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1. LIST OF ABBREVIATIONS 

  

 5-hydroxytryptamine                                 5-HT 

 Acetylcholine                        ACh 

 Adrenocorticotropic hormone                   ACTH  

 Calcitonin gene related peptide                     CGRP 

 Central Nervous System                                        CNS 

 Central Pattern Generator                                                                                   CPG 

 Commissural interneurons                                                         CNs 

 Corticotropin-releasing factor                         CRF 

 Corticotropin-releasing hormone                      CRH  

 Diacylglycerol                       DAG 

 Dopaminergic neurons                        DA 

 Electroencephalogram                       EEG 

 Flexion reflex afferent                         FRA 

 Food and Drug Administration                      FDA 

 Glucocorticoid Receptor                        GR 
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 Glucocorticoid response elements                    GREs 

 Glucocorticoids                          GC 

 Heat shock protein                        HSP 

 Hypothalamic–pituitary–adrenal axis                        HPA axis 

 Inositol-trisphosphate                                     IP3 

 Intracerebroventricular                        i.c.v 

 Intravenous                            i.v 

 Mesencephalic locomotor region                                MLR 

 Methylprednisolone                             MP 

 Muscarinic acetylcholine receptor                mAChR 

 Nicotinic acetylcholine Receptor                           nAChR 

 Nitric oxide                          NO 

 Nitrous oxide                         N2O   

 N-Methyl-D-aspartic acid                  NMDA 

 Pathological medium                         PM 

 Pedunculopontine nucleus                       PPN 

 Progenitor domain                            p 

 Pro-opiomelanocortin                                 POMC 



 
 

Page 5 
 

 Reciprocal Ia inhibitory neurons                  rIa-INs 

 Rhythm generating neurons                           R 

 Short stature homeobox protein 2                           SHOX2 

 Spinal cord injury                                                                                               SCI 

 γ-aminobutyric acid                                 GABA 
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2 ABSTRACT 

 

Background: Mammalian locomotor behaviour called fictive locomotion can be elicited 

in an isolated spinal cord in the absence of higher brain center or sensory input. This 

relatively simple behaviour is produced by the motoneuronal rhythmic activity which is 

under the control of spinal neuronal networks called central pattern generators (CPGs). 

Disturbance of this rhythmic motor output can occur following spinal cord injury (SCI). 

This elementary isolated spinal cord model gives us an opportunity to study the basic 

physiology of locomotion during control conditions, the pathological processes following 

lesion (which can be induced chemically), and eventually the application of therapeutic 

approaches curbing injury.   

Objectives: Multiple aspects of spinal functions can be demonstrated by stimulating 

or/and blocking specific inputs and measuring the outputs using electrophysiological, 

immunohistochemical and calcium imaging tools. Using isolated neonatal rat spinal cords 

and organotypic spinal slices as SCI models, the basic mechanisms (such as dysmetabolic 

state or excitotoxicity) which can develop during the early phase of the lesion were 

addressed and studied. The injury was evoked chemically by applying either pathological 

medium (to mimic dysmetabolic/hypoxic conditions) or kainate (to produce excitotoxicity 

that completely abolishes fictive locomotion and network synaptic transmission) for 1 h. 

Fictive locomotion was examined stimulating the lumbar dorsal root and recording from 

the ipsilateral and ipsi-segmental ventral roots. Other network parameters were also 

studied such as synaptic transmission and rhythmicity. Various therapeutic drugs such as 

methylprednisolone sodium succinate (MPSS), propofol, nicotine and celastrol were used 

during or after the injury (to produce neuroprotection) and network properties were 

characterized during the treatment and after 24 h as well. Subsequently, the structural 

properties were monitored using different biomarkers (isolated spinal cord sectioned 

slices) and calcium imaging (here organotypic spinal slices were used).  

Results and conclusions: We found that dose-dependent application of MPSS produced 

modest recovery of white matter damage evoked by pathological medium resulting in the 
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emergence of sluggish chemically induced fictive locomotor patterns. However, it could 

not prevent damage (to gray matter) evoked by the excitotoxic agent kainate. Therefore, 

to provide better neuroprotection to gray matter, we tested the widely used intravenous 

anaesthetic propofol. This drug has shown comparatively good protection to spinal 

neurons and motoneurons in the gray matter. As it is an anesthetic it acted by depressing 

the functional network characteristics by lowering the N-methyl-D-aspartate (NMDA) 

and potentiating the γ aminobutyric acid (GABAA) mediated receptor responses.  

The next issue we addressed was to study the neuroprotective roles of nicotinic 

acetylcholine receptors (nAChRs) by using the receptor agonist nicotine. Recent studies 

have shown that nicotine could provide good neuroprotection to the rat brainstem. To 

further investigate its effect on the spinal cord, we applied nicotine at the same 

concentration used in previous studies in the brainstem: such a concentration was toxic to 

spinal ventral motoneurons. Therefore the correct dose of nicotine was optimized and was 

found to be ten times lower. Thus, satisfactory protective effects to spinal neurons and 

motoneurons and the fictive locomotor patterns were observed. These neuroprotective 

effects were replicated with calcium imaging by using organotypic spinal slice cultures. 

The mechanism of protection predominantly involved α4β2 and less α7 nAChRs.   

In addition, the subsequent goal of our study was to explore whether the 

motoneuron survival after excitotoxicity relies on cell expression of heat shock protein 70 

(HSP70) or some other mechanisms. To test this hypothesis we used a bioactive drug, 

celastrol which induces the expression of HSP70. Prior application of the drug followed 

by kainate preserved network polysynaptic transmission and fictive locomotion, however, 

it could not reverse the depression of monosynaptic reflex responses. In vivo studies are 

necessary in the future to further investigate the long-term neuroprotective role of these 

drugs.  
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3 INTRODUCTION 

 

3.1 Central pattern generators for mammalian locomotion 

 

“Thus, from the war of nature, from famine and death, the most exalted object which we 

are capable of conceiving, namely, the production of the higher animals, directly follows. 

There is grandeur in this view of life, with its several powers, having been originally 

breathed into a few forms or into one; and that, whilst this planet has gone cycling on 

according to the fixed law of gravity, 

from so simple a beginning endless forms most beautiful and most wonderful have 

been, and are being, evolved.” 

 

 Charles Darwin 

 

When speculating about the beginning of life on earth, one can get fascinated by 

tremendous animal behaviour. All kind of movements in animals, vertebrate or 

invertebrate are controlled by specific neural circuits that generate precise phasing and 

timing of muscle activation and thus locomotor behaviour (Grillner, 2003; Selverston, 

2005). These networks are called Central Pattern Generators (CPGs). All animals have a 

stock of CPGs distributed in different parts of the Central Nervous System (CNS) and 

thus allow animals to perform distinct behaviour and movement (Grillner, 2006). 

Considering locomotor activity, which is an innate rhythmic motor act, different from 

simple reflex, provide animals and humans to move. There are diverse locomotor forms 

such as walking, swimming, running, hopping and feeding (Delcomyn, 1980; Roberts & 

Roberts, 1983). Locomotion does not require sensory input and is generated by CPG 
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(Grillner, 2006), although sensory input is important for the refinement of CPG to 

respond to external events (Grillner 1985). CPGs do not produce fixed action patterns; 

otherwise, animals have behaved like stereotype robots. Rather they provide a malleable 

template which can be easily modified according to changes in the environment (Grillner, 

2006).  

Locomotion was first precisely characterized when Étienne-Jules Marey and Eadweard 

James Muybridge (in the 1880s), known for their pioneering work on animal locomotion, 

developed the photographic techniques which allowed users to capture motion in stop-

motion photographs as shown in Fig. 1.  

 

 

Fig. 1 An example of multiple locomotion pictures showing the consecutive 

motions of different locomotor acts by animals (http://www.imaging 

resource.com/news/2012/11/27/eadweard-muybridge-the-photographic-pioneer-who-

froze-time-and-nature) 

 

A major improvement in understanding the neural substrate for producing 

mammalian locomotion came into limelight in the 20th century when a Scottish 

neurophysiologist Thomas Graham Brown showed that the basic stepping pattern can be 

induced in the transected spinal cord of cats, rabbits and guinea pigs without sensory 
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inputs (Graham Brown, 1911, 1914). Thus, Graham Brown has concluded that spinal cord 

neuronal networks are able to produce flexor-extensor movements in the absence of 

sensory stimuli. To better understand the mechanism of action of CPG in the generation 

of movement in spinal cord, it is necessary to know the anatomy of the spinal cord. 

 

3.1.1 Anatomy of spinal cord 

The spinal cord is a part of CNS, extends caudally from the brainstem. It is enclosed in a 

protective bony structure, vertebral column. It is encircled by three meninges, i.e., dura 

mater (outer layer), arachnoid and pia mater as shown in Fig. 2. Unlike the brain, the 

cross-section of the peripheral region of the spinal cord is composed of white matter, 

comprising bundles of myelinated axons of neurons. Internal to the peripheral region of 

the cord is the butterfly-shaped gray matter region, which resembles the letter H, 

consisting of cell bodies of neurons, unmyelinated axons and neuroglia. At the centre of 

the gray commissure, which forms the crossbar H, is the central canal containing 

cerebrospinal fluid (CSF) circulating to and from the ventricles in the brain (Kandel et al., 

2000). 

 
.  
 

 

 

 

 

 

 

Fig. 2 A cross-section of spinal cord representing distinct layers and the butterfly 

pattern of white and gray matter of spinal cord (Jacquelyn L. Banasik, Structure 

and Function of the Nervous System, Chapter 43) 
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The spinal cord is about 17–18 inches (43–48 cm) long in humans and according 

to rostrocaudal location the 31 segments (varies from specie to specie) are divided into 

five parts, i.e., 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal segments 

(Netter, 2006) (Fig. 2). In rats, 34 segments are grouped into; 8 cervical, 13 thoracic, 6 

lumbar, 4 sacral and 3 coccygeal (Molander et al., 1984; Molander et al., 1989). Besides 

the medial sagittal plane, anterior and posterior median fissures divide the spinal cord into 

two portions which are further associated with transverse anterior and posterior 

commissure as shown in Fig. 3. The anterior and posterior lateral fissures depict the locus 

where the sensory and motor nerve rootlets emerge from the spinal cord to spinal nerves.  

 

Fig. 3 Diagram of longitudinal section of spinal cord showing division of segments 
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At each side, the spinal cord is further divided into the dorsal, central and ventral 

horn (Fig. 2). From the dorsal horn, the dorsal roots emerge, integrate into bundles and 

enter into dorsal root ganglia (DRG), which contain cell bodies of sensory neurons, are 

afferent (Ham & Cormack, 1987). Away from the ganglia, the dorsal and ventral roots 

unite to form spinal nerves. These spinal nerves emerging from vertebrae form plexus 

which have both sensory and motor functions like muscle contraction, sensations (of cold, 

heat, pain) etc.  

 

 Cytoarchitecture of spinal cord 

The first cytoarchitecture of the spinal cord was identified by Bror Rexed in the 1950s 

(Rexed, 1952; 1954) who labelled the portions of gray columns as 10 rexed laminae in 

cats. Each lamina carries several distinct characteristics in terms of physiological, 

histochemical and cytoarchitectonics (Heise and Kayalioglu, 2009). Molander and his 

colleagues examined the organization of these rexed laminae in neonatal and adult rat 

spinal cord at lower thoracic and lumbosacral segments and found similar architecture as 

in cats (Molander et al., 1984, 1989). Other scientists also confirmed the presence of these 

lamination patterns in the rats (Watson et al., 2009), mice (Sidman et al., 1971; Watson et 

al., 2009) and humans (Schoenen and Faull, 2004) at different time periods.  Furthermore, 

there is not much difference in neonatal and adult rat spinal laminae except that there are 

less distinct borderlines between laminar regions.  

 

 Laminae I cover the tip of the dorsal horn (See Fig. 4). 

 

 Laminae II correspond to substantia gelatinosa where the first order neurons of 

spinothalamic tract synapse exist. There are two main subtypes of cells present 

in laminae II: Islets cells and stalked cells. Islets cells are considered as 

inhibitory cells of these laminae as they consist of GABA, which is an 

inhibitory neurotransmitter. 

 

 Laminae III can be easily recognized because of less density of neurons. It is 

mainly composed of GABA and glycine neurotransmitters (Todd & Sullivan,  
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1990). 

  

 Laminae IV neurons send projections to midbrain and brainstem and re-send 

the processes back to itself. 

  

 Laminae V and VI complement to reticular formation in brainstem. 

 

 

 Laminae VII consist of the intermediolateral nucleus (T1-L1) and dorsal 

nucleus of Clarke (T1-L2). Intermediolateral nucleus performs an important 

role in autonomic and sensory motor functions. On the other side, axons from 

dorsal nucleus of Clarke make ascending fibres of the dorsal spinocerebellar 

tract. 

 

 Laminae VIII–IX make the ventral horn of spinal cord mainly consists of 

motoneurons.  

 

 Laminae X form substantia grisea centralis, surround the central canal and 

consist of preganglionic neurons and neuroglia (Dafny, 1999). 

 

 

 

 

 

 

 

 

 

Fig. 4 Transverse section of lumbar 5 segment of spinal cord comprising different 

laminar regions (Ostroumov, 2006) 
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3.1.2 Selection and initiation of locomotion 

 

The first question to answer in locomotion is how are these central motor programs 

selected and generated after selection?   

 

Particular CPGs for a specific action (at a given moment) are selected by neuronal 

mechanisms in the brain. Experiments on different animal models, like vertebrates have 

shown that basal ganglia are the dominating selection system, select locomotor behaviour 

(Grillner et al., 2005a; Hikosaka et al., 2006).   

Striatum (input layer of basal ganglia) receives excitatory sensory input from the 

cortex in mammals (known as pallium in lower vertebrates) or directly from thalamus 

(Fig. 5). It comprises the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), 

activated at high threshold. Striatal neurons project onto pallidum (output layer of basal 

ganglia) and substantia nigra. The pallidum is also composed of inhibitory GABAergic 

neurons with even higher threshold which maintain CPGs at tonic inhibition at rest. For a 

locomotor behaviour to be elicited, striatum needs to be activated which further inhibits 

pallidum resulting in activation of particular CPGs providing an input to induce dis-

inhibition, important for locomotion. The dopaminergic neurons play a crucial role in 

facilitating the response of striatal neurons to activation. Deficiencies or hyperactivation 

of dopaminergic system eventually leads to Parkinson-like hypokinetic or hyperkinesias 

symptoms, respectively in all vertebrates—from lamprey to man (see Grillner et al., 

2005c). 
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Fig. 5 Scheme of selection of specific behaviour by basal ganglia (Grillner, 2006) 

 

Two regions which may be associated with initiating locomotor behaviours in 

different behavioural context are medial and lateral hypothalamus. Medial hypothalamus 

involves in escape or defensive locomotor behaviour, whereas lateral hypothalamus is 

involved in behavioural context when animal searches for food. 

 

 Neurons of mesencephalic locomotor region (MLR) project to the medial reticular 

formation in the lower brain stem which further projects its neurons onto locomotor CPG 

in the spinal cord to execute locomotion as shown in Fig. 6.   

 

Fig. 6 Scheme of 

organization of 

neural structures 

controlling 

locomotion (Kiehn, 

2016) 
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The next query is the initiation of locomotion once selected by basal ganglia... 

The output layer of basal ganglia, pallidum, projects its neurons onto MLR in 

mesencephalon (midbrain) (Fig. 6). After the selection of locomotion, the high resting 

activity of globus pallidus neurons declines, which relieve the tonic GABAergic 

inhibition of these neurons in MLR. After the release of inhibition, MLR becomes active 

and initiate locomotion.  

 

Neurons in MLR are excitatory. The pedunculopontine nucleus (PPN) is located 

in the ventrolateral portion of caudal MLR and is composed of neurons comprising 

glutamate and acetylcholine (ACh) (Clements & Grant, 1990; Lavoie & Parent, 1994; 

Takakusaki et al., 1996; Mena-Segovia et al., 2008; Takakusaki et al., 2016). Previous 

studies have suggested that cholinergic neurons are important in maintaining the rhythm 

of locomotion and postural muscle tone (Bohnen & Albin, 2011; Takakusaki et al., 2011). 

These glutamatergic and cholinergic input signals arising from MLR may control the 

excitability of reticulospinal neurons that project to spinal CPGs to initiate stepping (Le 

Ray et al., 2011; Skinner et al., 1990). 

 

There are two main systems involved in the execution of locomotion: 

Glutamatergic and serotonergic locomotor pathways as previously been studied in 

mammals (Guertin, 2009; Ghosh & Damien, 2014). Therefore, it seems that there are 

parallel pathways, at least in mammals, activating the spinal locomotor networks.    

 

The next point to discuss is the localization of CPG in the spinal cord of mammals… 

CPG locomotor networks are localized in the ventromedial part of spinal cord (Fig. 7) 

which is distributed along the lumbar segment of mice (Nishimaru et al., 2000) and 

humans (Dimitrijevic et al., 1998). Locomotor activity is specifically found in the gray 

matter intermediate zone, ventral horn and central canal areas (e.g., Kjaerulff et al., 1994; 

Cina and Hochman, 2000). Locomotor CPG neurons have been identified as the 

populations of HB9 (Wilson et al., 2005), EphA4 (Kullander et al., 2003), V0 (Lanuza et 

al., 2004), V1 (Gosgnach et al., 2006), V2 a/b (Lundfald et al., 2007), V3 (Zhang et al., 

2008), excitatory Ib (Guertin et al., 1995; Angel et al., 2005), lamina VII-IN (Jankowska 
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et al., 1967a,b), ChAT-positive/c-fos-labeled ascending (Huang et al., 2000), rhythmic 

interneurons which are activated by group II afferent (Edgley and Jankowska, 1987) and 

descending commissural interneurons (dCIN) (Butt et al., 2002) (See Fig. 7). 

 

 

Fig. 7 Localization of spinal networks (Guertin, 2009) 
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3.1.3 Generation of rhythm and pattern of locomotor behaviour 

 

Rhythm generation in mammals is more complex than lower vertebrates (Grillner, 1985; 

Guertin, 2009). There are two main aspects with control the coordination of limbs.  

 The left-right pattern generating circuits – maintain the coordination during 

movement on both sides of the body along with, rhythm-generating circuits – 

which drive the activity and modulate the speed in non-limbed locomotion. 

 Flexor–extensor pattern-generating circuits – which maintain intra-limb 

coordination in limbed locomotion. Limbed locomotion also requires left-right 

pattern generating circuits (in addition to flexor-extensor circuits) for locomotor 

movement to occur.  

 

 Left–right coordination circuits 

Commissural neurons (CNs) play an important role in providing left-right coordination 

during locomotion at different frequencies (speeds). CNs that are associated with motor 

control in mammals are localized in at the ventral part of spinal cord and composed of 

inhibitory (GABA and glycine) and excitatory (glutamate) neurotransmitters (Bannatyne 

et al., 2003; Weber et al., 2007; Restrepo et al., 2009). 

V0 CNs evolved from p0 progenitor domain in the ventral horn of cord. Five progenitor 

domains are present in ventral (p0-p3, pMN) and six in the dorsal horn (pd1-pd6) (Jessell, 

2000; Alaynick et al., 2011) (Fig. 8). After maturation, these progenitor cells differentiate 

into neurons and motoneurons. The V0 neurons split into inhibitory dorsal V0D and 

excitatory ventral V0V neurons and produce left-right alternations. V0D neurons maintain 

hindlimb alternation at a lower speed of locomotion and V0V control hindlimb alternation 

at high frequencies (Kiehn, 2016). According to previous in vitro genetic studies on mice, 

ablation of V0 resulted in lack of hindlimb alternations in mice (Fig. 9 A) (Talpalar et al., 

2013). When studied in vivo in mice model, mice explicit four basic gaits (two alternating 

gaits, walk and trot; one synchronous gait, bound and an intermediate gait, gallop) in the 
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presence of V0 neurons (V0D and V0V) (Fig. 9 B). These four gaits occurred at different 

locomotion speeds. Walk is expressed at a minimum (1-4 Hz) and bound at the maximum 

(10-14 Hz) speed (Fig. 9 B). When both V0 CNs were deleted mice expressed only bound 

gait in which pairs of hindlimbs and pairs of forelimbs are moved in synchrony. When 

V0D were deleted mice died before birth. However, when V0V were deleted mice were 

able to walk, gallop, bound but unable to trot.  

 

Fig. 8 Development of CNs from progenitor domain in the mouse spinal cord 

(Kiehn, 2016) 

 

Fig. 9 Genetic ablation studies of V0 CNs in vitro (a) and in vivo (b) in mouse spinal 

cord (Kiehn, 2016) 
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Further, these V0D and V0V neurons are recruited in ascending order as the locomotor 

speed increases (Fig. 10). Therefore, at low speed like walking rhythm-generating 

neurons (R) activate V0D CNs on the same side of the spinal cord, which in turn inhibit 

motoneurons on the other side of the cord. At high speed of locomotion, V0V neurons are 

activated which leads to trot movement by inhibition of locomotor network circuits 

including motoneurons on the other side of the cord. At higher frequencies of locomotion, 

which lead to a bound movement, arises by the preservation of left-right synchrony by 

non-V0 neurons which might be V3 (Quinlan & Kiehn, 2007; Crone et al., 2008; 2009; 

Talpalar et al., 2013; Bellardita & Kiehn, 2015).  

 

 

 

Fig. 10 Schematic diagram of hypothesized V0 CNs locomotor pathways activated 

with different speed of locomotion (Kiehn, 2016) 

 

 Flexor-extensor coordination  

Motoneurons control flexor-extensor muscles during mammalian locomotion and these 

muscles are activated in alternation. This flexor-extensor coordination is produced by 

reciprocal Ia inhibitory neurons (rIa-INs), which reciprocally inhibit antagonist 

motoneurons and each other. These rIa-INs are one synapse away from flexor-extensor 

motoneurons (Fig. 11) and are activated by Ia afferents from muscle spindle. rIa-INs are 
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rhythmically active while locomotion (Hultborn, 1976). As they are reciprocally 

connected to extensor-flexor motoneurons, they have been proposed as originators of 

rhythmic inhibition of motoneurons during locomotor activity. Experiments on mice by 

genetically ablating glutamate networks showed that minimum inhibitory network is 

enough for flexor-extensor alternation (Fig. 11 a) (Talpalar et al., 2011). When V1 and 

V2b (inhibitory neurons) were removed, flexor-extensor alternations were absent, instead 

synchronous activity was observed (Fig. 11 b) (Zhang et al., 2014).  

 

 

Fig. 11 Proposed scheme of flexor-extensor antagonism in mammals (Kiehn, 2016) 

 

Fig. 11 c shows various levels of the intact circuit with all neuronal elements. Excitatory 

rhythm generating circuits (R) providing inputs to excitatory neurons and rIa-INs (which 

also belong to V1 and V2b neurons) which are further reciprocally providing rhythmic 

excitation and inhibition to flexor-extensor muscles respectively.  Therefore, these V1 

and V2b inhibitory neurons evoke reciprocal inhibition between flexor and extensor 

rhythm generators (Endo & Kiehn, 2008; Talpalar et al., 2011; Zhang et al., 2014).  
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 Rhythm generating circuits 

Akoi and his co-workers have explained slow rhythm generating circuits in lamprey 

spinal cord (Akoi et al., 2001) (Fig. 12). They proposed that, apart from network 

providing the swimming rhythm in the lamprey cord, there is also a network generating 

slow reciprocal alternation into dorsal and ventral parts of the myotome. During steering 

movement, the dorsal and ventral myotomes are selectively triggered and the neural 

networks generating the slow rhythm may depict activity in the spinal machinery used for 

steering (Fig. 12). 

 

 

Fig. 12 Scheme of slow rhythm generating networks in the lamprey spinal cord. A) 

Four slow oscillators for dorsal and ventral myotomes are present on both sides, which 

are connected in three ways: diagonal inhibitory, ipsilateral excitatory and contralateral 

excitatory coupling. B) Dorsal-ventral reciprocal patterns are produced by lowering the 

strength (dashed line) of ipsilateral excitatory connections with respect to the other 

couplings. C) Diagonal reciprocal patterns are evoked by decreasing all excitatory 

couplings relative to diagonal inhibitory couplings. D) The synchronous patterns are 

induced by reducing the diagonal inhibitory connections. E) Left-right reciprocal patterns 

are evoked by decreasing the contralateral excitatory coupling. 
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Rhythm generating circuits (in the mammalian spinal cord) contain neurons which 

express short stature homeobox protein 2 (SHOX2) (Fig. 13). These circuits also drive 

left-right coordinating circuits like non-V (which might be V3) neurons, V2a and V2a 

SHOX2+ (Crone et al., 2008; 2009). It is evident from optogenetic studies that blocking 

SHOX2+ synaptic output disturbs the rhythm without completely abolishing it which 

shows that some unknown excitatory interneuron is still generating the rhythm 

(Dougherty et al., 2013). 

 

Fig. 13 Organizational and molecular delineation of rhythm-generating circuits 

(extracted from Kiehn, 2016) 

 

3.1.4 Dis-inhibited activity in an isolated spinal cord 

Locomotors like rhythmic activity, which is termed as fictive locomotion can be evoked 

in an isolated neonatal rat spinal cord in a ventrally located pre-motoneuronal network 

(Kjaerulff & Kiehn, 1996) by application of N-methyl-D-aspartate (NMDA) (Kudo & 

Yamada 1987) and serotonin (5-HT) (Cazalets et al., 1992) or high K
+ 

solutions (Bracci et 

al., 1998) or dopamine (Kiehn & Kjaerulff, 1996). The relation of disinhibited rhythm to 

the locomotor activity is of particular interest and has been investigated previously (Beato 

& Nistri, 1999). The isolation (split-bath) experiments revealed strong synergy between 

disinhibited rhythm and locomotor pattern. This synergy is expressed in the presence of 

typical alternation between locomotor-like patterns produced during each interburst 

interval even in the absence of 5HT or/and NMDA, despite the presence of strychnine 
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and bicuculline in the caudal area (5HT or/and NMDA applied to the rostral region). 

Moreover, it is also evident that organotypic rat spinal cultures show synchronous 

bursting by blocking GABAA and glycine receptors (Streit, 1993). These studies have 

suggested that spinal rhythmic generators could work even in the absence of synaptic 

inhibition although inhibition is important for temporal phasing of motor patterns (Bracci 

et al., 1996b). Further, GABAB receptors were not necessary for rhythm generation. 

Therefore, Bracci (Bracci et al., 1996b) hypothesized mechanisms that might be involved 

in primary discharge could be the activation of AMPA receptors at excitatory synapses 

and for late oscillations, ascribed to dendritic calcium spikes (Traub et al., 1993). 

 

3.1.5 Reflex pathways in the spinal cord 

 

The gray matter neurons form spinal reflex pathways (also called reflex arc) which are 

simpler than locomotor circuits. These spinal arcs are associated with classical reflexes. 

In vertebrates, most sensory neurons do not pass directly into the brain; instead make 

direct synapses in the spinal cord, which allow faster reflex actions via activation of 

spinal motor neurons. Activation of a simple reflex in response to a corresponding 

specific stimulus typically leads to rapid, repeated, stereotyped and involuntary motor 

reaction.  They could be simple mono-, di- or polysynaptic reflexes with their 

corresponding neurons (i.e., interneurons and motoneurons). Simple reflexes may have an 

autonomic (eyes, blood vessels, etc.) or somatic (skeletal muscle responses) origin. 

Somatic spinal reflexes have been studied in detail in cats and  Ia, Ib, II, FRA (flexion 

reflex afferent) reflexes were described, however, their function in control of locomotion 

remain incompletely understood. 

 

 Monosynaptic reflexes 

Monosynaptic reflexes are evoked by primary afferents (Ia) in response to muscle stretch 

(from muscle spindles) like tendon jerk (knee or ankle) or tap or myotatic reflex. Ia 

afferent (sensory) signal enters the spinal cord from dorsal horn and forms a single 

synaptic connection with homonymous α-motoneuron in the ventral horn of gray matter 

of cord (Fig. 14). In response to muscle elongation, this excitatory reflex will cause 
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muscles to contract. Apart from homonymous α-motoneurons, Ia afferents also make 

monosynaptic connections with synergistic α-motoneurons. It has previously been 

experimentally demonstrated that monosynaptic activity level depends on task and 

circumstances like the amplitude of H reflex is more in standing position and decreases 

while walking. Also, H reflex has more amplitude in extension phase than flexion (swing) 

phase (Stein and Capaday, 1988). Moreover, the precise analysis of Ia monosynaptic 

reflex could provide important information about the neuropathological conditions 

(Matthews, 1972; 1991; Henneman, 1974).  

 

 Ib reflex (inverse myotatic reflex or autogenic inhibitory reflex) is connected to 

peripheral afferent inputs via Ib afferent fibres (Golgi tendon organs). It has found to be 

silent during locomotion and replaced by other Ib afferent reflex pathway, which induces 

more excitation to homonymous and synergistic α-motoneurons (at lower extremities; 

Gossard et al., 1994; Guertin et al., 1995). Moreover, clasp knife reflex may be caused by 

communication between Ia monosynaptic excitatory and Ib autogenic inhibitory actions 

on α-motoneurons in spastic patients (with descending tracts injury). 

 

 
 

Fig. 14 Monosynaptic reflex pathways mediate stretch reflexes 

(http://www.krigolsonteaching.com/uploads/4/3/8/4/43848243/chapter_35-

_spinal_reflexes.pdf) 
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 Polysynaptic reflexes 

Flexion (withdrawal) reflex pathways are activated in response to high threshold, A and C 

fibres. It consists of two interneurons (3 or more synapses) in many segments of cord and 

α-motoneurons of many flexor muscles. In response to an intense (painful) stimulus, it 

causes the withdrawal of limb (Fig. 15). Precisely it consists of two excitatory 

interneurons (3 synapses) for ipsilateral flexor and two interneurons for ipsilateral 

extensor (1 excitatory and 1 inhibitory) motoneurons inhibition. Contralateral pathways 

are activated with a more intense stimulus which results in cross-extension reflex, further 

producing an extension of the contralateral limb. Cross-extension pathways are involved 

in enhancing the postural support while withdrawing a limb from the harsh stimulus. Its 

corresponding interneurons are proposed to be a part of locomotor CPGs (Jankowska et 

al., 1967 a, b). 

 
 

Fig. 15 Polysynaptic reflexes mediate flexion and crossed-extension reflexes 

(http://www.krigolsonteaching.com/uploads/4/3/8/4/43848243/chapter_35-

_spinal_reflexes.pdf) 
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3.2 Spinal cord injury 

 

Spinal cord injury (SCI) is considered to be an incurable condition despite extensive 

advancement in medical and surgical treatment strategies. Traumatic SCI is divided into 2 

groups: 1) penetrative in which damage to the spinal cord by any sharp object, 2) non – 

penetrative in which compression is caused by accident. Acute SCI occurs due to a 

traumatic injury to the spine that fractures or dislocates vertebrae which leads to bruising, 

partially or completely tearing of ligaments in the spinal cord tissue. SCI is a common 

cause of permanent disability and death in children and adults. Recent clinical data 

indicate that in addition to traumatic SCI, there is growing etiopathogenetic importance of 

non-traumatic injuries (McKinley et al., 1999; van den Berg et al., 2010) which may 

occur because of degeneration of spinal column, inflammation, infection, tumour/cancer 

etc. Non-traumatic SCI is more often seen in elderly (Sekhon & Fehlings, 2001). SCI is 

also classified into complete or incomplete, no matter of its origin. With the complete 

injury, the spinal cord is unable to deliver signals below or above the level of injury, 

which ultimately leads to paralysis. With the incomplete injury, some sensation is still 

present below the level of injury (Ryan et al., 2014).  

 

 According to American spinal injury association (ASIA) impairment scale, it is 

classified into five grades: 

 

 Grade A = Complete injury, where no function, whether sensory or motor, is 

preserved in S4-S5 (sacral) segments. 

 

 Grade B = Sensory incomplete, where sensory (not motor) functions are preserved 

below injury including sacral segments.   

 Grade C = Motor incomplete, in which motor functions are preserved below the 

injury and most key muscles below the level of cord injury have a muscle grade 

less than 3. 
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 Grade D = Motor incomplete, where motor functions are preserved below the 

injury and at least half of the key muscles below the neurological level have a 

muscle grade of 3 or more. 

 

 Grade E = Normal, where no motor or sensory deficits, but deficits existed in the 

past. 

 

3.2.1 Epidemiology 

The quantification of incidence and prevalence of SCI is necessary to gain better potential 

impact of healthcare management strategies and health policies to prevent and minimize 

the consequences of injury. In the past, many studies have reviewed the worldwide 

incidence and prevalence of SCI. In 2004, Ackery reviewed and reported the annual 

incidences of injury from 11.5- 57.8 cases/million (Ackery et al., 2004). Later in 2006, 

Wyndaele & Wyndaele reported SCI incidences range from 10.4 – 83 cases/million 

population (Wyndaele & Wyndaele, 2006). Then in 2010, Cripps and his colleagues 

reported prevalence varied from 236 to 1009 cases/million, and the annual incidences in 

North America, Australia, and Western Europe were reported as 39, 16, and 15 

cases/million population, respectively (Cripps et al., 2010). Recently, Chiu and his 

fellows reported the injury incidence ranges from 13.1 to 52.2 cases/million population 

yearly among 13 different countries (Chiu et al., 2010). More recently, van den Berg 

found incidence rates varied from 12.1 to 57.8 cases/million population in different 

countries (van den Berg et al., 2010). These figures indicate that it is difficult to compare 

data from distinct countries as different methods are used to report SCI incidences. 

Table1 shows the incidence of SCI in different countries within Europe (Fulran et al., 

2013). 

 

All studies have shown SCI cases are more prevalent among males than females. 

However, in Manitoba, the male to female ratio was significantly reduced from 12:1 to 

4:4:1 from the 1980s to 2000s due to more cases of motor vehicle injuries among females 

(McCammon & Ethans, 2011). Fig. 16 shows motor vehicle accidents being the leading 
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cause of injury worldwide followed by falls, sports and so on. The injury ratio in Alaska 

was 5:1 (Warren, 1995). The average age of injury varies from 15 -30 years (Price et al., 

1994; Warren et al., 1995; Dryde et al., 2003). According to the National SCI database, 

length of stay in hospitals in the acute care unit has declined from 24 days to 11 days 

since the year 1970 to 2010, respectively. Substantial downward trends are also noted for 

days in the rehabilitation unit (from 98 to 36 days). Neurologic level and extent of lesion: 

the most frequent neurologic category is incomplete tetraplegia followed by incomplete 

paraplegia, complete paraplegia, and complete tetraplegia. Less than 1% of persons 

experienced complete neurologic recovery by the time they were discharged from 

hospital (National SCI Statistical Center, 2014). 
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Table 1 SCI cases in Europe (extracted from Fulran et al., 2013) 
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Fig. 16 Causes of SCI cases in different countries around the globe (Singh et al., 

2014) 

 

 
Lifetime costs: The average annual health care and living expenses and the estimated 

cost over a lifetime vary according to the severity of the injury as shown in Table 2.  

 
 

 

Table 2 Average yearly expenses and lifetime cost of SCI (Economic Impact of SCI 

published in the journal Topics in Spinal Cord Injury Rehabilitation, Volume 16, 

Number 4, in 2011) 
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3.2.2 Pathophysiology 

 
Pathophysiology of SCI is divided into two phases: primary and secondary phase of 

injury.  

 

Primary injury refers to direct mechanical injury to the cord. Primary injury is further 

classified into four types: 1) concussion (transitory spinal cord dysfunction in the absence 

of structural damage), 2) contusion (where the damage is because of vertebral disc 

displacement), 3) compression (similar to contusion although the continuity of columns 

are immediately restored without any intervention (Bailey, 1971; Jaillenger, 1976) and 4) 

laceration (where the injury is due to vertebral fracture). It can last up to 2 h. The initial 

insult tends to damage central gray matter with relative sparing of white matter, especially 

at the periphery (Wolman, 1965). Haemorrhage within the spinal cord develops early 

followed by disruption of blood flow after the initial mechanical injury, resulting in local 

infarction because of hypoxia and ischemia. This particularly damages the gray matter 

due to high metabolic requirements. Neurons near the injury site are disrupted and myelin 

thickness diminished (Young, 1993). Nerve transmission is also disrupted due to oedema 

(Anderson & Hall, 1989; Geiser et al., 1991; Lapcak et al., 2001).  

In most clinical situations, secondary injury following the primary insult is a 

therapeutic target for preventing extension of injury (Rowland et al., 2008). Secondary 

injury begins in minutes after the primary insult and lasts from days to even months. It is 

further divided into three phases: 1) Acute 

(2h – 2 weeks), 2) Sub-acute 

(intermediate; 1-2 months post-injury) and 

3) chronic phase (> 6 months) (Fig. 17). 

 
 

 

Fig. 17 Phases of secondary insult after 

SCI (Young et al., 2017) 
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Secondary injury causes the activation of local factors such as vascular effects 

(leading to hemorrhage, increased permeability, ischemia and formation of free radicals; 

Xiong et al., 2007; Donnelly & Polovich, 2008), glutamate release (causes excitotoxicity 

because of overactivation of glutamate receptors, which further changes the membrane 

potential and activation) (Li & Styts, 2000) and inflammation (leads to activation of 

microglia and neutrophils which further changes the gene expression) (Fig. 18). All these 

factors ultimately converge to apoptosis and finally cell death (Li et al., 1999; Park et al., 

2004).  

 

 

Fig. 18 Pathophysiology of secondary SCI (Young et al., 2017) 

 

 

 

 

“The time window between primary and secondary injury gives us an opportunity to 

develop neuroprotective strategies combat spinal injury”. 
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In recent years our lab has developed an in vitro model of rat SCI. The usefulness of 

using this in vitro preparation is its survival for up to 24 h in physiological conditions. It 

provides us with an opportunity to study the secondary phase of injury for 24 h. In 24 h, 

we are able to study the mechanisms of neuroprotection produced by treating the 

preparation with different drugs after lesion. The lesion is induced by application of either 

glutamate agonist, kainate for 1 h, which induces excitotoxicity at the gray matter of 

spinal cord or pathological medium (PM) which produces hypoxia-like conditions, 

leading to white matter damage. Also, Kuzhandaivel in 2011 has reported, despite kainate 

washout, the secondary lesion progresses within first few hours (Kuzhandaivel et al., 

2011) which enable us to test locomotor spinal networks and imply pharmacological 

treatment for the injury.  
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3.3 Glucocorticoid system 

 

Corticoids (or corticosteroids) are steroid hormones produced by the adrenal cortex of 

vertebrates, as well as the synthetic analogues of these hormones. They are classified into 

two groups: mineralocorticoids and glucocorticoids. 

 

Mineralocorticoids: such as aldosterone (produced in the adrenal cortex), helps in the 

regulation of electrolyte and water balance in kidneys by regulating ion transport in renal 

tubules (Lui et al., 2013).  

 

Glucocorticoids (GCs): also known as glucocortico-steroids are hormones synthesized 

and released by the adrenal cortex in a circadian manner and in response to stress. The 

secretion of these hormones is maintained by the hypothalamic-pituitary-adrenal (HPA) 

axis (Fig. 19). Hypothalamus secretes corticotropin-releasing hormone (CRH), in 

response to internal and external stimuli which acts on the anterior pituitary to stimulate 

the synthesis and secretion of adrenocorticotropic hormone (ACTH). ACTH further acts 

on the adrenal cortex to secrete glucocorticoids. It is present in all vertebrate animal 

cells. The name glucocorticoid (glucose + cortex + steroid) is composed of its role in the 

regulation of glucose metabolism. Glucocorticoids play important role in regulation of 

homeostasis, metabolism, immune functions, skeletal growth, cardiovascular function, 

reproduction and cognition, etc (Barnes, 1998; Sapolsky et al., 2000). GCs are also 

important part of feedback mechanism in immune system where they release in response 

to stress and help in reduction of inflammation. Hence they are also used as a medicine to 

treat diseases where the immune system is over-activated like in autoimmune diseases, 

asthma and various allergies etc.  

 

They show anti-inflammatory effects by inhibiting inflammatory mediators (by 

transrepression) and inducing anti-inflammatory mediators (called as transactivation) 

(Häggström & Richfield, 2014). Their vaso-constrictive effects are mediated by blocking 

the action of inflammatory mediators (histidine) (Häggström & Richfield, 2014). GCs 

also help in immunosuppression effects by suppressing delayed hypersensitivity reactions 

https://en.wikipedia.org/wiki/Glucose
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(by acting directly on T-lymphocytes). Further their anti-proliferative effects are induced 

by inhibition of DNA synthesis and epidermal cells turnover (Häggström & Richfield, 

2014). 

 

 

Fig. 19 Effects of glucocorticoids on Hypothalamus-Pituitary-Adrenal (HPA) axis. 

The scheme represents sites of synthesis and the targets of action of glucocorticoid. 

Question marks indicate uncertainty as to the mechanism of action. Corticotropin-

releasing hormone (CRH) (also known as a corticotropin-releasing factor, CRF), 

adrenocorticotropic hormone (ACTH) and pro-opiomelanocortin (POMC) 

(extracted from Newton, 2000) 

 

Once in the bloodstream, GCs diffuse into tissues and cells and bind to 

glucocorticoid (GR) or mineralocorticoid nuclear receptors (MR). In normal conditions, 

GC binding favours MRs, even though GRs are still occupied by GCs at low levels 

(Spencer et al., 1990). When the level of GCs increases in response to stress, they bind to 

GRs at higher levels. Unbound GRs are present in the cytoplasm in complex with heat 



 
 

Page 37 
 

shock proteins, HSP90 and HSP70, and FK506-binding proteins, FKBP51. When GCs 

bind to GRs, these receptors undergo a conformational change and nuclear translocation 

to induce gene transcription (Sanchez, 1990; Oakley & Cidlowski, 2011; Maiarù et al., 

2016). GRs mediate gene transcription by binding to glucocorticoid response elements 

(GREs) (Datson et al., 2008; Revollo & Cidlowski, 2009). Many transcriptional GR 

targets block the release of cytokines (like TNFα and IL-1β) making GR activation a 

powerful tool to suppress inflammation (Joyce et al., 1997; Revollo & Cidlowski, 2009). 

Therefore, GCs are prescribed to treat acute and chronic inflammatory diseases, 

autoimmune diseases and after an organ transplant (Oakley & Cidlowski, 2011).  

 

In the CNS, GRs are expressed in neurons throughout the brain and spinal cord.  

 Hippocampal CA1 neurons have maximum expression of GRs (McEwen et al., 1968; 

Herman et al., 1989). Moreover, all glia express GRs. Schwann cells (the myelinating 

cells of the peripheral nervous system, PNS), brain and spinal cord microglia (originate 

from bone marrow-derived monocytes and are the resident macrophages of CNS), 

oligodendrocytes (myelinating cells of CNS) and astrocytes (major support cells to CNS 

neurons) all bind synthetic GR agonists and are positive to GR immunoreactivity 

(Warembourg et al., 1981; Vielkind et al., 1990; Sierra et al., 2008; Shaqura et al., 2016). 

MRs co-localize with calcitonin gene-related peptidergic (CGRP) nociceptive neurons in 

the spinal cord and dorsal root ganglia (Shaqura et al., 2016) and not present in spinal 

astrocytes, microglia and oligodendrocytes. In contrast, oligodendrocytes, spinal cord 

astrocytes, and microglia are mostly absent of MR immunoreactivity (Matsusue et al., 

2014; Shaqura et al., 2016). It may be possible that cells lacking MRs have more GRs 

(Shaqura et al., 2016; Shaqura et al., 2016). It has been reported that spinal microglia are 

activated in response to stress/GCs (Alexander et al., 2009), providing evidence for direct 

stress/GC-induced plasticity in microglia. 

 

Unfortunately, its therapeutic benefits are limited by side effects like re-

appearance of inflammation or pain, abdominal obesity, glaucoma, growth retardation in 

children, and hypertension (Oakley & Cidlowski, 2011; 2013). Apart from this, GCs 

uptake may lead to neuropsychiatric disorders like depression mood imbalance and 

anxiety (Dubovsky et al., 2012). However, agonists of GCs are still prescribed in 

hospitals because of their beneficial effects.  
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Prednisone is one of the commonly prescribed steroid drug for chronic conditions 

(the structure is shown in Fig. 20). It is more popular also because of its low cost. It is a 

prodrug which is biotransformed to an active metabolite, prednisolone after incorporation. 

Thus it is available only for oral use that allows for first-pass metabolism during 

absorption. 

 

Betamethasone is available in markets in many forms: betamethasone 

dipropionate (branded as Diprosone, Diprolene, Celestamine, Procort (in Pakistan), and 

others), betamethasone sodium phosphate (branded as Bentelan in Italy) and 

betamethasone valerate (branded as Audavate, Betnovate, Celestone, Fucibet, and others). 

In the United States and Canada, betamethasone is mixed with clotrimazole and sold as 

Lotrisone and Lotriderm etc. Its molecular structure is depicted in Fig. 20. Betamethasone 

was approved for medical purpose in the United States in 1961 (The American Society of 

Health-System Pharmacists, 2015). Betamethasone may suppress astrocytes activation 

and elevate TNF-α and IL-1β levels in neuropathic pain of rat. Local injection of 

betamethasone leads to a small increase in spinal GR expression and thus relieve from 

pain as compared to intrathecal injection (Wang et al., 2013).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Molecular structures of some glucocorticoids (Becker DE, 2013) 
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Methylprednisolone (MP, Medrol) is a widely used medication for the treatment 

of patients with chronic SCI (Hurlbert et al., 2013; Fallah et al., 2016; Fehlings et al., 

2017). It is available to administer orally or via injection. Methylprednisolone has also 

been reported to promote recovery of neurological function after spinal cord injury in rats 

(Lu et al., 2016). The neuroprotective effect of MP on SCI may be because of the 

activation of the Wnt/β-catenin signalling pathway and this inhibition of apoptosis, 

providing a novel molecular mechanism underlying the role of MP for the treatment of 

SCI (Lu et al., 2016) (Fig. 21).  

 

 

 

Fig. 21 Neuroprotective effect of MP after SCI in vitro (Lu et al., 2016) 
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It also exhibits antioxidant properties and inhibits lipid peroxidation (Hall & 

Springer, 2004) (Fig. 22).  

 

 

 

Fig. 22 Hypothesized role of inhibition of lipid peroxidation by MP and production 

of neuroprotective effect after acute SCI (Springer & Hall, 2004) 

 

 

However, due to its side effects which makes it as a controversial drug of choice. We 

tested this drug on our in vitro rat SCI model (Sámano et al., 2016) to investigate its pros 

and cons on the lesioned spinal cord in vitro.  
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3.4 General anesthetics 

 

An ancient Greek surgeon Dioscorides who originally used the term “anaesthesia” and it 

was resurrected by Dr Oliver Wendell Holmes in 1846 which means lack of sensation 

produced by inhalation of ether (Nuland, 1988; Kissin, 1997). The objectives of general 

anaesthesia include amnesia, unconsciousness (also termed hypnosis), and 

immobilization. According to its definition, it reversibly produces all of these three 

therapeutic effects (Grasshoff et al., 2005; Mashour et al., 2005).  

 

General anaesthetic drugs include inhaled gases as well as intravenous agents. 

Other classes of drugs used to achieve specific clinical goals during surgery 

(Woodbridge, 1957) could be the use of selective blockers of neuromuscular transmission 

to restrict movement of patients while surgery.  

 

 These anaesthetics have been broadly divided into three groups based on relative 

potencies for distinct clinical endpoints and their impact on electroencephalogram (EEG) 

(Forman & Chin, 2008).  

 

Group 1: consists of etomidate, propofol, and barbiturates, intravenous drugs, which can 

potentially produce unconsciousness than immobilization. For example in case of 

propofol unconsciousness (hypnosis) is attained at 3 µg/ml of plasma concentration 

whereas immobility (during skin incision) is achieved with four times higher 

concentration of the drug (Smith et al., 1994). They shift EEG (recorded from cortex) to 

lower frequencies which enable to reproduce correlation with anaesthetic depth 

(Kuizenga et al., 2001). 

 

Group 2: composed of gaseous (volatile) anaesthetics such as nitrous oxide (N2O), xenon 

and cyclopropane, along with ketamine, an intravenous agent. They are capable to induce 

analgesia however hypnotic and immobilizing ability is weak. N2O and ketamine may 

increase the EEG frequencies however, the anaesthetic depth monitored via EEG is not 
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stable (Rampil et al., 1998; Anderson & Jakobsson, 2004). There are some contradictory 

data for xenon based on EEG monitoring (Goto et al., 2000; Laitio et al., 2008).  

 

Group 3: consists of the volatile halogenated anaesthetics: halothane, isoflurane, 

sevoflurane, desflurane and methoxyflurane. They produce amnesia, hypnosis and 

immobility in a predictable manner (Campagna et al., 2003; Mashour et al., 2005). They 

reduce the frequency of EEG and anaesthetic depth monitors show reliable correlations 

with the level of consciousness. 

 

 It has extensively been studied that anaesthetics produce neuroprotective effects 

on spinal neurons and motoneurons (Salzman et al., 1993; Sooner et al., 2003; Baranović 

et al., 2014; Ishikawa et al., 2014; Bao et al., 2017). Therefore our lab has recently tested 

the volatile anesthetic, methoxyflurane (Shabbir et al., 2015), which is less frequently 

used these days because of its toxic effects (Paul et al., 1976; Wharton et al., 1980), 

showed strong neuroprotective effects on spinal motoneurons and fictive locomotion has 

recovered back by this drug. Back in 2005, the Food and Drug Administration (FDA) 

disapproved its usage in the market because of safety concerns (Mazze, 2006). However, 

it is still used in Australia for emergency purposes as an analgesic for the initial 

management of pain due to acute trauma. 

 

 On the other hand, an intravenous anaesthetic, propofol (Fig. 23) which is a 

widely used drug these days in hospitals by surgeons to induce anaesthesia before 

surgery. More usage is because of its fast recovery of consciousness, however, fast 

recovery means eye-opening (Grundmann et al., 2001) and not complete recovery of 

cognitive functions (Mirski et al., 1995).  Propofol also exerts other advantages such as 

minimal side effects, controllable anaesthetic state and quick onset (Glen, 1980; Glen & 

Hunter, 1984). Further it also exerts non-anaesthetic effects (stimulates constitutive nitric 

oxide (NO) production and inhibits inducible NO production, produce anxiolytic effects, 

has antioxidant, immunomodulatory, analgesic, antiemetic and neuroprotective effects) 

reported in animals (Rossi et al., 1996; Pain et al., 1999; Yamasaki et al., 1999; Ishii et 

al., 2002; Wang et al., 2002;  Kurt et al., 2003; Nishiyama et al., 2004; Kushida et al., 

2007; Sanchez-Conde et al., 2008) as well as in humans (Zacny et al., 1996; Aoki et al., 

1998; Grouzmann et al., 2000; Veselis et al., 2004; Gonzalez-Correa et al., 2008; Veselis 

et al., 2008).  
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Fig. 23 Structure of propofol (also known as 2, 6-di-isopropylphenol or Diprivan or 

Disoprofol or Disoprivan) 

(http://www.drugfuture.com/pharmacopoeia/usp32/pub/data/v32270/usp32nf27s0_

m70460.html) 

 

 

 

Mechanism of action of neuroprotective effect of propofol 

 

Propofol shows neuroprotective effect via potentiation of GABAA (β2 and β3 subunits) 

mediated receptor responses (Fig. 24) (Belelli et al., 1997; Forman & Chin, 2008; 

Bajrektarevic & Nistri, 2016) and depressed the glutamate (mainly NMDA) mediated one 

(Vasileiou et al., 2009).  

 

GABA receptors are a class of receptors which respond by binding of the 

inhibitory neurotransmitter, GABA. GABA receptors are classified into two groups: 

GABAA and GABAB. GABAA receptors are ligand-gated ion channels also called as 

ionotropic receptors [which also include nicotinic acetylcholine receptors (nAChR), the 

5-hydroxytryptamine (5-HT) type-3 receptors, and the glycine receptors], whereas 

GABAB receptors are G protein-coupled receptors (also known as metabotropic 

receptors). 

 

GABAA receptors are made up of five subunits that belong to different subclasses 

(α, β, γ, δ, ε, π, θ, ρ) (Fig. 24). The subunits exhibit a 60–70% homology within each 

class, however, the homology between the classes is 30–40% (Sieghart, 1995; Barnard et 

al., 1998). So far, a total of six α-, three β-, three γ-, one δ-, one ε-, one π-, one θ-, and 

https://en.wikipedia.org/wiki/Receptor_(biochemistry)
https://en.wikipedia.org/wiki/Neurotransmitter
https://en.wikipedia.org/wiki/Ligand-gated_ion_channels
https://en.wikipedia.org/wiki/Metabotropic_receptors
https://en.wikipedia.org/wiki/Metabotropic_receptors
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three ρ-subunits of GABAA receptors and alternatively spliced isoforms of these subunits 

have been cloned and sequenced from the mammalian CNS (Sieghart, 1995; Barnard et 

al., 1998). In the human brain, this subunit seems to be final as no new GABAA receptors 

were detected by applying search algorithms from human to nematodes (Simon et al., 

2004). 

 

 

Fig. 24 Structure of GABAA receptor-chloride (Cl
-
)
 
channel complex with binding 

sites for different drugs in CNS. GABA binds to two sites located between α and β 

subunits, trigger the opening of the Cl
- 

 channel, which produces membrane to 

hyperpolarize resulting in a reduction of neuronal firing rate 

(http://tmedweb.tulane.edu/pharmwiki/doku.php/overview_of_cns_neurotransmitt 

rs) 
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3.5 Nicotinic Acetylcholine Receptors 

 

The importance of nicotinic acetylcholine receptors (nAChRs) to regulate biological 

functions lies in their ability to bind endogenous agonist, acetylcholine (ACh), which 

makes the receptor in motion and gates the channel allowing the flow of ions and thus 

produces a cellular response. In 1936, Henry Dale and Otto Loewi shared the Nobel prize 

in Physiology and Medicine for their pioneering research on chemical neurotransmission; 

in particular, the discovery of first identified neurotransmitter, ACh. The history of this 

neurotransmitter was based on critical experiments performed by H. Dale (Dale, 1914) 

who determined the role of ACh in vasodepression and O. Loewi (Loewi, 1921), who 

described the chemical neurotransmission in frog nerve-heart preparation. This story was 

concluded after 15 years when ACh was actually found in mammalian organs (Dale & 

Dudley, 1929). Since that time, the history of ACh in neuroscience has been of extreme 

advancement to our knowledge in various functions in the nervous system and in 

neuropathologies.  

The name ACh is derived from its chemical structure as it is an ester of acetic acid 

and choline with chemical formula, CH3COOCH2N
+
(CH3)3. In cholinergic neurons, it is 

synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase, located in 

the cytosol. Choline is supplied from extracellular space by the high-affinity active transport 

system, whereas acetyl-CoA is synthesized in mitochondria. After synthesis, ACh is stored 

into synaptic vesicles along with ATP. Upon nerve stimulation, it is released into the synaptic 

cleft, by exocytosis through the synaptic vesicles, where it may activate cholinergic receptors 

or be rapidly degraded by acetylcholinesterases to choline and acetate.  

 

3.5.1 Receptor types and distribution 

 

The key molecules to which ACh bind are cholinergic muscarinic (mAChRs) and 

neuronal nicotinic acetylcholine receptors (nAChRs). Muscarinic receptors were named 
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as such because they are sensitive to muscarine and nicotinic receptors for their 

sensitivity to nicotine.  Both are expressed by either neuronal or non-neuronal cells 

throughout the body. These two receptors are structurally and functionally different. 

mAChRs occur primarily in CNS and belong to a family of G-protein coupled 

receptors. They use an intracellular secondary messenger system which increases 

intracellular calcium resulting in the transmission of signals inside the cells. Upon ACh 

binding to mAChRs causes conformational changes at the receptors leading to activation 

of intracellular G-protein and conversion of GTP to GDP (in order to become activated 

and dissociate from the receptor). The active G-Protein acts as an enzyme to further 

catalyze downstream signalling cascades. These receptors play an important role in 

modulating various physiological functions like the release of neurotransmitter, 

contraction of smooth muscles and heart rate etc. They are classified into five types of 

metabotropic receptors: M1 to M5 (Bonner et al., 1987; Peralta et al., 1987; Bonner et al., 

1988;  Bonner, 1989;  Caulfield et al., 1998). M1-M5 are localized in CNS, M1-M4 are 

also found in many tissues like M1 receptors are localized in salivary glands, M2 in 

cardiac tissues where they play a crucial role in closing calcium channels and therefore 

reduce the force and rate of contraction and M3 receptors are found in smooth muscles 

and secretion glands. M1, M3 and M5 are involved in activation of phospholipase C and 

thus produce two secondary messengers, Inositol trisphosphate (IP3) and diacylglycerol 

(DAG) eventually causing an increase of intracellular calcium (Wess, 1996; et al., 1998). 

M2 and M4 inhibit adenylate cyclase and thus causing the low production of cAMP 

which is a second messenger (Scarr, 2012).   

 

nAChRs are a member of the superfamily of cysteine-loop of pentameric ligand-

gated ion channels, widely expressed in both central and peripheral nervous system (Sine 

& Engel, 2006; Albuquerque et al., 2009). They are expressed in both neuronal and in 

non-neuronal systems (Dani & Bertrand, 2007; Wessler & Kirkpatrick, 2008). So far, 

seventeen vertebrate subunits (α1-10, β1-4, γ, δ, and ε) have been identified in the 

nervous system and muscles nevertheless, only the subunits expressed in the mammalian 

CNS are reviewed here.  

12 genes have been identified, encode for neuronal nAChR subunits, α2–α10 

(contain 2 adjacent cys-residues crucial for binding ACh) and β2–β4 (lack cys-residues) 

(Le Novere & Changeux, 1995; Lindstrom, 2000). Further, these receptors are mainly 

https://en.wikipedia.org/wiki/Muscarine
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divided into 2 categories, low affinity receptors (mainly α7 nAChRs) that bind the agonist 

with low affinity (with µM concentration) and high affinity (majorly α4β2 nAChRs) that 

bind receptors with high (with nM concentration) affinity in the chick (Whiting & 

Lindstrom, 1986a) and rat brain (Whiting & Lindstrom, 1986b; Whiting  & Lindstrom, 

1987).  In CNS, cholinergic transmission acts via nAChRs and modulates various 

activities such as cell excitability, neurotransmitter release etc and also control 

physiological functions like cognition, pain, anxiety, fatigue, reward, learning, memory 

(Changeux & Edelstein, 2001; Hogg et al., 2003; Christie et al., 2008). The brain 

cholinergic system is formed of a number of subsystems consisting of eight major and 

highly overlapping groups of cells, where dendrites of one cell are making contacts with a 

number of other cells. Therefore it can be assumed that these network interconnections 

may lead to firing of a group of neurons altogether in coordination and consequently to 

the activation of different cholinergic subsystems (Mesulam & Geula, 1988; Mesulam et 

al., 1989; Woolf, 1991). 

 Magnocellular basal complex: The most important group of cholinergic neurons, 

providing input to cortical and hippocampal neurons.  

 

 Pedunculopontine-laterodorsal tegmental complex: The second significant 

cholinergic complex in brain.  The neurons are localized at the pedunculopontine 

tegmental nucleus and innervating the thalamus and midbrain dopaminergic (DA) 

neurons. 

 

 Striatum: Dense cholinergic fibres evolving from inner cholinergic neurons 

located in the caudate nucleus and they do not innervate beyond striatum. 

 

 Lower brain stem: Cholinergic neurons localized in brainstem reticular formation 

and spinal intermediate gray matter which innervate the superior colliculus, 

cerebellum and cortical nuclei. 
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 Habenula–interpeduncular system: Cholinergic neurons present in the medial 

habenula project to the interpeduncular nucleus. Thalamus is providing input 

signals to habenula and thus it is a significant point through which the brainstem 

reticular formation is being influenced by the limbic system. 

 

 Autonomic nervous system: The preganglionic neurons in sympathetic and 

parasympathetic systems are cholinergic. The parasympathetic preganglionic cells 

are present in encephalic trunk nuclei and in S2–S4 segments of the spinal cord 

and are innervating to target organs.  The sympathetic preganglionic neurons are 

located in the intermediolateral gray matter (T1–L3 segments) of the spinal cord 

and innervating to paravertebral sympathetic ganglia. 

 

3.5.2 Structure and topology of nAChR 

 

The pentameric neuronal nAChRs (Fig. 25 B) encode for peptides having hydrophilic 

extracellular -NH2 domain (M1-M3), a large intracellular loop and a fourth hydrophobic 

transmembrane domain (M4) (Sargent, 1993; Hogg et al., 2003) (Fig. 25 A). During 

evolution, these receptor subunits are highly conserved with < 80% amino acid identity of 

the same subunit among different vertebrate species (Le Novere & Changeux, 1995).  

These nAChRs are further divided into 2 classes: homomeric (consisting of single types 

of subunits; made of α7– α9 subunit homo-pentamers) or heteromeric (composed of 

several subunit types; made up of α7, α8 or α9, α10 subunit hetero-pentamers). Although, 

nAChRs, which contain the α2– α6 and β2– β 4 subunits form only heteromeric receptors 

that bind to the agonists with high affinity (Lindstrom, 2000) (Fig. 25 C). nAChR 

subunits are organized around the central canal, where the receptor has binding sites for a 

ligand, ACh. ACh has two components, principal and complementary. In heteromeric 

nAChRs, α2– α4 and α6 subunits carry principal component and β2 or β4 subunits carry 

the complementary component. In case of homomeric receptors, each subunit has both 

components to bind ACh (Changeux & Edelstein, 1998; Corringer et al., 2000; Fig. 25 

C). However, these components are absent in α5 and β3 subunits, therefore, called as 
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auxiliary subunits. nAChRs are permeable to Na
+
, K

+
, and in some cases, Ca

2+
 ions. The 

channel opens immediately (with a time constant of about 20 μs) upon binding of least 

two ACh molecules to the receptor. In the open state, the nAChR channel has a pore 

diameter of 9-10 Å with a conductance in the range from 5 to 35 pS.  

 

 

Fig. 25 The structure of neuronal nAChRs. (A) Scheme of transmembrane topology 

of nAChR subunits. (B) An assembled pentameric arrangement of nAChR receptor 

subunits. (C) Subunit arrangement in the homomeric α7 and heteromeric α4β2 

subtypes, and localization of the ACh binding site (Gotti & Clementi, 2004) 

 

 

3.5.3 Ligands –Agonists of nAChRs 

 

There are several molecules being reported to activate nAChRs exemplified in Fig. 26:   

 

 Nicotine acts as an agonist at most nicotinic nAChRs (IUPHAR Database, 2004; 

Malenka et al., 2009), except at two receptor subunits (α9 and α10) where it acts 

as a receptor antagonist.  Nicotine is an alkaloid found in the nightshade family of 

plants. In smokers, the peak concentration of nicotine in blood plasma is about 

0.31 μM (between 10 and 50 ng/ml), in the brain is about 1 μM, and after smoking 
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in lung fluids the concentration reaches to 60 μM (Clunes et al., 2008; Matta et al., 

2006). After inhaling the cigarette smoke, nicotine reaches the brain within 8-10 s 

through arterial circulation. Its half-life is about 2 h, and of cotinine (the major 

nicotine metabolite) is about of 16 h (Benowitz, 2009). Other nAChR analogues 

are also synthesized from nicotine (shown in Fig. 26, compound 1) by replacing 

pyridine or pyrrolidine rings or by conformational flexibility. 

 

 Compound 2 is highly selective for α4β2 receptor subtype (Romanelli & Gualtieri, 

2003; Bunnelle et al., 2004; Jensen et al. 2005).  

 

 Analogue in example 3 has nM affinity for β2-containing receptors (Wei et al., 

2005).  

 

 The compounds of general formula 4 and 5 (Pallavicini et al., 2004) possess 

affinity in µM range for the rat brain nAChRs labelled by [
3
H]-epibatidine. 

 

 Substitution of pyridine ring with a quinoline gives rise to compound 6 which 

behave as a nicotinic agonist in the hot-plate test on mice when injected 

intracerebroventricularly (i.c.v.) (Guandalini et al., 2006). 

 

 Compounds 7–10 designed with the motive of discovering new analgesic drugs. 

Compounds of general formula 7, but not 8 or 9, showed significant analgesic 

activity in the writing test in mice (Zhang et al., 2006), whereas compound 10 

showed analgesic activity in the formalin test on mice (Baraznenok et al.,  2005). 
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Fig. 26 Agonists of nAChRs (modified from Romanelli et al., 2007) 

 

 

3.5.4 Desensitization of nAChR 

 

Loss of physiological response after prolonged application of stimulus is termed 

desensitization. Desensitization of the nAChR is produced by prolonged exposure to 

agonists leading to inactivation of the channel. In spite of extensive studies on nAChRs, 

the detailed molecular mechanism of the nAChR desensitization is not known with 

certainty. Concerning desensitization, nAChRs in the mammalian nervous system can be 

divided into two main groups: α7-containing receptors which desensitize within 

milliseconds and non α7 nAChRs that desensitize slowly, in seconds (Quick & Lester, 
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2002; Giniatullin et al., 2005).  Desensitization depends on agonist concentration and 

time of exposure.  

 

nAChRs may exist in three distinct conformations: 1) the resting, 2) active and 3) 

desensitized states. Fig. 27 A, B demonstrates an idealized nicotinic cholinergic synapse 

where the presynaptic component composed of the neurotransmitter ACh (black dots) 

within synaptic vesicle and the postsynaptic membrane consists of the receptor. The 

receptor exists in an equilibrium mixture of two conformation states, resting (Re) and 

desensitized (D) state. The numbers below each conformation state imply amount or 

percent of each conformation state (Heidmann & Changeux, 1979; Boyd & Cohen, 1980). 

An action potential causes the release of ACh at the cleft produces conformational change 

resulting in an active state. As soon as ACh occupies all binding sites, the receptor 

affinity towards ACh increases which activates the D state.  

 

In classical desensitization, the agonist is applied from medium to a high (μM to 

mM) concentration which activates and then desensitizes the receptors which 

subsequently recovers after the removal of agonist. Classical desensitization develops in 

tens of millisecond range (Fig. 27 C). High-affinity desensitization occurs with low 

agonist concentration without apparent receptor activation. Both phenomena are nAChR 

subunit and agonist-dependent (Giniatullin et al., 2005). Desensitization can be regulated 

by exogenous and endogenous substances and by covalent modifications of the receptor 

structure. Modulators could be non-competitive blockers such as calcium (Giniatullin et 

al., 2005), thymic hormone peptides, substance P and receptor phosphorylation. 

Phosphorylation is correlated with the regulation and desensitization of the receptor 

through various protein kinases (Changeux & Edelstein, 1998). 
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Fig. 27 (A, B) Mechanism of desensitization (Ochoa et al., 1988). (C) Different 

timings of desensitization with respect to agonist concentration and time of agonist 

application (Giniatullin et al., 2005) 

 

 

 

3.5.5 Role in Neuroprotection 

 

 

Previous studies have indicated that nAChRs are important targets to attempt 

neuroprotective strategies against pathological insults such as excitotoxicity or 

oxygen/glucose deprivation. The present study was raised with the recent observation of 

nicotine, an agonist of nACRs protection against excitotoxicity applied to rat brainstem 
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motoneurons. Due to lack of information on similar effects on the rat spinal cord, we 

applied this procedure to our model to test the effects of nicotine on SCI model. There are 

many studies which show promising neuroprotection by nicotine application. Kihara and 

his colleagues have proposed that the neuroprotection may be achieved by activation of 

PI3-kinase-Akt system and upregulation of Bcl-2 in cultured cortical neurons (Kihara et 

al., 2001). Therefore, it could also be possible the involvement of PI3-kinase-Akt 

pathway in nAChR mediated neuroprotection in spinal motoneurons of rat (Nakamizo et 

al., 2005). It is also known that nAChR mediated neuroprotection against excitotoxicity is 

Ca
2+

 dependent (Donnelly-Roberts et al., 1996; Dajas-Bailador et al., 2000; Ferchmin et 

al., 2003) and does not involve inhibition of glutamate receptor function (Dajas-Bailador 

et al., 2000; Prendergast et al., 2001; Ferchmin et al., 2003).  
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3.6 Neuroprotection by a natural compound: Celastrol 

 

Identification of some bioactive compounds extracted from medicinal plants has drawn 

substantial interest in recent years for their strong and exclusive anti-oxidant, anti-

inflammatory, anticancer and neuroprotective properties. One classic example is 

Tripterygium wilfordii (TW) plant, widely used in Chinese medicine for the treatment of 

distinct chronic inflammatory and autoimmune diseases (Kannaiyan et al., 2011; Wong et 

al., 2012). TW or “lei gong teng” (called in Chinese) is also known as thunder god vine, 

is a vine used in traditional Chinese medicine.  The roots of this plant contain various 

therapeutic compounds such as steroids, terpenoids and alkaloids. There are more than 46 

diterpenoids (for example triptolide), 20 triterpenoids (like celastrol), 21 alkaloids (like 

euonine), and many other small molecules have been identified from TW. The most 

abundantly found bioactive compound extracted from its roots is celastrol, consisting of 

ample biological activities. Celastrol is a pentacyclic triterpenoid that belongs to the 

family of quinine methides (Fig. 28).  

 

Fig. 28 Structure of celastrol (http://www.chemspider.com/Chemical-

Structure.109405.html) 

Numerous studies have shown the pharmacological effects celastrol on several 

diseases (Allison et al., 2001; Salminen et al., 2010; Kannaiyan et al., 2011). Celastrol 

exhibited effects in suppression of microglial activation, production of pro-inflammatory 

cytokines and inducible nitric oxide (Allison et al., 2001). China Food and Drug 

Administration (CFDA) has approved the TW drug for the treatment of rheumatoid 

arthritis in China. More recent studies on animals model have shown that celastrol has the 
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ability to attenuate multiple sclerosis (MS) by regulating Th17 responses, balancing the 

pro- and anti-inflammatory cytokines and downregulating the expression of factor kappa-

B (NF-κB) (Abdin & Hasby, 2014; Wang et al., 2015). Celastrol has shown to potentially 

inhibit lipid peroxidation (Sassa et al., 1990; 1994) in rat liver mitochondrial membrane. 

Further, this drug has shown to exhibit neuroprotective effects in the rodent model of 

Huntington’s and Parkinson’s diseases by inducing heat shock protein 70 (HSP70) within 

dopaminergic neurons and reducing tumour necrosis factor-α and NF-κB and astrogliosis 

(Cleren et al., 2005). HSP70 is prominently induced during stress conditions and is also 

the best-conserved protein. It has demonstrated to be widely expressed in the CNS. It is 

expressed by neurons, glial cells (Brown et al., 1989; Nowak et al., 1990) and spinal 

motoneurons (Carmel et al., 2004; Cizkova et al., 2004) as well. Therefore we have 

investigated the neuroprotective effects of celastrol in our rat SCI model. We have pre-

treated our preparations with celastrol (0.75 µM) for 6 h by making a hypothesis that 

during this time course celastrol with activate HSP70 expression and decrease NF-κB. 

This hypothesis is based on previous studies and our lab reports where Shabbir has shown 

the expression of HSP70 in spinal motoneurons and its role in neuroprotection (Shabbir et 

al., 2015). After pre-treating the spinal cords we have applied excitotoxic agent, kainate 

(50 µM) for 1 h to induce excitotoxicity and record its effects the day after.  
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4 AIMS 

 
For any kind of rhythmic motor behaviour, like running or walking or swimming, CPGs 

have been presumed to be present (Grillner, 1986). Disturbance of finely tuned locomotor 

network within sensory input and pattern generation following central insult such as SCI, 

Parkinson disease, stroke, results in movement disorder. Therefore, it is important to 

understand the mammalian locomotor CPG in order to improve neuro-rehabilitation of 

patients with SCI (Rossignol et al., 1998; Edgerton et al., 2004). Without interpreting the 

spinal neuronal circuits which generate motor behaviours, it is hard to design suitable 

therapies to combat spinal lesion.  

 

Using this fundamental therapeutic approach as a first step, by using an in vitro rat SCI 

model, thesis project focuses at:  

 

 Gaining insight of early pathophysiological processes occurs after inducing spinal 

lesion by application of kainate (50 or 100 µM) (glutamate agonist, which is used 

to produce excitotoxicity by over-activation of glutamatergic system) or 

pathological medium (mimics dysmetabolic/hypoxic conditions after vascular 

dysfunction) for 1 h and studying the changes occurred in spinal reflexes, 

locomotor networks, neuronal and motoneuronal damage during injury by 

extracellular recordings, immuno-histochemistry and calcium imaging techniques.  

 

The next step was to: 

 

 Study the mechanisms of neuroprotection at the early phase of insult to prevent 

delayed pathological events by using pharmacological therapies.  
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 Methylprednisolone sodium succinate (6 &10 µM) – used to study how this drug 

could modulate fictive locomotor rhythms and attenuate neuronal, motoneuronal 

and astroglial damage. 

 Propofol (5 µM) – How this widely used intravenous anaesthetic could antagonize 

the effect of excitotoxicity by understanding its mechanism of action. 

 Nicotine (0.5, 1, 2 & 10 µM) – A potent parasympathomimetic stimulant used to 

investigate (using in vitro rat spinal cord and organotypic spinal cultures): 

o The correct neuroprotective dose. 

o Its effects on spinal locomotor CPGs before and after lesion. 

o How this drug could modulate the damage evoked by stimulation of 

excitotoxic pathways.  

o Which receptors at the spinal level are involved in the neuronal and 

motoneuronal recovery after SCI.  

 Celastrol (0.75 µM) – A bioactive extract used to examine the protective role of 

inducible HSP70 on spinal motoneurons against excitotoxic injury to rat spinal 

cord. 
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5 MATERIALS, METHODS AND RESULTS 
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Abstract—Methylprednisolone sodium succinate (MPSS)

has been proposed as a first-line treatment for acute spinal

cord injury (SCI). Its clinical use remains, however, contro-

versial because of the modest benefits and numerous

side-effects. We investigated if MPSS could protect spinal

neurons and glia using an in vitro model of the rat spinal

cord that enables recording reflexes, fictive locomotion

and morphological analysis of damage. With this model, a

differential lesion affecting mainly either neurons or glia

can be produced via kainate-evoked excitotoxicity or appli-

cation of a pathological medium (lacking O2 and glucose),

respectively. MPSS (6–10 lM) applied for 24 h after 1-h

pathological medium protected astrocytes and oligodendro-

cytes especially in the ventrolateral white matter. This effect

was accompanied by the return of slow, alternating oscilla-

tions (elicited by NMDA and 5-hydroxytryptamine (5-HT))

reminiscent of a sluggish fictive locomotor pattern. MPSS

was, however, unable to reverse even a moderate neuronal

loss and the concomitant suppression of fictive locomotion

evoked by kainate (0.1 mM; 1 h). These results suggest that

MPSS could, at least in part, contrast damage to spinal glia

induced by a dysmetabolic state (associated to oxygen and

glucose deprivation) and facilitate reactivation of spinal net-

works. Conversely, when even a minority of neurons was

damaged by excitotoxicity, MPSS did not protect them nor

did it restore network function in the current experimental

model. � 2015 IBRO. Published by Elsevier Ltd. All rights

reserved.

Key words: motoneuron, glial cells, glutamate, metabolic

perturbation, excitotoxicity, fictive locomotion.

INTRODUCTION

The incidence of new cases of spinal cord injury (SCI) has

remained at a high, stable level throughout the last

decade (Jain et al., 2015) with poor long-term outcome

for neurological recovery (Chen et al., 2013; Furlan

et al., 2013). The acute phase of SCI (due to the primary

insult of mechanical, vascular or dysmetabolic nature)

rapidly evolves into secondary damage, characterized

by excitotoxicity caused by massive release of glutamate,

in turn triggering a complex pathophysiological cascade

generating toxic compounds (Dumont et al., 2001; Park

et al., 2004; Rowland et al., 2008; Forder and

Tymianski, 2009; Fatima et al., 2014). Thus, neuroprotec-

tion against secondary injury is a major therapeutic target

(York et al., 2013; Cox et al., 2014) to preserve the spinal

gray (Lipton, 2006; Sámano et al., 2012) and white matter

containing the long-fiber tracts (Kanellopoulos et al.,

2000; Lee et al., 2008; Margaryan et al., 2010; Sun

et al., 2010; Cox et al., 2014). Large-scale clinical trials

proposed the early i.v. administration of the glucocorticos-

teroid methylprednisolone sodium succinate (MPSS) in

high doses as the mainstay treatment especially directed

to white matter protection (Bracken et al., 1990, 1992;

Bracken, 2012). This approach stems from the potent

anti-inflammatory and antioxidant properties of MPSS to

reduce lipid peroxidation, and to alter gene transcription

(Oudega et al., 1992; Hall, 1993).

After the publication of the National Acute Spinal Cord

Injury Study trials (NASCIS I, II and III; Bracken et al.,

1990; Bracken, 1992), the MPSS treatment has become

controversial because the neurological improvements

were modest (Harrop, 2014; Fehlings et al., 2014) and

coupled to important side effects (Bydon et al., 2013;

Harrop, 2014). Notwithstanding the debate about the clin-

ical use of MPSS, this drug is still used in several centers

as first approach to SCI (Nicholas et al., 2009; Bracken,

2012; Druschel et al., 2013; Miekisiak et al., 2014;

Cheung et al., 2015). A large-scale clinical survey has

very recently re-examined the usefulness of MPSS

administration to SCI patients with debatable outcome in

terms of short- or long-term motor control (Evaniew

et al., 2015). Animal models of SCI have shown protection

especially for white matter oligodendrocytes

(Oudega et al., 1999; Lee et al., 2008; Xu et al., 2009;

Sun et al., 2010). These observations raise the issue
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pathological medium; RIP, oligodendrocyte and myelin sheath marker;
ROI, region of interest; SCI, spinal cord injury; SD, standard deviation;
SEM, standard error of the mean; S100, Ca2+-binding protein; SMI-32,
non-phosphorylated neurofilament H; VR, ventral root; VWM, ventral
white matter; 5-HT, 5-hydroxytryptamine.
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whether certain types of SCI might receive more benefit

from MPSS than others.

In recent years we have developed an in vitromodel of

SCI in which transient application of the potent glutamate

agonist kainate or a ‘‘pathological medium” (PM;

mimicking the dysmetabolic conditions occurring after a

vascular dysfunction) evokes distinct alterations in

locomotor networks with primary damage to gray or

white matter, respectively (Taccola et al., 2008;

Nasrabady et al., 2012). Useful features of this model

are the limited tissue damage in analogy to the majority

of the new SCI cases that are incomplete (Jain et al.,

2015), and the study of how delayed drug administration

(mimicking the clinical setting) might work. The model

offers the distinctive advantage of direct investigation of

locomotor spinal networks that express alternating motor

patterns recorded from lumbar ventral roots (Grillner,

2006; Kiehn, 2006). Thus, the aims of the present study

were to find out if, in our in vitro model, any neuroprotec-

tion by MPSS could be observed and if it might be differ-

entially effective on white or gray matter (Taccola et al.,

2008; Margaryan et al., 2009; Kuzhandaivel et al.,

2010a,b).

EXPERIMENTAL PROCEDURES

Rat spinal cord preparation

The experiments were carried out on neonatal Wistar rats

(ages 1–2 days). All efforts were directed toward

minimizing the number of animals used for the

experiments and their suffering. Under urethane

anesthesia (0.2 ml i.p. of a 10% w/v solution), the spinal

cords were carefully dissected out, superfused (7.5 ml/

min) with Kreb’s solution containing (in mM): 113 NaCl,

4.5 KCl, 1 MgCl2�7H2O, 2 CaCl2, 1 NaH2PO4, 25

NaHCO3 and glucose 11; gassed with O2 95%, CO2

5%, pH 7.4 at room temperature (22 �C) (Taccola et al.,

2008; Margaryan et al., 2009). The experiments were

performed in accordance with the ethical guidelines for

the care and use of laboratory animals of National Insti-

tutes of Health (NIH). All treatment protocols were

approved by the Scuola Internazionale Superiore di Studi

Avanzati (SISSA) ethics committee and are in accor-

dance with the European Union guidelines on animal

experimentation.

Electrophysiological recordings

In order to study reflexes and fictive locomotor rhythms,

the experiments were based on DC coupled recordings

with tight-fitting suction electrodes from lumbar (L)

ventral roots (VRs) (Taccola et al., 2008). Signals were

routinely recorded from L2 and L5 VRs carrying mainly

flexor and extensor motor signals to hind limb muscles,

respectively (Kiehn, 2006). Further analysis of recorded

signals was done using pClamp software (version 9.2;

Molecular Devices, Sunnyvale, CA, USA).

VR responses were evoked by stimulating a single

ipsilateral dorsal root (DR) via a bipolar suction

electrode once every 60 s. First, the minimum stimulus

intensity was estimated to produce a VR threshold

response homolaterally which is considered equivalent

to 1� threshold to induce monosynaptic reflexes

(Marchetti et al., 2001). Three times higher values of

threshold were used to elicit polysynaptic responses

(Baranauskas and Nistri, 1995). Generally a train of DR

stimuli (30 pulse trains at 2-Hz frequency, 0.1-ms pulse

duration) was given to electrically induce fictive locomo-

tion. The responses were calculated by averaging the

peak amplitude and area of 3–5 events. Alternatively,

rhythmic cycles were recorded by application of

N-methyl-D-aspartate (NMDA; 3–6 lM) and 5 hydrox-

ytryptamine (5-HT; 10 lM) (Kiehn, 2006). The periodicity

and amplitude of cycles were measured from 20 continu-

ous oscillations as already described by Taccola et al.

(2008). Disinhibited bursting was induced by continuous

bath application of blockers of c-aminobutyric acid

(GABA)-A and glycine receptors, bicuculline (20 lM)

and strychnine (1 lM), respectively. Burst parameters

were analyzed in accordance with Bracci et al. (1996).

Protocols for spinal cord lesion and neuroprotection

Two experimental protocols were used: in the first one,

spinal lesioning of the gray matter (with loss of fictive

locomotion) was induced with 1-h application of the

excitotoxic agent kainate (KA, 0.1 mM) in standard

Krebs’ solution (Taccola et al., 2008; Margaryan et al.,

2009; Mazzone et al., 2010).With this approach white mat-

ter lesions are usually quite limited (Taccola et al., 2008).

The second protocol mimicked the condition of

anoxia/aglycemia that mainly damages the white matter

of the spinal cord and is thought to better simulate what

occurs after a non-traumatic lesion (Taccola et al.,

2008; Margaryan et al., 2009; Kuzhandaivel et al.,

2010a). Thus, spinal cord preparations were subjected

(for 1 h) to PM, namely a modified Kreb’s solution contain-

ing 10 mM H2O2, 500 lM sodium nitroprusside (SNP),

and lacking extracellular Mg2+, glucose and oxygen

(replaced by N2). NaHCO3 was replaced by 1 mM 4-(2-

hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)

to reach pH 6.75–6.80 (with 0.1 N NaOH), while the

osmolarity was lowered to 230–240 mOsm. This solution

is known to induce a pathological condition that includes

locomotor network depression and spinal damage

(Taccola et al., 2008; Margaryan et al., 2009).

With either protocol, we investigated any

neuroprotection by MPSS (Pfizer, Italy) after the

experimental (1 h) injury. MPSS was diluted with

distilled sterile water to get a stock solution of 100 mM,

from which test concentrations of 6 or 10 lM were

made. The MPSS solution was used within 24 h, since

the solution is unstable after 48 h as instructed by the

manufacturer. The selection of MPSS concentrations (6

or 10 lM) was based on published clinical guidelines

(Sauerland et al., 2000) and former reports with oligoden-

drocytes cell culture and an organotypic-based model of

spinal cord damage (Guzmán-Lenis et al., 2009; Sun

et al., 2010). After the application of kainate or PM was

terminated with standard Krebs’s solution washout,

MPSS treatment (6 or 10 lM) started immediately and

lasted for up to 24 h. Longer observation periods were

prevented by the spontaneous deterioration of the spinal
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cord in vitro. Control groups treated with MPSS alone

were kept in standard Krebs’s solution for 24 h in vitro.
Sham spinal cord preparations run alongside the experi-

mental group were maintained in standard Kreb’s solution

for up to 24 h (Taccola et al., 2008).

Immunohistochemistry procedure

At the end of the experiment, spinal cord preparations

were fixed with 4% paraformaldehyde and cryoprotected

in sucrose solution (30% w/v) for subsequent

immunohistochemistry (Taccola et al., 2008). Transverse

sections (30-lm-thick) of the spinal cord were cut with a

sliding microtome at �20 �C and stored in phosphate-

buffered saline (PBS) until use. In accordance with our

former studies, we analyzed spinal regions of interest

(ROI) between L1 and L2 segments where the main com-

ponents of the locomotor central pattern generator (CPG)

are located (Kiehn, 2006). Single or double immunohisto-

chemical stainings were performed on the free-floating tis-

sue sections or on the sections immobilized on Superfrost

plus slides (Thermo Fisher Scientific GmbH, Germany)

and processed in a humid atmosphere. Sections were

preincubated for 1–2 h at room temperature in 5% normal

goat serum (NGS) or 5% normal donkey serum/5%

bovine serum albumin (BSA) and 0.3% Triton X-100, fol-

lowed by overnight incubation at 4 �C in 1% NGS/1%

BSA/0.1% Triton X-100 solution containing the primary

antibodies listed in Table 1. Anti-NeuN (neuronal nucleus)

recognizes a neuronal-specific nuclear protein (NeuN) to

detect differentiated neurons (Taccola et al., 2008;

Margaryan et al., 2009; Cifra et al., 2012). Anti-SMI32 rec-

ognizes a non-phosphorylated neurofilament in ventral

motoneurons, and anti-choline acetyltransferase (ChAT)

is the marker for choline acetyl transferase, the synthetic

enzyme of acetylcholine. Both antibodies are clearly iden-

tifiable in motoneurons (Cifra et al., 2012).

Anti-S100 recognizes the protein S100 that belongs to

the family of Ca2+-binding proteins found in the

cytoplasm and nuclei of astrocytes (Donato, 2003), while

anti-GFAP recognizes the glial fibrillary acidic protein

(GFAP), an intermediate filament protein characteristic

for white matter astrocytes (Eng, 1985).The anti-O4

antibody is the earliest recognized marker specific for a

sulfated glycolipid antigen of oligodendroglia (Sommer

and Schachner, 1981). Oligodendrocyte and myelin

sheath marker (RIP) antibody selectively stains oligoden-

drocytes and their processes containing myelin basic pro-

tein (Friedman et al., 1989) (Table 1).

Tissue sections were rinsed thrice for 10 min each in

PBS–Triton X-100 (0.1 M PBS, 0.3% Triton X-100), and

then incubated for 2 h with the appropriate secondary

antibody, anti-mouse Alexa Fluor 488 or 594, or anti-

rabbit Alexa Fluor 488 or 594, or anti-goat Alexa 488, or

anti-donkey Alexa 488 antibodies. Finally, to identify

pyknotic nuclei, the sections were stained with 1 lg/ml

solution of 40,6-diamidino-2-phenylindole (DAPI) (Sigma,

Dorset, UK) for 10 min at room temperature and

processed with fluorescence mounting medium (DAKO,

Milan, Italy) for analysis with an epifluorescence

microscope (Zeiss Axioskope 2, Carl Zeiss,

Oberkochen, Germany). Selected spinal cord serial

sections with double or triple labeling staining were

further analyzed with confocal Leica (DMRI2, Wetzlar,

Germany) equipped with Ar/Arkrypton laser and

Metavue software (Molecular Devices, Sunnyvale, CA,

USA).

Cell analysis

Pyknotic nuclei, neurons and astrocytes were identified

and quantified with the cell counter software

‘‘eCELLence” (Glance Vision Tech, Trieste, Italy). For

each experimental condition, 5–6 spinal cords were

analyzed and for each spinal cord 10 transverse

sections from T12 to L2 segments were examined. We

quantified the percentage of pyknosis stained with

DAPI, the number of NeuN-expressing cells, SMI32-

labeled motoneurons, ChAT-positive motoneurons and

the S100 immunoreactive astrocytes in each section

according to four ROIs: (i) dorsal gray matter (Rexed

laminae I–IV), (ii) central gray matter (Rexed laminae

V–VII and X), (iii) ventral gray matter (Rexed laminae

VIII–IX) and (iv) ventrolateral white matter. For each

region, 5–7 fields of 350 � 350 lm (dorsal and central

regions in the gray matter), 520 � 520 lm (ventral horn),

Table 1. Antibodies used for immunofluorescence labeling

Antibodies Type of antibody Coupled to Dilution Origin

Primary

NeuN Mouse monoclonal — 1:50; 1:100 Millipore; Chemicon. Milan, Italy

SMI32 Mouse monoclonal — 1:200 Covance. Emeryville, CA, USA

ChAT Goat polyclonal — 1:50 Millipore; Chemicon. Milan, Italy

S100 Rabbit polyclonal — 1:200 Dako. Glostrup. Denmark

GFAP Mouse monoclonal — 1:200 Sigma–Aldrich

RIP Mouse monoclonal — 1:100; 1:200 Millipore; Chemicon. Milan, Italy

R&D Systems. Minneapolis, MN, USA

O4 Mouse monoclonal — 1:200 Millipore; Chemicon. Milan, Italy

Secondary

a mouse IgG Goat Alexa Fluor 488 1:200; 1:250 Invitrogen. Milan, Italy

a mouse IgG Goat Alexa Fluor 594 1:200 Invitrogen. Milan, Italy

a rabbit IgG Goat Alexa Fluor 488 1:250; 1:500 Invitrogen. Milan, Italy

a goat IgG Donkey Alexa Fluor 488 1:200 Invitrogen. Milan, Italy
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or 100 � 500 lm (white matter) were analyzed. Complete

details of this analysis have been previously reported

(Taccola et al., 2008; Cifra et al., 2012).

Quantification of immunofluorescence intensity (gray

levels intensity expressed in arbitrary units, AU) was

performed by Metamorph image analysis system

(v.7.5.6; Universal Imaging Corporation, Molecular

Devices, Downington, PA, USA) or Metavue imaging

Software (Molecular Devices, Sunnyvale, CA, USA).

Using the densitometry function we calculated mean

specific immunofluorescence labels to GFAP, RIP and

O4 that were more intense than the background level

(i.e. >mean ± 2 SD) for each ROI (640 � 480 lm2).

The values are mean ± SD (at least three different

fields in each one of three different sections from three

different spinal cords).

Drugs

Kainate was purchased from Ascent Scientific (Bristol,

UK); SNP was obtained from Sigma–Aldrich; H2O2 from

Carlo Erba Reagents (Milan, Italy); and the drug MPSS

was purchased as SOLU-MEDROL� (1000 mg/16 ml

from Pfizer, Italy).

Statistical analysis

Statistical analysis was performed with Sigma Stat

(Sigma Stat 3.1, Systat Software, Chicago, IL, USA).

Histology and electrophysiology data were expressed as

mean ± SEM. Parametric or non-parametric data

distribution was first established with a normality test

and the significance of differences between the means

was evaluated with either an independent Student’s

t-test or Mann–Whitney test, respectively. ANOVA was

used for analyzing multiple comparisons followed by a

post hoc Mann–Whitney test. The accepted level of

significance was set as P< 0.05.

RESULTS

MPSS decreased the number of pyknotic nuclei in the
white matter after PM

Because previous reports indicate that PM induces early

white matter damage (Taccola et al., 2008; Margaryan

et al., 2009; Kuzhandaivel et al., 2010a), we first con-

firmed that 24 h after 1 h application of PM, the regions

more prone to lesion were the dorsal and ventrolateral

white matter. Fig. 1A, B exemplifies and quantifies the

damage evoked by PM, reaching the maximum occur-

rence of pyknotic nuclei in the ventrolateral white matter

ROI (61 ± 3%; n= 9) in comparison with sham prepara-

tions. MPSS (6 or 10 lM; 24 h) per se had no toxic effects

on gray or white matter (Fig. 1A, B). When MPSS (6 or

10 lM) was applied for 24 h immediately after PM wash-

out, it could significantly attenuate the number of pyknotic

nuclei in ventrolateral white matter regions (Fig. 1A, B) in

comparison with the effect of PM alone (Fig. 1A, B). The

concentrations of 6 and 10 lM were equieffective (47

± 3% and 45 ± 3% pyknosis, respectively, vs. PM

preparations).

Fig. 1. Characterization of methylprednisolone sodium succinate (MPSS) effect on hypoxic-dysmetabolic-perturbation (PM) damage after 24 h. (A)

Upper panel (left) shows a spinal cord half section with ROIs used for cell counting based on DAPI-staining. Bar = 100 lm. Right panels depict

representative images of the lateral white matter (WM) of sham, PM or PM- followed by MPSS (10 lM)-treated spinal cords stained with DAPI.

Bar = 50 lm. (B) Graph showing percent occurrence of pyknosis (as percentage of total count cell nuclei) in each ROI analyzed (dorsal, central,

ventral and ventro-lateral white matter) of the spinal cord for sham preparations in standard Kreb’s solution; MPSS (10 lM); PM and washout PM

followed by two different concentrations of MPSS (6 or 10 lM). A statistically significant increase in all four spinal cord regions is observed with the

pyknotic cell number in the samples treated with PM alone versus sham preparations (*P< 0.05, and **P< 0.01). MPSS significantly reduces

(***P< 0.001) the number of pyknotic cells vs. PM alone in white matter regions. Data are averages taken from nine sections from three rats. The

Mann–Whitney test was used after performing One-Way Analysis of Variance test.
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MPSS protected white matter glial cells from PM
damage

As previously reported by Margaryan et al. (2009) and

Kuzhandaivel et al. (2010a,b)***, and in accordance with

data reported in Fig. 1, glial cells of the white matter are

the most vulnerable to PM. Thus, using markers for spinal

neurons (NeuN), astrocytes (GFAP or S100), and

oligodendrocytes (O4 and RIP), we investigated the cell

protection specificity by MPSS 24 h after the PM insult.

In line with our former reports (Margaryan et al., 2009;

Kuzhandaivel et al., 2010a; Bianchetti et al., 2013) that

demonstrate good neuronal preservation after PM appli-

cation, we observed that the number of NeuN-

immunopositive cells was unchanged throughout the gray

matter regions (data not shown). On the other hand, while

MPSS per se had no toxic action, PM application signifi-

cantly decreased the immunofluorescence intensity of

GFAP-positive fibers of ventrolateral white matter regions

(40%) compared to sham preparations (Fig. 2A, B), in

coincidence with widespread pyknosis. However, when

MPSS was applied immediately after PM, the GFAP sig-

nal intensity significantly increases by 27% and 29%,

respectively, vs. data after PM alone (Fig. 2B).

We also wished to explore whether the MPSS (6 or

10 lM) treatment after PM could protect oligonde

ndrocytes. Since O4 (like GFAP) staining is non-

nuclear, O4 immunofluorescence intensity was

expressed as average AU in the white matter ROI.

Oligondendrocytes suffered PM-induced damage

because the signal intensity for O4 or RIP staining was

weak in the ventral white matter (VWM) ROI and

represented 42% and 49%, respectively, of the values

observed in sham preparations (Fig. 2C–F). When

MPSS (6 or 10 lM) was applied for 24 h immediately

after PM washout, the O4 immunofluorescence intensity

increased significantly vs. PM preparations, by 15% and

18%, respectively (Fig. 2D). Similar increases were

found with RIP staining (16% and 18%; Fig. 2F).

Fig. 2. MPSS administration followed by metabolic perturbation (PM) protects astrocytes and oligodendrocytes in the ventrolateral white matter

region. (A) Micrographs showing examples of GFAP positive fibers detected after 24 h in sham, PM alone for 1 h, or PM followed by MPSS

treatment (PM/MPSS 10 lM) for 24 h. Note that PM triggers loss of GFAP signal, while PM/MPSS (10 lM) treatment induces some protection by

increasing the GFAP fiber signal. Bar = 100 lm. (B) Plots of immunostaining intensity (expressed in arbitrary units; AU) from GFAP positive fibers

of sham, PM- or PM/MPSS (10 lM)-treated spinal cords. Comparisons of data from treated spinal cords with PM alone are significantly different

from sham samples with ***P < 0.001 and **P< 0.01 for those treated with PM followed by MPSS 10 lM vs. PM alone. (C, E) Panels show

examples of the O4 and RIP positive elements (oligodendrocytes) in the same region of GFAP analysis from sham, PM- or PM/MPSS- (10 lM)-

treated spinal cords. Note PM application induces large loss of O4 and RIP immunoreactivity, while PM/MPSS (10 lM) treatment increases

significantly the fluorescence signal of both markers. Scale bar = 100 lm. (D, F) Histograms quantifying immunofluorescence intensity (AU) from

O4 or RIP signals of sham, PM- or PM/MPSS (10 lM)-treated spinal cords. The loss of O4 or RIP signal is significantly different from sham

preparations, ***P< 0.001 and *P< 0.05, respectively. The fluorescence signal from both markers in preparations treated with MPSS (10 lM) after

PM vs. PM alone is significantly different, being ***P< 0.001 and *P< 0.05, respectively. For all experiments, data are from six spinal sections from

three rats. The Mann–Whitney test was used after performing One-Way Analysis of Variance test.
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To further quantify white matter astrocytes, we also

stained them with the antibody S100 that recognizes all

astrocytes (white matter GFAP-positive astrocytes, and

gray matter protoplasmic GFAP-negative astrocytes).

Twenty-four hours after PM, significant loss of

ventrolateral white matter astrocytes was apparent

together with preservation of gray matter astrocytes

(Fig. 3A, B). This result is in accordance with the GFAP

signal (Fig. 2A, B). Fig. 3A, B demonstrates that MPSS

(6 or 10 lM) significantly protected ventrolateral S100

positive glial cells (118 ± 8; 111 ± 4 cells, respectively)

compared to PM treatment (91 ± 7 cells). In summary,

these results show that the early toxic effect produced

by PM on astrocytes and oligodendrocytes of white

matter could be attenuated by the immediate application

of MPSS for 24 h.

Poor neuroprotection by MPSS after kainate-
mediated excitotoxicity

We have previously shown that kainate (1 h) primarily

produces extensive spinal network damage with loss of

fictive locomotion, and lesion of gray matter affecting

neurons and motoneurons with very limited destruction

of white matter glia (Taccola et al., 2008; Margaryan

et al., 2009; Kuzhandaivel et al., 2010b; Sámano et al.,

2012). We first explored if MPSS neuroprotection could

be achieved after a moderate excitotoxic insult, namely

1 h application of 0.1 mM kainate. An example of the

extent of pyknosis (n= 6) 24 h after washout of kainate

is provided in Fig. 4A. When MPSS (6 or 10 lM) was

applied for 24 h immediately after kainate, no change in

gray matter pyknosis in dorsal, central and ventral ROIs

Fig. 3. Quantification of effect of MPSS after metabolic perturbation (MP). (A) Inset shows a spinal cord half section of the white matter areas

analyzed (lateral and ventral white matter; LWM, VWM). Bar = 100 lm. The panels show examples of S100-immunoreactivity in the L2 LWM

(upper) and VWM (lower) ROIs in sham (left), PM (middle) or PM followed by MPSS (10 lM) after 24 h (right). The asterisks show lack of S100

staining in ventrolateral white matter of spinal cords treated with PM alone. The arrows show that following treatment with 10 lM MPSS (after 1 h of

PM application), some fibers and cell bodies are present in ventrolateral WM regions, compared to PM alone. Bar = 50 lm. (B) Histograms showing

total number of S100-positive cell bodies in sham, MPSS (10 lM), PM or MPSS after PM toxicity (PM/MPSS 10 lM)-treated spinal cord. Dorsal

(filled bars), central (gray bars), ventral (open bars) and white matter (WM; dashed bars) regions were analyzed. For all experiments, data are from

six spinal sections from three rats. The Mann–Whitney test was used after performing One-Way Analysis of Variance test; comparison between PM

data vs. sham gave **P< 0.05; comparing PM/MPSS 10 lM vs. PM alone also gave **P< 0.05.
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was observed. Nonetheless, there was a slight reduction

in pyknosis in the white matter ROI for both concentra-

tions of MPSS (4.0 ± 1% with 6 lM, and 3.1 ± 1% with

10 lM) compared to kainate alone (6.9 ± 2%)

(Fig. 4A, B).

We also quantified the number of NeuN-positive

neurons in dorsal, central and ventral ROIs after kainate

washout and treatment with MPSS (6 or 10 lM).

Table 2 lists neuronal loss elicited by excitotoxicity and

the unchanged outcome 24 h after MPSS administration.

In the ventral horn ROI, motoneurons analyzed with

ChAT (ACh synthetic enzyme) immunopositivity were

highly vulnerable to kainate and not rescued by MPSS

(Table 2).

Effects of MPSS on electrophysiological network
properties

To further verify any neuroprotective effect by MPSS from

a functional viewpoint, we investigated whether this drug

could protect against neuronal damage evoked by

kainate (0.1 mM) or PM. Kainate or PM was applied for

1 h followed by washout and subsequent administration

of MPSS for 24 h. The electrophysiological responses

were recorded 24 h later (Taccola et al., 2008;

Margaryan et al., 2009).

Fig. 5 summarizes data related to monosynaptic (A) or

polysynaptic (B) reflexes elicited by DR stimulation.

These responses were largely depressed 24 h after

either kainate or PM application with no significant

recovery in peak amplitude after MPSS administration

(Fig. 5C, D). Nevertheless, a significant improvement in

the area of polysynaptic reflexes was detected in KA or

PM solution followed by MPSS (P=<0.001;

P= 0.015, respectively) (Fig. 5B, E).

We next tested DR pulse trains to induce fictive

locomotion expressed as alternating oscillations

superimposed on cumulative depolarization (Marchetti

et al., 2001). These effects were severely depressed by

kainate or PM (Fig. 6A). As illustrated in Fig. 6A–D, sub-

sequent application of MPSS had little impact on the

electrophysiological outcome. In fact, just minimal oscilla-

tions were seen in 5 out 11 preparations treated with

MPSS after kainate solution (P< 0.001) (Fig. 6A, B).

Fig. 4. Limited neuroprotection by MPSS after kainate-mediated excitotoxicity. (A) Micrographs of DAPI staining showing pyknosis in the ventral

white matter part of the rat lumbar spinal cord. Sham (left), 0.1 mM kainate (KA; middle) or kainate followed by MPSS (KA/MPSS 10 lM; right).

Bar = 50 lm. (B) Histograms showing the percent of pyknotic nuclei counted in dorsal (filled bars), central (dark gray bars), ventral (open bars) and

ventrolateral white matter (striped bars) regions, in sham, MPSS alone (10 lM), 0.1 mM KA (1 h), or KA followed by 24 h MPSS (6 or 10 lM).

Average from six spinal sections from three rats; the Mann–Whitney test was used after performing One-Way Analysis of Variance test.

Comparisons were KA vs. sham and KA/MPSS 6 lM or KA/MPSS 10 lM vs. KA alone; *P< 0.05 and **P< 0.001.

Table 2. Vulnerability of neurons to kainate-mediated excitotoxicity was

not rescued by MPSS treatment

IR ROI Sham 0.1 mM KA KA/MPSS

6 lM
KA/MPSS

10 lM

NeuN D 197 ± 4 127 ± 6* 125 ± 8 126 ± 8

NeuN C 170 ± 2 143 ± 2* 136 ± 2 134 ± 2

NeuN V 195 ± 6 175 ± 3* 176 ± 5 176 ± 6

ChAT V 30 ± 2 21 ± 1** 21 ± 3 22 ± 2

SMI-32 V 13 ± 2 5± 2** 5 ± 1 5± 2

* Indicates the significant difference (P< 0.001) between kainate 0.1 mM (KA)

vs. sham for NeuN immunoreactivity (IR).
** P< 0.01 for 0.1 mM KA (n= 3) vs. sham for both motoneurons markers

(ChAT and SMI-32). No statistically-significant difference is apparent among

groups treated with kainate followed by methylprednisolone (MPSS 6 or 10 lM)

vs. kainate alone. For all experiments, data are from six spinal cords sections

from three rats; the Mann–Whitney test was used after performing One-way

analysis of Variance test. D, C and V denote dorsal, central and ventral ROIs,

respectively.
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Modest recovery (P= 0.042) in the area of cumulative

depolarization was also detected (Fig. 6A, D).

As indicated in Fig 7A, kainate application (1 h)

blocked rhythmic oscillations induced by NMDA and

5HT. The majority of preparations (8/11 spinal cords)

could not generate any cyclic discharge after

superfusion with kainate (1 h) despite increasing the

NMDA concentration in the 2–6 lM range. In the

remaining three preparations, sporadic oscillatory cycles

without any alternation were observed. These

oscillations were not restored after MPSS (24 h)

treatment (Fig. 7A–C). On the other hand, following

application of PM, few (7–10), slow oscillations without

alternation were recorded in five out of nine spinal cords

(Fig. 7). This condition was improved after MPSS

administration because rhythmic, alternating oscillations

were present in eight out of nine preparations, even if

they remained slow by comparison with sham spinal

cords (Fig. 7A, C).

Fig. 8A, B summarizes data concerning the spinal

cord intrinsic rhythmicity (disinhibited bursting) studied

after pharmacological block of synaptic inhibition (Bracci

et al., 1996). Kainate application resulted in a compara-

tively lower number of bursts (of smaller size) vs sham

preparations. This condition was not significantly amelio-

rated by a 24-h application of MPSS. After PM application

followed by 24-h MPSS, the number of bursts was signif-

icantly reduced because their duration and amplitude had

increased when compared to the spinal cords treated with

PM alone.

DISCUSSION

The principal finding of this report is that, within the first

24 h from an experimental lesion, any neuroprotection

by MPSS was limited in extent and regionally restricted

to the ventrolateral white matter when damaged by PM.

Conversely, MPSS could not contrast excitotoxic

neuronal damage. In either case no good recovery in

locomotor network function was observed.

Regional and cellular specificity of MPSS protection

The underlying mechanisms of MPSS action against SCI

secondary damage remain unclear. Various suggestions

have been proposed including decrease in oxygen

radical-induced lipid peroxidation of cell membranes,

scavenging of free radicals, attenuation of Ca2+ influx

Fig. 5. Effect of MPSS (10 lM) application on reflex responses recorded after 24 h from exposure to kainate (KA) (0.1 mM) or pathological medium

(PM) for 1 h. (A, B) Examples of average monosynaptic (A) or polysynaptic (B) responses recorded from L2 homolateral VRs in control (sham),

kainate (KA, 1 h), kainate followed by MPSS (KA/MPSS) for 24 h, pathological medium (PM, 1 h) and PM followed by MPSS (PM/MPSS) for 24 h.

(C, D) Histograms representing the peak amplitude (mV) of monosynaptic (C) and polysynaptic (D) responses after KA (n= 11), KA/MPSS

(n= 11), PM (n= 9), PM/MPSS (n= 9) treatment compared to sham (n= 10). Note that there is significant fall in amplitude of only polysynaptic

reflexes (D) in treated preparations as compared to sham (P = 0.006; One Way Analysis of Variance test) but no significant change in case of

amplitude of monosynaptic reflexes (C). (E) Histograms showing the area (mV ms) of polysynaptic responses of KA- or PM-treated spinal cords.

MPSS application for 24 h significantly increases the reflex area after kainate or PM vs data after either treatment (***P< 0.001, *P= 0.015,

respectively; t-test). All values of polysynaptic reflex area in treated spinal cords were different from sham (P< 0.001; One-Way Analysis of

Variance test).
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and enhancement of spinal blood flow (Hall, 2011; Tohda

and Kuboyama, 2011; Bains and Hall, 2012). The ratio-

nale for MPSS use in SCI is based on the destructive pro-

cesses affecting the white matter as consequence of

ischemia, edema and lipid peroxidation (Liu et al., 1997;

Kanellopoulos et al., 2000). Astrocytes and oligodendro-

cytes are very sensitive to injury that induces demyelina-

tion and cell death by apoptosis (Kim et al., 2003;

Kuzhandaivel et al., 2010a). Our standard protocol for

inducing experimental SCI in vitro attempted to mimic a

clinical scenario whereby the initial injury (whether of

mechanical or dysmetabolic nature) is promptly

addressed with emergency care that involves correction

of ongoing metabolic dysregulation and support of life-

critical functions. The use of a neonatal mammalian SCI

in vitro preparation is helpful to investigate neuronal net-

work properties because of its well-defined inputs via

DR fibers and motor output via VR axons. Spinal net-

works can generate, even in the absence of external stim-

uli, a repertoire of rhythmic activities that represent an

advantageous model to explore the delayed action of

excitotoxicity and metabolic perturbation. Additionally,

the model can also be useful for better understanding

the pathological processes related to child SCI, a scarcely

researched field. In fact, clinical studies report a relatively

high occurrence of SCI among very young children

(Bilston and Brown, 2007; Pieretti-Vanmarcke et al.,

2009), even at perinatal age (Vialle et al., 2008).

Thus, our protocols used a transient application of a

pathological medium or of the excitotoxic agent kainate

(Kuzhandaivel et al., 2011) followed by a 24-h washout

with oxygenated Kreb’s that, in the present study,

included MPSS (6 or 10 lM that corresponds to the clini-

cal use). Cell protection by MPSS application was mainly

expressed as a significant decrease in the number of

pyknotic nuclei in the ventrolateral white matter, although

a substantial number of dead cells remained. In this area

MPSS could reverse the loss of astrocytes, and, to a

lesser extent, the fall in oligodendrocytes. The present

data accord with in vivo studies of the rat-transected

Fig. 6. Effect of MPSS (10 lM) application on fictive locomotion evoked by a train of DR stimuli. Data recorded after 24 h from spinal cords exposed

to kainate (KA) or pathological medium (PM) for 1 h. Same preparations as analyzed in Fig. 5. (A) Representative records of electrically evoked

cumulative depolarization with superimposed oscillations (fictive locomotion) of sham, kainate (KA), kainate followed by MPSS (KA/MPSS), PM and

PM followed by MPSS (PM/MPSS). (B) Histograms depicting number of oscillations evoked by DR stimulation. There is a small, yet significant

recovery of DR oscillations in kainate-treated spinal cords after application of MPSS (24 h) (***P < 0.001; t-test). (C) Bar graph showing no

significant improvement by MPSS administration (24 h) in cumulative depolarization recorded from kainate- or PM-treated preparations. (D)

Histograms showing significant recovery of cumulative depolarization area after kainate followed by MPSS for 24 h (*P = 0.042; t-test). Note the

significant change in number of oscillations as well as in the amplitude and area of cumulative depolarization seen in all treated preparations in

comparison to sham (P< 0.001; One-Way Analysis of Variance test).
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spinal cord indicating that MPSS treatment can reduce

spinal tissue loss (Oudega et al., 1999). In particular,

MPSS is reported to attenuate cell death of oligodendro-

cytes in a dose-dependent manner and to inhibit axonal

demyelination (Lee et al., 2008). Several investigations

have targeted oligodendrocytes for protection after exper-

imental SCI (Lee et al., 2008; Sun et al., 2010). The ques-

tion, however, remains whether glial cells within the gray

or white matter are differentially sensitive to lesion.

Our former investigations have detailed the type and

extent of glial damage evoked by kainate and/or PM

applications to the rat isolated spinal cord or organotypic

spinal slices. Immunohistochemical analysis has

indicated that, within the gray and white matter,

excitotoxicity induced by kainate has rather limited

effects on astroglia and oligodendroglia (Kuzhandaivel

et al., 2010a,b; Mazzone and Nistri, 2011, 2014;

Mazzone et al., 2013), though microglia becomes acti-

vated early (Taccola et al., 2010). Loss of myelination

within 24 h from the insult is scant and is not associated

with a significant decrease in action potential generation

by isolated VRs (Taccola et al., 2008). Furthermore, when

the lesion is restricted to one spinal segment, descending

or ascending fibers coursing through it can be electrically

stimulated to generate polysynaptic reflexes at segments

above or below the lesion, demonstrating that impulse

propagation via long axons is well preserved (Taccola

et al., 2010). Contusive injury to the rat dorsal spinal cord

in vivo elicits early, patchy demyelination (mainly in cen-

tral laminae) followed by chronic demyelination inter-

rupted by phases of remyelination and variable

functional recovery (Totoiu and Keirstead, 2005).

The PM protocols of the present study evoked

significant loss of astroglia and oligodendroglia (and

limited neuronal damage) together with depression of

fictive locomotor patterns in accordance with our former

reports (Taccola et al., 2008; Margaryan et al., 2010;

Kuzhandaivel et al., 2010b). Globally, these observations

validate the functionally-negative consequence of even

moderate neuronal losses, but they also raise the issue

of the impact of glia on locomotor network activity.

Studies of the locomotor circuitry in the lamprey spinal

cord have suggested that glia may play a role in regulating

the efficiency of network function (Baudoux and Parker,

2008). In the mouse spinal cord, glial cells are proposed

to dynamically release ATP that is degraded extracellu-

larly to adenosine that, in turn, negatively controls the fre-

quency of locomotor output (Witts et al., 2012; Acton and

Fig. 7. Changes in chemically induced fictive locomotor rhythms after kainate or PM (1 h) followed by MPSS (24 h). (A) Representative records of

oscillatory cycles alternating between left (l) and right (r) L2 VRs in the presence of NMDA and 5-HT. After kainate exposure, fictive locomotion has

irreversibly stopped and no recovery is observed after MPSS application. Only 3 out of 11 preparations show some oscillatory cycles without any

alternation both after kainate and kainate followed by MPSS. Few oscillations (8–12) without any alternation and with longer periodicity are observed

in five out of nine spinal cords exposed to PM, whereas after MPSS application oscillations with alternations in eight out of nine preparations are

detected. (B, C) Bar graphs summarizing averaged data for peak amplitude and periodicity of fictive locomotion of kainate or PM exposed

preparations followed by MPSS (24 h). Note that a significant change in peak amplitude and period of oscillations is observed in treated spinal cords

as compared with sham (P< 0.001; One-Way Analysis of Variance test). MPSS does not alter the effects observed after KA or PM.
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Miles, 2015). In the present report the only partial reten-

tion of locomotor cycles and disinhibited bursting after

PM application suggests that, against a relatively limited

neuronal loss, glia damage might have significantly

enhanced the network dysfunction not predicted on the

basis of the quite modest neuronal damage. The small

improvement in astroglia survival with MPSS treatment

was, however, insufficient to restore the standard locomo-

tor output.

Excitotoxic damage is distinct from PM-evoked

damage because the former primarily affects neurons

rather than glia (Kuzhandaivel et al., 2011). In the

kainate-lesioned model, MPSS exerted no neuronal pro-

tection and modest inhibition of the limited white matter

pyknosis. Previous studies have, however, indicated that

motoneurons could be protected by MPSS in SCI in vitro

or in vivo (Guzmán-Lenis et al., 2009; Yin et al., 2013).

This discrepancy may be attributable to: (i) distinct mod-

els of SCI with differential distribution and timecourse of

MPSS action; (ii) the degree of excitotoxic stimulation

and the timing of MPSS application; (iii) the different out-

come parameters investigated (Wittstock et al., 2015).

These considerations led us to test the electrophysiologi-

cal network activity after experimental lesion and MPSS

administration.

MPSS and functional deficit of spinal networks

In accordance with previous studies (Taccola et al., 2008;

Margaryan et al., 2009), mono and polysynaptic reflexes

were partially depressed 24 h after kainate or PM applica-

tion. The same result was obtained when repeated DR

stimuli generated cumulative depolarization that lacked

oscillations. Fictive locomotion induced by NMDA and

5HT was blocked after kainate and consistently

depressed after PM. This functional scenario of network

function inhibition by either lesion protocol was not

accompanied by massive cell loss. In fact, the largest inci-

dence of gray matter pyknosis was observed in the dorsal

horn following kainate application and amounted to less

than 30%. With PM application the damage was even

more limited. These observations suggest that spinal net-

works operate in a condition of criticality (Massobrio et al.,

2015; Valverde et al., 2015) whereby even modest losses

are transduced into major functional deficit. This notion is

consistent with the view of minimal network membership

necessary to express locomotor patterns (Kuzhandaivel

et al., 2011). Once that value is surpassed, no locomotor

activity can be observed anymore.

This adverse condition was only partly changed by

MPSS. Thus, the polysynaptic reflex area increased,

Fig. 8. Disinhibited bursting after MPSS (24 h) application. (A) Sample recordings of disinhibited bursts obtained from sham (n= 7), kainate (KA)

(n= 7), kainate followed by MPSS (KA/MPSS) (n= 5), PM (n= 7) and PM- followed by MPSS (PM/MPSS) (n= 9)-treated preparations. (B–D)

Histograms representing significant change induced by MPSS in the number of bursts during a 20-min epoch (**P= 0.002; t-test) (B), duration of

bursts (*P= 0.02; t-test) (C), and burst amplitude (*P = 0.02; t-test) (D) after kainate or PM.
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perhaps suggestive of more residual connections left

within the premotoneuron circuitry. Likewise, a small

improvement was observed with the cumulative

depolarization area and superimposed oscillations.

These were minimal gains in the presence of MPSS and

could not be carried over to any strong recovery in

locomotor network function particularly after kainate

application. The outcome appeared more favorable

when fictive locomotion was monitored following PM and

MPSS as slow alternating oscillations could re-emerge.

Studying these network phenomena cannot clarify if a

beneficial, albeit small, effect by MPSS was produced at

the level of discrete elements of the white or gray

matter. Hence, it seemed useful to minimize the size of

the spinal circuitry by blocking synaptic inhibition (Streit,

1993; Bracci et al., 1996; Darbon et al., 2002) and observ-

ing spontaneous rhythmic bursting that reflects the intrin-

sic excitability of the ventral area predominantly through

glutamatergic transmission (Bracci et al., 1996). In this

case, MPSS did not change the depression elicited by kai-

nate, although it contrasted PM effects by increasing burst

amplitude and duration (with consequently fewer bursts

per unit of time). The latter observation suggests slightly

improved functional connectivity within the network.

CONCLUSIONS

Management of acute SCI is a difficult task because the

origin, duration and extent of the primary lesion vary

considerably, making it complicated issuing guidelines

for a standard therapeutic treatment. Furthermore, SCI

grows in size and severity in a time-dependent fashion,

thus demanding rapid intervention that so far has been

useful only when performing early neurosurgery

(Fehlings et al., 2012). The benefits of MPSS have been

long debated because of the contrasting results in

human trials (Tohda and Kuboyama, 2011; Bracken,

2012; Harrop, 2014). The present study suggests that

MPSS may exert a modest beneficial action in a

non-excitotoxic lesion of the spinal cord by preserving a

number of glial cells. This phenomenon is not, however,

translated into a rapid functional protection of spinal

networks.
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Abstract

Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early
neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself
might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further
test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat iso-
lated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons
and locomotor network activity. Propofol (5 lM; 4–8 h) enhanced responses to GABA and depressed those to NMDA together
with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli
or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, espe-
cially motoneurons, whose number was halved. When propofol was applied for 4–8 h after kainate washout, strong neuroprotec-
tion was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on
recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in
disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional
recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depres-
sion at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI.

Introduction

Traumatic spinal cord injury (SCI) produces long-term effects asso-
ciated with severe motor disability (Furlan et al., 2013). Although
acute management of SCI has been improved, only about 5% of
patients with complete SCI will walk again (Dobkin & Havton,
2004). The primary insult triggers a sequence of pathological events
(secondary injury) lasting a few hours or even days (Sekhon &
Fehlings, 2001; Park et al., 2004; Rowland et al., 2008). This time
window creates the opportunity for a potentially successful clinical
intervention to prevent damage expansion.
One major mechanism contributing to cell loss during the sec-

ondary phase is excitotoxicity due to excessive activation of gluta-
mate receptors (Rossignol et al., 2007) with subsequent neuronal
degeneration (Mandir et al., 2000; David et al., 2009; Kuzhandaivel
et al., 2010): this is, thus, an important target for neuroprotection.
To investigate the pathophysiological events occurring after SCI, we
have developed an in vitro model of SCI based on the application
of kainate, a potent glutamate receptor agonist that evokes delayed

neuronal loss especially affecting motor networks (Taccola et al.,
2008; Nasrabady et al., 2011b; Nistri, 2012). One major advantage
of this model is that it allows studying any correlation between elec-
trophysiological activity and histological damage. Although previous
reports indicate limited neuroprotective success with various strate-
gies (Nasrabady et al., 2011a, 2012), more encouraging data have
recently emerged by testing the volatile anaesthetic methoxyflurane
(Shabbir et al., 2015). These results raised the question whether
neuroprotection is an intrinsic property of a volatile anaesthetic (less
frequently employed because of toxicity) or whether another general
anaesthetic may produce a similar effect. The present study explored
the potential protection by the intravenous anaesthetic propofol
widely used to induce and maintain general anaesthesia (Acton,
2011). Studies investigating its neuroprotective action on in vitro
and in vivo models of brain ischaemia have provided positive results
(Pittman et al., 1997; Young et al., 1997; Ito et al., 1999; Gelb
et al., 2002; Velly et al., 2003; Engelhard et al., 2004b). Proprofol
pre-treatment also protects against spinal cord ischaemia in vivo
(Sahin et al., 2015). The underlying mechanism of neuroprotection
by propofol is related to potentiation of GABAA-mediated inhibition
of synaptic transmission (Hales & Lambert, 1991; Xu, 1999; Bajrek-
tarevic & Nistri, 2016), direct inhibition of glutamate release (Orser
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et al., 1995) and antioxidant properties (Hans et al., 1997; Ansley
et al., 1998; Stratford & Murphy, 1998). While propofol attenuates
damage to the motoneurons of organotypic spinal slice cultures
(Bajrektarevic & Nistri, 2016), it is unknown what functional impact
on locomotor networks this phenomenon may have. The novel find-
ings of the present investigation are that propofol protected spinal
neurons, and motoneurons in particular, from damage even when it
was applied for a few hours after kainate. Recovery in locomotor
network function was not, however, observed probably because of
the lingering depression of circuit activity by the sustained applica-
tion of this anaesthetic. It is noteworthy that this protocol simulates
the clinical setting of acute SCI by applying the anaesthetic agent
only after having provoked the damage.

Materials and methods

Spinal cord preparation

Spinal cords were carefully dissected from 0- to 2-day-old Wistar
rats under terminal anaesthesia with i.p. urethane (0.2 mL i.p. of a
10% w/v solution) according to the guidelines for the care and use
of laboratory animals of National Institute of Health (NIH). Because
urethane produces non-selective depression of excitatory amino acid
or dorsal root-evoked depolarization of isolated spinal cords (Evans
& Smith, 1982) and is not clinically used due to liver toxicity, this
drug was employed only for terminal anaesthesia rather than as a
test agent for neuroprotection. Rats were supplied by the animal
house of the International School for Advanced Studies (SISSA)
through their in-house breeding facility. A total of 87 animals were
used. All experimental protocols were approved by the ethics com-
mittee for animal experimentation of SISSA. All efforts were made
to minimize the number of the animals used for the experiments as
well as their suffering. Once dissected, spinal cords were continu-
ously superfused with Krebs solution (in mM: 113 NaCl, 4.5 KCl, 1
MgCl2�7H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 11 glucose;
gassed with 95% O2 and 5% CO2, pH 7.4 at room temperature at
7.5 mL/min) as described previously (Taccola & Nistri, 2006a).
After dissection, to obtain full functional recovery, spinal cords were
incubated in Krebs solution for about 2 h to recover before proceed-
ing to experimentation. Recovery from urethane is reported to occur
during 30-min washout in vitro (Bagust & Kerkut, 1981; Evans &
Smith, 1982).

Protocol for drug application, lesion and neuroprotection

In order to mimic the in vitro spinal lesion of grey matter, kainate
(100 lM) was applied for 1 h (Taccola et al., 2008; Margaryan
et al., 2010; Mazzone et al., 2010). This concentration was chosen
to fully abolish fictive locomotion elicited by DR train pulses or
NMDA + 5-HT when tested 24 h after injury (Nasrabady et al.,
2011b). Propofol (Frenesius Kabi Italia – SPA, NDC 63323-0270-
50, Verona, Italy) was diluted in Krebs solution and to ensure its
full solubilization, vigorous mixing for at least 3 min was performed
before application. Several studies have demonstrated that propofol
clinical effects are achieved at concentrations from 0.5 to 10 lM
(Gredell et al., 2004; Matute et al., 2004; Wakita et al., 2013; Eckle
et al., 2015). As propofol had never been tested before in this type
of experiment, we chose the mid-range value of 5 lM.
The effect of propofol (5 lM) was first studied electrophysiologi-

cally by applying it for 4 h on day 1. The polysynaptic reflex activ-
ity was recorded every 10 min during 4 h, and its area and
amplitude were analysed. The same experiments were also done by

doubling the duration of propofol (5 lM) application. Thereafter,
preparations were kept in standard Krebs solution overnight and
recorded on the subsequent day (Fig. S1). Furthermore, we used a
different protocol to find out the effect of propofol on the ventral
root (VR) depolarization induced by exogenously applied neuro-
transmitter agents (2 min application): GABA (10 lM, 20 lM, and
30 lM; n = 7); glycine (30 lM and 50 lM; n = 5); AMPA (5 lM,
7.5 lM and 10 lM; n = 5); NMDA (10 lM, n = 5; 20 lM, n = 6,
and 25 lM, n = 6). We also tested responses to GABA or NMDA
after application of tetrodotoxin (TTX; initially 1 lM and then
0.1 lM for maintenance) to pharmacologically isolate motoneuronal
responses from neuronal networks. GABA was applied at 10 lM
and 20 lM (n = 6), while NMDA was at 10 lM (n = 4), 20 lM
(n = 6), 25 lM (n = 6) and 30 lM (n = 8).
The excitotoxic protocol was based on kainate (100 lM) applied

for 1 h and then washout with either Krebs solution or propofol
(5 lM) solution for 4–8 h. These spinal cords were later superfused
for 16–24 h with standard Krebs solution. Electrophysiological and
immunohistochemical data were compared among the following six
groups after 24 h: sham (untreated), kainate 100 lM/1 h, propofol
5 lM/4 h, propofol 5 lM/8 h and the two corresponding kainate
treatments followed by propofol-treated groups (see scheme in
Fig. S1).

Electrophysiological recordings

DC-coupled recordings from lumbar (L) ventral roots (VR) using
Ag/AgCl suction electrodes were employed to study fictive locomo-
tor rhythms from flexor (L2) and extensor (L5) motor pools. Data
were acquired with pClamp software (version 9.2; Molecular
devices, Sunnyvale, CA, USA).
In order to generate polysynaptic responses, single electrical stim-

uli (0.1 ms duration) were applied to an individual ipsilateral
homosegmental dorsal root (DR) once every 1 min. We first deter-
mined the minimum stimulus intensity to elicit the VR threshold
response homolaterally. As previously reported by Marchetti et al.
(2001), thrice threshold stimuli were used to produce polysynaptic
responses (Baranauskas & Nistri, 1995). Data were analysed by
averaging three to five consecutive responses. Cumulative depolar-
ization was induced by stimulating (0.1 ms) a single DR with 30
pulse trains (2 Hz) that elicited a series of alternating discharges
typical of electrically induced fictive locomotion (Marchetti et al.,
2001). Fictive locomotion was also elicited chemically by applying
NMDA (3–6 lM) and 5-HT (10 lM) (Kiehn, 2006). A minimum of
20 VR cycles alternating homolaterally between flexor and extensor
motor pools or from side to side at the same segmental level was
considered as a criterion to observe fictive locomotion evoked by
NMDA and 5-HT (Taccola et al., 2008). Disinhibited bursting was
elicited by co-applying blockers of GABAA and glycine receptors,
bicuculline (20 lM) and strychnine (1 lM) respectively (Bracci
et al., 1996a). All the recorded parameters were digitized and anal-
ysed as previously reported (S�amano et al., 2016).

Immunohistochemical procedure

Spinal cords from all experimental groups were fixed in
paraformaldehyde approximately 24 h after dissection, then cryopro-
tected with 30% sucrose and finally sectioned (30 lm) with a slid-
ing microtome at �20 °C. Immunostaining was performed with a
free-floating method on T13-L5 segments, which contain the princi-
pal elements of the locomotor networks, in accordance with former
studies from our laboratory (Cifra et al., 2012; Bianchetti et al.,
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2013; Shabbir et al., 2015). As a routine, after incubation in block-
ing solution (5% normal goat serum, 5% bovine serum albumin,
0.3% Triton-X 100, 1% phosphate buffer saline) for 2 h at room
temperature, spinal cord sections were incubated overnight at 4 °C
with one of these primary antibodies: anti-NeuN (neuron-specific
protein, mouse monoclonal, 1 : 50 dilution; Chemicon, Millipore,
Billerica, MA), anti-SMI32 (specific non-phosphorylated neurofila-
ment protein, mouse monoclonal, 1 : 200 dilution; Chemicon, Milli-
pore) and anti-ChAT (choline acetyltransferase, goat polyclonal,
1 : 50 dilution; Chemicon, Millipore). Anti-NeuN antibody was
used to identify differentiated neurons, whereas anti-SMI32 and
anti-ChAT antibodies were used to specifically stain motoneurons
visualized as large (>20 lm) cells in the ventral horn. All these anti-
bodies have been validated for immunostaining with this preparation
in our laboratory (Taccola et al., 2008; Cifra et al., 2012; Bianchetti
et al., 2013; Shabbir et al., 2015). Primary antibodies were visual-
ized using secondary donkey anti-goat Alexa fluor 594 and donkey
anti-mouse Alexa fluor 488 (1 : 500, Invitrogen, Carlsbad, CA,
USA). Sections were finally incubated with 40,6-diamidino-2-pheny-
lindole (DAPI) for 30 min and analysed as detailed below.

Cell death analysis

The methods for cell counting are the same as used before in our
laboratory and described in detail (Bianchetti et al., 2013; Shabbir
et al., 2015). We used either a Zeiss Axioskop2 epifluorescence
microscope (Oberkochen, Germany) or a confocal Leica TCS SP2
microscope (Wetzlar, Germany) to obtain bidimensional histological
images. Cell counting was performed by an observer blinded to the
experimental protocols after DAPI, NeuN, ChAT and SMI32 stain-
ing, for nuclei, neurons and motoneurons, respectively, using
‘ECELLENCE’ software (Glance Vision Tech., Trieste, Italy) and the
‘cell counter’ plugin for IMAGEJ (Kurt De Vos, University of Shef-
field, UK). For neuron counting, the NeuN nuclear antibody enabled
quantifying their number in discrete regions of interest (ROI; dimen-
sions indicated below) regardless of the neuron size: nuclear staining
was confirmed with DAPI staining. Clearly damaged nuclei were
discarded from counting. Pyknosis was readily observed as a change
in nuclear morphology characterized by an intense nuclear conden-
sation with strong refractivity (Burgoyne, 1999; Taccola et al.,
2008) corresponding to type 1 cell death as stated by the interna-
tional Nomenclature Committee on Cell Death (NCCD) classifica-
tion (Galluzzi et al., 2007, 2012).
For each histological section of the spinal cord, three different

ROIs were investigated as previously reported (Mazzone et al.,
2010; Cifra et al., 2012; Bianchetti et al., 2013): dorsal grey matter
(Rexed laminae I–IV), central grey matter (Rexed laminae V–VII
and X) and ventral grey matter (Rexed laminae VIII–IX) (Fig. S2).
In each region, two fields of 125 9 100 lm were analysed. For
each experimental group, at least three spinal cords were analysed
and, for each spinal cord, at least 10 different sections were exam-
ined.

Statistics

Statistical analysis was done using SIGMA STAT 3.5 software (Systat
Software, Chicago, IL, USA). Electrophysiology and immunohisto-
chemical data are shown as mean � SEM; n is the number of spinal
cord preparations. From each histological experiment that yielded
several sections, we calculated the mean for one spinal cord and
repeated the same approach with the other spinal cords so that we
could finally calculate the mean of the experimental group.

After applying a normality test to differentiate between parametric
and non-parametric data, the values were evaluated with either a
two-tailed Student’s t-test or a Mann–Whitney test respectively.
Analysis of variance (ANOVA) test was used to compare multiple
groups (through Kruskal–Wallis or Holm–Sidak tests or Dunn’s
method). The acceptance level of significance was P < 0.05.

Results

Early changes in responses to exogenously applied
neurotransmitters in the presence of propofol

Previous reports have shown that propofol acts as a positive modu-
lator of GABAA and glycine receptors (Hales & Lambert, 1991; Xu,
1999). Furthermore, propofol can decrease glutamate and NMDA-
mediated responses of mouse cultured hippocampal neurons (Orser
et al., 1995). To validate that these observations are applicable to
the rat spinal cord as well, we tested if propofol differentially
affected network depolarizations evoked by GABA, glycine, AMPA
or NMDA recorded sequentially from lumbar VRs on the first day
in vitro as exemplified in Fig. 1A. Thus, propofol (5 lM) potentiated
the GABA (20 lM)-mediated response that was characterized by an
early peak followed by fade presumably due to receptor desensitiza-
tion (Fig. 1A). Responses to glycine or AMPA were not signifi-
cantly changed, while NMDA-mediated depolarization was
decreased (Fig. 1A). Figure 1D (filled circles) indicates that average
responses to 10–20 lM GABA (F5,34 = 2.657, *P = 0.039; Holm–
Sidak test, calculated from raw data) were enhanced by propofol,
while larger responses were less potentiated. On the same prepara-
tions, propofol had no significant effect on glycine (F3,14 = 0.114,
P = 0.950; one-way analysis of variance test, calculated from raw
data) or AMPA (F5,24 = 0.617, P = 0.688; one-way analysis of vari-
ance test, calculated from raw data)-mediated responses (Fig. 1C). A
reduction in depolarization amplitude was observed when NMDA
(10–30 lM) was tested in the presence of propofol (Fig. 1A and E;
F5,24 = 3.747, P = 0.012; Holm–Sidak test, calculated from raw
data). As shown by the sample depolarizations depicted in Fig. 1A,
these network responses had complex origin and time-course arising
from co-activation of premotoneurons and motoneurons. In order to
minimize the indirect network contribution to the observed VR
effects, TTX was pre-applied to block propagated network activity.
Responses, therefore, reflected motoneuron population depolarization
as exemplified in Fig. 1B. VR depolarizations of similar amplitude
evoked by GABA or NMDA were differentially modulated by
propofol because the first ones were increased and the latter ones
depressed (Fig. 1B,D and E; H(3) = 8.978, P = 0.03 and
H(7) = 24.893, ***P = <0.001; Kruskal–Wallis one-way analysis of
variance on ranks test, respectively, calculated from raw data).
Hence, the present results suggest that, in the rat spinal cord, GABA
receptor-mediated responses were upregulated by propofol that con-
comitantly depressed NMDA-mediated ones.

Delayed application of propofol protected from cell death
evoked by kainate

The protocol to assess whether propofol could be neuroprotective
against kainate-elicited excitotoxicity involved observing the histo-
logical characteristics of three ROIs (see Fig. S2A) of the spinal
cord 24 h after applying kainate (1 h). Thus, we used 100 lM kai-
nate that is damaging neurons (identified with NeuN immunopositiv-
ity) rather than glia with particular vulnerability of motoneurons
(immunoreactive to ChAT or SMI32; Mazzone et al., 2010; Cifra
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et al., 2013). Figure 2A provides general data concerning the toxic-
ity of kainate and its antagonism by propofol in the three spinal
ROIs. The examples for ventral ROI shown in Fig. 2C indicate a
pyknotic cell (see the arrow in inset pointing to a DAPI-stained cell
with compacted nuclear chromatin) next to a standard neuron, sug-
gesting scattered damage. In general, the % value of pyknotic cells
was significantly lower when kainate application was followed by
propofol for 4 or 8 h (Fig. 2A and C). One example of pyknotic
nuclei is shown in Fig. S2B.

By analysing actual neuronal numbers in the three ROIs (Fig. 2B
and C), it became apparent that, 24 h after kainate, the number of
neurons was lowered in all regions as a consequence of kainate toxi-
city (see also Taccola et al., 2008; Mazzone et al., 2010) and that
this effect was significantly prevented by propofol applied for 4 or
8 h after washout of kainate. It is noteworthy that propofol per se
applied for the same length of time had no deleterious effect
(Fig. 2A–C). Figure 3A and B shows results for motoneurons
immunolabeled with the ChAT antibody (or SMI32; see Fig. S3):

Fig. 1. Effect of propofol (5 lM) on VR depolarization induced by exogenously applied neurotransmitter agonists. (A) Examples of responses recorded from a
single lumbar VR following superfusion with GABA (20 lM), glycine (30 lM), AMPA (5 lM) or NMDA (20 lM) in standard Krebs solution (control) and sub-
sequently with propofol. Application times are indicated by horizontal bars. (B) Representative records of lumbar VR responses evoked by GABA (20 lM) or
NMDA (20 lM) in TTX solution followed by propofol + TTX. Data exemplify propofol-mediated potentiation of GABA and suppression of NMDA responses.
(C) Bar graph showing per cent change (vs. control) in VR depolarization recorded in the presence of propofol following application of glycine (30 lM, n = 6,
U = 13, P = 0.485 and 50 lM, n = 3, U = 6, P = 0.700; Mann–Whitney test) or AMPA (5 lM, t8 = 0.681, P = 0.515; 7.5 lM, t8 = 0.494, P = 0.635 and
10 lM, t8 = 1.356, P = 0.212; n = 5). No significant alteration in such responses was obtained. (D) Line graph depicting per cent increase in GABA-mediated
VR depolarization after application of propofol alone (filled symbols) (GABA = 10, 20 and 30 lM) in Krebs solution or in TTX solution (open symbols)
(GABA = 10 and 20 lM) when compared with the amplitude detected with GABA alone. Applying the Student’s t-test to raw data, a significant increase in
peak amplitude was observed with 10 lM GABA and propofol (n = 7, t12 = �2.634, *P = 0.022) and 10 lM GABA + propofol + TTX (n = 4, t6 = �3.125,
P = 0.02). However, there was no significance change in response to 20 and 30 lM GABA with propofol (20 lM, n = 7, t12 = �1.926, P = 0.078; 30 lM,
n = 6, t10 = �1.315, P = 0.218) and 20 lM GABA + propofol + TTX (n = 4, U = 13, P = 0.200; Mann–Whitney test). (E) Line graph illustrating per cent
decrease in NMDA-mediated VR depolarization in the presence of propofol (NMDA = 10, 20, 25; lM) as well as propofol + TTX (NMDA = 10, 20, 25, 30;
lM) vs. responses evoked by NMDA alone. Applying the Student’s t-test to raw data indicated that propofol significantly depressed 10 and 20 lM NMDA-
mediated responses in Krebs (10 lM, n = 6, t10 = 2.729, P = 0.021 and 20 lM, n = 5, t8 = 2.649, P = 0.029 respectively), whereas propofol applied with TTX
significantly depressed only 10 lM NMDA responses (n = 5, t6 = 3.089, P = 0.021). Responses to 25 lM NMDA applied with propofol (n = 4, t6 = 0.263,
P = 0.801) and 20, 25, 30 lM NMDA + propofol + TTX (20 lM, n = 6, t10 = 0.475, P = 0.645; 25 lM, n = 6, t10 = 0.0673, P = 0.948; 30 lM, n = 8,
t14 = �0.312, P = 0.759) were not significantly different from their subsequent control groups.
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against a very strong loss of motoneurons induced by kainate, a sig-
nificant neuroprotection by 4–8 h propofol was observed.

Long-lasting effect of propofol on network synaptic
transmission

While previous studies have reported the relatively early effect of
propofol on spinal dorsal (Jewett et al., 1992) and ventral
(Kungys et al., 2009; Eckle et al., 2015) horn neurons and
reflexes (Baars et al., 2006), it was first necessary to investigate

what changes in synaptic transmission were caused by administra-
tion of this anaesthetic extended for a few hours even in the
absence of excitotoxicity. Hence, we monitored polysynaptic
reflexes over several hours following 4- (Fig. 4A upper row, B)
or 8-h (Fig. 4A lower row, C) application of propofol. During
the 4-h application, the reflex amplitude did not significantly
change (Jewett et al., 1992), while the area fell with minimal
recovery over the following 3-h washout (Control vs. Prop 4 h,
t9 = 3.587, **P = 0.006; Control vs. Wash, t9 = 2.977,
*P = 0.016; t-test; Fig. 4A and B). When the application of

Fig. 2. Histological neuroprotection by propofol (Prop; 5 lM) against kainate (KA; 100 lM)-evoked excitotoxicity. (A) Histograms showing percentage of
pyknotic cells in the different ROIs (dorsal, central and ventral) after kainate application and/or propofol treatment. Note statistically significant decrease of
pyknosis percentage in all three ROIs when anaesthetic propofol was applied (4 or 8 h) after kainate, compared to sham or application of kainate alone. Thus,
using the Mann–Whitney test, the observed significance level was for KA + Prop 4 h vs. KA alone was P = 0.0009 (U = 238), P = 0.0003 (U = 835) and
P = 0.0002 (U = 990) for dorsal, central and ventral ROI respectively. For KA + Prop 4 h vs. sham, significance levels were: P = 0.0003 (U = 652),
P = 0021 (U = 681) and P = 0.0009 (U = 636) for dorsal, central and ventral ROI respectively. Equivalent results were obtained when Mann–Whitney test
was performed for comparing KA + Prop 8 h vs. KA alone and KA + Prop 8 h vs. sham. All data are the average from 10 to 15 sections of 3–5 rat spinal
cords and are represented as mean � SEM. Likewise symbols represent a significant difference between groups (for more details see Material and Methods sec-
tion). (B) Histograms showing number of neurons in the same ROIs after kainate application and/or propofol treatment. Also here, a significant neuroprotective
effect of propofol is shown. Thus, using a two-tailed Student’s t-test, the observed significance level was for KA + Prop 4 h vs. KA alone: P = 0.048
(t36 = 2.056), P = 0.004 (t52 = 3.076) and P = 0.0008 (t39 = �3.645) for dorsal, central and ventral ROI respectively. For KA + Prop 4 h vs. sham, signifi-
cance levels were: P = 0.2070 (t31 = 1.281), P = 0.135 (t40 = 1.541) and P = 0.002 (t27 = 3.469) for dorsal, central and ventral ROI respectively. Equivalent
results were obtained when a two-tailed Student’s t-test was performed for comparing the number of neurons in KA + Prop 8 h vs. KA alone and KA + Prop
8 h vs. sham. All data are the average from 10 to 15 sections of 3–5 rat spinal cords and are represented as mean � SEM. Likewise symbols represent a signif-
icant difference between groups (for more details see Material and Methods section). (C) Examples of ventral horn NeuN and DAPI staining. In the kainate
group example, the inset shows at larger magnification an apparently normal neuron next to one pyknotic nucleus (indicated by an arrow). Scales bars: 20 lm
and 2.5 lm. For protocols of drug applications see Fig. S1.
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Fig. 3. Histological neuroprotection of ChAT-positive motoneurons by propofol (Prop; 5 lM) against kainate (KA; 100 lM) evoked excitotoxicity. (A) His-
togram showing number of motoneurons in ventral ROI. Note significantly larger number of motoneurons from samples treated with propofol for 4 or 8 h after
kainate vs. sham or kainate alone. Thus, by using a two-tailed Student’s t-test, the observed significance level for KA + Prop 4 h vs. KA alone was: P = 0.002
(t18 = 3.729) and for KA + Prop 4 h vs. sham, P = 0.00001 (t28 = 5.321). When compared KA + Prop 8 h vs. KA alone through the same test, the obtained
significance was P = 0.004 (t16 = 2.808) and for KA + Prop 8 h vs. sham, P = 0.0001 (t26 = 4.489). All data are the average from 10 to 15 sections of 3–5 rat
spinal cords and are represented as mean � SEM. Star symbols represent a significant difference between groups (for more details see Material and Methods
section). (B) Examples of ChAT immunopositive cells using such protocols. Scale bar: 50 lm. For paradigms of drug applications see Fig. S1.

Fig. 4. Long-lasting effect of propofol (5 lM) on polysynaptic responses. (A) Upper row: sample recordings of reflex responses evoked by single DR stimula-
tion in Krebs (Control), at 4 h application of propofol (Prop 4 h) and washed out with Krebs for 3 h (Wash). Lower row: sample recordings of responses in
Krebs (Control), at 8-h propofol application (Prop 8 h) and washed out with Krebs for 3 h (Wash). (B, C) Histograms showing the area of average polysynaptic
reflex responses at 10 min (B) or 1 h (C) intervals while propofol was continuously applied for 4 h (n = 6) and 8 h (n = 6), respectively, and then washed out
with Krebs solution for further 3 h. Green bars depict superfusion with Krebs, whereas grey bars show propofol application (4 and 8 h). Recordings (A) and
bar graphs (B, C) indicate that the area was reduced after propofol application (4 and 8 h) with modest recovery during wash (Control vs. Prop 4 h, t9 = 3.587,
**P = 0.006; Control vs. Wash, t9 = 2.977, *P = 0.016). No apparent recovery was observed at 3 h washout after 8 h propofol (Control vs. Prop 8 h,
t10 = 2.121, P = 0.060; Control vs. Wash, U = 20, P = 0.114, Mann–Whitney test).
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propofol was extended to 8 h, the response area was persistently
decreased with no apparent recovery over the next 3 h wash
(Fig. 4A lower row, C; Control vs. Prop 8 h, t10 = 2.121,
P = 0.060, t-test; Control vs. Wash, U = 20, P = 0.114, Mann–
Whitney test). Figure 5A–C shows that 24 h later, reflex charac-
teristics, when compared with sham preparations, were depressed
after previous exposure to propofol (on the first day) especially
in terms of area despite the observation that no histological deficit
was detected (see Figs 2 and 3). These observations suggested
prolonged functional depression by propofol despite washout.

Functional activity of locomotor networks following kainate and
propofol application

We next explored whether propofol depression of synaptic transmis-
sion was additive to any neurotoxic action by kainate or whether it
could actually reverse it, at least in part. Figure 5A–C indicates that
reflex depression was more intense after kainate alone than after
propofol per se. Furthermore, although 4–8 propofol administration
was inhibiting reflexes, its application after kainate did not intensify
the reflex reduction, indeed it either occluded the overall fall in
amplitude or actually counteracted the area shrinkage. This phe-
nomenon was readily apparent with 4-h propofol and less mani-
fested with 8-h propofol (Fig. 5A–C). Nevertheless, no additive
neurodepression caused by excitotoxicity plus propofol was
observed.
We next queried if the propofol-dependent histological preserva-

tion, despite innate decrease in network transmission, could shape
the output of locomotor networks activated by trains of DR stimuli

or NMDA + 5HT. Thus, DR stimulation-evoked fictive locomotion
(expressed as alternating oscillations recorded from pairs of VRs)
was readily apparent in sham preparations 24 h later (Fig. 6A and
B), yet completely absent after kainate with no recovery in the oscil-
lations (bottom traces in Fig. 6A). As expected from previous
reports (Taccola et al., 2008), the cumulative depolarization ampli-
tude and area were severely decreased by the previous kainate appli-
cation (Fig. 6C and D). After application of propofol alone, on the
subsequent day, oscillations could still be elicited by DR stimulus
trains as indicated in Fig. 6A. In fact, the number of oscillations
although decreased was still close to the value detected in sham
preparations (Fig. 6B) (Sham vs. Propofol 4 h, Q = 0.262; Sham
vs. Propofol 8 h, Q = 0.369; Dunn’s method). Despite this preserva-
tion of electrically evoked fictive locomotion, no oscillations were
present when propofol was applied after kainate (Fig. 6A and B).
Fictive locomotion was also tested by co-applying NMDA (3–

6 lM) and 5-HT (10 lM) 24 h after kainate (1 h) followed by
propofol (4 or 8 h). Figure 7 illustrates that alternating oscillations
were observed the day after application of propofol alone even if
their periodicity was longer (Sham vs. Propofol 4 h, U = 66,
P = 0.005) and after the 8-h treatment (U = 61, P = 0.001, Mann–
Whitney test), the cycle amplitude was also decreased (Sham vs.
Propofol 8 h, t14 = 3.313, P = 0.005, Student t-test) (Fig. 7A–C).
When the 4-h propofol application paradigm was employed after 1-
h kainate administration, in 5 out of 10 spinal cords, there was
emergence of sporadic oscillations at slow period as exemplified in
Fig. 7A (middle panels). This effect was not typical of fictive loco-
motion and was absent after 8-h propofol following kainate applica-
tion (Fig. 7A–C).

Fig. 5. Effect of propofol (5 lM) application on polysynaptic reflex responses recorded 24 h after exposure to kainate (KA, 100 lM). (A) Examples of polysy-
naptic responses recorded from L5 VRs in sham (control for day 2), propofol applied for 4 h (Prop 4 h), propofol applied for 8 h (Prop 8), kainate applied for
1 h (KA), kainate (1 h) followed by propofol for 4 h (KA/Prop 4 h) and kainate (1 h) followed by propofol for 8 h (KA/Prop 8 h). (B, C) Histograms illustrat-
ing the peak amplitude (B) and area (C) of reflex responses after KA (n = 11), KA/Prop 4 h (n = 10), KA/Prop 8 h (n = 14) treatment compared to sham
(n = 8), Prop 4 h (n = 9) and Prop 8 h (n = 8). Note the significant fall in peak amplitude (U = 24, **P = 0.004; Mann–Whitney test) of preparations treated
with propofol for 8 h after kainate application as compared to kainate alone. All values of reflex peak amplitude and area in treated spinal cords were signifi-
cantly different from sham (H5 = 32.163, P = 0.001; H5 = 30.521, P = 0.001; Kruskal–Wallis one-way analysis of variance on ranks test respectively).
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Figure 8A summarizes the data involving network rhythmicity
that appears when synaptic inhibition is blocked by strychnine and
bicuculline (Bracci et al., 1996b). Figure 8A–C shows persistence
of bursting 1 day after propofol application even though with smal-
ler amplitude and longer period. When kainate application was fol-
lowed by propofol (4 h or 8 h), the burst amplitude remained very
depressed (t13 = 3.087, P = 0.009; U = 4, P = 0.004; Mann–Whit-
ney test), while the periodicity improved in comparison to kainate
alone.

Discussion

The principal finding of the present study is the novel demonstration
that the anaesthetic propofol induced significant neuroprotection of
spinal neurons against excitotoxicity even when administered after
the excitotoxic stimulus (i.e. kainate application) had been

terminated. This protection was also extended to motoneurons as the
number of survivors approached the control level. Using the in vitro
preparation enabled us testing the proof of principle that propofol
might neuroprotect independently from vascular (or peripheral)
effects. While these beneficial effects were observed after 24 h from
excitotoxic stimulation, they were not, however, associated with sig-
nificant recovery in locomotor network output, a phenomenon we
attributed to the rather slow recovery of motor networks from the
depressant effect of propofol.

Effects of propofol per se on spinal networks

In line with previous studies (Kotani et al., 2008), we observed that
the concentration of propofol used in the present investigation partly
depressed polysynaptic transmission (Jewett et al., 1992), potenti-
ated GABA-evoked responses (Adodra & Hales, 1995; Reynolds &

Fig. 6. Changes in electrically induced fictive locomotor oscillations elicited by DR stimuli recorded on day 2 after kainate (1 h) exposure followed by propo-
fol for 4 or 8 h. (A) Representative records of electrically evoked cumulative depolarization of sham (n = 7), propofol applied for 4 h (Prop 4 h, n = 7), propo-
fol applied for 8 h (Prop 8, n = 8), kainate applied for 1 h (KA, n = 11), kainate (1 h) followed by propofol for 4 h (KA/Prop 4 h, n = 10) and kainate (1 h)
followed by propofol for 8 h (KA/Prop 8 h, n = 14) protocols. Traces show typical alternating VR cycles between homolateral L2 and L5 motor pools: these
oscillations are superimposed over the slowly developing cumulative depolarization due to non-linear summation of synaptic responses (Marchetti et al., 2001).
(B) Bar graph representing number of alternating oscillations elicited by DR stimulation. Although propofol alone does not change oscillations, no emergence
of oscillations is observed after kainate with or without subsequent application of propofol for 4 or 8 h. (C) Histogram representing significant depression in
cumulative depolarization after treating spinal cords with kainate: this effect was unchanged by 4-h propofol (t19 = 0.792, P = 0.438) and intensified by 8 h of
the same anaesthetic (U = 31, *P = 0.013; Mann–Whitney test). (D) Histogram depicting a decrease in cumulative depolarization area of the same preparations
shown in C. Note the significant change in number of oscillations, cumulative depolarization and area of all treated preparations in comparison to sham
(H5 = 51.806, P = <0.001; H5 = 37.673, P = <0.001; H5 = 41.110, P = <0.001; Kruskal–Wallis one-way analysis of variance on ranks test, respectively).
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Maitra, 1996) and depressed NMDA-mediated ones (Orser et al.,
1995). These effects on GABA or NMDA depolarizations were at
least in part attributable to a direct effect on motoneurons as they
persisted after block of network activity with TTX. Human studies
corroborate this notion as propofol has been shown to reduce spinal
motoneuron excitability (Kakinohana et al., 2002; Kammer et al.,
2002). Long-term effects by propofol on synaptic transmission
investigated over several hours suggested that the reduction in reflex
area was perhaps due to a combinatorial phenomenon of facilitated
GABA action (that on neonatal spinal neurons is depolarizing, yet
inhibitory; Vinay & Jean-Xavier, 2008) plus NMDA receptor antag-
onism as these receptors contribute to the late component of excita-
tory transmission onto motoneurons (Evans et al., 1982). It is
noteworthy that even prolonged washout of propofol (for at least
16 h) did not fully restore synaptic transmission, although within
the 24 h timeframe of the present study, fictive locomotion evoked
by DR stimuli or neurochemicals (albeit of slow rate and small
intensity) could still be observed together with lack of histochemical
damage to spinal networks. It is surprising that details of reversibil-
ity of propofol depression on polysynaptic transmission induced by
DR stimulation in the rat spinal cord are lacking, although a former
study seemed to indicate partial recovery (Matute et al., 2004). Pre-
vious experiments have indicated that propofol depresses cumulative
depolarization (Matute et al., 2004), a phenomenon consistent with
the proposed analgesic action of this drug.

Propofol contrasted excitotoxic damage to spinal networks

In accordance with the view that propofol is neuroprotective against
brain ischaemia (Kawaguchi et al., 2005), the present study
observed that delayed application of propofol was an effective strat-
egy to largely prevent the development of neuronal damage in all
three spinal ROIs and was especially striking in the case of
motoneurons. As we found no difference in the histological outcome
when propofol was applied for 4 or 8 h, we propose that its neuro-
protective effect was exerted during the early phase of secondary
injury that involves (within the first few hours) activation of non-
apoptotic cell death mechanisms (Kuzhandaivel et al., 2011). The
question then arises about the mode of action of propofol. We
favour the possibility that propofol enhanced GABA-mediated inhi-
bition and thereby decreased network excitability in a persistent
fashion (Jewett et al., 1992). This phenomenon is somewhat remi-
niscent of the action by the anaesthetic methoxyflurane that
depresses network activity by activating background K+ conduc-
tances (Elliott et al., 1992; Sirois et al., 2000) and thus, protects
spinal neurons from injury (Shabbir et al., 2015).
Hence, the simplest interpretation is that, regardless of the cellular

mode of action of the general anaesthetic drug, intense network
depression elicited by either a gas or an i.v. anaesthetic drug can exert
largely beneficial actions on spinal networks even when administered
following the excitotoxic insult. This notion accords with the

Fig. 7. Changes in chemically induced fictive locomotion after exposure to kainate (1 h) followed by propofol (4 or 8 h). Data recorded on day 2 after treat-
ment. (A) Sample recordings of fictive locomotion induced by NMDA and 5-HT in sham (n = 8), propofol applied for 4 h (Prop 4 h, n = 9), propofol applied
for 8 h (Prop 8 h, n = 8), kainate applied for 1 h (KA, n = 6), kainate (1 h) followed by propofol for 4 h (KA/Prop 4 h, n = 10) and kainate (1 h) followed
by propofol for 8 h (KA/Prop 8 h, n = 11). Traces show typical alternating VR cycles between homolateral L2 and L5 motor pools. Although smaller in ampli-
tude and slower, these cycles are still present the day after treatment with propofol alone (4 or 8 h). (B, C) Bar graphs illustrate the peak amplitude of oscilla-
tory cycles (B) whose amplitude was decreased after application of propofol (8 h) in comparison to sham (t14 = 3.313, **P = 0.005; Student t-test), and period
of oscillations (C) has increased by application of propofol for 4 h (U = 66, P = 0.005; Mann–Whitney test) and for 8 h (U = 61, ***P = 0.001; Mann–Whit-
ney test). After kainate application, alternating oscillatory cycles irreversibly stopped in most cases. However, 5–15 sporadic oscillations (typically limited to a
single VR) could be detected in spinal cord preparations (5/10) after propofol administration for 4 h. No recovery in the preparations treated with propofol for
8 h after kainate exposure (1 h) was found. Note a significant change in all the values of amplitude and period vs. sham (B and C) (H5 = 38.038, P = <0.001
and H5 = 40.923, P = 0.001; Kruskal–Wallis one-way analysis of variance on ranks test respectively).
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observations that neuronal damages after kainate are not immediately
caused by necrotic death as they emerge during the first few hours
after washout of this excitotoxic drug and concern a certain popula-
tions of neurons only (Kuzhandaivel et al., 2010). Testing other gen-
eral anaesthetics like chloralose or barbiturates that are not clinically
used would also pose problems of data interpretation due to the rather
slow recovery of the in vitro spinal cord from their effects even when
applied for relatively short times (Bagust & Kerkut, 1981).
It is also noteworthy that pharmacological block of GABA-

induced inhibition largely aggravates kainate-evoked damage
(Bajrektarevic & Nistri, 2016). The propofol-mediated antagonism
of NMDA responses was less likely to contribute to neuroprotection
because we have previously shown that NMDA receptor blockers
per se are not efficacious in this model (Margaryan et al., 2010).
The present results suggest that depression of network excitability is
an important strategy for damage limitation even after the excito-
toxic stimulus has been removed. Conversely, decrease in the
release of the excitatory transmitter glutamate by applying for
instance riluzole is far less effective (S�amano et al., 2012) perhaps
because significant background release of glutamate continues (Maz-
zone & Nistri, 2011) to support ongoing cell death processes.

Network function after kainate and propofol

Twenty-four hours after kainate followed by propofol application,
there was no recovery in integrated network function, in particular
cumulative depolarization evoked by DR stimuli, or fictive locomo-
tion induced by electrical pulses or NMDA + 5-HT. This was not
totally unexpected in view of the long-lasting depression evoked by

propofol per se: there was, however, no additive depression by kai-
nate and propofol on synaptic transmission, indicating that further
deterioration had been blocked. In fact, disinhibited bursting that
reflects the intrinsic rhythmicity of spinal networks (Streit, 1993;
Bracci et al., 1996a) showed improved periodicity when 4-h propo-
fol administration followed kainate washout. The simplest interpreta-
tion is that, when network output required activation of a limited
circuitry (Bracci et al., 1996b), the protective action of propofol was
manifested more efficiently than over a very wide locomotor net-
work with complex connections extending over several segments
(Kiehn, 2006, 2016) and, therefore, with a much higher probability
of failure. These observations are consistent with our view (S�amano
et al., 2016) that spinal networks operate in a condition of criticality
(Massobrio et al., 2015; Valverde et al., 2015), so that even moder-
ate cell losses trigger a major functional deficit. Thus, we propose
that there is a minimal network membership necessary to express
locomotor patterns (Kuzhandaivel et al., 2011) below which loco-
motor output is lost.
Following the pioneer clinical work by Kay & Rolly (1977) who

used propofol for rapid induction of anaesthesia in man, this drug is
widely used in surgery because of the relatively fast recovery of
patient’s consciousness after the end of i.v. administration (Grund-
mann et al., 2001): this phenomenon is normally assessed as aware-
ness (“eye opening”) rather than locomotor function, and is
apparently due to the drug fast redistribution to body fat stores
rather than metabolic inactivation (Mirski et al., 1995). In fact, in
humans, the propofol plasma half-life is about 5 h, indicating slow
drug elimination with delayed concentration peaks perhaps responsi-
ble for potential changes in cardiovascular activity (Kay et al.,

Fig. 8. Disinhibited bursts recorded on day 2 after kainate (1 h) followed by propofol (4 or 8 h) treatment. (A) Sample recordings obtained from sham
(n = 8), propofol applied for 4 h (Prop 4 h; n = 9), propofol applied for 8 h (Prop 8; n = 7), kainate applied for 1 h (KA; n = 7), kainate (1 h) followed by
propofol for 4 h (KA/Prop 4 h; n = 9), and kainate (1 h) followed by propofol for 8 h (KA/Prop 8 h; n = 9). After kainate or propofol alone bursts are smaller,
although no further decrease is observed when these two treatments were sequentially applied (A–C). Note significant recovery in number of bursts during 20-
min epoch after kainate followed by propofol treatment both for 4 and 8 h (t14 = �3.622, **P = 0.003 and t14 = �2.793, *P = 0.014 respectively) in compar-
ison to kainate alone, although their corresponding amplitude was significantly reduced after propofol for 4 and 8 h (t13 = 3.087, P = 0.009; U = 4, P = 0.004;
Mann–Whitney test respectively). Note a significant change in number of bursts (in 20 min) and burst amplitude in treated preparations in comparison to sham
(F5,43 = 4.100, P = 0.004, one-way analysis of variance test; H5 = 36.563, P = <0.001, Kruskal–Wallis one-way analysis of variance on ranks test, respec-
tively).
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1986). Earlier investigations report that patients may experience side
effects even 24–48 h after a single 10-min administration of propo-
fol (Sanders et al., 1991). Anaesthesiological studies also demon-
strate that full motor recovery in humans is incomplete for many
hours after propofol (M€unte et al., 2001; Haavisto & Kauranen,
2002), leading to the general advice that dizziness and drowsiness
may persist for 24 h and to caution against driving (http://
www.rxlist.com/diprivan-drug/patient-images-side-effects.htm). Thus,
our interpretation is that poor recovery of in vitro network function
after kainate and propofol was not due to neuronal damage but to
lingering consequences of long-lasting propofol administration. One
limitation of the present model is the length of in vitro survival that
is restricted to 24 h, as at later times, tissue deterioration and loss of
locomotor network activity emerge as earlier reported by Kerkut &
Bagust (1995). This condition makes it difficult to extend the time-
frame of our experimental observations to support our view about
the late consequences of propofol administration.
In conclusions, recent clinical reports suggest that general anaes-

thetics may be neuroprotective for the spinal cord especially during
aortic surgery when blood supply to the spinal cord is compromised
(Kakinohana, 2014). Our current data support the notion that a gen-
eral anaesthetic applied even after an excitotoxic stimulus to the
in vitro spinal cord can provide large neuroprotection of locomotor
networks (Shabbir et al., 2015; Bajrektarevic & Nistri, 2016), whose
functional recovery might depend on the actual pharmacokinetic
characteristics of the anaesthetic used. It should be interesting to
extent these studies to in vivo animals to better identify their transla-
tional impact. Furthermore, multicentre clinical trials will be
required to find out whether propofol should be the preferred drug
of choice for early management of traumatic SCI apart from its use
for spinal cord ischaemia (Kakinohana, 2014).

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Scheme of experimental procedures.
Fig. S2. (A) Regions of interest (ROIs) for immunohistochemical
analysis.
Fig. S3. Histological neuroprotection of motoneurons (SMI32) by
propofol (Prop; 5 lM) against kainate (KA; 100 lM) evoked excito-
toxicity.
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Abstract 

Activation of neuronal nicotinic acetylcholine receptors (nAChRs) by nicotine is reported to 

protect brain neurons from glutamate excitotoxicity. We inquired whether a similar phenomenon 

can occur in the rat isolated spinal cord (or spinal slice culture) challenged by a transient (1 h) 

application of kainate (a powerful glutamate receptor agonist) to induce excitotoxicity 

mimicking spinal injury in vitro. We recorded spinal reflexes and fictive locomotion generated 

by the locomotor central pattern generator before and 24 h after applying kainate. We also 

monitored network activity with Ca
2+

 imaging and counted neurons and glia with 
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immunohistochemical methods. In control conditions nicotine (1 µM; 4 h) depressed reflexes 

and fictive locomotion with slow recovery and no apparent neurotoxicity at 24 h although 

synchronous Ca
2+

 transients appeared in slice cultures. Kainate nearly halved neuron numbers 

(while sparing glia), decreased reflexes and Ca
2+

 transients, and suppressed fictive locomotion. 

When nicotine was applied (4 h) after washout of kainate, fictive locomotor cycles appeared 24 h 

later though with low periodicity, and significant protection of neurons, including motoneurons, 

was observed. Nicotine applied together with kainate and maintained for further 4 h yielded 

better neuroprotection, improved fictive locomotion expression, and reversed the depression of 

Ca
2+

 transients. nAChR antagonists did not intensify kainate neurotoxicity and inhibited the 

neuroprotective effects of nicotine. These data suggest that nicotine was efficacious to limit 

histological and functional excitotoxic damage probably because it activated and then 

desensitized nAChRs on excitatory and inhibitory network neurons to prevent triggering 

intracellular cell death pathways. 

Introduction 

The functional role of neuronal nicotinic acetylcholine receptors (nAChRs) was first observed at 

the motoneuron-Renshaw cell synapse, thus making the spinal cord exemplary for investigating 

the expression of nAChRs previously studied on peripheral tissues only (Eccles et al., 1954). 

nAChRs (α4β2 and α7 subtypes) are widely expressed in the dorsal (Kiyosawa et al., 2001; Khan 

et al., 2003; Genzen & McGehee, 2003; 2005; Takeda et al., 2007) and ventral horns (Roth & 

Berg, 2003; Nakamizo et al., 2005). These receptors mediate cation fluxes responsible for 

depolarization and firing, although these phenomena are attenuated by receptor desensitization 

(Fenster et al., 1999). There are also similar intracellular nAChRs on the outer membrane of 

mitochondria to control mitochondrial activity and energy supply (Skok et al., 2016). 

Mitochondrial receptors can be activated by nicotine that readily passes across cell membranes. 

From a functional viewpoint, spinal nAChRs are involved in physiological responses like pain 

(Khan et al., 1998) and locomotion (Perrins and Roberts, 1995; Nishimaru et al., 2006) to which 

motoneuron/Renshaw cell synapses make an important contribution (Lamotte d'Incamps et al., 

2012; Enjin et al., 2017).  

Page 2 of 53European Journal of Neuroscience



For Peer Review

3 

 

 

nAChRs are implicated in neuroprotection mechanisms against acute cell distress (Bencherif, 

2009) induced by excitotoxicity, namely a process of over-activation of glutamate receptors 

considered as a paradigm of neurodegeneration (Choi 1992; 1994). Nicotine mediated 

neuroprotection has been reported in vitro (Garrido et al., 2003), in vivo (Xue et al., 2014) and in 

epidemiological studies (Quik et al., 2012), suggesting potential strategies to contrast neuronal 

death. On brainstem motoneurons nicotine protects against excitotoxicity by activating nAChRs 

that trigger intracellular pathways to block reactive oxygen species (ROS) and by normalizing 

mitochondrial metabolism (Corsini et al., 2016; Tortora et al., 2017). Since nicotine depolarizes 

rat spinal motoneurons via direct and indirect effects (Blake et al., 1987), this drug might be 

neuroprotective for the spinal cord by acting on a broad spectrum of targets. To explore this 

issue, we used an excitotoxic model of the isolated rat spinal cord kept in vitro for up to 24 h 

(Taccola et al., 2008). We measured the output of locomotor networks as fictive locomotion by 

recording oscillatory patterns from lumbar ventral roots (VRs), and investigated locomotor 

network activity and neuronal survival after excitotoxicity and nicotine application. For this 

purpose, we initially analyzed the acute and delayed effects of nicotine on synaptic transmission, 

fictive locomotion and cell composition to identify the most suitable concentration of nicotine. 

Thereafter, we applied the excitotoxic protocol based on a transient application of kainate, a 

potent glutamate analogue, to find out the best regimen of nicotine administration for functional 

and structural neuroprotection of spinal networks. Since the neurotoxicity evoked by kainate 

peaks after its washout (Kuzhandaivel et al., 2010), we investigated the impact of nicotine 

administration applied together with kainate or after its washout. Finally, we studied if the 

subtype selective nAChR antagonists Di-hydro-β-erythroidine (DHβE) and methyllycaconitine 

(MLA) (Arias, 1997; Gotti & Clementi, 2004) could change spinal network activity as well as 

influence any beneficial action by nicotine toward excitotoxic damage.  

Materials and methods 

Ethical approval 

All the experimental procedures were approved by SISSA ethical committee (prot. 3599, 28th 

May 2012) and were performed in accordance with the guidelines provided by European Union 
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rules for animal experimentation. All attempts were made to reduce the number of animals used 

and their sufferings.  

Spinal cord preparation and drug application protocol 

Experiments were carried out with in vitro spinal cord preparations from 0-2 day old wistar rats 

(n = 111, where n is the number of animals used in the whole study) by rapidly decapitating 

under anesthesia with urethane (0.2 mL i.p. of a 10% w/v solution). Thoraco-lumbar spinal cord 

preparations were carefully isolated in continuously oxygenated Krebs solution (in mM; 113 

NaCl, 4.5 KCl, 1 MgCl2.7H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 11 glucose; gassed with 95% 

oxygen and 5% CO2; pH 7.4 at room temperature at 7.5 mL/min) as previously published 

(Taccola & Nistri, 2006a; Taccola et al., 2008; Margaryan et al., 2009). After dissection, spinal 

cords were kept in Krebs for 2 h to recover functional activity before starting with 

experimentation. To mimic excitotoxic damage of gray matter, kainate was applied at 50 µM 

concentration to partially abolish fictive locomotor rhythms induced by DR train pulses and 

NMDA+5HT when tested the subsequent day. Initially the protocol of nicotine concentration 

was optimized by using different concentrations of nicotine (10, 2, 1, 05; µM) for 4 h on day 1 

and recorded polysynaptic reflex responses and fictive locomotor patterns every 15-20 min 

during 4 h. After all concentrations trails, on an in vitro spinal cord preparation, nicotine with 1 

µM concentration was selected for further continuing experimentation with spinal lesion and 

neuroprotection protocols. Thereafter, spinal cords were kept in Krebs overnight and recorded 

monosynaptic reflexes, polysynaptic reflexes, electrically induced and chemically induced fictive 

locomotion 24 h after wash.   

Excitotoxicity was induced by bath application of kainate (for 1 h; 50 µM, from Tocris), 

glutamate agonist, followed by either Krebs or nicotine (1 µM) administered for 4 h on day 1. 

These preparations were then superfused with Krebs solution overnight and reflexes and fictive 

locomotion were recorded on subsequent day. Electrophysiological and immunohistochemical 

data were compared among the following 5 groups; Sham (day 2 control), nicotine 1 µM applied 

for 4 h (N, from Sigma-Aldrich), kainate administered for 1 h, kainate (1 h) followed by nicotine 

for 4 h (KA/N 4h), kainate co-applied with nicotine for 1 h followed by nicotine for 4 h 

(KA+N/N 4h) (see supplemental fig. 1).  
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To further ensure the neuroprotective effect of nicotine and the involvement of specific nicotinic 

acetylcholine receptors i.e. α4β2 and α7 in spinal neuroprotection, nAChR antagonists, dihydro-

β-erythroidine, 10 µM (DHβE, from Tocris) and methyllycaconitine, 10 nM (MLA, from Sigma-

Aldrich, Saint Louis, MO, USA), were applied in the following 9 combinations; DHβE applied 

alone for 4 h (D), DHβE co-applied with kainate for  1 h (KA+D), DHβE administered with 

kainate and nicotine for 1 h followed by DHβE and nicotine for 4 h (KA+D+N/D+N 4 h), MLA 

applied for 4 h (M), MLA co-administered with kainate for  1 h (KA+M), MLA administered 

with kainate and nicotine for 1 h followed by MLA and nicotine for 4 h (KA+M+N/M+N 4 h), 

DHβE and MLA were co-applied for 4 h (D+M), DHβE+MLA coapplied with kainate for  1 h 

(KA+D+M), DHβE and MLA were administered with kainate and nicotine for 1 h followed by 

DHβE+MLA+nicotine for 4 h (KA+D+M+N/D+M+N 4 h) (supplemental fig. 1).   

Electrophysiological recordings  

By using tight fighting monopolar suction Ag/AgCl electrodes, DC coupled recordings were 

acquired from L2 and L5 ventral roots (VRs) which carry flexor and extensor motor pools to 

hind limbs (Taccola & Nistri, 2006a; Taccola et al., 2008). VR responses were elicited (at 10 

KHz) by delivering electrical square pulses with 0.1 ms duration to the dorsal root (L) through 

bipolar suction electrodes. Initially, minimum stimulus threshold was estimated by applying 

graded electrical stimuli and detecting the minimal response in ipsi-lateral and ispi-segmental 

VRs, equivalent to 1x threshold to induce monosynaptic reflex responses. 3x stimulus threshold 

was used to evoke polysynaptic reflexes.  3x threshold intensity to evoke DR induced fictive 

locomotion by stimulating 30 pulses of DR train at 2 Hz frequency (15 s) (Marchetti et al., 

2001). Chemically induced fictive locomotion was evoked by bath application of N-methyl-D-

aspartate (NMDA) (3-6 µM) and 5-hydroxytryptamine (5-HT) (10 µM) (Kiehn & Kjaerulff, 

1998; Kiehn 2006). Disinhibited bursts were evoked by applying γ-aminobutyric acid (GABA)-

A and glycine receptors blockers, bicuculline (20 µM) and strychnine (1 µM) respectively. 

Signal records were acquired and processed with pClamp software 9.2, (Molecular Devices, 

Sunnyvale, CA, USA). Fictive locomotor rhythms and burst activity was measured in accordance 

with Taccola et al. (Taccola et al., 2008) and Bracci et al. (Bracci et al.,1996a,b) respectively. 

Immunofluorescence, microscopy and analysis 
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Immunohistochemical experiments were performed in accordance with previous reports (Cifra et 

al. 2012; Sámano et al., 2016; Kaur et al., 2016). After electrophysiology recordings, spinal 

cords were fixed in 4% paraformaldehyde and then cryoprotected with 30 % (w/v) sucrose. 30 

µm thick transverse sections of spinal cords were cut from T13-L5 segment of spinal cord with 

sliding microtome at –20 
°
C and preserved in phosphate buffer saline (PBS) until use. Free 

floating immuno-fluorescence procedure was used where the sections were preincubated for 2 h 

with blocking solution (5% normal goat serum, 5% bovine serum albumin, 0.3 % Tritox X 100, 

1% PBS) at room temperature. Spinal cords were immunolabelled with primary antibodies 

namely, anti-Neu N (Neuron specific neuronal marker; rabbit polyclonal; 1:500 dilution; Merck 

Millipore, Milan, Italy), anti-SMI 32 (specific non phosphorylated neurofilament H in spinal 

motoneurons; mouse monoclonal; 1:1000 dilution; Chemicon, Millipore, Milan, Italy), anti-S100 

(specific for S100 protein, belongs to family of Ca
2+

 binding proteins in nuclei and cytoplasm of 

astrocytes, rabbit polyclonal; 1:1000; DAKO, Glostrup, Denmark) and anti-GFAP (specific for 

Glial fibrillary acidic protein (GFAP), member of class III intermediate filament protein family, 

expressed in astrocytes and certain other astroglia in the central nervous system; mouse 

monoclonal; 1:500; Sigma Aldrich) in antibody solution (containing 1% NGS, 1% BSA, 0.1 % 

Triton-X 100), kept overnight at 4 
°
C. Sections were washed with 1x PBS and incubated with 

appropriated secondary antibodies, anti-mouse Alexa Flour 488 or 594, or anti-rabbi Alexa Fluor 

488 or 594 and DAPI for 2 h. Finally they were mounted on glass and imaged with Leica 

DM6000 (20x magnification). Images were obtained from 3 to 6 spinal sections (5-10 

sections/preparation) by selecting 3 regions of interest (ROIs); dorsal, central (D, C; 350x350 

µm
2
) and ventral (V; 300x230 µm

2
) (Mazzone et al; 2010; Cifra et al., 2012; Sámano et al., 

2016).  Quantification (of cells, pyknotic nuclei, motoneurons and neurons) and immuno-

fluorescence intensity (AU, of astrocytes and glia) was measured by ImageJ software.  

Preparation of organotypic slice cultures 

Organotypic spinal cultures were prepared from spinal cords of E13 day rat embryos as 

previously reported (Avossa et al., 2003; Mazzone et al., 2010; Mazzone and Nistri, 2011). Thus, 

275 µm transverse slices were cut and fixed on a glass coverslip (Kindler, EU) with reconstituted 

chicken plasma clotted with 1 drop of thrombin (200 U/mL). The coverslips with spinal sections 
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were inserted into plastic tubes with 1 mL of medium comprised 82 % Dulbecco’s modified 

eagle’s medium, 8% sterile water with tissue culture, 10 % fetal bovine serum, osmolarity 300 

mOsm, pH 7.35. About 40 slices (from thoraco-lumbar part) were prepared from single 

dissection. The tubes were kept for culturing for 22 days in vitro (DIV) in roller drum (120 x g/h) 

at 36.5 
°
C, with 5% CO2. Dulbecco’s modified eagle’s medium was applied with high glucose 

(DME/HIGH), penicillin and streptomycin (Euroclone, Devon, UK). Fetal calf serum (FBS) was 

purchased from Invitrogen (Carlsbad, CA, USA), nerve growth factor (NGF) from D.A.B Italia 

(Segrate, Italy), chicken plasma from Innovative (Novi, MI, USA) and thrombin from Merck 

(Darmstadt, Germany). Organotypic spinal cultures were treated after 22 days of culturing. There 

were four selected paradigms used on 22
nd

 day, namely sham, nicotine 1 µM, kainate 50 µM and 

kainate coapplied with nicotine for 1 h followed by nicotine for 4 h (KA+N/N 4h). All the 

treatments were washed out with culture medium for 24 h before using the cultures for Ca
2+

 

imaging experiments.   

Ca
2+
 Imaging    

In accordance with previous protocols for Ca
2+

 imaging (Fabbro et al., 2004; Sharifullina & 

Nistri, 2006; Corsini et al., 2017), organotypic spinal slices grown in-vitro for 3 weeks were 

incubated with fluorescent calcium dye Fluo 3-AM (4 µM, Molecular Probes, Invitrogen, 

Carlsbad, CA, USA) for 1 h at room temperature in Dulbecco’s modified eagle’s medium. The 

fluorescent dye was washed out with the same medium (Dulbecco’s modified eagle’s medium) 

containing strychnine and bicuculline for 30 min. Spinal cultures were then transferred to a 

recording chamber of the Nikon Eclipse T1 microscope (Nikon, Tokyo, Japan) and replaced the 

medium with 2 mL of oxygenated Krebs comprising strychnine (1 µM) and bicuculline (20 µM). 

We recorded Ca
2+

 signals from ventrally located neurons (somatic diameter > 20 µm; Fabbro et 

al., 2007). For each slice, only one region was analyzed, and 8 ± 3 number of fluorescent ventral 

neurons was selected (focused in the most superficial plane) to investigate changes in 

intracellular Ca
2+

 concentration. Ca
2+

 fluorescent emission was excited at a fixed wavelength of 

488 nm generated by a Nikon intensilight C-HGFI lamp (Nikon) and detected with the digital 

CMOS camera ORCA-Flash 4.0 (Hamamatsu Photonic, Hamamatsu City, Japan). Images were 

acquired with the Fiji software (ImageJ, Wayne Rasband, National Institued of Health, USA; 62) 
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with 200 ms exposure time. Traces extrapolated with Igor Pro software (version 6.37, 

Wavemetrics, Lake Oswego, OR, USA) were analyzed with the software Clampfit 10.0 

(Molecular Devices Corporation, Sunnyvale, CA, USA). Ca
2+

 transients were expressed as ∆F/F0 

(the amplitude fractional increase), where ∆F is the fluorescence rise over baseline, and F0 the 

baseline fluorescence level; [Ca
2+

]i elevations were considered significant when they exceeded 5 

times the noise standard deviation (Bosi et al., 2015; Rauti et al., 2016). The correlation between 

the Ca
2+

 events among active cells recorded from the same field was assessed by cross-

correlation analysis. The value of cross correlation factor (CCF) was used to measure the 

strength of the correlation between cells, i.e. the relative probability that the peaks of calcium 

transients took place at the same time in all the cells. These values range between 1 (maximal 

correlation) and −1 (maximal anti-correlation), and were obtained using Igor Pro. 

Statistical analysis 

Electrophysiological, immuno-histochemical and calcium imaging data were statistically 

analyzed with SigmaStat 3.5 (Stat Software, Chicago, IL, USA). Values were expressed as 

mean±SEM, where n is the number of spinal cords or spinal slices used. As directed by software, 

normality test was applied to distinguish between parametric and non-parametric data, the values 

were evaluated by Student’s t-test or Mann-Whitney test respectively. One-way Analysis of 

variance test (ANOVA) was applied for multiple comparisons (via Kruskal-Wallis or Holm 

Sidak tests). The acceptance significance level was P < 0.05.  

Results 

Acute effects of nicotine on reflexes, fictive locomotion and motoneuron depolarization of 

the rat spinal cord 

Because the effects of nicotine are complex and could be manifested as either neuroprotective or 

toxic, initial experiments were performed to identify the most suitable time course and 

concentration of nicotine for experiments which spanned over several hours. Fig. 1 A shows 

changes in average polysynaptic reflexes recorded from a lumbar VR following homosegmental 

DR stimulation. While the response peak was stable for several h in Krebs solution, in the 

presence of nicotine there was a sustained depression of the amplitude with partial recovery at 1 
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h wash. Nicotine was applied continuously for 4 h since this would be the most suitable time to 

contrast the delayed onset of kainate excitotoxicity that starts within the first h and is fully 

expressed over the next 4 h (Kuzhandaivel et al., 2010). The largest depression by nicotine was 

observed with 2 µM (**P = 0.007, area; P = 0.006, amplitude; Control vs N 20 min, Student’s t-

test) or 10 µM (***P = 0.001, area; *P = 0.017, amplitude; Control vs N 20 min, Mann 

Whitney-test) concentrations of nicotine (Fig. 1 B, C). Fig. 1 B shows that the polysynaptic 

response area became smaller with anyone of the nicotine concentrations used however not 

significant with 1 and 0.5 µM nicotine (P = 0.089 and P = 0.838, Mann Whitney-test). The acute 

effect of nicotine was associated with depolarization recorded from VRs as shown in Fig. 2. 

Thus, by comparison with kainate (50 µM), depolarization evoked by 10 µM nicotine was 

clearly smaller (P = 0.001, KA vs N 10 µM; Student’s t-test) and almost undetectable when 1µM 

was applied (P = 0.001, KA vs N 1 µM; Student’s t-test) (Fig 2 A). Fig. 2 B summarizes average 

data indicating that depolarization evoked by nicotine was less than 1/3
rd

 of the one evoked by 

kainate, and that it was only modestly dependent on the drug concentration, probably indicating 

that most effects had indirect origin within spinal networks. To minimize network depression and 

to avoid concentrations likely to produce toxicity, these data suggested the use of 1 µM nicotine 

for further, even longer tests.    

Delayed effects by nicotine on spinal networks 

Fig. 3 shows responses recorded on the second experimental day after spinal cords had been 

treated on day 1 with 1 µM nicotine (4 h) followed by washout (see scheme in supplementary 

Fig. 1). Monosynaptic reflexes were largely depressed by comparison with sham preparations (P 

= 0.003, Student’s t-test) (Fig. 3 A, E). A similar effect was also detected when recording 

polysynaptic reflexes from the same preparations (P = 0.027, amplitude, Mann Whitney-test; P = 

0.029, area, Student’s t-test; sham vs N) (Fig. 3 B, F, G). We next tested trains of DR stimuli 

applied to a single DR to elicit cumulative depolarization with superimposed alternating VR 

oscillations reflecting the activation of the locomotor central pattern generator (Marchetti et al., 

2001). Fig 3 C, H-J shows that cumulative depolarization amplitude and area values were similar 

after nicotine pretreatment and retained their ability to generate oscillations. FL cycles induced 

by the standard method of co-application of NMDA and 5-HT to elicit alternating VR 
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oscillations (Kiehn, 2006) had slightly slower periodicity and smaller amplitude (P = 0.001, 

Student’s t-test) after prior day treatment with nicotine (Fig. 3 D, K). 

These data suggested that, despite extensive wash, nicotine had left a functional signature on the 

activity of spinal networks which were operative at near normal level only when subjected to 

strong, sustained stimulation (DR trains or NMDA + 5-HT). This realization raised the issue of 

whether nicotine could replicate its effects when reapplied on the second day or whether 

nAChRs might have been inactivated or lost. Supplemental Fig. 2 A, B shows that nicotine 

retained its depressant effect on polysynaptic reflexes (amplitude: P = 0.002, H(2) = 12.244, 

Kruskal-Wallis one way analysis of variance on ranks test; area: P = 0.001, F2,26 = 12.385, one 

way analysis of variance test). When compared to Fig. 1 A, B the action of nicotine was even 

stronger and was associated with a larger decrease in the area (P = 0.011, F2,21 = 5.714, one way 

analysis of variance test) of cumulative depolarization and associated oscillations (P = 0.013, 

H(2) = 8.636, Kruskal-Wallis one way analysis of variance on ranks test) (Supplemental Fig. 2 C, 

D). 

Fig. 4 shows that prior application of nicotine on day 1 did not significantly change cell 

populations within the lumbar spinal cord. Thus, as exemplified in Fig. 1 A for a section of the 

dorsal horn, good immunopositivity to NeuN was retained, an observation applicable to all three 

ROIs investigated (Dorsal: P = 0.001, t16 = –5.406; Central: P = 0.859, U = 43, Mann Whitney 

test; Ventral: P = 0.104, t16 = 1.726, respectively, sham vs nicotine, N) (Fig. 4 D). Similar data 

were obtained for SMI32 positive motoneurons (P = 0.001; t24 = –3.798, sham vs N) (Fig. B, E) 

and astroglia immunostained with S100 (Dorsal, P = 0.562; Central, P = 0.276; Ventral, P = 

0.265) or GFAP (Dorsal: P = 0.715; Central: P = 0.675; Ventral: P = 0.801, respectively, sham 

vs N) antibodies (Fig. 4 C, F, G). 

Neuroprotection by delayed application of nicotine 

The potential translation value of pharmacological treatment should, inter alia, include 

administration of the drug under test after the excitotoxic stimulus. Thus, as indicated in 

Supplemental Fig. 1, we applied kainate on day 1 followed by washout and immediate 

application of 1 µM nicotine for 4 h. Extensive washout was then performed with Krebs solution 
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for the next 24 h when testing commenced. Fig. 5 A-D shows sample record of mono-, 

polysynaptic responses, cumulative depolarization and chemically-induced fictive locomotion 24 

h after kainate alone or kainate followed by nicotine. While kainate consistently decreased all 

these responses (see control sham values in Fig. 3) in accordance with previous reports (Taccola 

et al., 2008; Mazzone et al., 2010), delayed application of nicotine attenuated the kainate-induced 

toxicity as depression of polysynaptic responses was less intense (amplitude: P = 0.002, U = 23; 

area: P = 0.014, U = 37, Mann Whitney-test, respectively; KA vs KA/N 4h) (Fig. 5 B, F, G), 

some recovery in cumulative depolarization (P = 0.005, t22 = –3.092) (Fig. 5 C, I, J) and 

oscillations (P = 0.001; U = 0, Mann Whitney-test) (Fig. 5 H) was detected, and small VR 

alternating cycles were present (amplitude, P = 0.001; t19 = –6.563; period, P = 0.001, U = 28, 

Mann Whitney-test) (Fig. 5 D, K). No change in monosynaptic responses was apparent (Fig. 5 A, 

E).  

Histological data validated the partial neuroprotection by the delayed application of nicotine as 

shown in Fig. 6. Thus, pyknosis was less frequent (P = 0.001, U = 108, Mann Whitney-test) (Fig. 

6 C), neuronal numbers were better preserved (P = 0.001, t16 = –11.612) especially in the dorsal 

ROI (Fig. 6 A, D), and more numerous motoneurons (P = 0.001, U = 3, Mann Whitney-test) 

were observed (Fig. 6 B, E). In line with our previous results, we found no significant damage by 

kainate to astroglia in the three ROIs and, therefore, no effect by subsequent application of 

nicotine (Supplemental Fig. 3, A, C, D).  

Advancing the timing of nicotine application to improve neuroprotection 

We wondered if better neuroprotection could be obtained by applying nicotine earlier, i.e. 

together with kainate (Supplemental Fig. 1). While this procedure would not confer much 

translational value to the data, we felt it would probably serve another purpose, namely to clarify 

if the intracellular pathways triggered by nicotine operate more slowly than the death pathways 

triggered by kainate. This approach has been employed with some success with the PARP-1 

inhibitor PJ34 (Nasrabady et al., 2011).  

Fig. 7 summarizes our observations with co-application of kainate and nicotine for 1 h, followed 

by 4 h nicotine and then washout with Krebs up to the next day. Thus, while monosynaptic 
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reflexes were similarly depressed by kainate alone or with the nicotine protocol (Fig. 7 A, E), 

improvement in polysynaptic reflexes was stronger when nicotine had been co-applied 

(amplitude: P = 0.001; area: P = 0.001, Mann Whitney-test, respectively; KA vs KA+N/N 4h) 

(Fig. 7 B, F, G). Likewise, the cumulative depolarization was larger (P = 0.001, U = 5, Mann 

Whitney-test) with the latter protocol (Fig. 7 C, H, I, J) and, in particular VR cycles evoked by 

NMDA plus 5HT emerged at slow periodicity (amplitude: *P = 0.012 and periodicity: P = 0.004, 

Mann Whitney-test) (Fig. 7 D, K).  These data suggested that network excitability strongly 

lowered by kainate was better preserved with this nicotine protocol. One functional test in 

support of this hypothesis was the demonstration that the spontaneous disinhibited bursting, 

arising after pharmacological block of inhibition and relying on network glutamatergic 

transmission (Bracci et al 1996), was characterized by significantly larger burst amplitude (P = 

0.027, Students t-test; KA vs KA+N/N 4h) (Fig. 8 A, B) when nicotine was co-applied even if 

the burst frequency remained unchanged (P = 0.356) (Fig. 8 C).   

While isolated preparations of the spinal cord offer the advantage of studying the integrated 

network output in terms of reflexes and fictive locomotion, they are not well suited to provide 

data on the distribution of bursting and their long-term sensitivity to kainate and/or nicotine. 

With the aim of studying long-term spontaneous bursting as an index of distributed network 

activity, we recorded Ca
2+

 transients from neurons in spinal slice cultures (Fabbro et al., 2007; 

Sibilla et al., 2009) as exemplified in Fig. 9 A. Fig. 9 A shows the spatial resolution of ventral 

neurons that could be simultaneously traced within the same field of view, with single cell 

resolution. At 22 DIV Ca
2+

 oscillations elicited during disinhibited bursting were typically very 

slow by comparison to electrophysiological bursts and detected over a wide area (Fig. 9 B, top 

left; see also Fabbro et al., 2007; Sibilla et al., 2009; Streit, 1993). By simultaneous recording 

from distinct neurons, it was clear that these Ca
2+

 oscillations were synchronous as evaluated 

with their cross-correlation factor even when the cells were spaced 300 µm apart (Fig. 9 A, B, 

E). Nicotine applied at 1 µM concentration for 4 h (in analogy to the protocol earlier reported; 

Supplemental Fig. 1) largely enhanced the frequency of bursting (P = 0.001, F3,19 = 38.639, 

Holm sidak-test) recorded the day after with preserved synchronicity (Fig. 9 B, C, E). This 

delayed effect of nicotine was accompanied by a significant decrease in the length of single 

transients (Fig. 9 D) (P = 0.002, H(3) = 15.009, Kruskal-Wallis one way analysis of variance on 
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ranks test). Kainate application was followed by a strong decrement in oscillatory activity and 

prolongation of Ca
2+

 transients, effects that were significantly and persistently reversed by 

nicotine that did not decrease their synchronicity (Fig. 9 B-D).  

Histochemical experiments with the isolated spinal cord preparation showed that early nicotine 

administration together with kainate followed by nicotine for 4 h strongly blocked pyknosis (Fig. 

10 A, C), and left the motoneuronal number nearly normal (P = 0.001, U = 3, Mann Whitney-

test, KA vs KA+N/N 4h) (B, E), while the neuronal number was significantly improved vs 

kainate treatment for all three ROI, especially in the case of dorsal horn (P = 0.001, t16 = –

14.761, Student’s t-test) (Fig. 10 D). With this protocol the number of neurons in the dorsal ROI 

was similar to the one observed when nicotine had been applied only after kainate (P = 0.705, t16 

= 0.385, Student’s t-test; KA/N 4h vs KA+N/N 4h) (see Fig. 6 D). The protocol with nicotine + 

kainate followed by nicotine conferred additional protection to neurons in central (P = 0.001, t16 

= - 6.036, Student’s t-test; KA/N 4h vs KA+N/N 4h) and ventral (P = 0.003, U = 75, Mann 

Whitney-test, KA/N 4h vs KA+N/N 4h) ROI when compared (see Fig. 6 D) with the delayed 

nicotine application after kainate. Conversely, no difference was observed in 

immunofluorescence intensity for S100 and GFAP signals between the protocols of kainate 

followed by nicotine and kainate+nicotine followed by nicotine (Supplemental Fig. 3 A-C).  

Changes in spinal reflexes and fictive locomotion by nAChR antagonists 

We next investigated whether application of nAChR antagonists might induce delayed changes 

in network function recorded on the second day in vitro. Fig 11 A, B shows sample averaged 

traces of monosynaptic and polysynaptic reflexes recorded 24 h after earlier application of 

antagonists alone (for 4 h). When compared to sham preparations at 24 h, monosynaptic reflexes 

were depressed after DHβE or MLA or DHβE+MLA (P = 0.045, F3,26 = 3.314; Holm-Sidak-test) 

(Fig. 11 A, E). Vice-versa, polysynaptic reflexes, while retaining peak amplitude (P = 0.281, 

F3,22 = 1.373; one way analysis of variance test) similar to sham, were strongly enhanced in area 

(P = 0.043, U = 8; P = 0.043, U = 8; P = 0.03, t12 = –2.469; D vs sham; M vs sham; D+M vs 

sham, respectively) (Fig. 11 B, F, G). The amplitude and area of cumulative depolarization 

evoked by DR trains were not significantly increased (Fig. 11 C, I, J), while the number of 

superimposed oscillations were reduced (P = 0.043, H3 = 8.416; Kruskal-Wallis one way analysis 
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of variance on ranks test) (Fig. 11 C, H). Chemically-induced fictive locomotion was present on 

the second day after antagonist application (Fig. 11 D), although the cycle amplitude was 

depressed with unchanged periodicity when both antagonists were applied (P = 0.006, F3,26 = 

5.279, one way analysis of variance test, sham vs D; P = 0.009, H3 = 11.580, sham vs M, 

Kruskal-Wallis one way analysis of variance on ranks test) (Fig. 11 K).  

Can antagonists change the severity of KA toxicity? 

We next examined if DHβE or MLA or DHβE+MLA application together with kainate for 1 h 

could modify the outcome of network activity caused by the excitotoxic challenge. No antagonist 

(alone or in combination) altered the severe decrease in monosynaptic (Fig. 12 A, E) and 

polysynaptic reflexes (Fig. 12 B, F, G) associated with kainate toxicity. Cumulative 

depolarization remained largely depressed in amplitude and area values (Fig. 12 C, H, I) with 

significant change in amplitude of cumulative depolarization (H) in case of DHβE+MLA when 

co-applied with KA in comparison to KA alone (P = 0.042, U = 10; Mann Whitney test). 

Interestingly, chemically-induced VR patterns were, however, observed (Fig. 12 D, J), even 

though with smaller amplitude in comparison to kainate alone (P = 0.024, F3,17 = 4.296; one way 

analysis of variance test). (Fig. 12 D, J) and of slow periodicity. Interestingly, co-application of 

kainate with DHβE and MLA improved neuronal survival in the dorsal and central ROI with no 

improvement in the ventral ROI (Dorsal: P = 0.001, F2,28 = 35.058, Holm Sidak test; Central: P = 

0.001, H(2) = 20.031, Kruskal Wallis test; Ventral: P = 0.001, H (2) = 17.757, Kruskal Wallis test) 

(Supplemental Fig. 4).   

nAChR antagonists and neuroprotection by nicotine 

Former observations indicated that the most useful neuroprotective protocol with nicotine was to 

apply this alkaloid together with kainate and maintained it for 4 h during the kainate washout. To 

find out if this action by nicotine was dependent on nAChR activation, we also co-applied 

nAChR antagonists either in combination or as single drug application (Supplemental Fig. 1).  

Fig. 13 summarizes data with such protocols. Thus, monosynaptic reflexes remained thoroughly 

depressed (P = 0.215, F3,22 = 1.631; one way analysis of variance test) (Fig. 13 A), while the 

protective effect by nicotine on polysynaptic reflex amplitude and area was antagonized by 
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DHβE alone (P = 0.013, F3,22 = 4.653 and P = 0.05, F3,23 = 3.087, respectively; one way analysis 

of variance test) (Fig. 13 B, C). The cumulative depolarization amplitude (improved by nicotine 

plus kainate followed by nicotine vs kainate alone) was significantly depressed by nAChR 

antagonist DHβE when co-applied with KA+N/N (P = 0.047, t12 = 2.212, Student’s t-test; 

KA+N/N 4 h vs KA+D+N/D+N 4 h), the protective role of nicotine on the size of the area was 

remained lost with DHβE application (P = 0.044, t12 = 2.248, Student’s t-test; KA+N/N 4h vs 

KA+D+N/D+N 4h)  (Fig. 13 D, E), and oscillations remained absent. On the other hand, the 

moderate recovery in fictive locomotion evoked by nicotine was maintained in terms of cycle 

amplitude and periodicity when the antagonists were co-applied together or in isolation (P = 

0.684. F3,23 = 0.504 and P = 0.746, F3,23 = 0.4, respectively; one way analysis of variance test) 

(Fig. 13 F). 

We next investigated how nAChR antagonists might affect the histological neuroprotection 

elicited by nicotine. Fig. 14 shows average distribution of neuronal damage in three ROI (see 

sample image of dorsal ROI in A). Thus, in comparison with data with kainate+nicotine followed 

by nicotine, a significant deterioration in the number of NeuN-positive neurons was detected 

when the antagonists were applied alone or in combination (Dorsal: P = 0.001, t16 = 4.660; 

Central: P = 0.001, U = 0; Ventral: P = 0.001, U = 0.5; KA+N/N 4 h vs KA+D+N/D+N 4 h), 

(Dorsal: P = 0.001, t16 = 8.649; Central: P = 0.003, t16 = 3.541; Ventral: P = 0.001, U = 0;  

KA+N/N 4 h vs KA+M+N/M+N 4 h), (Dorsal: P = 0.001, U = 0; Central: P = 0.001, t16 = 4.360; 

Ventral: P = 0.001, U = 0;  KA+N/N 4 h vs KA+D+M+N/D+M+N 4 h) (Fig. 14 C). This 

observation was further validated by counting the number of motoneurons (Fig. 14 B, D) as their 

protection by nicotine was largely impaired by DHβE, while it was left unchanged by MLA (P = 

0.001, H(3) = 35.347; Kruskal-Wallis one way analysis of variance on ranks test).  

Discussion  

The principal finding of the present report is the demonstration that nicotine could protect spinal 

networks from kainate-evoked excitotoxicity with good histological preservation and moderate 

recovery in circuitry activities including fictive locomotion. The effects of nicotine were 

dependent on nAChRs that are widely expressed in the spinal cord. These data, therefore, 
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indicate nicotine as a pharmacological agent that, at least in an in vitro model of spinal cord 

injury, was beneficial to limit cell death and related dysfunction. 

nAChRs in the mammalian spinal cord 

In the central nervous system (CNS), cholinergic transmission acts via nAChRs to modulate cell 

excitability and neurotransmitter release with control over physiological functions like cognition, 

pain, anxiety, fatigue, reward, learning, memory (Changeux and Edelstein, 2001; Hogg et al., 

2003; Christie et al., 2008). CNS nAChRs mainly belong to α7 nAChRs and α4β2 subtypes 

(Whiting & Lindstrom, 1986a,b; Whiting & Lindstrom, 1987).   

Although various nAChR subunits have been identified in the rat spinal cord (Wada et al., 1989, 

1990; Khan et al., 2003), α4β2 and α7 are the prominent receptor assemblies (Hsu et al., 1997; 

Berg & Conroy, 2002). Furthermore, α4β2 and α7 receptors play a role in nAChR mediated 

neuroprotection against excitotoxicity reported with rat dissociated spinal cultures (Nakamizo et 

al., 2005; Shimohama, 2009) and spinal neurons of chick embryos (Roth & Berg, 2003). Thus, 

antagonists for α4β2 and α7 receptors, DHβE and MLA respectively, were used in the present 

excitotoxicity model.  

As the physiological role of spinal nAChRs is complex, it is no surprise that nicotine application 

can activate excitatory as well as inhibitory neurons (Cordero-Erausquin et al., 2004). Within the 

dorsal horn, nicotinic cholinergic transmission can control, in an inhibitory fashion, nociceptive 

inputs (Matsumoto et al., 2007). Yet at network level, nAChR synaptic activity can depress 

GABA (Genzen & McGehee, 2005) and glycine (Kiyosawa et al., 2001) mediated inhibition, 

thus leading to disinhibition. The latter phenomenon may account for the present observation that 

co-application of DHβE and MLA enhanced polysynaptic reflexes. nAChR antagonists per se, 

however, decreased monosynaptic responses, perhaps implying that presynaptic nAChRs were 

regulating fast synaptic transmission (Khan et al., 2003) from primary afferent fibres whose 

neurotransmitter is glutamate (Pook et al., 1992; Kerkut & Bagust, 1995). Of course, nicotine is 

expected to rapidly activate nAChRs and desensitize them (Khiroug et al., 1997, Sokolova et al., 

2005), making difficult to dissect out, over an extended experimental protocol, which of these 

processes was the principal contributor to the delayed responses to nicotine. The present study, 
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therefore, reports the delayed histological and functional outcome of nicotine application rather 

than its complex mechanisms. 

Nicotine for experimental neuroprotection 

Although previous preclinical studies have indicated that nicotine can protect neurons against 

insults like excitotoxicity, or oxygen/glucose deprivation (Gahring et al., 2003; More and Dong, 

2016), the present investigation was prompted by the recent observation of nicotine protection 

against excitotoxicity applied to rat brainstem motoneurons (Corsini et al., 2016, 2017). There 

was, however, no report of similar effects on the rat spinal cord, an issue that was explored by 

using an in vitro model of spinal cord injury fully validated in our laboratory. Although the 

model relies on a neonatal spinal cord preparation (or organotypic slice preparations), it should 

be borne in mind that acute spinal injuries are frequent in infants with profound consequences in 

terms of disability (Betz e al., 2004; Parent et al., 2011). The in vitro model based on 1 h 

application of kainate to evoke excitotoxicity followed by extensive wash with oxygenated Krebs 

attempts to mimic clinical settings when an acute spinal injury is usually treated after 1-2 h in 

life-saving intensive care to arrest the primary cause of damage. Furthermore, as the secondary 

injury develops slowly over a matter of hours through complex intracellular metabolic pathways 

(Oyinbo, 2011; Zhang et al., 2012), our model offers the opportunity to explore the potential for 

neuroprotection by drugs applied during/after the injury and to follow up the functional and 

histological evolution during the first 24 h. The present study required a lengthy phase of 

protocol design because, in addition to the choice of nicotine concentration, it was necessary to 

identify delayed effects by nicotine itself and the timing of nicotine application. This led us to 

testing various protocols with nicotine to be applied late or during the excitotoxic stimulation. 

Early and late effects of nicotine on spinal networks 

In the present experiments the motoneuron depolarization produced by bath-applied nicotine (at 

µM concentrations) was modest by comparison to the one by kainate, indicating that it probably 

originated within the network (Blake et al., 1987) and that desensitization was likely curtailing it. 

The overall impact of nicotine on spinal reflexes was a depressant one with slow recovery on 

washout. While the multiple expression of nAChRs and their kinetics on distinct neurons can be 
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probably responsible for this phenomenon, the present data clearly showed that applying nicotine 

for 4 h (a time that corresponds to the strong activation of cell death pathways in the excitotoxic 

protocol; Kuzhandaivel et al., 2010) was tolerated and reversible even though some depression 

of mono and polysynaptic reflexes was apparent the day after. Nonetheless, application of 

nicotine on the first experimental day led to delayed increased network excitability observed as 

widespread Ca
2+

 transients, indicating that there was no generalized network depression. 

Following earlier treatment with nicotine, spinal cords in vitro did retain their ability to express 

fictive locomotor patterns elicited by DR stimulation or neurochemicals like NMDA plus 5HT. 

In keeping with these results, neurons and motoneurons were histologically preserved, even 

better than in sham conditions perhaps because nicotine had delayed the deterioration of 

preparations maintained in vitro for sustained time.  

The mechanisms underlying effects by nicotine are difficult to be resolved with the present 

preparation because we measured network responses (which by their nature are nonlinear and 

integrated) and neuronal numbers that provide only an endpoint for the neurotoxic phenomenon 

24 h later. Delayed network hyperactivity evoked by nicotine was associated with decreased 

reflexes perhaps because of facilitation of inhibitory circuits and/or persistent desensitization of 

excitatory nAChRs. One further target for nicotine might have been mitochondrial nAChRs that, 

although not mediating cationic fluxes, are important for the correct functioning of cell energy 

metabolism. Thus, the present protocols were not designed to clarify the molecular processes 

responsible for the nicotine action (a subject for future work) rather to delineate a scenario to 

achieve histological and functional neuroprotection. 

Nicotine and excitotoxicity 

Kainate (50 µM) is a validated agent to elicit irreversible degeneration in the rat spinal cord in 

vitro (Taccola et al., 2010) and in vivo (Sun et al., 2006). Although at least 50 % neurons survive 

the initial insult, severe inhibition of reflexes and arrest of fictive locomotion ensue (Mazzone et 

al., 2010). When the 1 h application of kainate was followed by 4 h application of nicotine, 

significant improvement in polysynaptic reflexes was observed together with some recovery in 

oscillatory VR patterns induced by DR stimuli or NMDA plus 5HT. Histological preservation of 

neurons, including motoneurons, provided the structural substrate for functional protection. We 
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further attempted to improve nicotine neuroprotection by applying nicotine together with kainate. 

This protocol has been used before with our model on the assumption that drug access to 

neuronal structures located deeply within the spinal cord, like for example lamina X neurons 

believed to be important for the central pattern generator of locomotion (Kiehn, 2006; 2016), 

may be too slow to block the wave of excitotoxic depolarization spreading through spinal 

segments (Taccola et al., 2008, 2010). Indeed, when nicotine was co-applied with kainate, better 

functional and structural neuroprotection was detected. 

Since early treatment with nicotine could restore at least in part the amplitude and frequency of 

disinhibited bursts or Ca
2+

 transients, these results indicate that certain elementary circuits 

relying on glutamatergic transmission for intrinsic rhythmicity (Bracci et al., 1996b) had been 

protected by nicotine and retained their connectivity because synchronicity was preserved even 

over a substantial distance. It was of particular interest to note that motoneuron numbers were 

rather close to control and that preservation of neurons had been attained throughout the three 

ROI. In this scenario the depression of monosynaptic reflexes was the only phenomenon not 

reversed by nicotine. While extracellular recording is not well suited to demonstrate the 

monosynaptic nature of excitatory transmission, former experiments have demonstrated that this 

protocol can actually generate monosynaptic excitatory potentials on motoneurons (Ostroumov 

et al., 2007). Hence, it seems likely that, despite near normalization of motoneuron numbers by 

nicotine, their ability to respond to weak inputs had remained impaired after kainate application. 

nAChR antagonists, nicotine and excitotoxicity 

The outcome of experiments based on co-application of antagonists with kainate (and nicotine) 

was complicated by the fact that, in the isolated spinal cord, effects due to administration of 

multiple drugs depend on individual drug kinetics, targets and intra-tissue distribution which are 

unavoidably dissimilar. Nonetheless, the broad depression of spinal responses by kainate was not 

arrested by either nAChR antagonist with only one exception, namely a partial preservation of 

chemically-induced fictive locomotion. We hypothesize that kainate-mediated excitation had led 

to release of endogenous ACh and that this phenomenon partly contributed to excitotoxicity at 

the level of the central pattern generator network. This suggestion is compatible with the modest 

protection by DHβE and it alludes to the possibility that at least part of the neuroprotection 
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exerted by nicotine itself was caused by its dual action on nAChRs, namely rapid activation and 

desensitization. In the presence of the antagonists and nicotine, the protection by nicotine toward 

fictive locomotion remained while the number of surviving neurons was intermediate between 

kainate toxicity and full protection. Furthermore, any protection of spinal reflexes was inhibited 

by the antagonists (with DHβE more efficacious than MLA).   

We have formerly proposed that the locomotor central pattern generator operates according to 

the principle of “minimal membership”, i.e. a critical number of neurons below which no 

function is generated (Kuzhandaivel et al., 2011). Hence, whenever nAChRs were inhibited by 

antagonists or nicotine-dependent desensitization, we might surmise that locomotor network 

membership remained just above threshold fictive locomotion (elicited by NMDA plus 5HT 

acting broadly on spinal neurons). Conversely, since electrically-evoked mono and polysynaptic 

reflexes depended on a lower number of activated neurons, in this instance losses induced by 

kainate had consistently larger impact on electrophysiological responses.       

Conclusions 

Attempts to obtain early spinal neuroprotection with pharmacological agents have been reported 

earlier with mixed results (Lee et al., 2003; Bagriyanik et al., 2008). Thus, among glutamate 

release inhibitors, riluzole is the only present-day treatment for motoneuron disease with a rather 

limited lifespan of clinical efficacy (Wokke, 1996; Cheah et al., 2010). In our experimental 

model, this drug cannot effectively contrast the excitotoxicity induced by kainate (Sámano et al., 

2012). Another controversial drug is the glucocorticoid methylprednisolone sodium succinate 

(MPSS) that, in our tests, provides limited neuroprotection to the white matter only (Sámano et 

al., 2016). The poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor PJ34 inhibits a non-

apoptotic cell death process, yet it does not confer full functional protection to locomotor 

networks in vitro (Nasrabady et al., 2011). A more favourable outcome is observed with delayed 

application of the volatile anaesthethic methoxyflurane (Shabbir et al., 2015), and less efficiently 

with the i.v. anaesthetic propofol (Kaur et al., 2016). Hence, the present data suggest that 

modulation of spinal nAChRs is a potentially useful new tool to prevent neurodegeneration and 

should prompt further studies to devise novel pharmacological approaches in vitro and in vivo to 

limit the damage associated with spinal cord injury. 
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Figure Legends 

Fig. 1. Dose dependent effect of nicotine on day 1 on the isolated spinal cord. (A) Sample 

records of polysynaptic reflexes during application of 10 µM (upper panel) and 1 µM (lower 

panel) nicotine (N) for 4 h followed by 1 h wash with standard Krebs solution. Plots of changes 

in polysynaptic reflex area (B) and amplitude (C) with respect to control (at 0 min) by 

application of different concentrations (10, 2, 1, 0.5; µM; n = 3, 4, 5, 3 respectively) of nicotine 

for 4 h (240 min) followed by 1 h wash. Note decline in polysynaptic area and amplitude with 10 

µM (***P = 0.001, U = 1 and *P = 0.017, U = 10, respectively; Mann Whitney-test; Control vs 

N 20 min) and 2 µM (**P = 0.007, t12 = 3.278 and P = 0.006, t12 = 3.314, respectively; Control 

vs N 20 min) of nicotine applied for 20 min, whereas there was no significant change in 

polysynaptic area and amplitude with 1 and 0.5 µM nicotine after 20 min of application (P = 

0.089, U = 27; P = 0.058, t22 = 2.004 and P = 0.838, U = 42; P = 0.775, U = 49; Mann Whitney-

test, respectively; Control vs N 20 min). No recovery in reflex area and amplitude during wash 

after 10 and 2 µM nicotine (P = 0.075, t14 = 1.921; P = 0.218, t14 = –1.291 and P = 0.059, U = 39; 

0.563, t12 = 0.595, respectively; Control vs Wash). Reflex area was significantly recovered 

during wash after 1 µM nicotine (4h) (P = 0.027, U = 23; Mann Whitney-test; Control vs wash).  
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Fig. 2. VR depolarization evoked by kainate (KA) or nicotine administration. (A) Sample record 

of depolarization induced by 50 µM KA or nicotine (10 and 1 µM). (B) Histograms depict 

maximum depolarization induced by KA (n = 10) or nicotine (10, 2, 1, 0.5 µM; n = 5, 4, 6, 4, 

respectively). No significant depolarization was evoked by 2, 1 and 0.5 µM nicotine (P = 0.343, 

t8 = –1.009, 2N vs 1N; P = 0.432, t6 = 0.842, 2N vs 0.5N; P = 0.749, t8 = –0.332; Student’s t-

test). However, 10 µM nicotine induced a signficant depolarization in comparison to 2, 1 and 0.5 

µM nicotine (***P = 0.001, t7 = –5.211, 10 N vs 2 N; **P = 0.005, t9 = 3.738, 10 N vs 1 N; P = 

0.005, t7 = –4.033, 10 N vs 0.5 N; µM; Student’s t-test).  

Fig. 3. Changes in DR stimulation evoked synaptic transmission and fictive locomotion after 24 

(day 2) in vitro. (A-D) Representative records of monoynaptic (A), polysynaptic (B) reflexes, 

DR induced (C) and NMDA+5HT evoked (D) fictive locomotion in sham and 1 µM nicotine (N) 

solution (applied for 4 h on the preceding day). (E-G) Bar graphs showing significant depression 

of monosynaptic (**P = 0.003, t20 = 3.334; Student’s t-test) (E) and polysynaptic reflex 

amplitude (F) and area (G) (*P = 0.027, U = 15, Mann Whitney-test; P = 0.029, t16 = 2.391, 

respectively; sham vs N; n = 10, sham; n = 7 for nicotine). (H-J) Histograms representing 

number of oscillations induced by DR stimulus trains in spinal cords treated with nicotine for 4 h 

(P = 0.013, U = 87.5, Mann Whitney-test; sham vs N). No change in cumulative depolarization 

and area of fictive locomotion was observed (P = 0.343, t19 = 0.973; P = 0.993, t19 = 0.00936, 

respectively; sham vs N). (K) Plot showing significant decline in amplitude (***P = 0.001, t15 = 

5.410; sham vs N) and with no increase in periodicity (P = 0.430, t15 = –0.811, respectively; 

sham vs N) of chemically induced fictive locomotion by nicotine application for 4 h. 

Fig. 4. Changes in neurons (identified with NeuN positivity, red), and motoneuron number 

(SMI32 staining, green) and immunofluorescence intensity of glia (immunolabeled with S100, 

green or GFAP, red) induced by previous (24 h earlier) 1 µM nicotine (4 h) treatment. DAPI 

(blue) was used as cell nuclear marker. (A-C) Histochemical examples of dorsal horn neurons 

(A), motoneurons (B), and dorsal horn glia (C). (D) Bar graphs quantify increased number of 

neurons in the dorsal horn after application of N (4 h) (***P = 0.001, t16 = –5.406; sham vs N), 

whereas no significant change was observed in central and ventral horn (P = 0.859, U = 43, 

Mann Whitney test; P = 0.104, t16 = 1.726, respectively, sham vs N). (E) Histograms illustrate 
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increase in number of motoneurons after N  treatment (4 h) (P = 0.001; t24 = –3.798; sham vs N). 

(F, G) Bar graphs show no change in immunofluorescence intensity (AU) of glia after N (4h) 

treatment in all three ROI (GFAP- D: P = 0.715, t8 = –0.379; C: P = 0.675, t8 = –0.435; V: P = 

0.801, t8 = –0.260 and S100- D: P = 0.562, t9 = 0.601; C: P = 0.276, t9 = 1.159; V: P = 0.265, t8 

= 1.199, respectively, sham vs N) (n = 3-6 spinal cords; 3-10 sections/preparation). Scale bar = 

100 µm. 

Fig. 5. Reflexes and fictive locomotion recorded 24 h in vitro after KA or KA followed by 

nicotine for 4 h (KA/N 4 h). (A-D) Sample records of mono-, polysynaptic reflexes, electrically 

and chemically induced fictive locomotion after application of KA (n = 8) or KA/N 4 h (n = 8). 

(E) shows no change in monosynaptic responses (P = 0.874, U = 70, Mann Whitney-test), 

whereas a measurable rise in polysynaptic reflex amplitude and area (F,G) was detected after KA 

followed by N (**P = 0.002, U = 23; *P = 0.014, U = 37, Mann Whitney-test, respectively; KA 

vs KA/N 4h). (H-K) Significant increase in electrically (H-J) (number of oscillations, ***P = 

0.001; U = 0, Mann Whitney-test; cumulative depolarization, P = 0.005, t22 = –3.092) and 

chemically induced (K) (amplitude, P = 0.001; t19 = –6.563; period, P = 0.001, U = 28, Mann 

Whitney-test) fictive locomotion. There was no significant change in the area of DR evoked 

cumulative depolarization (P = 0.081, U = 35) after N application to KA treated spinal cords. 

Fig. 6. Histochemical damage 24 h after KA (1 h) or KA followed by nicotine (N, 4 h).  (A, B) 

Micrographs depicting examples of high pyknosis (A, staining with DAPI, blue), low neuronal 

(A, NeuN, red) and motoneuronal numbers (B, green) after KA application: this effect was 

prevented by KA/N 4h (DAPI- Dorsal: ***P = 0.001, U = 108; Central: P = 0.001, U = 0; 

Ventral: P = 0.001, U = 189, Mann Whitney-test;  NeuN- Dorsal: P = 0.001, t16 = –11.612; 

Central: **P = 0.01, t16 =  –2.944; Ventral: *P = 0.05, t16 =  –2.05; SMI32- P = 0.001, U = 3; 

comparisons were between KA vs KA/N 4h), n = 3-5 spinal cords; 3-10 sections/preparation. 

Scale bar = 100 µm. 

Fig. 7. Improved neuroprotection recorded at day 2 in vitro after former pretreatment with 

nicotine and KA (n = 8). Sample records representing changes in reflex activity and fictive 

locomotor patterns by excitotoxicity, effects prevented by co-application of nicotine with kainate 

followed by nicotine alone for further 4 h (KA+N/N 4h, n =8). (E-G) Histograms illustrating 
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recovery in polysynaptic reflex amplitude (F) and area (G) (***P = 0.001, U = 3 and P = 0.001, 

U = 10, Mann Whitney-test, respectively; KA vs KA+N/N 4h), despite no improvement in 

monosynaptic reflex activity (P = 0.864, U = 80, Mann Whitey-test) (E). (H-K) Bar plots show 

presence of DR evoked (number of oscillations: P = 0.001, U = 0; cumulative depolarization: P 

= 0.001, U = 5 and area: P = 0.001, U = 11, Mann Whitney-test) and chemically evoked fictive 

locomotion (amplitude: *P = 0.012, U = 24 and periodicity: **P = 0.004, U = 32, Mann 

Whitney-test). 

Fig. 8. Effect of co-application of nicotine with KA on disinhibited bursts recorded on day 2 in 

vitro. (A) Representative records obtained after KA (n = 8) or KA+N/N 4h (n = 8) application on 

the day before. (B, C) Histograms depicting raised burst amplitude after KA+N/N 4h treatment 

(*P = 0.027, t14 = –2.794; KA vs KA+N/N 4 h) with no change in the number of bursts (P = 

0.356, t14 = 0.989).  

Fig. 9. Changes in Ca
2+

 transients evoked by application of strychnine and bicuculline (Sham, n 

= 6; nicotine, N, n = 4; kainate, KA, n = 6 and KA+N/N 4h, n = 4; n is the number of slices, 

where 6-12 neurons analysed/slice) on day 2 in organotypic spinal cord slices in vitro. (A, B) In 

A snapshot of representative field of ventral horn neurons. Numbers indicate two representative 

cells whose Ca
2+

 transients are shown in B. Scale bar = 100 µm. In B representative Ca
2+ 

events 

recorded in Sham, Nicotine, Kainate and KA+N/N 4h conditions (two sample neurons were 

selected from the same field). (C-E) KA induced a significant decrease in bursts number (C) 

(**P = 0.007, t10 = 3.353, sham vs KA; ***P = 0.001, t8 = 7.822, N vs KA) and increased single 

burst duration (D) (*P = 0.03, U = 3, sham vs KA; P = 0.016, U = 20, N vs KA; Mann Whitney-

test) without affecting cross-correlation factor (CCF) (E): this phenomenon was reversed by 

applying nicotine with KA(burst number: P = 0.001, t8 = –10.055; burst duration: P = 0.016, U = 

20, KA vs KA+N/N, Mann Whitney-test, respectively). 

Fig. 10. Histological neuroprotection induced by co-application of nicotine with KA. (A, C, D) 

Example (A) and bar graphs show large reduction in excitotoxicity by co-application of nicotine 

with KA followed by nicotine for 4 h, and observed 24 h later. Note minimal pyknosis (A, C) 

when staining with DAPI (blue)  (Dorsal: ***P = 0.001, U = 108; Central = P = 0.001, U = 0; 

Ventral: P = 0.001, U = 189, Mann Whitney-test; KA vs KA+N/N 4h). (A, D) shows good 
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preservation of neurons stained with NeuN antibody (red) (Dorsal: P = 0.001, t16 = –14.761; 

Central: P = 0.001, t16 = –7.122; Ventral: P = 0.001, t16 = –7.445) in all three ROI. (B, E) 

Sample images (B) and histograms (E) illustrate significant survival of motoneurons (tsained 

with SMI32; green) in ventral horn of spinal cord (P = 0.001, U = 3, Mann Whitney-test, KA vs 

KA+N/N 4h). Scale bar = 100 µm, n = 3-5 spinal cords; 3-10 sections/preparation. 

Fig. 11. Effect of nAChR antagonists on VR reflexes and fictive locomotion after 24 h in vitro. 

(A-D) Representative records of alterations in reflexes (A, B) and fictive locomotion (C, D) 

produced by 4 h co-application of DHβE (10 µM, n = 5) and MLA (10 nM, n = 5) in comparison 

to sham. (A, E) DHβE, MLA or DHβE+MLA (n = 4) application depressed monosynaptic reflex 

which was significant with DHβE alone (*P = 0.035, t16 = 2.304, DHβE vs sham). (B, F, G) The 

polysynaptic area (G) has increased (P = 0.043, U = 8; P = 0.043, U = 8; P = 0.03, t12 = –2.469; 

D vs sham; M vs sham; D+M vs sham, respectively) with no significant change in amplitude (F) 

in comparison to sham (n = 13). (C, H-J) The number of oscillations (C, H) during electrically 

induced fictive locomotion was reduced by DHβE+MLA co-application in comparison to sham 

(**P = 0.006, U = 45.5; Mann Whitney-test, DHβE+MLA vs sham), with no significant change 

in the area and amplitude of cumulative depolarization. (D, K) The cycle amplitude of 

chemically induced fictive locomotion was significantly depressed in MLA and DHβE+MLA 

treated preparations (P = 0.02, t16 = 2.590; P = 0.004, t15 = 3.411, respectively, MLA vs sham, 

DHβE+MLA vs sham) while the periodicity was increased in MLA treated spinal cords (P = 

0.001, t16 = -6.696, MLA vs sham).  

Fig. 12. Effect of application of nAChR antagonists on spinal cord preparations studied in vitro 

on day 2 after kainate application. (A-D) Sample recordings of reflex responses (A, B) and 

fictive locomotor rhythms (C, D) following co-application of DHβE+MLA (1 h) together with 

KA or of KA alone. (E-J) Histograms representing no change in monosynaptic (E), and 

polysynaptic (F, G) reflexes and DR evoked fictive locomotion (H-J) in KA+D (n = 5), KA+M 

(n = 6) and KA+D+M (n = 4) treated preparations in comparison to KA (n = 8) alone. Note 

significantly larger amplitude of cumulative depolarization with KA+D+M treatment vs KA 

alone (*P = 0.042, U = 10; Mann Whitney test). (D, J) emergence of chemically induced fictive 

locomotor rhythms the day after application of antagonists with KA (cycle amplitude: ***P = 
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0.024, F3,17 = 4.296; one way analysis of variance test). There was no significant difference in 

periodicity among various treatments while no cycles appeared after KA alone (D, J).  

Fig. 13. Effects of nAChR antagonists on neuroprotection evoked by nicotine on spinal cords 

after 24 in vitro. (A-C) Despite no variation in monosynaptic responses, DHβE (4 h) depressed 

amplitude of polysynaptic reflexes when co-applied with nicotine+KA (*P = 0.019, t11 = 2.756, 

KA+N/N 4 h vs KA+D+N/D+N 4 h). Likewise, the combination of DHβE+MLA suppressed 

nicotine evoked neuroprotection in terms of polysynaptic amplitude (P = 0.05, t9 = 2.203, 

KA+N/N 4 h, vs KA+D+M+N/D+M+N 4 h). MLA alone could not prevent the effect of 

nicotine+KA. (C) Significant change in reflex area was observed with DHβE was applied with 

nicotine+KA with no significant change with combination of DHβE+MLA (*P = 0.049, t12 = 

2.190, KA+N/N 4h vs KA+D+N/D+N 4 h; P = 0.136, t9 = 1.635, KA+N/N 4h vs 

KA+D+M+N/D+M+N 4 h). (D, E)  In the presence of KA+nicotine, DHβE (4h) alone 

significantly reduced the amplitude and area (E) (P = 0.047, t12 = 2.212 and P = 0.044, t12 = 

2.248, respectively; KA+N/N 4h vs KA+D+N/D+N 4h) of cumulative depolarization (that did 

not generate oscillations). (K) Chemically induced fictive locomotor patterns were observed in 

all preparations without any significant difference (amplitude: P = 0.684. F3,23 = 0.504; Period: P 

= 0.746, F3,23 = 0.4; one way analysis of variance test). n = 8, 6, 6, 4; KA+N/N 4 h, 

KA+D+N/D+N 4h, KA+M+N/M+N 4h, KA+D+M+N/D+M+N 4 h, respectively. 

Fig. 14. Histological damage evoked by co-application of nAChR antagonists with KA and 

nicotine. (A, C) Co-application of DHβE and MLA with KA+N/N 4 h treatment exaggerated the 

neuronal loss detected with NeuN staining (red) (D: ***P = 0.001, F3,36 = 20.527; C: P = 0.001, 

F3,35 = 32.380; V: P = 0.001, H(3) = 29.851; one way analysis of variance test; KA+N/N 4 h vs 

KA+D+N/D+N 4 h; KA+N/N 4 h vs KA+M+N/M+N 4 h; KA+N/N 4 h vs 

KA+D+M+N/D+M+N 4 h). (B, D) DHβE (4 h) and DHβE+MLA when co-applied with 

KA+N/N 4h enhanced motoneuronal loss detected with SMI32 staining (green) (P = 0.001, t29 = 

4.736; *P = 0.028, t28 = –2.314; P = 0.001, t28 = 6.197, respectively; KA+N/N 4 h vs 

KA+D+N/D+N 4 h; KA+N/N 4 h vs KA+D+M+N/D+M+N 4 h), whereas MLA co-application 

with KA+N/N 4h did not change the effect of KA+nicotine (D). Scale bar = 100 µm, n = 3-5 

spinal cords; 3-10 sections/preparation. 
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Supplemental Fig. 1. Schematic representation of experimental procedures used. (A-I) 
Diagram of different protocols used for drug administration where kainate (KA) was the 
excitotoxic stimulus and nicotine (1 µM) was applied for 4 h. Two nAChR antagonists, 
DHβE and MLA alone or in combination (DHβE+MLA) were used for 4 h. 
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Supplemental Fig. 2. Changes in polysynaptic reflexes and electrically evoked fictive 

locomotion evoked by 1 µM nicotine reapplied on the second day in vitro after first 

application of nicotine (4 h) on the previous day. N0 indicates response immediately prior to 

second application of nicotine while sham indicates naïve preparations.(A, C) Sample records 

of changes in polysynaptic responses (A) and DR evoked fictive locomotion (C) by re-

applying nicotine on day 2 for 15 min. (B) Bar graphs show further decrease in polysynaptic 

reflex amplitude and area by re-application of nicotine for 15 min (n = 4) in comparison to 

sham (n = 9) (**P = 0.002, U = 68; ***P = 0.001, t16 = 4.949, respectively ; sham vs N 15 

min) and to nicotine 4 h treated spinal cords on day 1 (*P = 0.012, t14 = 2.877; P = 0.030, U = 

59, respectively; N 0 min vs N 15 min). Fig. D shows depression in number of oscillations (P 

= 0.019, U = 42, sham vs N 15 min), cumulative depolarization amplitude (P = 0.041, t13 = 

2.274, sham vs N 15 min) and area (P = 0.007, U = 36, sham vs N 15 min; P = 0.039, t11 = 

2.345, N 0 min vs N 15 min) of DR evoked fictive locomotion. 
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Supplemental Fig. 3. (A-C) No significant change in immunofluorescence intensity (AU) of 

astrocytes (green; S100 staining) and general glia (red; GFAP staining) by KA together with 

or followed by nicotine for 4 h (KA/N 4 h and KA+N/N 4 h, respectively). n = 3-6 spinal 

cords; 3-10 sections/preparation. Scale bar = 100 µm. 
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Supplemental Fig. 4. Example (A) of dorsal horns showing neurons (stained with NeuN, 

red) and cells (stained with DAPI, blue) 24 h after application of KA or KA plus nAChR 

antagonists.  Histograms (B) show average neuronal numbers calculated after 24 h in 

vitro in sham condition (no treatment) or after 1 h application of kainate alone or with 

KA+DHβE+MLA (Dorsal: ***P = 0.001, t16 = 11.736; Central: P = 0.001, U = 0; 

Ventral: P = 0.001,t16 = 11.034,sham vs KA; Dorsal: P = 0.001, t18 = –3.927; Central: *P 

= 0.012, t16 = –2.828; Ventral; P = 0.429, t16 = 0.812, KA vs KA+D+M; Dorsal: P = 

0.001, t18 = –4.044; Central: P = 0.001, U = 81; Ventral: P = 0.001, U = 0, sham vs 

KA+D+M). n = 3-5 spinal cords; 3-10 sections/preparation. Scale bar = 100 µm. 
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6 DISCUSSION 

 

The principal findings of the present study reported in this thesis are summarized as: 

 The neuroprotection produced by Methylprednisolone sodium succinate (MPSS; 

after 24 h in vitro SCI) was confined to white matter when damaged by providing 

dysmetabolic/hypoxic conditions with pathological medium (PM) applied for 1 h. 

 

 MPSS could not reverse the excitotoxic damage evoked by kainate (100 µM) 

applied for 1 h. 

 

 Histologically, delayed application of propofol has arrested neuronal and 

motoneuronal damage by kainate (50 µM). 

 

 No good recovery in fictive locomotor patterns by propofol treatment, whereas 

disinhibited rhythmicity was improved. 

 

 Nicotine (10 µM) was toxic.  

 

 Nicotine (1 µM) administration has shown neuroprotective effects to spinal 

locomotor networks from excitotoxic damage induced by kainate (50 µM). 

 

 Good histological recovery of motoneurons and neurons by nicotine (1 µM) after 

excitotoxic insult. 

 

 Pre-treatment of celastrol has shown substantial neuroprotective effects against 

kainate-induced excitotoxicity.  
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1. In vitro spinal injury model 

Current data were acquired by using an in vitro neonatal rat SCI model based on transient 

(1 h) application of kainate or pathological medium (PM). Although the in vitro 

preparations are immature, they possess a number of advantages such as giving an 

opportunity to study synaptic transmission, fictive locomotor oscillatory cycles recorded 

from lumbar ventral roots (Kiehn, 2006), intrinsic rhythmicity (Bracci et al., 1996a, b; 

Taccola & Nistri, 2007), and motoneuronal properties. Furthermore, these preparations 

provide an insight into pediatric SCI, show limited tissue damage which resembles actual 

new SCI cases (Jain et al., 2015), and allow studying delayed drug application with 

survival time up to 24 h (Shabbir et al., 2015; Nasrabady et al., 2012). In addition to in 

vivo animal models of SCI (Onifer et al., 2007), in vitro models provide useful data as 

they reduce the complexity of pathophysiology of in vivo SCI and help to identify 

particular injury processes without interference by general anaesthesia or blood pressure 

changes (Kuzhandaivel et al., 2011). 

 

2. Excitotoxicity produces structural and functional 

deficits during spinal insult 

 

In the past decades, excitotoxicity, a type of neurotoxicity produced by over-activation of 

glutamatergic system, has been at the centre stage of stroke research. Glutamate is the 

primary neurotransmitter in the adult CNS. Glutamate plays important roles in various 

physiological processes such as rapid synaptic transmission, neuronal growth and axon 

guidance, brain development and maturation etc. In order to investigate glutamate 

transport dysfunction as a primary excitotoxic event in neurodegenerative diseases, 

several models have been developed. It has previously been reported that blocking 

glutamate uptake is toxic to cortical and spinal motor neurons, through NMDA or non-

NMDA receptor-dependent mechanisms respectively (Rothstein et al., 1993; Carriedo et 

al., 1996; Velasco et al., 1996).  
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Subsequent studies have demonstrated that kainate is a non-degradable analogue 

of glutamate and a potent neurotoxin (Vincent & Mulle, 2009). KA employs its neuro-

excitotoxic and epileptogenic characteristics by acting on kainate receptors which 

ultimately lead to cell death (Wang et al., 2005). Kainate has extensively been used as an 

excitotoxic agent as it mimics the effect of glutamate in neurodegenerative disease 

models (Choi, 1992 a; Lipton & Rosenberg, 1994; Shaw, 1994; King et al., 2016). 

Kainate receptors mediate kainate-induced seizures and excitotoxic neuronal death, 

thereby serving as a model for neurodegeneration. In addition to kainate, other agents 

could be ibotenic acid (IBO) and NMDA, however, they are nonspecific in acting on 

different cell types and usually they do not cause seizures. In contrast, focal injection of 

KA leads to hippocampal damage (Jarrard, 2002). It has been reported that systematic 

administration of kainate results in a well-characterized seizure syndrome in rodents 

(Ben-Ari, 1985; Mulle et al., 1998). One h after kainate administration limbic motor 

seizures emerge and develop into status epilepticus lasting 1-2 h (Chuang et al., 2004). 

Electrophysiological recordings have suggested there is a critical threshold for 

excitotoxicity mediated by kainate which could fully suppress fictive locomotion. Ten 

µM kainate enables onset of locomotor patterns in the spinal cord although with smaller 

amplitude and slower periodicity than sham preparations. However, ≥ 50 µM is sufficient 

to evoke irreversible fictive locomotor damage and reflex suppression (Mazzone et al., 

2010) 24 h after insult. Hence, we used 50 or 100 µM kainate application for 1 h to study 

its effect on spinal locomotor networks via electrophysiological recordings, histology 

(Taccola et al, 2008) as well as calcium imaging techniques. 

 

With 50 or 100 µM kainate fictive locomotion disappeared and mono- and 

polysynaptic reflexes were highly depressed, while disinhibited bursts evoked by 

strychnine and bicuculline were still present despite increased periodicity and lower 

amplitude (Taccola et al., 2008; Margaryan et al., 2010). One possibility is that a primary 

targets for kainate are inhibitory interneurons important for fictive locomotion (Morin et 

al., 1998; Cossart et al., 2001). After kainate application, spinal networks retained their 

intrinsic rhythmicity supported via recurrent excitatory collaterals (Ballerini et al., 1999; 

Tscherter et al., 2001) because disinhibited bursting requires a circuitry simpler than 

fictive locomotion. 
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Histologically, neuronal numbers were highly reduced and pyknotic nuclei 

appeared in all three regions of gray matter (Taccola et al., 2008, Margaryan et al., 2009; 

Kuzhandaivel et al., 2010) observed 24 h after kainate application. Motoneurons were 

halved in the ventral horn of gray matter probably because they lack the calcium binding 

protein and remain very vulnerable to consequences of calcium overload evoked by 

kainate (Dekkers et al., 2004). Our data are in analogy with the previous reports (Bracci et 

al., 1996b; Taccola et al., 2008; Mazzone et al., 2013). Extensive production of poly-

ADP-ribose (PAR) by hyperactivation of the poly (ADP-ribose) polymerase-1 (PARP-1) 

enzyme has recently been proposed as a novel programmed cell death, termed 

―parthanatos‖ (Andrabi et al., 2006, 2008) and applicable to excitotoxic death in the 

spinal cord. 

 

3. Dysmetabolic perturbation induced spinal damage 

 

Another protocol was based on dysmetabolic spinal lesion evoked by a toxic solution 

named as pathological medium (PM) that mimics the conditions (hypoxic/aglycemic) 

occurring shortly after acute SCI (Taccola et al., 2008). This kind of condition causes 

delayed cell death of oligodendrocytes by apoptosis (Shuman et al., 1997; Emery et al., 

1998; Li et al., 1999; Springer et al., 1999) which is infrequent in SCI cases. Interestingly, 

in other models of neurodegeneration such as brain ischemia, Alzheimer’s disease, etc, 

apoptotic cell death is not frequent and mainly involves glial cells (oligodendroglia, 

microglia and astrocytes; Jellinger & Stadelmann, 2000; Shibata et al., 2000; Narkilahti et 

al., 2003). Previous studies on neonatal spinal cord have shown that pyknosis occurs 24 h 

after the hypoxic conditions and it maximally damages the ventrolateral white matter of 

spinal cord (Kuzhandaivel et al., 2010). Similar results were observed in our case after 

treating the preparations with PM for 1 h (Sámano et al., 2016). This kind of apoptotic 

cell death was mediated by activation of caspase pathways (Kuzhandaivel et al., 2010). 

Despite white matter lesion occurred after 1 h application of PM, spinal locomotor 

networks retained their activity even though the oscillatory patterns were slower than 

those chemically evoked by NMDA+5HT (Taccola et al., 2008; Kuzhandaivel et al., 

2010). However, dorsal root evoked locomotor patterns were absent (Taccola et al., 

2008).  Therefore, in this case, in spite of having intrinsic ability to induce locomotor 
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patterns, the sensory feedback, necessary to support locomotion, had been lost (Barbeau 

et al., 1999).  

 

4.  Neuroprotective effects of MPSS on histological and 

functional outcome 

 

MPSS is a widely used GC for the treatment of neurological diseases (in a dose-

dependent manner) due to its anti-inflammatory (Gold et al., 2001) and anti-oxidant 

properties. However, treatment with MPSS has become controversial because of modest 

neurological improvement and a number of serious side-effects (Bracken et al., 1984; 

Gerndt et al., 1997; Pointillart et al., 2000; Matsumoto et al., 2001) in patients with SCI. 

This drug is still in use for clinical trials (Nicholas et al., 2009; Bracken, 2012; Druschel 

et al., 2013; Miekisiak et al., 2014; Cheung et al., 2015) as the first approach to SCI. 

These observations raised the issue if distinct types of SCI might have more positive 

outcome than other cases. Therefore we tried two different toxic conditions, kainate (100 

µM, completely abolished fictive locomotion) induced excitotoxicity or PM (applied for 1 

h). Thereafter, we applied 6 or 10 µM MPSS (24 h application, Fehling et al., 2017) based 

on published clinical guidelines (Sauerland et al., 2000) and in vitro SCI models 

(Guzmán-Lenis et al., 2009; Sun et al., 2010). Histologically, neuroprotection induced by 

MPSS after PM application was restricted to ventrolateral white matter, as MPSS 

reversed the loss of astrocytes and to lesser extent oligodendrocytes. Functionally, the 

polysynaptic response area was increased after MPSS (10 µM) despite no changes in 

monosynaptic reflexes. Moreover, small improvements were observed in the area of 

cumulative depolarization and oscillations.  A more positive outcome (slow alternating 

oscillations) was observed in chemically evoked fictive locomotion after PM followed by 

MPSS treatment. Basic network rhythmicity was also studied after pharmacological block 

of inhibition. Here MPSS was not able to change the period depression induced by 

kainate, however, it potentiated burst amplitude, which suggested little improvement in 

functional network connectivity.  All these observations were in analogy to previous in 

vitro rat SCI reports which suggested MPSS had not efficiently protected neurons (Xu et 

al., 1998a; Liu et al., 1997; Lee et al., 2008).  
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5. Neuroprotection by propofol  

 

As neurosurgery is performed under general anaesthesia, it seemed plausible that at least 

some positive contribution might come from the administration of general anaesthesia. 

Recently Shabbir et al. have reported in our lab that a volatile anaesthetic, 

methoxyflurane, could confer strong functional and histological neuroprotection in an in 

vitro rat SCI model (Shabbir et al., 2015). These results raised the issue whether a widely 

used i.v. anaesthetic such as propofol could also produce the same effects or it is an 

intrinsic property of gas anaesthetics only (which are less frequently used because of their 

toxic effects). It has been demonstrated that propofol has neuroprotective effects on 

various in vitro and in vivo models of brain injury (Velly et al., 2003; Kawaguchi et al., 

2005; Rossaint et al., 2009; Vasileiou et al., 2009; Zhang et al., 2014; Fan et al., 2015). 

While propofol attenuates motoneuronal damage in spinal organotypic slice cultures 

(Bajrektarevic & Nistri, 2016), it is unknown what impact propofol poses on functional 

locomotor networks.  Various studies have demonstrated that the clinically relevant 

concentration of propofol ranges from 0.5 to 10 µM (Gredell et al., 2004; Matute et al., 

2004; Wakita et al., 2013; Eckle et al., 2015). As the drug has never been tested before for 

these spinal cord experiments, therefore we decided to use the mid value of 5 µM. The 

timing of propofol administration was chosen according to previous observations that 

maximum excitotoxic cell death pathways are activated within the first few hours of 

secondary insult (Kuzhandaivel et al., 2011). Also according to Bajrektarevic & Nistri 

(2016), propofol was administered for 8 h and good neuroprotection was achieved on 

spinal cultures. Thus, we applied propofol for 4 or 8 h after kainate (100 µM) and tested 

its effects the day after.  

 

Propofol, when applied alone for 4 h, partially depressed network synaptic 

transmission (Jewett et al., 1992) and fictive locomotion. This depression was further 

exaggerated by propofol 8 h application. This phenomenon is in line with our observation 

that propofol potentiates GABAA (Adodra & Hales, 1995; Reynolds & Maitra, 1996) and 

depressed the NMDA mediated (Orser et al., 1995) receptor responses. Propofol (4 or 8 

h) when applied after kainate structurally preserved neurons and motoneurons in all the 

regions (dorsal, central and ventral) of the spinal cord. Therefore, the simplest 



 
 

Page 150 
 

interpretation might be that the drug has exerted its beneficial effects by suppressing the 

network excitability (Jewett et al., 1992). It could not attenuate the depression of synaptic 

transmission and cumulative depolarization caused by kainate; however, it arrested 

further damage by suppressing network excitability. In chemically induced fictive 

locomotion (recorded 24 h later), there was the emergence of some fictive locomotor 

cycles after 4 h propofol after kainate: this response was absent after 8 h propofol. This 

was not unexpected in line with the long-lasting depression evoked by the drug. In fact, 

disinhibited bursting that reflects the intrinsic rhythmicity of spinal networks (Streit, 

1993; Bracci et al., 1996a) showed improved periodicity when 4-h propofol 

administration followed kainate washout. These results illustrate that when network 

output required activation of a limited circuitry (Bracci et al., 1996b), the protective 

action of propofol was manifested more efficiently than over a very wide locomotor 

network with complex connections (Kiehn, 2006, 2016). Anesthesiological studies 

demonstrate that full locomotor recovery in humans is incomplete for several h after 

propofol (Münte et al., 2001; Haavisto & Kauranen, 2002). The general advice is to be 

cautious against driving since dizziness and drowsiness may persist for 24 h 

(http://www.rxlist.com/diprivan-drug/patient-images-side-effects.htm). Thus, these 

observations are consistent with our depressed functional results which occur due to long-

lasting network depression effect induced by this anaesthetic.  

 

6. Effects of nicotine  

Nicotine-mediated neuroprotection has been reported previously in several models such 

as in vitro (Garrido et al., 2003), in vivo (Xue et al., 2014) and in epidemiological studies 

(Quik et al., 2012), suggesting potential strategies to contrast neuronal death. Recently 

our lab has shown the neuroprotective effect of nicotine on brainstem motoneurons 

against excitotoxicity by activating nAChRs that triggered intracellular pathways to block 

reactive oxygen species (ROS) and regulated mitochondrial metabolism (Corsini et al., 

2016; Tortora et al., 2017). These intriguing results motivated us to investigate the role of 

nicotine and nAChRs in neuroprotection against SCI. As Corsini et al. have achieved 

neuroprotective effects with 10 µM nicotine (Corsini et al., 2016), it seemed a good initial 

concentration to start the experiments. Unexpectedly, nicotine (10 µM) exerted minimal 

protection after excitotoxic damage by kainate (refer supplemental data, appendix I 

enclosed in the thesis). When tested histologically, the neuronal number was significantly 

http://www.rxlist.com/diprivan-drug/patient-images-side-effects.htm
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improved after kainate (50 µM) followed by nicotine or kainate+nicotine application (1 or 

4 h) only in the dorsal horn with no change in the central and ventral horn of spinal cord. 

Similarly, the motoneuron numbers were not significantly increased with this 

concentration except in case where nicotine was applied for 1 h after kainate. These 

results indicated that nicotine (10 µM) might be toxic for spinal neurons and 

motoneurons. This assumption was confirmed by examining the effects by nicotine per 

se.  

  

 The next goal was to examine 0.5 or 1 or 2 µM nicotine (4 h) concentration 

and investigated its functional and structural effects alone and after or together with 

kainate (1 h). Electrophysiologically, nicotine 0.5 µM was not much effective to reverse 

the excitotoxic effect evoked by kainate, whereas 2 µM was suppressing the polysynaptic 

reflexes and fictive locomotion. Thus, I chose nicotine 1 µM to continue the project 

further. Nicotine 1 µM showed promising recovery in polysynaptic reflex, fictive 

locomotion, neuronal and motoneuron numbers in all the three ROIs. Since early 

treatment with nicotine could restore at least in part the amplitude and frequency of 

disinhibited bursts or Ca
2+

 transients (achieved by calcium imaging experiments with 

spinal organotypic cultures), these results indicate that certain elementary circuits relying 

on glutamatergic transmission for intrinsic rhythmicity (Bracci et al., 1996b) had been 

protected by nicotine and retained their connectivity because synchronicity was preserved 

even over a substantial distance. The only parameter not reversed by nicotine was 

monosynaptic reflexes. Hence, it seems likely that, despite near normalizing the 

motoneuron numbers by nicotine, their ability to respond to weak inputs had remained 

impaired after kainate application.  

  

 The subsequent step was to explore which nAChRs are important for spinal 

neuroprotection. Although various nAChR subunits have been identified in the rat spinal 

cord (Wada et al., 1989, 1990; Khan et al., 2003), α4β2 and α7 remain the prominent 

receptor assemblies (Hsu et al., 1997; Berg & Conroy, 2002). Furthermore, α4β2 and α7 

receptors play a role in nAChR mediated neuroprotection against excitotoxicity in rat 

dissociated spinal cultures (Nakamizo et al., 2005; Shimohama, 2009). Thus, antagonists 

for α4β2 and α7 receptors, DHβE and MLA respectively, were used in the present 

excitotoxicity model. The experiments were performed by co-application of 

kainate+antagonists (+nicotine) to examine which receptors are involved in nicotine-
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mediated neuroprotection. Antagonists’ application with kainate did not modulate 

network depression evoked by kainate with only one exception namely, a partial 

preservation of chemically-induced fictive locomotion.  We hypothesize that kainate-

mediated excitation had led to release of endogenous ACh and that this phenomenon 

partly contributed to excitotoxicity at the level of the CPG network, though the exact 

locus of action remains unclear and needs future experiments. This suggestion is 

compatible with the modest protection by DHβE and it implies the possibility that at least 

part of the neuroprotection exerted by nicotine itself was caused by its dual action on 

nAChRs, namely rapid activation and desensitization.  

 

7. Neuroprotective effect of celastrol 

 

Several studies have investigated the effects of HSPs by over-expressing them or 

activating the heat shock response (HSR) in rodent models (Muchowski & Wacker, 2005; 

Neef et al., 2011; Leak, 2014; Duncan et al., 2015; Pratt et al., 2015; Bose & Cho, 2017; 

Calderwood & Murshid, 2017). Determining which HSR elements are effective in 

inhibiting protein aggregation and subsequent neurotoxicity is a crucial step in 

exemplifying targets for the development of therapeutics to combat neurodegenerative 

diseases. It has previously been reported that upregulation of HSR by treatment with 

drugs such as withaferin A, celastrol or arimoclomol resulted in increasing motoneuronal 

numbers and lifespan of mSOD1 expressing mice (Kieran et al., 2004; Kiaei et al., 2005; 

Lin et al., 2013; Patel et al., 2014). As celastrol is a potent HSP70 inducer and also 

possess anti-inflammatory and anti-oxidant properties (Westerheide et al., 2004), 

therefore in the present study of an in vitro SCI model, celastrol is used to investigate the 

neuroprotective effect of induced HSP70 by pre-treating the preparations with celastrol 

for 6 h followed by application of kainate for 1 h. Primarily the effective dose of celastrol, 

which is 0.75 µM was optimized by my colleague Priyadarshini Veeraraghavan. The 

further neuroprotective effect was studied by me by performing extracellular recordings 

(see supplemental data, appendix II). When celastrol was applied alone for 6 h on day 1 

and recorded on a subsequent day showed depression of monosynaptic reflexes. 

However, the polysynaptic reflexes and DR evoked fictive locomotion were recovered 

back to normal. It is noteworthy that the amplitude of NMDA+5HT induced fictive 

locomotion was reduced to less than half and the periodicity was increased to double as 
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compared to sham preparations. Then kainate (50 µM) was applied after pre-treating the 

preparations with celastrol (6 h), which showed strong recovery in polysynaptic reflexes, 

electrically induced fictive locomotion and NMDA+5HT induced fictive locomotion even 

though with smaller amplitude and slower periodicity of oscillatory cycles. As this project 

is a part of collaboration with Antonela Petrović and Miranda Mladinić at the University 

of Rijeka, Department of Biotechnology, Croatia, therefore Petrović will continue the 

project by further performing molecular biology experiments. 
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7   CONCLUSIONS AND FUTURE PERSPECTIVES  

 

The novel findings discussed in the present thesis are intriguing. Several attempts have 

been made earlier to examine the neuroprotective role of distinct pharmacological agents 

(Lee et al., 2003; Bagriyanik et al., 2008; Shabbir et al., 2015; Bajrektarevic & Nistri, 

2017). Among glutamate release inhibitors, riluzole is the only present-day treatment for 

motoneuron disease with a rather limited lifespan of clinical efficacy (Wokke, 1996; 

Cheah et al., 2010). In our lab’s experimental model, this drug cannot effectively contrast 

the excitotoxicity induced by kainate (Sámano et al., 2012) while it does act by 

decreasing glutamatergic transmission and voltage-activated Na
+
 conductances (Cifra et 

al., 2013). MPSS has shown limited neuroprotection to spinal white matter against 

dysmetabolic/hypoxic conditions in our experimental model (Sámano et al., 2016). More 

promising neuroprotective results were obtained with propofol (Kaur et al., 2016), 

nicotine and celastrol against excitotoxic insult in our in vitro rat spinal cord model. 

These encouraging observations will require further experiments in vivo before 

considering their translational implications.  

  

 One limitation of our model is that the survival time of our preparation is 24 

h: beyond this, it is not currently feasible to test whether any protection remains over 

longer times or emerges with an unexpected delay. Hence, in the future, further in vivo 

and clinical attempts are necessary to verify whether these drugs are effectively able to 

attenuate the excitotoxicity evoked after SCI. It is, however, important to reiterate that the 

present data offer proof of principle that pharmacological neuroprotection is indeed 

possible against experimental SCI.   
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9 SUPPLEMENTARY DATA 

9.1 Appendix I: Neurotoxicity of nicotine 

 

1) We studied the structural and functional changes evoked by application 10 µM 

nicotine (for 1 or 4 h) after or during excitotoxicity induced by kainate (50 µM) in 

an in vitro SCI model. These experiments followed the same methods as 

previously explained in the result section. 

 

Fig. 1 Changes in percent pyknosis (stained with DAPI, blue) and neuronal (stained with 

NeuN, red) numbers by nicotine application alone (1 or 4 h) or after kainate (KA) and 

nicotine treatment (1 or 4 h) in all three ROI. (A, B) No damage induced by application of 
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nicotine alone. Kainate application induced significant percent pyknosis in all three ROI 

i.e., dorsal, central and ventral horn which is antagonized by nicotine treatment (***P = 

0.001). (A, C) No change in the number of neurons in dorsal horn after nicotine alone 

application, however, the neuronal number was significantly reduced in central (P = 

0.001) and ventral horn (P = 0.001) when nicotine was applied alone for 4 h. Kainate, 

when applied alone, has drastically reduced the number of neurons in all the ROI in 

comparison to sham or nicotine alone (P = 0.001). When nicotine was applied with or 

after kainate increased the neuronal number only in the dorsal ROI (P = 0.001) whereas 

no change observed in the central and ventral horn of spinal cord. Data are mean ±SEM. 

Scale bar = 100 µm. n = 3 to 6 where n is the number of spinal cords used and 3 to 5 

sections/preparation were taken.   

 

Fig. 2 Changes in motoneuronal number 24 h after excitotoxic injury by kainate alone or 

kainate and nicotine application. (A) Examples of motoneurons immuno-stained with 

SMI32, green. (B) Bar graph represents the significant reduction in motoneuronal number 

after nicotine alone application either for 1 h (**P = 0.002) or 4 h (***P = 0.001). 
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Kainate alone application has reduced the motoneuronal number to less than half in 

comparison to sham which was not significantly recovered by nicotine treatment with or 

after kainate except when nicotine was applied for 1 h after kainate (P = 0.001; KA vs 

KA/N 1h). Data are mean ±SEM. Scale bar = 100 µm. n = 3 to 7 where n is the number of 

spinal cords used and 4 to 7 sections/preparation were taken. 

 

 

Fig. 3 Effect of nicotine and kainate on astroglia immunostained with S100 (green) and 

GFAP (red) 24 h later in vitro. (A) Examples of astroglia in sham, N 4h, KA, KA/N 4 h 

and KA+N/N 4 h treatments. (B, C) Histograms shows no alterations in 

immunofluorescence intensity of astroglia labelled with S100 and GFAP except in case of 

nicotine when applied alone in comparison to sham preparations in all the three ROI 

(dorsal: **P = 0.003; central: *P = 0.03; ventral: P = 0.013). Data are mean ±SEM. Scale 

bar = 100 µm. n = 7 to 10 where n is number of spinal cords used and 8 to 10 

sections/preparation were taken. 
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Fig. 4 Effect of nicotine (10 µM) and kainate (50 µM) on synaptic transmission recorded 

24 h later. (A, B) Example recordings of monosynaptic and polysynaptic reflex responses 

in sham (n = 9), nicotine 4 h (N 4h; n = 5), kainate (KA; n = 8), kainate followed by 

nicotine 4 h (KA/N 4h; n = 7) and kainate co-applied with nicotine followed by nicotine 

for 4 h (KA+N/N 4h; n = 7) treatments. (D, E) Bar graphs show no change in 

polysynaptic reflexes (D, E) after nicotine alone application which were highly depressed 

by kainate when applied alone and a modest improvement observed by treatment with 

nicotine after or together with kainate (amplitude: ***P ≤ 0.001, *P ≤ 0.05; area: P ≤ 

0.001; KA vs KA/N 4h, KA vs KA+N/N 4h, respectively). However, monosynaptic 

reflexes(C) were depressed in all cases in comparison to sham (P ≤ 0.001) as represented 

in the example records (A)    and bar graph (C). Data are mean ±SEM. n denotes the 

number of spinal cords used.  
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Fig. 5 Changes in DR train evoked VR responses after 24 h in vitro. (A) Examples of 

fictive locomotion induced by DR train in sham (n = 9), N 4h (n = 5), KA (n = 8), KA/N 

4h (n = 7) and KA+N/N 4h (n = 7). (B-D) Histograms showing intense depression evoked 

by kainate alone application which was modestly improved after nicotine application 

(number of oscillations: ***P ≤ 0.001, KA vs KA/N 4h, KA vs KA+N/N 4h; cumulative 

depolarization: *P ≤ 0.05, KA vs KA/N 4h).  Data are mean ±SEM. n denotes the number 

of spinal cords used.  
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Fig. 6 Changes in chemically induced fictive locomotion recorded after 24 h in vitro. (A) 

Sample records of fictive locomotor patterns in sham (n = 9), N 4h (n = 5), KA (n = 8), 

KA/N 4h (n = 7) and KA+N/N 4h (n = 7). (B, C) The cycle amplitude has reduced and 

the periodicity has increased after application of nicotine alone. Kainate alone application 

has fully abolished the fictive locomotor patterns which were reversed by nicotine even 

though with smaller amplitude and longer periodicity (***P ≤ 0.001, KA vs KA/N 4h, 

KA vs KA+N/N 4h). Data are mean ±SEM. n denotes the number of spinal cords used. 
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Fig. 7 Changes in intrinsic rhythmicity of spinal cords following kainate and nicotine 

treatment. (A) Example records of disinhibited bursts evoked by inhibiting GABAergic 

and glycinergic transmission with bicuculline and strychnine 24 h after in sham (n = 9), N 

4h (n = 5), KA (n = 8), KA/N 4h (n = 7) and KA+N/N 4h (n = 7) preparations. (B, C) Bar 

graphs showing a significant decrease in number of bursts after nicotine alone application 

with no change in amplitude of the same in comparison to sham treated spinal cords. 

Kainate alone application has strongly depressed the number and amplitude of bursts. A 

significant recovery in number of bursts by nicotine applied after or together with kainate 

application with no further change in amplitude (***P ≤ 0.001). Data are mean ±SEM. n 

denotes the number of spinal cords used. 
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Fig. 8 Changes in DR-DR evoked responses recorded 24 h in vitro. (A) Representative 

traces of DR-DR evoked responses in sham (n = 4), N 4h (n = 3), KA (n = 4), KA/N 4h (n 

= 4) and KA+N/ 4 h (n = 5). (B) Histogram illustrates that kainate application has 

completely disrupted the amplitude of DR-DR responses which has significantly reversed 

by nicotine application (***P ≤ 0.001).  
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9.2 Appendix II: Effects of celastrol 

 

2) Changes in functional outcome were studied by pre-treating the spinal cords with 

celastrol for 6 h (0.75 µM) followed by excitotoxic injury (kainate, 1 h, 50 µM). 

These experiments followed the same methods as described in the enclosed papers 

in the result section.   

  

 

Fig. 1 Changes in reflex responses after celastrol and kainate application recorded from 

lumbar VRs 24 h after in vitro. (A, B) Sample records of mono- and polysynaptic reflex 

responses in sham, celastrol applied for 6 h (Cel 6 h), kainate application for 1 h (KA) 

and celastrol (6 h) for by kainate (CEL 6 h/ KA) treatments. (C) Histogram showing 

strong reduction in monosynaptic reflex responses in all the cases when compared to 
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sham preparations. (D, E) Bar graphs illustrating a good recovery in polysynaptic reflexes 

by pre-treating the preparations with celastrol followed by kainate in comparison to 

kainate alone (***P ≤ 0.001).  

 

 

 

Fig. 2 Effect of celastrol pre-treatment followed by kainate on DR train evoked fictive 

locomotion. Note a strong recovery in electrically evoked fictive locomotion observed 

after celastrol followed by kainate application (P ≤ 0.001) as exemplified in sample 

records (A) and bar graphs (B-D). 
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Fig. 3 Alternations in fictive locomotor patterns evoked by application of NMDA+5HT 

recorded 24 h in vitro. (A) Examples of chemically induced fictive locomotion in sham, 

Cel 6 h, KA and Cel 6 h/KA treatments. (B, C) Histograms represent a significant 

reduction of cycle amplitude and increased periodicity after celastrol alone application (6 

h). Kainate alone application has completely abolished the fictive locomotion which was 

reversed by pre-treating the spinal cord with celastrol followed by kainate, although with 

less amplitude and longer periodicity (***P ≤ 0.001).     
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