rings, respectively, depending on
whether the knot has or has not already translocated through the pore.



58 Chapter 5. Pore translocation of knotted DNA rings

5.3 Results and discussion

5.3.1 Translocation dynamics overview
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FIGURE 5.5: a) The time required to translocate a fraction x of the
knotted DNA rings is shown for 50 independent simulations (red
curves). The black points show the average (t) versus x curve. b)
The waiting time curve, w = % highlights two main regimes cor-
responding to the tension propagation along the chain (z < 0.5) fol-
lowed by the translocation of the rectified chain tail (x 2 0.75). The
dashed and dotted lines are best fits based, respectively, on w o« =
(yielding o ~ 0.32) and w (1 — z).

For a first, general characterization of the process we profiled the translocated
fraction of the chain, z, as a function of the elapsed simulation time, ¢. This depen-
dence is shown in Fig.5.5a where, as customary;, it is presented as a ¢ versus z plot.
The red curves cover the individual trajectories while the filled points represent the
average curve.

Fig.5.5b shows, instead, the so-called waiting time [175], w = dt/dz, i.e. the
inverse of the translocation velocity, whose profile clearly outlines the two known
main translocation regimes [112, 175, 176].

The first part of the curve, for < 0.5, corresponds to the tension propagation
along the chain, which itself presents an articulate phenomenology [177-179]. For
chains that are asymptotically long and free of entanglement, theoretical scaling ar-
guments predict a power-law behaviour, w o z¥, where v = 0.586 is the metric
exponent for self-avoiding walks [109-111, 175, 177, 180], while smaller effective
exponents are expected for chains of finite length [175, 181]. Fig. 5.5b shows that
data points for the 10Kbp chains are indeed well fitted by a power law, and the
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effective exponent, 0.32, is close to what previously reported at comparable DNA
lengths [182].

At x ~ 0.6 the tension propagation regime crosses over to the tail retraction
regime. In this stage the still untranslocated remainder of the chain, which is fully
rectified, accelerates towards the pore. Because the pore is large enough to let the
whole knot pass through, this second stage too follows the behaviour expected the-
oretically, w o (1 — x) [175].

In real time units, the typical translocation time for the 10Kbps DNA chain is
t = 400us. Using the same scaling law ¢ oc '™, we can extrapolate this time to 5ms
for longer chains of 50Kbp, which compares well with experimental measurements
available for this chain length [165].

5.3.2 Statistics of knot translocation events
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FIGURE 5.6: a) Time evolution of the chain fraction that is inside the

pore, Az (red), and that has already translocated through it, = (blue).

An absolute scale in base-pairs for  and Az is also provided for the

semi-log plot. The knot passage event is highlighted in panel b) and

its time of occurrence, t*, is defined as the midpoint of the time in-

terval At* during which Az exceeds by more than 30% its baseline
value.

Inspired by experiments, we detect the passage of the knot through the pore by
monitoring the degree of obstruction of the latter. During such event, in fact, the
pore lumen must accommodate up to four double-stranded filaments, instead of the
usual two, see sketches in Fig. 5.6a.

We accordingly monitored the time evolution of the chain fraction inside the
pore, Az, which is shown in Fig. 5.6a. The pore obstruction caused by the passing
knot is indeed signalled by a bump that stands out against the Az baseline, see
Fig. 5.6b. Notice that this major pore obstruction event is preceded by a smaller
signal burst caused by the knot partially entering the pore and then retracting from
it. Such translocation attempts affect about 50% of the trajectories. Their occurrence
arguably depends on frictional effects arising from the geometry of the knot and the
direction with which it engages the pore.

Various observables of interest, related to those monitored in the experiments
of Ref. [15] can be derived from the analysis of the Az profile: the fraction of the
translocated chain at which the pore-obstruction event takes place, 2*, the elapsed
time at which it occurs, t*, and the temporal duration of the event, At*. The proba-
bility distribution of z*, t* and At* are shown in Fig. 5.7a-c.
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FIGURE 5.7: a) Probability distribution of the translocated chain frac-

tion at the passage (pore obstruction) event, «*. b) Probability distri-

bution of the normalised time of knot passage, t* /t;o:. t* is the time of

occurrence of the pore obstruction event and ¢ is the total translo-

cation time. Given the monotonic relationship between ¢* and z*, this

distribution complements the one in a). c) Probability distributions of
the event duration of the translocation process, At*.

The key features are two. First, the distribution of z* (Fig. 5.7a) is skewed to-
wards large values of z*, and the same holds for the distribution of ¢t* (Fig. 5.7b),
because t* and z* are monotonically related. In fact, passage events are virtually
absent for * < 0.3 and the distribution is prominently peaked at z* ~ 1. Secondly,
the distribution of the obstruction duration At* (Fig. 5.7c) has an overall decreasing
trend, with the shortest obstruction events (which have a minimum duration of 300
71.7) being the most probable too. Both these features match the ones reported by
Plesa et al., see Fig. 5.1.

This consistency of the experimental and theoretical distributions for z* and At*
is noteworthy given the different contour lengths considered here (10Kbp) and in
the experiment (20Kbp or longer). This underscores the robustness of the effects ad-
dressed with either of the two approaches. The agreement also gives confidence for
using the model to gain insight into aspects that cannot be directly accessed with
current experiments. These primarily include various properties of the knotted re-
gion, which we discuss in the following.

5.3.3 Knot translocation modes

As we discuss, both the position of the knot along the chain contour and its size affect
the At* and z* distributions in ways that are much richer than previously suspected.

A particularly intriguing relationship is found between the pore obstruction du-
ration, At*, and the size of the knotted region, l;, when it arrives at the pore. We
recall that, as customary, the knotted portion is identified as the shortest portion of
the chain that, upon closure, has the same topology of the entire ring. A scatter plot
of the two quantities is presented in Fig. 5.8a, where two relevant features are noted.
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FIGURE 5.8: a) Scatter plot of the knot length at the pore obstruction
event, l;(z*), versus the duration of the event itself, At*. b) Knot
length at the beginning of the translocation process, /;;(0), and at the
pore obstruction event, I, (z*). Data points are divided in two classes
based on whether the knot at the beginning of the translocation strad-
dled (green) or not straddled (blue) the site antipodal (on the ring
contour) to the translocation initiation site, see main text. For the first
group, the pore obstruction event practically involves only the essen-
tial crossings of the knotted region, which spans both translocating
filaments, see panel c. For the second group, the pore obstruction is
caused by a single-filament knot, see panel d. e) Knot length I, during
pore obstruction at «*. Data points for double-filament knots follow
closely the curve I, = lchain(l — 2*) (solid green line), while for the
other points [}, is about constant and equal to 160bp. f) Scatter plot of
At* against the waiting time w* at the time of passage.

First, the datapoints occupy an L-shaped region. Secondly, for either arm of this re-
gion the correlation between At* and [}, is rather weak. Both aspects are not intuitive
and, in fact, had not been previously predicted nor envisaged.

The analysis of the trajectories showed that the distinct arms in the diagram of
Fig. 5.8a originate from two different modes of knot translocation, as described be-
low.

In the first mode the knot is tight and localised on one of the two translocating
filaments, see Fig. 5.8d. This is the most intuitive type of knot passage and, in fact,
it was the mode of choice used in Ref. [15] to interpret the experimental data on At*
and thus obtain a mapping between pore-obstruction time and knot length. By using
a linear mapping, Plesa et al. were able to conclude that knots could be rather tight
upon translocation, spanning an arclength of tens of nanometers, hence comparable
to the DNA persistence length. This result was further put in the context of the
elegant theory of metastable knots, which predicts knot localization based on the
fact that, in the otherwise broad distribution of knot lengths, the most probable one
is about constant - rather than growing - with chain length.

Our results vividly confirm the significant occurrence of tight knots. Indeed, one
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observes that the average knot length at the passage event is about 54nm, which is in
full accord with the estimate of Plesa et al.. This knot length is reached independently
of the initial one thanks to tightening of the knot caused by the propagating chain
tension, see Fig. 5.8b. One also notes that the [}, versus At* profile in Fig. 5.8a is rather
flat for this translocation mode, and hence is different from the linear relationship
expected intuitively. An explanation of this effect will be discussed later.

The second, and new mode is associated to the green points in Fig. 5.8. It involves
knots that span a significant portion of the ring, consistent with the theoretical re-
sults of Ref. [183] on DNA chains of comparable size, which indicated that the most
probable knot length is about 2200bp. In fact, these knots experience significantly
less tightening during translocation than those discussed above, see Fig. 5.8b. In-
triguingly, these knots are large and yet their pore-obstruction times are not at all
dissimilar from the tight knot case discussed before.

This conundrum is solved by considering the actual conformation of such rings
when the knot is presented at the pore entrance. A typical configuration is shown
in Fig. 5.8c. The accompanying sketch clarifies that the knotted portion now spans
the entire cis part of the ring. This is quantitatively shown in the semi-log plot of
Fig. 5.8e where one observes that for this class of knots, the relative chain fraction
occupied by the knot is l;, /lopqin ~ (1 — 27).

However, a significant obstruction of the pore occurs only when the region ac-
commodating the essential crossings passes through it. As seen in the figure, this
region is typically small, involving 123bp (42nm) on average.

It is therefore this short, essentially-entangled portion of "double-filament" knots,
and not their entire contour lengths, I, that is captured by At*.

To our knowledge, the possible occurrence of a second mode of translocation,
though rather natural a posteriori, has not been considered nor foreseen in previous
translocation studies, neither for dsSDNA rings experiments, nor for simulations of
linear, open chains where it can also occur if translocation starts from inside the knot
loop region.

Notice that, because the essentially-entangled region is comparable in size to the
tight, single-filament knots, the two modes of translocation cannot be distinguished
from the sole analysis of At*. This has direct bearings on the interpretation of experi-
mental data. In fact, it poses the necessity to devise suitable means of discriminating
or controlling the incidence of the two modes. In this way one could relate more reli-
ably the measured observables to the spontaneous knotting properties of DNA. Our
results suggest that this could be achieved, for instance, by suitably choosing the
DNA length. The latter, in fact, affects the balance of the two modes, as we discuss
later in connection with Fig. 5.9a.

We conclude the analysis of the data in Fig. 5.8a by discussing the second notable
feature, namely the lack of a noticeable correlation between the pore obstruction du-
ration, At*, and knot length, I;.. For the second mode of translocation, it is now clear
that no obvious relationship between [, and At* can be expected, because the I, is
not directly informative for the pore obstruction caused by the essentially-entangled
region. The case is different, however, for the first mode, i.e. tight single-filament
knots, where a proportionality relationship between knot size and passage time ap-
pears plausible and was previously surmised [15].

This point is clarified by the plot of Fig. 5.8f, which shows the relationship be-
tween At* and w*, the inverse translocation velocity at the passage event. The two
quantities are visibly correlated for both knot translocation modes. Together with
the plot Fig. 5.8a the data clarify that of these two properties relatable the passage
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time, knot length and knot translocation velocity, the dominant one is the latter. No-
tice that, because at passage time the contour lengths of single-filament knots and of
double-filament essential crossings spans a limited range, from 120bp to 160bp, one
has that At* and w* have an approximate linear proportionality.

This observation might be harnessed to extract further knot-related properties
from At*. Because the average translocation velocity depends on the translocated
chain fraction, the observed At* vs w* correlation should effectively subsume a de-
pendence of At* on the knot position along the chain contour, 2*, which could be
recovered with sufficient statistics.

5.3.4 Interpretative model

We now consider the origin of the two different translocation modes and of the
skewed distribution of the knot position at passage time, z*.

Both aspects are best illustrated with the following schematic model of the translo-
cation process. In this purposely simplified scheme we assume that the rooting point
where the translocation process initiates is equally likely to lie anywhere on the ring
contour. We also assume that tension propagates in the same way along the two
ring arms, so that they meet at the antipodal midpoint, that is at the point at half
ring contour length from the root.

The main discriminator for the two translocation modes is whether the knot is
entirely located on only one of the two arms, or whether it straddles the antipodal
midpoint and hence spans both arms, see sketches in Fig. 5.9.

In the former case the sliding of the progressively tensioned ring arm causes
the knotted region to tighten towards the distal knot end (i.e. the end that is furthest
from the rooting point) while it is dragged to the pore. The tightened single-filament
knot will then pass through the pore.

Instead, when the knotted region straddles the antipodal midpoint, the knot will
be pulled from both sides and will be dragged towards the pore by both tensioned
arms. Such double pulling typically causes the essential crossings to become inter-
locked, trapping the knot in a moderate degree of tightening. The pore obstruction
event is then associated to the passage of the essential crossings.

These two cases are directly associated to the two different translocation modes
highlighted in Fig. 5.8. So much so that the two sets in the figure were not assigned
from an a posteriori supervised inspection of the trajectories, but rather a priori based
on the aforementioned distinction. In fact, the two sets precisely correspond to knots
that span a single or both ring arms at the beginning of translocation. The neat sepa-
ration of the two sets of points in Figs. 5.8a,b,e,f supports the viability and usefulness
of such discriminatory criterion.

The same criterion can be also used to estimate how the relative incidence of
single- versus double-filament entanglement varies with ring length. We considered
an ensemble of Monte Carlo-generated rings of length 10, 20 and 50 Kbp, picked a
rooting point randomly along their contour and then located the knot on the ring,
which we considered open in correspondence of the rooting point. The rings were
next assigned to one of the two classes based on whether the knotted region strad-
dled the antipodal midpoint or not. The results, given in Fig. 5.9a, show that the
incidence of single-filament entanglement increases steadily with chain length, and
goes from 35% for 10Kbp to 70% for 50Kbp. Based on this result, which reflects the
interplay of knot and chain lengths [31, 105, 159, 183, 184], we speculate that most
of the knot passage events detected in the experiment of Plesa et al. pertained to
single-stranded entanglements, as implicitly assumed by the authors.
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FIGURE 5.9: a) Model estimate of relative percentage of single- and
double-filament knots in DNA rings of different length. The estimate
considers the length and positioning of the knotted region (high-
lighted in red in the sketches) with respect to the point (marked with
a cross) antipodal to the root. b) The same model is used to predict the
translocated chain fraction at the time of the pore obstruction event,
x*, see panel (b). Accounting for the sliding of the knot along the
chain brings the model distribution in good quantitative agreement
with the actual simulation data, see panel (c).

The same schematic framework can account for the qualitative features of the dis-
tribution of z*, the knot positioning at time of translocation. We considered, again,
the Monte Carlo generated ensemble of rings for which we stochastically-picked the
rooting points. Next, for double-filament knots (straddling the antipodal midpoint)
we picked z* uniformly between the two knot ends. For the other, single-filament
knots, we picked z* as the distal end of the knot, the one further from the pore.
These criteria embody in the simplest possible way the phenomenology described
in the previous paragraphs.

The resulting probability distributions for z*, shown in Fig. 5.9b, are in quali-
tative agreement with simulation and experimental data. It is seen that, at all ring
lengths, the distributions are skewed towards z* = 1. As for the balance of single-
and double-filament knots, the skewness too depends on the interplay of knot and
ring length. Indeed, the z* distribution becomes flatter for longer rings, where the
knotted region occupies a smaller fraction of the chain contour.

The above modelling scheme neglects the possibility that tight knots may slide
on the filament contour. As was clarified in the theoretical study of Ref. [58, 142,
144], such sliding can occur for fully-flexible chains and, in fact, make it possible for
individual knotted filaments to fully translocate through very narrow pores, as long
as the driving force is not high enough to cause jamming [58, 185, 186]. As a matter
of fact, we observed the same knot sliding phenomenology for the present dsSDNA
system too.

To account for such sliding effect for single-filament knots, we accordingly ad-
justed the model. Specifically, we assumed that z* could fall with equal probability
between the distal knot end and the antipodal midpoint. The z* probability dis-
tribution predicted by such model is shown in Fig. 5.9c. It presents a noticeably
stronger shift forwards x* values that follows closely the data from the simulated
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trajectories. This good level of agreement is somewhat surprising given the simplic-
ity of the model, which does not account for frictional effects related to pore size and
force magnitude. Yet, the good accord further corroborates the relevance of sliding
effects for dSDNA. We believe, this would be an important avenue to explore fur-
ther, especially by seeking a quantitative comparison against experimental data. For
this, it would probably become essential to take into account the finite resolution of
time measurements which could account for the observed effective dependence of
the distribution of ¢* (related monotonically, but non-linearly, to z*) on the driving
force.

5.4 Conclusions

It is only very recently, that innovative single-molecule techniques have made it pos-
sible to detect knots in double-stranded DNA chains driven through nanopores [15].
On the one hand, this gave a striking demonstration of spontaneous knot formation
in linear and circularised DNA. On the other hand it also helped unveil a rich and
complex phenomenology that, though expectedly relevant for the in vivo processing
of DNA filaments, is still largely unexplored.

Here, to advance the understanding and characterization of such phenomenol-
ogy, we studied theoretically the pore translocation of knotted DNA rings using an
accurate coarse-grained model for DNA and stochastic molecular dynamics simula-
tions.

We find good agreement with the experimental data, particularly regarding the
remarkably brief duration of pore-obstruction events associated to the passage of the
knot. By profiling the dynamical evolution of the knotted DNA rings we expose un-
expectedly rich properties of the process that cannot be directly accessed in current
experiments.

First, we found that translocation of the knotted region can occur in two quali-
tatively different modes depending on whether the knot is dragged to the pore by
only one of the ring arms, or both. In the latter case, knots are typically not tight, and
yet we find that the pore obstruction time can be small (as in experiments) because
the essential crossings of the knot coalesce in a short region.

Secondly, we found that the sliding and tensioning of the translocating knot
causes the same bias towards late knot passage events found in experiments, which
had remained unexplained. We finally showed that one of the key determinants of
the pore obstruction duration is the initial positioning of the knot along the chain,
and suggest how this effect might be deconvolved in experimental measurements
for a more precise determination of the length of the region accommodating a knot
or its essential crossings. In particular, the occurring phenomenon of knot sliding
might give an important contribution. This might be exploitable in future exper-
iments, along with chain length and pore size variations, to discriminate the two
modes. Further relevant avenues include the impact on pore translocation of com-
plex topologies such as composite knots, which have so far been characterised for
flexible chains only [58], as well as the geometry-topology interplay in DNA rings
that cannot relax supercoiling and torsional stress [187].

This first theoretical account, provides a detailed and physically-appealing in-
sight into phenomenology of knotted dsDNA pore translocation. It provides a valu-
able and transparent interpretative framework for available experimental data while
pointing out specific directions for new experiments as well as theoretical ones aimed
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at better understanding the implication of intra-chain entanglement for the in vivo
processing of DNA, and possibly other biopolymers too.
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