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Abstract

In this thesis we develop a mathematical analysis for a dynamic model of peeling test in dimen-
sion one. In the first part we give existence and uniqueness results for dynamic evolutions. In
the second part we study the quasistatic limit of such evolutions, i.e., the limit as inertia tends
to zero.

In the model the wave equation uy — uy, = 0 is coupled with a Griffith’s criterion for the
propagation of the debonding front. Our first results provide existence and uniqueness for the
solution to this coupled problem under different assumptions on the data. This analysis is
extended when we study the initiation of the debonding process. We also give an existence
and uniqueness result for solutions to the damped wave equation u; — Uz, + uy = 0 in a time-
dependent domain whose evolution depends on the given debonding front.

We then analyse the quasistatic limit without damping. We find that the limit evolution
satisfies a stability condition; however, the activation rule in Griffith’s (quasistatic) criterion
does not hold in general, thus the limit evolution is not rate-independent. This behaviour is
due to the oscillations of the kinetic energy and of the presence of an acceleration term in the
limit. The same phenomenon is observed even in the case of a singularly perturbed second order
equation i + V(t,us(t)) = 0, where V(¢,x) is a potential. We assume that uo(t) is one of
its equilibrium points such that V. (¢,ug(t)) = 0 and V. (¢, uo(t)) > 0. We find that, under
suitable initial data, the solutions u. converge uniformly to ug, by imposing mild hypotheses
on V. However, a counterexample shows that such assumptions cannot be weakened. Thus,
inertial effects can not, in general, be captured by a pure quasistatic analysis.
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Introduction

In this thesis we analyse a one-dimensional model of dynamic peeling test. This model is one of
the few cases where a complete mathematical analysis can be performed in the dynamical case,
i.e., when the momentum equation includes an inertial term.

In the first part of the thesis we introduce and analyse the model of dynamic peeling test,
giving existence and uniqueness results; the second part focuses on the quasistatic limit, i.e., the
limit as inertia tends to zero and internal oscillations are neglected. We show that the kinetic
energy plays a relevant role even if the inertia is very small and we therefore call into question
the validity of the quasistatic assumption.

Existence and uniqueness of solutions for a dynamic peeling test. The study of
crack growth based on Griffith’s criterion has become of great interest in the mathematical
community. The starting point was the seminal paper [29], where a precise variational scheme
for the quasistatic evolution was proposed. This strategy has been exploited under different
hypotheses in [20, [13], B0, 19, 22, [42]. The approximation of brittle crack growth by means
of phase-field models in the quasistatic regime has been studied in [33]. A comprehensive
presentation of the variational approach to quasistatic fracture mechanics can be found in [9].
For the relationships between this approach and the general theory of rate-independent systems
we refer to the recent book [54].

In the dynamic case no general formulation has been yet proposed and only preliminary
results are available (see [57, 20, 24, 21]). A reasonable model for dynamic fracture should
combine the equations of elasto-dynamics for the displacement u out of the crack with an
evolution law which connects the crack growth with u. The only result in this direction, without
strong geometrical assumptions on the cracks, has been obtained for a phase-field model [43],
but the convergence of these solutions to a brittle crack evolution has not been proved in the
dynamic case. In the latter model the equation of elasto-dynamics for u is coupled with a
suitable minimality condition for the phase-field { at each time. Other models in materials
science, dealing with damage or delamination, couple a second order hyperbolic equation for a
function u with a first order flow rule for an internal variable ¢ (see, e.g., [32} 8, [7, 58] 59| 37, [36]
for viscous flow rules on ¢ and [62} 64, [63], 60, 65, [6, 66} [49] for rate-independent evolutions of
Q).

In this work we contribute to the study of dynamic fracture by analysing a simpler one-
dimensional model already considered in [31], Section 5.5.1]. This model exhibits some of the
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Figure 1: Peeling test.

relevant mathematical difficulties due to the time dependence of the domain of the wave equation.
More precisely, following [28], 48] we study a model of a dynamic peeling test for a thin film,
initially attached to a planar rigid substrate; the process is assumed to depend only on one
variable. This hypothesis is crucial for our analysis, since we frequently use d’Alembert’s formula
for the wave equation.

The film is described by a curve, which represents its intersection with a vertical plane with
horizontal coordinate x and vertical coordinate y. The positive z-axis represents the substrate
as well as the reference configuration of the film. In its deformed configuration the film at time
t > 0 is parametrised by (v(¢,z),u(t,x)), where v(t,z) (resp. u(t,z)) is the horizontal (resp.
vertical) displacement of the point with reference coordinate x. The film is assumed to be
perfectly flexible, inextensible, and glued to the rigid substrate on the half line {z>£(t) , y=0},
where £(t) is a nondecreasing function which represents the debonding front, with £y := ¢(0) > 0.
This implies v(t,z) = u(t,z) = 0 for =z > £(t). At the end point z = 0 we prescribe a vertical
displacement u(¢,0) = w(t) depending on time ¢ > 0, and a fixed tension so that the speed of
sound in the film is constant. Using the linear approximation and the inextensibility it turns
out that v can be expressed in terms of u as

1 [t
u(t,z) = 2/ ug(t, 2)? dz,

and u solves the problem

U (t, @) — uge(t,x) =0, t>0,0 <z <L(t), (0.1a)
u(t,0) = w(t), t>0, (0.1b)
u(t, () =0, t>0, (0.1¢)

where we normalised the speed of sound to one. The system is supplemented by the initial
conditions

u(0,2) = up(z), 0<z <y, (0.1d)
ut(0,z) = ui(z), 0 <z <y, (0.1e)

where ug and uq are prescribed functions.

Notice that the peeling test is closely related to fracture. The debonded part of the film,
here parametrised on the interval (0, £(¢)), corresponds to the uncracked part of a body subject
to fracture; both domains are monotone in time, though in opposite directions, increasing in
our case, decreasing in the fracture problem. The debonding propagation ¢ — £(t) corresponds
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to the evolution of a crack tip. The debonding front ¢(¢) has the role of a free boundary just
as a crack. However, notice that cracks are discontinuity sets for the displacement, where a
homogeneous Neumann condition is satisfied since they are traction free; in contrast, in the
peeling test the displacement is continuous at £(¢) because of the Dirichlet constraint :
the debonding front is a discontinuity set for the displacement derivatives and represents a free
boundary between {z : u(z,s) = 0 for every s <t} and {z : u(x, s) # 0 for some s < t}.

The first result of Chapter [1|is that, under suitable assumptions on the functions ug, w1, 4,
and w, problem has a unique solution v € H', with the boundary and initial conditions
intended in the sense of traces (cf. Theorem . In particular, we always assume that l < 1,
which means that the debonding speed is less than the speed of sound.

In order to prove this theorem, we observe that, by d’Alembert’s formula, u is a solution of

(0.1a)&(0.11)) if and only if
u(t,x) = w(t+x) — f(t+z) + f(t—x), (0.2)

for a suitable function f: [—{y, +00) — R. Moreover, the boundary condition (0.1c) is satisfied
if and only if

FE+L(t)) = w(t+L(t)) + f(t—L(t)). (0.3)

Using this formula, together with the monotonicity and continuity of ¢, we can determine the
values of f(s) for s € [y, t + £(t)] from the values of f(s) for s € [—{y,t — £(t)].

It is easy to see (see Proposition that implies that f is uniquely determined on
[—£o, €o] by the initial conditions ug and u; through an explicit formula (see (1.19)). If sy is
the unique time such that s; — ¢(s1) = {p, formula allows us to extend f to the interval
[—%o, s1+¢(s1)]. Then, we consider the unique time so such that so—£(s2) = s1+4(s1) and, using
again formula (0.3)), we are able to extend f to [—fo, s2 + £(s2)]. In this way we can construct
recursively a sequence s, such that f is extended to [—4p, s, + ¢(sy,)] and holds for every
0 <t < s,. Since it is easy to see that s, — +00, we are able to extend f to [y, +00) in such
a way that holds for every ¢t > 0. This contruction allows us also to obtain the expected
regularity for u from our hypotheses on ug, u1, ¢, and w, see Figure

In the second part of Chapter [1| only ug, u1, and w are given while the evolution of the
debonding front ¢ has to be determined on the basis of an additional energy criterion.

To formulate this criterion we fix once and for all the initial conditions ug and w; and we
consider the internal energy of u as a functional depending on ¢ and w. More precisely,

1 i 1 L@
E(t; l,w) = 2/ ug(t, z)* do + 2/ ug(t, )2 da,
0 0

where u is the unique solution corresponding to ug, u1, ¢, and w; the first term is the potential
energy and the second one is the kinetic energy.

A crucial role is played by the dynamic energy release rate, which is defined as a (sort of)
partial derivative of £ with respect to the elongation of the debonded region. More precisely,
to define the dynamic energy release rate G, (o) at time ¢y corresponding to a speed 0 < o < 1
of the debonding front, we modify the debonding front £ and the vertical displacement w using
the functions

A(t):{ﬁ(t), t<to, z<t):{“’(t)’ t<to,

(t — to)Oé + f(to), t > o, w(to), t > to,
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Figure 2: Extension of f to the interval [—/g, s2 + ¢(s2)].

and we set

Go(to) := lim S(to;/\,z)_— S(t;)\,z)‘
t—»tar (t tO)a

We prove in Proposition that, given ¢ and w, the limit above exists for a.e. ty > 0 and for
every a € (0,1). Moreover, we prove that

Galts) = 27— f{to—(t) . (04)

where f is the function which appears in (0.2)). This formula shows, in particular, that G, (o)
depends only on « and on the values of u(t,x) for t < ¢y (see the discussion which leads to
(L.35)).

We assume that the energy dissipated to debond a segment [z1,z2], with 0 < x; < x9 is

given by
@2
/ k(z)dx,
a1

where k: [0,+00) — (0,+00) represents the local toughness of the glue between the film and
the substrate. At this stage, we assume that it depends only on the position, while in Sections
and we consider the case in which x depends also on the debonding speed £.

In Section [I.2] starting from a maximum dissipation dissipation principle, we prove that the
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debonding front must satisfy the following energy criterion, called Griffith’s criterion:

i(t) >0, (0.5a)
G (1) < w(E(1). (0.5b)
) [Gi (0 — w0(2)] = 0, (0.50)

for a.e. t > 0. The first condition asserts that the debonding can only grow (unidirectionality).
The second condition states that the dynamic energy release rate is always bounded by the local
toughness, while, accordingly to the third one, ¢ can increase with positive speed at t only when
the dynamic energy release rate is critical at ¢, i.e., G, (t) = k({(1)).

The main results of Chapter[I]are Theorems([1.18] [I.21] and[1.22] where we show existence and
uniqueness of the solution (u, ) to the coupled problem &: under various assumptions
on the data.

The strategy for the proof of these results is to write (0.5 as an ordinary differential equation
for ¢ depending on the unknown function f. More precisely, starting from we find that

is equivalent to
é(t) = Qf(t — ()" = (1)) V0, forae. t>0,
2f(t—L(1))% + K(£(t)) (0.6)
2(0) = 4.

As observed above, f is uniquely determined on the interval [—/g, o] by the initial conditions
ug and uy. Therefore, we can solve in a maximal interval [0, s1], where s; is the unique
point such that s; — £(s1) = €p. We can now apply formula to extend f to the interval
[—%o, s1+£(s1)]. Then we can extend the solution ¢ of to a larger interval [0, s2], where s2 is
the only point such that so —£(s2) = s1+£(s1). Arguing recursively, we can find f: [—¢y, +00) —
R and ¢: [0,4+00) — [0,400) such that is satisfied in [0,+00), see Figure |3l The three
Theorems [T.18] [T.21] and [T.22] consider different assumptions on wg, u1, w, and &, which require
different techniques to solve the differential equation .

These results are then used in the second part of this thesis to study the limit of (a rescaled
version of ) the solutions, as the speed of external loading tends to zero. In particular we examine
the relationships between these limits and different notions of quasistatic evolution.

The case of a speed-dependent local toughness. A generalisation of the model analysed
in this thesis is to consider a wider class of local toughnesses. In particular, we take into account
a dependence of x on the debonding speed /¢, as mentioned in works by L. B. Freund (see e.g.
311).

In Section we will consider the problem of existence and uniqueness of a pair (u, /),
where u is a solution of and ¢ satisfies

_2f(t=0(1))” — K(£(1), £(1))

0(t) = =% —~—~2Vv (0, forae. t>0,
27 (L—E(0))? + (£(0), £(1)) (0.7)
£(0) = £y,
that is equivalent to Griffith’s criterion

i(t) >0,
Gy () < K(L(t), £(t)),

(t) |Gy (1) = w(e(0). 01| = 0.
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Figure 3: Construction of the pair (¢, f) with the iterative scheme. The knowledge of f in
[—lo,s1 + £(s1)] gives the solution u to the wave equation in the grey area. Then, one solves

to extend £ to [0, sa].
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Our motivation is two-fold: on the one hand we analyse a more realistic model for the peeling
test, on the other we take into account the effects of a viscous term in Griffith’s criterion. In
fact, we will consider a local toughness x of the form given by, e.g. kK = ¢+ af, with a > —2,

or Kk = /%%g, with % depending only on the position: in both cases we have the presence of a

viscous term in the equation G,y = k(L) (1))
Notice that the Cauchy problem (0.7) is not expressed in normal form. Moreover, is
equivalent to ® = 0, where

2(2)? = K(t — z, )

2f( twlt— )
I, if 2f(2)% < k(t — 2, p).

Btz p) =" L iF2f(2)% > K(t — 2, p),

Our strategy then relies on inverting the function ® assuming a growth condition from below
on u +— k(z, ). By also assuming Lipschitz regularity for x, we find in Theorem existence
and uniqueness for a solution (u, ) to the coupled problem & .

The study of the quasistatic limit is then considered in the second part of this thesis.

The initiation problem. The problem of the initiation of the debonding is considered in
Chapter [2| The analogous problem in fracture mechanics of crack initiation has been considered
in [I4, ©]. In this case we have {y = 0 so that the evolution of the debonding front is given
by £: [0,400) — [0,400). Then, the vertical displacement u solves the problem (0.1a)-(0.1d)
without initial conditions.

In the case where ¢ — £(t) is given, u € H' is again represented by means of d’Alembert’s
formula through a function f: [0,+00) — [0,+00). Moreover, by iterating several times
, we find that f satisfies

n—1
fls) =lim | > w(Wh(s)) + f(w" ()|, (0.8)
n
k=0
where w(s) 1= p(171(s))), ©(s) == s — £(s), ¥(s) := s + £(s), and the power k represents the
composition of w with itself k times, see Figure [d

In order to find u € H! solution to (0.1a)-(0.1d) with ¢y = 0, the sum in needs to be
finite. This happens for instance in the trivial case where the evolution of the debonding front
is given by a straight line ¢(¢) = pt and w is affine. In this case we find

u(t,r) =w(t)(t—2) and  f(t) = 12*]‘9%(15).

However, we find that, if we only look for solutions in Hﬁ)c, then even in this case there is no
uniqueness. See Section .

This example motivate us to look again for solution in H' and to assume a constraint for
the evolution of the debonding:

0<co<i(t)<1, (0.9)

in a neighbourhood of the origin. Under this condition, we find an upper bound for the sum in
@D. Then, in Theorem we find existence and uniqueness of solutions v € H' to problem

We next consider the problem where the evolution of the debonding front is unknown. In
order to guarantee that the solution ¢ satisfies condition , we give restrictive assumptions
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Figure 4: Iteration of the “bounce formula” (0.3)).

on the regularity and on the growth of x, w, and some of their derivatives. Then, the idea is to
fix 6 > 0 and to consider a problem in which x and w are constant in [0, d]. In this case, we find
that there exists a unique pair (u‘;,ﬁ‘;) solving the coupled problem, where £ is chosen among
the functions that are linear in [0, §]. More precisely, there exists a unique ps € (0, 1) such that,
setting £9(t) = pst and us = w(t)(t — 2/ps), then (us, £s) solves & for t,x <. Next,
we extend (u’, %) to [0, +00) using Thereom and the values at time § as initial data. The
problem is then to let § — 0. Using the additional conditions on s and w, we find that the
functions are equi-bounded in W?2°°. This allows us to pass to the limit in ¢ and to find a pair

(u,¢) solution to problem (0.1a)—(0.1d) coupled with (0.6)). Notice that we are unable to prove
uniqueness.

Existence and uniqueness for the damped peeling test. In Chapter [3| we consider
another model for the peeling test in which the wave equation for the vertical displacement u is
damped. More precisely, we replace problem ((0.1) with the following one:

U (t, ) — uge(t, ) +wy(t,z) =0, t>0,0<x <L(t), (0.10a)
u(t,0) = w(t), t >0, (0.10b)
u(t, £(t)) =0, t>0, (0.10c)
u(0,x) = ug(z), 0 <z <Ly, (0.10d)
u(0, ) = uy(z), 0 <z <y, (0.10e)

where ¢t — £(t) is given. The time derivative of u is a damping of the internal oscillations due
to friction between the film and the surrounding air. This equation is sometimes referred to as
the damped wave equation or telegraph equation.

XV



Yt +a)

Figure 5: The set R(t,z) in three typical cases. See Chapter

Here, we only consider the problem of finding the vertical displacement u when ¢ — £(t) is
a given Lipschitz function with 0 < £(t) < 1 and £(0) =: £y > 0, to generalise Theorem
The main difficulty is that we are unable to find a d’Alembert’s representative of u as in .
Indeed, by the presence of the damping term, u(t, z) is not just an explicit combination of the
data w, ug, u1, and £ of the problem, but it also depends on the integration of u; on the cone of
dependence R(t,x) (see Fig. |5). Specifically, we have

uuw):A@xy-;[L@)whﬁde@ (0.11)

where A(t,z) = f(t — z) + g(t + x) depends explicitly on the data of the problem. Equation
(0.11)) is a necessary condition for a solution of the problem (if it exists). Our strategy then
relies on considering the map F: H' — H' given by

F(v) = A(t,z) — % //R(t )’Ut(T, o)dodr,

and to prove that it is a contraction if the domain is sufficiently small, see Theorems and
3.8 Then, one repeatedly applies these theorems to extend the solution u, see Remarks [3.7 and
3.9). This eventually gives existence and uniqueness of u € H' as stated in Theorem

The problem in which ¢ is unknown is more involved and still under investigation. Thus it is
not part of the thesis. In our opinion, in order to state Griffith’s criterion in this case, we would
need more regularity since the dynamic energy release rate can not be expressed in terms of the
one dimensional function f, as we did in . Indeed, if u is more regular, then the dynamic
energy release rate reads as

de:%u—a%%ummﬁ.

This formula makes sense if u, has a trace well defined on the curve t — (¢, £(t)), which also
depends on the regularity of £.

In the second part of this thesis we deal with the analysis of the quasistatic limit of this
model, i.e., the limit as inertia tends to zero and the internal oscillations can be neglected. We
prove that the kinetic energy plays a relevant role that can not be captured by a quasistatic
analysis.
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Quasistatic limit of dynamic evolutions. In Chapter [d] we pass to the analysis of the
quasistatic limit for the peeling test that is studied in Chapter [I We recall that in models that
predict the growth of cracks in structures, it is often assumed that the process is quasistatic.
The quasistatic hypothesis is that the inertial effects can be neglected since the time scale of the
external loading is very slow, or equivalently the speed of the internal oscillations is very large
if compared with the speed of loading. The resulting evolutions are rate-independent, i.e., the
system is invariant under time reparametrisations.

Starting from the scheme proposed in [29], quasistatic crack growth has been extensively
studied in the mathematical literature. The existence of quasistatic evolutions in fracture me-
chanics has been proved in several papers concerning globally minimising evolutions [26, 13, 30,
19, 27, 22 12, 44, [16] and vanishing-viscosity solutions [56, 111, 38| [39] 47, [4, 2 15]. We refer
to [9] for a presentation of the variational approach to fracture and to [54] for the relations
with the abstract theory of rate-independent systems. These results also show that quasistatic
evolutions may present phases of brutal crack growth (appearing as time discontinuities in the
quasistatic scale). In order to study fast propagations of cracks, a dynamical analysis is needed,
since inertial effects have to be accounted for.

On the other hand, in the case of dynamic fracture, only preliminary existence results were
given [57, 20, 24, 2I]. The main difficulty is that the equations of elasto-dynamics for the
displacement have to be satisfied in a time dependent domain (i.e., the body in its reference
configuration, minus the growing crack), while the evolution of the domain is prescribed by
a first-order flow rule. The resulting PDE system is strongly coupled, as in other models of
damage or delamination (see, e.g., [32, 8, [7, 58| 59, [37, [36] for viscous flow rules and [62, 63, 43,
60, 6], 5], [64], 65, [49], 66, 50, [61] for rate-independent evolutions of internal variables).

In few cases, it has been shown that the quasistatic hypothesis is a good approximation,
that is, the dynamic solutions converge to a rate-independent evolution as inertia tends to zero.
This was proved in [64], 49] for damage models, including a damping term in the wave equation,
and in [25] in the case of perfect plasticity. On the other hand, even in finite dimension there
are examples of singularly perturbed second order potential-type equations (where the inertial
term vanishes and the formal limit is an equilibrium equation), such that the dynamic solutions
do not converge to equilibria as it is proved in Chapter |5l In finite dimension, if the equations
include a friction term whose coeflicient tends to zero as inertia vanishes, then the dynamic
evolutions converge to a solution of the equilibrium equation [IJ.

In Chapter 4] we develop a “vanishing inertia” analysis for the model of dynamic debonding
in dimension one that is introduced in Chapter [Il Here, we study the behaviour of this system
when the speed of loading and the initial velocity of the displacement are very small. More
precisely, the prescribed vertical displacement is given by w.(t) := w(et) where w is a given
function and £ > 0 is a small parameter. The initial vertical displacement and its initial velocity
are respectively ug and euy, where up and w; are two functions of x satisfying some suitable
assumptions. We use the notation (u.,/.) to underline the dependence of the solution on e.
Assuming that the speed of sound is constant and normalised to one, the problem satisfied by
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(ue)u(t, ) — (ue)za(t, ) =0, t>0, 0<z<L(t), (0.12a)
us(t,0) = we(t), t>0, (0.12b)
ue(t, l(t)) = 0, t>0, (0.12¢)
ue(0, ) = up(z), 0 <z <y, (0.12d)
(ue)e(0, ) = euq(x), 0<x<{. (0.12e)

In Section we consider a more general dependence of w, up, and u; on &, see (4.1).
The evolution of the debonding front /. is determined by rephrasing Griffith’s criterion (0.5
to this setting. The flow rule for the evolution of the debonding front now reads as

i.(t) >0, (0.13a)
Ge(t) < k(L:(1)), (0.13b)
£(1) [G(t) = R(L(1))] = 0, (0.13¢)

for a.e. t > 0, where £.(0) = 4.

For the existence of a unique solution (u., £.) in a weak sense, we use the results of Chapter
Next, we perform an asymptotic analysis of & as € tends to zero, i.e., we study the
limit of the system for quasistatic loading. Some results in this direction were given in [28] 48]
in the specific case of a piecewise constant toughness.

It is convenient to consider the rescaled functions

(w(t,2), (1)) = (ue(L, ), (L)), (0.14)

After this time rescaling, the problem solved by (u, £¢) consists of the equation of elastodynamics
complemented with initial and boundary conditions

e2u, (t,x) —u, (t,x) =0, t>0,0<x< (1), (0.15a)
W (t,0) = w(t), t>0, (0.15b)
us(t, £°(t)) =0, t >0, (0.15¢)
u®(0,x) = up(z), 0 <z <Y, (0.15d)
uz (0, ) = up(z), 0 <z <Y, (0.15e)
and coupled with Griffith’s criterion
() >0, (0.16a)
G°(t) < k(£ (1)), (0.16Db)
E@)[G3(t) — w(E(1))] = 0, (0.16¢)

where G¢(t) = G(%) and ¢¢(0) = £y. Notice that the speed of sound is now 1. Indeed, in the
quasistatic limit the time scale of the internal oscillations is much faster than the time scale of
the loading.

The existence of a unique solution (uf, ¢¢) to the coupled problem & for a fixed
€ > 0 is guaranteed by Theorem provided the data are Lipschitz and the local toughness
is piecewise Lipschitz; moreover it turns out that u® is Lipschitz in time and space and ¢° is
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Lipschitz in time. (See also Theorem below.) As above, we write u® in terms of a one-
dimensional function f€; more precisely, u®(¢,x) depends on f¢(z £ &t) through the D’Alembert
formula . On the other hand, the dynamic energy release rate G* can also be expressed as
a function of f€, so Griffith’s criterion reduces to a Cauchy problem which has a unique
solution.

In order to study the limit of the solutions (uf, £¥) as ¢ — 0, we use again the one-dimensional
structure of the model. First, we derive an a priori bound for the internal energy, uniform
with respect to €; to this end, it is convenient to write the internal energy in terms of f¢, see
Proposition The uniform bound allows us to find a limit pair (u,¢). More precisely, since
the functions ¢¢ are non-decreasing and ¢°(T") < L, Helly’s Theorem provides a subsequence ¢
such that ¢°¢ converges for every t to a (possibly discontinuous) non-decreasing function ¢. On
the other hand, the uniform bound on % in L?(0,T; H'(0, L)) guarantees the existence of a
weak limit u. We call (u, £) the quasistatic limit of (u®, ¢¢).

The issue is now to pass to the limit in & and to understand the properties of the
quasistatic limit. As for the vertical displacement, in the first main result of Chapter (Theorem
4.8)) we find that the equilibrium equations are satisfied, i.e., u solves the limit problem

Ugr(t,x) =0, t>0, 0<z <), (0.17a)
u(t,0) =w(t), t>0, (0.17b)
u(t,0(t)) =0, t>0. (0.17c¢)
More precisely, for a.e. t, u(t,-) is affine in (0,4(¢)) and u(t,z) = —%x + w(t). To prove

this, we exploit a technical lemma stating that the graphs of ¢°* converge to the graph of
¢ in the Hausdorff metric, see Lemma 4.7 We remark that in general the initial conditions
&: do not pass to the limit since there may be time discontinuities, even at t = 0.

Next we study the flow rule satisfied by the limit debonding evolution £. We question whether
it complies with the quasistatic formulation of Griffith’s criterion,

i) >0, (0.18a)
Gos(t) < K(£(1)), (0.18b)
0(t) [Gys(t) — w(£(1)] = 0, (0.18¢)

where G is the quasistatic energy release rate, that is the partial derivative of the quasistatic
internal energy with respect to the elongation of the debonded region. Notice that in the
quasistatic setting the internal energy consists of the potential term only, so is the formal
limit of as e — 0.

Condition ((0.18a}) is guaranteed by Helly’s Theorem. By passing to the limit in ((0.16b)),
we also prove that ((0.18b]) holds. For this result we use again the D’Alembert formula for u®

and find the limit f of the one-dimensional functions f¢. In fact, f turns out to be related to
u, through an explicit formula, as we see in Theorem which is the second main result of
Chapter [4

In contrast, is in general not satisfied. This was already observed in the earlier paper
[48], which presents an example of dynamic solutions whose limit violates . The singular
behaviour of these solutions is due to the choice of a toughness with discontinuities. Indeed,
when the debonding front meets a discontinuity in the toughness, a shock wave is generated. The
interaction of such singularities causes strong high-frequency oscillations of the kinetic energy,
which affects the limit as the wave speed tends to infinity.
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Figure 6: The sectors highlighted above give different contributions to the kinetic energy K°©.
The darker the shade of grey, the larger is u§ (¢, z)? in that region. White sectors give a negligible
contribution. See Section [4.3]

In Section 4.3} we continue the discussion of this kind of behaviour by providing an explicit
case where does not hold in the limit even if the local toughness is constant and the
other data are smooth. (See also Remark ) In our new example, the initial conditions
are not at equilibrium, in particular the initial position ug is not affine in (0,¢y). Therefore,
due to the previous results, the quasistatic limit cannot satisfy the initial condition, i.e., it has
a time discontinuity at ¢t = 0. Moreover, our analysis of the limit evolution (u,?) shows that
the kinetic energy given through the initial conditions is not relaxed instantaneously; its effects
persist in a time interval where the evolution does not satisfy . See Figure @ The surplus
of initial energy, instantaneously converted into kinetic energy, cannot be quantified in a purely
quasistatic analysis. For this reason the usual quasistatic formulation is not suited to
describe the quasistatic limit of our dynamic process.

Quasistatic limit in the case of the speed-depending local toughness. We then
take into account the quasistatic limit in the case of a speed-dependent local toughness x =
#(£(t),£(t)) in order to understand the effect of internal oscillations when Griffith’s activation
criterion features viscous terms.

Our analysis shows that we get the same results of the case with no dependence of k on the
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debonding speed. First, we consider the pair (u®, £¢), where u® is solution to (0.15)) and ¢¢ solves

L2fe(t—el (1) — K(L5(t), (1))
e 2fe(t—el= (1)) + K(£2(t), el5(t))
(0) = o,

=(t) V0, forae. t>0,

that is equivalent to Griffith’s criterion
() >0,

G2 (1) < R(E (D). (1)),

(%) {GZE o) = K (), 565(75))} —0.
Then, by proving equiboundedness in &, we show that u® — u weakly in L?(H'), with u satisfying
the equilibrium equation . Moreover, the limit evolution of debonding front ¢ is such that
¢ > 0. In Remark we prove that Griffith’s inequality is satisfied if we assume that & is
upper semicontinuous in both variables.

Again, in Section we show that the activation condition in Griffith’s criterion does not
hold by presenting an example modeled as the one of Section [£.3] We consider a local toughness
of the form

"Q(‘T7 M) =a + b/%

where a and b are positive constants. We see that the limit as ¢ — 0 features a non-quasistatic
phase. This proves that the kinetic energy released as soon as the process starts is not absorbed
by the system even if the local toughness depends on the speed of the debonding.

In Section 4.4.2| we also prove that this dependence on the debondng speed does not penalise
fast propagations, as one could expect. We analyse the effect of a local toughness x such that

lim k(z,pu) = 4o0.
u—>17

We show another example where we observe the presence of a limit jump when we consider as
local toughness

with x(z) depending only on the position.

In the last part of this thesis, we analyse a simpler problem where we consider the convergence
of solution to singularly perturbed second order equations. Our study shows that in general is
not possible to ignore inertial effects even in lower dimensional problems.

Convergence of singularly perturbed second order potential type equations. A
problem of interest in various areas of applied mathematics is to find stable equilibrium points
for time-dependent energies. In a simplified setting, the problem is to find an evolution ¢t — wu(t)

such that ) —o
z(t,u(t)) =0,
{ Vi (t, u(t)) > 0, (0.19)

where V (¢, z) is a potential, V,, denotes the gradient with respect to x, and V., the corresponding
Hessian. This problem can be locally solved by means of the Implicit Function Theorem, which
provides a smooth solution defined in a neighborhood of t = 0.
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Problem (0.19) has also been studied in finite dimension as the limit case of e-gradient flows.
A first general result was given by C. Zanini in [68], where the author studies the system

et (t) + Vi(t,us(t)) = 0. (0.20)

In [68] it is proved that the solutions u.(t) to converge to a solution u(t) to (0.19), obtained
by connecting smooth branches of solutions to the equilibrium equation through suitable
heteroclinic solutions of the e-gradient flows ((0.20)).

In [I] V. Agostiniani analysed the second order approximation with a dissipative term:

2 Ailo (t) 4 e B (t) + Vi (t, uc(t)) = 0, (0.21)

where A and B are positive definite and symmetric matrices. It turns out that (ue,eBu:) —
(u,0), where u is piecewise continuous and satisfies . Moreover the behaviour of the system
at jump times is described by trajectories connecting the states before and after the jumps; such
trajectories are given by a suitable autonomous second order system related to A, B, and V.

We remark that studying the asymptotic behaviour of solutions, as € — 0, in systems of
the form with A # 0 and B = 0 (vanishing inertia), or A = 0 and B # 0 (vanishing
viscosity), or A, B # 0 (vanishing viscosity and inertia), may give a selection principle for rate-
independent evolutions (namely those evolutions whose loading is assumed to be so slow that
at every time the system is at equilibrium and internal oscillation can be neglected). This
approach has been succesfully adopted in various situations in the case of vanishing viscosity
(cf. e.g. [53, B2, 18, 38, 47, [40, [I7]) and in the case of vanishing viscosity and inertia (cf.
e.g. [62 64, 49, 67, 25]). We remark that in [25] viscosity can be neglected under suitable
assumptions.

The above mentioned results [, 68] require strong smoothness assumptions on V (C3-
regularity is required). The aim of Chapter §| is to weaken the assumptions under which second
order perturbed problems converge to @ . More precisely, we consider a second order equa-
tion of the form without the dissipative term Bt.. (Notice that in general, when B > 0,
it is easier to prove the convergence of solutions.) We therefore study the asymptotic behaviour
of the solutions wu.(t) of the problem

i (t) + Vi (t, us(t)) = 0 (0.22)

to a continuous stable equilibrium ug(t) of (0.19). The main result of Chapter [f]is that the con-
vergence u. — ug still holds under some regularity and growth conditions on V' that are weaker
than those required in [I} [68]. Furthermore we provide a counterexample to that convergence
when such assumptions do not hold.

More precisely we require continuity for V' in both variables and we assume that V(¢,-) €
C?. We also suppose that there is a function Vi(t,z) of class C'-Carathéodory (i.e., Vi(-, z) is
measurable and V;(t,-) is of class C'!) such that

to

Vte,z) — V(t1,x) = /t Vi(t, ) dt,

1

for a.e. t1,to. With some further boundedness conditions on V' (listed in Section [5.1]) we prove
that ug(t) is absolutely continuous and we obtain the convergence result, see Theorem in
Section Specifically, we find that solutions to ((0.22]) satisfy

ue — ug uniformly and elju. — gl — 0 (0.23)
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as e — 0.

In Section we show that, if we weaken the assumptions on V', we are not able to get
. More precisely we provide a counterexample for a model case where the time-dependent
energy is given by

Vi(t,a) = gl — uo(t)
We remark that, when ug € WH1(0,T), then V in its turn satisfies the assumptions of Section
In this case, solutions u, of converge uniformly to ug(¢). On the other hand we show
that, if ug is the Cantor-Vitali function, then can not be satisfied (see Example . In
fact, we prove that no subsequences of solutions to (0.22) could converge to ug and that the
continuous functions ug with this property are infinitely many (see Proposition and Remark
5.9).

Our non-convergence result in Section [5.3| can therefore be regarded as an example in which,
in the absence of a damping viscous term, dynamic solutions do not converge to stable equilibria
even in very simple situations. This is consistent with our examples in Sections &[4
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The material contained in the present thesis has partly been published on journals. Specif-

ically, Sections are presented in [23], Sections are part of [45], Sections and
appear in the Preprint [46], Chapter |5 can be found in [55], while Chapters [2| and [3| are in

preparation.



Notation

In this chapter we fix the notation that will be used throughout the thesis.

Basic notation.

a A B, min{a, B}
aV B, max{a, 3}
a-b

|-

- llx

t
X
Ut, Uy

Utt, Utg, Uz

minimum between « and

maximum between o and 3

scalar product between two vectors a,b € R"

modulus, euclidean norm of vectors in R" or matrices in R™*"
norm of the normed space X

time variable

space variable

time and space (weak) first derivatives of the function u
(mixed) time and space (weak) second derivatives of the function u
(weak) first derivative of the function of only one variable f
(weak) second derivative of the function of only one variable f

closure of the set A
ball with radius r» > 0 centered at x € R"



Functional spaces. Let X be a metric space, {2 an open set in R”, and T > 0.

C*(X;R™) space of R™-valued functions defined in X and with & continuous derivatives
CchH(X;R™) space of C*(X;R™) functions whose k-th derivative is Lipschitz

C’g (X;R™) space of R™ — valued continuous functions with compact support in X
CY(X;R™) closure of CO(X;R™) with respect to the supremum norm in X

D'(2) space of distributions over {2

LP(Q) Lebesgue space with 1 < p < +o00

wkp (Q) Soboloev space with k derivatives and < p < +o0

HY(Q), H*(Q)  the Sobolev spaces W12(Q) and W%2(Q) respectively

HL () space of functions that are locally in H'(Q)

HY () space of H'() functions with zero trace)

HY(Q) dual of HJ(Q)

L*(0,T;L*(Q)) L? space of L*(Q)-valued functions defined over the interval (0, 7)
L*(0,T; H'(Q)) L? space of H'(Q)-valued functions defined over the interval (0,7)
(Q)) H' space of L?(Q)-valued functions defined over the interval (0, 7)

In the previous spaces R" is omitted when n = 1.



Part 1

Existence and uniqueness results



CHAPTER 1

Dynamic evolutions for a peeling test in
dimension one

This chapter is devoted to the study of a model for a peeling test in dimension one.

In the first section, we establish existence and uniqueness of a solution u to , when the
evolution of the debonding front ¢ — £(t) is already known. In the second section we introduce
a precise notion for the dynamic energy release rate, which will be used to derive Griffith’s
criterion for the evolution of the debonding front. In the third section we analyse the coupled
problem for u and ¢ and eventually find that there exists a unique solution with u satisfying
and ¢ such that Griffith’s criterion is satisfied in the equivalent form given by . Finally, in
the fourth section we consider the case of a speed-dependent local toughness, giving existence
and uniqueness result for the pair (u, ) satisfying the coupled problem & (0.7).

The results of Sections have been published in the paper [23], a joint work in collab-
oration with G. Dal Maso and G. Lazzaroni, while Section is part of a forthcoming paper in
collaboration with G. Lazzaroni.

1.1 The problem for prescribed debonding front

In this section we make precise the notion of solution of problem (0.1]) when the evolution of the
debonding front is prescribed. More precisely, we fix £y > 0 and ¢: [0, +00) — [{y, +00), and we
assume that for every T > 0 there exists 0 < Ly < 1 such that

0< E(tg)—ﬁ(tl) < LT(tQ—tl), for every 0<t1 <ty < T, (1.1&)
£(0) = £o. (1.1b)

~—

It will be convenient to introduce the following functions:
o(t) :=t—L(t) and (t) ==t + (). (1.2)
We observe that ¢ and ¢ are strictly increasing, so we can define

w: [ly, +00) — [—Ly, +00), w(t) = o L(t). (1.3)



Observe that
1— Ly
1+ LT

(ta —t1) < w(te) —w(ty) <ty —t1, for every 0 <1 <to <T. (1.4)
For every a € R, we introduce the space
H'(a,400) := {u € H.(a,+00) : u € H (a,b), for every b > a}.

We assume that

w e H'(0,400). (1.5)
As for the initial data we require
ug € HY(0,0), w1 € L*(0,4), (1.6a)
and the compatibility conditions
up(0) = w(0), uo(b) = 0. (1.6b)
We set
Q:={(t,z):t>0,0<x <L)},
and

Qr ={(t,z):0<t<T,0<z <L)}

We will look for solutions in the space
HY () == {u € H}..(Q) : u e H'(Qr), for every T > 0}.
Moreover, we set for k > 0
CF1(0, +00) := {f € C*([0,40)) : f € C*([0,T)) for every T > 0}. (1.7)

and
CPLQ) = {u e CFQ) : u e CF1(Qp), for every T > 0}.

Definition 1.1. We say that u € HY(Q) (resp. in H'(Qr)) is a solution of (0.1a)-(0.1d) if
Ut — Uze = 0 holds in the sense of distributions in Q (resp. in Qr) and the boundary conditions
are intended in the sense of traces.

Given a solution u € H'(Q) in the sense of Definition we extend u to (0, +00)? (still
denoting it by u), by setting u = 0 in (0,4+00)? \ Q2. Note that this agrees with the in-
terpretation of u as vertical displacement of the film which is still glued to the substrate
for (t,x) ¢ Q. For a fixed T' > 0, we define Qr := (0,7)x(0,4(T)) and we observe that
u € H'(Q7) because of the boundary conditions &. Further, we need to impose the
initial position and velocity of w. While condition in can be formulated in the sense of
traces, we have to give a precise meaning to the second condition. Since H'((0,T)x(0,4)) =
H'(0,T;L?(0,40)) N L2(0,T; H*(0,4y)), we have u, u, € L%(0,T; L%(0,£)). This implies that
g, Uy € L2(0,T; H=1(0,4p)) and, by the wave equation, uy € L?(0,T; H1(0,4y)). Therefore
u € HY0,T; H-1(0,40)) < C°([0,T); H-1(0,4y)) and we can impose condition as an
equality between elements of H~1(0,¢y). This discussion shows that the following definition
makes sense.



Definition 1.2. We say that u € HY(Q) (resp. H'(Qr)) is a solution of (0.1) if Definition

holds and the initial conditions (0.1d)é(0.1€) are satisfied in the sense of L%(0,4y) and
H=1(0,4g), respectively.

In the following discussion 1" and u are fixed as above. We consider the change coordinates

—f—
{5 © (1.8)
n=t+ux,
which maps the set Qp into Q. In terms of the new function
§+n n-2¢
v@m%=u(2n,2 ), (1.9)

the wave equation (0.1a)) (weakly formulated) reads as

vge =0 in D'(S). (1.10)

This means that for every test function o € C2°(€2) we have

0= (vye, ) = — /ﬁvn@,n) e (€,m) dé oy (1.11)

For every ¢ € R let N N
0% = {neR:(&n) €9},

and, similarly, for every n € R let
Q={€€R: (&n) € Q}.

Notice that, thanks to (1.1a)), Qf and ﬁn are intervals. Moreover (¢ # (ifand only if £ € (=€, T)
and similarly Q, # 0 if and only if n € (0, T+4(T)).

Lemma 1.3. A function v € HY(Q) is a solution to (1.10)) if and only if there exist functions
feHL. (o, T) and g € H (0, T+{(T)) such that

oc loc

T
/ F(6)?108| d€ < +o0, (1.12a)
—{
T+0(t) B
/0 G218, dn < +o0, (1.12b)
and B
v(&n) = f(&) +gn), forae (§&n) e (1.13)

Proof. Let v € H! (ﬁ) be a solution to (1.10)). Using a standard argument for the slicing of H*

functions, we deduce from (L.11)) that for a.e. n € (0, T+¢(T)) we have v,(-,n) € L*(2,) and

[ onemierg =0, for every 5 € (@),

Qy

This implies that v, is in H 1((277) and its derivative in the sense of distributions vanishes in SN)n.
Therefore for a.e. n € (0, T+£(T)) there exists ®(n) € R such that

on(€,m) = ®(n), for ae. &€ Q. (1.14)
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Let us prove that ® € L (0,7+¢(T)). First, by applying the Fubini Theorem to v,, we
deduce that the function ® belongs to L2(Qf) for a.e. £ € (—f,T). On the other hand, for
every 1o € (0,T+£(T)) there exists & € (—fo, T) such that ny € QF for every £ in a suitable
neighbourhood of &). Together with the previous result this gives ® € LlOC(O T —I—E( ))

Let now g be a primitive of ®, which clearly belongs to HloC (0,74+£(T)). By (1.14) and the
Fubini Theorem, for a.e. £ € (=4, T) we have v,(§,n) = g(n) for a.e. n € Qg, therefore for a.e.
¢ € (=4, T) there exists f(¢) € R such that v(&,1) = f(£) + g(n) for a.e. n € O . Using again
the Fubini Theorem, for a.e. n € (0,T+¢(T)) we obtain v(&,n) = f(§) + g(n) for a.e. £ € ﬁn'
This implies that for a.e. n € (0,74¢(T")) the function f belongs to Hl(ﬁn). Arguing as above
we deduce that f € HL (—£o,T). In conclusion, for every solution v to (L.10), with v € HY(Q),
there exist f € HL (—¢y,T) and g € HL_(0,T+¢(T)) such that ( is satisfied.

Moreover, taking the derivative with respect to & we find that for a.e. n € (0,T+4(T)),
ve(&,m) = f(&) for ae. € € Q By the Fubini Theorem

T . ~
/ (€208 de = / ve(€,m)? de dy < +oo.
—{ Q

Similarly we prove that

T+4(T) N
[ s = [ w6 n?dedn < +oc.
0 Q

Conversely, assume that f € HL (—£o,T) and g € H (0, T+4(T)) satisfy (1.12)) and define
v as in (1.13)). Then, by the Fubini Theorem, f and g belong to H'(Q2). Moreover, v € H()
and ([1.10)) is satisfied. O

In the next proposition we return to the variables (¢,x) and use Lemma to characterise
the solutions of problem — according to Definition Notice that the boundary
conditions imply a relationship between the functions f and g of the previous lemma, so that
the solution can be written using either of them.

In this characterisation we use the functions ¢ and v defined in . We extend ¢! to
[0, +00) by setting ¢~ 1(s) := 0 for s € [0, £p). Notice that all integrands in are nonnegative
and recall that a V b = max{a, b} and a A b = min{a, b}.

Proposition 1.4. Let T' > 0 and assume (1.1) and (1.5). There exists a weak solution u €

H'(Q7) to problem (0.1a)-(0.1d) (in the sense of Definition if and only if there exists a
function f € H} (—lo, T+L(T)) with

T—(T), T

/ f(s)?(e71(s) = (s Vv 0)) ds+/ f(8)(T = (s Vv 0))ds < +oo0, (1.15a)
—4y T—Z(T)
T+(T) '

[ @ -fep s aT) v o) as < 4, (1.15b)

whose continuous representative satisfies f(0) =0 and
ft4e(t)) = w(t+e(t)) + f(t—£(t)), for everyt € (0,T). (1.16)
In this case u is given by

u(t,z) = w(t+z) — f(t+z) + f(t—x), for a.e. (t,x) € Qr. (1.17)



Proof. Usmg , , and , we can assert that every weak solution u € H'(Q) of
problem (0.1} has the form

u(t,x) = f(t—z) + g(t+x), for a.e. (t,z) € Qr, (1.18)

for some functions f € H\. (=0, T) and g € H]} (0, T+£(t)) satisfying (1.12). Then, by the
boundary condition (0.1b|) and by the continuity of f, g, and w in (0,7T),

u(t,0) = w(t) = f(t) + g(t), fora.e.te (0,T).

From now on we consider the consider the continuous representatives of f, g, and w. We observe
that ¢ = w — f everywhere in (0,7) and w — f is continuous in [0,7") (indeed, w is continuous
in [0,7] because w € H'(0,T), while f is continuous in (—¢y,T) because f € HL (—¢y,T)).
Therefore we can extend g at zero by continuity. Analogously, f can be extended at T by
continuity, so that w(t) = f(t) + g(t) for every ¢ in [0,7]. We can also extend f by setting
f=w—gin (T,T + {T)), so that f € HL_(—lo, T+{(T)). In particular, reduces to
(L17). Moreover, by the second boundary condition wu(t, £(t )) = O we obtain (1.16). By a direct
computation of |Q§| and of |Qn\ one sees that conditions are equivalent to (1.15)). The
condition f(0) =0 can be obtained adding a suitable constant O

Remark 1.5. The results obtained up to now hold also in the case ¢y = 0, provided that ¢(¢) > 0
for every t > 0 and that w(0) = 0.

In the remaining part of the section we focus on the case ¢y > 0. We begin with a Proposition
which gives the connection between f and the initial conditions ((0.1d))&(0.1€]).

Prop051t10n 1 6 Let T > 0 and assume (L.1)), [L.5), and (L.6a). Let f € H} (—lo, T+((T))

satisfy (1 , and f(0) = 0, and let u be defined by - Then, u is solution to
problem @ in HI(QT), according to Deﬁnition if and only if

f(s) =w(s) — u02(s) — ;/08 ui(z)de — w(0) + u02(0), for every s € 10, {y], (1.19a)
f(s)= “0(2‘9) _ % /Os up(z)dz — u02(0)7 for every s € (—{y,0]. (1.19b)

Proof. We already know, by Proposition that u is a solution to problem (0.1al)—(0.1c). We
compute the time derivative of v using (1.17) and we obtain

w(t, ©) = w(t+z) — f(t+z) + f(t—x), for a.e. (t,z) € Q.
Assume that (0.1d)&(0.1¢]) holds. By (1.17)) and (1.25a)), taking (¢,z) = (0, s) , we deduce that

uo(s) = w(s) — f(s) + f(—s), forevery s € [0, 4p), (1.20a)
ui(s) = w(s) — f(s) + f(—s), fora.e. se (0,0), (1.20b)

where we have used the continuity property of f and the initial conditions according to Definition

By adding (|1.20b)) to the derivative of (1.20a)), we find that

to(s) + wa(s) for a.e. s € (0,4). (1.21)

fs) = () — “HTHE,



Therefore, integrating (1.21]), we obtain (1.19). Equality (1.20al) enables us to determine f in
the interval [—/g, 0], leading to (T 19b.

Conversely, assume that (|1 holds. Then follows easily and, taking the deriva-

tive of (1.19]), we obtain also (1 AOb' Finally, 1| together with (1.17) and (1.25a)), gives
-&10 1 ) in the sense of Definition O

Remark 1.7. Conditions (I.5)) and (1.6a)), together with (1.19)), show that f € H(—/p, o) and
(1.19b)) holds for every s € [—£g, 0].

We are now in a position to give the main result of this section, which gives existence and
uniqueness of a solution to problem ((0.1)), according to Definition

Theorem 1.8. Assume (L.1)), (L.5)), and (1.6). Then there is a unique solution u € I:Tl(Q) to
problem (0.1)), according t0~Deﬁm'tion. Moreover, there is a unique function f: [—{y, +00) —
R, with f(0) =0 and f € H'(—{y, +00), such that (L.17) holds.

Proof. By Propositions and it is enough to construct a function f: [y, +o0) — R,
with f € H'(—{y, +00), such that (1.19) holds and

FHL(E)) = w(t+€(t) + f{E=L(2)), (1.22)

for every t € [0, 4+00). We use (1.19) and Remark to define f in [—£p, £o]. To conclude the
proof we now have to extend it to (4, +00) in such a way that ((1.22)) is satisfied.
We set tg := £y and t; := w™!(ty) and we define f in (tg,t1] by

f(t) = w(t) + f(w(t)), (1.23)

for every t € (to,t1]. Since w, f € H'(—{g,t) (see Remark and w is bi-Lipschitz between
(to,t1) and (—£o, Lo) by (L.4), we have f € H'(to,t1). Using the compatibility conditions
we deduce from and that f(t;) = f(td), hence f € H'(—{y,t1). Moreover, by
(L.23)), we obtain that is satisfied in [0,%71(t1)).

We now define inductively a sequence t; by setting t;11 := w™'(#;). Let us prove that
t; — 400. From the definition of ¢ and @ and from the inequality ¢(t) > ¢y we deduce that
@7 L(t) >t + £y and 9(t) >t + £y. By the monotonicity of 1 we thus find that

“Lt) >t + L) >t + 20,

which implies t;11 — t; > 2¢g and therefore t; — +oc.

Assume that for some i the function f has already been defined in [—{g,t;] so that fe
H'(—fp,t;) and ) holds for every ¢ € [0,¢*1(t¢)). We define f in [t;, tit+1] by for
every t € [ti,ti+1] W1th this construction ) holds for every t € [to,t;), hence holds
for every t € [0,9"!(¢;11)). Since f is contlnuous at ti_1 € (=, t;), we deduce from ) that
f is continuous at t;, which implies f € H*(—fo,t;11).

Since t; — 400, this construction leads to f € Hlloc(—ﬁg,—l—oo) satisfying for every
t € [0, +00). Condition is obviously satisfied.

This construction shows that the function f: [—fp,+00) — R satisfying in [—{g, {o]
and for every t € [0,+00) is uniquely determined. Thanks to Propositions and
this gives the uniqueness of the solution wu. ]

10



Remark 1.9. Theorem implies that the solution of problem (0.1]) according to Definition
has a continuous representative which satisfies

u(t,x) = w(t+x) — f(t+x) + f(t—x), for every (t,x) € Q, (1.24)
for a suitable function f € H'(—£y, +00) such that

f@&) =w(t) + f(w(t)) for every t > 4.

From now on we shall identify v with its continuous representative. Equality implies
that, for every ¢ > 0, the function u(t,-) belongs to H'(0,£(t)). Moreover, for every t > 0, the
partial derivatives, defined as the limits of the corresponding difference quotients, exist for a.e.
(t,z) € Q and satisfy the equalities

ui(t, ) = b(t+z) — f(t+2) + f(t—), (1.25a)
up(t,2) = w(t+a) — f(t+a) — f(t—a). (1.25D)
Therefore, if we set u = 0 on (0,400)? \ Q, taking into account the boundary condition

u(t, £(t)) = 0, we obtain that u(t,-) € H (0, +00) for every t > 0. Moreover ¢ — u(t, -) belongs to
CO(]0, +00); H'(0, +00)), while  — uy(t,-) and t — wu,(t,-) belong to C°([0, 4+00); LQ(O, +00)).

Remark 1.10. We denote by w” the composition of w with itself k times. The construction of f
in the proof of the previous theorem shows that for every s € [{y, +00) there exists a nonnegative
integer n, depending on s and with n < SHO , such that w"(s) € [—y,{p) and

f(w™(s)). (1.26)

I
S 3
J‘:ML
g
&

Since f(w™(s)) can be computed using (1.19), this provides an alternative formula of f in
[—lo, +00), whose geometrical meaning is described in Figure

Remark 1.11 (Causality). In order to prove Theorem we needed formula , which
expresses u(t,x) using w(t+x) — f(t+x). Hence, u(t,z) seems to depend on the value of the
prescribed vertical displacement at a time larger than ¢. However, one can see that u(t,x) can
be alternatively written using the data of the problem (the initial conditions, the boundary
condition w, and the prescribed debonding front ¢) evaluated only at times smaller than .

Indeed, if t+x < £y, formula shows that w(t+z) — f(t+x) only depends on the initial
conditions. On the other hand, for every (¢,x) such that t+x > ¢y there exists s > 0 such that
t+x = s+£(s) = ¥ (s), because 1 is invertible. Therefore, using we get

w(t+z) — f(t+z) = f(w(t+x)). (1.27)

Notice that w(t+z) < w(t+4(t)) =t—L(t) <t

If the vertical displacement w is prescribed only in a time interval [0, 7], we can extend it to
any w € H'(0,+o00) such that @ = w in [0, T] in order to apply Theorem [1.8] Then, by (1.27),
the solution u will not depend on the chosen extension.

Remark 1.12 (Regularity). The regularity of the solution to problem (0.1) depends on the
data. If we assume that the debonding front ¢ is of class C11(0, +00), the loading w belongs to
CH1(0,+00), and the initial conditions satisfy ug € C11([0, £o]), u1 € C%1([0, £o]), and

u1(0) = w(0), (1.28a)

11



w"(s)k 7 T

Figure 1.1: Construction of the sequence in Remark

1o (£0)0(0) + w1 (£) = 0, (1.28b)
then the solution u is of class 51’1(9), as one can see using the construction introduced in
the proof of Theorem Indeed, the function f constructed in Theorem belongs to
CH ([0, £o]) by (L.6D), (1.19), and (1.28a), while f € CH*([t;, ti41]) by (1.22). We already know
that f is continuous at ¢; by ; the continuity of f at ¢; is a consequence of , ,
and . This implies that f € CY1(—£y, +00) and guarantees the Cl'-regularity of the
solution wu in the whole of Q. If condition does not hold, we still have f € CH1([—£g, £o])
and f € CYY([t;, ti41]) for every i > 0, but the function f may be discontinuous at the points ¢;:
in this case u is only piecewise regular in 2. Similarly, if condition does not hold, we may
have discontinuities of f at 0 and, by the “bounce formula” (1.16)), at times w™1(0), w=2(0), ...

We conclude this section with some results on the energy balance for a solution to problem
(0.1). For a solution v € H'(£2) to problem the derivatives u, (¢, z) and w;(t, ) are defined
for every t > 0 and almost every x > 0 by Remark The energy of w is defined for every
t € [0,+00) by

1 i 1 i)
Et) = 2/0 g (t, ) da + 2/0 w(t,2)? da, (1.29)

where the first term is the potential energy and the second one is the kinetic energy.

Proposition 1.13. Let u € H'(Q) be a solution to problem (0.1). Then £: [0,+00) — R is
absolutely continuous in [0,T] for every T > 0. Moreover we have

¢ t40(t) _
Et) = /t F(s)2ds + /t [ir(s) — F(s)]2 ds (1.30)

—L(t)

for every t € [0,+00), where f is as in Proposition .

12



Proof. Using (1.24) and (1.25)), we can write

1 [t@) 1 [t@)
/ ug(t, z)* dz + / u(t, z)? dz
2.Jo 2Jo

6 . . ¢ i
_ % /0 [(w(t—f—x) — ft+a) + f(t—2) + ((t4a) — f(t+ax) — f (t_x)ﬂ dz
¢ ) t+€(t) .
_ / f(s)?ds + / [i(s) = f(s)) ds,
t—0(t) t

where in the last equality we have used obvious changes of variables. Since the expression in
last line of the last formula is absolutely continuous on [0,T] for every T' > 0, the proof is
complete. O

Proposition 1.14. Let u and £ be as in Proposition [1.15. Then & satisfies the energy balance

f(s—£(s))*ds — /0 [i(s) — 2f(s)]u(s)ds, (1.31)

1—0(s
4

5(t):g(0)—2/0 i)

)
)
for every t € [0, 400).

The second integral in ([1.31]) can be interpreted as the work corresponding to the prescribed
displacement. The first integral is related to the notion of dynamic energy release rate as
explained in Section [1.2

Proof. Thanks to (L.30), for a.e. ¢ € [0, +00) we have
E(t) = [w(t+0(t) — f(t+E@)P(1+-6(1) — [(t) — fOF + f(1)? = f(t=€())*(1-(t)). (1.32)

The boundary condition u(t, £(t)) = 0 together with (1.24) gives w(t+£0(t)) — f(t+£(t)) +
f(t—£(t)) = 0 for every ¢ > 0. By differentiating we obtain

(t+0() (1H0(8)) — FEH0) A+E(0)) + F(t—E(8)(1—E(1)) = 0

for a.e. t € [0, +00). From this equality and from (1.32)) we obtain, with easy algebraic manipu-
lations,

. 1= 5 L
E(t) = —20(t - t—0(t))° — [w(t) — 2f(t)]w(t),
(t) ()1+£(t)f( ()" = [w(t) = 2f(1)]w(?)
for a.e. t € [0,400). This proves (1.31), since £ is absolutely continuous on [0,7] for every
T > 0. O

1.2 Dynamic energy release rate and Griffith’s criterion

In this section we introduce in a rigorous way the dynamic energy release rate in our context;
such a notion will be used to formulate Griffith’s criterion throughout this thesis. To this end

we assume that the debonding front ¢ +— £(t) satisfies (1.1a)). Let u be the solution to (0.1)) in €2,
with w € H(0,+00), ug € H'(0,4y), and u; € L*(0, £p), satisfying the compatibility conditions

(L.6B). (See Remark [1.11])
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1.2.1 Dynamic energy release rate

To define the dynamic energy release rate we fix ¢ > 0 and consider virtual modifications z and A
of the functions w and ¢ after . We then consider the corresponding solution v to problem ((0.1))
and we study the dependence of its energy on z and A. More precisely, we consider a function
z € HY(0,+00) and a function A: [0, +00) — [£g, +00) satisfying condition ([I.1al), with

z(t) =w(t) and A(t)=£(t) foreveryt<t. (1.33)

We consider the problem

v (6, ) —vge(t, ) =0, t>0, 0<x < A),

v(t,0) = z(t), t>0,

v(t, A(t)) =0, t>0, (1.34)
v(0,z) = up(x), 0 <z </,

L v:(0,2) = uyi(x), 0 <z </,

whose solution has to be interpreted in the sense of Definition [T.2] and of Remark We recall
that by Remark v(t,z) = u(t,z) for every (t,x) € Q. By the previous results, there exists
a unique function g € H'(—£g, +o0) with g(0) = 0 such that

o(t, ) = z(t+x) — g(t+x) + g(t—2).
By Remark we have

g=[f in[—fy,t]. (1.35)
Recalling , we now define
1 A
E(t: N, 2) = 2/ [va(t,2)° + vi(t, 2)?] da. (1.36)
0
By Proposition |1.14] we have
: L LA, > s .
E(t; N, z) = —2X(t) - ).\(t)g(t—)\(t)) —2(t)[2(t) — 29(t)] for a.e. t > 0. (1.37)

This is not enough for our purposes, since we want to compute the right derivative c‘fr(t_; A, z) at
t = t. This will be done in the next proposition. We recall that, by definition, ¢ € [0,400) is a
right Lebesgue point of A if there exists o € R such that

1 t+h X

h/ ‘)\(t)—a‘ dt —0, ash— 0%, (1.38)

t
We say that ¢ is a right L?-Lebesgue point for z and §, respectively, if there exist 3 and v in R
such that
1

t+h 1 [tth
h/ 12(t) — B dt = 0 and h/ lg(t) —~|* dt — 0, as h — 0%, (1.39)
t t

It is easy to see that, in this case, we also have

1

t+h
h/t 12(t)(2(t) — 2g(t)) — B(B—27)| dt — 0, ash— 0. (1.40)
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Proposition 1.15. Assume (with ¢y > 0), , and . Then there exists a set
N C [0,400), with measure zero, depending only on £, w, ug, and uy, such that the following
property holds for every t € [0,+00) \ N: if A\ and z are as above, if v, g, and E(-; A\, z) are
defined by 65, if A has a right Lebesque point at t, and if 2 has a right L?-Lebesque
point at t, then t is a right L?-Lebesque point for ¢ and

.o 1-«
E(t N\ 2) = —2a1+a

FE=L(5)* = B(B — 27), (1.41)

where a, B, and v are as in ((1.38) and ((1.39).

Proof. We consider the points ¢ with the following properties:

. _ 1 [tO+h .
a) f exists at t — £(¢) and lim / ‘f(s)2 — f(t—£(1))?] ds = 0;
h—0t h (%)

by) if £ < £y, t is an L?-Lebesgue point for 1y and uy;
by) if £ > £, T is a Lebesgue point for & and w(f) is an L?-Lebesgue point for f.
We call E the set of the points satisfying all the properties above. It is well known that

N :=1[0,+00) \ F has measure zero. Let us fix t € E.

Let us prove that ¢ has a right L?-Lebesgue point at £. This is clear if £ < £y. Assume ¢ > o;
using (1.23]) and (1.35)), we have

g(t) = z(t) + g(w(t)) = 2(t) + f(w(t)), for every t € [€o,t + £(1)].

Then we have
g(t) = 2(t) + f(w(®)w(t), for ae. t € (Lo, T+ L(D)].

Since # has a right L?-Lebesgue point at £, it is enough to prove that f(w(t))w(t) has a right
L?-Lebesgue point at t = £. Since £ € E, there exist a and b in R such that

1 w(t)+h | 2 1 t+h )
h/ ’f(s) - a} ds —0 and h/ lw(s) —b]” ds — 0, (1.42)
w(t) t

where in the last formula we used the fact that w is bounded. We now have

2/;% ) —a| ar
gz/fh ) —af w0 dr+ Z/t_ﬂh a2 () — b2 dt. (1.43)

Using the change of variables s = w(t) and the inequalities 0 < w < 1, we deduce from ((1.42)
that the right hand side in (1.43)) tends to zero. This proves that £ is a right L?-Lebesgue point
for g.
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We now prove the formula for the right derivative of the energy at ¢ € E. By (1.37)), we have

FERASEEIA  (Can{ i - -2
2 [(Hh 1A, , l-a,._ )
f;hz‘ <M01+AGWG_MQ)_a1+aﬂ“%@)>dt

1

t+h
N h/t (2(1)(3(t) — 24(t)) — B(B — 2v)) dt

2 [HHh 1=, 2 pir 2
i[O e - e a

Hhlo 1-At)  1-a
— 2 J—
+hﬂtﬁﬂ)[ A@1+X® P dt
1 t+h
g [ OGO 200 6 - 2] dt = T+ 1+ I (144
By we can replace ¢(-) by f(-) in I}. Hence
9 [tth ) ) .
g [ =] fe-xoR - fe-uny] a
t
9 [t=lB)+h .
<z ‘f@f—f@—«ﬂﬁ%ﬁ—ﬂ% as h — 0%,
h Je-u@)

where we have used the change of variables s = t—\(t) and the fact that £(f) = A(t) < A(¢+ h).

Moreover, since the function z — xi;—i is Lipschitz and since ¢ is a right Lebesgue point for A,
we conclude that

I} -0, ash—0". (1.45)
Equations ([1.44)—(1.45)), together with ([1.40]), prove (1.41]). O

Remark 1.16. The set N introduced in Proposition can be chosen in such a way that
N N [0,t] depends only on the restriction of ¢ and w to [0,¢], cf. also (1.3). Moreover, (1.26)
shows that ((1.39) does not depend on the choice of A but only on z.

We are now in a position to introduce the notion of dynamic energy release rate, which
measures the amount of energy spent during the debonding evolution. It is defined as a sort of
partial derivative of £ with respect to the elongation of the debonded region. More precisely,
we fix £ > 0, we consider an arbitrary virtual extension A of €|j0,7) With right speed « at t in the
sense of , and we freeze the loading after time ¢ at the level w(¢). The derivative of the
energy £ with respect to the elongation is obtained by taking the time derivative and dividing
it by the velocity a.

Definition 1.17. For a.e. t > 0 and every a € (0,1) the dynamic energy release rate corre-
sponding to the velocity o of the debonding front is defined as
1. _
Gu(t) := —=E&.(t; \, 2),
o

where \: [0,+00) — [y, +00) is an arbitrary extension of L|j g satisfying conditions (1.1a)),
(11.33)), and (1.38)), while Z(t) = w(t) for every t <t and z(t) = w(t) for every t > t.
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Proposition implies that

Go(t) =2 zf(tlz(z)f for a.e. £ > 0. (1.46)

1
1+
In particular, G,(t) depends on A only through «, so the definition is well posed.

Straightforward computations based on show that, when the solution is regular
enough so that u, (¢, £(t)) is well defined for a.e. ¢ > 0, the dynamic energy release rate can also
be expressed as

Col) = %(1 — 02y (F L) (1.47)

This is consistent with the formulas given in [28].
The dynamic energy release rate can be extended to the case a = 0, by continuity, as

Go(f) = 2f (—0(D))2. (1.48)
We observe that, by (1.46)), Gy (%) is continuous and strictly monotone with respect to o and
Gao(t) < Go(t), for every a € (0,1), Gqu(t) — 0 for « — 17, (1.49)

for a.e. £ > 0.

1.2.2 Griffith’s criterion

To introduce Griffith’s criterion for the debonding model we consider the notion of local tough-
ness of the glue between the substrate and the film. This is a measurable function «: [0, +00) —
[c1, ca], with 0 < ¢1 < co, with the following mechanical interpretation: the energy dissipated to
debond a segment [z1, z2], with 0 < 21 < z is given by

/x () da.

This implies that, for every ¢ > 0, the energy dissipated in the debonding process in the time

interval [0, ] is
o)
/ k(z) dz.
Lo

In our model we postulate the following energy-dissipation balance: for every ¢ > 0 we have
t

£(t) .
E(t; 4, w) —I—/ k(z)dr = £(0;4,w) — / w(s)w(s) —2f(s)]ds, (1.50)

lo 0

where the last term is the work of the external loading. By (1.31)), (1.46]), and (1.48) we obtain
that (1.50]) is equivalent to

/z(t) w(z)dz = /Ot Gg(s)(S)é(s) ds,

Lo

which, in turn, is equivalent to

k(E()E(t) = G (t)0(t), for a.e. t > 0. (1.51)
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In addition to the energy-dissipation balance we postulate the following maximum dissipation
principle, as proposed in [41]: for a.e. t > 0

((t) = max{a € [0,1) : k(£(t))a = Go(t)a}. (1.52)

This means that the debonding front must move as fast as possible, consistent with the energy-
dissipation balance (L.50). We observe that the set {a € [0,1) : k({(t))a = Gq(t)a} has at
most one element different from zero, by the strict monotonicity of a — Gy(t). Therefore the
maximum dissipation principle simply states that the debonding front must move when
this is possible.

Our postulates imply the following properties.

e For a.e. t > 0, if f(t) > 0, then x(£(t)) = Gé(t) (t).

e Forae.t > 0,if £(t) = 0 then s(£(t)) > G (t) = Go(t). Indeed, if the opposite inequality
holds, by continuity and by (1.49)) then there exists « > 0 such that x(£(t)) = Gq(t), which
contradicts ((1.49)).

This amounts to the following system, which will be called Griffith’s criterion in analogy to
the corresponding criterion in Fracture Mechanics: for a.e. t > 0

i(t) >0, (1.53a)
G (1) < K(0(1)), (1.53b)
[Gé(t) (t) — f‘é(ﬁ(t))] i(t) = 0. (1.53c¢)

Conversely, we now show that Griffith’s criterion implies both the energy-dissipation balance
and the maximum dissipation. Indeed, the third condition in Griffith’s criterion implies ((1.51
which is equivalent to the energy-dissipation balance. As for the maximum dissipation, (1.51
implies that ((t) € {o € [0,1) : k(£(t))or = Go(t)a}. Recalling that this set has at most one
positive element, we only need to prove that if E(t) = 0, then there is no positive a > 0 such
that G, (t) = k(£(t)). This is a consequence of the inequality in and of (0.13D)).

We conclude this section by proving that Griffith’s criterion is equivalent to the following
ordinary differential equation:

_ 2f(-11)? — s((1)
2 (t—(2))? + ((()

We recall that Go(t) = 2f(t — £(t))2, by (L.48). If Go(t) < k(£(t)), then the right hand side of
is zero. Moreover, by the strict monotonicity of a — G4 (t) we have G, (t) < k(¢(t)) for
every a > 0, hence gives K(t) = 0. Therefore is satisfied in this case. Conversely,
if Go(t) > k(£(t)), then the right hand side of (L.54) is strictly positive and {(t) is the unique

€ (0,1) such that Gu(t) = k(£(t)). Using (T.46)), one sees that (T.54) holds.

i(t) VO fora.e. te€0,+00). (1.54)

1.3 Evolution of the debonding front

In this section we prove existence and uniqueness of a pair (u(t,x),£(t)) where u solves prob-

lem (0.1) (in the sense of Definitions and and ¢ satisfies Griffith’s criterion (1.53)) as
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formulated in the discussion above. By ([1.54) we look for functions t — f(¢), t — £(t) satisfying

it) = 2/t — U(1))* ~ K ((1)) V0, forae. t>0
2f (t — ()2 + w(l(t)) o ’ (1.55)
£(0) = 4.

We recall that, in order to solve system in Qp for some T > 0, it is sufficient to apply
Proposition and find the related function f defined in [—£y, T+¢(T')]; the solution w is then
given by . The pair (f,£) is found by recursively applying an alternate scheme where the
two systems and are solved separately and iteratively. More precisely, one starts
from the definition of f in [—/p, {y], given by Proposition Thus can be solved in a
time interval [0, s1] such that the right-hand side of the differential equation is defined; this is
illustrated in the proof of the theorem below. The debonding front ¢: [0, s1] — [{, +00) turns
out to be as in the assumptions of Section hence f can be defined in a subsequent interval
[¢o, t1] thanks to the “bounce formula” (1.16). This alternate scheme is then iterated in order
to find the solution in the whole domain.

We are now in a position to state the first existence result under regularity assumptions on
the data. The main point is to solve in the first time interval [0, s1].

Theorem 1.18. Let ug € CH1([0,40]), up € COH([0,4o]), and w € CH1(0,+00) be such that
(1.6b) and (1.28a]) hold. Assume that the local toughness k: [0,+00) — [c1,c2] belongs to
CY1(0, +00). Assume in addition that

. 2
2 [ foffe) 4 0|7 ey
VO =o0. (1.56)

u1(lo) + 1o (o) { ) 3

2 [—7“0(240) + L(;O)} + K (lo)
Then, there exists a unique pair (u, l) € ﬁl(Q)xC’O’l(O, +00) satisfying (0.1) €4 (1.55)). Moreover,
one has (u,?) € CHH(Q)xCH1(0, +00) and 0 < £(t) < 1 for every t € [0, +00).

Proof. We define f in the interval [—/{p,{y] by . Our regularity assumptions and the
condition guarantee that f € CUL1([—fp,£p]). Therefore the right hand side of the
differential equation in is Lipschitz and bounded by a constant strictly smaller than one.
We now set tg := £y3. We can thus find a unique solution to defined up to the unique time
s1 with s1—¢(s1) = to. Notice that £ € C1([0, s1]). Moreover, by (1.19), (1.284), and (1.55)),
‘ (0) coincides with the term in curly brackets in , hence condition is satisfied. With
the aid of the “bounce formula” (|1.16)), we can now find the value of f in the interval [to, 1]
where t; = s1+£(s1). By Remark f and f are continuous at ty. By now, the problem is
uniquely solved with a pair (u, £), with ¢ defined in [0, s1] and u defined (through formula ([1.24))
in Q, U{(t,z) : t € [s1,t1], 0 <z < t; —t}, that is the grey part in Figure We also notice
that f € CY!([tp,t1]), so that we can repeat the previous argument in order to find a unique
solution to the differential equation in ([1.55]), with initial conditions given by ¢(s1), in the time
interval [s1,sa], where so—/(s2) = t1. Applying again (1.16) we can define f on the interval
[t1,t2], where to = so+/¢(s2). Arguing as in Remark @,,%ebcan deduce that f € CT([ty,t2])
and f, f are continuous at t;. Formula leads to a unique solution u of problem
defined in Qg, U {(t,x) : t € [s2,t2], 0 <z < t9 —t}. By iterating this argument we construct
two sequences {s;} and {t;}, with t; < s;4+1 < ti+1 and t;i41 = sit1 + £(si+1) > t; + €p and we
extend progressively the definitions of ¢ and f to the intervals [0, s;] and [—£y, t;] respectively.
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Y

Figure 1.2: Construction of the solution (¢(t), u(t,x)).

Since ¢; — +00, we are able to find a unique solution (u, ?) to the coupled problem defined in
Qx[0, +00). The inequality 0 < £(t) < 1 follows easily from the equation ([1.55). O

Remark 1.19. We make some remarks on the role of conditions in Theorem (Recall
that follows from ([1.56).) When they are not satisfied, arguing as in the previous proof
we see that f € C%!(—£y, +0o) and £ € C%1(0, +00), and they are only piecewise C1'. Indeed,
f may have discontinuities at times 0 and ¢y (and their subsequent times w="(0), w™'(£), etc.,
according to the previous construction). Such discontinuities generate forward and backward
shock waves travelling with speed 1 and —1, respectively, and represented by lines Ry := {(¢,t) :
t €10,971(0)]} and Sy = {(t,lo —t) : t € [0,£p]}. At time t = ¢~1(0), R intersects the front
of debonding, causing a discontinuity for ¢; the forward shock wave is then reflected into a
backward shock wave R, := {(t,w™1(0) —t) : t € [~ 1(0),w™1(0)]}. Analogously, the backward
shock wave S| intersects the axis x = 0 and it is transformed into a forward shock wave
S = {(t,t — o) : t € [lo, o~ (fo)]}. By iterating this argument we construct lines where the
following Rankine-Hugoniot conditions for the derivatives of u hold:

[uz] + [ue] =0 on U (R3;_, USy;) and [ug] — [u] =0 on U (Ry U Sy 1),
i=1 =0

where [-] denotes the difference between the values of the functions across the discontinuity line.
Remark 1.20. Under the assumptions of Theorem [I.I8] we have the equality
k(b)) = Gé(o)(O). (1.57)
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Indeed, the formula for £(0) in the proof implies that, if £(0) > 0, we have

_|_
u1 (€o) + 1o (fo) : =0,
_|_

which implies

(to) = 5 [iolfo)? — wa(0)?] = G (0),

where the last equality follows from (T.47) and (T.28b). If instead £(0) = 0, by analogous
computations we find that

1.
k(lo) = Sio(lo)* = Go(0),
which concludes the proof of (1.57)).

We now prove existence and uniqueness for the coupled system ((0.1))&(1.55) under weaker
regularity assumptions on the data. More precisely, we assume

up € C¥1([0,4)), w1 € L®(0,4), and w € C*(0,+00). (1.58)

In Theorem [1.21] we assume that the local toughness x is constant, while in Theorem [1.22
we consider a nonconstant toughness. Since the arguments in the proof are different, we prefer
to present both cases separately.

Theorem 1.21. Let ug, u1, and w satisfy (1.6b) and (L.58)) and let the local toughness k be
a positive constant. Then, there exists a unique pair (u,l) € H*(Q)xC%H(0,+00) satisfying
(0.1) & (1.55). Moreover, one has u € C%(Q) and for every T > 0 there exists Lt < 1 such that

0<U(t)< Ly forae te(0,T). (1.59)

Proof. We define f in [—{g, 4y] by (1.19). Since our regularity assumptions imply only that
f € C%Y([—£o, £g]), we now have to justify existence and uniqueness of a local solution to (1.55).

This is done by reducing the problem to an autonomous equation, using the fact that x is
constant. Set z(t) := t—£(t). Then the Cauchy problem ((1.55] reduces to

{jg?;ﬁzh (1.60)

where
(2f(z)2 — Iﬁ?) V0
F(z):=1- YOV

Since f is bounded on [—£g, £y], there exists a constant ¢y € (0,1) such that F(z) > ¢ for a.e.
z € [—lp,¥p]. The standard formula for the solution of autonomous Cauchy problems implies

that, setting
o qz
51 = T
/_zo F(z)
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problem (1.60) has a unique solution z € C%'([0,s1]) and that this solution satisfies

z(t) dz
—— =1, foreverytel0,s].
o TG y t €10, s1]

Notice that s is the unique point such that s; —£(s1) = £o. Since £(t) = 1—2(t) < 1—c, we have
that w(t) (see (1.3))) is bi-Lipschitz and thus, by the bounce formula (1.23), f € CO([to, t1]),
where tg = fo and t; = w™(tg) = s1 + £(s1). Then one can argue iteratively imitating the
proof of Theorem without the part concerning the continuity of f. We thus find a unique
solution (u, £) on Q2x[0,+00) which now belongs to C%!(Q)xC%(0, +00). O

We extend this result to a wider class of local toughnesses.

Theorem 1.22. Let ug, u1, and w satisfy (1.6b) and (1.58) and let x € COL Ly, 4+00) with ¢; <
< ca. Then, there exists a unique pair (u,f) € HY(Q)xC%1(0,4+00) satisfying (0.1) & (1.55).
Moreover, u € C%Y(Q) and for every T > 0 there exists Ly < 1 such that (1.59) is satisfied.

Proof. As in the proof of Theorem we only have to study (1.55) in a first time interval
[0, s1]. Set z(t) = t—£(t). We look for solutions to the system

(1) = —m2)
2f(2)? + k(t—=2)
2(0) = —60.

Any solution must satisfy 2 > 0 a.e. and therefore t — z(t) is invertible. The equation solved

by t(z) is
2
% - <; + fiz(f—)z)> V1= 8z, (oY

with initial condition ¢(—¢y) = 0. Recalling that f is bounded in [—lo, {o], it is easy to prove
that ® is locally Lipschitz in ¢, uniformly with respect to z.

We can thus apply classical results of ordinary differential equations (see, e.g., [35, Theorem
5.3]) and get a unique solution z — ¢(z) to (L.61). Then z is found by inverting the function
t(z) and finally ¢(t) = t—z(t) is the unique solution to up to time s1 = t(¢y), which is the
unique point such that s; — ¢(s1) = ¢y. Property follows from the differential equation.
The proof is concluded by an iterative argument based on the “bounce formula” as for
the previous theorems. ]

Remark 1.23. The previous result can be adapted to the case where x is piecewise Lipschitz.
More precisely, we assume that there exist a finite or infinite sequence fy = xg < 11 < T2 < ...,
without accumulation points, and a sequence k,, of Lipschitz functions on [z,_1,x,] such that
k(z) = kp(z) for © € [y—1,zy). Using the arguments of Theorem we can solve the coupled
system for (u,¢) with  replaced by ;. It may happen that £(t) < z; for every ¢. In this case
the problem is solved and the discontinuities play no role. Assume, in contrast, that there exists
71 such that ¢(71) = x1. To extend ¢ after this time, we solve the equation in with &
replaced by ko and initial condition ¢(71) = x1 and then we apply the iterative procedure of
Theorem with k replaced by k2 as long as £(t) < xa. If there exists 72 such that ¢(72) = z2,
then we iterate this argument using as local toughness k3.
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Figure 1.3: A jump of the local toughness at x1 may lead to a solution lingering at x1 in a time
interval [71,71].

Note that the equation may lead to a solution satisfying ¢(t) = x; for every t € [y, 71], for
some 7, > 71. This happens if and only if 2f(t — £(t))? — ko (€(t)) < 0 for a.e. t € [, 71], that is
Go(t) < ka(x1) for a.e. t € [11,71].

Particular cases of piecewise constant local toughnesses x have been studied in detail in
[28, [48]. Our analysis proves the uniqueness of the solution obtained in those papers.

1.4 The case of a speed-dependent local toughness

In this section we consider a generalisation of our problem to the case of a local toughness s
depending also on the debonding speed. We assume that x(x, ) is a function of the position x
in the reference configuration and of the debonding speed u,

k: [0, 400) %[0, 400) — [c1, +00), (1.62a)

where ¢; > 0. We require that k is piecewise Lipschitz in the first variable with a finite number
of discontinuities 21 < --- < xny and with xy = 4.

|k(z1, 1) — k(x2, )| < Ll — x2|(k(x1, p) + k22, 1)) for x1,29 € (zj,2541), j > 0. (1.62b)

Moreover, for every x > £y and 1, 2 > 0 we assume

R, po) = Kz, ) _CS(\/H(%/@) +V/w(z, )

f2 — 1 4 ’

(1.62¢)

where c3 < 2. Notice that this condition is automatically satisfied when & is non-decreasing
with respect to p; in general, it requires a bound on its slope. It will be used in Lemma .

Existence and uniqueness of a solution u to (0.1]), when the evolution of the debonding front
t +— L(t) is prescribed, is again guaranteed by Theorem since k plays no role at this stage
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of the discussion. Then, the arguments of Section are repeated in order to state Griffith’s
criterion that now reads as follows:

i(t) >0,
G (1) < R0, 01)),
Ut) |Gy (8) — le(t), ()] = 0.
Using ([1.46)), it is rephrased in terms of a Cauchy problem for the evolution of the debonding
front ¢ — £(t). We obtain indeed the equivalent formulation
E(t) — Qf(t_£<t))2 — ﬁ(ﬁ(t),g(t))
2f(t=£(t))* + r(£(2), £(1))
£(0) = ¢o.
Since the local toughness depends also on é(t), our main difficulty is that the ordinary

differential equation in ([1.63) is not expressed in normal form. To overcome this difficulty, we
introduce the variable z(t) :=t — /(t) and we consider the function

P [O, +OO) X [—go, 60] X [O, +OO) — R

V0, fora.e. t>0,
(1.63)

defined (for every ¢, u and a.e. z) by

2f(2)? — K(t — :
po HEZKEZ 20 002 5 it 2 ),
O(t,z,p) :== 2f(2)2 + k(t — 2, ) '
1, if 2f(2)* < w(t — 2, ).
Our strategy is then to prove that p+— ®(t, z, 1) is invertible for fixed ¢, z. This will ensure that
the Cauchy problem can be recast in normal form.

By Proposition we obtain the one-dimensional function f in the interval [—/p, {o]. We
then want to solve (1.63)) as long as z(t) =t — £(t) € [0, {o], knowing that f € C%L([—{, lo)).

Lemma 1.24. Let & be as in (1.62)), f € C%Y([~{o,4o]), and ® as in (1.64). Then , the

O(t, 2z, p2) — P(t, 2, 1) -
Ho — 2’
for every t >0, a.e. z > —{y, and every 0 < py < ug, where c3 is given in .
Proof. Let t > 0 and z > —{y. We first observe that if ®(¢,z, ) = p as in the second line of
, then the thesis trivially holds. Next we prove it when ® is given by the first line. This
leads to the conclusion, since ® is the minimum of two functions whose difference quotients are
controlled from below.
We can conclude by showing that & is increasing also when it is equal to yu —

(1.64)

2f:(z)2—ﬁ(t—z,,u)
2P mlt—ap)”

Let 0 < p1 < pg and assume that @ (¢, 2, ;) = pi — % for i = 1,2. Then,

2)* = w(t — 2z, 1)
2)? + Kt — 2z, 1)

@(t, ZMU/Q) — (I)(t7 Z, ul) -1_ 1 2f(2’) (t — 2 K2 1 2f
(

) (
p2 — p1 2 — 11 2f(2)2 4+ K(t — z, p2) ,u2—,u12f(

)

)?

A (2)2[K(t = 2, p2) — K(t = 2, )]
(2£(2)2 + K(t = 2,1)) (2 (2)% + K(t — 2, p2)) (p2 — 1)
1.9 ?f(2)2(\/ﬂ(t —Zm)+ VE( =2, 12)) . (1.65)
2 (2f(2)? + w(t — z,1))(2f(2)* + K(t — 2, p2)

=1+
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This holds for every ¢t > 0 and a.e. z > —{y. Notice that in the last line we used (|1.62c)).
Moreover, it is easy to see that

o 1
(0t Rl — 2 )@ + R(E— 2 7m2)) (Ve =2z, m1) + /Bt — 2, p2))?

for every a > 0. Therefore, we can continue ([1.65) and deduce that

é(ta Znu2) - (I)(tvznul) >1— 3
M2 — 1 2’
where c3 < 2 as stated in ([1.62c]). O

By Lemma the function p — ®(t,z,n), that maps [0,4+00) into itself, is globally
invertible for every ¢ > 0 and a.e. z € [—{g,{p]. Let then ¥: [0,400)x[—Fg, lo] %[0, +00) —
[0,400) be the function such that, given o € [0, 4+00),

O(t,z,V(t,z,0)) =0 and V(t,z,P(t,z, 1)) = u,
for every t > 0 and a.e. z € [—{p, {p]. We can thus rephrase problem ([1.63]) as

{é(t) = U(t,t—0,0) for ae. t >0,

now expressed in normal form. In analogy to Theorem [1.22] it is convenient to use the equivalent
form

(1.66)

1—2(t) =¥(t, 2,0) forae. t>0,
Z(O) = _€0-

We now prove that ¢ — W(¢, z,0) is Lipschitz for fixed z.

Proposition 1.25. Consider ® and ¥ as above. Let k be as in (1.62). Then, there exists C' > 0
such that

’\Ij(t% 270) - \Il(tlv 2, J)’ < C’tQ - t1|7
for every ti,ta > 0 and a.e. z > —{ly such that t1,ts € (x;+ 2,241+ 2) for some j > 0, and for

every o > 0.

Proof. We start from showing that ® is Lipschitz in ¢. Let t1,t2 > 0, z € [—¥o, lo], and p > 0 as
in the statement, such that ®(¢1, z, ) and ®(ta, 2z, u) are defined. Then, we consider x1,xy > £
such that z; = t; — z for i = 1,2. We have that

o p _ 2f(2)2 - H(‘elnu) o 2f(2)2 B ’%(627#)
P = ) S S P k) 2P )
_ 2Pkl 2f()° = k() | 2f(2)° — k(e ) 2f(2)° = (o, )
2F )+ rllrm) 20+ Rl ) | 24wl ) 272+ (lan 1)

2/(2)* — K(t2, p)
(2£(2)% + w01, 1)) (2f (2)? + K(L2, 1))
4f(2)°
(2f(2)? + K(tr, W) (2f (2)? + K2, )

~ k(lo,p) — Kk(l1, ) K kK
SRR il ) )

= (k(l2, p) — K(l1, 1))
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This means that, by (|1.62b)),
‘q)(tlvzmu) - q)(t%znu')‘

< ALy — 0] f(2)?— Kl p) + H_(Kz,u)
} (2f ()2 + (01, 1) 2 (2)2 + (L, 1))

<ALy — 0y] = ALty — o], (1.67)

where in the last line we used the fact that

(51, ) + K(la, 1) f(2)* < (2£(2)* + w(l1, 1)) (21 (2)* + K (Lo, 1))
We now notice that, for every o1, 09 > 0, we have

O(t,z,V(t, z,00)) — P(t,2,¥(t,2,01))

1 =
09 — 01
(L, 2,V(t, 2,00)) — P(t,2,¥(t, 2,01)) V(t, 2,00) — V(t, 2,01)
\I/(t, ZaO-Q)_\I’(taZ’O-l) 02 — 01 ‘

Therefore, by Lemma

|\Ij(t,Z7O'2) 7\IJ(t?ZaO-1)| 1
< s
o9 — 01 1-3

(1.68)

Moreover, for every pu > 0, we have

\Ij(t% 2 <I>(t27 2 N)) — \Il(tla 2 (I)(tlv Z?:u))

0=
t2 — 11
_ U(ty, 2, D(ta, 2, ) — U(t1, 2z, D(t2, 2, 1))
to — 11
U(ty,z, ®(ta, z, 1)) — V(t1, 2, P(t1, 2, 1)) P(ta, z, ) — P(t1,2, 1)
D(tg, 2z, 1) — (t1, 2, 1) ta — 1t '

Finally, for every o > 0 there exists u > 0 such that o = ®(t9, z, 1) (by invertibility of u —

q)(t%zmu)) anda by " and ‘ ’

|\Ij(t27270)_\1](t17270-)| < |t2_t1|'

-5
This concludes the proof. ]

The following result shows existence and uniqueness of a pair (u, £) solving the coupled prob-
lem (0.1) & (1.63)). This generalises Theorem to the case of a speed-dependent toughness.

Theorem 1.26. Assume that the local toughness satisfies (1.62) and let ug, u1, and w be as in
(1.58) such that (L.6b) is satisfied. Then, there exists a unique pair (u,£) € H'(Q2)x C%(0, +00)
solving (0.1)) &(1.63). Moreover, u € CYY(Q) and for every T > 0 there exists Lt < 1 such that
(< Lp.

Proof. We first consider the case where k is continuous. We have to construct a function f
satisfying ((1.22)) and a function ¢ satisfying (|1.63)). By Propositionwe are provided f in the
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interval [—¢p, £y] and we know that f is Lipschitz. Next we solve the Cauchy problem ((1.66)) as
long as t — £(t) € [—{p, {p]. We have that ¥ is measurable in z because

{z>—Ly:¥(t,z,0) <p}={0>0:0<®(t,z, 1)},

for every ¢, > 0, and ® is measurable because f € L>°(—£y,ly) and k > c; is piecewise
Lipschitz. Moreover, by Proposition t — W(t, z,0) is locally Lipschitz for a.e. z € (—¥g, ).
We now notice that there exists 0 < ¢ < 1 such that

U(t,2,0)e€[0,1—c¢.
Indeed, starting from ®(t, z, U(t, 2,0)) = 0, we find that

2f(z)2 — k(t —2z,9(t, 2,0))

O = s 0)

Therefore, every solution to ([1.66|) must satisfy Z(¢) > 0 for a.e. ¢ > 0 and it is thus invertible.
The function z — ¢(z) solves the problem

. 1
t(z) = ————— for a.e. z > —/,
() =12 U(t, 2,0) 0 (1.69)

t(—4y) = 0.

Since 0 < #(z) < %, U(t,2,0) is Lipschitz in ¢ uniformly in z, and it is measurable in z, we
can apply classical results on ordinary differential equations (see, e.g., [35, Theorem 5.3]) and
get a unique solution z — ¢(z) to (1.69). Then z is found by inverting the function ¢(z) and
finally ¢(t) = t—z(t) is the unique solution to up to time t(¢p), satisfying ¢ < Lp. Next
we employ to extend f to (£o,t(ly) + £(t(¢p))], so the ordinary differential equation can
be solved in this interval, hence ¢ and f are further extended. The proof is concluded by the
iterative argument based on the “bounce formula” that we explained in Theorem m

In the case that k has a finite number of discontinuities z1, ..., zy, we may apply the previous
argument to solve as long as t(z) — z < x1. If there is z; such that t(z1) = z1 + 21, we
extend the solution for z > z; by solving the Cauchy problem with initial datum ¢(z1) = x1 + 21
as long as t(z) — z < x2, recalling the monotonicity of z — t(z) — z. Iterating this argument
allows us to conclude. O
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CHAPTER 2

The problem of debond initiation

In this Chapter we consider the case of debond initiation, i.e., the case £y = 0 for our model
of dynamic peeling test. In the first section we analyse the problem of finding u solution to
f when the evolution of the debonding front is given. In the second section we
couple this problem with Griffith’s criterion and find existence of a pair (u,¢) solution to the
coupled problem. The results of this chapter are part of a forthcoming paper in collaboration
with G. Lazzaroni.

2.1 The problem for prescribed debonding front

In the case of debond initiation the problem for u is

U (t, ) — uge(t,2) =0, t>0,0 <z <L), (2.1a)
u(t,0) = w(t), t>0, (2.1b)
u(t, 4(t)) =0, t>0, (2.1¢)

where £: [0, +00) — [0, +00) is a given Lipschitz function and it satisfies

0 <{(t) <1, for a.e. t >0, (2.2a)
£(0) =0, (2.2b)
£(t) > 0, for every t > 0. (2.2¢c)

Defining ¢, ¢: [0,00) — [0,00) as in ((1.2) and w as in (|1.3)), we now observe that w(t) = 0 if and
only if ¢t = 0. Moreover,
0 <w(t)<t, foreveryt>D0. (2.3)

Indeed, by (2.2d), for every t > 0 we have
Y(t) >t and o(t) < t.

Therefore 1~1(t) < t and thus w(t) < t.
We assume ~
w € H' (0, +00), (2.4)
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with the compatibility condition
w(0) = 0. (2.5)

By Proposition given w of the form (2.4), u € H*(Qr) is a solution of (2.1 in the sense
of Definition |1.1|if and only if there exists a function of one variable f € HL (0,7 + ¢(T)) such
that

T—(T), T

/ F(8)2(71(s) — s)ds + / F($)2(T — s)ds < +oc, (2.6a)
0 T—4(T)
T+4(T) ‘

/0 (i(s)— F())2((s AT) — % (s)) ds < +oo, (2.6b)

whose continuous representative satisfies f(0) = 0 and the “bounce formula” ([1.16]). Using the
change of variables s = 1 (t) we re-write ((1.16) as

f(s) =w(s)+ f(w(s)), foreveryse (0,T+¢T)). (2.7)

By Remark we write, for every n > 1,

f(s) =) w(wh(s)) + f(w"(s)). (2.8)

Notice that for every s € (0,7 + ¢(T")) we have
wF(s) = 0, as k — .

Indeed, let s, := w¥(s). By (2.3), the sequence {s;} is decreasing and thus s; — 5 for some
5€[0,T +¢(T)]. By the continuity of w,

w(s) = w(lillgrn 5k) = li}]énw(sk) = h]?l Sk+1 = S.

This means that § = 0.
Since (2.8]) is constant in n, then

n—1
f(s) = lim Zw(wk(s)) + f(W"(s))|, forevery se (0,T+£(T)).
k=0

n—oo

Moreover, if
[o.¢]

> w(wh(s)) < oo,

k=0

then lim,, f(w™(s)) exists. Notice that in the case f € H'(0,T+4(T)) we have lim,, f(w"(s)) =0
for every s € [0,T + £(T")] which leads to

fls) = w(Wh(s)). (2.9)

k=0

Our aim is then to find conditions such that the series above is finite in order to use formula
(2.9) to find the solution u to problem ([2.1)) via the function f. See Figure

The following example gives a motivation to move in this direction.
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t A

Figure 2.1: Infinite iteration of the “bounce formula” ({2.7]).

2.1.1 The straight line case

Before proceeding with a general analysis, we first discuss the sample case of ¢(t) = pt, where
0 <p<1, and w(t) = at, where a > 0. This will give us hints to solve more general cases.
By solving the wave equation in the domain €2, we find a solution u(t,z) = at — a%. By

P
(1.17), we have

at—a% = at+ax — f(t+z) + f(t—x) for every (t,z) € Q.

Then, for t =z = J, we find that
I+p
=a——S. 2.10
f(s) = a'y s (210)
This is consistent with (2.9)) because, since w(t) = %t and since
3 <1p> _ Ly
o \1+p 2p
then
[ele} [ee) [ee) 1_p k 1+p
k k
s)=>» ww'(s)=>» aw(s)=» al—— ] s=a——s.
1) = o wet o) = k) = Yoo (17) 9=y,

Therefore, in the case of a given debonding evolution of the form ¢(¢) = pt, we can con-
struct explicitly the function f corresponding to the solution of the wave equation on the time-
dependent domain §2.
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We now motivate our choice to look for solutions in H! as required in Definition To this
end, we show that even in the case of the straight line we are able to find more than one solution
(in fact, infinitely many) to (2.1), when u is only in HL (). Indeed, problem (2.1 admits a
unique solution if and only if

U (t, ) — ugg(t,x) =0, (2.11a)
u(t,0) = 0, (2.11b)
u(t,pt) =0, (2.11c)

has u(t,z) = 0 as its unique solution. By D’Alembert’s formula, and using the condition ({2.11b)),
we find

u(t,x) = f(t—x) — f(t+x). (2.12)

Moreover, the boundary condition on (¢, pt) implies that f((1—p)t) = f((14p)t). We define
= }:L—g and obtain

Fut) = £(0). (2.13)

We now look for a solution f of the form f(¢) = F(logt), so that condition (2.13)) can be written
as
F(logt) = F(logt + log ).

This implies that any (log u)-periodic function F' gives a solution to problem (2.11)).
We can however prove that there exists a unique u € H'(f2) solution to (2.11). Indeed, by

(2.6, we have
1 17 2 0
. (1 .
+oo>/ Sf(S)QdS—/ (OgS)dS—/ F(0)?do
0 0

S —00

Since F is periodic, also F is periodic. Therefore

0
/ F(o)*do < oo,

—00

if and only if I' = 0 almost everywhere. This implies that F is constant and thus the same holds
for f. Finally, by (2.12) we obtain u = 0 and therefore there is a unique solution « € H'(2) to
(2-17). On the other hand, if we seek solutions u € H,. (), then F' need not be constant and

loc

infinitely many solution to (2.11)) are thus found because of the periodicity of F'.

2.1.2 Case with controlled debonding front speed

To rule out the previous examples, we now present existence and uniqueness for solutions u €
H'(Q) according to Definition [1.1| when in addition to (I.I)) we assume

0<co<l(t)<1l forae. t>0. (2.14)

Notice that this condition implies that w is a contraction with

1-— Co
1 + Co'
Theorem 2.1. Let 1 < p < oo and T > 0. Assume (2.2) and ([2.14), and let w € H'(0,T) such

that (2.5)) is satisfied. Then, there exists a unique solution u € H'(Qr) to problem ([2.1) such
that f € HY(0,T).

w(t) <

(2.15)
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Proof. We consider the space
XT = {f € HI(O,T),f(O) = 0}

We want to prove that there exists a unique function f € H'(0,T) such that (2.7) is satisfied.
We thus consider the map S: X7 — X7 defined by

S(g) :==gow+w,

for every g € Xr. We notice that S maps X7 into itself because w € C%([0,T]) and w €
H'(0,T), with w(0) = 0 and w(0) = 0. We observe that

14 = S aory = (frow— faow) @l
2

T, . ; . .
= [ (fiw) = falw)” veyar

1_00 /’&)(T) 2
< — d
i [0 - Aok

1_C0 2
< 1JrCO||fl — fallz 0,1y

because w is a contraction. Moreover,
T
1S f1 = Sfal72 < /O |fi(w(t) = folw (D) dt

T
:/0 |(f1(w(®) = fa(@ (1) = (f1(w(0)) = fa(w(0)[* dt

/T |
0

w(t) d
[ i)~ s as|
T
S/o 1f1 = fallfn oy (W(t) — w(0)) dt

w(0) ds

<lf=Ffelmon. Feo Jo tdt

_1—00T2
I

Notice that we used Holder’s inequality and (2.15). If T is sufficiently small, then S is a
contraction in Xp. By the contractions lemma, there exists a unique function f € Xp such

that Sf(t) = f(w(t)) + w(t) = f(t), that is (1.23]). Through formula , we have a unique

solution u € H!(Q7) to problem (2.1)). We finally notice that, in the case 1_7_?0’% > 1, then S is
not a contraction in Xp. However, we can find 7 € (0,7 such that S is a contraction in X, and
then we extend f to [0,7] using an iterative argument based on ([1.23). Therefore, there exists

a unique solution u € H(27) to problem (2.1)). O

[l f1 —f2|‘%{1(0,T)‘

2.2 Evolution of the debonding front via Griffith’s criterion

After having established a general case where there is existence of a solution v when the evolution
of the debonding front is already known, we question whether it is possible to select those
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evolutions satisfying Griffith’s criterion (1.53). Our aim is then now to construct a pair (u, /)
solution to the coupled problem (2.1))&([1.55)). To this end, we first consider again the case in
which the evolution of the debonding front is given by a straight line (see Section [2.1.1)).

Lemma 2.2. Assume that w(t) = at with o € (0,1) and let the local toughness k be constant.
Then the pair (u,l) with £(t) = pt and u(t,x) = a(t — L) (with related function f defined in
(2.10) ) is a solution to the coupled problem (2.1]) & (1.55).

Proof. We prove that there exists only one possible value for p € (0,1) such that (1.53) is

satisfied and £(t) = pt. From u(t,z) = ot —a}, we find uz(t, z) = — 2 for almost every ¢ and x.
Thus, from ([1.47]), we obtain that the dynamic energy release rate is

1 a?

Gjn(t)==(1-p?)—.

g(t)( ) 2( p ) p2

Using (1.53¢)), we have that evolution occurs when

1 o?
~(1-p*)= = k.
5015
Therefore,
o
= 2.16
P= (2.16)
is the only possible slope between 0 and 1 such that Griffith’s criterion is satisfied. O

Fix now 7' > 0. Let the local toughness «: [0,400) — [c1, 2] be a Lipschitz function and
let the external loading w € C%'([0,T]), with w(0) = 0 and w(0) > 0. Then, for 0 < § < T
sufficiently small there exists a pair (u®,£%) € C%1(Qr)xC%1([0,T]) solution to the coupled

problem (2.1)) & (|1.55) with w and k substituted by

w(d) .
—_ <t <
w(;(t): (5 t, 1f0_t_(5, (217)
w(t), if t > 6,
and
fo<z<
() = K(pso), ?O_x_m& (2.18)
k(z), if x > pso,
with E‘S(t) = pst when 0 <t < ¢ and
s (2.19)

ps = —F/—
,/2/4;54-0%

Indeed, let as := @ and ks := K(psd). By (2.16) and since w(0) > 0, if § is sufficiently small,
there exists a unique ps € (0,1) of the form ([2.19) such that ¢°(t) = pst is an evolution of the
debonding front in [0, §] with corresponding u® given through (I.17) by

5 ,/2/@5—1—0%4—@5
o) = ¢

2 )

with 0 <t <6 (2.20)

33



that solves (2.1) with ¢ € [0, 4] and satisfies Griffith’s criterion. At time ¢t = d we can explicitly
compute u(d, z) and u(d, ) by (1.17) obtaining

ug = u(0,x) = asd — \/2krs + 04(%33

u = (0, %) = ag.

and

Moreover,
05 = £3(8) = psod.

Notice that ud(0) = w(8) and uf(psd) = 0. Therefore, u) satisfies and thus, using Theorem
1.8 with data given by w?, &9, ug, u(ls, and Kg, we extend (u’, £9) to a solution of &
for every 0 <t < T. Moreover, (u®, %) € COY(Qr)xC%1([0,T)).

Therefore, there exists a solution to & that satisfies Griffith’s criterion
with w® and x° as in (2.17) and (2.18). Notice that we are unable to prove uniqueness at this
stage. Our aim is then to study the limit as 6 — 0 in order to obtain a limit pair (u, ¢) solution
to the coupled problem & . Nevertheless, we shall make some technical assumption
on the regularity of w in a small neighborhood of 0.

We now set rg := x(0) and prove a technical lemma which will be used to find assumptions
allowing a bound for f? uniform in 4.

Lemma 2.3. Assume that w(0) > 0 and k: [c1,+00) — [c1, c2] with 0 < ¢1 < ¢2 be a Lipschitz
function. Then, there exist A\, u such that

Ko

. Ko

— > A 2.21b
0(0) + 52 > (2.211)
. Ko
w(0) + oy SH- (2.21c)

w(0)+1/2k0+1(0)2
2

In particular, we have A < v < u, wherev := is the fized point of x — w(0)+452.

Proof. We first notice that, since x +— w(0) + 52 is decreasing (recall that ko > c1) and since
v is its fixed point, (2.21b) & (2.21c) imply A < v < p. Moreover, we can re-write (2.21b) &

(2.21¢]) in the equivalent form:

RO 1 . KO
— <AL 0 —.
2 1 —w(0) W) +3,
Notice that, if 4 > v > w(0), then the left hand side of the previous inequality is positive. We

choose u such that
Ko Ko 1

u‘)(0)+ﬂ> > 1 00)

This is equivalent to
2u% — 2w(0)p — kg > 0,

that is satisfied because for every pu > v.
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We may now take A\ satisfying also (2.214)), i.e.,

KQ 1 Ko . Ko
UL RV P T
(Famwm) V5 <r<v0 5

which is possible by the choice of p. Notice that if w(0) # 1720 then we have a further restriction
on p since

Ko Ko
0 - -
w(0) + o >\
implies that
< Ko 1
PV 21— w0) /=
O
We now set
log 3 1
B>——82 " Gith a= ___ro(l+o) S (2.22)
log ag ko + w(0)2 4+ w(0)+/2K0 + w(0)2
We fix A and p satisfying (2.21]) and choose 7,0 > 0 sufficiently small so that
: K0 . Ko . Ko
0) + o0 0) + 20 _ ) A( _ 0——), 2.93
70 0) + 050 < (100) + 52 = 3) A (= (0) - 5 (2.230)
%(1 +0) < A% (2.23b)

and ag € (0,1) so that § > 0. Notice that the right hand side of is positive by choice of
A and p.

Let us introduce further assumptions on w and k. We consider an external loading w €
50’1(0, +00) with w(0) = 0 and a local toughness « as above such that the following conditions
are satisfied in an interval (0, dp):

€ C%1([0, 60)), (2.24a)
(1 —0)ro < k(z) < (1+0)kg, forevery z € [0,dp], (2.24b)
fi(z) < CyaP, for a.e. s € (0, ), (2.24¢)
w € W2(0,6), (2.25a)
w(0) > 0, (2.25Db)
(I —n)w(0) <w(s) < (1+n)w(0), forevery s e [0,d], (2.25¢)
(s) < CosP, for a.e. s € (0, o), (2.25d)

where Cq,Cy > 0.
We now consider a pair (f,#) such that (1.55) holds and f satisfies the “bounce formula”
(2.7). We compute its derivative that exists for a.e. s > 0:

- ()
T+ U(7(s))

The following result provides conditions to deduce boundedness of f if it is controlled in a first
time interval.

F(s) = w(s) + f(w(s))a(s) = w(s) + f(w(s)) (2.26)
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Proposition 2.4. Let n,0 as in (2.23) and assume (2.24) and (2.25)). Then, the following

implication holds for a.e. s € (0,dp):
A< flw(s) <p = A< f(s) < (2:27)
Proof. We first notice that, by (1.46)) and our assumption we have

B 1— i 1(s)) 1—{(p~1(s))
Giomr0) @™ ) =2y @O > 2o

L+ E(y=1(s))
Moreover, by and
G107 () < K(¥71(5)) < ho(1+0).

It then follows that )
- i) _ (Lt o)y

: <1,
T i) 20
by ([2.23b). Therefore, £(1)~1(s)) > 0, so that, by (T.55), we write (2.26) as
_ -1
(o) = i) + 01D,
2f(w(s))
for a.e. s € (0,8p). Using now ([2.25c]), we have that (2.27) is satisfied if
1-— 1
Ao + L= S and (14 mw) + D
2u 2\
These two conditions hold by ([2.23a)). O

We now have that f? is equibounded in (0, 4) since, by (2.20)) and (2.24)), we have

5 1/2/{5+a§+a5
fo(s) =

2 i

Notice also that, by (2.25a) we have that a; — (0) and thus f%(s) — v in (0,6). Then, there
exists §1 < dg such that for every 0 < § < §; we have

\/ 265 + af + o

2

By Proposition we obtain that condition (2.27) is satisfied for a.e. s € (0,00) so that f9(s)

. . . . . 222 —KQ . : . 222 —kg
is equibounded in (0,4do). Using (1.55) and since x — 53¢ is increasing and o — 5570 is

decreasing, we get the following bounds on the debonding speed for a.e. ¢t € (0, dp):

for a.e. s € (0,0). (2.28)

A<

< W

222 — /430(1 -+ 0’)
202 + ko(1 + o)

0<cy:=

- 212 — ko(1 — o)
<P(t) < f : 2.2
<0(t) < 2Z T+ ol — o)’ or every 0 < 41 (2.29)

We now consider ws(s) := ws(¥5 1 (s)), where ps(s) := s — £9(s) and 95(s) := s + £°(s). Since

R -z : . :
Ws =17 and x — 177 is decreasing, we obtain, by (2.29),

a%0]

. Ko

(1-0) = )2
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for a.e. s € (0,dp) and every 0 < § < d;. Notice in particular that, since A < v, then w(s) <

w = ag, where ag is the constant appearing in (2.22). In particular, since ws(0) = 0 for

every § > 0, we have
ws(s) < aps (2.30)

for every s € [0, dg] and every 0 < § < dy.

Proposition 2.5. Assume (2.24) and (2.25). Then, there exists M > 0 such that

£l wzoe (0,60) < M
for every 0 < § < 4.

Proof. Since f? is already bounded in W1 by Proposition we seek a uniform bound for
the second derivative of f°. Starting from (2.26)) and using (2.25a)), we obtain for a.e. s € (0, &)

20° (45 (5))
(1+ @51 (s)))°

We now compute the second derivative of 0(t) for ae. t € (0,6), recalling (2.24) and (2.25).
Starting from (1.55)) and since £ > ¢y > 0 by (2.29)), we have

8r(£0(t)) (L — (1) f(t—£°(1)) F— (1)) — 26(0°(1))€°(t)
[2f0(t=00())? + K (£0(t))]? [2f2(t=£3(t))? + w(£2(1))]

For t = d)gl(s), the last two equations give

Fo(s) =i’ (s) — £ (ws(s)) + w3 (5) 0 (ws(s))-

() = S =0 )*.

50y i+ (20— O D (P 1= o)
e w(s)+<w5(s) 275 (wa($))% + (g () (L + B(05 1(5)))
4+ (55 (5))) BT o
273 (o () + (a5 M) (Lt B (55 ()P
— - i(s) + AP (ws(s)) + BF (ws(s))’

3> Fws(s))

Using ws < 1 and the inequality (C+d)2 < 1 with ¢ = 29 (ws(s))? and k(151 (s)), we find that

16k (155 ()2 (ws(5))® 1= L(5(5))
[2/2(ws(5))? + k(5 (NI (1 + (5 (s))?

Moreover, since f9 is bounded in (0,00) and using ([@.12) and (2.24d), there exists M > 0 such
that

Al < |wF(s)| + < 3. (2.31)

(5 (5)) B3 (5))
275(ws (5))2 + (05 DI (14 (05 (5))

Since E‘S(?/ng(s)) <'s, we use ([2.31)) and (2.32)) together to get

P2 (s)] < @ (s)] + Ms” + 3| (ws(s))]-

Bf°(ws(s))* = P2 (ws(9)* < ME (W57 (5))".

(2.32)
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Then, we can iterate the previous formula and obtain
|7 ()] < [ (s)] + 3Ji° (ws(s))| + Ms” + Mws(s)” + 9] f° (w5 (s))]-

Notice that, for a.e. s € (0,d9) there exists ns(s) > 0 such that wh € (0,6) for every k > ns(s).
Notice that, for every such k we have that f° is constant and its value is given by (2.28).

Moreover, by considering ngo = ns(d). By ([2:25d), for a.e. s € (0,dp) we have fo(wk(s)) =0

for every k > ngo because f9 is constant in (0,4). Therefore, for a.e. s € (0,dy) we have

[ [
n50 n50

(o) < D 3% (Wi (s)] + M Y 3*|wi(s))”
k=0 k=0

é
n§0

<(Co+ IS 3 1wf(s))°
k=0

Notice that 3ag < 1 by (2.22) and that we used (2.25d}) and (2.30)) in the previous inequalities.
O

We are now in a position to state the main result.

Theorem 2.6. Let (f2,09) be as above and k: [c1,4+00) — [c1, o] with 0 < ¢1 < ¢o be a Lipschitz

function. Assume (2.23)), , and (2.25)). Then, there exists a subsequence 6, — 0 and a
pair (f,0) such that fo — f strongly in W, £0n — { uniformly, and (u,{) is a solution to

the coupled problem & (L.55), with u(t,x) = w(t+z) — f(t+x) + f(t—=x).

Proof. By Proposition we find that £ is bounded in W2 uniformly in 0 < § < ;. The
internal energy of the system £°(t; £, w®) satisfies the following energy balance:

() .
E0(t; 0%, w?) —55(0;65,11)5)4-/ t K9 (z) dx+/t[w5(s)—2f5(s)]2w5(s)ds:0,
0 0

see Proposition Notice that, since £y = 0, then £2(0;¢%,w) = 0. Moreover, by and
the bounds on x, we obtain
56(75;55,105) < C,

for some C' > 0 and for every ¢ € (0,d0) and 0 < § < d1. It follows that £° is uniformly bounded
in 8. Furthermore, 0 < Ls, < 1by Theoremfor every 0 < 0 < 1. By using the Ascoli-Arzela
theorem, there exists a subsequence 6, such that ¢» uniformly converges to a limit evolution
¢. Since ¢° is monotone non-decreasing for every § and we have uniform convergence, then £ is
monotone non-decreasing.
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By the uniform W?2*-bound for fo, up to extracting a further subsequence, we have that
there exists f € W°°(0,dp) such that

fo — f strongly in W, (2.33)

Moreover, by the uniform convergence of £» to ¢, we can pass in the limit in the “bounce
formula” for for
For(t£0n(8)) = wn (€07 (1)) + [ (1= (1)),

so that, in the limit as n — oo, we obtain that f satisfies (1.16). Indeed, w’ — w strongly in
W1 as n — oco. Besides, starting from

wn (t, ) = w (t4x) — for (t+a) + fo (t—2)

and using , one gets strong convergence in W™ to a function v which satisfies .
Since f satisfies (L.16]), then u solves problem (see Proposition [1.4). Finally, using again
the strong convergence of fo in W and the uniform convergence of £>* to the limit debonding
front ¢, one passes to the limit in

200 (¢ (1))? — kb
2f0n (090 (£))? +
(o0y=o.

On(t) = V0

This implies that the pair (u, /) is solution to (2.1) & (L.55), with u € W?>°(Qs,) and £ €
Ct1([0, 6g)). O

The previous discussion shows how to determine existence of a solution w satisfying Griffith’s
criterion for the evolution of the debonding front £ when we consider the problem of initiation of
the debonding. We remark that the higher regularity required in and was assumed
only in a small neighborhood of zero. Out of this interval we can continue our solution using
Theorem assuming only the natural assumptions on the data as in Theorem [1.22
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CHAPTER 3

Evolutions with the damped wave equation
and prescribed debonding front

In this Chapter we consider the case of the damped wave equation for our model of one-
dimensional peeling test. We will establish existence and uniqueness of a vertical displacement
u, solution to problem in the case in which the evolution of the debonding front ¢ — £(t)
is a given function of the form . We consider a given external loading w as in , initial
conditions ug and uq as in such that the compatibility conditions are satisfied.

We start from a generic definition of solution for the problem without initial conditions, as
we did in Definition [l

Definition 3.1. We say that v € HY(Q) (resp. in H Q7)) is a solution of (0.10a)—(0.10d)
if up — Uge + ug = 0 holds in the sense of distributions in Q (resp. in Qp) and the boundary

conditions are intended in the sense of traces.

Given a solution v € H'() in the sense of Definition u we extend u to (0,400)? (still
denoting it by u), by setting v = 0 in (0,4+00)? \ Q. Note that this agrees with the inter-
pretation of u as vertical displacement of the film which is still glued to the substrate for
(t,x) ¢ Q. For a fixed T > 0, we define Q7 := (0,7)x(0,4(T)) and we observe that u € H(Qr)
because of the boundary conditions &. Further, we need to impose the initial
position and velocity of u. While condition in can be formulated in the sense of
traces, we have to give a precise meaning to the second condition. Since H'((0,T)x(0,4)) =
HY(0,T;L?(0,40)) N L%(0,T; H*(0, 4p)), we have uy, u, € L*(0,T; L%(0,4)). This implies that
Ug, Uy € L2(0,T; H-1(0,4p)) and, by the wave equation, uy; € L?(0,T; H1(0,4o)). Therefore
ur € HY0,T; H1(0,40)) € C°([0,T); H~1(0,4y)) and we can impose condition as an
equality between elements of H~1(0,¢y). This discussion shows that the following definition
makes sense (cf. Definition [1.2)).

Definition 3.2. We say that u € HY(Q) (resp. H'(Qr)) is a solution of (0.10) if Definition

holds and the initial conditions (0.10d))é5(0.10€]) are satisfied in the sense of L*(0,4y) and
H=1(0,4g), respectively.

In the following discussion T' > 0 is fixed, L := #(T), and u € H*(Q2). We consider the
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Figure 3.1: The set C(§,n) in three typical cases.

change coordinates (1.8) and the new function

e = (SIS

2 72

Then, u is a solution to the damped wave equation (0.10a)) if it satisfies

Unge = —’LNLt (3.1)
where @ (€, n) == (7’7, "T) Since 4 is obtalned from w; just via a smooth change of variables,
@ € L2(0,T; L?(0, L)) as u;. By integrating (3.1)) between |£| and 7 in the direction 7, we obtain

n
ve(€,m) = ve(&, [€]) - /|5 i) d

Then, we integrate in the direction n between (—7) V 1~1(n) and 1 obtaining

v(=n,n) + / ve(z,|2]) dz—// (z,y)dzdy, if n < £,
- 0(577
v(w-1<n>,n>+/ ve(2 2]) dz—// (29)dzdy, ify> o,
677

w(n)

v(&,n) = (3.2)

see Figure The set C(£,n) in the double integral above is the cone of dependence of (£, 7)
and it is defined as

C&n) ={(zy) €Q:2z<and y < nj}.

Changing the variables back to (¢, ), we get the following representation formula for a solution
u of problem (0.10) for a.e. (¢,z) € Q:

~ 1
u(t,x) = f(t —x)+g(t+x) — = // ut(1,0)dodr, (3.3)
2 JJoae)
where f(¢) and §(n) are one-variable functions, defined by
0
5 13 U(_Uﬂ?) + UE(Z7’Z’)dzv 1f77 <£07
O = [tz and goy={
° v(w™ (n),m) + ( )vg(%IZI)dz’ if 1 < fo.
w(n
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Figure 3.2: The set R(t,z) in three typical cases.

Notice that in the change of variables C(£,n) is written as C(¢, x), where
Ctyx):={(r,0) e Q:0<7<t,z—t+7<o<z+t—T}
We start by finding an explicit representation formula for u in
Q= {t<ztu{t+z < lo})NQ.

It is then useful to introduce the set R(t,x) defined for (¢,z) € ' as

C(t,x), ift<axandt+xz < {, (a)
R(t,z) :=< C(t,z) \ C(t—=x,0), ift >z and t+x < £, (b)
C(t,x)\ C(v~t(t+x), (= (t+x))), ift <xandt+ x> L, (c)

(see Fig. . Notice that the three cases a, b, and c are highlighted in Figure and represent

a partition of €. Notice that

R(t,z) ={(1,0) € Q: 0 <7 <t, (7t x) <o < ya(7st, 7)),

where
r—t+7, ift <z andt+x </, (a)
1(mit,x) =  Ja—t+7|, ift >z and t + 2 <, (b)
z—t+71, ift <z and i+ x> l, (c)
and
TH+t—T, ift<zandt+z <y, (a)
z+t—T, ift>xandt+z <y, (b)
Y2(73t, @) = . -1
T—w(t+z), ift<z, t+z>4L), and 7 <Y (t+ ), (c)
r+t—T, ift<az, t+a>/0, and 7> Yt + ), (c).

(3.4)

(3.5)

Equation [3.3] gives us a general representation for a solution u to our problem. We now
present an explicit formula for u in the three cases a, b, and c. First, we notice that in the cases
b and c the set R(t,x) is obtained by subtracting from C(¢,x) a part depending only on ¢ — x or
t + . This means that we can rewrite by introducing two functions f(¢ — x) and g(t + x)
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obtained by adding this part to f(t —z) and §(t 4 x), respectively. We obtain for a.e. (t,z) € Q
suchthat t+z < fport+xz>flpandt <z

u(t, ) = f(t—z) + glt+a) — = / /R . )ut(m) do dr (3.6)

'yQTtJ:
= f(t— x)+gt+x—// (1,0)do dr.
¥

1 Ttac

Notice that u; is now integrated over R(t,x) instead of C(¢,x). We now denote by A(t,x) :=
f(t—z)+ g(t+x). We can explicitly write A(t,z) using only the initial data up and u; and the
external loading w. To this aim, we consider (3.2)) and use the fact that

1 1
iut(O, —z) — 5%(0, —z), if 2 <0,
ve(z, |z]) =
Le(2,0) = Tup(2,0), 20
2ut 2 2u$ Z, ) Iz=U
as one easily gets from (1.9)). We thus obtain
(1 1 1 o[ett ,
§Uo($—t) + iuo(:v—kt) + 3 ui(s)ds, ift<zandt+az<4y, (a)
z—t
1 1 1 x+t )
At,z) = w(t—z) — §u0(t—x) + §u0(t+x) + 3 ui(s)ds, ift >z andt+x <4y, (b)
1 1 —w(ti;ﬁ)v
§u0(x—t) - §u0(—w(t+:r)) + 2/ ui(s)ds, ift<zandt+x>4L, (c).
r—t

(3.7)
For any F € L*()') we now consider [/ Rty I and we study its derivatives in ¢ and .

Proposition 3.3. Let F € L*(Q) and for a.e. (t,x) € Q' let

Y2 T,t,ﬂ?)
H(t,z) / / F(r,0)dodr.
Y1 T,t,IE

Then, H € H'(Q') and
Ht(t’m):/o [F(7,72(75 8, 2)) (v2)e(75 8, @) — F(T, (738, 2)) (n)e(75 £, )] dy (3.8)

Hz(t,m)Z/O [F (7 72(73 8, 2)) (v2)a (758, 2) — F(T, (738, 2)) (V) (735 8, )] A (3.9)

We first need a preliminary lemma.

Lemma 3.4. Let F € L2(0 T;L*(0,L)) and for a.e. (t,z) € [0,T]x[0, L] consider the curves
v1 and o introduced in and (| . Then,

G'(t,x) ::/0 F(r,yi(m;t,z))dr
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is in L2(0,T; L?(0,L)). Moreover, if F € HY(Qr) then G € H'(Qr) and we have for a.e.
(t,x) € [0, T]x]0, L]

Gi(t,x) = F(t,yi(t:t,2)) + /0 Fy (7 (s £, 2)) (y)e (s £, 2) d,

G;(t,a}):/o Fo(r,vi(15t,2)) (Vi) (75 t, ) dT.

Proof. We consider the case of v;(7;t,2). The case of y5(7;t,x) is analogous. We look for an
upper bound on the L?-norm of G. We first use Jensen’s inequality:

T (L T (L 1t 2
/ / G(t,z)*dzdt = / / 2 </ F(r,m(r;t,x)) dT) dz dt
o Jo o Jo tJo

T L gt
< / t/ / F(r,yi(r;t,2))* dr de dt.
o Jo Jo

We now use the explicit formula for ; in (3.4) and obtain

T et ot T L gt
/ t/ / F(T,\:I:—t—i-T)Qdexdt—i—/ t/ / F(r,z —t+7)*drdedt
o Jo Jo o Jt Jo

<212\ F (1 2(0,1)% 0,1))-

Notice that to get the last passage we integrate in the variables (7, ) recalling that for fixed ¢
we have
{n(r;t,z) 7 €0, z € [0, L]} C [0,T]x[0, L].

Hence, the double integral in (7, z) is controlled by ||F||7, (0,77 [0,2))> Which is independent of ¢.
The second part is a direct consequence of differentiation under the integral. O

We now prove Proposition [3.3]

Proof. Consider
G(t,z) :—/0 [F(m,72(75 1, 2)) (v2)e (75 £, 2) — F (T, (738, 2)) (1) (75 £, )] A

By (3.4) and (3.5), we have |(71)¢(7;t,2)] = 1 and |(72)¢(75¢,2)] = 1 for every (¢,z) € Q' and
7 € [0,1], thus

Gt 2)]| < /0 F(r,m(rst,2))] dr + /0 (. (rst, )| dr

is in L2(Q'); by Lemma [3.4) G € L*(©). We prove that, as h — 0,

H(t+h,z) — H(t, z)
h

— G(t,x) in L), (3.10)
which implies G = H;. The analogous argument is done to prove (3.9). We shall consider, for
simplicity, the case a and therefore v (7;t,2) = x —t + 7, y2(7;t,2) = 2+t — 7. The other two
cases are analogous, see Figure We write the left hand side of (3.10) changing the order of
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g
t+h = R.
z—t—h z—t X z+t x+t+h L

Figure 3.3: In the case t < x and t + z < £y the region of integration in (3.11]) is the difference
of the two triangles. It is possible to find A so small that for every ¢ = 1,..., N, the points
(t—z+0,0) and (T +t — x + 0,0) belong to the same rectangle R..

integration. We obtain

H(t h t+h— erU z+t+h t+h+x—0o
(t+h,z) — / / (1,0) deU+/ / F(r,o)drdo]| .
h z—t—h JOV(t— x—i—a oV (t+x—o)

(3.11)
We will separately study the convergence of the two summands in the right hand side of

(3.11) as follows. We claim that

t+h—x+o T t
/ / F(r,0)drdo — F(t—a:+a,a)d0=/F(T,x—t+7')d7', (3.12)
x—t—h JO

V(t—z+0o) r—t
z+t+h  pt+htr—0 t
/ / TJ)dea—»/ Ft—|—:n—o’0)d0—/F(T,x—l—t—T)dT. (3.13)
oV (t+z—o) 0

Let us consider (3.12)), the other being analogous. By Hoélder’s inequality,

2

1 x—t t+h—z+o
h2/ (/ / F(r,0) deO’) dz dt
! T—t— h

h2 t+h—z+o
_hz/ / / F(r,0)*drdo dz dt,

which tends to zero as h — 0 by the absolute continuity of mtegrals. Therefore, we shall only
study the convergence of the remaining part + [, [, trh-oto o F(r,0)drdo to the right hand

—z+o
side of (3.12]). We have
t+h— x—l—a T
/ / F(r,o deO’—/ F(t—xz+o0,0)do
z—t Jt—x+o0 z—t
h/ / +t—z+o0,0)—F({t—x+o0,0) drde (3.14)
z—t
Since F' € L?(£), we extend it to L2(0,T; L*(0, L)) by setting F' = 0 in [0, T]x[0, L]\ €. Then,
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for fixed € > 0 there exists N, > 0 and a simple function

Ne
33‘) = Z sé]lRé(ta ZL'),
i=1
where si € R and the sets R’ are open rectangles of the form (o, 7%)x (yZ, 2%), such that
IF" = Scll 220,102 (0,1)) < €

Notice that, since 1gi (t,2) = Lgi 71y (t)Lys 2oy (x) for every i =1,..., N¢ |

/ / (T+t—x+0,0)—S:(t —x+0,0) drdo (3.15)
r—t

h
= Z / ys, i )/0 []1(027751)(T+t—$+0)—]1(02772)(75—.7}4-0)] dr do. (3.16)

We consider all the points (¢, z) such that the lines o +— (t —x + 0, 0) do not intersect any of the
vertices of the rectangles R.. This is possible for a.e. (¢,x). If we consider h so small that for
every i = 1,..., N; the points (¢t —x + 0,0) and (7 +t — x + 0,0) for every 7 € [0, h] belong to
the same rectangle RY, then the previous integral is zero, see Fig. Then, by the Dominated
Convergence Theorem, holds for F' = S..

Hence, we can argue by approximation with simple functions. We define F; := F — S;.
Adding and subtracting S., we obtain that is equal to

/ / (rtt—z+0,0)—Ft—3+0,0)] drdo
x—t

/ / (T+t—x+0,0)— S:(t —x+0,0)] drdo,
r—t

and the second summand tends to zero, by the previous argument. To conclude, we find an
upper bound for the L?-norm of the first one:

N
_h//// (T+t—z+0,0) dadefL‘dt—l—ZLHF||L20TL2(OL))

where in the last inequality we used the same argument of Lemma Moreover, by changing
the order of integration,

o h (T (L rx
h/ / / / F.(t+t—2+0,0)*dodzdtdr
0 0 0 r—t
o h [T L pLtr
gh/ / / / F.(t —x+o0,0)*dodzdtdr
0 0 0 T

2
<2L\|Fell7200,m,02(0,146))

h px 2
/ /[FE(T+t—JJ+O',0')—Fg(t—$+0',0)] dodr| dxdt
r—t

for 6 > 0. It is then enough to choose S; such that ||F|| — 0 as € — 0. To this end, it is enough
to extend F' in a slightly larger set than (0,7") x (0, L + ¢) Finally, (3.13]) follows with the same
argument and therefore we obtain (3.10]). To prove (3.9), we argue in the same way. O
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Our aim is to determine the existence and uniqueness of a solution u to problem (0.10) in
the sense of Definition We will proceed by applying the Contraction Lemma several times
starting from the triangle C(¢p,0).

Theorem 3.5. Assume (1.6) and consider the space of functions u € H'(C(£y,0)) such that u
verifies conditions (0.10b)), (0.10d), and (0.10€). Let ®: H*(C(o,0)) — H(C(£y,0)) be defined
as

O(u)(t,z) := A(t,z) — ;// e )Ut(T, o)drdo,

where A(t,z) is as in (3.7). Then, if ly < \[, the map ® is a contraction of H'(C({p,0)).

Proof. First, we prove that ®(u) belongs to the same class of functions of u. Since u; €
L%(C(#p,0)) then, by Lemma and Proposition ®(u) € H(C(p,0)). Moreover, ®(u)
satisfies (0.10bf), (0.10d}), and (0.10e|) by the definition of A(t,z). Hence, we are left to prove

that ® is a contraction.
We start from the case t < z. Let u! and 4?2 be two functions in the above class. We want
to find a constant C' < 1 such that

[ (u') — @(u?)] < Cllu' — 4| e ,0))-

H(C(2,%))

Since u!' and u? satisfy the same initial conditions, it follows that they share the same term
A(t,z). Therefore,

’@(ul) - (I>(u2)‘ = 1 (u%(T, o) — u?(T, 0))dodr

R(t,z)

< 1// ‘utl(T,a) —u?(7‘,0)| do dr.
2 ) JRt2)

We now integrate with respect to  and ¢ the square of the above quantity. By Jensen’s inequality
and the parametrisation of R(t,x) introduced in (3.4) & (3.5, we find that

L -t lo—t Ttt—1
/2 / |<I>(u P (u? > dadt < / / Rt @ |/ / |ut T,0) u?(T,O’)‘Q dodrdxdt
0 t r—t+T7
lo—t THt—T 9
/ / / / — u?(r, o)|” dodrdzdt,
r—t+T1
because |R(t,x)| < g in C'(4p,0). We continue as follows:
lo—t T+t—7 9
/ / // ’ut T,0) %(T,O‘)‘ dodrdzdt
T—t+T1
lo—t lo—T 9
<2 3 / / / / Hr, o) — u?(r, o)|” dodrdzdt
lo—t lo—T
/ / / / ut 7,0) —ul(r, 0‘)‘ dodrdzdt

OHU — 13 o0
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A similar argument is carried out for the derivative of ® with respect to ¢t. By Proposition
[3-3] we have

|8t<1)(u1) - 8t(I)(U2)‘
1

t
=5 /(u%(T,m—&—t—T)—uf(7,x+t—7)+ui(7,x—t+7)—uf(T,x—t—i—T))dT
0

1 t 1 t
32/ ‘ui(T,aH—t—T)—u%(T,x—i—t—T)‘dT+2/ |u%(T,.’E—t—|—T)—u%(T,.’I)—t—i-T)‘dT.
0 0

We again integrate with respect to x and ¢ the square of the previous quantity. Since (a + b)? <
2a% + 2b%, we have that

b lo—t
/2 / 10,0(u') — @ (u?)|* dadt
0 t

b lo—t ¢ ft )
2/ / 4/ luj(r,z+t—7)—uj(r,x+t—71)|" drdzdt
o Jit 0

IN

b lo—t ¢ rt )
+2/ / 4/ lu (1,2 —t+7) —ui(r,x —t+7)|” drdzdt
o Ji 0

b t plo—t
1 2 2
/ t// }ut(T,x)—ut(T,x)’ dz drdt
0 o Jt

% % Lo—t 2
< / t/ / ‘U%(T,l‘) —uf(T,m)‘ dzdrdt
0 o Jt

2 1 2112
<bllw” =l .0

IN

Notice that we used again the same argument of Lemma Analogously, we find the same
result for the derivative of ® with respect to z, using (3.9)) and therefore

IV (u') = VO(u?)|l L2(cie0,0)) < 260110 = @[3 (.00

The case t > x follows with the same argument, using analogous estimates. In conlusion, we

4
have that ® is a contraction of C(¢p,0) if max{%o, 203} < 1, which is verified if ¢y < % O

Remark 3.6. In the sub-triangle C (%0, %0) we have that @ is still a contraction provided that
max{ly, 20y} < 1. Exploiting the previous proof, we only need to consider the case ¢t < = and

therefore condition (0.10b|) does not play any role here.

Remark 3.7. By Theorem if ¢y < %, then there exists a unique function u € H'(C(£y,0))

satisfying (0.10al), (0.10b]), (0.10d)), and and therefore it is the solution of our problem
in C(4o,0).

If ¢y > %, we can argue as follows. By Theorem there exists a unique solution u in
C(1,0) of class H'. Then we can find 0 < z; < § such that 21 + £ < ;. By Remark there
exists a unique solution in C(3, 1) + (0,21). Moreover, the two solutions we have found so far
coincide in the intersection between C(3,0) and C(3, 1) + (0,21) and therefore we can extend
u to their union. We repeat the previous argument for every 0 < z; < £y — 1, extending u up
to the set C'(¢p,0) N {t < %} and preserving the H' regularity (see Figure 3.4). In particular,
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Figure 3.4: The construction of v in Remark We used the following notation: x| := x1 — g,

+ . 1 p— 1 — .
xq .—$1+Z,fo .—50—5, and€0 .—50—1.

there exists £ < 1 such that u(¢,z) is well defined for a.e. z € [0, ¢y — 1]. This allows us to start
again the previous argument from time ¢. Eventually, after a finite number of steps, we have
the solution u € H(C(fp,0)) that is the unique solution of our problem.

We now extend u out of C(4p,0), using the evolution of the debonding front ¢ — £(t). We
thus consider C(¢~1(0),£(¢~1(0))) and recall that, by (3.6) and (3.7), in this region u has the
following representation:

w(t+x)
u(t,z) = %uo(az—t) — %uo(—w(t—i-x)) +3 / uy(s) ds

1 YT (t4x)  pr—w(ttT) THt—T
— / / u(7,0) dodr — / / o)dodr,
2 Jo T—t+T L(t+z) Jo—t+r

for a.e. (t,x) € C(p=1(0),4(p=1(0))) =: C..

Theorem 3.8. Assume (|1.1), , and consider the space Xo of functions v € HY(Q') such
that v = u in C({y,0), where u is the function obtained in Remark[3.7 and v satisfies (0.10d).
Let U: Xg — Xg be defined as

W)t ) = At z) —;//R(t u(r,0)drdo

for a.e. (t,x) € Ci. Then, the map V is a contraction in Xy provided that y is sufficiently
small.

Proof. We first notice that ¥(v) is in the same class of functions of v for every v that satisfies
the assumptions of the Theorem. Indeed, for a.e. (t,x) € C, such that ¢t + = < £y, we have
that ¥(v)(t,z) = ®(v)(t,x) = u(t,x), where ® is the contraction of Theorem Moreover,
U(v) € HY(C,) by Lemma and Proposition and W (v)(t,£(t)) = 0 for a.e. t € [0, 1(0)]
by definition.
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We now take u! and w2 in the above class of functions and we notice that

// F—ul)dodr| < // ‘ut—ut|dad7'
tx) R(t,x)
Therefore, for every t € [0, 71(0)], we have by Jensen’s inequality
©=1(0) () 9
/ / ‘\Il(ul)(t,x) — W (u?)(t, x)| dz dt
t

1 [P H0) pet)
4/ / ]R(t,x)\// - |ut—ut‘ dodrdzdt

1 e 10 1(0)
4/ / R(t,x |/ / ’ut ? do dr dz dt
<1

8

e 0P ol = -

‘\I/(ul)(t,x) — \Il(

IN

IN

Notice that ¢(t) — ¢t < £y by (L.1) and that |R(¢,z)| < ‘p712(0)2 in Cx. We now consider the time
derivative of ¥. We have that

00 () (¢, 7) — DU (u2)(t, 7) = — ;/0 (ul = 2)(r, 2 — t + 1) dr

Ht+x)
+ Lot / (b —12)(7, 7 — w(t+a)) dr
0

N~ N

t
/ (Ul —u2)(r, 3+t —7)dr.
Y= (t+w)

Hence, by integrating over C,, we obtain

o) )
/ / |0 W (u — 0¥ (u?)(t,2)|” da
/ / / luy —uZ|(r,x —t +7)%dr dadt
+3/
0 t
¢~ 1(0)
+3/

() 4 w1 ()
*o(+a)? / lul — 2|(7, 7 — w(t+a))? dr dz dt
0

0t) 4
/ / luf —u?|(r,x +t—7)*drdedt
t+x
< i / / / luf —u?|(1,v1 (73, x))? de dr dt
—1—290 / / / lup — u2| (1, v2(7; t, x))? do dr dt
9
< ZSO HONS —U2”H1 (C)*

Notice that the factor 3 is consequence of the inequality (a + b+ ¢)? < 3(a® + b? + ¢?) and that
we used that w < 1 by (1.4]). The analogous argument is carried out for the derivative of ¥ with
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Figure 3.5: The construction of the solution u in €2;.

respect to . We finally obtain that W is a contraction in H'(C,) if

1 9
max {8901(0)360, 2g01(0)2} <1 (3.17)
By (L.1a)), for every fixed T > 0 we have ¢~1(0) < 1 fOLT. Therefore, it is enough to require that
1 9
% e <1
max{g(l_LT)3 072(1_LT)2 0}< )
which is verified for sufficiently small 4. O

Remark 3.9. By Theorem if ¢y is sufficiently small, then we can extend our solution u that
was constructed in Remark [3.7] to all C({y,0) U C.

If this were not the case, we can argue as follows. There exists —{y < ¢ < 0 such that in
C(o~ (1), (p1(%)))) the map ¥ is a contraction. Indeed, since ¢! is an increasing function
that maps [—£p,0] into [0, ~1(0)], then there exists —fy < # < 0 such that the corresponding
o~ (%) is so small that is satisfied. Therefore, we now have a solution u € H'(C(p,0) U
C(p= (1), (¢1(%))))). This means that there exists £ < min{ly, ()} such that u € H(Q;)
is the solution of our problem and u(f,z) is well defined for a.e. z € [0, £(f)]. This allow us to
start again the argument for the construction of u starting from time ¢ (see Fig. |3.5)).

In conclusion, for every fixed T > 0, we can construct a unique function u € H'({7) solution
to , by iteratively applying a finite number of times Remark & Remark We have
thus obtained the following result:

Theorem 3.10. Fiz T > 0. Assume (1.1)), (1.5)), and (1.6). Then there exists a unique function
u € HY(Qr) solution to Problem according to Definition .
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Part 11

Quasistatic Limits
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CHAPTER 4

Quasistatic limit of dynamic evolutions for
the peeling test in dimension one

In this chapter is presented the asymptotic analysis for the model introduced in Chapter [1| when
the speed of the external loading becomes slower and slower. This is done by replacing the
function w appearing in with w(et), where € > 0 is a small parameter. While in the first
section we adapt the main results of Chapter (1| to find a unique pair (u®,¢¢) which solves the
coupled problem &, in the second section we analyse the quasistatic limit as € — 0
and find that a limit solution (u,£) does not, in general, satisfy the Griffith’s criterion in its
quasistatic formulation . Indeed, in Section 3 we give an explicit example in which this
convergence fails. In Section

The results of Sections are part of [45], while Section is part of a forthcoming
paper in collaboration with G. Lazzaroni.

4.1 Existence and uniqueness results

In this section we provide an outline of the results of existence and uniqueness for the coupled
problem & for fixed € > 0, proved in Chapter The only difference is that the
speed of sound is % instead of 1.

We consider the following generalisation of problem ,

e2u, (t,x) —u, (t,x) =0, t>0,0<x< (1), (4.1a)
u(t,0) = 5(t), t>0, (4.1b)
u®(t,65(t)) =0, t>0 (4.1c)
w(0,2) = ug(w), 0 <z </, (4.1d)
uz (0, ) = ui(x), 0< <. (4.1e)
In analogy with (1.58)), we require that
w® € CN(0,+00), u5 e CON([0,4)), uS € L¥(0,4), (4.2a)
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where 5’0’1(0, +00) is defined as in (|1.7)), and the compatibility conditions
ug(0) = w®(0), wu§(lp) =0. (4.2b)
To give the notion of solution, for the moment we assume that the evolution of the debonding
front ¢t — ¢°(t) is known. More precisely, we fix £y > 0 and ¢°: [0,4+00) — [{y,+00) Lipschitz
and such that
. 1
0<e5(t) < o for a.e. t > 0, (4.3a)

We introduce the sets

QF={(t,z) : t >0, 0 <z <l(t)},
T={(t,z):0<t<T, 0<z<l(t)}

and the spaces

HY () := {u € H. () : uw € H(Q5), for every T > 0}
60’1(95) = {u e C%0°) s u e CO(Q5) for every T > 0},

The notion of solution is given in the following sense.

Definition 4.1. We say that u* € H(QF) (resp. in u® € HY(Q%)) is a solution to (1) if

e2uf, — ui, = 0 holds in the sense of distributions in QF (resp. QF), the boundary conditions

(4.1b) & (4.1c)) are intended in the sense of traces and the initial conditions (4.1d)é(4.1e) are
satisfied in the sense of L%(0,4y) and H=1(0,4y), respectively.

Condition (4.1¢) makes sense since u € L2(0,T;L?(0,4y)) and, by the wave equation,
uS,,us, € L2(0,T; H1(0,£p)), therefore u§ € HY(0,T; H=1(0,4y)) € C°([0,T); H1(0,£p)). Ar-
guing as in Proposition and Theorem it is possible to uniquely solve by means of
the D’Alembert formula, as it is stated in the next proposition.

Proposition 4.2. Assume (4.2) and (4.3)). Then, there exists a unique solution u® € H(99)
to problem (4.1)), according to Definition . Moreover, u¢ € CO1(QF) and is expressed through
the formula

f@wﬁﬂfWM@—éF@%@+§F@%@, (4.4)

where f¢ € C%(—ely, +00) is determined by

we(t +el°(t)) — %fe(t +elf(t)) + éfg(t —el(t)) =0, for everyt >0, (4.5)
and
£ g2 £
fe(s) = ew(s) — §u‘6(§) — 2/0 ui(z)de —ew®(0) + —ug(0), for every s € [0,elp], (4.6a)
fe(s) = %u(ﬁ(—g) - 62/0 uj(z)dr — %uS(O), for every s € (—ely, 0].
(4.6b)
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By derivation of (4.4)) we obtain

W (1 3) = i (thex) — é Fe(t4en) + é e (t—ex), (4.7a)
Ul (t, ) = enf (t4ex) — fC(t+ex) — f&(t—ex). (4.7b)

Formula (4.7al) guarantees that, for every ¢, u$(t,-) is defined a.e. in (0, £2(¢)).
The last observation and the existence of a unique solution to (4.1]) stated in Proposition
allow us to define the internal energy

L2 (t) 62 ) 1 9
EE(t; 07, w%) = /0 Eui(t, x)° + iui(t, x)°| dx. (4.8)
In the previous expression the internal energy is a functional of £¢ and w®, while u® is the unique
solution of (4.1]) corresponding to the prescribed debonding evolution ¢¢ and to the data of the

problem. Using (4.7)), then (4.8)) reads as

1 t+ele(t) . 1 t .
ES(t; 05, wt) = / [ew®(s) — f5(s)]* ds + / fe(s)*ds. (4.9)
€ Ji € Ji—ele(t)

We now give the notion of dynamic energy release rate which is used to give the criterion
for the (henceforth unknown) evolution of the debonding front ¢¢. This is done as in Chapter
Section 2. Specifically, the dynamic energy release rate G5, (t9) at time ty corresponding to a
speed 0 < a < % of the debonding front, is defined as

€ CNE LE\ _ CE(4. \E E
G (t) 1= lim S (03 A=) = EF(B XS, )
t—td (t — to)ox

where A° € C%1([0,400)) is such that \*(t) = ¢5(t) for every 0 < t < tg, \° < L for ae. t >0,

and
1 /t0+h
h Ji,

Xf(t)—a’ dt -0, ash—0",

while

ws(to), t > .

Zs(t) — {wa(t)a t < to,

As it is proved in Proposition [1.15] given ¢¢ and w®, the limit above exists for a.e. tg > 0 and
for every a € (0, %) Moreover, it is expressed in terms of f¢ through the following formula:

1—ca

€
=2
Galt) 14 ca

fE(t—ele(t))2. (4.10)

This also shows that G, depends on the choice of A° only through « and therefore the definition
is well posed. We also extend by continuity this definition to the case a = ¢¢(t) = 0, by setting

G (t) := 2f=(t—el*(1))2.

Thus, by (4.10)), we have monotonicity with respect to a:

1
G: (to) < Gg(to), for every a € (0, g), G (tg) = 0 for o — 17,
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for a.e. tg > 0.
We require that the evolution of the debonding front ¢¢ follows Griffith’s criterion

() >0, (4.11a)
G5 (1) < K(E()), (4.11D)
[GEE o® - m(e*f(t))} #(t) = 0, (4.11c)

where the local toughness is assumed to be a piecewise Lipschitz function with a finite number
of discontinuities
k:[0,400) = [c1,c2], 0< ¢ <ea. (4.12)

Notice that ¢%(t) and G 0 (t) are well defined for a.e. t and (4.10) gives

1—ele(t) ;

Gieg(t) =27 0 FE(t—elo(t))2. (4.13)

The criterion is derived by using the following maximum dissipation principle that is analogous
to (1.52): for a.e. t >0
(t) = max{a € [0, 1) k(6 () = G (t)a}.

This implies that for a.e. t > 0, if £(t) > 0, then r(¢(t)) = G5,y (t), while if (2(t) = 0, then
K((t)) > st(t)(t) = G{(t), thus follows. Combining with (4.13), we have an
equivalent formulation of this evolution criterion. Indeed, ¢¢ satisfies Griffith’s criterion if and
only if it is solution of the following Cauchy problem:
és(t) — 12]{.8(15 — 6€€<t))2 — ’%(gg(t))
€2fe(t —el=(1))* + K(€2(t))
£2(0) = Lo,

V0,
(4.14)

for a.e. t > 0.
The following existence and uniqueness result for the coupled problem (4.1))&(4.14) for fixed
€ > 0 is the analogous of Theorem [1.22} we thus refer to it for its proof.

Theorem 4.3. Let T > 0, assume (4.2), and let the local toughness k be as in (4.12). Then,
there is a unique solution (uf, (%) € C%1(Q5) x C"O’l([O,T]) to the coupled problem (4.1)) €9 (4.14]).
Moreover, there exists a constant L7 satisfying £ < L5, < %

4.2 A priori estimate and convergence

In this section we study the limit as ¢ — 0 of the solutions (u®,¢¢) to the coupled problem
(4.1)&(4.14). We fix T > 0 and make the following assumptions on the data: there exists
w € C%L([0,T]) such that

w® 2 w weakly* in WH(0,T), (4.15a)
ug is bounded in W*(0, 4y), (4.15b)
eu] is bounded in L>(0, ¢p). (4.15¢)

Notice that (4.15b)& (4.15¢c]) imply that the initial internal energy associated to uc(0,-) is uni-
formly bounded with respect to €.
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4.2.1 A priori bounds

We start from a uniform bound on the internal energy £°. To this end, it is convenient to express
it as in (4.9). Asin (1.31), we find the energy balance for fixed € > 0:

(1) ¢ '
EC(t; 05, w) — E°(0; 0%, w°) + /e k(z)dr + /0 [ew(s) — 2f°(s)]w(s)ds = 0. (4.16)

In the next proposition we derive an a priori bound for £°, uniformly with respect to €. First,
we introduce the functions

OE(t) =t —el5(t) and  YF(t) =t + l5(2). (4.17)

In view of Theorem e < L7 < % and therefore these functions are equi-Lipschitz. Then,
we define
W) = (V) 1)),

which is also equi-Lipschitz, since

1—eL%

o< — 7T

1+els

fora.e. 0<t<T.

Proposition 4.4. Assume (4.2)), , and let k be as in (4.12)). Then, there exists C > 0
such that E5(t) < C for every e > 0 and for every t € [0,T]. Moreover, we have

Hfa”Loo(—EémT) < Ca (418)
uniformly in €.

Proof. We need to estimate the last term in @ To this end, we notice that it is sufficient
to get a uniform bound for fg in L* as in (]4__1—8[) Then the conclusion readily follows from the
bounds on the initial conditions and on the toughness.

In order to obtain , we first estimate f¢ in [—elo,elp]. By differentiating and
using the assumptions , we see that

; . 1. €
esssup 75(0)] < elli im0y + Gl imoao + Sluilmom <C. (419
tG[—sfo,é‘fo]

for some positive constant C' > 0.

Then, we need to extend the estimate to [0, 7]. To this end, we mimick the construction for
the existence of a solution (see Theorem. More precisely, we define ¢ := €/ and, iteratively,
65 = (W) 7H(t5y) = ¥ ((¢°) " H(t5_,)). Let also 5, == (¢°)71(¢5) for i > 0. See Figure

By differentiating the “bounce formula” ([4.5), we find that

fe € o€ € 1_Eés(t) e pE
FE(ret (1)) = i (bt (6) + - TR FE(t—et2(1)). (4.20)

Then we have

esssup | f(¢)] = esssup | f*(s+eL%(5))| < el || oo 0,1y + 1/l oo (—eto,et0)) < Cs
te(ty,t5] s€(0,s5]

o7



Y

Figure 4.1: Construction of the sequences {s:} and {¢;} employed in the proof of Proposition

4.4

where the uniform bound follows from (4.19) up to changing the value of C. This implies that

esssup |f(t)| < C.
tE[—Efo,ti]

We iterate this argument and use the fact that the maximum number of “bounces”, i.e., the

number of times we apply formulas (4.5 and (4.20)), is bounded. More precisely, there exists n.

such that T' € (t;_,5,_, ] and, since £p > 0, we have that n. < ﬁ. Therefore,

esssup |f5(t)] < esssup | f(1)] < ez + esssup  |f5(1)]

tefts, 7] tets, b5, 1] tefty, 1515, ]
<%l + esssup O] < e < mosli e + s sup | F(2)
teltn —o:th. 1l telts t5]
r.. € fe
< — |||~ + esssup | fE(t)] < C.
2t et 5]
Then, the uniform bound on f holds in [—elo, T, thus (4.18) is proved. O

Remark 4.5. Formula (4.7a)) guarantees that, for every ¢ € [0,7], ui(t,-) is defined a.e. in
(0,€5(T)). Moreover, the uniform bound on the internal energy implies that

lewi (t, ) L2 (0,6 (1)) < C for every t € [0,T7, (4.21)

where C' > 0 is independent of ¢ and t¢.
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4.2.2 Convergence of the solutions

The a priori bound on the energy allows the passage to the limit in £¢.

Proposition 4.6. Assume (4.2)), , and (4.12). Let (uf, (%) be the solution to the coupled
problem (4.1) &9 (4.14). Then, there exists L > 0 such that (¢(T) < L. Moreover, there exists a

sequence €, — 0 and an increasing function ¢: [0,T] — [0, L] such that
R () — £(t)
for every t € [0,T].

Proof. Since the local toughness x is bounded from below, a direct consequence of Proposi-
tion is that the sequence of functions ¢°(¢) is bounded uniformly in e. Indeed, the term
— fg we(s)[ew(s) — 2f¢(s)]ds in the energy balance (4.16|) is bounded, as one can see applying
the Cauchy-Schwartz inequality and using (4.18]). Therefore

t

(1) .
/ k(z)de = —E°(t; 07, w®) + E7(0; 65, w®) — / we(s)[ew(s) —2f°(s)] ds
Lo 0

is uniformly bounded. Since k > ¢y, it follows that there exists C > 0 such that
ea(65(t) — ) < C, (4:22)

uniformly in € and for every ¢ € [0,7]. Then, using Helly’s selection principle on the sequence
of uniformly bounded and increasing functions ¢¢, it is possible to extract a sequence ¢k (t)
pointwise converging to an increasing function #(t) for every t € [0, T7. O

We now prove a technical lemma stating that the graphs of £°¢ converge to the graph of £ in
the Hausdorff metric. We employ the following notation for the graph of a function:

Graph ¢ := {(t,£(t)) : 0 <t < T}.

The same notation will be used for the graph of ¢¢. Since ¢t — £(t) may be discontinuous, we
consider its extended graph

Graph*( := {(t,z) € [0, T|x[0,L] : £(t7) <z < £(t1)},

where £(t7) (resp. £(tT)) is the left-sided (resp. right-sided) limit of £ at t. Given A C [0, T]x[0, L]
and n > 0 we set
(A)y :=A{(t, z) € [0, T]x[0, L] : d((t, x), A) < n},

where d is the Euclidean distance, and we call (A), the open n-neighbourhood of A. We also
recall that, given two nonempty sets A, B C [0,T]x[0, L], their Hausdorff distance is defined by
dn (A, B) = max{supd(a, B),supd(b, A)}.
acA beB

Notice that
if dy(A, B) <1, then A C (B), and B C (A),. (4.23)

We say that a sequence Ay converges to A in the sense of Hausdorff if dy(Ag, A) — 0.

The Hausdorfl convergence of Graph ¢ to Graph*¢ will be used in the proof of Theorem
4.8 To prove that Graph ¢°¢ converges to Graph™/ in the sense of Hausdorff, in the following
lemma we employ the equivalent notion of Kuratowski convergence, whose definition is recalled
below.
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Lemma 4.7. The sets Graph £°% converge to Graph™/( in the sense of Hausdorff.

Proof. In order to prove this result we show that Graph £°¢ converges to Graph*¢ in the sense of
Kuratowski in the compact set [0, 7]x [0, L]. Since these sets are closed, the Kuratowski conver-
gence implies that Graph ¢¢¢ converges to Graph*¢ in the sense of Hausdorff, cf. [3, Proposition
4.4.14]. We recall that Graph¢“* converges to Graph*/ in the sense of Kuratowski if the following
two conditions are both satisfied:

(i) Let (¢t,2)€[0,T] x [0, L] and let (tx,zx) € Graph ¢°* be a sequence such that (¢, ,zk,) —
(t,x) for some subsequence. Then, (t,z) € Graph*/.

(ii) For every (t,x) € Graph™¢ there exists a whole sequence such that (ty,zr) € Graph (%
and (tg,zx) — (t, ).

We prove condition (i) arguing by contradiction. Let thus (¢,z) € [0,T]x[0, L] and (tg, zx) €
Graph ¢+ be such that (tx,zr) — (t,z) up to a subsequence (not relabelled) and assume that
(t,x) ¢ Graph™(, ie., x ¢ [((t7),4(t")]. We consider the case where z < £(t7), the case
x > ((t1) being analogous. By assumption, there exists kg € N such that for every k > ko we
have ¢°¢(t;) < £(t). By the definition of ¢(¢~) and the monotonicity of ¢, there exists n > 0
such that % (ty) < £(t—n) for every k > ko. For k large, we have t; > t — n. Therefore, by the
monotonocity of £°#, we get

EF(E —n) < () < L(E—n),

which leads to contradiction, by the pointwise convergence of ¢+ (t — 7).

We now prove condition (ii). Let (t,z) € Graph*¢. Then, for every n > 0 we have £(t —n) <
x < L(t+mn). We claim that there is a sequence z; — x such that z) € [(°*(t—n), 5+ (t+n)].
Specifically, if ¢(t—n) < = < L(t+n) we take xp = x; if © = £(t—n) we take xp = (°+(t—n);
if © = ((t+n) we take xy, := £°¥(t+n); in each case by pointwise convergence we conclude that
xr — x. Then, by continuity and monotonicity of ¢°¢  there exists tx € [t—n,t+n] such that
0ek (tg,) = z1. We conclude by the arbitrariness of 7. O

We now investigate on the limit behaviour of u®. The next theorem shows that the limit
displacement solves problem (|0.17]).

Theorem 4.8. Assume (4.2)), , and (4.12). Let (u®,£%) be the solution to the coupled
problem (4.1 €9 (4.14). Let L and ey, be as in Proposition . Then,

uf* — u weakly in L*(0,T; H*(0, L)), (4.24)
where ®
w .
ult, z) = — Tt w(t) for a.e. (t,x):x <L(t), (4.25)
0 for a.e. (t,xz) x> L(t).

Proof. We recall that u®#(t,z) = 0 whenever x > ¢°*(T"). By Proposition and by (4.8)), usr
is bounded in L>(0,T; L?(0, L)) and therefore in L?(0,T; L?(0, L)) as well. We can thus extract
a subsequence (not relabelled), and find a function ¢ € L?(0,T; L?(0, L)) such that

usk — ¢ in L*(0,T;L?(0,L)). (4.26)
We have -
wH(t) = uh () + [ (e (4.27)
0
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for every (t,x) € Q7F. In particular, u®* is bounded in L?(0,T; L%(0, L)) and (up to extracting
a further subsequence, not relabelled) there exists u € L?(0,T; L?(0, L)) such that

utt — y in L*(0,T; L*(0, L)). (4.28)

We remark that at this stage of the proof the limit displacement u may depend on the subse-
quence extracted in (4.28); however at the end of the proof we shall show the explicit formula
(4.25)), which implies that the limit is the same on the whole sequence ¢, extracted in Proposition
4.0l

We now pick a function p(t,x) € L%*(0,T;L?(0, L)) and integrate ([4.27) over (0,7)x (0, L).
By the Fubini Theorem we obtain

/OT/O Sk (t, z)p(t,z) dedt = // p(t,x dxdt—i—// (t,x </ k(t)g)dg) dz dt
// p(t, da:dt—i—// (/ (t,x dx) uk(t,€) dede
// p(t,x) dxdt+// P(t, &) dédt,

where P(t,§) = fEL p(t, z) dx is still in L2(0, T; L*(0, L)) by the Jensen inequality. Using (4.153)),
(£.26), and (L.28), we find

x

u(t.o) = w(t) + [ qt,)

0
for a.e. (t,z) € (0,T) x (0,L). This shows that ¢ = u,. We thus have proved that u® — v in
L%(0,T; HY(0, L)).

We now prove (4.25). We employ Lemma which can be rephrased as follows by using

the open n-neighbourhood of Graph*¢ and (4.23)): for every n € (0,4y) and for k sufficiently

large we have
Graph ¢°% C (Graph*/),), (4.29)

see Figure Hence, we pick a test function v € H((0,T)x(0,L)) such that v(¢,0) = 0
and v(t,z) = 0 whenever (t,z) € (Graph™(),. By integration by parts in time and space, the
equation solved by u®* gives

T
:/ / (ehugf — usk) vda dt
0 0
T L L
=— / / (ehui*vy — uShv,) dadt + 6%/ ug (T, z)v(T, x) dx
0 0 0
o L
& [ w0 ds et [ w7 @), () @) ) da

TO o T
_ / WS (L 65 (1)) (£, 6% (1)) dt + / W (£, 0)(t, 0) dt. (4.30)
0 0

Notice that the boundary term in the last expression makes sense since (¢£°)~!(x) is defined for
a.e. x € [0, L].

We now show that each summand in (4.30) converges to zero as k — oo. Using (4.21]) we
obtain

L
2 /0 WS (T, 2)o(T, ) dz < exllexus® (T, )| gz 1o(Ts ) 20,2 — 0.
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to

t1

Lo f é(tl) z >

Figure 4.2: The set (Graph*/), and the rectangle R employed in the proof of Theorem

Integrating (4.21)) in time we find that — fOT fOL e2ug* vy dz dt — 0. Moreover,

Lo
—E%/ up(x)v(0,z)dz — 0,
0

since e is bounded by (4.15¢). We also notice that

05k (T) T -
et / ugt ((69) ), 2)o((F) " (x),2) de = —<, / ug® (¢, €+ (8))o(t, 5+ (1)) €5k (t) dt = 0,
‘ 0

0

since v(t,z) = 0 in (Graph*/), and (4.29). Finally

T
/ WS (£, 0)u(t, 0) dt = 0
0

by assumption on v. This implies that in the limit we find

T o)
/ / UgUy = 0, (4.31)
o Jo

for every test function v in H'((0,T)x (0, L)) such that v(¢,0) = 0 and v(¢t,z) = 0 whenever
(t,x) € (Graph®(),.

Finally, we prove that the limit function u(t,-) is affine in [0, £(t)] for every ¢t. We fix a
rectangle R := (t1,t2)x(0,¢), with ¢;,t2 € [0,7] and 0 < £ < £(t;), see Figure Let v be of
the form v(t,z) = a(t)B(z), with a € H}(t1,t2) and 3 € H(0,¢). Then, by we know

that t Z
[t ([ wttnpas) a=o
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Applying twice the Fundamental Lemma of Calculus of Variations, we find a(t) and b(t) such
that
u(t,z) = a(t)x + b(t), (4.32)

for a.e. (t,z) € R. Then, by the arbitrariness of R, equation is satisfied almost everywhere
in {(t,z):x < L(t)}.

On the other hand, in the region {(t,z) : > £(t)} we have u(t,x) = u®*(¢t,x) = 0. Then
we obtain the boundary condition u(t, £(t)) = 0 for a.e. t. By the weak convergence of u®* to u
and by we also recover the boundary condition u(t,0) = w(t) for every ¢t. This implies,
together with , that

__w(®)
u(t,z) = 0 x +w(t),
for a.e. t € [0,T] and a.e. x € [0,£(t)], while u = 0 for x > £(t). O

4.2.3 Convergence of the stability condition

At this stage of the asymptotic analysis we have found a limit pair (u,¢) that describes the
evolution of the debonding when the speed of the external loading tends to zero. We now
investigate on the limit of Griffith’s criterion and we question whether the limit pair
(u, ¢) satisfies the quasistatic version of this criterion, i.e., whether (u,f) is a rate-independent
evolution according to the definition below.

Given a non-decreasing function \: [0,7] — [0, L] and an external loading w € C%1(]0,T7)
as above, for every t € [0, 7] the internal quasistatic (potential) energy governing the process is

A()
Eqs(t; A, w) 1= min {;/0 o(x)?dz ;v e HY(0,L), v(0) = w(t), v(\(t)) = O} )

where ¥ denotes the derivative of v with respect to x, as always in this thesis for functions of
only one variable. As in Chapter we define the quasistatic energy release rate Ggs as the
opposite of the derivative of £4(t; A, w) with respect to A, i.e.,

Gys(t) := —0xEgs(t; A, w).

Notice that 0y has to be interpreted as a Gateaux differential with respect to the function A,
indeed the displacement u depends on A. The expression of Gys(t) is simplified by taking into
account that an equilibrium displacement is affine in (0, A(¢)), see Remark

Definition 4.9 (Rate-independent evolution). Let A: [0,T] — [0, L] be a non-decreasing func-
tion and v € L*(0,T; H*(0,L)). We say that (v, \) is a rate-independent evolution if it satisfies
the equilibrium equation for a.e. t € [0,T],

Vg (t,2) =0, for 0 <z < A(t), (4.33a)
v(t,0) = w(t), (4.33b)
o(t,z) =0,  forxz > \t), (4.33¢)

and the quasistic formulation of Griffith’s criterion for a.e. t > 0,

Gos(t) < (A1), (4.34Db)
[Gas(t) — RO AE) = 0. (4.34c)
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Remark 4.10. By (4.33), we know that v(t,z) = [ — %x +w(t)] VO for a.e. t € [0,T]. Then,

the quasistatic energy release rate can be explicitly computed and is given by

w 2
: ;(?)2 = Jult D)

Gqs (t) =

Moreover, under the additional assumption that A € AC([0,7]), (4.34c) is equivalent to the
energy-dissipation balance that reads as follows:

At)

Eqs(ts A, w) — Egs (03 N, w) + / k(z)dx + /Ot vz (s,0)w(s)ds =0, (4.35)

Ao
for every ¢t € [0,T]. Indeed, we use again the formula for v and differentiate (4.35]) with respect
to t, obtaining for a.e. t € [0, 7]

wtyit) | [ wt)
NO) + (%) [— A1) + Iﬁ?(/\(t)):| TN =0,

which is . Therefore, Definition complies with the usual notion of rate-independent
evolution satisfying a first-order stability and an energy-dissipation balance, see [54].

Notice that & do not prescribe the behaviour of the system at time disconti-
nuities. In order to determine suitable solutions, additional requirements can be imposed, e.g.
requiring that the total energy is conserved also after jumps in time.

Remark 4.11. By (4.34c), we deduce that three different regimes for the evolution of a rate-
independent debonding front A\ are possible: A is constant in a time subinterval, or it has a

jump, or it is of the form
w(t)

V2ROD)

Notice that, in the case of a non-decreasing local toughness k, the quasistatic energy functional

A(t) =

w A
Eqs(N) = 2 +/0 k(z) dz

is convex. This implies that a rate-independent evolution is a global minimizer for the total
quasistatic energy.

We now consider the pair (u, ) obtained in Proposition and Theorem We want to
verify if (u, ¢) satisfies Definition First, we observe that by construction (cf. the application
of Helly’s theorem in Proposition t — {(t) is non-decreasing, thus automatically
holds for a.e. t.

Next, we show that is satisfied. We first prove a few technical results.

Lemma 4.12. Let Q be a bounded domain in RN and g, — 1 in measure, with g,: @ — R
equibounded. Then, g, — 1 strongly in L?(£2).

Proof. Fix n,d > 0. By the convergence in measure of the sequence g,, there exists ng € N and
a set

As i ={x:|gn— 1| >0}
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such that |As| < n for every n > ng. Therefore

/\gn—u?dxz/ gn—1!2dx+/ g — 1P da
Q As O\ As

<C dx + / 6?2 dx,
where C' > 0. In the last passage we have used the equiboundedness of g,. The arbitrariness of

1 and J leads to the conclusion of the proof. O

Lemma 4.13. Let € be a bounded open interval, g,: 0 — R a sequence of functions such that
gn — 1 in measure and let p,: Q@ — Q such that p;' are equi-Lipschitz and p, — 1 uniformly
in Q. Then, g, o p, — 1 in measure.

Proof. For every § > 0 we have

{2 :]gnopn—1 >0} =p, ({y: lgn(y) — 1| > 6}).

Since p,, ! is equi-Lipschitz,

oyt lgn(y) — 1| > 8} < C{y : |gnly) — 1| > 6},

where C' is a positive constant. We conclude using the convergence in measure of g, to 1. O

Theorem 4.14. Assume (4.2), (4.12), and (4.15) and let (u®, ¢%) be the solution to the coupled
problem (4.1)) € (4.14). Let L and ey, be as in Proposition . Then, for a.e. t € [0,T] conditions
(4.34a) and (4.34b) are satisfied.

Proof. By fex is bounded in L>®°(—¢ply, T) uniformly with respect to . Therefore, fex is
bounded in L?(—¢fy, T) as well. Since f+(0) = 0, we have that f* is bounded in H'(—¢f, T)
and thus, up to a subsequence (not relabelled), f+ weakly converges to a function f in H*(0,T).
Moreover, it is possible to characterise the limit function f in terms of w and ¢. If we differentiate
with respect to z we find

Ul (t, ) = — [+ (t—epx) 4 epf (t+epx) — f* (tepz).

By (4.24]) and (4.25)), we know that, up to a subsequence,

x

uCk — _% in L2(07T, L2(07L))

For every p € L?(0,T) we have

klim/ / t)ydtdr = — hm/ / f‘a’c t—epx) + [+ (t+epz) | p(t) dt dz
T—epz | T+egz |
=— lim / / feE(s)p(s + exx) dsda — hm / / feE(s)p(s — epx) dsdx
ERT

k—oo

/ / 27 (t)p(t) dt da,
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by the continuity in L? with respect to translations and the weak convergence of f€+. Therefore,

: w(t)
t)= —— fi .e.t€0,T]. 4.36
f) = i foraete 0.7 (1.36)
Since f¢#(0) = 0, we have f(0) = 0. Therefore,
" w(s)
t) = d
We now use Griffith’s condition (4.11b|) and (4.13)) in order to find that, for every subinterval
(a,b) C (0,T),

b b b
/ NEEOE / VG (D) dt = / 200, (6)F* (g5(1)) dt, (4.37)

1—e,, 0%k (1) .
e () and ¢5 () is as in ([£.17)). Since ¢°*(t) < 1, we can continue (4.37) and

/ V GEE(t dt>/ \/20e, (1) ) o (@%k (1))@ (t) dt
- [ 1 V 20, (¢7) 1)) f4(s)ds. (438)
—Ekgo
By Cebysév’s inequality and by the fact that, by (4.22)), ¢°* is uniformly bounded, we now

show that ef°* — 0 in measure. Indeed, for every n > 0 there exists a constant C' = C(n) > 0
such that

where g, (1) :=
find that

T
(e 0.7): el (1) > )] < :]gk / (o (1) dt < £,
0

This implies that g., converges in measure to one. Since ¢°* is equi-Lipischitz, then Lemma

ensures that g., o (¢°*)”! — 1 in measure. By Lemma gek((goak)*l) — 1 strongly in
L?(0,T). Finally, since T, % (a).p°k (b)) strongly converges to 14 p) in L?(0,T) (because p*(t) — t

uniformly) and since fer — fin L2 (0,7, then the right hand side of - ) tends to

/a\/§f(8)ds:/a mds

as k — oo, where the equality follows by (4.36]). Therefore,

/ab \/Ggs(t) dt < limksup /ab V(6 (t) dt.

By the Fatou lemma and by upper semicontinuity of s, we find that

b b b
limksup/ \/n(ﬁsk(t))dtg/ limksup\/ﬁ(ﬁek(t))dtg/ VE(t))dt.

Using the the arbitrariness of (a,b), we obtain

_ w(t)? — 9f(4)2
Gqs(t) - Qf(t)Q - Qf(t) S "i(e(t))
for a.e. t € [0,T7], thus is proved. O
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Remark 4.15. It is possible to extend the result of Theorem to the case in which & is
piecewise continuous with a finite number of discontinuities, considered in [28] [48]. Indeed, one
repeats the previous arguments in every zone where k is continuous and finds that still
holds almost everywhere.

Remark 4.16. We recall that Theorem guarantees only that u®* converges to v weakly in
L%(0,T; H'(0,L)). If in addition we knew that

uk(t,-) — u(t,-) weakly in H'(0, L) for every t € [0, T], (4.39)

then it would be possible also to pass to the limit in the activation condition obtaining
E319).

To this end, besides we assume that w® converges to w strongly in H*(0,T), that ug*
converges to ug strongly in H'(0,4y), and that cu; converges to 0 strongly in L?(0, 4g), i.e., the
initial kinetic energy tends to zero. Then, by the lower semicontinuity of the potential
energy ensures that Egs(t; ¢, w) < liminfy_ o % (¢; €5k, w®*). Passing to the limit in and
using , we obtain an energy inequality; the opposite inequality derives from with
arguments similar to Remark We thus obtain which is equivalent to the activation
condition (at least in time intervals with no jumps).

However, conditions and may not hold in general, as shown in the example of
the following section. The example shows that in general does not pass to the limit and
is not satisfied, even in the case of a constant toughness.

4.3 Counterexample to the convergence of the activation con-
dition

We now show an explicit case where the convergence of (4.11c)) to (4.34c)) fails.

A first counterexample to the convergence of the activation condition was presented in [48].
In this case, the singular behaviour is due to the choice of a toughness with discontinuities. More
precisely, in [48] it is assumed that x(z) = k1 in (¢1,¢1 + 9) and k(z) = kg for x & (£1,01 + 0),
where k1 < kg, 1 > {p, and ¢ is sufficiently small; this models a short defect of the glue between
the film and the substrate.

In this section we show an example of singular behaviour arising even if the local toughness
is constant. For simplicity we set x := % Moreover we fix the external loading

wi(s) =5 +2 (m_gﬁD

and the initial conditions
by =2, ui(z) =1,
@) (2e[L] - VI+e2)z+2(VI+e2—¢ll]), 0<z<1, (140
ug(x) == 4.40a
—V1+ &2z + 21 + €2, 1<z <2

Here | -] denotes the integer part. Notice that w® is a perturbation of w(s) := s, uf is a pertur-
bation of a “hat function” ug(x) := z A (2 —x), and (4.2b) is satisfied; see Figure Moreover,
the initial kinetic energy %HsuiH%Q(O’ZO) = Z|leus (0, -)||%2(07e0) tends to zero. The specific choice
made in (4.40)) simplifies the forthcoming computations; however the same qualitative behaviour
can be observed even without perturbations.
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0 i lo =2 z

Figure 4.3: The initial datum uj in the example of Chapter We have u§(0) = 2(v1+¢e? —
el1]), u§(1) = V1 +e2, and u§(2) = 0.

4.3.1 Analysis of dynamic solutions

We now study the solutions (uf, £¢) to the coupled problem (4.1)&(|4.14). Using (4.4) and (4.6))

we find the following expression for f€ in [—2¢, 2¢],

Fi(t) = == 4 2| 1), af <t <af,
Fo) = f5(t) ===t —ell]s, af<t<a5, (4.41)
i) = == 21, a5 <t<a,
where aj 1= —elp = —2¢, a] := —¢, a5 := ¢, and a5 = 2¢. Notice that fg is constant in every
interval (a$ Z 1,a5), fori=1,2,3.
By (4.14)) we have
je . 12(]515)2—H _ 1 € €
05 = e 272w VO= 7=, b5 <t<bi,
fe\2
() = 05 = l§g§+§ V0=0, bE <t <, (4.42)
je . 12(f§)2—’€ _ 1 € 5
05 = 82(f.§)2+5v0_ = by <t <0,
where bj := 0 and
£ .__ 1€ € _ €
bi == bi_y + T (ai —ai_y). (4.43)
Since f¢ is constant in (a§_q,a5) fori =1,2,3, also (¢ is constant in the intervals (b5_,,b5). We

obtain b = =56 b5 = b] + 2¢, and b§ = b5 + E.

1— 1— aés

We remark that in - zg = 0 because of (4.11] - Indeed, for every e > 0 we have 2( ff )2 <
since

1
e+ 1+a2—2gH‘ <1. (4.44)
g

Then, (4.11Db)) is satisfied as a strict inequality, by (4.13)), and therefore (4.11¢c)) implies that the

debonding speed in this second interval is zero.

We now determine f© for ¢t > a§ and ¢° for t > b§ by using (4.5) and - 4.14)) recursively, cf.
e.g. the proof of Proposition E 4.4 for a similar construction. Because of and (4.42), we
can immediately see that fe and (¢ are piecewise constant. More premsely, f5 (t) = f7 in each
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interval (a$_,,a$), i > 0, while (t) = £¢ in each interval (b5_,,b5), i > 0, where

1+efs
l—Eéf

and b is given by (4.43)). Notice that we have used (4.5) to obtain (4.45). Using (4.20)) and

recalling that w® =1, we get

az§+3 = af+2 (af —a;_y) (4.45)

. 1— el ,
i+3 1+5€Z€f1 ( )

Whenever Ef = 0, then .1-13 =e+ ff On the other hand, when €f > 0, we can plug (4.14) in
(4.46)), which gives

_ 205k
. 2(f8)2+k ; K
fa—=e+——t—ff—ec 4 —. 4.47
i+3 14 2(ff)2—n fz fo ( )
2(f)? 4k
This suggests us to study the map h: x +— ¢ + 5, which has a fixed point for z = ety Zrder V22"+52 =

=+vIte? Notice that Z = f{. This implies that f§; = f5,,, = ff and 5, = 5, | = 5 for i > 1.
In fact, the choice of the initial datum ug as in has been made in order to satisfy these
conditions and to simplify such formulas.

We still have to determine f?‘fz 4o and Egl 4o for i > 1. To this end, we start by showing the
explicit expression of £° in the interval (b3, bg). By (4.42)) and (4.45)), we find

aj =a3+cee, agz=aj+2, ag=a5+ cee,

where

l—i-eéﬁ 2e
Ce 1= = =14
1—els V1i+e2—e¢

We have already observed that fg = fj = ff . Moreover, by (4.46) and since E; = 0, we find
g = f5 + . It easily follows that

i=0= i B<t<b
((t) = Iz =5 =0, b <t < b,
f=l= s b <t<b

Notice that €§ = 0 holds for € small enough, since

1
35+\/1+52—26[€J‘ <1 (4.48)

and therefore 2(f£)? = 2(f5 + €)% < &, cf. ([&.44).
We can iteratively repeat this argument as long as the following condition, analog of (4.44))

and (4.48)), is satisfied:

|
‘(2i+1)€+ 1+52—2ELH <1. (4.49)

Let )
ns—min{nEN:‘(Qn—i-l)a—l- 1+52—25L”>1}.
€
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Notice that implies that 2(f§¢+2)2 = 2(f5 +ie)? < k and £5;, |, = 0 for every i < n°.
Condition is a threshold condition that fails after n® iterations of this process. Direct
computations show that n® = |1]. (In fact, the choice of the initial datum u§ has been made in
order to obtain this equality.) In conclusion, for ¢ sufficiently small and 1 < i < n®, we have

fsia =15, ag; <t < a3y,
o) =9 fo = f5 +ie,  a§q <t < a5 (4.50)
f3z+3 £, a5,49 <t < ag,
and ' '
31 =4, 3 <t <b341,
00 =15, b0 <t <0543,
where
. 1—ct
a3 = a5 Fee(ag_y—ag_g) = 2e(—1)+ 251—§Z T Cet,
. 1—ct
a3;,9 = a3, t+t2 = 2+ 281_§Z + ce€,
as, = a5t c(ay, —a5 ) = 26’L+261 CEH
343 3i+2 e\"31 3i—1
. , (4.52)
(> _ £ g 13 _ Z
i = Uhist g (a3 — a3i73) = ZE Ces
51 = 0y o+2 = 2e(i+1)+ —|—2<€1 o7 e
_ 1 _ . cg 11
{ 3i = byt el (a5, —a5,_,) = 2ei+ TE

This means that there is a first phase, corresponding to the time interval [0,05,,-], where the
material debonds according to a “stop and go” process and the speed oscillates between 0 and

5 (see Fig. .

Let us now consider the evolution for times larger than b5,.. Arguing as above, we obtain

e+V1+e?2

f§n5+2 = -9 = fi and é§n5+2 = éi-

We employ (4.47)) and recall that the map h: z + e+ 5= has a fixed point at T = fl Therefore,
for every @ 2 nc

f3z+1 f3z+2 f31+3 f1v
€§i+1 = £§i+2 - £§i+3 = Ei.

This shows that in this second phase the debonding proceeds at constant speed ﬁ for every
time.

Remark 4.17. By , , and , the displacement’s derivatives are piecewise con-
stant; in the (¢, ) plane, their discontinuities lie on some shock waves originating from (0, ¢y/2)
(where the initial datum has a kink), travelling backword and forward in the debonded film, and
reflecting at boundaries; they are represented by thick dashed lines in Figure[£.4l Notice that the
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(£i0, b10)

£
5T)

Figure 4.4: Evolution of ¢ with a “stop and go” process.
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lines originating from (0, ¢y), employed in the construction above and marked in Figure [4.4] by
thin dashed lines, are not discontinuity lines, since f3l = f3Z 41 forevery i > 1. This is actually a
consequence of the compatibility among u, u$, and £ at (0, £o); namely, @5 (£o)£5(0)4u5 (49) = 0.
We refer to [23, Remark 1.12] for more details on the regularity of the solutions.

4.3.2 Limit for vanishing inertia

We now study the limit £ of the evolutions ¢ as € — 0. Notice that the initial conditions are not
at equilibrium; in particular the initial position ug(z) is not of the form [ — w(o)x +w(0)] v 0.
Because of , there must be a time discontinuity at t = 0, i.e., the hmlt displacement u
jumps to an equilibrium configuration. Nonetheless, we will show that ¢ is continuous even at
t = 0. In order to determine ¢, the main point is to study the limit evolution of the debonding
during the first phase characterised by the “stop and go” process. Afterwards, during the second
phase, the evolution of the debonding will proceed at constant speed, given by lim._.q E‘i =1.
We first compute the instant at which the first phase ends. By , we have

1y
: :QEH L E T =0 2y
€ Ei

On the other hand, at time b5,. the position of ¢ is given by
1 . 1 —
C(65,) = Lo+ (bgne - zsu) =ty o1 = 2 (4.53)

Indeed, in [O b5,,<] the speed (¢ is either zero or £5, and the total length of the intervals where
F=0is 25L |.

Therefore for t > €241 we have £(t) = t. In the time interval [e? + 1, +-00), corresponding to
the second phase, the quasistatic limit £ is a rate-independent evolution in the sense of Definition
see also Remark

We now explicitly find the law of the evolution of £ in the first phase. Rather than finding
an expression for ¢t — ((t), it is more convenient to determine the inverse map ¢ — t(¢), cf. [4§]
for a similar computation in another example. We consider the map

i 05 (b5;) = Lo+ T — 1, (4.54)

where 1 < i < n®. Notice that the last equality follows as in (4.53). We now take the inverse of

(4.54)) and define
log ( 10—t )

(0) =
=) log c.
1
Since ¢c; — e? as € — 0, then we have
e log (¢ —1
cif(e) =0 losl . ) (4.55)
Therefore,
C,Z:(Z)H _1
-E — — —
t(l) = glin bie (o) = ;lil[l) 2ei°(0) + 7 =log({—1)+¢—2 (4.56)
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1 -

10 -

Figure 4.5: Limit solution for ¢ = 0.25, ¢ = 0.05, asymptotic limit (continuous lines), and a
rate-independent evolution (dotted line).
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denotes the trajectory followed by the debonding during the first phase (see Figure . Notice
that ¢(¢) is the sum of a strictly concave and an affine function, thus #(¢) is strictly convex
in the first phase. It is interesting that the first phase features a strictly positive debonding
acceleration.

We can give first and second order laws characterising the first phase. By we obtain

t(l) = Ll for £ € (2,e*+1),

=
hence

i(t) = E(?(t_) for ¢ € (0,e*41)
and

i) = f(;()t)_g for ¢ € (0,¢2+1).

As already observed, we have K,K > 0 in the first phase. Both ¢ and ¢ are discontinuous at
t=e?+1.

Notice that during the first phase the quasistatic limit ¢ does not satisfy , thus it does
not comply with the notion of rate-independent evolution given in Definition [£.9] Indeed, since
the local toughness is constant, Remark implies that a rate-independent evolution must
be piecewise affine (with possible jumps); in contrast, (4.56|) is not the equation of a line. This
result is similar to the one obtained in [48] with a discontinuous local toughness: here we showed
that a singular behaviour can be observed even if the local toughness is constant.

Remark 4.18. We recall that the initial displacement u§ chosen in has a kink at %O =1.
In this section, we showed that the interaction between the two slopes generates the “stop and
go” process, which gives as a result the convergence to an evolution that does not satisfy Defition
However, this singular behaviour can be obtained even for a smooth initial datum. Indeed,
let us consider a regularisation of v, coinciding with the original profile outside of (1 — g, 1+ g),
where 6 € (0,1) is fixed. As a consequence of this choice, the function ¢ differs from only
in a portion of the order 6 of each interval (5,05, ). The resulting evolution of the debonding
front ¢¢ is smooth. However, in the limit we observe the same qualitative behaviour described
above, due to the interaction of the different slopes of the initial datum. This shows that the
singular behaviour is not due to the choice of a initial datum with a kink.

4.3.3 Analysis of the kinetic energy

The striking behaviour observed in the previous example can be explained by computing the
oscillations of the kinetic energy

22 )
Ke(t) .= 2/0 us (t, z)* d. (4.57)
We recall that the displacement’s derivatives are piecewise constant, with discontinuity lines
given by shock waves originating at £y/2 (where the initial datum has a kink) and travelling
backward and forward in the debonded film (cf. Remark [4.17).

Let us introduce some notation. The sectors determined by shock waves (Figure are
divided into three families: T; denotes a triangular sector adjacent to the time axis (i.e., the
vertical axis in figure), S; a triangular sector adjacent to the graph of /¢, and R; a rhomboidal
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Figure 4.6: The sectors composing )¢ give different contributions to the kinetic energy K¢. The
darker the shade of grey, the larger is uf(t,)? in that region. White sectors give a negligible
contribution.
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sector; Ty contains the segment {0} x[a], a5], So contains the segment [(0, ¢y), (b5, ¢5)], and Ry
is adjacent to Tp and Sp; the families are indexed increasingly in the direction of the time axis.

It is easy to see that the boundary conditions imply that u; = 1 in the sectors T; and uf =0
in the sectors .S; with ¢ odd, i.e., those triangles corresponding to a stop phase of the debonding
front. Moreover, by , , and we obtain that uf = 1 in the sectors S; with ¢ even.
In all triangular sectors we thus have u§ (¢, z) of order at most one, so that their contribution to
the kinetic energy is of order at most 2. More precisely,

&2

— ug (t,x)>dx < Ce?  for every t,1,
2 Jaeyxioes )

and the same holds for .5;. In particular,

as;, , +as; as;q + as;
Ke(t) = O(?) fort= w and for ¢t = w (4.58)
for every i > 1.
We now show that the remaining rhomboids R; give a relevant contribution to the kinetic

energy. By (4.7a)), (4.41), and (4.50) we obtain for every i
1. 1/ 1 1
zﬂamzlﬁ+(ﬁsLJ+w>:1[J+iinR%
€ £ € €
_ 1/, 1 . i 1 _
ut(t,x)zl—g fl—etj—i—(z—i—l)s —i—gfl:l—i-tJ—(z—i-l) in Rojtq.

To obtain the kinetic energy (4.57)), we observe that the maximal ¢-section of each rhomboid
has length ¢y = 2. Therefore,

2
K0 = ([1] i) 400 fort€ n il Ulfrnciindd: (459)
This gives the maximal asymptotic amount of kinetic energy; we do not detail the computation
of the kinetic energy in other intervals. We recall that by the minimal asymptotic amount
is zero, so the energy is oscillating.

Moreover, since holds for i« = 0,...,n° and since n® = L%J, we observe that the
maximal oscillations of the kinetic energy decrease as time increases, until the kinetic energy
is close to zero for ¢ = nf, i.e., when the non-quasistatic phase finishes and the second phase
starts. In fact, since in the second phase fE (t) = ff for a.e. t, then v is constantly equal to one,
so the kinetic energy is negligible by . We can also give an asymptotic expression for the

maximal (resp., minimal) oscillations by plugging (4.55) in (4.59) (resp., by (4.58])):

log(£(t) — 1)\
rhm(Kwo:(1%‘”)), Tlim (K°)(¢) = 0.
e—0 2 e—0
We refer to [10] for the notion of I'-convergence. A similar phenomenon was observed in [48] for
a discontinuous toughness.

Summarising,

e the non-quasistatic phase, where Griffith’s quasistatic criterion fails in the limit, is char-
acterised by the presence of a relevant kinetic energy (of order one as € — 0, at each fixed
time);
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e during such first phase, kinetic energy oscillates and is exchanged with potential energy
at a time scale of order ¢;

e overall, the total mechanical energy decreases and is transferred to energy dissipated in
the debonding growth;

e as time increases, the maximal oscillations of the kinetic energy decrease and approach
zero as t — €2 + 1, i.e., all of the kinetic energy is converted into potential and dissipated
energy;

e in the second (stable) phase, for ¢t > €2 + 1, the kinetic energy is of order 2 and does not
influence the limit behaviour of the debonding evolution as & — 0.

4.4 Quasistatic limit in the case of a speed-dependent local
toughness

In this section we consider the quasistatic limit in the case of a speed-dependent local toughness
introduced in Section We recall that the local toughness x satisfies . Moreover, we
shall assume that

K is upper semicontinuous.

We fix € > 0 and consider again ug, uj, and w® as in and such is satisfied.

If t — (°(t) is as in (4.3)), then by Proposition there exists v € C%1(0F) unique solution
to and it is represented through by f¢ € C%1(0,400) such that is satisfied.

In the case of ¢ — ¢°(t) unknown, we formulate Griffith’s criterion as in Section noting
that here the scaling affects the local toughness as follows:

R(L:(8), L:(8)) = K(E(2),e6(1)),

so that Griffith’s criterion reads now as

2 (t) > 0, (4.60a)
Gy (1) < R(E(D), el (1)), (4.60b)
[G;E (1) = K(E(), el (1)) | £ (t) = 0. (4.60c)

As above we employ its equivalent form

éf(t) = EQfE(t_ds(t))Q _ ﬁ(ge(t)’eéa(t)) v0, forae t>0
€ 2fe(t—ele ()2 + w(5(t),el5(t)) o ’ (4.61)
(0) = £o.

The following result generalises Proposition [£.6, Theorem [4.8 and Theorem to the case
of a speed-dependent local toughness. This extension requires only minor modifications in the
proof. In Remark [£.20] we highlight the only step where the toughness plays a role.

Theorem 4.19. Let T > 0. Assume that the toughness k satisfies (1.62) and is upper semi-
continuous. Assume (4.2) and (4.15)). Let (u®,€%) be the solution to the coupled problem (4.1)
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& (4.61). Then, there exists L > 0 such that (*(T) < L, and there exists a non-decreasing
evolution £: [0,T] — [0, L] and a sequence €y, such that

5R(t) — L(t)
for every t € [0,T]. Moreover,

uft — o weakly in L*(0,T; H*(0, L)),

where
ul(t, z) = {—%f))a:—l—w(t) for a.e. (t,x): x < L(t),
’ 0 for a.e. (t,xz): = > L(t).
Finally,
Gys(t) < k(£(),0) (4.62)

and the quasistatic energy release rate is given by Ggs(t) = 5007

Remark 4.20. We highlight that in the quasistatic limit the toughness appearing in Griffith’s
criterion is evaluated at debonding speed zero. Indeed, following the proof of Theorem [4.14] we
see that

b b b
/ \/Ggs(t) dt <lim sup/ VG (t) dt < lim sup/ \/F;(Eek (t), exler(t) dt.
a k a k a

for every interval (a,b) C [0,T], where the second inequality follows by (0.16b)). By the Fatou
lemma and the upper semicontinuity of x, we find

b b b
lim sup/ \/ﬁ(ﬁak (t),exler(t)) dt < / lim sup \/ﬁ(ﬁék (t),exler(t)) dt < / VE(),0)dt,
k a a k a
which yields

In this work we observe a particular behaviour of the quasistatic limit by providing two
examples. The first example shows that (0.16¢) does not pass to the limit as € — 0, i.e.,

[Gas(t) = £(A(E), 0)] M) = 0

does not hold in general. The second example shows that brutal propagation is possible in the
quasistatic limit even if the dynamic toughness penalises high-speed debonding.
We will employ (4.5) in the following form:

fe(8) = wi(s) + [ (we(s)), (4.63)
recalling that
We = (- O zﬁ;l, we(s) :=s—¢el°(s), (s) :=s+el(s).

Notice that
_ 14y '(s)

1t (g l(s))

w7 (s) (4.64)
(See Figure [4.7)
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4.4.1 Example 1: the activation condition fails

We now show that the presence of a viscous term in Griffith’s criterion, given by the local
toughness explicitly depending on the debonding speed, is not in general sufficient to guarantee

the convergence of (4.60c)).
We consider here a local toughness

R (1), (1)) = % +esel (0), (4.65)

with c3 > 0. Notice that the choice kK = & := % was precisely the one employed in Section
and we will henceforth refer to (v®, A*) as the dynamic solutions analysed in that section and to

(v, \) as their limit as ¢ — 0. Using (4.65]), we write (4.61)) in normal form, obtaining

(= (t) = 1— 4f.6(t_€es(t))2_1 , V0, forae. t>0,
€ ofe (t—sés(t))2+%+03+\/(2f5(t—e€5 (£))2+ 3 —c3)2+16cs fe (t—el=(t))2
£(0) = £
(4.66)
We set o =2, w®(t) =t, u] =1, and
( (2e[l] = VI+e2)z+2(VI+e?—¢ll]), 0<z<T,
UO Xz —
—V1+e2x 4+ 2v/1 + €2, 1<x<2.

These are the same data that we used in Section As above, we have f° of the form

€+\/1+62

ff:: —2e <t < —e¢,
) ;
S = f§:=6+ 21+5 SLEJ, —e<t<e,
13
f5 =15, e <t< 2.

For every i > 1 we call £ the solution of when fe(t el (t)) = fr.

We notice that, by plugging f2 in , we have 6‘5 =0. As a consequence of -,
results that f¢ and (¢ are piecewise constant Hﬁ +00); we denote by fE , EE their values, mdexed

increasingly with respect to time, see Figure The rule for the update of f5 is again
Hence, f5 f2 +¢. By direct computation it is possible to prove that EE = 0 and that for every
0 <i<|[l]=:n®wehave f32+2 f5 +ic and /5 3i42 = 0. Thus, the indices 3i + 2 correspond
to stop phases with no propagation of the debonding front until a certain threshold is reached.

In contrast, we have propagation phases for the indices 37 + 1 and 3¢ + 3. Indeed, starting

from (4.66]), we deduce that
1 2f(t — ele (1)) — & < (1) < 12f(t—els(t)* — &
€2fe(t —ele(t))2 + & + 2\ /cafe(t —ele(t)) — Toeofe(t—elf(t)2 4R
In the previous chain of inequalities, the first is obtained from (4.66) by using the fact that
Vaz+bv2<a+b for a, b > 0; the second is obtained by ignoring the term 16¢3f(t — el*(t))? in
the denominator of (| . Therefore, from the first inequality of - we obtain
1 2(f5)2 — & B e+V1+e2 1
€2(f5)2 + &+ 2y/caff 62+e\/1+52+1+f(6+\/1+52) +v/c3’

(4.67)

(1) = 6(1) >
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gé‘

we(s)

(£07 0) T

Figure 4.7: The evolution of ¢¢ is represented by a zig-zag in which there is alternation between
phases of propagation of the debonding front and stop phases.

where the last inequality holds for € sufficiently small. On the other hand, the second inequality
of (4.67) implies that the debonding speed is controlled by the one of the evolution for k = &:

(5(t) < A°(t) for a.e. t > 0.

Since the function x — L‘Lg is non-increasing, then
\E
(e fe 1 — 2":/\1 fe fe
fe=fi=¢e+ flf —f1=/1
665 1+eXg

where the last equality follows from the explicit expression of the debonding speed for Kk = &
in the first interval, \; = 1/v/1 + &2, obtained by plugging x = & into (4.61). We iterate this
argument and obtain for every i > 1

e e 1- )‘Ze’)z
f3ivs = [ =¢+ fdz 9 2

4.68
1+£ 1+/\ fl /i (4.68)

Moreover, by (£.67) we recall that ¢5(t) > LH(f*(t — et*(t))), where H(x) := Mﬁ%\/@ We
have

14\/ 4 N
H'(z) = go” o+ dr >0 foraz>0.
£ (222 4 § + 2,/c32)?
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(Recall that & = % and notice that the second order polynomial at its numerator has negative
roots.) Therefore, by (4.68)), we get

. . . ' 1
§i+3 - €§i+3 > H(f§z+1) > H(fle) > T\/@ =V,
for € small enough.

Summarising, in the first 3n® iterations we observe the alternation of two phases:

e stop phases, where the debonding speed is zero,
e propagation phases, where the debonding speed is uniformly bounded from below.

So far, we have not insisted on detailing the time intervals where {¢ is zero or positive. Let
us just notice that the length of those intervals is determined by the rule for the update of f¢,
see also (4.63)). By (4.64), we obtain that in the iterative scheme outlined above the length of

Il see Figure This shows that the intervals

1—efs’
where /¢ = 0 have all the same length 2¢ = £fy. In contrast, the length of the intervals

where ¢¢ # 0 is increasing, since at the i-th iteration those intervals are dilated by a factor
Helsiyn 1+5€§i+3 > ltev

the time intervals is dilated by a factor

1—el5; 4 l—elg; s — 1=ev”

Following a similar iterative scheme, we now construct a fictitious zig-zag evolution ~¢(t)
such that 7%(0) = ¢y = 2 and 4° € {0,v}. More precisely, imitating the construction of ¢¢, we
set

v if t —A5(t) € (—2¢,—¢),
Y(t) =40 ift—9°(t) € (—¢,0),
v ift—9°5(t) € (g,2¢).

This defines 4¢ in [0, b§], where b5 is as in (4.43]) and denotes the time such that b5 —~°(b5) = 2e.
It turns out that b5 = 2¢(2 —ev) /(1 — ev), see Figure Next we repeat this pattern with the
following rule: at each iteration the intervals where £ = 0 maintain the same length 2¢; the two
intervals where ¢ # 0 are dilated by the fixed factor %fiz . By construction we obtain

V(1) < () < A1), (4.69)

where the latter inequality follows by (4.67). More precisely, let us denote by b5; the extremum
of the interval where 7° is defined after the (i—1)-th iteration, obtained replicating b5. For every
1=1,...,n%

i—1

2 , 2 1—d
s = 2¢i I = 2¢i e 4.
% EH—l—ey;da €Z+1—5z/1—d5’ (4.70)
where )
de = +€V.
1—c¢v

The first summand in corresponds to the total length of all intervals where 4 = 0 up to
5;» while the second accounts for the intervals where 4 = v. The position of the debonding
front at time b5; is
2¢ev 1—dt
1—evl—d.’

V(b5) =2+
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Figure 4.8: Evolution of v* and ¢°. The points ¢ = 1,2,3 in figure represent the points
(b5;,7°(b5;)) in the construction of v*.

We consider the map i — z = ~°(b5;) for i = 1,...,n° and its inverse

In order to understand the limit behaviour of ¢¢, we study the limit of 7°. (Notice that their
pointwise limits are both uniform limits.) A straightforward computation shows that

= 1 24,/
£i°(x) =9 % log(x — 1) = % log(x — 1).
v

Moreover,

=@ -1

We now let ¢ — 0 in the expression for b5, (@) and find the expression for the inverse t — ~(t):

7 @) = lim By = (24 /65) flog(e — 1)+~ 2] (4.71)
Notice also that
e =0 €2V —1 £ (1€ e—0 2u
3n5—>2+ v ) 7(3n5)—>1+€ .

Finally, passing to the limit in (4.69)), we obtain

M) <0l (2) <7 Hx) for x <14 €. (4.72)
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The explicit expression for A~! derived in (4.56) gives

1

Ml z)= ——— "

(z) Al
This shows that t — £(t) cannot satisfy Griffith’s quasistatic criterion. Indeed, by (4.67)), (4.71),
and (4.73)), the debonding speed is uniformly bounded by one, so ¢ has no jumps. Moreover,
since a Griffith evolution must satisfy (4.34c]), we would have

¢ 1.

—— =kr((,0)== ifl>0
soe 60 =5 iE>0,
whence £(t) = t. This is incompatible with (4.72]) and therefore the limit evolution t — ¢ does
not satisfy Griffith’s activation condition (4.34c)).

Notice also that the same behaviour may be observed even with a toughness such that

). (4.73)

lim x(x,pu) =4oco0 for every x. (4.74)
p,—>17
Indeed, in the previous example ¢¢ is uniformly bounded by one, thus p = ef¢ < e. If we consider
a toughness satisfying (4.74]) and such that it coincides with (4.65)) for u = ef* < 1, we obtain
the same counterexample.

4.4.2 Example 2: brutal propagation

A further question arises when studying a local toughness (z, ) satisfying property : are
high speed propagations penalised by such a local toughness x? Does assuming prevent
jumps in the limit?

In fact, we now prove that even in this case we have limit evolutions with jumps. We consider

wl.10) = Fo)

, (4.75)

where

f(2) = i, ifo<z<z,
L ife >z

and T > ¢y = 2. Notice that i(z) takes only two values and it is non-increasing. In [28] was
proved that such a discontinuity generates a jump in the limit in the case where k depends only
on the position x. Moreover, we fix 0 < ¢ < 1 and take initial data similar to those considered

in Section [£.3t

ug(z) = =V 142z + 21+ €2,
u§(z) = 1, and we(t) = ¢t + 2v/1 + £2. By the results showed in Section and in analogy
with [28], we know that the evolution is characterised by different phases. Indeed, by explicit

computation, we find that
e+ V1i4e?

feny = S~ g
for a.e. —2e <t < 2¢ and, by (4.75]), we write (4.61)) as
, 114 ¢efs
2(f5)? — 5 i
=2 Lhel,
e _ . 11+ef3
2(f1)? + 5
21+ ef5
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By explicitly solving this equation as a second order polynomial equation in Eéi, we find

é§:1(2f1€—1)2
E4(ff)* -1
1242422 —2(14¢e)V1+€2
e 262 4 261 + 2
1242422 —2(1+¢)(1+ %)
T 262 +2¢(1+ %) .

Notice that Kﬁ ~ % We have thus found the evolution of ¢ — ¢°(t) for a.e. t € (0,s]), where s5
is defined as in Section by pe(s]) = 87 — £°(s]) = 2e =: . We extend f¢ using (4.20)): for
a.e. t e (ti,t%), where t5 = w;l(ti) = 906(¢;1(t§))7 we have

| ot _ @ffi-?
. — & . 4(]05)2_1 .
€ —¢ + .1 e —¢ + 1 €
fimet =t
4(ff)2-1
4fs -2 1
=+ flifle =+ —.
8(f7)* —4Aff 2

Again, one solves ([@.61)) to find £5 in (s5, s5), where @.(s5) = t5. We obtain

fe 2

Y
ca(fs)? —1

because ff > % and, arguing as above, €§ ~ % This argument is repeated as long as £(t) < &

and we always find ff =ec+ % and Ef = €§ for every ¢ > 2. The first phase is thus characterised
by an evolution with speed that tends to % as e — 0.

When the evolution of the debonding front reaches the discontinuity = the process features

an abrupt change. Indeed, there exists n. such that z € [(°(s;,__;),¢°(s;_)] and, according to
(4.75)), the equation for ¢¢ is now given by

: 114 eft
o
Oy A e
coE_ . 11+ el
2f )2+ g
: 81+ el

for a.e. t such that ¢°(t) € [z, ¢°(s5,_)]. As before, one explicitly solves this equation as a second
order polynomial in ef;,_ to find
o 1 Wh —1°
"ee16(fe)? -1
Since ffle = €—|—% by the argument above, direct computations shows that in this region /e~ 21

This implies that there is a fast propagation for the evolution of the debonding front t +— ¢%(¢)
that leads to a jump in the limit evolution. This proves that that limit jumps are still possible

when k(z, 1) satisfies (4.74)).
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Moreover, we notice that, during this fast propagation, we have

, 11+2 3
C(t),elf(t) = =——~L ==,
while, in the previous phase we had
; 11—efs 1
K(LE(E), elf(t)) = = L
O = 5
as € — 0 for every ¢ = 1,...,n. — 1. Notice that, if we replace #(x) with
1 . _
Loifo<a<a,
Ra)=q3 o
o 1fl’>$,

with ¢ > 2 then, using the same argument, we find that the speed of the fast propagation is

12c(e + 342 +1-2V2¢c(e +1 1e+1-v2¢
€ 2c(e+ $)2 -1 e c¢—1

)

and the corresponding local toughness

12¢—+/2¢

(L (8), &0 ()i c) ~ — =

)

so that k(¢¢(t),el*(t);c) — 0 as ¢ — +oc. In particular, for every ¢ > 2 the local toughness
K(5(t),el%(t); ¢) is bounded for every ¢ > 0 and the limit evolution features a jump.

The same analysis can be carried out even in the case in which & is not discontinuous (e.g.
in the case where k oscillates strongly in a small interval). Indeed, one considers a continuous
approximation of £ and by the previous argument, since there is a decrease of the local toughness,
then fast propagations are expected.
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CHAPTER 5

Singular perturbations of second order
potential-type equations

In this chapter we study the convergence as € — 0 of the dynamic solutions u. of the equation
e2iic (t) + Vi (t, ue(t)) =0, (5.1)
to the solution u of the limit equation

Va(t,u(t)) =0, (5.2a)
Vo (t,u(t)) > 0, (5.2b)
where V' is a time-dependent energy. The results presented in this chapter have been published

in the paper [55].

5.1 Setting of the problem

Let V: RxR" — R be a continuous function such that V(¢,-) € C?(R"). It will play the role of
a time-dependent energy. We assume that there exists a function uy € C°([0, T]; R") such that
the following properties are satisfied:

Va(t,up(t)) =0, for every t e [0,T7, (5.3)

Fa > 0: Viu(t,uo(t))E - € > al€]?, for all £ € R™ (5.4)

Furthermore, for a.e. t € [0,7] and for every x € R", we assume that there is a constant
A > 0 such that
|\Va(t,z)], |Vax(t,x)| < A. (5.5)

We also assume that there exists a C!'-Carathéodory function V;: RxR" — R, ie., a
Carathéodory function such that V;(¢,-) € C1(R"), satisfying

V(ts,2) — V(t1,2) = / Vit d, (5.6)

t1
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for a.e. t1,t9 € R and all z € R™. Moreover, for every R > 0, we require that there exists
ar € L'(R) such that

Vit 2)|, [Vie(t, 2)| < ar(t), (5.7)

for a.e. t € R and all x € Br(0). We notice that, by condition (5.7)), it is possible to prove that
V. is continuous in both variables.
We consider, for fixed € > 0, the Cauchy problem

2l + Vi (t,us(t)) = 0, (5.8a)
u:(0) = u?, (5.8b)
11:(0) = 2, (5.8¢)
where we assume that
u? — up(0) = 0 and £v.(0) — 0, (5.9)

as € — 0. Global existence and uniqueness of the solutions u. to are consequences of
standard theorems on ordinary differential equations by the continuity of V, and . Our goal
is to study when convergence, as € — 0, of solutions u. to satisfying conditions to ug
is possible.

Using and , we now study the dependence on x of the set of Lebesgue points for
a function ¢ — f(¢,2) which will then play the role of V; and V.

Lemma 5.1. Let f: RxR® — R™ be a Carathéodory function such that, for every R > 0, there
ezists ag € LY(R) with f(t,z) < ar(t) for every x € Br(0). Fiz x € R", then for a.e. t € R we

have
t+h

Proof. Let t € R be a right Lebesgue point for 7 +— f(7,z), i.e.,

t+h
li =0.
Jim h/ f(r,x) — f(t,x)]dr =0
Let 6 > 0 and define
wh(t) = sup |f(r,2) — f(r,y)|- (5.10)
z,y€BR(0)
lz—y|<d

By assumption we have that w$(7) < 2ag(7); moreover w%, is measurable because the supremum

can be taken over all rational points and along a sequence § = 1/n. Therefore w R( ) € LY(R).
If ¢ is also a right Lebesgue point for 7 — w%(7) for every § € Q, § > 0 and |z — y| < &, then

t+h
lim / (r,2) — f(t,2) — (F(r,9) — F(t,9))] dr

h—0 h

t-‘rh
< %li%h/ () + w0)] dr = 2u400) (5.11)

Since f(t,-) is uniformly continuous in Br(0), the last term in (5.11)) tends to zero as § — 0 for
a.e. t € R. 0
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Remark 5.2. Given any u € W1(0,7;R"), we are now able to get a chain rule for a.e.
€ [0,7], by differentiating z(t) := V (¢,u(t)). Indeed, by the Mean Value Theorem and (5.6),
if t is a Lebesgue point for 7 +— Vi(7,u(t)), we have
2(t+h)—2(t) V(4 hult+h)—V(t,ult+h) V(t,ult+h)—V(tut))
h B h * h
1 [tk u(t + h) — u(t)

:E \ W(Tvu(t—i_h))dT—i_Vaf(tag)Tv

(5.12)

for some point £ belonging to the segment [u(t),u(t + h)]. We now re-write the first summand
of (5.12)) in the following form:

1 t+h

- Vi(r,u(t+ h))dr
h Ji

1 t+h
=7 /t [Vi(r,u(t + h)) — Vit u(t + k)] dr + Vi(t,u(t + h). (5.13)

By Lemma the integral in (5.13)) tends to zero, for a.e. t € [0,7] as h — 0. This result is
obtained using a diagonal argument and the fact that u(t+ h) — u(t) as h — 0, because u is an
absolutely continuous function. Moreover, by the continuity of V;(¢,u(+)), the second summand

in ((5.13)) tends to Vi(¢,u(t)). Therefore, as h — 0 in ((5.12]), we get

d
V(1) = 2(1) = Vitt, u(t) + Valt, u(®)ido), (5.14)
for a.e. t € [0,T7], because V(t,-) is continuous.
We now argue similarly for V; (¢, u(t)) and get a chain rule again. Since V;(t,-) € C1(R") for

a.e. t > 0 and by , we apply the Dominated Convergence Theorem and obtain
to
Vi(te, 7) — Va(t,z) = / Via(t, 7) dt. (5.15)
t1
Therefore,
Vae(t+ hyu(t + h)) — Vi(t, u(t))

h
Vet + hyu(t+ h)) — Vi(t,u(t + h)) N Vae(t,u(t + h)) — Vi (t,u(t))

1 t+h
= / Vig(T,u(t + b)) dr +
t

Vx(tv u(t + h)) — V:T(t7 u(t))
h .

h

(5.16)

Since Vig(t,-) is continuous and Vi, (-, x) is measurable (indeed, it can be obtained as the limit
along a sequence of measurable difference quotients), then V;, is a Carathéodory function con-
trolled by an integrable function ag(t). Arguing as before and recalling that V (¢,-) € C?(R"),
we have that for a.e. t € [0, 7]

. Vi(t + hyu(t + b)) — Vi (¢, u(t))
B h

= Via(t, u(t)) + Vi (£, u(t))i(t)-
In particular, since V,(t,uo(t)) = 0, we have

V;tac(ta UO(t)) + Vz:v(t7 UO(t))U:O(t) = 0. (5'17)
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The following result will enable us to restrict to the case of absolutely continuous functions
throughout the sequel.

Proposition 5.3. Let V: RxR™ — R be a continuous function such that V(t,-) € C*(R") for
a.e. t € R. Let V; fulfill conditions (5.6) and (5.7), and let ug: [0,7] — R™ be a continuous
function such that there exists a > 0 :

Vi (1, u(£))€ - € = alg ]2, (5.18)

for every £ € R™ and for a.e. t € [0,T]. Then, ug is absolutely continuous in [0,T].

Proof. We show that, if £ is small enough, there exists 6 > 0 such that, for a.e. t;,t2 € [0,T]
with [t; — t2] < J, there exists M. > 0 and an integrable function g such that

o (ts) — uo(t)] < M. ;2 g(t) dt. (5.19)
‘We know that
0 = Vi(t2, uo(t2)) — Va(ti, uo(t1))
= Va(ta, uo(te)) — Va(ti, uo(t2)) + Va(tr, uo(tz)) — Va(ts, uo(t))

where y is in the segment [ug(t1), uo(t2)]. Therefore, we have

ug(ta) — up(ts) = —Vau(t1,y) [V (ta, uo(t2)) — Va(te, uo(t2))]. (5.20)

Since Vi (t1,-) is continuous and it satisfies the coercivity condition (5.18)), there exists £ > 0
such that, if y € B-(uo(t1)) then

a
sz(tlay)§ ’ € > *‘§|2
We can thus invert Vi, (1, -) in a neighborhood of ug(t1). Let A, be the minimum eigenvalue of
Ve (t1,y). Therefore, the norm of V. (t1,y)~" is controlled by 1/ Ay. If v, is an eigenvector of
Vaz(t1,y) with eigenvalue Ay, then we have

«
)\y|vy’2 = wa(tl’y)vy * Uy > §’Uy|2a

from which we deduce that A\, > % and therefore

_ 2
‘Va:ac(tlay) 1‘ < o (5.21)
We now plug (5.21)) in (5.20) and, arguing as in (5.15)) of the previous Remark, we get
2 [t 2 [t
luo(t2) — uo(t1)] < / Viw(t, uo(tz)) dt| < / ap(t)dt
a Jy, aJy,
and obtain ([5.19)). O
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5.2 Convergence of solutions

This section is devoted to the study of the convergence of the solutions wu. to problem ([5.8]).
We will show that u. uniformly converges to ug, which is the equilibrium for the potential V'
introduced in the previous section, provided that the initial conditions (5.8b)&(5.8¢c) satisfy

69).

We recall here the standard Gronwall lemma which will be used as a main tool in the proof
of the convergence.

Lemma 5.4 (Gronwall). Let ¢ € L®(R), ¢(t) > 0 for a.e. t € R and a € L*(R), a(t) > 0 for
a.e. t € R. We assume that there exists a constant C' > 0 such that

o(t) < /ta(s)go(s) ds+ C, for a.e. t € R.
0

Then,
t
p(t) < Cexp </ a(s) ds), for a.e. t € R.
0

Remark 5.5. From now on we assume that there exists ¢: [0, +00) — R such that

lim (t) = +o0 and V(t,x) > ¥(|x|), (5.22)

t—-+o00

for all t € [0, 7] and x € R, and there exist a(-),b(-) € L'(0,T) such that
Vi(t,z) < a(t) +b(t)V(t, x), (5.23)

for a.e. t € [0,T] and for all z € R™. Then, it is easy to deduce uniform boundedness for the
sequence {u}, by applying Lemma to the following energy estimate:

T
Vet < ol + [ OV (6wl di

We remark that conditions (5.22)) and (5.23)), which are standard in this context, are not neces-
sary for establishing our result if we already knew that the sequence {u.} is uniformly bounded.

We are now in a position to state the main result of this section.

Theorem 5.6. Let V' be a function fulfilling the assumptions of Proposition and let ug €
CO([0, T); R™) be such that Vi (t,up(t)) = 0 for every t € [0,T]. Assume also that conditions

(5.22)) and (5.23|) are satisfied and that Vi (t,z) and Vig(t,x) are locally equi-Lipschitz in x,
uniformly in t, i.e. for every x € R™ there exists § > 0 and constants Cy,Co > 0 (which may
depend on x), such that, for every |h| < ¢

|Via(t, 2 4 h) — Vi (t, 2)| < Calhl, '
for a.e. t € [0,T]. Let u: be a solution of the Cauchy problem (5.8) and assume (5.9). Then,
ue — ug uniformly in [0,T]

and
ellite — ol 1 — 0,

as € — 0.
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Proof. We fix a sequence ¢; — 0 and we prove convergence for u.;: this will show convergence
for the whole family {u.} to ug, by the arbitrariness of ;. However, we shall keep writing u.
for the sake of simplicity of notation.

By Proposition we have that ug € WhH(0,7;R"™). Since C2([0,T];R") is dense in
WLL(0,T;R™), for every k € N there exists a sequence {uf} C C2([0,T];R") such that

1
luo — ulllpwra < = (5.25)

A suitable choice of k will take place in due course. However, we can already notice that, since
WL0,T;R™) C C°([0, T]; R™), then uf uniformly converges to ug in [0, 7] and therefore they
are all contained in a compact set containing {uo(t), t € [0,7]}. We now introduce a surrogate
of energy estimate, multiplying by 1e(t) — uk(t). After an integration, we get

g? . .k 2

= fie(t) — (1) + V(£ e (1)

52 t
= Sie(0) ~ ab(0) + V(0,u(0)) ~ [ <i)(iels)  if(s)) ds
0

[ [Vt + Vi welsib)] ds (5.26)

Our aim is thus to infer some lower and upper bounds for ([5.26)) in order to get, by Lemma
convergence of u. — ulg and then deduce convergence to ug. It is thus convenient to consider the
following “shifted” potential V' defined as

V(t,x) =V (t,z) = V(t,ul(t). (5.27)
Since ulg is of class C2, then all regularity assumptions on V are inherited by V. We have, in
particular, that

Vit 2) = Vit @) — Vilt, ub(£)) — V(b ub () al (0). (5.28)

Moreover it is easy to show that

Va(t,up(t)) =0, for every t € [0,T]. (5.29)

We also notice that (5.26)) is equivalent to

g2 -
= Jielt) — b (1) + V(1 ue()
2 ~ t
= S1:(0) — O + T(0.00)) = [ i(o)(e(s) — i(s)) ds
0

t ~ ~

—i—/ Vi(s, ue(s)) + Vi(s, us(s))ug(s) ds. (5.30)
0

We set A€::§]a5(0) — 4k (0)[> 4+ V(0,u-(0)), which tends to 0 as e — 0, by (5.9) and because
uk — g uniformly in [0, 77.
We now subdivide the proof into parts obtaining estimates which will then be used in the

final Gronwall argument.
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Lower estimate. We look for a lower bound for the summand V (¢, u.) in the left hand side
of (5.30). We have that, by first order expansion, there exists y in the segment [0, z] such that

V(t,z 4 uo(t)) = V(t,ug(t)) + Vit uo(t))z + Vi (t,y)z - 2
=V (t,uo(t)) + Via(t,y)z - z, (5.31)

because V,(t,up(t)) = 0 for every t € [0,7]. We now compute twice (5.31), once for x =

us(t) — up(t) and once for = = uf(t) — ug(t), and then we make the difference between the two

results. Therefore, for suitable y; between ug(t) and u.(t), and y2 between ug(t) and uf(t), we
have

Vit ue(t)) = Vau (b, y1) (ue(t) = uo(t)) - (ue(t) — uo(t))
~ Vaa(t y2) (u (1) — uo(t) - (ug(t) — uo(?)). (5.32)

By a continuity argument and the coercivity assumption for V,, (5.18)), there exists § > 0 such
that, if |z| < 6, then

Vaalt 2 +uo(t))€ - € = Tl

We apply this estimate in the first summand of the right hand side of (5.32)), while for the other
one we use boundedness of V. (t,-). We thus get

a
V(tue(t)) > 5 |ue(t) — uo(t)* — clug(t) — uo()*, (5.33)
for a suitable ¢ > 0, provided that
|us(t) — up(t)| < 0 for every t € [0,7] and for esmall enough. (5.34)

For the moment we assume that this bound holds and postpone its proof to the end.
Since o o o
ue(t) — (O < Shue(t) — uo(t)? + Sluolt) — ub(t),

we deduce, by (5.33)), that

V(t () = Tlue(t) —uf (@) = (e + F)ub(t) — uo ()], (5.35)

where the last summand on the right hand side of (5.35)) is small by the uniform convergence of
k
ug to ug.

Upper estimate. We now switch our attention to the estimate on the right hand side of

(5.30)), which we now write as

A — /0 il (s) (= (s) — ug(s)) ds —i—/o [Vt(s,us(s)) + Vi(s,uc(s))uk (s)| ds
=: A, — A1 + As.

Estimate of A1. We first apply the Cauchy inequality and obtain

t 52 t 82 t
|Ay| = '/ e2iif (e — uf) ds| < 2/ a’g\2d3+2/ e — 1k ds (5.36)
0 0 0
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The second summand in ([5.36)) will enter the final estimate via the Gronwall lemma, while for the
first one we argue as follows. We have no information about how big ||iif|| £2(0,7) 18, nevertheless
we can find, for every k € N, an € > 0 such that

. 1
161207y < < (5.37)

Then, we can invert the function which associates ¢ to k and get k(¢) — oo as € — 0, though
this convergence may be very slow. This is done by recalling that ¢ = ¢; and then defining

. .. 1
k(ej) := min {kz eN: Hué”%g(oj) > 6} -1
j

With a little abuse of notation, we write k instead of k(e;) with this peculiar construction.

Combining (5.36)) with (5.37), we have
2t
A < A5+ 5 [ i - P ds, (5.39)
0

where A7 — 0ase— 0.
Estimate of Ay. Using a variable = which will play the role of u.(t) — uk(t), we have that,
for a.e. t € [0,T7,

[Vilt, @ +uf) + Vo(t, © + ul)ilk|
< Vilt, x4 uf) — Vilt, @ 4 uo)| + | Ve (t, & + uf)il — Vi (t, @ + uf )il
+ Vi (b, + uf) g — Vi, & + ug )| + |Vilt, z 4 uo) + Va(t, 2 + ug) o] (5.39)

The first three summands on the right hand side are easy to deal with, by using Lipschitz and
boundedness assumptions. They are estimated, independently of x, by

C(1+ [dio])(|ug — uo| + [i§ — dio])-
As for the fourth summand, we call
flx) = f/t(t, T +up) + f/w(t, x + ug)Uo

If we set g(x) := f(z) — f2(0)z, then there exists y in the segment [0, z| such that g(z) — ¢(0) =
9z (y)z. Therefore we have, for a.e. t € [0, 7],
Vilt, @ + o) + Vi(t,z + ug) - 1o — Vi(t, ug)

— Vie(t, up) - tig — Vi (t, u0) - & — Vi (£, 1)t -

IN

Via (b + 10) + Vaa b,y + u0)iio — Via(t, u0) — Vi (10 )it 2]

IN

c(1 + |dol)|y| ||
c\x!Q(l + |uol), (5.40)

IN

since Vip and Vi, are locally equi-Lipschitz in x uniformly in ¢, by condition (5.24)), and the
constant ¢ > 0 is independent of x = u, — ulg because the functions u. are bounded in &, as we

pointed out in Remark Moreover, by ((5.28]),
Vi(t,uo)| = [Vi(t,uo) — Vi(t,uf) — Va(t, uf) - if
< [Vilt, o) — Va(t, uf)| + [Va(t, o) - i — Vi (t,ug) - 1|
< Clug — ug (L + |ig)), (5.41)
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for a.e. t € [0,T]. As in (5.17)), we have that for a.e. t € [0,T],
Via (t, uo () + Vi (£, uo ()i (£) = 0, (5.42)
Therefore, plugging (5.29)), (5.40)), (5.41)), and in (5.39), we get
V(t, &+ ug) + Va(t, @ + uf) - |
< ex(L+ Jaol)(Jug — uo| + | — to]) + eala*(1 + ol ) + esluo — ug| (1 + J4g]), (5.43)

for a.e. t € [0,T], where ¢1, ¢, and ¢3 > 0. We may therefore compute (5.43) with x =
us(t) — uf(t) and, by integrating between 0 and ¢, we find that

t
cl/ (1 + lio) (fuk — wo| + ik — o) ds — 0,
0
as k — oo by Whl—convergence of uf to ug. Also
t
03/ lup — ul|(1+ |uf]) ds — 0,
0

as k — oo, using this time the uniform convergence of u§ to ug and the fact that @5 € L*(0,T).
Therefore the second integral in (5.30)) is estimated by

2 /Ot\us—ulglz(l—i-\uo])ds—i—Ak, (5.44)
where A, — 0 as k — oo.
The Gronwall argument. Using the previous estimates, we conclude as follows. We set
B.i= Ao+ A + Aoy + (e + 5) 1o (8) = uo(®),

which tends to zero as ¢ — 0, and we plug (5.35)), (5.36), (5.37)), and (5.44) into (5.30). We

therefore have, for every t € [0, 7],

62 (0%
() — b + S uet) — (1)

g2t ) t .
< BE+2/ \u5u§\2+02/ |u57u]§|2(1+|u0|). (5.45)
0 0

With some further manipulations we are in a position to apply Lemma [5.4] Therefore, there
exists C' > 0 such that

62 « t
5 lae(t) = ag (1) + 7 lue(t) = ug(t)]® < Beexp (C/O (1+ Juo(s)]) d8> : (5.46)

Since ug € WH1(0,T), we have that the right hand side of (5.46)) tends to zero as e — 0, for
every t € [0,T]. In particular, since |u.(t) — ug(t)| < |uc(t) — ub(t)| + |uk(t) — uo(t)|, we obtain
that ue(t) — wo(t) uniformly in [0,7] as € — 0. We also have

ellite — ol 10,7y < elltte — ugHLl(O,T) +ellug — ol 21 (0,1)

T
<o [ i ik + el ol
0
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from which we deduce
el|te — ol — 0,

as € — 0, because || — o || 10,7y is bounded.

Proof of (5.34). In order to conclude, we only need to prove that |u-(t) — uo(t)| < J, for
every t € [0, 7] and for € small enough. We define, for every € > 0

to = inf{t € [0,7] : [uc(t) — uo(t)| > 8},

with the convention that inf () = 7. Notice that the continuity of u.(-) — ug(-) and the initial
condition u.(0) — up(0) as ¢ — 0, implies that t. > 0. We thus have that is satisfied
for every t € [0,t.). We now assume, by contradiction, that t. < 7. Then, with the previous
Gronwall argument, we can find € so small such that |u.(t) — uo(t)] < % for every € € (0,€) and
t € [0,tc]. However, this contradicts the continuity of u. — ug in ¢ = t.. Therefore t. = T" and
this concludes the proof of the theorem. O

5.3 An example in which convergence fails

In the previous section we proved that, under certain assumptions on V, the solutions u. of
problem converge in W1(0,T) to ug, whenever ug is continuous and the initial conditions
satisfy (5.9). We now prove that assumptions on V' can not be further relaxed in order to get
the same result.

We consider the sample case

e2ii(t)e + ue(t) — up(t) =0, (5.47a)
u:(0) = u?, (5.47b)
u:(0) = 02, (5.47c)

where we assume that u? — up(0) = 0 and ev? — 0 as ¢ — 0. In this case the function V is
given by

vmxy:;x—muw.

We have that V(t,uo(t)) = 0 for every ¢t and V4 (¢, uop(t)) is the identity matrix. We notice that,
if we only assume continuity of ug, then a chain rule similar to ([5.14)) can not be established.
We can, nevertheless, find an explicit solution of with standard methods of ordinary
differential equations:

¢ t
us(t) = <—i / ug(s)sin 2 ds + u?) cos L + <i / ug(s) cos 2 ds + 51}2) sin £. (5.48)
0 0

If we assume that ug € WH(0,T), then the assumptions of Theorem are satisfied and
therefore u. — wo uniformly for every ¢ € [0,7] and et.(t) — 0 for a.e. t € R. This result
can be equivalently obtained by direct computation through the explicit formula . We
may remark the fact that, in the presence of a dissipative term as in [I], the convergence of
the solutions to the approximated problems is satisfied with weaker assumptions on the initial
conditions. More precisely if the equation is

241 (t) + etie (t) + ue(t) — up(t) = 0, (5.49)
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then it is sufficient to assume

0o —L 0 —-L
uze 22 — 0 and ev;e” 22 — 0 ase — 0,
which is a condition weaker than .

We now show that convergence for the problem fails if we only assume that wug is
continuous. This gives a counterexample to the convergence result of Theorem when the
regularity assumptions on V are not satisfied. Indeed, there is at least a continuous function
that can not be approximated by solutions to second order perturbed problems, as we show in
the next proposition; we will exhibit one of these functions in Example Furthermore in
Whl there is a dense set of CJ functions with this property (see Remark .

Proposition 5.7. There exists ug € CJ([0,T)) such that the functions u., defined in (5.48), do
not converge uniformly to ug as € — 0.

Proof. We argue by contradiction. Assume that for every ug € CJ([0, T]) ue uniformly converges
to ug as € — 0. Without loss of generality, we can assume that 7" > 1 and we show that the
convergence fails at ¢ = 1. Let us fix ¢, — 0. Then we have, from (/5.48)),

1 /! : : :
U, (1) = —— [ uo(s)[sin 2 cos i — cos Z-sin i] ds + ugk cos i + ekvgk sin i
€k Jo
Since u? ,exv? — 0 by assumption, we have convergence of uc(1) to ug(1) if and only if the

operator F, : CJ([0,T]) — R, defined as

1 1
F;, (ug) == =/ up (s )[Sln—cosL — cos -sin ik] ds,

converges. We thus have pointwise convergence of F;, to Fy defined by Fy(ug) = up(1l). By

the Banach-Steinhaus Theorem, this implies uniform equiboundedness. On the other hand, we
notice that

1
F, (ug) = /0 o (5) dpicy (),

_ 1 [qin S 1 S iy L
where due, (s) = —Z-[sin 2 cos .- — cos - sin -] ds. However,

supmsk\(o 1) —Sup< / |sml|d5> —Sup/ |sin7|dr = 400

which contradicts the uniform equiboundedness. ]
Remark 5.8. The Banach-Steinhaus Theorem also implies that the set

R = {ug € C§(0,T)) : sup | (uo)] = +o0}

is dense. Therefore, there are indeed infinitely many functions for which u. can not converge to
Uug-
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Example 5.9. We now give an explicit example of a continuous function that is not approx-
imated by solutions to second order perturbed problems. We consider as ug the Cantor-Vitali
function @: [0, 1] — [0, 1]. Plugging ug = @ into (5.48)) and through integration by parts, we get

t t
uc(t) = a(t) — cos /0 cos 2 dpu(s) — sin £ /0 sin 2 du(s) + u? cos Ly ev? sin L (5.50)

where p is intended to be the distributional derivative of ug. We now choose ¢ = L and

2km
remark that
/cos(2k:7rs) du(s) = /e_izk“s du(s),

where 4 and p have been extended to R by setting & = 0 in the complement of [0, 1]. By using
the well-known expression for the Fourier Tranform of the Cantor measure, we can compute

(5.50) in t = 1 and get
1
ue (1) = a(1) + ul, — / cos(2kms) dp(s) = a(1) +ul — (=1)F H cos 2.
0

0

Since u;, — 0 by the assumptions on the initial conditions, we focus our attention on the term

1)k H cos 23]? = (=1)*f(2kn),

where we have defined f: [0, +00) — [—1,1] by
o0
= H COS 35 -
h=1

We prove that there exists a sequence k,, such that (—1)* f(2k,7) does not converge to 0.
By definition, f satisfies

f(8z) = f(zx) cos(z).
In particular, this implies
f(6m) = f(3-2m) = f(2m).
Inductively, one gets
f3"-2m) = f(2m)
and similarly
f(2-3"-2m) = f(4n).

Therefore we choose as k,, the sequence
{3,2-3,3%,2-3%...,3",2.3", ... }.

Along this sequence (—1)* f(2k,) tends to —f(27) for the odd indeces and to f(47) for the
even ones. We now prove that f(27) and f(4m) are real non-zero numbers with the same sign.
This implies that (—1)%» f(2k,7) does not converge and therefore u., (1) does not converge to
4(1). We have that (using the convention that log0 = —o0)

log f(z Zlog‘co ih > — i
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if y € (0,1), because in this interval

cosy — 1
log | cosy| = logcosy > ———.
cosy
Moreover

1—

> 1% = cosy(l+y%) >1,
cosy

which is verified in (0, 1), using the fact that cosy > 1 — % Since §—Z and g—;{ are in the
interval (0,1) for h large enough, then f(27) and f(4n) are controlled by the geometric series
and therefore f(2), f(4m) # 0. This is enough in order to prove that along the sequences ks, or
kani1 convergence of uc, (1) to 4(1) is not satisfied. Moreover, we notice that f(27) and f(47)
have the same sign because cos %’T = cos %” = —%, while cos(g—;r) > 0 for every n > 3. Therefore,
we have found more than we claimed, since u, (1) does not converge at all.

We have thus shown an explicit example in which convergence of solutions u. of (5.48) to a

particular continuous function wug fails.
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