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Abstract

In this Thesis we present two new results of existence and stability of Cantor families of small
amplitude quasi-periodic in time solutions for quasi-linear Hamiltonian PDE’s arising as models for
shallow water phenomena.

The considered problems present serious small divisors difficulties and the results are achieved by
implementing Nash-Moser algorithms and by exploiting pseudo differential calculus techniques.

The first result concerns a generalized quasi-linear KdV equation
Ut + Ugra +N2($,U,Uz,urz,umzz) =0, zeT,

where N5 is a nonlinearity originating from a cubic Hamiltonian.

The nonlinear part depends upon some parameters and it is intriguing to study how the choice of
these parameters affects the bifurcation analysis.

The linearized equation at the origin is resonant, namely the linear solutions are all periodic, hence
the existence of the expected quasi-periodic solutions is due only to the presence of the nonlinearities.
The nonlinear terms of these equations are quadratic and contains derivatives of the same order of
the linear part, thus they produce strong perturbative effect near the origin.

The second result is the first KAM result for quasi-linear PDE’s with asymptotically linear disper-
sion law and it implies the first existence result for quasi-periodic solutions of the Degasperis-Procesi
equation.

We consider Hamiltonian perturbations of the Degasperis-Procesi equation

Up — Uggt + Uzgr — 4y — Ulgre — 3UglUyy + duny, + NG(U, Ugy Uz, uwzm) =0, zeT,

where Nj is a nonlinearity originating from a Hamiltonian density with a zero of order seven at the
origin.

We exploit the integrable structure of the unperturbed equation Ng = 0 to overcome some small
divisors problems.

The complicated symplectic structure and the asymptotically linear dispersion law make harder
the analysis of the linearized operator in a neighborhood of the origin, which is required by the
Nash-Moser scheme, and the measure estimates for the frequencies of the expected quasi-periodic
solutions.
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CHAPTER 1

INTRODUCTION

In the last years many new results have been achieved in the theory of quasi-periodic motions
for infinite dimensional, Hamiltonian, quasi-linear and fully nonlinear partial differential equations
(PDE’s), namely for nonlinear partial differential equations in which the linear and nonlinear terms
contain derivatives of the same order. These progresses have been achieved thanks to the introduction
of new ideas and techniques, among which the pseudo differential calculus plays an important role.
In this Thesis we present two new results of existence and stability of quasi-periodic solutions for
quasi-linear generalized KdV equations and for quasi-linear Hamiltonian perturbations of the
Degasperis-Procesi equation , which arise as models for shallow water phenomena (see for
instance [38], [42]).

More precisely, for both these PDE’s we prove existence and linear stability of Cantor families of
small amplitude quasi-periodic solutions (see Theorem and Theorem .

(1) We first deal with the following family of quasi-linear generalized KdV equations
Ut + Uzgr + No (T, Uy Ugy Uz, Ugzr) = 0, (1.0.1)
under periodic boundary conditions x € T := R/27Z, where
No(@y wy Uy Uy U ) = — O [(On f) (@, Uy usz) — O (O ) (2, 0, 1z ))] (1.0.2)
and f is the most general quasi-linear Hamiltonian density with 5-jet independent of z

f(o,u,uy) i=crud + cauZu+ czu® + cqult

1.0.3
—|—C5u§u—|—c6uiu2—|—C7u4+f25(x,u,ux), ( )

where the coefficients ¢;,7 =1,2,...,7, are real numbers, and, for some ¢ > 0 big enough,
fo5(z,u,us) = fs(u,ug) + f>6(z,u,uz) € CUT x R x R;R) (1.0.4)

is the sum of the homogeneous component of f of degree five and all the higher order terms.

(2) Secondly we deal with quasi-linear Hamiltonian perturbations of the Degasperis-Procesi (DP)
equation

Ut — Ugpt + Uggr — YUy — Ulggy — SUgUgy + duty +N6(U7 Ug, Ugy, ua:mc) =0 (105)

1



2 1. INTRODUCTION

under periodic boundary conditions x € T, where
No (U, gy Uy Ugaz) = —(4 — Oz ) O (On f) ()] (1.0.6)
and f € C*°(R;R) is a Hamiltonian density
f(u) = O(u’), (1.0.7)
where O(u") denotes a function with a zero of order at least seven at the origin.
The linearized equation at the origin of is the well-known Airy equation
Ut + Uggg = 0 (1.0.8)
and for the Degasperis-Procesi equation is

Ut — Uggt + Uggr — 4“:5 =0. (109)

All the solutions of ((1.0.8)) and (|1.0.9)) have the form

u(t,x) = Zuj elwWittiz), (1.0.10)
JEZ

where w(j) = 2 in the KdV case and w(j) = j+35/(1+52) in the DP case. The function j — w(5)
is called (linear) dispersion law (or dispersion relation).

We note that both these problems are resonant, in the sense that the dispersion relations are rational,
and the existence of quasi-periodic solutions for the equations and depends only on
the presence of the nonlinearity.

In particular, the KAV case is completely resonant, namely all the solutions of the Airy equation
(1.0.8) are 2m-periodic in time. Actually the linear situation of the DP problem is more delicate.
Indeed all the functions of the form with compact Fourier support are periodic, but with
period depending on the support. This difference arises from the fact that, for any j € Z, w(j) € Z
in the KdV case, while w(j) € Q in the DP case.

In the KdV case the dispersion law is superlinear as j — oo, in the DP case is asymptotically
linear. This fact makes a significant difference in the study of quasi-periodic motions for these
equations. In particular the case with less dispersion, namely the DP case, is much harder and we
underline that Theorem [I.2:3] at the best of our knowledge, is the first KAM result for quasi-linear
PDE’s with this kind of dispersion, which also implies the first existence result for quasi-periodic
solutions of the Degasperis-Procesi equation. This is part of a joint work with Roberto Feola and
Michela Procesi. The result on the generalized quasi-linear KdV equations is contained in [61].

Hamiltonian PDE’s and KAM theory. The Hamiltonian partial differential equations appear
naturally in many areas of physics, especially to model the behaviour of idealised vibrating media
(as waves on string or on the surface of a fluid), in the absence of friction or other dissipative forces.
We briefly describe these equations following [42] and [2I]. A Hamiltonian system is given in terms
of a function H: P — R, called Hamiltonian, defined on the phase space P. We restrict to the
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case of Hilbert phase spaces and we denote by (-,-) the inner product of such spaces. In the infinite
dimensional case, namely for PDE’s, the Hamiltonian is usually well defined and smooth only on a
dense subset of the phase space.

The symplectic structure is provided by a non-degenerate, anti-symmetric 2-form 2 defined by

Qu,v) = (J_lu,v), u,v € P,

where J~1: P — P is a bounded operator with trivial kernel. By the anti-symmetry of Q the

operator J satisfies the following relation
J T =—Jt
The vector field X of the system with Hamiltonian H is defined, at least formally, by the relation
dyH(u)[-] = A Xz (u),), ueP.
Through the inner product we can define also the gradient VH of the function H in the usual way
dyH(u)[-] = (VH(u),), wuewP.
Thus the Hamiltonian vector field can be represented as
Xp(u)=JVH(u), uewP.

The Hamiltonian function H is a constant of motion for the system u; = Xpgy(u), in the sense that
H assumes a constant value along its orbits. Indeed, if « = JVH (u) then

OpH (u(t)) = duH (u)[i] = U Xp(u),4) = QX (u), X (u)) =0,

where we used, in the last relation, the anti-symmetry of the symplectic form.

For Hamiltonian PDE’s defined on a compact spatial domain the existence of recurrence phenomena,
as periodic or quasi-periodic motions, are expected. We recall that a function w(t) is said quasi-
periodic with frequency vector w € RY if there exists a function U : TV — C such that u(t) = U(wt)
and w is irrational, in the sense that w- /¢ # 0 for all £ € Z¥, £ #£0.

In this Thesis we study the existence and the stability of such motions for one dimensional Hamilto-
nian quasi-linear PDE’s with periodic boundary conditions, namely with spatial variable x belonging

to the compact torus manifold T.

In the sequel we refer to some well-known Hamiltonian PDE’s. Here we list part of them.

e The Korteweg de Vries (KdV) equation
Ut + Ugga + Ouu, =0, (1.0.11)
where u: R x T — R represents the (low) amplitude of a shallow water wave u(t,x).
e The nonlinear Schrédinger (NLS) equations
iug + Au+ V(2)u = +|ulP~ u, p>2, (1.0.12)

where u: R x T¢ — C is the wave function of a quantum particle and V() is a real valued

multiplicative potential.
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e The nonlinear wave (NLW) equation and the Klein-Gordon equation
u — Au+ V(z)u + N(u) =0, u — Au+mu+ N(u) =0, (1.0.13)

where u: R x T? — R represent the amplitude of a wave u(t,z) at a point in spacetime, N (u)
is the nonlinear vector field of a Hamiltonian de F(u)dz for some Hamiltonian density F',
V(x) is a real valued multiplicative potential and m is a mass parameter.

e The water waves equations (we refer to [42] for a detailed presentation of the equations)

ne =Gy,

1(G o) - 1.0.14
¢t+gn+§w§—2( (M + netbe)” n ( )

_[{/ s
1+n? (14 n2)3/2

written in the Hamiltonian formulation following Zakahrov [96] and Craig-Sulem [44]. Here
G(n) is the so-called Dirichlet-Neumann operator, 7(t) is the profile of the fluid at time ¢ and
W(t,z) = ®(t, z,n(t, x)) is the restriction of the velocity potential ® to the free boundary. We
note also the presence of two parameters: the capillarity x and the gravity g.

Near the origin these models behave like an infinite system of harmonic oscillators coupled by the
nonlinear terms. We refer to the modes and the frequencies of these oscillators as linear or normal
modes and linear frequencies of oscillations. It is natural, in this context, to approach these problems
as infinte dimensional dynamical systems.

For instance if the functional space P is equipped with a basis in which the linearized operator at the
origin is diagonal then the equations above can be written as infinite systems of ordinary differential
equations for the coefficients of u € P with respect to such basis.

One of the most important ideas carried out from the dynamical systems theory is to look for invariant
manifolds (equilibria, periodic solutions, ... ) on which the dynamic is simple, in order to deduce the
behaviour of the orbits near these sets. A way to do that is by suitable perturbative techniques.
For instance it is natural to look for invariant subsets of the phase space on which the system is
integrable. There exist different notions of integrability, but all these ones imply that, in some sense,
the orbits are explicitly computable. In the finite dimensional Hamiltonian context one of the most
important notion is the Liouville-integrability. A system is integrable in this sense if there exists
a linearly independent maximal set of Hamiltonians which Poisson commute one each other. As a
consequence there exists a foliation of the phase space in invariant submanifolds and a set of canonical
coordinates (action-angle variables) in which the dynamic on these submanifolds is easily described.
Since Poincaré, many mathematicians have been interested in the study of Hamiltonian systems close
to integrable ones (also said nearly integrable). These ones can be seen as small perturbations of
Hamiltonian integrable systems.

In the 50’s-60’s Kolmogorov [71] and Arnold [3] provided a fundamental result for the theory of such
systems. In the case of analytic perturbations of analytic Hamiltonians, they proved, under suitable
non-degeneracy conditions, the existence of a positive measure set of initial data from which quasi-
periodic motions originate. Later on, Moser extended this result for finite differentiable perturbations
and for reversible systems, see [80], [83]. This branch of the dynamical systems theory has been called
KAM (Kolmogorov, Arnold and Moser) theory.

The idea of the KAM method developed by these authors is to produce, by an iterative scheme,
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a sequence of change of coordinates which puts the perturbed Hamiltonian in a normal form with
an invariant torus at the origin. From another point of view this scheme provides a sequence of
approximately invariant tori which converges to a final invariant torus.

The main difficulty in implementing this procedure is due to the presence of small divisors, which
enter at the denominator of the Fourier coefficients of the approximate solution at each step of the
iteration. In particular the small divisors are numbers

w-l, Lez”, (1.0.15)

where w € R” is the frequency of oscillation of the torus. The problem of the small divisor persists
even if the frequency of the torus is irrational, namely if the quantity is not zero, since the
Fouries series of the approximate solution might not converge if w - £ is too small. Actually it is well
known that for almost every w € R” the set {w- ¢, ¢ € Z"} accumulates to zero. This problem is
overcome by imposing non-resonance diophantine conditions of the form

w-f] > £ez’\{0},v € (0,1), (1.0.16)

which, combined to a quadratic Newton-type scheme, provide the convergence of the sequence of
approximate solutions. The inequality is also called 0-th Melnikov non-resonance condition.
The divisors appear typically when one looks for invariant Lagrangian tori, namely tori of
maximal dimension, as in the cases considered in the aforementioned papers. Moser [83], Eliasson
[51] and Poschel [85] developed a theory for the search of quasi-periodic solutions supported on lower
dimensional tori. In these cases other conditions are required

5
(07
i
>T
where d; are the normal (to the torus) frequencies. If the sign in (1.0.18) is a minus then this
bound should hold for all (¢, j, k) # (0,7,7). The relations ((1.0.17)), (1.0.18)) are called 1-st and 2-nd

Melnikov non-resonance conditions.
We note that a condition as (1.0.18) with a minus sign implies that the frequencies d; and dj are

distinct (case £ = 0). Hence, in a case with multiple eigenvalues, the 2-nd order Melnikov conditions
do not hold.

lw- € £d;j| > e, jeZ, ve(0,1), (1.0.17)

\w-ﬁ—i—(djidk)\ >

7 te’?v, j,keZ, ve(0,1), (1.0.18)

—~

KAM for PDE’s. The extension of the classical KAM theory to the infinite dimensional case is
called KAM (theory) for PDE’s. In the infinite dimensional framework, except for some particular
cases (|87], [36], [35]), the search for Lagrangian invariant tori, or almost periodic solutions, is out
of reach up to now. Hence we will focus on the study of periodic and quasi-periodic motions. This
could be seen as the counterpart of the analysis of lower dimensional tori for the finite dimensional

case.

In the infinite dimensional context the small divisors problems are much harder (we refer to the
monograph [4I] and [12] for a recent survey).
Indeed, also for the search of time periodic solutions for an infinite dimensional Hamiltonian system,

small divisor issues arise. To overcome such problems, conditions as (1.0.17)) or ([1.0.18) are required
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for an infinite number of normal frequencies. In order to prove that the set of frequencies that satisfy
such (infinite) conditions has a large measure (measure estimates) one can exploit the presence of
external parameters which control the perturbed frequencies, such as the mass m in the Klein-

Gordon equation , the capillarity x and the depth in the water waves equations and
the potential V(z) in NLS and NLW ([1.0.13).

When there are no outer parameters one can extract them from the equation by performing a Birkhoff
normal form. This fact has been highlighted by Kuksin-Péschel in [75] and Poschel in [86].

In the 90’s, at the beginning of the study of periodic and quasi-periodic solutions for PDE’s, two
main approaches have been developed:

e normal form KAM methods,

e Newton Nash-Moser implicit function iterative scheme.

The first one is a generalization of the theory developed by Eliasson [51] and Péschel [85] for lower
dimensional tori. This method consists in a Newton-type iteration which brings, up to smaller and
smaller remainders, the Hamiltonian into a normal form with an invariant torus at the origin by
using canonical transformations. Here the small divisors problem arises in the so-called homological
equations, which one needs to solve at each step in order to find a suitable symplectic change of
coordinates which reduces the size of the remainders. Such equations are constant coefficients linear
PDE’s and to solve them one needs to impose 2-nd order Melnikov non-resonance conditions. The
final KAM invariant torus will be reducible, in the sense that the linearized equation at it will be
constant coeflicient.

The second one is a method proposed first by Craig-Wayne in [45] for the search of periodic

solutions for problems with periodic boundary conditions, for which double eigenvalues arise, and
extended by Bourgain [30] for the search of quasi-periodic solutions and for PDE’s in higher space
dimension, see [32]. In all these cases the 2-nd order Melnikov conditions are violated.
After a Lyapunov-Schmidt decomposition, the search of invariant tori is reduced to solve some non-
linear functional equation for the embedded torus. By means of a quadratic Newton-type scheme,
the solutions are found as limit of a sequence of approximate solutions. This scheme requires to
invert the linearized operator at any approximate solution and to do that, a priori, only Melnikov
conditions of first order type are needed. As a consequence of having imposed only these conditions,
the PDE’s which one has to solve at any step are non-constant coeflicients.

Actually Berti-Bolle in [21] pointed out that these two approaches have many connections (see

also [39]). They highlighted the fact that around an (approximately) invariant torus there always
exists a (approximate) Hamiltonian normal form. One can see that the stability in the actions of this
normal form is actually a consequence of the Hamiltonian structure. Hence the difference between
the two methods above lies in whether or not one diagonalizes the part of the normal form which
gives the linear dynamic in the normal (to the torus) directions.
In this perspective the authors in [21] presented a general approach to the problem of finding quasi-
periodic solutions for Hamiltonian systems based on a Nash-Moser implicit function theorem. Since
we adopt this approach for the results presented in this Thesis we describe more in detail the Nash-
Moser scheme following this point of view.

A quasi-periodic solution u(wt) with frequency w € R” of a system with Hamiltonian H can be
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seen as an embedding ¢ := i(p) into the phase space of the v-dimensional torus T supporting the
Kronecker flow ¥! (o) = ¢ + wt and such that

ioW! = o, (1.0.19)

where ®; is the flow of the Hamiltonian system. From a functional point of view (1.0.19)) is equivalent
to the equation
F(i) :=w- 0,1 — Xu(i) =0. (1.0.20)

In this formulation the search for quasi-periodic solutions is reduced to the search for zeros of the
functional F in (|1.0.20). The sequence of approximate solutions i, defined by the Nash-Moser
algorithm is the following (given a sufficiently good approximate solution ig)

a1 =i — (L0in)) " F(in)  L(in) := diF(in). (1.0.21)

Usually F is defined on a scale of functional spaces since the inverse of the linearized operators L(i,,)
loses derivatives and the classical implicit function theorems do not apply to solve ((1.0.20)). Consider
for example the scale of Sobolev spaces

HY(TM) = qu=" Y w9 ul2:i= Y Jugl(£,4)* < +oo (1.0.22)
(€.j)ezv+1 (eg)ezv+1

and the linear operator (see (|1.0.8)))
Lairy = w - Op + Orga-
The Fourier representation of its inverse involves the small divisors
iw-0—ij®, (en’, jek

and by imposing 1-st order Melnikov non-resonance conditions as (|1.0.17)) with d; = —43, the best
estimate that one obtains is the following

] P PPRANTY . B
1ol < (30 g 0a®) 7= v gllser
Lerv jEL

Note that in this case there is a loss of 7 derivatives, namely Egilry: Hs (T — H3(TY*Y) for
any s.

The Nash-Moser scheme also requires to estimate the inverse £~! in high Sobolev norms at each
step. This task may be very hard since the linearized equations are PDE’s with non-constant coef-
ficients, represented by differential operators which are small perturbations of a diagonal operator
with arbitrarily small eigenvalues. Moreover the tangential and the normal components to the torus
of the linearized equations are strongly coupled.

In [21] the authors constructed a symplectic change of variables in which the linearized system at an
(approximately) invariant torus is (approximately) triangularized. Then the problem is reduced to
the study of the linearized operator in the normal directions only. We refer to Chapter [3| for a more

detailed description of this procedure.
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A way to obtain good estimates on the inverse of the linearized operator in the normal directions
is to diagonalize it. Actually, in dimension one this task is usually doable.
We underline that for this purpose also 2-nd order Melnikov non-resonance conditions are required.
Let us describe a general case of linear reducibility, namely the diagonalization procedure for a linear
operator. Consider the linear operator

L:=w-0,+ D +e€R, (1.0.23)

where D = diag;cy(id;) is a diagonal matrix such that d; = dj, only for j = k. We call w-09,+ D
the normal part or normal form of £ and we consider eR = ¢R(wt) as a small, quasi-periodically
time-dependent perturbation. For instance, these matrices can represent, in a Fourier basis, linear
operators on Hilbert spaces. It is well known since Moser [83] that, in the finite dimensional frame-
work, if the eigenvalues of the normal part are well separated then there exist, for € small enough,
a change of coordinates ® such that

LD =w- Iy + Doo, (1.0.24)

where Dy, is a diagonal operator. This task can be carried out also in the infinite dimensional case
under suitable assumptions on the spectrum of the operators D, R and the frequency w.

The function ® in is constructed iteratively as limit of a sequence of transformations
(Y)n>1, which are close to the identity . Let us show one step of this iteration.

Let us consider a transformation of the form Y =1+ eV, where ¥ = ¥(wt). Then

Li="Y" w 0p+D+eR)Y=w-0y+D+e(w-09,V+ [D, V] + R) + O(e?)
and we look for ¥ that solves the following homological equation
w-0,¥ +[D,¥]+ R=0. (1.0.25)
At the level of the entries of the matrices the equation ([1.0.25)) reads as follows
i(w- €+ dj — di)Uh(0) = —RE(0). (1.0.26)

Clearly if £ = 0 and j = k this equation cannot be solved and the diagonal terms Rg(O) will
contribute to the new normal form. These terms are called resonant. If ¢ # 0 or j # k one can
choose ¥ such that (|1.0.26)) holds by imposing 2-nd Melnikov non-resonance conditions

gl
07

The choice of ¥ in (|1.0.25) brings the new operator £, in the form w -0, + Dy + e2R., , where
Dy :=D+ ERg-(O), w0, + D is the new normal part and 2Ry the new remainder. We underline

the quadratic reduction of the size of the latter.
The convergence of this iteration has to be quite fast in order to overcome the loss of derivatives due

to the small divisors in (|1.0.26)).
Note that in general it is not easy to impose conditions like (|1.0.27)), in particular when the

dispersion relation is not so strong to guarantee (enough) separation between the eigenvalues id; and
idy, . We point out two important features which usually allow to impose these conditions:
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e the fact that the eigenvalues of the linear operator are simple,

e a good knowledge of the asymptotic expansion of the eigenvalues.

Even when one of these two facts does not hold one can hope to impose 2-nd Melnikov relations.
As an example, in the recent work of Berti-Kappeler-Montalto [26] on the defocusing NLS with peri-
odic boundary conditions, a case with double eigenvalues, the authors imposed these non-resonance
conditions thanks to the good asymptotic of the eigenvalues.

Historical preface and literature. The KAM theory for PDE’s has been developed in the eight-
ies by Kuksin [72] and Wayne [95] for the one dimensional parameter dependent nonlinear wave
and Schrodinger equations with Dirichlet boundary conditions. Then Kuksin-Poeschel [75] and
Poeschel [86] extended these results for the one dimensional parameter independent nonlinear wave
and Schrodinger equations with analytic perturbations. We remark that these results were restricted
to Dirichlet boundary conditions in order to assure the 2-nd order Melnikov conditions. Indeed in
this case the normal frequencies are simple. This is not true, for instance, for periodic boundary
conditions.

At the beginning of the 90’s Craig-Wayne [45] provided a generalization of the Lyapunov center
theorem in a infinite dimensional non-resonant case. These authors proposed a Nash-Moser-Newton
method to find periodic solutions of the 1-d nonlinear Klein-Gordon and Schrédinger equations under
periodic boundary conditions and, in [46], for analytic perturbations of the defocusing NLS (dNLS).
In this approach the reducibility of the linearized operator it is not required and the linear equations
to solve are PDE’s with variable coefficients, thus 2-nd Melnikov conditions are not needed.

This method has been generalized for completely resonant cases by Berti-Bolle [16], [17], still for
periodic solutions. We mention also for completely resonant problems Gentile-Mastropietro-Procesi
[60] (see also the monograph [I1]). In [37] Chierchia-You discussed the problem of double eigenvalues
for the one dimensional NLW equation with periodic boundary conditions. They proposed a version
of a KAM method in which the normal form is not diagonal, but only block (2 x 2) diagonal. We
remark that all these works treat one dimensional semi-linear cases, namely when the order of the
derivatives in the nonlinearity is strictly less than the order of the derivatives in the linear part.

In higher space dimensions, different techniques have been adopted since the 2-nd order Melnikov
conditions are violated, for instance, by the multiplicity of the eigenvalues.
Bourgain in [31], [34], [32] extended the Craig-Wayne approach to get estimates of the inverse of the
linearized operators in high norms without imposing second Melnikov conditions. In the mentioned
papers these techniques are applied by the author for the search of quasi-periodic solutions for analytic
NLS and NLW with convolution potential.
These methods have been further generalized by Wang [94] for completely resonant NLS and by
Berti-Bolle [20], [19], [22] for NLS, in the forced case, and for forced and autonomous NLW with
a multiplicative potential and differentiable nonlinearities. All these works are based on multiscale
analysis which involve only conditions like the first order Melnikov relations and the linear stability
of the solutions is not implied.
The first results on the existence of reducible KAM tori are due to Geng-You [58] and Eliasson-Kuksin
[54] for NLS with convolutive potential on T?. In the latter, the second order Melnikov conditions
are verified thanks to the introduction of the notion of T6plitz-Lipschitz Hamiltonians.
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In the aforementioned paper the space variable z € T¢. For problems on a more general spatial
domain we cite the papers of Berti-Procesi [29] for periodic solutions of the nonlinear wave and
Schrodinger equations on compact Lie groups and homogeneous spaces, and Berti-Corsi-Procesi [24],
in which the authors provided an abstract Nash-Moser implicit function theorem with applications to
the quasi-periodic case for NLW and NLS on compact Lie groups. In 2011 Geng-Xu-You [59] proved
a KAM result for the cubic NLS on T?2. Later on, Procesi-Procesi [89] provided a normal form result
for the completely resonant NLS with periodic boundary conditions in any dimension.

Procesi-Xu [91] introduced the notion of quasi-T6plitz functions and exploited it to prove existence
and stability of quasi-periodic solutions for NLS on T¢. In [90] Procesi-Procesi provided the existence
of quasi-periodic solutions for the completely resonant NLS with periodic boundary conditions, in
any dimension, by using the results of [89] and [91]. We cite also the reducibility result of Eliasson-
Kuksin [53] and the recent work on the Beam equation on T¢ by Eliasson-Grebert-Kuksin [52]. All
the aforementioned papers treat problems with bounded perturbations.

To explain the main issues of the cases with unbounded perturbations we refer to the linear
reducibility model proposed above, recall . Suppose that the perturbation R is an unbounded
operator. Then a priori the trasformation ¥ defined by loses derivatives and, along the
iteration, the order of the transformed vector field £ increases quadratically. Moreover it is not
even clear that the transformation W is invertible. In general this is not true.

The first KAM result for systems with unbounded perturbation is due to Kuksin [73] and Kappeler-
Poeschel [70] for Hamiltonian analytic perturbations of the KdV equation

Ut + Uggy — 6UUL + €0, f(x,u) =0

with periodic boundary conditions. Note that the nonlinearity contains one derivative. The key ideas
were to exploit the strong dispersion of KAV (recall w(j) = j3) by imposing stronger non-resonance
conditions

, Y 3 13 3 3o IO+ E .

A E N I e (1.0.28)

which give a gain of regularity, in particular two derivatives, and to insert the remaining diagonal

angle-dependent terms (for j = k) in the normal form. In this way the homological equations have
variable coeflicients and one has to be able to solve them. This was the purpose of the so-called
Kuksin Lemma. Note that such homological equations are scalar and so they are much easier than
the variable coefficients functional equations which appear in the Newton-Nash-Moser approach of
Craig-Wayne-Bourgain.

Later on Liu-Yuan in [76] extended the result of Kuksin [73] and Kappeler-Péeschel [70] for the
less dispersive case of the NLS with one derivative in the nonlinearity. This result is based on a
improvement of the Kuksin Lemma. We mention also the result of Zhang-Gao-Yuan [98] for the
derivative NLS.

The above method does not apply in the case of the derivative NLW (DNLW) which contains the
first order derivatives J,,d; in the nonlinearity.

In [14]-[I5] Berti-Biasco-Procesi provided existence of quasi-periodic solutions for the DNLW in the
Hamiltonian case

Uty — Ugy +mu + g(Du) =0 D:=+/-0p+m, x2€T
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and in the reversible case

Ut — Ugx —I—mu—i—g(m,u, utauai) - 07

when

g(x,u,ut,ux) = g(xa u, _ut7u$)7 g(xa u?“i?“l‘) = g(_xa U, Ut, —’U,x)

We remark that in this case the dispersion law is linear. We quote also a previous result on the
DNLW due to Bourgain [33] whose extended the Craig-Wayne approach [45]. The papers quoted
above concern cases with semi-linear perturbations.

In 2008 Baldi [4] proved via a Nash-Moser method the existence of periodic forced vibrations of
the quasi-linear Kirchoff equations

Ut — (1 + / |Vu]2dx)Au =cf(wt,z), x€Q (1.0.29)
Q

with Dirichlet boundary conditions for © € R¢ and for periodic boundary conditions § = T¢.

For the water waves equations, which are fully nonlinear, the previous results are not applicable. For
water waves problems which do not involve small divisors we mention the work of Craig-Nicholls [43]
for the existence of periodic travelling waves with capillarity.

For small divisors problems we cite the pioneering work of Iooss-Plotnikov-Toland [69] about the
existence of periodic standing waves for the water waves equations and of Iooss-Plotnikov [67], [68]
for 3-d travelling waves.

These results are obtained via Nash-Moser methods combined with a Lyapunov-Schimdt reduction.
The authors realized a new technique for the analysis of the linearized operator, which successively
inspired the first works on quasi-periodic solutions for quasi-linear and fully nonlinear problems due
to Baldi-Berti-Montalto [7], [8]. To better explain this point we refer to the KdV model considered
for the search of periodic solutions, since we will discuss shortly the quasi-periodic cases [7], [§] on
the KdV equation. We consider the linear operator

L, := wo + as(wt, )0y + a2(wt, )0py + a1 (wt, ©)0y + ag(wt, z), x €T, (1.0.30)

where a3 =1+ O(¢), ag,a1,a9 = O(e).

The key idea is to reduce the order (as pseudo differential operator) of £, instead of reducing the size
of the perturbation, as we did in the reducibility example . The operator L, is conjugated
to a new operator £4 which is of the form

Li=wi+ D+ R(wt,x), D :=m30zzs +mi0s, (1.0.31)

where m3 = 1+ O(e) and m; = O(e) are real constants, hence the part wd; + D is diagonal,
and R is a bounded remainder. This conjugation is achieved by using changes of coordinates as
diffeomorphisms of the torus T? and pseudo differential maps. We call this method regularization
procedure.

One can perform other steps of this algorithm to regularize the remainder R, but it is not possible
to iterate it infinitely many times because the convergence of this scheme is not sufficiently fast
to overcome the loss of derivatives due to the small divisors. In the applications the success of
this procedure depends highly on the PDE in exam. Once R is smoothing enough, namely once
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(wd; + D)™ R is bounded, one can invert £, by Neumann series.
Note that in the periodic case w - £ = wf and this quantity is approximately ¢ if w # 0. The
eigenvalues of wd; + D are

I(OJZ — m3j3 + mlj)> E € Za ] € Z7

then for inverting £4 by Neumann series one has to deal with these numbers at the denominator
of the Fourier representation of L’jrl. These quantities are small if ¢ = O(j3). Thus the loss of
derivatives of the small divisor, which is a loss in time, can be compensated by R if this operator is
regularizing enough (also only in space), in this example if R = O(9;%), d > 3.

In the quasi-periodic case w - £ # wf and the above argument fails.

In [5] Baldi, inspired by the work of Iooss-Plotnikov-Toland, proved the existence of periodic
solutions for fully nonlinear perturbations of the Benjamin-Ono equation

up + Huge + 05 (u®) + Na(u) =0, z €T,

where Hel® = —isign(j) e¥®, j € Z is the Hilbert transform and N is a quasi-linear or fully nonlin-
ear perturbation O(u*). In the regularization procedure the author consider changes of coordinates
which preserve the dynamical structure of the equation.

For fully nonlinear problems we cite also the paper of Alazard-Baldi [I] for periodic standing waves
for gravity-capillary water waves equations.

All these works provide results of existence for time periodic solutions.

The first breakthrough results for quasi-periodic solutions of quasi-linear and fully nonlinear
PDE’s are due to Baldi-Berti-Montalto for the forced Airy equation in [7]

Ut + Ugzg + Ef (WE T, U,y Uy, U, Ugr) =0, x €T,
and in [8], [9] for the autonomous KdV equation
Ut + Uggr — OUUL + Ny (T, U, Uy Uz, Ugr) =0, €T (1.0.32)
and the mKdV equation
Up + Uggp £ Opti® + Ny(2, U, Ug, Upg, Ugzw) = 0, 2z € T, (1.0.33)

where N} is a nonlinearity with a zero of order four at the origin and a 5-jet independent of z.
These results are proved via Nash-Moser methods. The authors in [7] extended the regularization
procedure of looss-Plotnikov-Toland for the study of the quasi-periodically forced linearized KdV

operator
Ly, :=w-0p+ a3(@,2)0pex + a2(p, )0zz + a1(p, )0z + ap(p,x), €T, peT”. (1.0.34)
After many changes of coordinates the operator L, is conjugated to an operator £ of the form
Ly=w-0,+D+ R(p,x), D :=m30z.+ mi0,

where m3 =1+ O(e) and m; = O(e) are real constants. We saw that in the quasi-periodic case it
is not possible to invert £ by Neumann series. In [7] the authors performed a KAM algorithm to
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completely diagonalize £, thanks to a good control on the asymptoic expansion of the eigenvalues

of (T.0.34)

W(w-L4dj), dj=-mz5>+mij+r;, Ir;| = O(e), j €z,

which allows to impose 2-nd order Menlnikov non-resonance conditions. The KAM scheme is ini-
tialized by a smallness assumption on the norm of the remainder R in and exploits the
boundness of this operator.

In contrast with the works of Iooss-Plotnikov-Toland the transformations involved in the regular-
ization procedure are quasi-periodically time dependent maps of the phase space and quasi-periodic
reparametrization of time. Hence the dynamical structure of the equation is preserved. Moreover
these transformations are tame and bounded on H* (recall (1.0.22)) for any s in a suitable (large)
range. Thus one can easily get tame estimates for the inverse of the diagonal operator and then come
back to the original (physical) coordinates obtaining tame estimates on £, (see (1.0.34)). This
procedure provides also the stability of the final solutions, which is not guaranteed by the results
mentioned above.

In [§], [9] the systems considered are autonomous and different problems arise. The frequency of
the expected solutions are unknown and a careful bifurcation analysis is needed. The authors im-
plemented the general strategy proposed by Berti-Bolle in [2I] in order to reduce the analysis of
the linear equations to the inversion of the quasi-periodically forced PDE . In Section |3| we
describe more in details this approach by refering to the strategy of the results presented in this
Thesis.

Later on Feola-Procesi [56], [55] extended the results of Baldi-Berti-Montalto [7], [§] in order to prove
existence and stability of quasi-periodic solutions for fully nonlinear perturbations of the reversible
and Hamiltonian Schrédinger equation

iup = ugy + ef (Wt x, uy g, Ugy), = €T,

where f € CY(T**! x C3) for some large ¢ > 0. We mention also Montalto [79], [78] for quasi-
periodic solutions of the Kirchoff equation and a reducibility result for a class of linear wave
equations with unbounded perturbations on T¢.

Recently Berti-Kappeler-Montalto [26] provided the existence of finite dimensional invariant tori of
any size by perturbing the finite-gap solutions of the defocusing NLS

iup = —Uge + 2\ul*u, 2z €T.

The dNLS frequencies are asymptotically double, but, adapting the strategy of [8], the authors
obtained an asymptotic expansion that allows to impose 2-nd order Melnikov conditions and prove
the linear stability of the solutions. This result extended the work of Kuksin-Péschel [75] for small
amplitude quasi-periodic solutions of dNLS under Dirichlet boundary conditions.

For related results on the dNLS equation, we cite also the paper [57] by Geng-You which exploit the
momentum to deal with resonant frequencies.

In 2016 Berti-Montalto [27] (see also [28]) extended the work of Alazard-Baldi [I] by providing
the existence of quasi-periodic, instead of periodic, solutions for water waves equations with capil-
larity (see (1.0.14})). In this work the authors followed the general strategy proposed in [§] and [9].
The analysis of the linearized operator is performed by fully exploiting pseudo differential calculus
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techniques, particularly a careful Egorov analysis. The KAM reducibility iteration is implemented
on a more sophisticated class of operators, (modulo-tame operators, which are introduced in Section
, which is closed by the operations involved in the KAM scheme, namely the composition, the pro-
jection and the solution of the homological equations. We note that in this case the surface tension
k is used to control the Melnikov non-resonance conditions via the so-called degenerate KAM theory

3/2  We note that the dispersion law is superlinear

(see [10]). Indeed the frequencies behaves like « j
as j — 00.

Very recently Baldi-Berti-Haus-Montalto [6] extended the above result providing existence and sta-
bility of small amplitude quasi-periodic solutions for the water waves equations with finite depth
under the action of pure gravity. In this case the dispersion relation w(j) ~ /7 is sublinear and
the 2-nd Melnikov conditions produces a loss of derivatives both in time and space. This loss is
compensated by a stronger regularization procedure.

For new results on the water waves equations we cite also the paper [25] by Berti-Delort on the almost

global existence of solutions for the gravity-capillary case with periodic spatial boundary conditions.

Comments on the results of the Thesis. The results of this Thesis follow the strategy of the
papers [8], [9], [6], [27] but differ from these problems for various aspects. Here we discuss some of

them, but we refer to Section [3| for more details.

e In the DP case we exploit the integrable structure of the Degasperis-Procesi equation, proved
by Degasperis-Holm-Hone in [48], to overcome some small divisors problems arising in the bi-
furcation analysis and along the linear reducibility procedure.

Actually the Birkhoff normal form of the Degasperis-Procesi equation presents some non trivial
resonances at order four which are very hard to compute explicitly. The same phenomenon
occurs for the water waves equations, as discussed by Craig-Worfolk [47] and Craig [40] (and
references therein). In these papers the authors analyse the Birkhoff normal form of water
waves with infinite depth observing the presence of non trivial resonances at order four, called
Benjamin-Feir, and at order five. They also show that the order four resonances do not con-
tribute to the normal form of the Hamiltonian. Thanks to the integrable structure, we are able
to prove the same at order four, five and six for the normal form of the Degasperis-Procesi

equation (we refer to Sections and Proposition [5.1.3)).

e The nonlinearities which contain the highest order derivatives of the linear part in ({1.0.1) and
(1.0.5)) are quadratic, instead of quartic as in and . This is actually a natural
feature of equations which arise from fluid dynamical models, as for instance the water waves
equations . However, the latter involve parameters, as the capillarity x, unlike the
cases and . In such problems one can extract parameters from the equation
by a Birkhoff normal form method. These parameters are typically the amplitudes of the
approximate solutions from which the iterative scheme bifurcates. The condition for which
these amplitudes are in one-to-one relation with the frequency of these approximate solutions
is called twist condition. In [8], [9] this condition is trivially satisfied. This is not the case for the

problems (1.0.1)) and (1.0.5)). In the first case the twist condition depends on the interactions of
many terms, which are parametrized by the real numbers ¢;, i =1,...,7 (see (1.0.3)), (4.2.7),

(4.2.8)). In the second, the expression of the frequency-amplitude map is quite complicated,
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see (5.3.8), (5.3.9). In both cases, we need to impose generic (see Definitions and |1.2.2)
conditions on the tangential set (see ([1.1.5)), (1.2.8)) to get the twist of the frequency-amplitude

map.

e In implementing a Birkhoff normal form procedure the linear tangential and normal frequencies
of oscillations are corrected by the nonlinearities. The presence of quadratic and quasi-linear
nonlinear terms guarantees that there are corrections at the normal frequencies w(j) with the
same size of the ones at the linear frequencies w. Both in our cases the computations of these
corrections are by no means an easy task (see Sections [£.6.5] [4.6.6] and [5.7.5). Typically we
deal with these issues when we impose the 2-nd order Melnikov non-resonance conditions. For

instance, consider the following expression (recall for instance ([1.0.18)))
wltdj—dy=w-l+w(j) —wk)+ (w—w) L+ (dj —w(j)) — (dr —w(k)))  (1.0.35)

where id; and idj, are the eigenvalues of the linearized operator at some approximate solution.
In the resonant case @- ¢+ w(j) —w(k) = 0 we have to prove a bound from below for (w—w) -
4 (dj —w(j)) — (d —w(k)), but these terms interact, actually they have the same size, and
they could become arbitrarily small. In order to avoid these stronger resonant cases we impose
some conditions which we prove to be generic (see Definitions and .

e We point out that we have to require stronger generic conditions for the DP case (1.0.5|) respect
to the KdV case (|1.0.1)). This is due to the following facts:

(1) the linear frequencies of the DP equation are rational numbers (see ((1.0.10))). In particular
the normal part @- ¢+ w(j) — w(k) of the small divisor ((1.0.35)), even if it is not zero, can
be arbitrarily small.

(2) Because of the weak dispersion of the DP equation (|1.0.5]), some identically zero relations

as (recall ((1.0.35))

{w-€+w(j) —w(k) =0,
(W—w) L+ (dj —w(j)) — (dr, —w(k)) =0

could occur for an infinte set of indices (¢, 7, k).

As a consequence, in the DP case we need to require further non-degeneracy conditions, which,
a priori, could be not satisfied in the generic sense of the KAV case (|1.0.1)).

e A substantial difference between the DP case and the works on KdV equations is the
linear dispersion relation. As we said above, in this case it is more difficult to prove good
bounds for the measure of the set of frequencies satisfying the 2-nd order Melnikov conditions
(see ), since the normal frequencies d; —dj ~ j —k are not strongly separated, compar-
ing for instance with . Actually, for these reasons, the study of the measure estimates
is close to the one adopted for the wave equation (see [14]).

The analysis of the linearized operator is quite complex and requires a full exploitation of
pseudo differential calculus techniques. The presence of the pseudo differential operator J in
the symplectic form complicates this analysis, since its symbol has an infinite asymp-
totic expansion in (decreasing order) homogeneous symbols. Due to the asymptotically linear
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dispersion, in the regularization procedure we have to deal with homological equations which
are quasi-periodic transport equations. To solve these equations we need to impose further
conditions on the frequencies similar to the 1-st Melnikov conditions (recall ((1.0.17))).

Plan of the Thesis. In the rest of this Chapter we state the main results of this Thesis, namely
Theorem [[.1.3] and Theorem [L.2.3

In Chapter [2] we introduce the notation and the mathematical tools that we used for the proofs of
the main results.

In Chapter |3| we first discuss the general strategy adopted in [§], [9], [27], [6] by refering to the KAM
problems presented in Chapters [d] and [5] We show also the stability argument for the quasi-periodic
solutions that we find for the equations (|1.0.1]) and (1.0.5).

Then we underline the main differences with the works mentioned above and we discuss the main
novelties of the results [[L1.3] and [[.2.3]

In Chapter [ we present the proof of Theorem [I.1.3] about the existence and the stability of quasi-
periodic solutions for the equations (1.0.1)).

In Chapter 5] we give the proof of Theorem[I.2.3]about the existence and the stability of quasi-periodic
solutions for the equations ((1.0.5)).

In the Appendix are collected some technical lemmata, the proofs of some propositions omitted in
Chapters [4] and [5| and some facts about the integrability structure of the DP equation.

1.1 Main results for quasi-linear generalized KdV equations

The equation (|1.0.1) can be formulated as a Hamiltonian PDE w; = 0, V2 H (u), where V2 H
is the L?(T) gradient of the Hamiltonian (recall (1.0.3])

w2
H(u) —/sz + f(z,u,uy) do (1.1.1)

on the real phase space

H}(T,) := {u € HY(T,R) : /Tu(x) dx = 0} (1.1.2)
endowed with the non-degenerate symplectic form

Qu,v) := /T(axlu)vdw, Yu,v € H(T,), (1.1.3)
where 9, 'u is the periodic primitive of u with zero average defined by

Oy lel” = l e if 40, ;11 := 0.

1j

The Poisson bracket induced by Q in (1.1.3) between two functions F,G: H}(T) — R is

{F(u),G(u)} = UXr,Xq) = /11"VF(U) 0, VG(u) dx, (1.1.4)
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where Xp and X are the vector fields associated to the Hamiltonians F' and G, respectively.

The solutions that we find are localized in Fourier space close to finitely many tangential sites
St =1{7,...,7,}, S:=85Stu(-SH)={+j:5€8"}, 7,eN\{0}, Vi=1,...,v (1.15)
and the linear frequencies of oscillation on the tangential sites are
Ti=(R,...,7) eN. (1.1.6)

We assume the following hypotesis on the set S
(8) 7 j1,J2,3,ja € S such that

g1+ g2+ J3+da # 0, 55455+ 55 + 43 — (1 +ja + js +4a)> = 0. (1.1.7)

We shall also assume “non-resonance" and “non-degeneracy" conditions on the nonlinearity (1.0.3)).
In particular we require for the coefficients ¢, ...,¢7 in (1.0.3)) to be non-resonant according to the
following definition.

Definition 1.1.1. We say that the coefficients cy, ..., cy are resonant if the following holds
c3=cr=2¢ —cqy=Tc3—6cg =0 (1.1.8)
and we say that cq,...,c7 are non-resonant if (1.1.8]) does not hold.

Moreover, we require the following “non-degeneracy" conditions

(C1) fixed v € N, the coefficients ¢y, ..., c; satisfy

(7 —16v)c3 # 6 (1 — 2v)ce, (1.1.9)
(C2) fixed v € N, if the coefficients ¢y, ..., ¢y are non-resonant the following holds
3ce — 4c3
O P+ 4k gk € Z\ {0}, j # kY. (1.1.10)

V _— =
904 - 186%

In Section 4| we prove that the assumptions (S), (C1)-(C2) are satisfied for a large choice of the
tangential set .S. In particular they are “generic" according to the following definition.

Definition 1.1.2. (Genericity) Fixed v € N and given a non-trivial, i.e non identically zero,
polynomial P(z), with z € C¥, we say that a vector of integers zyp € N” is generic if P(z9) # 0.
We shall say that “there is a generic choice of the tangential sites S for which some condition holds"
if this condition is satisfied by every vector of integers (Jy,...7,) (see (L.15))) that are not zeros of
some non-trivial polynomial.

Now we state the main result of Section 4] This is the Theorem 1.3 of [61].
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Theorem 1.1.3. Given v € N, let f € C? (with q := q(v) large enough) satisfy (1.0.3)). If
c1y...,cr in (1.0.3)) are non-resonant (see Definition and conditions (C1)-(C2) hold, then for
a generic choice of tangential sites (see Definition |1.1.2 and (1.1.5)), in particular satisfying (S),

the equation (1.0.1)) possesses small amplitude quasi-periodic solutions, with diophantine frequency
vector w = w(§) = (wj)jes+ € R”, of the form

u(t,) =2 /5§ cos(wit + jz) +o(V/IE]),  wj=4*+ O([¢)) (1.1.11)

jest

for a Cantor-like set of small amplitudes § € RY. with density 1 at £ = 0. The term o(\/[€]) is small
in some H?-Sobolev norm (see (1.0.22)) ), s < q. These quasi-periodic solutions are linearly stable.

Let us make some comments.

e We briefly explain why we consider the function f in of the form . The coeflicients
C1y...,c7 in ([1.0.3]) are not considered as external parameters for the equation . Actually
we regard as a family of equations parametrized by these coefficients and we are intersted
in studying how the quadratic quasi-linear nonlinearities modulate the frequency-amplitude
map (4.2.18) respect to the tangential sites of the solutions. To do that we perform a Birkhoff
normal form. The Hamiltonian terms O(u?) give the frequency-amplitude relation and we
want that the Birkhoff procedure is not affected at this order by the z-dependent part of f
(see (1.1.1) and ((1.0.3))).

e The non-resonance condition stated in Definition [1.1.1| arises by asking that the frequency-
amplitude map is a diffeomorphism. The invertibility of this map is equivalent to
require that det Ml # 0, where the determinant of M (see and ) is a polynomial in
the variables (ci1,...,¢7,71,...,7,). In Theoremwe fix non-resonant coefficients ¢y, ..., cr
and we prove in Lemma that the condition det Ml # 0 is satisfied for a generic choice of
the tangential sites S. We remark that this explicit condition could be verified also adopting
a different perspective. We might fix the integers 7;,...,7,, hence the tangential set, and

choose the real parameters cy,...,c7, thus the equations to study, outside the zeros of some
polynomial, since the determinant of M (see (4.2.21])) can be written as

det M = Z Pn(jz)Qm(cl)

n,m
where P, is a homogenous function of degree n, for some n > 0, in the variables 7;,...,7,
and @, is a homogenous function of degree m, for some m > 0, in the variables ¢y, ...,c7.

e For the equations with resonant coefficients (according to the Definition one could
expect that quasi-periodic solutions do not exist at all. We did not investigate in this direction,
but we refer to similar cases discussed by Feola-Procesi in [55] for the autonomous NLS. They
provide some examples of resonant equations (according to a similar definition) which admit
only periodic solutions.

e For the measure estimates of Section we shall avoid some lower order resonances by
imposing the assumptions (H1) and (H2);; (see (4.7.33), (4.7.34)). These ones imply that
some polynomials are non zero at (c1,...,¢7,7;,...,7,). If (C1)-(C2) hold and ¢y,...,c;7 are
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non-resonant then these polynomials are not trivial in the variables (7;,...,7,) (see Lemma
and Lemma [4.7.8)) and, for a finite number of j,k € S¢, (H1) and (H2);; are verified by
fixing non-resonant parameters ci, ..., cy and by choosing a generic set of integers {7;,...,7,}-

e We assume the Hypotesis (S), because we want to perform three steps of Birkhoff normal
form and the homogenous part of degree five of the perturbation f5, which has not an explicit
expression (see (1.0.3)), (1.0.4)), contributes to the third normal form step. This fact occurs also
in [§], indeed the perturbation considered has a non zero homogenous part of degree five and
three steps of Birkhoff normal form are nedeed to satisfy the smallness condition (see (4.7.4))
required in the Nash-Moser Theorem (see Theorem; actually this request depends on the
quadraticity of the nonlinearity.

We remark that the assumption (S) can be reformulate as a condition that is satisfied for a
generic choice of the tangential sites (according to Definition .

1.2 Main results for Hamiltonian perturbations of the Degasperis-
Procesi equation

In 1999 Degasperis and Procesi [49] applied the method of asymptotic integrability to the family
of third-order dispersive PDE conservation laws

Up + CoUy + YUy — 0PUgpe = (c1u® + cou? + C3ulzy)q, (1.2.1)

where the constants a? and 7/cq are squares of lenght scales, and cg is the linear wave speed for
undisturbed water at rest at spatial infinity (see [50]).

In this family only three equations result to satisfy the asymptotic integrability condition up to the
third order, the KdV equation (a = ¢3 = c3 = 0), the Camassa-Holm equation (¢; = —3¢3/2a2, ¢c2 =
c3/2) and the Degaperis-Procesi equation

Ut 4 CoUy + Vlgps — O Uppr = <—%;23u2 + cou? + uum)> . (1.2.2)
x

In [48] the authors showed the integrability of equation by proving the existence of a Lax pair
and they provide a recursive method to generate infinitely many constants of motion (see Section 4
in [48]).
The DP equation can be regarded as a model for nonlinear shallow water dynamics and its asymptotic
accuracy is the same as for the Camassa-Holm equation and a degree more than the KdV equation.
Since its discovery, many results have been produced on the DP equation, for instance, for local and
global well-posedness, existence of wave breaking phenomena (peakons, N-peakons solutions).
For proving existence of wave breaking phenomena it is natural to consider the equation in its
dispersionless form, which can be obtained by translations on the phase space and Galilean boosts.
Note that the family of equations is not Galilean invariant.

For our purpose the presence of the dispersive terms cou, and Yug., is fundamental, since we
study the existence of quasi-periodic waves in the small amplitude regime, namely in a neighborhood
of the origin u = 0, where the dispersive effects are much stronger than the nonlinear ones. In
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particular we choose to set in ((1.2.2))
=1, v=1, c¢=—-4, c3=c3=—1. (1.2.3)

With this choice of the parameter we obtain the equation (1.0.5)) with Mg = 0. Actually we need
only to have ¢y # 0,7 # 0, the other choices have been done for simplicity of notations.

The equation (1.0.5)) can be formulated as a Hamiltonian PDE u; = JV2H (u), where V2 H
is the L?(T) gradient of the Hamiltonian

u? ol
H(u) = / — — — + f(u) dzx (1.2.4)
T2 6
with f € C®(R;R), f(u) = O(u"). The Hamiltonian is defined on the real phase space
HY(T,) := {u € HY(T,R) : / wdr = 0}
T
endowed with the non-degenerate symplectic form
Qu,v) == /(J_lu) vdr, Yu,v € H}(T,), J = (1 = 0pp) (4 — 0z) 0. (1.2.5)
T
The Poisson bracket induced by 2 between two functions F,G: H}(T) — R is
(F(w), G(u)} = Q(Xp, X&) / VF(u) JVG(u) dx, (1.2.6)
T

where X and Xg are the vector fields associated to the Hamiltonians F' and G, respectively.
The dispersion law of the DP equation is given by

A+ 37
_]1+j2_] 1+]~2>

w(j) : jEZ. (1.2.7)

We note the Hamiltonian (|1.2.4) preserves the momentum, since f does not depend on x.

The solutions that we find are localized in Fourier space close to finitely many tangential sites
St=1{3,....7,}, S=8tu(=ST)={+j:j€5"}, 7 €N\{0}, Vi=1,....,.v (1.2.8)

and the linear frequencies of oscillation on the tangential sites are

7.(4 =2 7 (4 =2
D= (31( ) +§”)> € Q. (1.2.9)
1+ 7 1+7

We note that the linear frequencies ([1.2.9)) are rational numbers such that

A+ i}
Sets 7.0 as j; — oo. 1.2.10

T2 Ji ( )
For this reason we shall deal with stronger degeneracy relations which we are able to satisfy with
further restrictions on the choice of the tangential set respect to the KdV case (see (1.1.6)), Definition
1.1.2). In particular we need to formulate a slightly different notion of genericity respect to the one

given in Definition [[.1.2}
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Definition 1.2.1. Let 1 > ¢ > 0 be a constant and fix ¥ € N, v > 1. We define the set V(c,v) as
the set of the v-ples (ji,...,J,) € (N\ {0})” such that

< (1.2.11)
max j§; < — 2.
i:1,...,1/]l T c
or
. Ji
max j; > — and —_—— 1| <ec. 1.2.12
i:l,...,y']z c max;—1_.,{Jji} - ( )

The set V(v,c) C N¥ is the union of a ball centered at the origin of radius 1/c with a cone whose
vertex is the origin and with axis {(j1,...,5,) € NV :j1 =--- =, }.

Definition 1.2.2. (Genericity) Let 1 > ¢ > 0 be a constant and fix v € N, v > 1. We say that
aset {j1,...,Jv}, ji € N\ {0}, is generic in V(c) := V(v,c) if (j1,...,5») € V(c) and it is generic
according to Definition We shall say that “a choice of the tangential sites S is generic" if ST
defined in is generic in V(c) for some constant c.

We shall assume the following non-degeneracy conditions which are proved to be generic in V(c)
for some fixed constant ¢ (see Appendix [B.1J):

(HO) For ¢ € Z¥

> ali=0 <=(=0 for || =78, (1.2.13)
=1
(H1) for L € Z¥
~ 7 _
; 7 0 #0  for (] =3,4,5, (1.2.14)

(H2) for some constant c, independent of the set S*

|det A| > c, max 7;, 1-AT7-T| > c. (1.2.15)
i=1,...,v

where A is defined in (5.3.9)), ¥ in ([5.9.46)),
(H3) For all £ € Z¥, j, k € S¢

(1 - A*TEQT)E £ AT (w; — wy) (1.2.16)
where (recall (1.2.7))
w, = 20) <(1 +70)(7 + 57; +ﬁi+3j2>>” cRY
T3 NGO+ ARATE ey

The main result of Section [5|is the following. This is part of a joint work with Roberto Feola and
Michela Procesi.

Theorem 1.2.3. Given v € N, let f € C* satisfy (1.0.7)). There exist a constant ¢ > 0 such that
for a generic choice of ST in V(c,v) (see Definitions and (1.2.8])) the equation (|1.0.5))
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possesses small amplitude quasi-periodic solutions, with diophantine frequency vector w = w(§) =
(wj)jes+ € RY, of the form

B . _ (4457
u(t:2) =2 3 V& coslwst + ) + oV, wi =i +OUeD (1.2.17)
jeST

for a Cantor-like set of small amplitudes § € RY with density 1 at £ = 0. The term o(\/[&]) is small
in some H?®-Sobolev norm (see (1.0.22)) for s large. These quasi-periodic solutions are linearly
stable.

Let us make some comments.

e As commented under Theorem [I[.1.3] we require that the analysis of the twist condition is not
affected by the perturbation f (see (1.2.4])). Moreover we want to fully exploit the integrability
of the Degasperis-Procesi equation (see [48]) to prove that there are only trivial resonances
involved in the steps of weak Birkhoff normal form (see Proposition .

e We could deal also with perturbations of the form

flzou) = f<a(u) + fo5(z,u)

where f<4 denotes the homogeneous part of degree less than four of f near the origin and f>5
the part of degree greater or equal than five. For simplicity we avoid some technical issues by
considering a Hamiltonian density f independent of x. In particular we use this fact to exploit
the conservation of momentum in implementing the normal form steps in Sections and

0. (.0l

e We consider f € C* in order to work in the usual framework of the C*° pseudo differential
operators. In particular with this choice the coefficients of the linearized operator (5.6.31)) are
C™ in (¢, x) since the vector field JVH (u) is C*° (see (1.2.4]), (1.2.5))) and the approximate

solutions at which we linearize are trigonometric polynomial.

e The generic assumption (HO) (see (|1.2.13))) is needed to perform the 5-th and 6-th step of
(weak) Birkhoff normal form. We could avoid this condition by computing other two suitable
constants of motion and by reasoning as in the first four steps (see Section .

The generic assumption (H1) (see (1.2.14)) is used in Section [5.7.4]

The assumption (H2) is imposed to get the invertibility of the frequency-amplitude map .
Note that we cannot simply require that the determinant of the twist matrix A (see )
is not zero, since it is an analytic function of the tangential variables 7;,...,7, that could
accumulate to zero as max7; increases. In the set the asymptotic behaviour of this
function is under control, this is the reason for defining the notion of genericity .

The hypothesis (H3) is assumed in order to prove Lemma for the measure estimates.



CHAPTER 2

FUNCTIONAL SETTING

In this Chapter we introduce some notations, definitions and technical tools which will be used
along the proofs of Chapters [4 and [5}

Notations. We list some of the notations used along the Thesis.

e We denote by I the identity operator on some space X. When there is possible confusion
about the domain of definition we denote it by Ix.

o We write a <; b to mean that a < C(s)b with C(s) a constant depending on some index s.
In Chapters [4] and [ we use this notation for the index s of a Sobolev space H®. In Chapter
we use this notation also for constants depending on parameters b or p (see Sections
and for the constants depending on the index « in (2.2.10) and ([2.2.11]) .

When we deal with inequalities which involve constants depending on the dimension v, the

index sg, the number 7 of the diophantine inequalities or other quantities which come from
the nonlinear terms, we simply call all these constants C'. When it is necessary to distinguish
different constants we give different names.

e The notation R(v*~927) indicates a homogeneous polynomial of degree & in the variables (v, z)
of the form

R(Uk—qu) =M[wv,...,v ,z,...,2], M =k —linear form.
—_— ——

(k—q) times g times

In particular, for homogenous Hamiltonian H = H (v, z) we denote by H™ the homogenous
part of degree n of H, by H™=™) the terms R(v"92%) for q < m.

e Sometimes we will denote the operator w - 9, with D,,. We denote by [r] the integer part of
a real number r.

e We denote by U and T respectively the matrix with all entries equal to 1 and the vector with
all components equal to 1.

23



24 2.1. SOBOLEV FUNCTIONS AND LIPSCHITZ NORMS.

2.1 Sobolev functions and Lipschitz norms.

Sobolev functions. We consider a function u(p,x) € L2(T” x T,C) as a ¢-dependent family of
functions u(ep,-) € L?(T,,C) with the Fourier series expansion

u(p,x) = Y ui(p) el = 3wy lletio),
JEZ LeTV JEL

We denote the Fourier coefficients of u as u; and wuy;, or wg;, with respect to the variables x and
(p,x). Sometimes, in order to distinguish the Fourier taransform only in one of the variables = and
i we will use the notation *.

We shall consider real valued functions. For the Fourier coefficients this means that

() = u—j(p), T = u_g_;. (2.1.1)
We use the simplified notation L? to denote L?(T” x T) and L2 := L?(T,). We define the Sobolev

space
H ) = { o) € 2l = 30 Jugg P 5)% < oo (2.12)
LeZY jEL
where (¢, j) := max{1, ||, |j|}, |¢] := >_;_1|¢;| and it is equivalent to 1+ |¢|+ |j|. The norm defined
in (2.1.2) is equivalent to the norm

[N (re p2y + Il L2 ms)- (2.1.3)

If so > (v +1)/2 then for s > s¢ the spaces H*(T"T!) « L°°(T**!) and they have the algebra
structure. Moreover they satisfies the interpolation inequalities (see for instance [23], [69], Appendix
G [62], Appendix [18])

luv]ls < C(so) llullsllvlls, + C(s)llullsollvlls, Vv € H(TH). (2.1.4)

Linear operators. Let X,Y be two Banach spaces and let us denote by £(X,Y) the set of linear
operators from X to Y.

Let A: TV — L(L*(T.)), ¢+ A(p), be a p-dependent family of linear operators acting on L?(T,).
We consider A as an operator acting on the functions u(p,z) in the following way

(Au)(p, ) = (Alp)u(p, ) (@).
This action is represented in Fourier coordinates as
Au(p,z) = Y A (@ uplp)e?™ = > 3" AL (=) upy EeTI), (2.1.5)
J,3'€z LELY JEL U ELY j' €L
We define for m = 1,...,v the operator 0, A(y) as
OpnAl@)u(p,x) = > > A=) AL (L= ) upy e Eem), (2.1.6)
Lel” JEL U TV j €L

We say that A is a real operator if it maps real valued functions in real valued functions. For the
matrix coefficients this means that
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Lipschitz norm. Fix v > 1 and let O be a compact subset of R”. We call parameters the elements
of this set.
For a function u: O — E, where (E,||-||g) is a Banach space, we define the sup-norm and the

lip-seminorm of u as

ull 5P = [Jul[ 3™ == SlelgHU(W)HE,
w
u(wy) — u(w 2.1.7
T 210
w1,w2€0, ‘wl - w2‘
w1FWw2

Fix v > 0. In Chapter [l we will use the following Lipschitz norms

lall 200 = a3+ AlullfP, Vs > (v +2)/2,

L) .= |m[*% 4 y|m['®, m € R. (2.1.8)

In Chapter [5| we will use the following Lipschitz norms
[l 29 = [[ull3C + yllulPY, Vs> /2] +3 (2.1.9)
Im[7© = |m[**P©C 4 4|m|"PC, m eR. (2.1.10)

For convenience we use two slightly different notations for the Lip norm in the KdV and DP cases.
In the DP case we need to be more careful about the domains of parameters, thus we prefer to recall
the set O in the notation used for the Lip norms (2.1.9)) and (2.1.10). Note that in we require
a weaker lip-seminorm respect to (2.1.8]).

We refer to the Appendix [A] for technical lemmata on the tameness properties of the Lipschitz
and Sobolev norms.

2.1.1 Symplectic Sobolev scales

In Chapters [4] and [5| we work on a scale of symplectic Sobolev spaces. We consider HOI(T;B; R)
(see (1.1.2)) as phase space and the symplectic structure is given by

_ 1
Qu,v) = (J v peeny = D )Y Y w,v € Hi(T,), (2.1.11)
jez\{0}

where J := 0, A(j) := j inthe KAV case and J := (1—0,z) 1 (4—002)02, A(j) := (14+52)/(j(4+5?))
in the DP case. Both these operators are unbounded and the vector field Xy := JVH is defined on
the scale

H*(Ty;R) == Qu(z) € L2 [lullf == D JuyP(i)* < oo
JE€Z\{0}

and in Fourier coordinates reads as
[(Xu(w)]j =iA4) (0, H)(u), j€Z\{0}
Consider two real functions F,G: H}(T,) — R then the Poisson bracket associated to (2.1.11]) is

{F,G}(u) = (VF(u), JVG(w)) 2m,y = — 3 iA)Du_, F (1) 3y, G ). (2.1.12)

JEZ
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Definition 2.1.1. We say that
(1) a map is symplectic if it preserves the 2-form € in (2.1.11));

(2) an operator (Ah)(p,x) := A(p)h(p,z) is symplectic if each A(p), ¢ € T", is a symplectic map
of the phase space (or of a symplectic subspace like H g: );

(3) the operator w - d, — JG(yp) is Hamiltonian if each G(¢),p € T”, is symmetric.

Conservation of momentum. In the KdV case, Chapter [ the momentum is the quadratic
Hamiltonian

Micay(u) = (1/2) [ o da,

T
In the DP case, Chapter [5, the momentum is

Mpp(u) = / J g udz.
T
In both cases, the vector field generated by Mgqy, Mpp is

3xVMKdv(U) = JVMDP(U) = Ug.
It is easy to see that a homogeneous Hamiltonian of degree m
H(’LL) == Z Hjh,..7jmuj'l e Ugp, (2113)
jla---7j7rLeZ\{0}

preserves the momentum, namely Poisson commutes with Mg 4 or Mpp with the respective Poisson
structures (see ([2.1.12))), if it is supported on the set {(ji,...,Jm) € Z™\ {0} : j1 + -+ + jm = 0}.

2.2 Pseudo differential calculus

In Chapter |5| we exploit some pseudo differential calculus techniques (see for instance Section
5.7). Here we recall some basic definitions and properties of pseudo differential calculus. For more
details we refer to Section 2 of [27] or [63], [77], [93], [92].

The pseudo differential operators on the torus Op(a(x,j)) may be seen as a particular case of
pseudo differential operators Op(a(z,&)) on R™ (we refer for instance to [63]).
In the following we give the definitions of both these class of operators, but, along the Chapter [5| we
will always use the continuos notation a(x,&) for the symbols, also if we think Op(a) as an operator
acting on 2m-periodic functions u(z).

Given a function 8 € N we denote by A? := Ajo---0A; the composition of 3-discrete derivatives.
Now we give the definition of a pseudo differential operator on the torus.

Definition 2.2.1. Let u = ZjeZ u; €92, A linear operator A defined by
Au(z) = Z a(z, j) u; 9" (2.2.1)
JEZ
is called pseudo differential of order < m if its symbol a(z,j) is 2w-periodic and C*° smooth in x,

and it satisfies
02 Aa(x, j)] < Cap(i)™?, Vo,B €N (2.2.2)
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We give the definition of a pseudo differential operator on T derived from the corresponding one
on R.

Definition 2.2.2. A linear operator A is called pseudo differential of order < m if its symbol a(z, j)
is the restriction to R x Z of a complex valued function a(x,&) which is C*° smooth on R x R,
2m-periodic in x and satisfies

10907 a(x, )| < Cap(&)™ P, Va,BEN. (2.2.3)

The Definitions and are equivalent and we refer to [92] for the proof of this fact.
We denote by
A= 0Op(a)

the pseudo operator with symbol a := a(x,§). We call OPS™ the class of the pseudo differential

operator of order less or equal to m and

OPS™> :=(OPS™.
We define the class S™ as the set of symbols which satisfy (2.2.3]).

Composition of pseudo differential operators. One of the fundamental properties of pseudo
differential operators is the following: given two pseudo differential operators Op(a) € OPS™ and
Op(b) € OPS™ | for some m, m’ € R, the composition Op(a)oOp(b) is a pseudo differential operator
of order m +m’. In particular

Op(a) o Op(b) = Op(a#b), (2.2.4)
where the symbol of the composition is given by
(a#tb)(z,€) = > a(z, &+ )b (e’ = Y ap_j (€ + j)bj (€)™ (2.2.5)
JEZ k,jE€Z

Here the * denotes the Fourier transform of the symbols a(z,£) and b(x,&) in the variable x. The
symbol a#b has the following asymptotic expansion: for any N > 1 one can write

N-1

() (.6) = Y - OWalz, O, &) + (. &), vy € SN,
= 1 1 (2.2.6)
e, €) = =y ) - L O e

Definition 2.2.3. Let NeN, 0< k<N, ac S™ and b e S™ , we define

N-1

agtib = o k(a€ a)(OFb),  a#tonb:= kzo a#rb,  a#snbi=rN. (2.2.7)

Adjoint operator. Let A := Op(a) € OPS™. Then its L?-adjoint A* is a pseudo differential

operator such that

A" =0p(a’),  a'(@.€) = 3 (€ — )b, (2.2.8)

JET
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Parameter family of pseudo differential operators. We shall deal also with pseudo differential
operators depending on parameters ¢ € T":

(Au)(p,x) = alp,z, j)uie’™, alp,x,j) € S™
JEZ
The symbol a(p, z,&) is C*° smooth also in the variable ¢. We still denote
A= A(p) = Op(a(p,-)) = Op(a).

For the symbols of the composition operator with Op(b(y,,¢)) and the L?-adjoint we have the
following formulas

(a#tb) (@, ,€) =D _a(p,x, 6+ )bl 5,6) €97 = Y a(l = 0,5 = j,&+ )L, §, ) e,

JEL j:j' €L,
NN/
a*(p,,8) =Y alp, 5§ —j) i = Y a(l, 4§ — j)eltetin,
JEZL LeZv jeL
(2.2.9)
Following [27] and [77], on such operators we define the following norm.
Definition 2.2.4. Let a(p,z,§) € S™ and set A = Op(a) € OPS™,
[Alnsa = mase sup [0l Oll(6) " (2:2.10)

We will use also the notation
|alm,s,a = [Alm,s,a-
Note that the norm |- |, 5o in non-decreasing in s and «. Moreover given a symbol a(p,x)
independent of &, the norm of the associated multiplication operator Op(a) is just the H® norm

of the function a. If on the contrary the symbol a(§) depends only on ¢, then the norm of the
corresponding Fourier multipliers Op(a(&)) is just controlled by a constant.

Weighted pseudo differential norm. Let A = Op(a(\,p,z,£)) € OPS™ be a family of pseudo
differential operators with symbol a(\, ¢, z,£) € S™ depending in a Lipschitz way on some parameter
A € O C R”. We introduce the following weighted norm

|Op(a()‘17 ¥, T, g) - a()\g, ®, T, f)) |m,371,a

ARG o = sup |Almsa+7 sup (2.2.11)
AEO A A2€O A1 — Ao
Note that the norm (2.2.11]) satisfies
70 ) ,O
Vs<s, a<d =|- |?,L2a <] ;’175/,(1, | - Zﬁa <|- 7n7s7a, (2.212)
70 7(9 ’ ’
m < ml = | ’ 7n/,s,a < ’ ’ |;7Ym’,s,a'

In the following lemma we collect properties of pseudo differential operators which will be used in
the sequel.

We remark that along the Nash-Moser iteration we shall control the Lipschitz variation respect to
the torus embedding i := i(p) of the terms of the linearized operator at i. Hence we consider pseudo
differential operators which depend on this variable.
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Lemma 2.2.5. Fiz m,m’,m” € R. Let i be a torus embedding. Consider symbols
ali A, o, 2,€) € 5™, b(i, A p,2,6) € ™, (N p,x,6) € 5™, d(A,p,z,6) € S°
which depend on A € O and i € H® in a Lipschitz way. Set

A= Op(a(A, 907'7375))’ B := Op(b(A, 907$7£))7
C:= Op(C()\, (Pv'ma{)): D= Op(d()\, @, $7§)>

Then one has
(7) for any o« € N, s > sq,

|AOB‘m+m 18,00 Smoe ( )‘A|msa |m ,so+a+|m|,a +C(SO)|A|m 150, m’ s+a+|m| (2213)

One has also that, for any N > 1, the operator Ry := Op(ry) with vy defined in (2.2.6)) satisfies

1
‘RN‘m—‘rm’ N,s,« Sm N, 77y N! ( )’A‘ms ,a+N ‘m ,50+2N+a+|m|,a

(2.2.14)
(30)"4‘ m,so, a+N|B‘m ,s+2N+a+|m)|, >
1
‘8 RN[ ]|m+m’ N,s,« Sm N,a 77y N ( ( )|8 A[ ] m,s a+N‘B m/,so+2N+a+|m|,«
+ ( ()| Al saww B[i nm . o bt
+ C(SO) m so t;v—l—N|6 B[ ]|m ,$+2N+a+|m|, )
(73) the adjoint operator C* := Op(c*(\, v, x,&)) in (2.2.8) satisfies

|C*|m// 50 <im |C|’Y:” — 0’ (2216)

(7i1) consider the map ® : =14 D, then there are constants C(sg,«),C(s,a) > 1 such that if

1
C(807 )|D’O ,S0+a,a S 57 (2217)
then, for all X, the map ® is invertible and ®~1 € OPS® and for any s > so one has
- o)
’q) t— I|E)Ys ey < C(S a)’D|O sta,a (2218)

Proof. Ttem (i) and (i7i) are proved respectively in Lemmata 2.13 and 2.17 of [27]. The estimates

(2.2.13) and (2.2.14) are proved in Lemma 2.16 of [27]. The bound ([2.2.15)) is obtained following the
proof of Lemma 2.16 of [27] and exploiting the Leibniz rule. O

Remark 2.2.6. When the domain of parameters O depends on the variable ¢ then we are interested
in estimating the variation Aj9A := A(i1) — A(i2) on O(i1) NO(iz) instead of the derivative d;. The
bound ([2.2.15)) holds also for Ajs by replacing iy — ig ~ 7.
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Commutators. By formula (2.2.6)) the commutator between two pseudo differential operators
A = Op(a(\, ¢, 2,8)), B := Op(b(\, ¢, 2,€)) with a € S™ and b € S™ | is a pseudo differential
operator such that

[A, B] :=Op(axb), axb(\ g, x,&) = (a#b — b#a) (A o, 2,8). (2.2.19)
The symbols a x b (called the Moyal parenthesis of a and b) admits the expansion
axb=—ifa,b} + ra(a,b), {a,b} = adsb— dpadeh € ST (2.2.20)

where 1 1
ro(a,b) = [(a#b) - Tagaamb] - [(b#a) . Iagbaxa] e gmrm'=2 (2.2.21)
Following Definition [2.2.3| we also set

N-1

axp b= afhb — bfra,  axenbi= Y axb,  ax>ybi=agsyb—b#sya.  (22.22)
k=0
As a consequence, using bounds ([2.2.13]) and (2.2.14]), one has
770 'Y,O ’}/,O
|4, B] m+m’/—1,s,a Smm/ C(S)|A|m,s+2+|m’|+a,a+1|B|m’,so+2+a+|m|,a+1

(2.2.23)

7,0 7,0
+ C(SO)|A m,so+2+|m’|+o¢+l,a+1|B m/,s+2+a+|m|,a+1"

The last inequality is proved in Lemma 2.15 of [27].

2.3 Setting for KAM reducibility

In Chapters[4]and [5] we implement two different KAM reducibility schemes, see Section s and

The first one refers to a KAM iteration performed in [7], [8] where the non diagonal bounded
remainders resulted from the regularization procedure of Section [£.0] have finite decay norm , see
Definition 2.3.7] below.
In the DP case, Chapter [f] the remainders of the regularization procedure of Section do not have
this property. Following [27] and [28] we perform the diagonalization procedure of Section with
the class of modulo-tame operators. Our case involves tame-operator of negative order as in the work
of Baldi-Berti-Haus-Montalto [28] and we thank the authors for useful discussions about this key
point of the proof.

2.3.1 Matrices with off-diagonal decay

We recall the definition of the s-decay norm (introduced in [20]) of an infinite dimensional matrix.
This norm is used in [7] for the KAM reducibility scheme of the linearized operators and we refer to
Section 2 of [7] for further details.

Definition 2.3.1. (Decay norm) The s-decay norm of an infinite dimensional matrix A :=
(A7) ipezs, b= 1 s

11

2
|A]? = Z(i)28< sup \Aﬁj\) . (2.3.1)

. 11 —12="1
i€Zb
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For parameter dependent matrices A := A(w),w € O C R, the definitions and -

become

| A) — Ao
AR = sup A, A1 = sup (ATl
w w1 ,w ,
w1 Fis (2.3.2)

AP0 o= AP | AL,

Such a norm is modelled on the behavior of matrices representing the multiplication operator by a
function. Actually, given a function p € H*(T?), the multiplication operator h — ph is represented
by the Toplitz matrix Tij = pi—; and |T|s = ||p|ls. If p = p(w) is a Lipschitz family of functions,
then

7] 57 = |Ip) 70

The s-norm satisfies classical algebra and interpolation inequalities proved in [20)].

Lemma 2.3.2. Let A = A(w), B = B(w) be matrices depending in a Lipschitz way on the parameter
we O CRY. Then for all s > sg > b/2 there are C(s) > C(sp) > 1 such that

A BT < C(s)| Al Bl
[ABIZP0) < C)ATO BP0 + Clso) | A5 B0,

The s-decay norm controls the Sobolev norm, namely
[ARIEP) < C(s) (JAEPORIEPED + | AP ) 7)) (233)
An important sub-algebra is formed by the Tdplitz in time matrices defined by

AP = AR (0 — by), (2.3.4)

whose decay norm ([2.3.1)) is
2
A=) ( sup |AJ2(E>1> (6,5)%. (2.3.5)
JELLETY J1—J2=J

These matrices are identified with the ¢-dependent family of operators

Alp) = (A2 (D)) jruez,  AP(@) =D AZ(0) "
Lezr

which act on functions of the x-variables as

= hjel T Ap = Y AZ(p)hy, e,

JEZ J1,J2€7Z

Lemma 2.3.3. (Lemma 2.4 in [7f) Let A be a Topliz matrixz as in (2.3.4) and so > (v+2)/2. Then

‘A(‘P)‘s < C(SO)|A’S+SO Vo € T".
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2.3.2 Tame operators

In [27] the authors deal with linear operators depending on a parameter A and they need to

control, in a quantitative way, a certain number of derivatives in A in order to develop a degenerate
KAM theory. For this reason, in Section 2.2 of [27], they introduced the notion of D*o-tame and
D*o-modulo-tame operators, where D denotes the regularity on the parameter \.
In the DP case, Chapter |5, we need only to control the Lipschitz variation on the parameters, hence
we use slightly different (weaker) notions of the operators involved in our scheme. The proofs of the
results presented here derive from the results proved in Section 2.2 of [27] with some small technical
variations.

Definition 2.3.4 (o-Tame operators). For ¢ > 0 a linear operator A is o-tame if, for any
50 < 8 < Spae with possibly Spe. = 400, the following estimate holds:

[Aulls < Ma(o, s)||ullso+o + DMalo, so0)[|ullsto ue H?, (2.3.6)

where the functions s — M4 (0, s) are non-decreasing in s. We call 9 4(o, s) the tame constant of
the operator A. When the index o is not relevant we write 9 a(o,s) = Ma(s).

Definition 2.3.5 (Lip-o-Tame operators). Let A = A(w) be a linear operator defined for w €

O C R”. Let us define
Alw) — A(w')

w—w'

Ay A= . w,w €O. (2.3.7)

Then A is o-tame with o > 0 if, for any sg < s < Sz, With possibly Sjee = +00, the following
estimate holds

up | Al 7 5 [(Bur Dlle-1 <o M (0,5) ulleg i + M, 8) [ullsor we HS,  (238)
weO wHw’
where the functions s — 90 (o, s) are non-decreasing in s. We call 9, (o, s) the Lip-tame constant
of the operator A. When the index o is not relevant we write M) (o, s) = M (s).

Lemma 2.3.6. Let A and B be respectively Lip-o4-tame and Lip-oy-tame operators with tame
constants respectively MM (s) and MG(s). Then the composition Ao B is a Lip-(o4 + o) -operator
with

Mo 5(8) <MY (s)M(s0 + oa) + M (s0)ME(s + 04). (2.3.9)

The same holds for o-tame operators.

Lemma 2.3.7. Let A be a Lip-o-tame operator. Let u(w), w € O C RY be a w-parameter family
of Sobolev functions H?®, for s > sq. Then

(@
[ Aul]3™ <o 20T (0, 5) Jul

20+ My (0, 50) |ul| - (2.3.10)

Proof. By definition (2.3.8) we have Ma(o,s) < M) (0,s) and [uls < Hu||'sy’o Then the thesis
follows by the triangle inequalities

—A)u(w) - Al )]s < (A Au()]s + | AW) Ay wrulls.

jw — ']
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Lemma 2.3.8. Let A = Op(a(p,x,D)) € OPS? with o > 0 be a family of pseudo differential
operators which are Lipschitz in a parameter w € O C RY. If |A|Z:SO < 400 then A is a o-tame
operator with

7.9 (2.3.11)

,s,0°

sm}(a, s) < C(s)|A

Proof. We refer to the proof of Lemma 2.21 of [27]. O

2.3.3 Modulo-tame operators and majorant norms

The modulo-tame operators are introduced in Section 2.2 of [27]. As we said before, our defi-
nitions are slightly different since we are interested only in the Lipschitz variation of the operators
respect to the parameters of the problem. The main difference with the work [27] is that in the KAM
reducibility procedure we involve modulo-tame operators which regularize in space. This fact holds
also in [28].

Definition 2.3.9. Let u € H*(T"*!), we define the majorant function

ulp,x) = D fugle e,
teT” JEL

Note that ||ulls = |lus-

Definition 2.3.10. Let A be a bounded linear operator from H*(T**!) into H*(T**!) and recall
its matrix representation ([2.1.5). We define the madjorant matrix A as the matrix with entries

(A5 @) = (A0 ez, ter”
We consider the majorant operator norms

| Ml zms)y = sup || Mulls. (2.3.12)
flulls<1

We have a partial ordering relation, i.e. if

M XN & M (O] < |NJ (O] Vi, j' = IMlls) < INllees) > 1 Mulls < [ Maulls < [|Nalls.

Since we are working on a majorant norm we have the continuity of the projections on monomial
subspace, in particular we define the following functor acting on the matrices

M (e if |4 < K,
e = MO it} < Mk =1 — TIg.
0 otherwise

Finally we define for by € N
({0 )™ M)} () = (> M (£).

If A= A(w) is an operator depending on a parameter w, we control the Lipschitz variation, see
formula [2:3.7] In the sequel let 1 >~ > ~, > 0 be fixed constants.
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Definition 2.3.11 (Lip-o-modulo tame). A linear operator A := A(w), w € O C R”, is Lip-o-

modulo-tame w.r.t. an increasing sequence {9t A,v*( ) SS’:”g; if the majorant operators A, A, A

are Lip-o-tame w.r.t. these constants, i.e. they satisfy the following weighted tame estimates: For
o >0, for all s > sg and for any u € H?,

sup [|Aulls, sup Yl Ay Aulls < (0, s0) ]l 540 + DM (0, 5) [ 500 (2.3.13)
weO w#w' €O

where the functions s — E)ﬁg;y* (s) > 0 are non-decreasing in s. The constant Dﬁ&”* (0,s) is called
the MODULO-TAME CONSTANT of the operator A.

Definition 2.3.12. We say that A is Lip-—1-modulo tame if (D,)/2A(D,)'/? is Lip-0-modulo
tame. We denote i "
{))t/i'y* (s) == mDT;QADl/? (0,s)

1,7+ f7x (2:3.14)
M%7 (s,a) == m(a@m(s)’ a>0.

In the following we shall systematically use —1 modulo-tame operators. Here we list and prove
some properties.

Lemma 2.3.13. Let so > [(v+2)/2+ 1] € N. Let A be a —1-modulo tame operator and by € N.
Then
S)Jt&'y*( ) < max M7 ]( 1,s), (2.3.15)

m=1,...,v SO o [A,0z

M (s,b) < max M ng 1 (—15): (2.3.16)

m=1,...,v <Pm [Aa]

Proof. We have

DAY Pl < 3 (i (X AN € 6 hey)

LeZv jEL very.j' el

< 3 (X SRy - 0 )

S
(€1 jeT, vetyen £l =7

SC YT Y =P P (= )P luey

Lery jer ez j'el
=C D P DY G5 PE =)0 (A)] - )
VELY jEL L€y jE

since

1
C .= Z o < oo
VETY J'EL <£ - E > SO|J —J ’

By the fact that for any 1 < m <v

S GG = 5Pl — ) (A (= )2
(e et (2.3.17)

<My (45 (18T + 2Ny (= 1s0)) 2 5)*

and
=0y < max (bm—10) (2.3.18)

m=1,...,v
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we obtain

D) 2AD) Pl < 2 wmax (0, o (<Lso) Pl +2) max (0, o (<1)ull,

=L,...v

Following the same computations above we conclude the same bound for |[(D;)'/2A,, s A(D,)Y?u||?.
By the fact that v, <1 we deduce ([2.3.15)). The proof of (2.3.16) is analogous. O

Lemma 2.3.14. (i) If A <= B and Ay, A <X Ay B for all w # W' € O, we may choose the
tame constants of A so that

ML (5) < MY (s).

(i) Let A be a —1 modulo-tame operator with modulo-tame constant Dﬁi’ﬂ*(s). Then the operator
<Dz>1/2A<Dz>1/2 is majorant bounded H® — H*®

mﬁ%«( )

(D) P ADL) Pl ey < 200577 (s),  |ALO)" < 7

(iii) Suppose that (9,)®°A, by > 0, is —1 modulo-tame. Then the operator I A is —1 modulo-
tame with tame constant

mﬁn’fA( ) < min(N bozm’g Srwoals s), ML= (s)) . (2.3.19)

(iv) Let B be a —1 modulo-tame operator with modulo-tame constant smﬁ;*(s). Then A+ B s
—1 modulo-tame with modulo-tame constant

M5 (5) < ML () + ML (s) . (2.3.20)
The composed operator Ao B is —1 modulo-tame with modulo-tame constant
M (5) < O(s) (957 (5)I%7" (50) + MK (50) 00557 (5)) - (2.3.21)

Assume in addition that (0,)*° A, (D,)*°B are —1 modulo-tame with constant respectively
me %>boA( s) and ﬁﬁﬁ Vw0 (8), then (D,)P°(AB) is —1 modulo-tame with modulo-tame constant

(0 (0p)P0 B
satisfsying
O ) (5) < C 3, 50) (0 ()05 (50) + M, 4 (50) 20" (5)

o+ O ()N (50) + I (50) 0y p(5)) - (2:3.22)

Finally, for any k > 1 we have, setting L = ad®*(A)B, ad(A)B := AB — BA:

M1 (8) < O, o) | (0™ (50) D)0, ()

+ k(M5 (s0))F (smﬁ yoals $) BT (s )+zm§ Srwoals o)smm*(s)) (2.3.23)

Il = 1R (50)) 2 (5)9E5 0, o (50) 0 (s0)

The same bound holds if we set L = A*B.
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(v) Let ® := 1+ A and assume, for some by > 0, that (0,)*°A is Lip—1-modulo tame and the

smallness condition

8C (Symaz> bo) MY (s0) < 1, C(Smaz,bo) = max  C(s,bg) (2.3.24)

SOSSSSmaz

holds. Then the operator ® is invertible, A := &1 —1d is —1 modulo-tame together with
(Dp)P0 A with modulo-tame constants

M (s) < 20MK"(s) (2.3.25)
MV 1 (5) < 200 4 (5) + 8C (S 0) Iy 4 (50) M (s). (2.3.26)

Proof. In the following we shall sistematically use the fact that if B is an operator with matrix
coefficients > 1, then A < Ao B = Ao B = Ao B. Note that (D,)"/? is a diagonal operator with
positive eignevalues.

(i) Assume that A < B ie. [A](0)] < |BI (¢)] for all j,j',¢. Then

(D) 2 A(DLY ul|s < (Do) 2 A(DL) ulls < (D)2 B(D,Y?ulls.

The same reasoning holds for <Dx>1/ 2Aw7w,A<Dx>1/ % so that the result follows.
(ii) The first bound is just a reformulation of the definition, indeed

sup [[(Dg) ' A(D,)2ulls < sup (M (s0) ulls + 0057 (s)]|ulls) < 29057 (s).

flulls<1 [[ulls<1

In order to prove the second bound we notice that setting

(0 — {<j>A;i(o) (=0 and j=j

0 otherwise,

we have B < <Dx>1/2A<Dx>1/2, same for A, s B. Fix any jo and consider the unit vector u\%0) in

H*(T"T1) defined by uj, = 0 if (4,€) # (jo,0) and uj, 0 = (jo)*°. We have

(o) | A (0)] = [[Bul® ||y, < (D) /2 A(D)2u |5, < M (50).

The same holds for v, (jo)| Ay, .r A% (0)].
(iii) We remark that |A7 (£)] < N7 (0)*0|A7 (¢)] if [¢] > N and the same holds for |A, A7 (¢)].
Therefore we have

My A < N72(9,)P Ty A < N7°0(9,,)* A

and the result follows, see also Lemma 2.27 of [27].
(iv) For the first bound we just remark that

(D)2 (A+ B)(Dy)'? < (Do) PA(D)? + (D)2 B(D,) 2,

and the same for the Lipschitz variation, so that the result follows from Lemma 2.25 of [27]. Re-

garding the second we note that

(D2)'? A0 B(D:)'? < (Da)' /A0 B(D:)'"? < (D) A(D2)"/* 0 (D1) '/ B(D2)' /2,
< w>l/2Aw7w’AoB<Dq;>1/2 j <.D >1/2A /A<D >1/2 o <Daj>1/2ﬁ<Dx>l/2
+ (D) PA(D)Y? 0 (D) Ay B(D,)'?,
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so that the result follows from Lemma 2.25 of [27]. For the third bound we note that

(O > ARG)B () <Clbo) Y ((0)™ + (€a)*) AL (41) B, (6)
J1,b1+la=L 1,01 +la=F

and the same holds for A, Ao B and Ao A, ,B. Hence

(D2) " (0,)% (A 0 B)(D:)/? 2 Cloo) (D) (0,) A(D,) ' 0 (D) /* B(D,) />

(D)2 ADL) Y 0 (D) (0,) B(DL)' ) |

same for the Lipshitz variations. The result follows from the estimate on the composition.

In order to prove we note that
(D) %ad(4)B(D,)'/? < ad® ((D,)2A(D,)'*)) (Da) * B(D)'?,
where ad(A)B := AB + BA and similarly
(O2)(D,) 2" (A)B(Da)"/> < ad® (Do) * A(D,)' 1)) (D) /*(02) B(D,)

+ Y ad® ((D2)'2A(D,)'%) ad(D,) (080 A(D,) )
k1+ko=k—1

@kg (<D$>1/2A<D$>1/2)> <Dm>1/25<D$>1/2 )
Completely analogous bounds can be proved for the Lipschitz variations, by recalling that
A, wad(A)B = ad(A, wA)B +ad(A)A, . B.

The result follows, by induction, from the estimate on the composition. The estimate (2.3.23) when
C = A% o B follows in the same way using

(2N (Do) P (A)FoB(Dy)'? = ((Dy) 2 A(DL)?)F o (D) /? (080) B(D,)?

b (002D ) " (D)2 ADA) (D)2 A )
k1+ko=k—1

<l)m>1/2li<l)m>1/2-

Item (v) follows trivially from (2.3.23) with C = A*¥ o B. O]






CHAPTER 3

STRATEGY OF THE PROOFS AND MAIN NOVELTIES

The general strategy used for the proofs of the Theorems [I.1.3] and [1.2.3] follows the one of the
papers [8], [9] and for the analysis of the linearized operators we use some tools developed in [27],
[6]. In turn these papers are in the general framework developed in [2I]. In this Chapter we first
describe the common strategy for the proof of Theorems and Then we discuss more in
details the features of these problems.

3.1 General strategy

We describe the key ingredients of the strategy adopted in Chapters 4] and [l We show also how
we deduce the linear stability for the quasi-periodic solutions of the equations ([1.0.1) and (1.0.5]).

We look for small amplitude, quasi-periodic solutions for Hamiltonian, autonomous and parameter
independent systems

ug = Xg(u) :== JVH(u), (3.1.1)

where H is given in (1.1.1) for the KdV case and in (1.2.4) for the DP case, with periodic boundary
conditions, x € T. We consider the Hamiltonian H defined on the phase space H{(T,) (see (1.1.2)),
since this space is left invariant by the flow of ([1.0.1)) and (1.0.5). The symplectic structure is given

by (1.1.3)) in the KdV case and (1.2.5)) in the DP case.

Tangential sites. We look for solutions that are mainly Fourier supported on a finite set of modes.
These ones are obtainied by perturbative arguments starting from approximately invariant finite
dimensional tori. The set S of these modes is called tangential set (see (1.1.5))) and its elements are
called tangential sites. S is a symmetric subset of Z, since we look for real solutions (see (2.1.1)).

Autonomous and parameter independent system. Since the system is autonomous,
the frequency of the expected solutions is a priori unknown.

Since we deal with resonant problems the existence of quasi-periodic motions is due to the nonlinearity
and the main modulation of the frequency vector of the solution respect to its amplitude is produced
by the quadratic and cubic nonlinear terms of the vector field (or equivantely by the third and fourth

degree terms in the Hamiltonian H). Moreover, the problems (1.0.1)) and (1.0.5) have not external

parameters (see the first comment after Theorem [1.1.3)) which may influence the frequency. In order
to deduce the approximate relation between amplitudes and frequencies we perform a Birkhoff normal
form.

39
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Weak Birkhoff normal form. The goal of this procedure, introduced in [§], is to find an approx-
imately invariant finite dimensional manifold of the phase space on which the dynamic is integrable
and non-isochronous, namely a set foliated by approximately invariant tori whose frequencies twist
with their amplitudes £. The vectors ¢ are used as parameters to control the non-resonance condi-
tions that we shall impose on the frequencies.

Let us explain in detail this procedure, which is performed in Sections [£.1] and [5.2 respectively for
the KAV and DP case. We decompose the phase space as

HY(T,):= Hs ® Hy, Hs:=span{ei®:jec S}, Hzi:={u= Z uj el € HY(T,)},
jese

and we denote by Ilg, HJS‘ the corresponding orthogonal projectors. The subspaces Hg and H § are
symplectic respect to the 2-form Q (see (1.1.3)). We write

u=v+z v:=Ilgu:= Zuj eI, L= Hfg‘u = Z uj e, (3.1.2)
jes jese

where v is called the tangent variable and z the normal one. In the following, we will identify
v = (vj)jes and z = (2j)jese. The dynamics on the tangential and normal part is quite different,
hence it is useful to distinguish these components of the space.

We look for an analytic, invertible, symplectic change of coordinates ® 5 which transforms the Hamil-
tonian H into another Hamiltonian H, whose homogeneous monomials of degree < N, for some
number N which depends on the specifical problem (in the KdV case N =5, in the DP case N = 8),
do not include terms independent or linear in z (see Propositions and . In this way, the
set {z = 0} is a submanifold of the phase space which is invariant for the Hamiltonian H truncated
at degree N.

We verify that the dynamic on this set is integrable. Most of the equations in parametrized
by the coefficients ¢; are not integrable, but the integrability of the truncated system on {z = 0} is
guaranteed by the particular form of the dispersion relation (see Lemma, which is the same of
the KdV equation, and by imposing the assumption on the tangential sites.

For the equation we exploit the integrability of the Degasperis-Procesi equation (see Propo-
sition and we impose the assumption . In both cases we exploit the conservation of
momentum (see Section .

Thus the submanifold {z = 0} is foliated by finite dimensional approximately invariant tori with
amplitudes ¢ and frequency vectors w(£). Then we require that the truncated system at {z = 0} is
non-isochronous, namely that the map & — w(&) is a diffeomorphism, see Lemma and Remark
b3l

We note that the map ®p is of the form identity map plus a finite rank operator (see and
(5.2.6))) and for this reason the linearized operator is mildly modified respect to the one in the original
coordinates. Another advantage of this procedure is that ®p is obtained as the time-one flow of an
auxiliary Hamiltonian which is compactly Fourier supported thanks to the conservation of momentum
(see Section and Remark and the fact that we eliminate only terms independent or linear
in z. Hence there are no problems with the possible ill-posedness of any auxiliary system.

The disvantage is that the weak Birkhoff normal form does not normalize the terms O(z?).
This could be done for instance in [8], but the changes of coordinates would be of the form 1+O(9; 1)
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and such transformations produce terms 9., and 9, in the transformed vector field Ny (see )
Actually, for the equations (1.0.1) and (1.0.5) we are not able to apply this stronger normal form
method, called Partial Birkhoff normal form by Péschel in [88]. Indeed we have problems with the
definition of the transformations.

We remark that two steps of the Birkhoff procedure are sufficient to extract the frequency-amplitude
modulation. The other steps are needed to have sufficiently good approximate solutions for the
convergence of the Nash-Moser scheme. We note that the map is a better approximation of
the frequency-amplitude relation of the solutions respect to (4.2.7)), since in the DP case we perform
more steps of Birkhoff normal.

Action-angle variables We put action-angle variables (6,y) (see (4.2.9) and (5.3.10))) on the finite

dimensional submanifold {z = 0} and we rescale the amplitudes £, the actions y and the normal
variable z in order to work in a neighborhood of the torus {y = 0,z = 0} (see (4.2.13)) and (5.3.14)).
This scaling is given in powers of a small parameter € > 0. In this way, after these transformations
the Hamiltonian # has the form (see (4.2.17)) and ([5.3.18))

1
H. =N+ P, N:=a() y+ §(N(9)z, 2) 12(T) (3.1.3)
where «(§) is the frequency-amplitude map and N () := (9,VH.)(6,0,0). The Hamiltonian N is
called normal part and it collects all the linear effects. Note that the coefficient of the normal form N
depends on the angles @, since the weak normal form procedure did not normalize the terms O(z?).
The Hamiltonian P is regarded as a small perturbation of the normal part N and its size decreases

when the number of steps of weak Birkhoff normal form increases (see Lemmata and [5.4.2)).

Nonlinear functional setting. In order to use the frequencies of the solutions as parameters,
we embedd the system in a w-parameter family of Hamiltonians by setting ¢ = a~!(w) in
(3.1.3). Note that these Hamiltonians, for P = 0, possess a invariant torus at the origin (¢, 0,0)
with frequency w. The parameters w belong to a compact subset ). of R”, which is the image
through a(€) of a v-dimensional real cube (see (4.3.2))).

We look for zeros of the nonlinear functional equation (see (4.3.7) and (5.4.8))

Flw,e,i) = (w0, — X, )i =0, (3.1.4)

where the variable i = i(¢), with ¢ € T", is an embedding of the torus T into the phase space
supporting a quasi-periodic motion of frequency w. The solutions of the equation are con-
structed by a Nash-Moser iteration.

In this perspective we state the Theorems [£.3.2] and [5.4.1] which imply respectively Theorem [T.1.
and Theorem

Any solution of the problem corresponds to a quasi-periodic solution for the Hamiltonian sys-

tem originating from an approximately invariant torus of amplitude ¢ = a~!(w). We require
that w satisfies diophantine conditions as (4.3.3)) and (5.4.5). Note that in the DP case we require
an additional condition (see ([5.4.4])) in order to overcome the small divisor problem in the third step
of Section B.7.5

We underline that the diophantine constant 7 is very small (see and ), actually it has
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size O(|£]), which is small with e, since the frequencies w are O(|£|)-close to vectors with rational

components (see ([1.1.6) and (1.2.9)).

The inversion of the linearized operator. The main issue in implementing a Nash-Moser
scheme is the inversion of the linearized operator d;F (i) at each approximate solution ig. Actually,
Zehnder [97] noted that it is sufficient only to approximately invert the linearized operator, in the
sense that it is enough to construct an operator Ty such that

dzf@o) oTy—1= O(f(io)’y_l).

Note that the operator T is an exact right inverse of d;F(ig) if 4o is a solution of .

The major difficulty is that the linear tangential and normal dynamcs are strongly coupled around an
approximately invariant torus. To overcome this problem, in Sections 4.4 and [5.5] we use the abstract
procedure developed by Berti-Bolle in [21]. This method reduces the search of an approximate inverse
of the linearized operator to the invertibility of a quasi-periodically forced PDE restricted to the
normal directions. More precisely, by introducing a suitable set of symplectic coordinates (1,7, w)
the linearized system at an approximately invariant torus is, which is close to ig and isotropic, is
approximately triangularized. The canonicity of the change of variables Gy(0,y,z) = (¢, n,w) (see
(4.4.12) and (5.5.12))) is proved thanks to the isotropy of the torus is. In this way, the analysis of the
linearized operator is reduced to the solvability of the linear equations in the normal variables. Once

this problem is solved we deduce tame estimates on Ty thanks to the regularity of the functional F
and the vicinity of i5 to ig.

For the analysis of the linearized equations we mention also a parallel method presented in [39] which
does not exploit the Hamiltonian structure.

The linearized operator in the normal directions. Let us denote with L, the linearized

operator in the normal directions (see (4.5.33) and (5.6.31])). In order to get tame estimates on the

inverse of L, we conjugate it to a diagonal operator L,. This is done in two main steps: first, in
Sections and [5.7, we apply a regularization procedure, namely we conjugate L, via changes of
variables which are close to the identity and satisfy tame estimates on the Sobolev spaces H®, to an
operator that is diagonal up to a smoothing remainder R (see and Theorem . Then,
in Sections and we apply a KAM reducibility scheme to complete the diagonalization.
These two steps, in particular the regularization procedure, depends on the structure of the PDE
which we consider. For this reason we refer to the next section for more details about these steps.
We point out that, in both cases and , we have to deal with the terms O(22) that the
weak Birkhoff procedure did not touch. Indeed, some of these terms are non-perturbative for the
KAM reducibility scheme, in the sense that they do not satisfy a smallness condition required by
this procedure (see and ) The normalization of the non-perturbative terms is done
through a linear Birkhoff normal form procedure performed in Sections for the KdV case
and for the DP case. We remark that in the latter the steps of this procedure are 3 instead
of 2. This is due to the fact that we are able to impose the 2-nd order Melnikov conditions
with a diophantine constant v* smaller than v (actually v* = A3/ 2). This implies that the smallness
condition ([5.8.16|) requires a smaller remainder coming from the regularization procedure.
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The Nash-Moser nonlinear iteration. The Nash-Moser iteration (see Sections and
requires a smallness condition like F(p,0,0)y"2 < 1 in the KdV case and F(¢,0,0)y 17, < 1
in the DP case. This is verified thanks to the weak Birkhoff steps. Then the algorithm provides
a sequence of approximate solutions which converges to a final torus i, such that F(w,e,in) =0
for ¢ small enough and for a frequency w which satisfies the infinitely many Melnikov conditions
imposed along the iteration. The set C. (see Theorems and of such frequencies is proved
to have asymptotically full measure, in the sense that
G|

lim

=1.
e—0 ‘Qa‘

For the measure estimates we refer to Sections [.7.1 and [5.9.11 We underline that in the DP case the

proof of these estimates is quite more complicated.

3.1.1 The linear stability

At an exact solution i (wt), the change of variables G (see (4.4.12)) and ([5.5.12))), which depends
on in, puts the Hamiltonian H.,, (see (3.1.3)) in the normal form

1 1
K = Hey 0 Gs = SEoo($)n - n + (K ()1, 0) 2(n,) + 5 (Ko2(¥)w, w)p2r,) + Kx3(v, n,w),

where K>3 collects the terms at least cubic in the variables (1, w). Hence the linearized equations
at 15 are

) = Koo (wt)n + K1 (wt)w,

n=0,

w — JKp2(wt)w = JKq1 (wt)n,

where J = 9, in the KdV case and J = (1 — 0,3) (4 — 02z)0, in the DP case. Thus the actions
n(t) = n(0) do not evolve in time and the third equation reduces to

w — JKOQ(wt)’LU == JKll(wt)n(O). (315)

The right hand side of (3.1.5)) is the linearized operator in the normal directions (see (4.5.33)) and
(5.6.31))), the left hand side is a forcing term. In Section and we, respectively, semi-conjugate

and conjugate (3.1.5) to the diagonal system
hy = —=Dooh + f(wt), (3.1.6)

where Do = diag;(id;°) and the eigenvalues id7° € iR are the Floquet ezponents of the quasi-periodic
solution i . In the KdV case (see Theorem [4.6.19)) we have

d;° = —mgj® 4+ myj +7r5°, jeSse

where (recall (2.1.7)))

Im3 — 1| < Ce?,  |my| < Ce?, P3P < O30
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for a small constant 6 > 0.

In the DP case (see Theorem [5.8.1)) we have

j(4+ %)
14 52

where k; is defined in ([5.7.408])) (see also (5.7.407))),

Im — 1| < Ce?, 5257 < cet=

d;°=m —i—ezmj—l—rfo, jese

for a small constant ¢’ > 0.

For the KdV case, let us denote by ®, and ® the two maps of the phase space such that épﬁwqfl
is diagonal. These transformations have the form ®, := ¥;pW¥y, & := U1 ¥y, where p denotes the
multiplication by a function p(¢) (see the proof of Theorem . Then the forcing term in

is

Flwt) = \111,0‘112<JK11(wt)77(0)).
In the DP case, let us call ® the map which conjugates £, to a diagonal operator (see Theorem
5.8.5). Then the forcing term in (3.1.6) is

Flwt) == (I)(JKH(wt)n(O)).

The solutions of the non-homogeneous scalar equation

hj = —id° hy + fj(wt), je€S°
are

C oi(w)t
—id®t | ~ ~ Z € . c
hj(t) = Cje dJ t+’Uj(t), Uj = i(fj@ ] c S .

. o)’
S iw E—i—dj)

Note that the first order Melnikov conditions (4.6.138)) and (5.8.55)) hold at a solution, so that v;
is well defined. Since the changes of coordinates applied for the diagonalization are bounded on

H*(Ty), for s > sq, then || f(wt)||gs(r,) < C(s)[n(0)] for all £. As a consequence, the Sobolev norm
of the solutions of (3.1.6) with initial condition h(0) € H"(T;), for some r € (sp,s) (in a suitable
range of values), does not increase in time. In particular they satisfy

Ih@®) ]z < C(s)(In(O)] + [Ih(O0) | 7). ¥t € R.

Thus the linear stability of the solution i, is proved.

3.2 The generalized KAV case

The main difference of the result presented in Section with respect to the papers [§] , [9] is
that we consider in ((1.0.1)) also quasi-linear quadratic and cubic terms in the nonlinear part of the
equation. Now we explain the main consequences of this fact.

Twist condition. The presence of the quasi-linear monomials of degree three and four in the Hamil-
tonian (1.1.1)) makes significantly harder the computations of the new Hamiltonian after two steps
of Birkhoff normal form with respect to the case examined in [8] and [9] for the Hamiltonians

1 1 1 1
Hygqav(u) = Q/TUidm—l—ﬁ/Tu?’dx, Hpkay(u) = 2/Tu§d:v:t4/1ru4dx.
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Because of the integrability of the KdV system, in [§] and [9] the twist condition, namely, the
invertibility of the frequency-amplitude map, is obtained for every choice of the tangential set S (see
(1.1.5)). On the contrary, for the general case the twist condition depends on the choice of
the coefficients ¢y, ..., c; and the tangential sites 7;,...,7,.

In Lemma [4.2.2] we provide the invertibility of the frequency-amplitude map for a large choice of the
tangential sites and of the coefficients.

Accurate bounds on the small divisors. The diagonalization of the linearized operator in the normal
directions L, (see (4.5.33])) is obtained by conjugation with the same transformations defined in [§].
The main perturbative effect to the spectrum of £, is due to the term a;(wt)0zzy (see (4.5.33))) and
the presence of wu, in the cubic part of the Hamiltonian density affects this coefficient. In
particular, a; — 1 = O(e), instead of O(¢?) as in [§]. In general, the corrections of the coefficients

of L, are bigger in size and this fact implies some difficulties in providing the smallness condition
(4.6.132) required in Theorem [4.6.19} In particular, in Sections [4.6.3| and [4.6.4] the definition of
the transformations (a quasi-periodically reparametrization of time) and (a quasi-
periodically time dependent translation of the space variable) involve some small divisors, see ([4.6.57))
and . In order to prove that these changes of variables are close to the identity, one has to
carefully estimate the inverse of the operator D!, see Remark .

Non-perturbative terms. The normal frequencies are corrected by terms which do not satisfy the
smallness condition required by Theorem terms of size € and 2. In order to normalize such
terms one has to know their explicit expression. Indeed the e2-corrections are crucial for the measure
estimate of the Cantor set C. (see Theorem [4.3.2).

Due to the quadraticity of the nonlinearities the e2-corrections change along the weak Birkhoff normal
form and the regularization procedure. Thus we need to keep track of these terms after any change
of coordinates. In the DP case the computations are harder and so we adopt a different strategy (see
Proposition , which explain in the next section.

Measure estimates. The correction at the linear frequencies given by has the same size of the
correction at the normal frequencies 53, j € S¢, see . This fact brings to consider degenerate
cases which do not appear in the study of the second Melnikov conditions for the equations considered
in [§] and [9]. As a consequence, for the measure estimates we need to require conditions like
and , which are generic under suitable choices of the coefficients cq,...,c7.

3.3 The Degasperis-Procesi case

We discuss the main issues of Chapter

Integrability and normal form. In [48] the authors prove the integrability of the Degasperis-
Procesi equation by explicitly constructing its Laix pair. Moreover they provide a method for com-
puting infinte conserved quantities for this system through the expansion of a spectral parameter.
We are intersted in exploiting the integrable structure of this equation in order to overcome some
small divisors problems.

For instance, at the IV-th step of the weak Birkhoff normal form we deal with small denominators of
the form w-¢ (recall (L.2.9)) for ¢ € Z" such that [¢| < N +2. By the fact that the linear frequencies
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of oscillations are rational numbers (see ), these denominators are rational functions of the
tangental sites . In particular, for N = 2, the functions @ - ¢ with |¢/| = 4 have the usual
trivial resonances, i.e. 4-ples of the form (i, —i,j, —j) (and its permutations), and other non trivial
4-ples coming from the zeros of a polynomial P (see ) Thus the normalized terms of the
Hamiltonian at the second step of the weak Birkhoff normal form are determined by these 4-ples of
integers and might not be integrable. In principle one might hope that P has no integer zeros, but
we found a integer 4-ple of solutions with the assistance of Wolphram Mathematica.

Thanks to the constants of motion we are able to prove that the coefficients of the Hamilto-
nian (after the first step of weak Birkhoff normal form) corresponding to the zeros of P are naught.
In other words, there are only trivial resonances at order four.

The proof of this fact is based on the following aspects (verified along Section see also Lemma
C.0.1)):

e all the Hamiltonians commuting with H are put in the same normal form simultaneously,
namely by the same transformation,

e the normalized Hamiltonians commute with the quadratic part of any other commuting Hamil-
tonians.

In Proposition we prove that for n < 6 there are no n-resonances (see Definition unless
the trivial ones. This fact will be fundamental also for the second step of the linear Birkhoff procedure
of Section [5.7.5] (see Proposition [5.7.34).

We underline that the presence of non trivial (or generic) resonaces is a phenomenon which occurs
also in the water waves equations (see [47], [40]). In this case no integrable structures are known and
resonances at order four and five appear.

We remark that we are able to perform four steps of weak Birkhoff normal form without requiring
any assumption on the tangential set S. However, we need to require generic conditions for the
invertibility of the twist map. This is an interesting point, indeed in the absence of the perturbation
f one should expect to be able to prove existence of quasi-periodic solutions of the Degasperis-Procesi
equation for any choice of the tangential sites.

Analysis of the linearized operator in the normal directions. We describe the strategy of
the reducibility for the linearized operator in the normal directions performed in Sections and

B8l

Reduction at the highest order. At any step of the Nash-Moser iteration the linearized operator in
the normal directions has the form (recall that J in (|1.2.5]) is an operator of order 1)

L, =TI% <Dw — Jo(1+aolg,x)) + R) (3.3.1)

where ag(p, ) = O(e) (see , (5.7.8)) and R is a finite rank operator (see Proposition [5.6.5).

The aim of Section is to make constant the coefficient ag(p,x). To do that, we conjugate
L., by the flow at time one ® := <I>|TT:1 of a quasi-periodically parameter dependent Hamiltonian
S = (1/2) 3 b(p) 22 dz, where b := /(1 + 7f3;) for some function S(p,z) to be determined (see
ENALE))

Actually this transformation is used also in the KdV case (see Lemma [4.6.3) in order to make
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constant the leading term of the linearized operator, but here we have different issues. First, the
symplectic structure is more complicated than . Secondly, due to the asimptotically
linear dispersion the time and space derivatives interact and the equation for determining g is not
trivial, as we see in a moment.

In Proposition we prove that

OLLO =1L ( —Jo(1+as(p )+ Q) (3.3.2)
where Q is a smoothing remainder and the new coefficient is (see ([5.7.185)))

L+ a4 (p,2) = —(DuB) (@ + B, ) + (1 + ao(o, @ + B0, 2))) (1 + Bu(p, 2 + B, ), (33.3)

where § := (7, ¢, x) is such that = — z+75(p, x) is the inverse of the diffeomorphism of the torus
z— z+ BT, ).

Then our goal is to find B, or equivalently 3, such that the right hand side of is constant.
This problem is tantamount to find a diffeomorphism of the torus (¢, x) — (¢, z + (¢, x)) which
“straightens" the following vector field on the torus T**!

This is the content of Proposition [5.7.22] This result is proved via a quadratic KAM iteration
which requires the fullfillment of a smallness condition (see (5 ) This condition is not satisfied
by the initial coefficient ag (see (5.7.7), (5.7.8)), since O(e)y~! is big (recall (5.4.6)). Hence, in
Section we perform some preliminary steps in order to reduce the size of the coefficient ag
by using transformations like ®. The equations for the new coefficients are solved thanks to the
generic assumption (H1) in (1.2.14)). The transformed vector field by the diffeomorphism of the torus
obtained by the KAM scheme of the Proposition [5.7.22|is constant coefficient on a restricted domain
of parameters O3] (see (5.7.226))), since we need to impose first order Melnikov conditions to solve
the (transport) homological equations at each step of this iteration.

Class of remainders. After the regularization procedure of Section the linearized operator has a
form like

L. :H§(Dw—mJ—s2©+R),

where m is a real constant, ® is a diagonal operator 1-smoothing in space and R is a bounded
remainder (smoothing in space) (see Theorem . In Section we perform a KAM reducibility
scheme (as in [27], [6]) which completely diagonalizes £ . This scheme works for remainders R which
are —1-modulo-tame operators (see Definition and fullfill the smallness condition ([5.8.16|).
In order to obtain such a remainder after the regularization procedure, we define two classes of
operators £, (see Definition and Cip (see Definition , depending on two parameters p
and b which are fixed respectively in ) and m, and we require that the remainders of
the conjugations applied in Sections [5.7] - and - belong to these sets.

The class £, is a set of operators p-smoothing in space, closed for the operations involved in the
reduction at the highest order of the linearized operator, as for instance the composition and the
conjugation by A" (see ) All the properties of these operators are stated and proved in
Section B.7.11
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After the linear Birkhoff normal form, see Section the transformed elements of this class belong
to €11 for opportune values of the parameters p and b, see Lemma This set is constructed
to be closed under the changes of coordinates defined by the Birkhoff maps (5.7.349), (5.7.374),
. Moreover its elements have modulo-tame constant finite (see Lemma .

Flow of pseudo hyperbolic PDEs and Egorov analysis. The transformation @ in is the flow at
time one of an hyperbolic PDE whose non autonomous ¢-dependent vector field is J o b(p, ) (to
shorten the notation we omit the projection HJS-) In Section we investigate the structure of
such flow, in particular in Proposition We prove that ®7 is the composition of the flow A" (see
for the definition and Appendix for the proof of some properties and estimates), which
has been studied in [8], with an operator which is the sum of a pseudo differential operator of order
—1 and an element of the class £, (see Definition (5.7.4)). This allows us to get tame estimates for
® and to study the structure of an operator of the form conjugated by ®, see Proposition
B.721

When it is possible we exploit the explicit expression of the flow A" to write the conjugated
operators by ®. In the other cases, we use the result given in Theorem which is a quantitative
version of an Egorov-type theorem. This asserts that a conjugated pseudo differential operator with
symbol w € S™ (see Section by A" is the sum of a pseudo differential operator, whose weighted
norm (see (2.2.10)), (2.2.11)) is controlled by the weighted norm of w and the Lipschitz norm (see
(2:1.9)) of the function 3 in (5.7.59), and an element of the class £,.

Linear Birkhoff normal form. To implement the diagonalization procedure of Section [5.§ we impose
second order Melnikov conditions with a diophantine constant 7* (see Theorem smaller
than + (see (5.4.6)). As a consequence the remainder R (see Theorem which comes out from
the regularization procedure has to be very small in size. This is a bifurcation issue and we solve this
problem by implementing three steps of linear Birkhoff normal form, which eliminate (or normalize)
terms of order ¢, €2 and €3.

For the second step we point out the result proved in Proposition It asserts that the £2-
corrections at the normal frequencies are the same which one would obtain by performing a partial
Birkhoff normal form, namely by normalizing also the terms O(z?) in the Hamiltonian. This allows
to easily compute these resonant terms also in a case which present complicated expressions of the
eigenvalues (see for instance the expression of the £?-correction ix; defined in and )
For the third step we have to require some diophantine conditions (see and ) in order
to define the transformation Y3 in ([5.7.420)), (5.7.423). Actually this small divisor problem arises by
the fact that the linear frequencies of oscillations satisfies .

Measure estimates. In Section we prove the bounds . As we said above, the presence
of quasi-linear terms which has the same size of the corrections at the linear frequencies might present
degenerate cases in the study of the second Melnikov conditions. In the KdV case the set of
indices ¢, j, k for which there are identically zero relations between the eigenvalues and the elements
of the lattice w- £, ¢ € Z¥ is finite, thanks to the strong dispersion relation, in particular by the fact
that there are only a finite number of j,k € Z\ {0} such that |w(j) —w(k)| = |3 — k?| < C. In the
DP case this clearly is not true.

By the fact that the linear frequencies of oscillations are rational we have to control the asymptotic
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behaviour (min;|7;| — oo) of some functions of the tangential sites 7;,...,7,, as for instance the
determinant of the twist matrix (see (1.2.17))), which could enter at some denominator and assume
very small values.

This task might be not easy due to the presence of several variables 7;,...,7,. Hence, we restrict
the choice of the tangential sites, out of a (possibly large) ball (see (1.2.11))), to a cone (see (1.2.12)),
where the functions above behave like functions of one variable only.






CHAPTER 4

QUASI-PERIODIC SOLUTIONS FOR QUASI-LINEAR
GENERALIZED KDV EQUATIONS

In this Chapter we prove Theorem In Section we perform three steps of weak Birkhoff
normal form in order to extract parameters, which modulate the frequency-amplitude relation ,
and to provide a good starting point for the Nash-Moser iteration.

In Sections and we introduce action-angle variables and we reformulate the problem of
finding quasi-periodic solutions as the search for the zeros of the nonlinear functional F defined in
. Adopting this new point of view, we devote the rest of the Chapter to the proof of Theorem
[4:32] which implies Theorem [T.1.3]

In Section [£.4) we describe the construction of the approximate inverse for the linearized operator
following the abstract procedure developed in [21]. Thus the main issue is the approximate
inversion of the linearized equations restricted at the normal directions, or equivalently the approxi-
mate inversion of the operator £, in (4.5.33)), which acts on the normal variables space H §-

In Section we prove that £, has the form . In Section we semi-conjugate L, to a
a diagonal operator Lo, (see Theorem and we provide tame estimates for the inverse of L,
(see Section [4.6.8).

In Section we implement the Nash-Moser scheme of Theorem to the functional F (re-
call ) In Section we prove the measure estimates . This concludes the proof of
Theorem [1.1.3]

4.1 Weak Birkhoff Normal form

The Hamiltonian (L1.1) is H = H® + H®) + H® + HE5) | where

1
H® () := 3 / u?de, HO(u):= / crud + cou v+ czud de,
T T (4.1.1)
HW(y) := /EC4 ub +esudut cgudu® +crutde, HE(u) = /Tf>5(x, u, Uy ) dz.
For a finite dimensional space
E:=Ec:=span{e’*:0< [j|<C}, C>0, (4.1.2)

o1



52 4.1. WEAK BIRKHOFF NORMAL FORM

let I denote the corresponding L2-projector on F.
The notation R(Uk_qzq) indicates a homogeneous polynomial of degree k in (v, z) of the form

R(W* %29 = M[ v,...,v ,z,...,2], M =k — linear.
——
(k—q) times q times
We denote with H ™=k (k) [(n.<k) the terms of type R(v™ ™% z°), where, respectively, s > k,s =

k,s < k, that appear in the homogeneous polynomial H () of degree n in the variables (v, z).
In particular, we have

HG=D :/{cl(v2+3v§ ) + (Vi v + 20,0 2 + V) 2) + c3(v® + 307 2) } d, (4.1.3)
T

H®=? _/{cl(zi+3z§,vx)+Cz(z33z+23v+2zxzvx)+C3(z3+3v2 2)}da, (4.14)
T

H®0 — /{040;1—1—05 vgv—l—cG v§v2+07v4}dx. (4.1.5)
T

Proposition 4.1.1. (Weak Birkhoff Normal form) Assume Hypotesis (S) (see (1.1.7)). Then
there exists an analytic invertible transformation of the phase space ®p: H}(T,) — H(T,) of the
form

Pp(u) =u+Y(u), Y(u):=Ug¥(lgu), (4.1.6)

where E is a finite dimensional space as in (4.1.2)), such that the transformed Hamiltonian is
H=Ho®p=H? +H® +HW 4 50O 4 (=6 (4.1.7)
where H®) s defined in (£.1.1)),

HE) —cl/(zi+3z§vx)dar+02/(z§z+z§v+2vmzzz)dx+63/(23—|—3vz2)da;,
VA Z

T
HW = Hfg + Hyo + HED L HED HE2 = R(v222), Mz = R(v2D), (4.1.8)
5
HED = / izt tesateg2t o tde, HO) = Z R(v571 29),
T
q=2
Hf’o) is defined in [(£.1.25) and HZ9) collects all the terms of order at least siz in (v, z).

The rest of this section is devoted to the proof of the Proposition [A.1.1]
We construct a symplectic map ®p as the composition of analytic and invertible transformations on
the phase space that eliminates the terms linear in z and independent of it from the Hamiltonian
. In this way, the Hamiltonian system tranforms into one that is integrable and non-

isocronous on the subspace {z = 0}.

Remark 4.1.2. We note that if ji,...,j5 € Z\ {0},71 + -+ + jny = 0 and at most one of these
integers does not belong to S, then max;—i . n|ji| < (N —1)Cg, where Cg := maxjecg|j|. Thus,
the vector field X (v), generated by the finitely supported Hamiltonian

N N
V) — Z Fj(l---)jNujl co U
Jit++in=0
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is finite rank, and, in particular, it vanishes outside the finite dimensional subspace E := E(y_1)cy
(see (4.1.2) ) and it has the form

Xpov (u) = pXpew (Hpu).
Hence its flow ®V) is analytic and invertible on the phase space H{(T,).

Step one. First we remove the cubic terms independent of z and linear in z from the Hamiltonian
H®) defined in (1.1) . We look for a symplectic transformation ®3 of the phase space which
eliminates the monomials u;, uj, uj, of H () with at most one index outside S.

We look for @3 := (@;(3))“:1
X ), with an auxiliary Hamiltonian of the form

3 o (3) i U
FO(u) := E B g Win Wiz Wi
J1+j2+73=0

as the time-1 flow map generated by the Hamiltonian vector field

The transformed Hamiltonian is
H3 = H (@] <I>3 = H(2) -+ Hég) + H§4) + H§25),

(3) 3 2) (3 4 _ 1 2) (3 3 3) (3 4 (4.1.9)
Hy — gt )—i—{H( ), F( )}7 Hy = 5{{[{( ) F( )},F( )}—l—{H( ) F( )}—l—H( ),

where H. §Z5) collects all the terms of order at least five in (v, z). In order to find the exact expression
of F®) | we have to solve the homological equation

H® 4 {g® e = g3.22) (4.1.10)

or, equivalently, {H(z),F(?’)} = -l (H(2>)H(3’§1)’ see (4.1.3)). In the Fourier representation, by

(1.1.4) and (4.1.1)), the equation 4.1.1 writes

Z i (53 +75+73) Fj(l}w»3 Wjy Uiy Ujy = Z (—ic1 jrjejs —c2 jija+c3) ujuj,uj, (4.1.11)
ji+j2+j3=0 (41,42,43)EA3
where

Az = {(j1, j2,j3) € Z*\ {0} : j1 + jo + j3 = 0 and at least 2 indices among
J1,J2,j3 belong to S}.

We note that if (j1,j2,73) € As then ji + j3 + 73 # 0, because
. . . .3 .3 3 o
itjet+is=0 = J7+j5+j3=3j1j2Js (4.1.12)

and j17j27j3 € Z\ {0}
Hence, to solve the equation (4.1.10)) we choose

—ic1J1J2J3 — €2 J1J2 +¢3 if (1, o, js) € As
O (53 + 73 + 73) e ’ (4.1.13)
0 otherwise.
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By construction, all the monomials of H®) with at least two indices outside S are not modified by

the transformation ®3. Hence we have

Hég) :cl/(zg—i—?)zgvx)dx—}—cQ/
7

(224 220420, 2, 2) dm+03/(z3—|—v22)dm. (4.1.14)
Z

T

Now we compute the fourth order term H in - We have, by m
HY = %{{H(Q),F(3)},F(3)}+{H(3),F(3)}+H(4) = %{H@Sl),F<3>}+{H§3),F<3>}+H<4> (4.1.15)

and by (L111) and (L1.13)
FO () = — Cl/v dac—cl/vgzdac—CQ/(ﬁgc_lv)vzdx—CQ/vz(aglz)dx—
3 Jr T 3 Jr 3 Jr

(4.1.16)
_2a v (0, ) zda — s /(axlv)?’ dr —c3 /(8;;01”)2 (0;12) da
3 Jr 3 Jr T
Thus
0 VFD () = = 10,(v?) = 210, [0 2] + Smov?] = S 0,a[(0;0)%) -
2 2
- ﬁa L Is[(05 10)z + (95 L 2)0] + %Hg[v 2] + esmol(9; 1))+ (4.1.17)
+2¢315[(0; 1) (9, 12)]
where 7y denotes the projection on the space of functions with zero space average, namely
1
molu] = u(z) — — / u(x) dx.
27 T
By , we get
VHGED (1) = = 3¢10,(v2) — 6 10:11g[vz 2] — 2020 (v?) — 2 20,2115V 2]+ (4.1.18)
+ como[v2] + 2 callg[vs 2] + 3 camo[v?] + 6 c31T5[v 2]. o
Hence, by (1.1.4), (4.1.17), (4.1.18]), we have
Lor3,<1) =(3) 3 C% 2 €12 2 2
§{H N e 8;5(1)93)8 (v )dm—T v 0z (vy) dx
T
L0 / 0.(:2)0,.0; o) o = 25 [ 0,02 (07
T
+6 (0z(v da:—i—/(?m (0, 1v)?] dx
2
—0203/89533 L) dx _ae vi@w(v2)dx+02/viﬁo[v2]dx
2 Jr 6 Jr
e / 02 By |85 10)?] dar + 2 / o2 mol(07 )2 + 28 / (mo[v?))? da
6 Jr 2 Jr 2 Jr
303

5 /Tv mo[(05 'v)?] dx + R(v3 2) + R(v? 22).

(4.1.19)
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By @14), we get

VHég) (u) =—3¢ 895(2926) —6cy &Cﬂé‘ [Vg 22] — czﬁm(zz) + como [zi] -2 028mHJS‘ [vz]+

(4.1.20)
+ 2 col1 [vg 22 + 3 esmo[2%] + 2 e3lTE v 2].

Thus by (T.1.4), (@.1.17), (#.1.20), we have

(HY PO = 3c%/8z(25)8m(v2)d:v —c 02/v2 On(2;) da+

T T

+c1e2 / 00 (22) O2a[(05 '0)? dx — 3¢y c3 /(851“)2 Ou(2;) d+
T T

2

+erc /(3;11))2 0.(:2) dw — 2 / V2 Oy (2°) drt-

T 3 Jr
2
+ % / axx(z2) azx[(ag;lv)ﬂ dr —coc3 /(8;12})289%(22) dr—
T T

2

- 02/29268$(U2>dx+02/z§7r0[02] do— (4.1.21)

T 3 Jr
2

— 2 [ 220,05 0) dz — e / 2 m0[(9;, 'v)?] da—
3 T T

-3 03/z28m(v2)d:1:+0203/v27r0[22] dx—
T T

~eres / 20, [(0- )2 do + 32 / (0 0)2 o[22 dart
T T
+ R(v®2) + R(v 2%).

Step two. We now construct a symplectic map ®4 to eliminate the term H§4’1) (which is linear in

z) and to normalize H?EA"O) (which is independent of z). We need the following elementary lemma.

Lemma 4.1.3. (Lemma 13.4 in [70]) Let j1,jo, j3,ja € Z such that j1 + jo + js + ja = 0. Then
.3 .3 .3 3 . . . . . .
i +Js + 35 + 35 = =30 + J2) U + Js) (G2 + Js)-

We look for a map @4 := (@%(4)) which is the time-1 flow map of an auxiliary Hamiltonian

le=1

B () = (4) L Al L
F (u) T Fj1j2j3j4 u]lu]2u]3u]47
J1+j2+j3+7a=0,
at least 3 indices belong to S

which has the same form of the Hamiltonian H§4’0) + H. §4’1). The transformed Hamiltonian is
Hy:=Hso®,=H® + HY + Y + Y, H" = (H® FO} 4+ 5Y (4.1.22)

and H, 4(25) collects all the terms of order at least five in (v, z). We write

4 4
Ji+je+is+ja=0
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This makes sense since H®<1 Hés) and F®) preserve the momentum, hence also H§4) does it. We
choose the coefficients

q o

,J1J2]374 . . . . .

@ ) om s s if (41,72, 73, Ja) € As,

B hagaga = \ 107 + 73 + 53 + 51 (4.1.24)
0 otherwise,

where

As = {(j1, 42, 43 Ja) € Z\A{O} <1+ jo + s+ ja = 0,47 +j3 +j3 +ji # 0,
and at most one among j1, j2, j3, j4 outside S}.

4,1
- 0, because there no

By this definition, the symmetry of S and the Lemma we have H AE
exist ji,7j2,73 € S and jy € S¢ such that ji +j2+js+ja =0, §3 473+ 43+ 73 = 0. By construction,
the terms Hf’l) = H§4’1),i = 2,3,4 are not changed by ®4.

4,0)

It remains to compute the resonant part of H?E , i.e. the terms of H§4) of type R(v*) supported

on the modes (j1,j2,73,j4) that do not belong to Ay4.
If we call

B = {(j1,j2,73,51) € S* : j1+jo+js+ja =075 +55+53+j3=0, j1+j2#0}

then by (4.1.5), (4.1.19) we have

2 2
4,0 3c 9. . c .
Hi = —71 Z(]l +]2)213.74 Ujy Ujo UjgUjy + EZ 2(33 + ‘74)2 Usjy Uy Uy Uy
B B
C% . C% . SN2 - o 1
6 23334 U Uja s Uja — Z(Jl + j2)* (j3 + Ja)* — wj ujujus,
B B J1j2
2 . L N2 . -
) (J1 + j2)” Jsja 3,
+ = T Uj; Uy U Uj, + =C Ui Ui Ui U
6 ; j1Jj2 Iz T 9 =3 — ij1 1o g1 Wja Uiz Uy
€23 23 (J1 + ja)?
+ 2 Zujluj2uj3uj4 Ty Z I Uiy Ujo Ujg Uy (4.1.25)
B B

cac3 Z (js + ja)? C2C3 Z J3Jja
2 = jl j2 J1 %2 %13 %4 2 = ]132 J1 %32 %33 %4

to Y fjadsiaugupugu, —cg Y J1.J2 Ujy U U Uy
BU{j1+j2=0} Bu{j1+j2=0}

+er E : Ujy Ujo Ujz Uy -
Bu{ji1+j2=0}

By Lemma if j1+ jo + j3 + ja = 0,75 4+ 33 + 43 + j3 = 0 then (j1 + j2)(j1 + j3) (J2 + j3) = 0.
We develop all the sums in (4.1.25) with respect to the first index j;. The possible cases are:

(1) {J2 # —J1,J3 = —Jj1,Ja = —Jj2} (i1) {j2 # —J1,J3 # —J1,J3 = —J2,ja = —J1}

(ii7) {j1 + j2 = O}.
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If I:=(L,,....5,) € R} with I, := |uj|?,j € S, we get

7 2
MO =128 Y A2 -2ud Y 2L - % S

jEST j.j'est, jest
i’
86% .2 -2 2 1 2 2
-5 Y P+ -3 ) j?[j ~2ee3 ) I
jd'est, jest jest
i’
.4 72 -2 12 .
—8cacs Y Lily+6cy » JI+12es Y 5Ly (4.1.26)
4,4'€ST, jeSt J,J' €S,
75 i#y’
+20 Y 426 Y (P47 L
jes+ 5.4'est,
i’
+6cr Y I 4+12e0 > LI,
JeST 53'€est,
i#i’

The Hamiltonian system H® + H§3) + f), obtained by truncation at order 4 of the transformed
Hamiltonian H o ®3 o &4, possesses the invariant submanifold {z = 0}, and, restricted to this
subspace, it is integrable. Indeed, if we introduce on Hg the action-angle variables u — (6,1) by
defining

Uj 1= V5 = \/Tjeiej, Ij = I_j, 9_]' = —Gj jes, (4.1.27)

the restriction of the Hamiltonian H® + Hég) + Hf) to {z = 0}, namely 3 [v2dz+ Hﬁ)) , depends
only on the actions I3 ,...,I; . We will prove later that, for a generic choice of the tangential sites,
this system is also non-isochronous (actually it is formed by v decoupled oscillators).

Due to the presence of a quadratic nonlinearity in the equation , we have to eliminate further
monomials of H® in (4.1.22) in order to enter in a perturbative regime. Indeed, the minimal
requirement for the convergence of the nonlinear Nash-Moser iteration is to eliminate the monomials
R(v°) and R(v*z). Here we need the choice of the sites of Hypotesis (S).

Step three. The homogeneous component of degree five of Hy has the form

(5) _ (5) ol Al Al A
Hy7(u) = E Hy'S s W U Uiy Uy W
Jibtjs=0

indeed, the Hamiltonian H f’) preserves the momentum, because f5(u,u,) does not depend on = (see
(1.0.4)). We want to remove from H f’) the terms with at most one index among ji,...,j5 outside
S. We consider the auxiliary Hamiltonian

H®
(5) — (5) . . (5) o Agends
FO) = > Yo, FY = ) (4.1.28)
J1t+5=0, ! >
at most one index outside S

Hypotesis (S) implies that
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(So) there is no choice of 5 integers ji,...,j5 € S such that

i+ +45=0, 4+ +j2=0, (4.1.29)

(S1) there is no choice of 4 integers ji,...,j4 € S and js € S¢ such that (4.1.29)) holds.
Hence FO®) in {@.1.28) is well defined. Let ®5 be the time-1 flow generated by Xpe). The new

Hamiltonian is
Hs = Hyo®; = HO + HY + B + B + HEY, HY = (H® FO} 4+ B (4.1.30)

where H, 5(26) collects all the terms of degree greater or equal than six, and, by the definition of FO)
5
a2 =3 RS9 (4.1.31)
q=2

Setting ®p := ®30 P40 P5 and renaming H := HO) = Hodpg, H™ = HT(Ln), by Remark (4.1.2)), we
conclude the proof of Proposition [£.1.1]

4.2 Action-angle variables

Consider the change of variable v — (6,I) in (4.1.27), where the actions I are defined in the
positive half space {v € RY : v; > 0,Vi = 1,...,v} and 6 € TY. The symplectic form in ([1.1.3])
restricted to the subspace Hg transforms into the 2-form

~ 1
Qg =Y do; A= dI;. (4.2.1)
jeST J

Hence the Hamiltonian system H(<%) := H(2) ¢ H§3) + Hi4) + Hé5) restricted to {z = 0} writes

: 0

0= 3pHEV0,1,0),  jest,
aj (4.2.2)
Ii = ——HE=5(0, T e St
J aej?{ (67 70)7 J € S
We have that
(1) = HE0,1,0) = > 521+ HMO (1) (4.2.3)
jest
depends only by the actions I, and, if we call w;([) :=j 81jl~1(I), we have
éj:wj(l)v j€S+,
(4.2.4)

I; =0, jest.
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By (4.1.26)

14
(L =3 —24¢2 5 I —480 3 k2Ik—02 3[ ——c 33 Iy,
1 2

keS+ k:;éj keS+ k#j
——02] Z kQIk—603 —2czc3j1; —8cacz g Z Ik+1204j51j
keS+ k#j k€St k#j (4.2.5)
+24esf® Y R Iy Aot I+ degi® Y Ivtdesj Y K
keSt k#j keSt k#j keSt k#j
+12c7 51+ 24crj Y I
keSt k#j

Hence, in a small neighbourhood of the origin of the phase space H}(T,), the submanifold {z = 0}
is foliated by invariant tori of amplitude £ and frequency vector w(§) := (w;j(§))jes+ as in (4.2.5)).
We shall select from this set of tori the approximately invariant quasi-periodic solutions to be con-
tinued and we will use their unperturbed actions £ as parameters. Moreover, we shall require that
the frequencies of these tori vary in a one-to-one way with the actions &. Thanks to this fact, we
could control the conditions that we shall impose on the frequencies w through the amplitudes, and
viceversa.

If we call T the vector in R? with all components equal to 1 and

Dg = diag;_; {7}, vp == DET, U:=171, (4.2.6)

where the notaion 17 denotes the row vector with all components equal to 1, then we can write, in
a compact form, the vector with components w;(I), with j € ST, in (4.2.5), as

w(l)=w+Ag, (4.2.7)

where @ is the vector of the linear frequencies (see (1.1.6))) and

14
A= (24¢] — 12¢4)D{1 — 2D*UDZ} + (gc2 4eg) D3

16 (4.2.8)
+ (4cg — ?cg){DgU + DsUD?%} +12(cac3 — ¢7)Dg + (24¢7 — 16¢9¢3) DgU — 6c2D gt

The function of ¢ in is the frequency-amplitude map, which describes, at the main order, how
the tangential frequencies are shifted by the amplitudes €.

In order to work in a neighbourhood of the unperturbed torus {I = D;&} it is advantageous to
introduce a set of coordinates (0,y,2) € TV x R¥ x H § adapted to it, defined by

uj = /L% et Li=jl(g +y),  JES,

Uj 1= Zj, jese,

(4.2.9)

where (recall @; = u_j)

f_j = fj, fj > 0, Y—j = Yj, 9_j = —9j, 9j e, yj € R, Vjes. (4.2.10)
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For the tangential sites S* := {7;,...,7,} we will also denote

05, =0i, Y3, =vi, &, =&, wj=w;, i=1,...,1

The symplectic 2-form Q in (1.1.3])) becomes

v 1 1 v
W= Zd&' N dy; + 3 Z 7 dzj Ndz_j = <Z do; N dyi> ® Qg1 = dA, (4.2.11)
=1 jeS® i=1

where Qg1 denotes the restriction of  to Hg and A is the Liouville 1-form on T” x R x Hg
defined by Ay, .): R” x R” x Hy — R,

X s o1
0,1, == —y -0+ 5(8;12, 2)r2(1)- (4.2.12)

Working in a neighbourhood of the origin of the phase space, it is convenient to rescale the unper-

Ayl
turbed actions £ and the variables 0, y, z as

E e, ym ey, 2oz (4.2.13)

The symplectic form in ([#.2.11]) transforms into €2*W. Hence the Hamiltonian system generated by
H in (4.1.7) transforms into the new Hamiltonian system

é = ayH€(9> y7 2)7
§=—0gH.(0,y,2), H.:=ec2Ho A, (4.2.14)
2= 0,V.H.(0,y,z2),

where
Ac(0.y,2) = ve(By) + ez, ve(,y) = 3 VIIT& + 20Dy, i, (4.2.15)
JjES
We still denote by
XHE = (8yHa; _69H57 8xvzH€)

the Hamiltonian vector field in the variables (0,y,z) € TV x R x H §- We now write explicitly the
Hamiltonian defined in (#.2.14). The quadratic Hamiltonian H® in (#.1.1)) becomes

1
e ?H® o Ac = const + Y jPy; + 3 / 22 dr, (4.2.16)
jest T

and by (4.1.1), (4.1.21]) and (4.1.25) we have (writing v, := v:(0,y))
1
Ho(0.9.2) = () +al6) y+ 5 [

zg dr +¢ / (3 clzg (Ve)z +3 022:% Ve + 2 2(Ve)p222) dx
T T

2b
£

+€b/ (c123 + co22 2+ cy2° dx) dw+2My-y+e2b/(C4z§+C5zgz

T T

+ o2 2%+ er ) do 4+ 2 R((0:(0,)%) + € R (0,9) ) (12.17)
5
+ER(0:(0,9))°2%) + €0 S O IOD R0 (6,))7021)
q=3

+ 72U (e (0, y) + e%2)
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where the function e(§) is a constant and
alf) =w+e2ME,  M:=ADg (4.2.18)

is the frequency amplitude-map after the change of coordinates in and the rescaling in .
Usually M is called the twist matriz and we note that is symmetric.

We write the Hamiltonian in , eliminating the constant e(§) which is irrelevant for the
dynamics, as

1
HE:N+P7 N(Q,y,z):a(§)-y+§(N(9)Z,Z)L2(T)a

1 1 1
i(N(H)Z,Z)LQ(T) = 5((8ZVH5)(9,0,0)[2],z)LZ(T) = 2/Tz§ dz+ (4.2.19)
—I-E/clzi (UE)Z(Q,O)dx—i—e/cQ 220.(0,0) dz 4 2¢€ ¢y /zzx (v£)(0,0)dx + ...

T T T

where N describes the linear dynamics, and P := H. — N collects the nonlinear perturbative effects.

As we said before, we require that the map (4.2.18]) is a diffeomorphism. This function is affine,

thus its invertibility is equivalent to the nondegenerancy (or twist) condition

2 ~
det M := det(Dg) det < 0 h(I)) det(Dg) # 0. (4.2.20)
8Ij I g.ke{l,...,v}

Remark 4.2.1. The inequality (4.2.20) is equivalent to the classical Kolmogorov condition that
requires the invertibility of the Hessian of the Hamiltonian A in (4.2.3]). The presence of the diagonal
matrix Dg in (4.2.20) is due to the symplectic form (1.1.3)) and the choice of the action-angle variables
[@2.9).

In the following lemma we prove that the condition (4.2.20)) is satisfied for non-resonant coefficients
and a generic choice of the tangential sites (see Definition |1.1.2)).

Lemma 4.2.2. If the coefficients c1,...,cy are non-resonant, for a generic choice of the tangential

sites Ji,...,7, (see Deﬁnition the condition (4.2.20)) is satisfied.
Proof. We write M = Dgl B Dg, with

14
B : = (24c? — 12¢4)DS{1 — 2D _5UD?%} + (=3 — 4c6) D}

3
16
+ (4es — 5 3){DSU + DIUDZ} — 6631 + 12(cacs — er) D (4.2.21)
+ (24¢7 — 16¢9¢3) DEU,
where I is the identity v x v matrix. The determinant of B is a polynomial in the variables (7;,...,7,)

and, if ¢g # 0, it is not trivial, namely it is not identically zero. Indeed, the monomial of minimal
degree of this polynomial originates from the matrix 66%1, that is invertible, and so it cannot be
naught.

Similarly, if ¢3 = 0 and 20% — ¢4 # 0 then the monomial of maximal degree, i.e. six, is not zero,
beacuse (24 ¢} —12¢4) DS{I —2Dg*>U D2} is invertible.
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If c3 =2¢?—cy =0 and c7 # 0 then the monomial of minimal degree, i.e. two, is 12 ¢z D?g (2U -1),

that is invertible, indeed
2

—-—U
2v+1 "’
where 2v 4+ 1 # 0, because v € N. If ¢3 =2¢? — ¢4 = c7 = 0 then

QU-1)"t=1

14 16
B = D3 {(ch — 4eg)] + (4eg — Ecg){U + D_zUqu}}

The matrix U + D§2UD§ has rank 2 and its image is spanned by the vectors I:= (1,...,1) and
v_g The eigenvalues of this matrix, different from zero, are

A i=v A+ (Zﬁ) (Zgﬁ), Ay i=v— (Zﬁ) (Z;ﬁ). (4.2.22)
=1 =1 =1 i=1

Then, if 7c¢3 —6c # 0 and o := (8¢5 — 6¢5)/(7c3 — 6¢), we require that

{1 —ah#0, (4.2.23)

1—04)\2%0.

The conditions (4.2.23) are satisfied for every choice of the tangential sites if 4 c3 = 3 cg; otherwise,

it is satisfied by generic integer vectors (J;)%_; . O

4.3 The nonliner functional setting

We look for an embedded invariant torus
i: T =T xR x He, o i(p) = (0(9),y(v), 2(¢)) (4.3.1)

of the Hamiltonian vector field Xp_ filled by quasi-periodic solutions with diophantine frequency
w € RY, that we consider as independent parameters. We require that w belongs to the set

Q. = {a(6) : £ € [1,2]"}, (4.3.2)

where « is the function defined in (4.2.18) and, by Lemma[4.2.20} it is a diffeomorphism for a generic
choice of the tangential sites.

Remark 4.3.1. We could consider any compact subset of {v € R” : v; > 0,Vi = 1,...,v} instead
of the set [1,2]” in the definition (4.3.2)).

Since any w € €2 is e2-close to the integer vector @ := (73,...,75) € NV, we require that the

constant 7 in the diophantine inequality
lw- €| >~ )", VeeZ"\{0} (4.3.3)

satisfies
v =¢e**t"  for some a > 0. (4.3.4)
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Note that the definition of ~ in is slightly stronger than the minimal condition, namely
v < ce?, with ¢ > 0 small enough. In addition to ([4.3.3) we shall also require that w satisfies the
first and the second order Melnikov non-resonance conditions. We fix the amplitude ¢ as a function
of w and ¢, as

=M w -], (4.3.5)

so that a(§) = w (see (4.2.18])). Consequently, H. in becomes a (w,e)-parameter family of
Hamiltonians which possess an invariant torus at the origin with frequency vector close to w.

Now we look for an embedded invariant torus of the modified Hamiltonian vector field X H.o =
Xp. +(0,¢,0),¢ € R, which is generated by the Hamiltonian

HE,C(‘ga Y, Z) = Hs(ea Y, Z) +¢-0, (eR" (436)

We introduce ( in order to control the average in the y-component of the linearized equations
(see ) However, the vector ¢ has no dynamical consequences. Indeed it turns out that an
invariant torus for the Hamiltonian vector field X H.. 18 actually invariant for Xp_ itself.

Thus, we look for zeros of the nonlinear operator

F (i, €) := F(i,(,w, ) := Duilp) = Xn(i(e)) — Xp(i()) + (0,¢,0) (4.3.7)
w0(p) — Oy H:(i()) D.O(p) — 9, P(i(¢))
= (¢)+30H((90))+C = | Duyly) + 189( ( (©)2(@))r2(r) + 0pP(i(0)) + ¢
DWZ(sD) 0 V- He(i(0)) Duz(p) = 0:N(0()) 2(p) — 0:V=P(i())

where O(y) := 0(p) — ¢ is (2m)"-periodic and we use the short notation
D, :=w - Op. (4.3.8)
The Sobolev norm of the periodic component of the embedded torus

I(p) :=1i(p) = (,0,0) == (B(), y(¥), 2(¢)), (4.3.9)
is
13]ls = I1®llag + llyllzy + llzlls (4.3.10)
where [|z]|s := ||2[[n3, is defined in (2.1.2).
We link the rescaling of the domain of the variables (4.2.13) with the diophantine constant v = £2+¢

by choosing

y=e*Tr =22 b:=1+(a/2). (4.3.11)
Other choices are possible (see Remark 5.2 in [9]).
Theorem 4.3.2. If ¢y, ..., c7 are non-resonant and conditions (C1)-(C2) (see (1.1.9)), (1.1.10)) hold,
then for a generic choice of the tangential sites S (see (1.1.7) ), satisfying the assumption (S), there

exists eg > 0 small enough such that for all € € (0,e0) there exist a constant C > 0 and a Cantor-like
set Cc C Q. (see (4.3.2))), with asymptotically full measure as € — 0, namely

lim C|
e—0 |Q€|

=1, (4.3.12)
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such that, for all w € Cg, there exists a solution is(¢) := ico(w,)(p) of the equation F(ioo,0,w,e) =
0. Hence the embedded torus ¢ — ino(p) is invariant for the Hamiltonian vector field Xg,_, and it
18 filled by quasi-periodic solutions with frequency w. The torus iy satisfies

liso(2) = (9,0,0)| L) < €821 (4.3.13)

for some p:= p(v) > 0. Moreover the torus i is linearly stable.

Theorem is proved in Sections 4.70 It implies Theorem where the &; in (1.1.11])

are the components of the vector M~ [w — @].

Now we give tame estimates for the composition operator induced by the Hamiltonian vector
fields X and Xp in ([£.3.7).
Since the functions y — /€ + 20Dy 0 — €'? are analytic for ¢ small enough and |y| < C, the
composition lemma[A.0.3implies that, for all ©,y € H*(T",R”) with [©||s,, [|y[ls, < 1, one has the

tame estimate

[0(0(0), y(@))lls <s L+ [O1ls + [yl (4.3.14)

Hence the map A, in (4.2.15)) satisfies, for all ||J||L2p <1
14=(0(0), y (), 2(@))IF7O) <5 (1 + [|3]| 7). (4.3.15)

In the following lemma we collect tame estimates for the Hamiltonian vector fields X, Xp and
Xp_, see (4.2.19).

Lemma 4.3.3. Let J(p) in (4.3.9) satisfy HJHSLgﬁ(g < Ceb2y~1 Then

L . ; _ L
10, P(0)|[ L) <, &t 4 23| L0 |9y P(i) | L) < 872 (1 4 || 3| L), (4.3.16)
_ L L
IV.P@)|[ L) <y &30 4 &80~ |IL20) X p (3| EP0) < €672 4 B3| 000 (4.3.17)
1868, P(i)|| 1P <, e +e5v—1ruufi”;”’, 18, V. P(i)[|X70) < &b+ 4 213 X0 (4.3.18)
2b
. 3 ; L
104 PG) = S MIEPO) <, 242 4 213 550 (4.3.19)

~

and for all i := (0,7, 2),

B i Li L Li
10ydi Xp (0) 12700 <, (|20 + 3]/ 250 i o) ) (4.3.20)
L Li Li
i X1, ()] + (0,0, Bues D) [P <, (a1 4 3|20 3 22, (4.3.21)
NTA A L L ~ 11 L Li
102X, (), A1 2P <. e(UaZE RS + 131257 (1 255)2). (4.3.22)

In the sequel we will use that, by the diophantine condition (4.3.3)), the operator D! (see (4.3.8))
is defined for all functions w with zero p-average, and satisfies

_ L
D5 s <s v ullssr, 1D 2P0 <oy~ 2500, (4.3.23)



4.4. APPROXIMATE INVERSE 65

4.4 Approximate inverse

We will apply a Nash-Moser iterative scheme in order to find a zero of the functional F(i,()
defined in (4.3.7). In particular, we shall construct a sequence of approximate solutions of

F(i,¢) =0 (4.4.1)

that converges to a solution in some Sobolev norm. In order to define this sequence we need to solve
some linearized equations and this is the main difficulty for implementing the Nash-Moser algorithm.
Zehnder noted in [97] that it is sufficient to invert these equations only approximately to get a scheme
with still quadratic speed of convergence. We refer to [97] for the precise notion of approximate right
inverse, whose main feature is to be an exact right inverse when the equation is linearized at an exact
solution. Hence, our aim is to construct an approximate right inverse of the linearized operator

d; ¢ Fio, €0)[i,¢] = D — di X, (io())[i] + (0,¢,0) (4.4.2)

at any approximate solution iy of the equation (4.4.1), and to verify that satisfies some tame esti-
mates.

Note that d; ¢ F(io, (o) = d; ¢ F(ip) is independent of (y (see (4.3.7)).
We will implement the general strategy in [21], [22] which reduces the search of an approximate right
inverse of (4.4.2)) to the search of an approximate inverse on the normal directions only.

It is well known that an invariant torus ip with diophantine flow is isotropic (see e.g.[21]), namely
the pull-back 1-form gA is closed, where A is the Liouville 1-form in . This is tantamount
to say that the 2-form W in vanishes on the torus ig(T"), because ifW = ifdA = difA.
For an “approximately invariant” embedded torus ip the 1-form ¢jA is only “approximately closed”.
In order to make this statement quantitative we consider

ipA = Zak )deor,  ar() = —([000()] yo())r: + 1(%%(@) 0y 'z0(0)i2m)  (44.3)

and we quantify how small is
W =digh="Y_ Apj(p)dpr Adpj,  Apj(p) = 0p.a;() — O, ar(ep). (4.4.4)
1<k<j<v

In order to get estimates for an approximate inverse we need to take in account the size of the “error”
function

Z(p) = (Z1, Z2, Z3) () := Fin, Co) () = w - 9yio(p) — X, ., (io(#)), (4.4.5)

which gives a measure of how iy is near to be an exact solution.
Along this section we will always assume the following hypotesis (which will be proved at each step
of the Nash-Moser iteration):

e Assumption. The map w > ig(w) is a Lipschitz function defined on some subset Oy C €.,
where Q. is defined in (4.3.2)), and, for some p := u(r,v) >0,

Li — — Li _
HJOHSOZf)rM §€6 Qb’Y 17 HZHsoli/i — 6 2b) 7:€2+a’ ac (Oal/ﬁ)a (446)

where Jy(p) :=1ip(¢) — (¢,0,0).
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The next lemma proves that if ig is a solution of the equation (4.4.1)), then the parameter ¢ has to
be naught, hence the embedded torus ig supports a quasi-periodic solution of the “original” system
with Hamiltonian H..

Lemma 4.4.1. (Lemma 6.1 in [8]) We have
Li L3
Iy P(7) < CHZ”SOP(V)
In particular, if F(ig,(o) =0 then (o =0 and the torus ig(p) is invariant for the vector field Xy, .

Now we estimate the size of ig)V in terms of the error function Z.

By (43), (T44) we get

: L
1Ak | ZPO) < (30|20

Moreover, we have the following bound.

Lemma 4.4.2. (Lemma 6.2 in [8]) The coefficients Ay (@) in (4.4.4) satisfy

i L Li Li
1Ak 1570 <oy IZIE e + 1 21 5hd 130l 57 )- (4.4.7)

As in [21], the idea is to analyze the operator linearized at an isotropic embedded torus i,

because the isotropy of the torus allows to construct a symplectic set of coordinates around it for
which the linear tangential dynamic and the normal one are decoupled. Thus, the linear system
becomes “triangular” and the hard part is to solve the equation in the normal directions (see Section
7).
Now we see that we can slightly modify i (indeed, it is sufficient to move the y-component only) to
obtain an isotropic torus i, that is an approximate solution as well as ig. At the end of this section,
we will prove that we are able to construct an approximate right inverse of starting from an
approximate inverse of d; ¢« F (is, Co)[i, f]

In the paper we denote equivalently the differential d; or d;. We use the notation A, := >/, 8920k
and we denote by o := o(v, 7) possibly different (larger) “loss of derivatives” constants.
Lemma 4.4.3. (Isotropic torus)(Lemma 6.3 in [8]) The torus is = (6o(v),ys(v),20(v)) defined
by
vs = o+ [0,00(0)] T ple),  pilp) = ALY 8, Akj(0), (4.4.8)

is isotropic. If (4.4.6)) holds, then, for some o := o(v,T),

— Li Li L Li
lys — yoll 27 <, v (121157 130 g +HZHSOZ£;)||J 1), (4.4.9)
. L Li Li
|7 s, C)lIEPD <, 121557 + 12 130225, (4.4.10)
10its[i][ls <s [lElls + [[Tolls+ol2lls- (4.4.11)

We introduce a set of symplectic coordinates adapted to the isotropic torus i5. We consider the
map Gs: (¥,n,w) — (0,y, z) of the phase space T x R” x Hg defined by

0 0 Oo(v))
y| =Gs [ n|=[ys(®)+[0p00()] "0+ [(BeZ0) (G0 (¥))]" 07 'w (4.4.12)
P w 20(¥) +w



4.4. APPROXIMATE INVERSE 67

where Zj := 29(6, ' (0)) (indeed 6: TV — T is a diffeomorphism, because 6y(p) — ¢ is small). It
is proved in [2I] (Lemma 6.3) that Gy in (4.4.12) is symplectic, using that the torus is is isotropic.
In the new coordinates, i5 is at the origin, i.e. (¢,n,w) = (¢,0,0). The transformed Hamiltonian

K := K("/Janvwvg()) is (recall "

K = H. ¢, 0 Gs = 0o(¥) - Co + Koo(v) + Kio(¥) - 1 + (Ko (), w) p2(r) + %Kzo(%b)n 1+
(4.4.13)

+ (K11 (Y)n, w) g2ty + %(Km(lﬁ)wa w) 2ty + K>3(1, n, w)

where K>3 collects the terms at least cubic in the variables (n,w). At any fixed ¢, the Taylor
coefficient Koo(1)) € R, K19(¢) € R, Ko1(v) € Hg, Kao(¥) is a v x v real matrix, Koa(1) is a
linear self-adjoint operator of Hg: and Kq1(¢): RV — Hg:

Note that the above Taylor coefficients do not depend on the parameter (.

The Hamilton equations associated to are

= Kio(¢) + Kao(v)n + KT (Y)w + 8y K>3(¢, n, w)
i) = — [0480(¥)]" Co — DpKoo () — [BpKio(¥)]"n — [0y Kor ()] "w—

— Oy (;Kbo(lﬁ)n 0+ (K (¥)n, w)r2(r) + %(Koz(w)ww)m(m + K239, n,w))
W = 0 (Ko1(¥) + K11 (¥)n + Ko2(V)w + Vi K>3(4, 1, w))

(4.4.14)

where [0y K10(¥)]T is the v x v transposed matrix and [0y Ko (¥)|7, K{;(¢): Hs — RY are defined
by the duality relation

Oy Kor ()], w) 2y = ¥ - [0pKo1 (V)] "w, Vi € RY,w € Hy,

and similarly for K. Explicitly, for all w € H é, and denoting e; the k-th versor of R",

v v

Kfi(p)w =Y (K{ ($)w - &) e, = Y (w, K (v)ey) 2 (myey, € R (4.4.15)
k=1 k=1

In the next lemma we estimate the coefficients Ko, K10, Ko1 in the Taylor expansion (4.4.13]). The
term K¢ describes how the tangential frequencies vary with respect to w. Note that on an exact
solution (ig,{y) we have Koyo(¢)) = const, K1p = w and Ky = 0.

Lemma 4.4.4. (Lemma 6.4 in [8]) Assume (4.4.6). Then there is o := o(1,v) such that

| | , y o
18y Koo || 2P + || K1 — w]| FPO) 4 || Kou || PO < (| Z)| 2200 ) 2| Z000) 3| 220,

s+o so+o s+o

Remark 4.4.5. By Lemma if F(ip,¢o) = 0 and, by Lemma the Hamiltonian (4.4.13)

simplifies to
1 1
K =const+w-n—+ §K20(Qj))77 -n+ (K11 (¥)n, w)L2(T) + §(K02(w)w, U))LQ(T) + K>3. (4.4.16)

In general, the normal form (4.4.16) provides a control of the linearized equations in the normal
bundle of the torus.
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We now estimate Kop, K11 in (4.4.13). The norm of Koy is the sum of the norms of its matrix
entries.

Lemma 4.4.6. (Lemma 6.6 in [8]) Assume (4.4.6). Then for some o := o(v,T) we have

g2 ; Li —1y~ L Li
lleo—fMHst“) €22 4 || 30| 1P + 271|130 BV 2| 0, (4.4.17)
Li _ Li L
1Bl 270 < 2y |l EP0) 4+ 271 (130 S5 + 47 | Follsb S 1 Z IS Il EP), (4.4.18)
_ Li L - L L L
| &R wlE ) <, 37wl + 7 (9l + 7 IT0lara 121 ) wllghs.  (44.19)
In particular
|| K20 — 7MHL”’ < Sy IEun )| 5RO < Syl i),
HanHL”’ ) < 5w )
We apply the linear change of variables
¥ D00 () 0 0 ¥
DG5(9,0,0) | i | = | dyys(p) [0p00(0)]™" —[(BpZ0)(Bo())] 0" | | 7 (4.4.20)
w alpZo((p) 0 1 w

In these new coordinates the linearized operator d; ¢ F (i, (o) is “approximately” the operator obtained
linearizing (4.4.14) at (¢, n,w, () = (¢,0,0,{y) with D, instead of J;, namely

~

A Du/;—awf(m( )[¥] = Kao(p)i) — Ky (0)
Dot} + [0400 ()] ¢ + 0y [0480()] " [, o] + Dy Koo () [0] + [0y K10()] "1 + [0y Kor ()]
b — 0: {0y Kor (@) [W] + K11 ()i + Koo ()i}
(4.4.21)
We give estimate on the composition operator induced by the transformation .

~

Lemma 4.4.7. (Lemma 6.7 in [§]) Assume (4.4.6) and let i := (¢, n,w). Then, for some o :=
o(t,v), we have

IDGs(¢,0,0)[llls + 1 DG5(,0,0) " [@ls <s llolls + (1Tollso + 77 1Tollswol| Zllso)l12lsq
ID*G5(,0,0)[i, 2] s <s llaallsllizllso + lloallsollills (4.4.22)
+ (I130lls+0 + 97 N Tollso+o 1 Zlls0) illso ll22lso-

Moreover the same estimates hold if we replace ||-||s with ||- Hme

In order to construct an approximate inverse of (4.4.21]) it is sufficient to solve the system of
equations

) ) Dyt — Kao()i) — Kfy () 9
D[y, 7,10, ¢] : Doty + [0y 00 ()] ¢ = |9 (4.4.23)
Dy — 03 K11(p)i) — Ou Koz (@)W g3

which is obtained by (4.4.21]) neglecting the terms that are naught at a solution, namely, by Lemmata
(]4.4.1D and (]4.4.4D, 8¢K10, 8¢¢,K00, awKo(), 8¢,K01 and 8¢ [aweo((p)]T[-, Co]
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Remark 4.4.8. We will use the following notations for the averages of a function v(y, x)

1
2

M, [v] = /Tv(go,x) dr, Myv]:= (2711_)1/ /V v(p,x)dp (4.4.24)

and M. [o] = MM, [o]) = M, [M,o]).
First, we solve the second equation, namely
D) = g2 — [0y00()]C. (4.4.25)
We choose C so that the ¢-average of the right hand side of is zero, namely
¢ = M,[g)- (4.4.26)

Note that the p-averaged matrix M,[(9y00)T] = My[I + (0,00)T] =1 since we have that 0(¢) =
v+ O¢(p) and BO(p) is periodic. Therefore

7 =D, (g2 — [0p00(0)]" Mylga]) + M[fll,  My[i] € R, (4.4.27)

where the average M, [f)] will be fix when we deal with the first equation.
We now analyze the third equation, namely

Lo = g3+ 0. K11(0)), Ly :=w-0, — 0. Kn(p). (4.4.28)

If we fix 7, then solving the equation (4.4.28)) is tantamount to invert the operator L,. For the
moment we assume the following hypotesis (that will be proved in Section 8)

e Inversion Assumption. There exists a set (oo C 2. such that for all w € Q, for every
function g € Hgy STH(TY*1) there exists a solution h := £;'g of the linear equation L,h = g
which satisfies

_ i Li Li — Li L
125170 <o/ g™ + e ol + IFoll e N Z 1 Higler ) (4.4.29)

for some p = p(r,v).

Remark 4.4.9. The term ey~ !||J Hﬁfp arises because the remainder R¢ in Section 8 contains

the term e (|| 00| X2 + [|ysl|ZE) < ]| Tol|ZE, see Lemma 4.6.18

These big constants coming from the tame estimates for the inverse of the linearized operators at

any approximate solution will be dominated by the quadraticity of the Nash-Moser scheme.
By the above assumption, there exists a solution of
W= L g3 + 0. K11 (9)7)]. (4.4.30)
Now consider the first equation
Duth = g1 + Kaoi) — K7 (0). (4.4.31)
Substituting (4.4.27)), (£.4.30) in the equation (£.4.31), we get

Doth = g1+ My (0) My[f)] + Ma () g2 + Ms()gs — Ma () [0y00] " My|ga), (4.4.32)
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where
My (p) = Kao(p) + K1 (0) L5 0:K11(9), Ma(p) := Mi(0)D,", Ms(p) == K[, (0)L;"

In order to solve the equation (4.4.32) we have to choose M,[7] such that the right hand side in

(4.4.32)) has zero w-average.
By Lemma [4.4.6{and (£:4.6), the p-averaged matrix My[M;] = e® M + O(e'%9~3). Therefore, for ¢

small, M,[M;] is invertible and My,[M;]7! = O(e=%*) = O(y~1). Thus we define
M[i)] == —(My[M1]) ™ { Mog1] + My[Maga] + My[Msgs) — My[M2(9y60)"] Myga]}.  (4.4.33)
With this choice of M,[7] the equation (4.4.32) has the solution
=D g1 + Mi(p) M) + Ma(0) g2 + Ms(p)gs — Ma()[0y60]" Mylga]}. (4.4.34)

In conclusion, we have constructed a solution (1&, N, W, 6 ) of the linear system (4.4.23)). We resume
this in the following proposition, giving also estimates on the inverse of the operator ID defined in

([T.4.23).

Proposition 4.4.10. (Proposition 6.9 in [8]) Assume (4.4.6) and (4.4.29). Then, for all w € Qo

for all g :== (g1, 92,93), the system ([4.4.23)) has a solution D~1g := (1/3,77,121,6) where (@Z?,ﬁ,uf),é) are
defined in (4.4.34), (4.4.27)), (4.4.30), (4.4.26). Moreover, we have

L Li — Li L L
D= glIZ70 <, v (gl +ev {Tollsin +4~ [Tollsy2sd 17 Gios o) 147 Higll s (4.4.35)

Eventually we prove that the operator
Ty := (DGs)(p,0,0) o D' o (DG5(¢,0,0)) " (4.4.36)
is an approximate right inverse of d; ¢ F (2'0) where C’g((w, n,w), ¢ ) is the identity on the {-component.
We denote the norm |[|(, n, w, C)||sz = max{||(¢, n,w )||LZP |¢|EipM)}

Theorem 4.4.11. (Theorem 6.10 in [§]) Assume (4.4.6) and the inversion assumption (4.4.29).
Then there exists p := p(T,v) such that, for all w € Qu, for all g := (g1,92,93), the operator T

defined in (4.4.36) satisfies

Li Li Li — Li L L
ITogllZPD <, v (lgllsi” +ev I3l 47+ 1Follg 22 17 o, Gollls e Hlgllg22”)- (4.4.37)

It is an approzimate inverse of d; ¢ F (i), namely

. i _ . Li L
(s F(io) o To = Dgll 7 <, = (I1FGio, )l gl 24 (4.4.38)

Li L L
o+ {1 o, Go) 15 + ™ 1 F o, Go) 1o 130125 Hlg ).

4.5 The linearized operator in the normal directions

In this section we give an explicit expression of the linearized operator
Ly, :=w- 0, — 0:Kp2(p). (4.5.1)

To this aim we compute %(Kog(v,/})w,w),;z(qr),w € HgZ, which collects all the terms of (H. o
Gs)(¥,0,w) that are quadratic in w.
First we recall some preliminary lemmata.
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Lemma 4.5.1. (Lemma 7.1 in [§]) Let H be a Hamiltonian function of class C?(H(T,),R) and
consider a map ®(u) := u + ¥Y(u) satisfying V(u) = HpVY(Ilgu), for all w, where E is a finite
dimensional subspace as in (4.1.2]). Then

Ou[V(H o ®)(u)[h] = (0uVH)(®(u))[h] + R(u)[h], (4.5.2)
where R(u) has the “finite dimensional” form

R(u)[h) = Y (h, gj(w)r2(m)x;(w) (4.5.3)

lil<C
with x;j(u) = €% or g;(u) = €J%. The remainder in ([£5.3) is

R(’U,) = Ro(u) + Rl(u) + Rg(u)

with
Rou) = (V) (@)OF (), Rolw) = Bl (o N THEQ),
Ra(u) := [0,9(w)]T (0, VH)(®(u))0,®(u).
Lemma 4.5.2. (Lemma 7.3 in [8]) Let R be an operator of the form
Rh= Y / (h, g5(T)) 2(myx; (7) dr, (4.5.5)

l71<C

where the functions g;(7),x;(t) € H*,7 € [0,1] depend in a Lipschitz way on the parameter w.

Then its matriz s-decay norm (see (2.3.1)-(2.3.2)) ) satisfies

IR|EPO) < Z Sl[lop”(lli( )IILZp”)IIgJIILZp "+ IIXJ(T)\ISLJ”(”’)ng(T)HsLi”(”)- (4.5.6)
ljj<c TEO

4.5.1 Composition with the map G;

In the sequel we use the fact that Js := Js(p;w) = is5(p; w) — (¢, 0, 0) satisfies

L1
19512700 < € 8-yt (4.5.7)

We now study the Hamiltonian K := H. o G5 = e 2*H 0 A, 0 G5 (see (4.2.19)). Recalling (4.2.15)),
A, o G5 has the form

Ac(Gs(,m,w)) = ve(00(), ys (¥) + L1 ()0 + La(t)w) + €*(20(¢)) + w) (4.5.8)
where
Li(9) := [0y00 ()] ™", La(e) == [(9nZ0)(Bo(v))]" . (4.5.9)
By Taylor formula, we develop in w at (n,w) = (0,0), and we get
(Ae 0 G5) (¥, 0,w) = T5(¥) + Th(Y)w + To () [w, w] + T>3(¢, w),

where

T5(6) i= Ac(Gs(1,0,0)) = cvs(t) +ez0(w),  vs(w) 1= ve(6o (), ys(1)) (4.5.10)
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is the approximate isotropic torus in the phase space H{(T) (it corresponds to is),
Ti()w = 27U ()w + lw;  To(¥)[w, w] := 73Uy () [w, w] (4.5.11)

‘  ellfo ()]
Uy ()w = e gl [La(p)ul; e (4.5.12)

iE 2T /& + 0D ys ()
2L w2 ilfo(¥)];
Uyl = —e Y 22
22 SIEHE + 0D (D))

and T>3(¢,w) collects all the terms of order at least cubic in w. In the notation of (4.2.15)), the

function vs(¥) in (4.5.10)) is vs(¥) = v(00(¥),ys(v)). The terms Uy, Uy in (4.5.12)), (4.5.13) are
O(1) in e. Moreover, using that La(v) in (4.5.9) vanishes at zp = 0, they satisfy

: (4.5.13)

N|w

1U1wlls <s 1T5llsllwllso + 1 T5]lso 1]l

- (4.5.14)
1U2lw, wllls <s 13511l Tsllso w2, + 13503 1wl sollwls
and also in the norm ||-||s Lir® we expand #H by Taylor formula
1
H(u+h) =H(u) + (VH)(w), )2y + 5((8UV’H)(U) [A], h) r2¢r) + O(h?). (4.5.15)

Specifying at u = T5(¢) and h = T1(¢Y)w + To(¢)[w, w] + T>3(¢),w), we obtain that the sum of all
components of K = e 2°(H o A, o Gs)(1),0,w) that are quadratic in w is

1 B e—2b

L (B w) ) = &P (VH)(T3), Do, ) ooy + - (OuVH)(Ty) [Tyl Tiw) gy, (45.16)

Inserting the expressions (4.5.12)), (4.5.13)) in the equality (4.5.16)), we get
Koo ()w =(0,VH)(Ts)[w] + 26" (0, VH)(T5) U1 w]+

(4.5.17)
+ 20V uT (9, VH) (Ts)[Uyw] + 2?3 Us[w, |7 (VH)(Ts).
Lemma 4.5.3. The operator Kys reads
(Kogw, w)2(r) = ((OuVH)(T5)[w], w) r2(r) + (R(¥)w, w) r2(T) (4.5.18)
where R(Y) has the “finite dimensional” form
R)w =Y (w,g;(t)) L2(r) X (¥). (4.5.19)
l71<C
The functions gj,x; satisfy, for some o :=o(v,7) >0,
g IEPO x| 2P0 + [|g; || EP0) < 4035 S, (4.5.20)
1095 (I 1x511 50 + 195518l llso 15115 + Nlgslls110ix; [l so + [1g51ls0 10X (1]
<5 & illsto + €M Ts 540 17l s40 (4.5.21)

In conclusion, the linearized operator to analyze after the composition with the action-angle
variables, the rescaling and the transformation Gy is

w s (0, VH)(Ts)[w], we Hg
up to finite dimensional operators which have form (4.5.19) and size (4.5.20)).
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4.5.2 The linearized operator in the normal directions

In this section we compute ((8,VH)(Tj)[w], w)r2r), w € Hg, recalling that H = H o ®p and
®p is the Birkhoff map of Proposition [{.1.1] It is convenient to write separately the terms in

H=Hodg=(H?D+H®)odg+HYodp+ HZY0dp, (4.5.22)
where H® H®) H® H(Z5 are defined in . First we consider H(Z% o ®5. By we get
VH (u) = m0[(0uf) (2, 1, )] — Oa{ (Ou, £) (2, 1, 1) }.

Since the Birkhoff transformation ®p has the form (4.1.6)), Lemma (at u = Ty ) implies that

0.V (HE 0 &p)(T5)[h] = (0.VHZV)(@5(T5)) ] + Ryges (T5)[h] =

(4.5.23)
= 03(r1(T5) Ozh) + ro(T5)h + Ry (T5)[h]
where the multiplicative functions ro(7s),r1(Ts) are
ro(Ts) := 00(®p(Ts)), oo(u) = (Ouuf) (T, u,uy) — Onf{(Ouu, ) (2, u,us)}, (4.5.24)
r1(Ts) := 01(®p(Ty)), o1(u) = —(Ouyu, f)(x, u,uy), (4.5.25)

the remainder R 5 (u) has the form (4.5.3) with x; = €% or g; = €% and it satisfies, for some
o:=o(v,7)>0,

Li
lg; 5%

105, 2lls11x5 5o + 1105958l |50 151s + 1195115 119ix (2]l so + 11951150 1051 |
<s 54(”“’5—!—0 + |35l s+2lll so+2)-

Li L L
M 1570 + g, |50 <y &1+ |135]1557),

Now consider the contribution of (H®) 4+ H®) + H®) o ®5. By Lemma |4.5.1 and (1.1 we have

O NV(HP + H® + HY) o ®p)(Ty)[h] = —haw — 6 ¢102[P5(Ts)a he] — 2 ¢2 Opa (P 5(Ts)h)
+2¢y ®p(T5) e he + 63 Pp(Ts5) h — 124 0.[(Pp(T5))2 ha] — 3¢5 05 [(25(T5))2 A

+ 3¢5 (Pp(Ts))2 he — 26 0x[PB(T5)? hy) — 2 ¢6 Opa(Pp(T5)?) h + 2¢6 Pp(T5)> h

+12¢7 ®5(T5)* h+ Ry (Ts) + Ry (Ts) + Ry (Ty) [R),

(4.5.26)

where ®p(T5) is a zero space average function, indeed ®5 maps HE(T;) in itself by Proposition

(4.1.1). The remainder R ), Rys), Ry@ have the form (4.5.3)) and, by (4.5.4)), the size (Ry@ +
Ry + Ryw)(Ts) = O(e). We develop this sum as

(Ry@ +Rye + Ryw)(Ts) =R + €2R2 + 7%>2, (4.5.27)
where R has size o(e2). Thus we get, for all h € Hg:,

M50, V(H® + H® + HY) 0 ®5)(Ts)[h] = —haw + TE{—6 c1 05 [®5(Th)s ha)
—2¢2 022 (Pp(Ts)h) + 22 Pp(Ts)s ha +6C3‘I)B(T5>h_1204831:[((1)B(T5))925hx]
—3¢50:[(PB(T5))5 h] + 3¢5 (PB(T5))2 he — 266 0[P p(Ts)? ha] — 2 ¢6 Oua(P5(T5)?) h
+2¢6Pp(T5)2 h +12¢; ®(T5)2 h} + T (eR1 4 €2Ra + R2)[h].

(4.5.28)
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Now we expand ®p(u) = u+Ws(u)+V¥s3(u), where ¥y(u) is a quadratic function of u, Us3 = O(u?)
and both map HE(T,) in itself. At u = Ty = evs + ebzy we get

Op(Ts) =Ts + Vo (Ts) + U>3(T5) = evs + 62\112(1)5) +q, (4.5.29)
where § = P29 + Wa(Ts) — Wa(vs) + U>3(Ts) and it satisfies
1311570 <5 €%+ L1 Ts 01D, 110:dlillls <s € (IlElls + 115112l so)- (4.5.30)

Note that also § has zero space average, indeed § = ®p(Ts) — evs — €2Us(vs) and the functions
®p(Ts),vs, Vo(vs) belong to HE(Ty).

We observe that the terms O(e) come from the monomials R(v z2) of H3) and the ones of size O(£?)
from H®+H*2) (see (A.1.8)). Thus, we compare ([£.5.28) with IT& (8, V(H @ +HE) +HE2))) (Ty)[h],
using (4.1.8), and, by (4.5.29)), we obtain Ry =0,

s (vs) = —e1 05 (v3) = S 0el(9; '05)?] + S mold] + esmol(9; ' 05)’] (4.5.31)

and

Ra[h] = — 6¢H{v502 (s [(v5)sha]) — 02((v5)0Ozalls [vsh])}
+ 2c102 V5 Ox (Us[(vs)z ha]) + 2¢102 O ((vs)2 Ox1ls[vs h])
— 2c1¢2 (0, ' 05) Do lls[(vs) s ha) + 2c1¢2 02 {(V5) 2 Ornalls[(0; Mvs) A}
29
32
+ % 02 {(v8)z 0:1s[(0; tvs) h] + 2¢ac3 (0 tvs) O,115[vs Al

_ 2¢3 .
(896 1’1)5) Opaalls [1)5 h] + TQ (8:0 11}5) 8351_15[(’1}5)1 hx]

— 26263 vs 8xH5[(8;1v5)h] + 26102 8;1{’05 8MHS[(U5)I hx]}

9 2
+ 2¢100 83 {(v5)w Dualls[vs (87 1H)]} + % 0= {05 Dwalls[vh]}
2 2 02
_ 2=

2
+ =57 05 Duslslos (9 h)] - =5

2 2
+ % 92 {(v5)w DuLLs[v5(I71R)] — 2cacs O H{vs Dulls[us ]}

— 2¢9c3v5 O, I glvs (8z_lh)] — 2¢100 v5 01l [(Vs) sz Py
4 2
— 2¢1¢0 p{(v5)s Oplls[vs h]} — % 05 OpaLs[vs B

(0, H{vs) 0:115[(v5)shal}
(4.5.32)

2¢2 2¢2
+ ?2 v§ HS[(’I)(;)m hx] — ?2 83:{(’06)30 HS[Ug h]}

+ 4eges vs Tglvs h] + 6e1es 0, (0, tos) O.T15[(vs) 2 hal}

— 6c1¢3 00{(V5) 2 015 [(D5 1 v5) (05 P h)]} + 2¢0c30; H{ (05 vs) Opells[ush]}
— 2¢9¢3 05 g 5[(0 t0s) (05 1h)] — 2¢9¢3 05 (05 tus) s [(vs)whe}

— 2¢2¢3 00 {(v5)2 s (9 '05) (07 "h)]} — 663 85 {(0; "ws) Ls[vs h]}

2
+ 66% v§ Hs[(aglvg)(aglh)] + gcg v§ 8mx1'[5[(8;1v5) h].

In conclusion, we have the following proposition.
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Proposition 4.5.4. Assume (4.5.7). Then the Hamiltonian operator L, Vh € Hg, (T*1), has the
form

Loh = w-d,h — 8, Kogh = 1§ (w - Oph + Ope(a1 hy) + 0z (agh) — €20, Rah — 0, R4h)  (4.5.33)
where Ry is defined in (4.5.32),
R, = 7§,>2 + Ryes (Ts) + R(Y), (4.5.34)

with R(v) defined in Lemma the functions

a1 =14 6¢c; ((I)B(T(;))x +2co (I)B(T(s) + 12¢4 (@B(Tg))g + 3¢5 83,[<I>B(T5)2]+ (4.5.35)
+ 2¢q (I)B(T(;)Q - Tl(Tz?)v
ag :=2¢2 (P5(T5))zw — 6¢3 P5(T5) + 3¢5 0 [(P5(T5))2] + 2c6 {5 (T5)2+ (4.5.36)

+205(T5) (P5(Ts)) e} — 12¢7 ®5(Ts)? — 10(Ts)

the function ry is defined in (4.5.25)), ro in (4.5.24), Ts and vs in (4.5.10).

Furthermore, we have, for some o :=o(v,7) > 0,

Li A . ~ .

lar = 177 < e (1 + HJaHsipa ) NGiaxfillls <s e(llillsto + [ Tsllstollillsoro), — (4:5.37)
Li A . ~ .

laollZ7) <, & (1 + 1351 07, 1Giaolillls <s e(lillsto + [[Tsllstollillsoro),  (4.5.38)

where Ts(p) == (Oo(p) — v, ys(p), z0(p)) corresponds to Ts. The remainder Ra has the form (4.5.3)
with ‘ Lt
g3 1270 + s 12700 <41+ 11351557,

) (4.5.39)
10ig;{2lls + 10ix5[llls <s llellsto + 1T5lls4oll2llso+o
and also Ry has the form (4.5.3)) with
* | Li L
g3 [P 5P 4 (| g3 [ 2P g | 57P0) <, 63 4 142351207, (4.5.40)
10595 [l x5 1so + 0ig5 [@lllso X 1s + 1195 W10 196X W[ s + 1195 11196 1 (4.5.41)

<o €[l sxo + €M Ts lsto 13| so-to-

The bounds (4.5.39) and (4.5.40) imply, by Lemma estimates for the s-decay norms of Ro
and R.

The linearized operator L, := L, (w,i5(w)) depends on the parameter w both directly and also
through the dependence on the embedded torus is(w). The estimates on the partial derivative
respect to i (see ) allow us to control, along the Nash-Moser iteration, the Lipschitz variation
of the eigenvalues of £, with respect to w and the approximate solution ;.

4.6 Reduction of the linearized operator in the normal directions

The goal of this section is to conjugate the Hamiltonian linear operator L, in (4.5.33) to a
constant coefficients linear operator L. For this purpose, we shall apply the same kind of symplectic
transformations used in [8], whose aim is to diagonalize the operator £, up to a bounded remainder
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Re (see (4.6.128])). This one has to satisfy the smallness condition (4.6.132)) in order to initialize the
KAM reducibility scheme of Theorem that completes the diagonalization procedure.

The size of all these transformations will be greater than the ones used in [8] (see Section 8 in [g])
and, as a consequence, some non perturbative terms will be modified by them. Thus, in order to
prove we will have to overcome two main difficulties: (a) computing the terms of order &
and £2 after each transformation, since we need to normalize them through the Birkhoff steps of
Section 8.5 and 8.6, (b) providing optimal estimates for the transformations and, consequently, for

the remainder Rg (see (4.6.128))).

Consider
)= \/ﬁeﬂ(”'“" el (4.6.1)
JjES
and 1: S — 7Z” is the odd injective map

1: S — ZV, 1(37) = ey, 1(—71) = —1(72) = —€y, 7= 1, SN 7N (462)
denoting by e; = (0,...,1,...,0) the i-th vector of the canonical basis of R”. We observe that

los = Bll5PD <o 135015700, 118i(vs = D) Ellls <s lills + 1Tslls12llso - (4.6.3)

Remark 4.6.1. The function v(p,z) in corresponds to the torus (¢, 0,0) after the transfor-
mation A, defined in . In particular, this torus is invariant under the flow of the integrable
Hamiltonian e~ 20ho A, (recalling (4.2.3)), which preserves the momentum. Hence, the square of the
L? norm of 7 is independent of the time ¢, as we can deduce by the properties of the map 1 defined
in .

We shall expand the coefficients of the linearized operator at y = z = 0 to get the bounds on the
transformations defined along this section, thus we will frequently use the inequalities and
the assumption . Moreover, we will use the fact that v satisfies the equation Lz = 0, where
w is the vector of the linear frequencies (see ) and Ly :=w - 0y + Opgas -

Remark 4.6.2. We recall that w = @ + O(g?), see for instance (4.2.18). Moreover, note that
D,v = Dgv + D,,—wv and

Dy gt = Y _ilw—@)-1(j) 4/Ijlg €™ ™.

jeSs

Then HDw_w@HSLiP el < Ce? and D,,_5U has zero spatial average.

We expand in powers of e the coefficients ag and a; in (4.5.36) and (4.5.35)) as

ap = €ap,1 + €2a0,2 + Ry, a1 —1=c¢ear1+ 52a172 + Ray s (4.6.4)
where

ap,1 = 2¢9 Uy — b3 7, apy = 6c1U, + 2¢oUsy,
ap,2 = 2co (\1]2('0))1-1- — bcg \112( ) + 3¢50, ( ) + QCG{Ei + QWMU} — 126752,
a1,2 = 661(\112(?))) + 262\112( ) + 12041) + 3¢50, ( ) + 266@2

and, by (4.6.3), HRakHwa < &% +¢||T5] 540, for some o > 0.
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4.6.1 Space reduction at the order 0,,,

First we conjugate L, in to an operator £q whose coefficient in front of 0., is inde-
pendent on the space variable z. Because of the Hamiltonian structure, the terms O(0,,) will be
simultaneously eliminated.

We look for a ¢-dependent family of symplectic diffeomorphisms ®(¢) of H §- which differ from

AL =T Ally,  (AR)(p,2) := (1 + Bu(, 7)) W, & + B(p, 7)), (4.6.5)

up to a small “finite dimensional” remainder, see (4.6.9).
If ||B|ly1c < & then A is invertible and its inverse and adjoin map are

(A™'R) (g, y) = (14 Byle,n) hlp,y + B(e,y)),  (ATh)(p,y) = k(. y + B(e,)) (4.6.6)

For each ¢ € T, A(yp) is a symplectic transformation of the phase space, see Remark 3.3 in [7],
but the restricted map A} (¢) is not.

In order to find a symplectic diffeomorphism near A, first we observe that A, is the time-1 flow
map of the linear Hamiltonian PDE

Oru = 0 (b(p, T, 2)u), blp,7,x):= _ Blpy) (4.6.7)

1+ 7B, 1)
The equation (4.6.7) is a linear transport equation, whose characteristic curves are the solutions of
the ODE

%x = —b(p, 7, ).

As in [8], we define a symplectic map ® of H 5% as the time-1 flow of the Hamiltonian PDE
dru = T 0, (b(7, 2)u) = 0, (b(T, x)u) — g0y (b(T, z)u), wu € Hg (4.6.8)

generated by the quadratic Hamiltonian %fT b(r,z)u? dx restricted to H§ The flow of is
well defined in the Sobolev spaces Hg, (T,) for b(r,x) smooth enough, by standard theory of linear
hyperbolic PDE’s. We obtained a symplectic diffeomorphism ® that differs from A, by a “finite
dimensional” remainder of small size, more precisely, of size O(f3).

Lemma 4.6.3. (Lemma 8.2 in [§]) For ||B||yyso+1.00 small, there exists an invertible symplectic trans-
formation ® = A +Re of HZ, , where A, is defined in (4.6.5) and Re is a “finite dimensional”

remainder

1
Raoh = Z/O (h, 95(7)) 2(m) X3 (1) dr + Y (h, W5) p2(mye” (4.6.9)

jes JjES
for some functions x;(7), g;(7),%;(T) € H® satisfying for all T € [0,1]
[9ills + 195 (T)lls <s [Bllws+2ceo, x5 (T)lls <5 1+ ||Bllws+1.c0- (4.6.10)

Moreover
[@h]ls + 127 hlls < [|hlls + [|Bllwsrzollblls, Vhe HE.L. (4.6.11)
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We conjugate L, in (4.5.33) via the symplectic map ® = A; +Rg of Lemma (4.6.3]). Using the
splitting Hé‘ =1—-1IlIg, we compute

L,® = D, + Mg A(b30yyy + ba0yy + 10y + bo)Ilg + Ry, (4.6.12)

where the coeflicients are

ba(p,y) = Allar (1+ 82)°]  ba(p,y) == AT[2(a1)2(1 + B2)? + 6 a1 Bra(1 + B2)] (4.6.13)
r 2
bl(@a y) = -AT (Dwﬂ) +3a1 1 _:mﬁ +4ay Bx:ca: +6 (al)xﬁxx + (al)xa:(l + 596) + aO(l + 51‘):|
- (4.6.14)
4T —(Dwﬁx) /Bxxmc ﬁ:m:x /Bxx ﬁmx
bo(p,y) == A EE + a1 1+ 5, + 2((11)x1 s + (a1)za 114 +ap 114, + (ao)x] (4.6.15)

and the remainder

Rp:=— H,Js*_am(52R2 + R*) AJ_ - H,Js’_(alammr + 2(a1)mazm + ((a1>zz + a(])am + <a0)m)H5’AHé’_+

+ [DwyR@] + (Lw - Dw)RqD-
(4.6.16)
The commutator [D,,Re] has the form (4.6.9) with D,g; or Dyxj, D,v; instead of xj,g;,v;

respectively. Also the last term (£, — D,)Re in (4.6.16) has the form (4.6.9) (note that L, — D,
does not contain derivatives with respect to ). By (4.6.12), and decomposing I = IIg + qu-, we get

L, = (I’(Dw + bgayyy + b26yy + blay + bo)Hé‘ + R, (4.6.17)
Rir := {lI& (A — DIlg — R }(b30yyy + b20yy + b10y, + bo)[Is + Ry (4.6.18)

In order to solve the equation
bs(,y) = bs(p)

for some function b3(p), so that the coefficient in front of 0., depends only on ¢, we choose the
function 8 = B(p, x) such that

a1(p, 2) (1 + Bu(p,3))* = b3(p), (4.6.19)

where we used that AT [b3(¢)] = b3(¢). The only solution of (4.6.19) with zero space average is

-3
B0t mim b)) = (o [l ta) L ae)

Applying the symplectic map ! in (4.6.17) we obtain the Hamiltonian operator
Ly := (I)_lﬁw(l) = Hé(w . &P + bg(@)ayyy + b18y + bo)Hé + R (4.6.21)

where Ry := ® " 'R;;. We used that, by the Hamiltonian nature of £, the coefficient by = 2 (b3)y
and so, by the choice (4.6.20)), we have by = 2 (b3), = 0.

Lemma 4.6.4. (Lemma 8.3 in [8]) The operator Ry in (4.6.21) has the form (4.5.5).
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In the proofs of the estimates for the transformations and the coefficients, we will always use the
index o to denote a certain loss of derivatives, since we do not need to know exactly the total amount
of this loss. This, in fact, involves only the regularity required for the Hamiltonian nonlinearity

f(@,u,up) in (CL).

Lemma 4.6.5. There is 0 := o(7,v) > 0 such that, for k=0,1,

Li A ~ ~ ~

IBIEP0) <, e (1 + 35] 420 10:80illls s eUlillsso + slssallilonso)  (4.6.22)
L ~ ~ ~

6 — 1IEPO) <, &2 (1 + 95550 abslilll <o E(lillsso + [Tsllsrallilsoro)  (4.6.23)
1 L A N ~ ~

Bl <, (1 + |35 LE0) l0bwlills <o elillsso + 1Tsllssollilpra)  (4.6.24)

The transformations ®, ®~1 satisfy

; Li ~ 1Lt L
IO RO < [R5 + 35115 IRl g (4.6.25)
||ai(¢'i1h)[ ]Hs =s HhHs+UH ||80+o + HhH50+0'|| ||s+c7 + HJ5H8+0||h||80+UH ||80+U (4~6~26)

Moreover the remainder Ry has the form (4 where the functions x;(7), g;(T) satisfy the estimates
(4.5.40) uniformly in T € [0,1].

Proof. To shorten the notation we write ||-||s :
FEstimate (4.6.23)): Consider the functions g(t) = (1 +t)7% and Y(t) = (1+1¢)~3, analytic in a small
neighbourhood of the origin. Then we have

L
= ||||5#

by — 1 = T(M,[g(a1 — 1) — g(0)]) — T(0). (4.6.27)

By the mean value theorem, ||bs — 1||s <s ||[Mz[g(a1 — 1) — ¢g(0)]||s. By Taylor expansion, we get

M,lg(ar — 1) — g(0)] = ¢ (0)My[ar — 1] + / / s(a; — 1)) (a1 — 1)*ds dx (4.6.28)
and we note that, by Remark
Mx[al — 1} = €2Mx[a172} + M:B[Ral]-

Moreover, |Mg[Ra,]|ls <s € +&2°||Ts|s10, because M,[vs — 7] = M,[G] = 0 and R,, contains terms
like £2(v? — ) and cubic in the z-derivatives of vs.
The second addend in the right hand side of (4.6.28) can be estimated by €2(1 + ||Js||s+0). Hence

b5 — 1lly <o 221+ [Tsllsso): (4.6.20)
Now we consider the partial derivative respect to the variable ¢ (see (4.3.1])) of b3, namely
Oibs[i] = Y'(Malg(ar — 1) — 9(0)]) Malg' (a1 — 1) iax [i]].

The derivatives of the functions g and T, for € small enough, are approximately 1. Therefore, the

estimate
10:b3[illls <s €2 (lills+o + 11 Ts ]l 5ol so+0) (4.6.30)
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derived from the estimate on M,[0;a1[i]] and the fact that M,[0;v[i]] = 0. By (4.6.29) and (4.6.30)

we conclude.
Estimate (4.6.22): Consider the functions ¢(t) := (1 +¢)~! and g(t) := (1 + t)_%. Recalling that
By = (b3'ar)s — 1, we have
Be=g t(bztar—1)—g ' (0) and bzta; —1=ay(p(bs—1)— ¢(0)) + (ag — 1).
Then, by ,
[1Blls <s lp(bs —1) = @(0)[[sllarllso + [¢(b3 = 1) = ¢(0)|so llarlls + [ax — 1]l
<o 1163 = Ulsto + 1103 = Ulsorollarlls + lar = s <s (1 + [[T5lls+0)-

FEstimate (4.6.24): By (4.5.38)), (4.5.37)), (4.6.22) we get the estimates (4.6.24)).
For the estimates (4.6.25)), (4.6.26) on ®,®~! we apply Lemma and the estimate (4.6.22)) for
B. We estimate the remainder R, using (4.6.16]), (4.6.18) and (4.5.40)). O

4.6.2 Terms of order ¢ and ¢

The diffeomorphism of the torus ® = A, + R4 defined in Lemma is, by and
(4.6.22), of the form I+ O(e), hence, the terms O(e?) of L, are modified by it.
From now on, the transformations we shall apply to reduce the linearized operator £, to a constant
coefficient operator will be I+ O(Ed) with d > 1, hence the terms of order ¢,e? will not be changed
anymore.
In this section, our goal is to identify them in view of the linear Birkhoff steps of Section 8.5 and
8.6.

We have to put in evidence the terms O(g),O(e2) of by, by, b3 in and the ones in the

remainder JR; defined in (4.6.51)).
Coefficients by

First, we note that by = ATay = ap + (AT —)ag, k= 0,1, where
2

Q= (Dwﬁ) + 3(11 ,8 +4a1 Bryz +6 (al) Bra + (al)xz(l + /693) + aO(l + ﬂw)a (4631)
ap = T ps ar g +2(ar)e 75" 5 T (a1)er 775 g ter st (a0)q- (4.6.32)
By (4.5.35)), (4.6.20), we have
B=—2c10p(Ts) — gcQagl[epB(Tg)] - 4C48*1[<1>B(T5)2] — ¢5mo[®5(T5)?
(4.6.33)

2 cﬁagl[ch(Tg)?] + 8329, @ p(Ts)2] + - 028 L@ p(Ts)?] + gCICQWO[(I)B(TJ)Q] +R
where, by (L5:30), |[Rl|s™) <, &% + €¥||3]|5i") . Then we write 8 = e 41 + % B + Ry, where
B1:=—2¢10 — 2028;1(5),
B2 i = —2¢1U5(T) — 202551(‘1’ (v )) 440 () — esmo[v?] (4.6.34)

~ 20 (1] + 840, 2] + 0 307 7] + S ercamo]
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and Rg is defined by difference and satisfies, by (4.6.3),

i Ls ~ ~ ~ ~
[RallZ70) < &+ el| T [ <57, 1ORs[lls <o e(llillso + Tsllorolillsoto)-

Now we can develop agp and «; in powers of €. By (4.5.35)), (4.5.36), (4.6.33) and by Remark
we obtain ag 1= ey 1 + 62a1,2 + Ry and ap = €ap,1 + 62010,2 + Rg, where

a1l = 2 coUgy — 6 ¢330,

4.6.35
a12 = LE[ﬁQ] + 2(52)%1:30 - ( )

41
? ax[(ﬁl)a: (Bl)x:v] + ap,2 + ap,1 (Bl):cv
and

Qo1 = 2 CoUzgr — 6 370y,

Qp2 = axLU[/BQ] - 3890[(61)30 (/Bl)xa:x] - 381;“,81)33:] + aO,l(/Bl):car + (aO,Z)J:-

The functions Ry and R; are defined by difference and satisfy the following estimates

(4.6.36)

L ~ Li A~ ~ ~ ~
[RA[|ZPC) <, &3+ || Ts|| 22D, 0Ralillls <s e(lillsto + [ Tsllstollilsoro)s *=0,1. (4.6.37)

Remark 4.6.6. We note that the terms O(e) generated by the Hamiltonian [1.(3civy + cov) 22 da
(see (4.1.8)) are cancelled by the diffeomorphism of the torus .

Remark 4.6.7. The averages of aj,j = 0,1 for k =1 are zero and, for k£ = 2, we have
4
MJan 2] = Mylaga] + Mylao (B1)s] = —2c6 My[02] — 12¢7 M, [0°] + g"’%Mw [02] 4 4eges M [07],

Mx[aog] = Mx[a(),l (Bl)xx] = —40162Mx[@§x] — 120103M$[§326}.

We used the fact that 9,M,[v?] = 0, see Remark Moreover, we note that, for a similar
argument, M, .[oy o] = My[ay 2], for k=0,1.

The transformation A7 — 1 (see Section 8.1) is of order O(e), hence it generates new terms of
order O(g?) when it is applied to ones of order €. In particular, by the regularity of the function
v(p, x), that is at least C?, we have, for k = 0,1, by Taylor expansion

(AT = Dar1(e,y) = elar1(e,y + B(e,y) — ari(p.y) = edy(an1)(.y) Blp.y) + R,

where [Rzls <s e3(1 4 ||35||s40) for some o > 0.
We observe that (¢, y) = —(AT 8)(¢,y) and by ([£.6.34) we get, for k= 0,1,

(AT = Do (p,y) = =& 9y (k1) (¢, y) Bi(w,y) + Rz, (4.6.38)

where we have renamed Rj the terms of order o(g?).

Remainder R

The remaining terms of order 2 generated by the diffeomorphism of the torus ® have the form
(4.5.5) and originate from Ry = ®R; (see (4.6.18)). Thus we analyze the expression

Rir:= Hé‘(A — I)Hs[bgayyy + blﬁy + bo] - Rq;(bgayyy + blé?y + bo)
—50,(? Ry + Ri) AL — 115000 (a10,) + 04 (ag-)|ILg AILS + [Dy,, Ra) (4.6.39)

+ (Ly —Dy)Ro.
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We start from the first term in (4.6.39). As we said above, the transformation A — I has size O(g).
Hence, we look for the terms O(g) of b30yyy + b10, + by. We have, by (4.6.23)), b3 = 1+ O(e?) and
by = ay + (AT —I)ay, for k=0,1. Thus

b38yyy + blay + b() = 6yyy + 6(%(041,1 ) + 0(52).
By Taylor expansion at the point 5 =0, we get, for a function u(p, x)

(A =Du(p, z) = (1+ Bo)ulp,z + B) — u(p,z) = u(p,z + B) — u(p, x) + Baulp, z + B)
= (0, 2) B0, ) + Bu(i0, w)ulep, ) + O(B?) (4.6.40)
= 20, (B1(p, ) u(p, ) + O(?).

Therefore we have
Héﬂ'(.A — I)Hs[bgayyy + 528yy + blay + bo} = 52H§[6$(61 896(&171 ))] + 0(62) (4.6.41)

Now we extract the homogeneous terms of order £ from Rg (see (4.6.9))). We recall the exact
expressions of g and xj in (4.6.9) refering to the proof of Lemma 8.2 in [§]. We have

g (7, ) = —(®7) T [b(1) e, (4.6.42)
where (®7)T is the flow of the adjoint PDE

. AW
1+ 78:(x)

This equation is well defined on Hg, (T,), because the function b is smooth enough. By (4.6.42)) we
have

Orz = IE{b(T,2)0,2},  b(r, ) = efy + O(e%). (4.6.43)

g (7, 2) = ~b(7)Bpe™ + (Iyy — (87)7)[b(r)Dpe*]
and, for = € HS, (T,), by (£6:22) and (543), [I(87)7z — 2lls <4 cC(llzlls1 + [Tsllsroll2llss),

where C' is the Lipschitz constant, in time, on the interval [0,1] of the flow (®7)T. Hence, by

(4.6.42),

g = —ef1 0, + 0(52). (4.6.44)
Now consider 148
X i= — g expliky” (x4 B(a).
where 7 is the flow of the characteristic ODE
4~ b(r,2) (4.6.45)
dr ’

By , the vector field of has size O(e) and, by similar arguments used above for the
flow of (4.6.43)), we have 4" (z) —z = O(e). By Taylor expansion of the function exp(iky™(z+ 3(z)))
at § =0 we have

i = "+ O(e). (4.6.46)

Recalling (4.6.40) we have
U = (AT —1D)e™ = £0,(81™) + O(?) = e(B1) e + b1 0,6'F + O(?). (4.6.47)
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Eventually, by (4.6.44)), (4.6.46) and (4.6.47)), we have Rg = cRg + O(£?), where

Ro(h) : = — Z(h, B10:€") p2(p)e* + Z(h, (B1)2€™) p2(my €™ + Z(f% B102€*) 2™
kes kes kes

= s[(61)x h].
(4.6.48)
By the range of R is orthogonal to the subspace H ké, hence the term ®~! Ry (b30yyy +
b10y + by) will have size at least O(¢3), indeed ® = Iys + O(e).

We ignore the terms 2Ry and R, because are too small. Then, we can consider

(Lo — Du)Ro = &[0 (a18,) + 02 (ap-)]TTERe = 0.

By we have
Hé_ [022(a10z) + Ox(ao)| s (A — I)Hé‘_ = 52Hé_[3xx(al,1amns[ﬁl ) + Oz(ao,1 0:s (B -])] + 0(52)-
(4.6.49)
It remains to study the commutator [Dy, Re] = [Dg, RS] + O(3). We have
[Dg; Relh = e Dglls[(B1)ch] — ells[(B1)e Doh] = ells[(Da(51)2)h]
and so @D, Re| = o(c?).
Finally, by (4.6.41), (£.6.49), we obtained R;; = e*Rs + 0(?), where, for h € Hg,
Ro[h] = Ig{0: (81 Is[0:(a1,1h)]) — Ora(a1,10:115[0:(B1h)]) — Ox (01115 [0 (1)) }
=4dcico H%{_ax(vé 6mHS[(v6)xx h]) + axx((vé)xa:m?ns[(az_lvzs)h])
+ Ops (1)5 Opzllg [’U(;h]) + BI((UC;)M O.1lg [vgh])}
4 _ -
+ 3 C% Hé_{_az((az lvé) Op1ls[(vs)za h]) + Ope(V50ze Us[(0; 1U5)h]) (4.6.50)
+ 00 (05w Ol [(0, M v5)])}
+12c¢ic3 HJS‘{@C (1}5 0.11g [’05 h]) — Oy (1)5 &EHS[U(;h])}
+ 4 cocs H§{8x((8;1v5) O, Ilg[vs h]) — Ox(vs 81H5[(8;1v5)h])}
+ 126315 {000 ((v8) 2 Opalls[vsR])}
Using (4.6.16)), (4.6.18) we get
Ry = & 'Ry = -5, Ry + R (4.6.51)
where Rg, defined in (4.5.32)), has been renamed as
Ry :=Ra — 0, 'Ry (4.6.52)

and we have renamed R, the term o(c?). Note that Rfi[h] has zero spatial average for every h
belonging to Hg, (T**1) and the remainder R, has the form (4.5.5)).
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4.6.3 Time reduction at the order 0,,,

The goal of this section is to make constant the coefficient of the highest order spatial derivative
operator Oy, by a quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(p,y) == w(p +walp),y), (B~h)(9.y) = h+wa(d),y), (4.6.53)

where ¢ = 9 + wa () is the inverse diffeomorphism of ¥ = ¢ + wa(yp) in TV. By conjugation, the
differential operators transform into

B 'w-9,B=pW)w-09y, B '0,B=0,, p=B11+w- ). (4.6.54)
By , using also that B and B~! commute with Hé, we get
B7'LiB =Tg[pw- Og + (B7'03)0yyy + (B7101)d, + (B~ bo)|IIg + B™'9R; B. (4.6.55)
We choose « such that the new coefficient at order 0y, is proportional to the function p()), namely
(B~ '03)(0) =m3p(9), mzeR = b3(p)=ms(l+w-dpalp)). (4.6.56)
The unique solution with zero average of is
a(¢)i= o 0) - ma)(), mai= o [l d, (46,57
Hence, by we have
B7'LiB =pLy, Lo:=Tg(w- g +madyyy + c10y + o)z + Ro, (4.6.58)
c1:=p H(B7y), co:=p H(B7'hy), Ro:=p 'B7'RB. (4.6.59)

In order to control the corrections to the normal frequencies also at lower orders of size, we expand
the constant coefficient ms, defined in (4.6.57)), in powers of €. We have

mg = 1+ 2d(€) + rpm, (4.6.60)

where 8
d(€) : = (12¢4 — 24 ¢}) My, 1 [02] + €%(2c6 — = ¢3) My . [07]

6 3 (4.6.61)

= (24cy — 48¢T)vs - € + (4cg — gcg)vl ¥

and |r,[MP() < &3, The transformed operator Ly in (4.6.58) is still Hamiltonian, since the
reparametrization of time preserves the Hamiltonian structure (see Section 2.2 and Remark 3.7
in [7]).
We note that, by (4.6.59), for k = 0,1, we have
ck=by+ (B =D+ (p ' —1)B by
and by = O(e) is the biggest term in the expression above. We define, for £ = 0,1,
Gri=cp—bp=(B ' =Dbp+ (p' —1)B 'ty (4.6.62)

and we estimate them in Lemma The remainder Ry in (4.6.59) has still the form (4.5.5) and,

by ([.6.51)),
Ry := —p BRI B = —* 1150, Ry + R, (4.6.63)

where Ry is defined in (4.6.52) and we have renamed R. the term of order o(g?) in Ry.
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Remark 4.6.8. In the proof of the estimates for the transformations B and 7T, respectively defined
in (4.6.53]) and (4.6.75)), we have to give a bound to the inverse of the operator D,, applied to the
difference of a spatial and total (in space and time) average of some function in Hg, (T” +,

The main problem is that the estimate is too rough to deal with functions h(p,x) of size
greater or equal than €3, indeed, the terms O(g3y~!) are just not perturbative.

In the proofs of Lemma [4.6.9] and 4.6.10 we exploit the fact that if h(p,x) is a function supported

on few harmonics, then we do not need to use the diophantine inequality (4.3.3)) to give a bound to
the divisors appearing in the Fourier coefficients of D_1h.
In this way, we overcome the problem discussed in Remark 8.11 in [§] and we can drop the hypotesis

Ji1+j2+73#0 forall ji,ja,j3€S
on the tangential sites assumed in [§].

Lemma 4.6.9. There is 0 = o(v,7) > 0 (possibly larger than the one in Lemma such that

jms — 1970 < O 2, |mail] < &2l (4.6.64)
Li
o[ 2700 <, &by + 13515 )» 10scfillls <s [2llsto + 1Ts5]lsto 12l so+o (4.6.65)
L R ~ .
lo = 1P < &+ 2 |[35] 257, N0iplillls <s e (lillso + [Tsllso lillso40), (4.6.66)
. Li . ~ .
lERllZP0 <, 372 4 el| T 07, (19ieklillls <o e(lillsro + [Tsllsrollillsoro)- (4.6.67)
Proof. Estimate (4.6.64): To shorten the notation we write ||-||s := ||- HLlp('Y). We have ms — 1 =
fTV (bs — 1) dyp, then, by (4.6.23] m,
ma =11 < [ [bs = 11dp < b3~ 1], < =2
Tl/
umafil] < [ ablilde < 10y < il
'H‘V
Estimate (4.6.65): To shorten the notation we write |-||s := |- HLW . By (4.6.57) and the fact that

mg is a constant near to 1, it is sufficient to give a bound to bs — ms.
Consider the functions g(t) = (1 + t)_%, Y(t) = (1 +t)73, defined in a small neighbourhood of the

origin.
We have
by —mg = (b3 — 1) — M[bs — 1]
T[M,[g(ar — 1) — g(0)]] - M[TY[M,[g(ar — 1) — g(O)]]]. .
By the analiticity of T
() - TO) = YO+ Toaltl, Toafti= 30 T

for |t| small enough. Hence, by ,
by —mg = T'(0){Ma[g(ar — 1) = g(0)] = My zlg(ar — 1) — g(0)]}
+ T>2[M[g(ar — 1) = g(0)]] = My[T>2[Mz[g(a1 — 1) = g(0)]]].

(4.6.69)
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The difference of the last two terms in the right hand side of (4.6.69)) can be estimated by

[T>2[Mz[g(ar = 1) = g(0)]] = My[T>2[Mc[g(ar — 1) = g(0)]]]]]s

<o [Malg(ar — 1) — gl | Malglar — 1) — gO)]ls "o 40+ [34]0).

Now we prove a bound for the difference M;[g(a1 — 1) — ¢(0)] — My »[g(a1 — 1) — g(0)].
By Taylor expansion

a1 1)~ 9(0) = g O)(ar ~ 1) + L Py~ 12+ L0, -1y
a— 14 1
A [ 9P st - 1) ds

and the last term of the right hand side can be estimated by &*(1 + ||Js||s10) -

The function a; in is a linear combination of ®(Tj), ®5(T5)? (and their derivatives in the
xz-variable) and r1(Tj), whose coefficients depend on ¢y, ...,c; and other real constants. Without
loss of generality, to simplify the notations, we can write a; = 1+ ®(T5) + ®5(T5)? +71(Ts) (recall
(#5.10), (#.5.29) and (£.5.25)). Thus, we have

Mlay — 1] = My [®5(T5)?] + M[ri(Ts)],
M[(a1 — 1)%] = Mg [®(T5)?] + 2Mo[®5(T5)%] + Qu(T5),
M[(ar = 1)°] = 4M [@(T5)°] + Qs(T5),
where |[|Q;(Ts)||s <s €* + €**||Ts)|s10 for i = 2,3. By and the fact that ®p(Ty) has size

O(e), r1(Ts) is a polynomial of degree three in the variables (®g(T5s), ®5(T5)z), up to a remainder
that is bounded in H* norm by £*(1 4 ||J5/|s+0). Thus, we reduced to study the differences

M [@p(T5)%) = Myo[®5(T5)%),  Mu[®p(T5)°] — My [®s(T5)%).
We have, up to constants,
@B(T5)2 = 821)§ -+ 81)5(} -+ 53115\1/2(?)5) -+ QQ(T(S), (I)B(Tg)g = 631)? + Q3(T§),

where [|Q;(T5)||s <s e* + &2+?||T5|s1o for i = 2,3. By the definition of § and the fact that vs and
2o are orthogonal in L?(T), we have

eM,[vsq) = 2T M, [Wh (vs)vsz0) + e My vs U (Ts)], (4.6.70)

thus || My[evsd] — My levsdllls <s €* + 21| Ts|s40. It remains to estimate the differences of the
averages of polynomial of degree two and three in the variables vs and its derivatives. These functions
are of order €2 and €2, respectively, and supported on not many harmonics, because vs is not.
By (4.5.10) we get
Mool — M 21 _ _2(b-1) . Ny ,
(03] = Myalod] = 2070 3751 (ws); — Myl(ys); ).
jes
We gain an extra smallness factor £2(0=1) by the fact that M, [02] is independent of ¢ (see Remark
4.6.1). Thus, we obtain €2||M;[v3] — My . [v3]|ls <s £2||Ts]/s-
For the cubic terms in vs we use the following equality

Malof) — Myooltd) = (Mo[t%] — M a[o%) + Mafof — 0°) — Molo} — %, (4.6.71)
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where ||Mm[U§’ — 7] - M%I[“? =05 <s €%(|Ts]ls-
We now analyze the first difference in the right hand side of (4.6.71)). We cannot roughly bound it
by &3 (see Remark [4.6.8)). But we have

. 3y _ WAIRIAIR i(1(1)+1(j2) +1(ja)) ¢
R D D N ARSI ARTEA L '
J1,32,J3€5,
J1+j2+353=0
1(j1)+1(j2)+1(j3)#0

(4.6.72)
We recall that w = @ + O(£?), hence the denominator in (#.6.72) can be written as

w- (1) +1(2) +1(J3)) =@ - (1(j1) + 1(J2) +1(43)) + (w — @) - (1(j1) + L(j2) + 1(J3))
7+ 75 + 5 + O(e?)

and it is greater or equal than 1, indeed, if j; + j2 + j3 = 0, then |5} + j3 +j§| = 3517273 > 3.
Thus, actually,

1D (Mo[o%] = Mo [07])||s < €°.
Finally, we get

o3 = mslls <5 €® + || Tsllso  and  DSHbs —ms)lls <s €T+ [Tsllsro,  (46.73)

so [lells <s ety + 135 ls+o -
Now we look to the partial derivative

05 (b3 - mS) [i] = LQ [m38i(b3 - m3)m — (bg — mg)&mg[i]] . (4.6.74)
m3 m3

By (4.6.64) m3—1 and 9;ms[i] are of order €2, hence the estimate for 9;a[i] comes from D_1(9;(bs—
mg3)[?]). By (4.6.69) we have

9i(b3 — m3)[i] = T'(0){ M[di(g(ar — 1) — g(0))[2] — My 4[0;(g(ar — 1) — g(0))[i]]}
+ 0i{T>2[Mz[g(ar — 1) — g(0)]] = My [T >2[Mz[g(ar — 1) — g(0)]]]}[i]

As before, the bigger terms are the partial derivatives of M[g(a1 —1)—g(0)] — My, »[g(a1 —1)—g(0)].
We have

g/// (O)

9i(g(ar — 1) = g(0))[i] = ¢'(0)da1[i] + ¢"(0)(ar — 1) Djan [i] + (a1 — 1)* iaa [i] + T(is, 1)
where [[T(is, 7)[ls <s e*([[ills+o + 1 Ts/ls+ollells+0) and
Dsa1li] = D (Ty)[i] + 20 (T5)0s® 5 (Ty)[i] + Bidli].
We note that M, [0, (Ts)[il] = Mo [dsdli] = 0. Thus, we focus on the terms
p(T5)0:®p(Ts), @p(15)°0:25(T5), ®p(Ts) o[-

Further terms have Sobolev norm bounded by £2*°(|i||s+0 + [|Ts|s+o ||?llso+0) - We have

O p(T5)0:® (Ts) = 2vs Opvs[i] + £3(Wa(vs) + Wh(vs)vs)Osvs[i] + €di(Gus)[i] + T(is, 1),
@B(T5)23i(133(T5)[’Z] = 531)(% Oyvs[i] + T(is, ),
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where [|T(i5,7)|ls <s €2 (||ills10 + || Tsllstollillso o) - We start from the average of the partial deriva-

tive of vsG. By ([.6.70) we get |0 Mz [vsd|[i]lls <s €2 °(||illss0 + || Ts||stollillsoro) - Then, we reduce
to study
Mg [v50;v51]] — My u[vsioslil],  Ma[v§0svs[al] — Mop,a[v30;05i]]-

If we call G(io(¢)) :== ys — Yo, then we have

200-1)( i(00); ab-1) 9i T (8iG(io(¥))[2]), ) ijz
Ouusf] = X VITTY/& + 20D sl (1@ TS D))

JES
and
M, [v50;05[i]] — Mip,a[vsivsli]] = €@ " 10;((ys); — Mo[(ys)5)
jES
22(-1)

> _{(0:Gio()[M)); — My[(9:G i () [1]);]}-
JjES

Therefore, &2|| M, [vs0; v(;[A]] Mo 2 [vs0iv5 ()]s <s €22(|[illsto + |Tsllst0l2llso+o) - Moreover, we have

€3 M [v305vs[illlls <s €3 ([[ills+o + | T5llstollellso+o) - Hence, we get
10i(bs —m3)[i]]ls <s 52b(HiHs+o + Hj(sHS-i-aHiHSO—f—U)

and [|0;ai]|| <s ||t|ls+o + [|Tslls+o 2] so+o -By Lemma we deduce the inequality (4.6.65)).

Estimate (£.6.66): Note that p—1 = B~ ((bs — m3)/m3). Thus, by LemmalA.0.5, (4.6.65)), (4.6.73)
we get

_ i Lip( Li Lz
1B~ (b3 — m3)/m3) | ZP0) < [[bg — mal|Z20) + (|| 22 |16y — ma |57

s+so
<o 3 4 2|35 20

Estimate ([4.6.67): Note that ||[p~! —1||s <4 ||[p— 1||s. By Lemma|A.0.5{and (2.1.4)), (4.6.24)), we get,
for k=0,1,

— L — L
I(B7! =D bellF7D <, &7y 2 4 el| 3557, (107! = Dbl <, et 4 235

4.6.4 Translation of the space variable

The goal of this section is to remove the space average from the coefficient in front of 9,. This
is a preliminary step for the descent method that we apply at Section 8.7.
Consider the change of variable

(Tw)(0,y) = w@,y+p(@), (T-I)W,2) = hd,  — p()). (4.6.75)
The differential operators in £y (see (#.6.58)) transform into

T w-0pT =w- 0y + {w-09p(9)}0., T '0,T = 0..
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Since 7,7 ! commute with II$, we get

Ly:=T LT =g (w- g +m3 sz + Dg 0. + do)II§ + Rs, (4.6.76)
di:= (T ler) +w-8pp, do:=T 'co, Rz:=T 'ReT (4.6.77)
and we choose
m'l/ cpddd = (w-Oy) ! m—l/cd (4.6.78)
1= 2 Jpoi 1 Y, P= 9 1= 5 . 14y 0.
so that 1
o d1 (9,2)dz=my VI €T". (4.6.79)
We define
dp = dy —eapy —X(apa —ar1 (B1)z), k=0,1 (4.6.80)

and we split M3 = —20,Ro + R, where Ro is obtained replacing vs with 7 in Rs and
Ri =T YR.T + 2110, (Ro — T 1RoT) + 21150, (R — Ra), (4.6.81)

where R, has been defined in (4.5.34) and modified along this section by adding terms o(g?). We
used that 7! commutes with 9, and qu-.
We define

c(&) == My zlar2+ 011 (B1)a)]- (4.6.82)

This quantity is a correction at order €2 to the eigenvalues of the linear operator L., see (4.5.33).
In particular, we have

my = e2¢(€) + Ty, with |rp,, |FP0) < 372

Lemma 4.6.10. There is o := o(1,v) (possibly larger than in Lemma such that

mi — 2e(&)|"P0 < Ty, [3i(ma — 2e(€)i]] < €7 illsoor (4.6.83)
— Li
Il <, ety + (1355 ), 10iplllls <s [l2lls+o + 1T5lls+oll2llso+o (4.6.84)
Li A ~ A
il 270) <4 &322 4 &35, 1Bk llls <o elillsro + [Tsllstollillsoro) (4.6.85)

for k=0,1. Moreover the matriz s-decay norm (see (2.3.1)))

. . . ) L )
RAEPO) <, &4 236107, 0Ru[ls <o llillso + 2 Tsllsvo lillsoto- (4.6.86)

The transformations T,T 1 satisfy (4.6.25)), (£.6.26).

Proof. Estimate (4.6.84): To shorten the notation we write ||-||s := |- ||Llp . By (4.6.59) and (4.6.78])
we have
m1 = My[er] = (Mya[b1] = Mo[bi]) + (Mpo[(p™" = 1)ba] = Ma[(p™" — 1)bi])
+ (Mg [(B™ = D] = M [(B™F = 1)) (4.6.87)
(0™ = D)(BT = Dbi] = My[(p™" = 1)(B™" = D)bu)).
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By (4.6.65)), (4.6.66) and Lemma [2.1.4] we get

(=" = 1)(B™! = Dbills <5 772 + %971 Ts 540
Thus, by (4.3.23)
D5 (Moo~ ~D)(B™ ~Dbi] = My[(p™ ~ (B~ = DT}l <u 7> %9 sl s (46.588)

We note that p~! — 1 is independent of x, hence M,[(p~! — 1)b1] = (p~ — 1)M,[b1] and we can
estimate the difference between the averages of (p~! — 1)b; with

1™ = )M [ba]lls <s €% + 20T 540 (4.6.89)

and use again ([£.3.23)) for | D (M .[(p™! — 1)b1] — Ma[(p™! = Dbi))|ls <s €271 + €| Ts|s+o -
By Taylor expansion and the fact that & = —a+ (B — I)a (see (4.6.53)), we have

b1 (¥ +wa(v),x) = b1 (9, z) —w - Oyb1(V, ) () + Ra(V, x)

where ||Ra||s <s €872 + ety 71| T5]/s40 . Moreover, by a change of variable

/ (B~ —D)by di¥ dz = / w - Opa(p) bi(p, x) dp dx. (4.6.90)
']I‘V+1

’I[‘V+1

From these facts and an integration by parts, we obtain
M,[(B~" = 1)b1] — My, [(B™" = 1I)b1] = Dya My[b1] — My 2[(Dewcr) bi] + My[Ra] — My 2[R
and, by the estimate above for Rg and the bound given by for Dya, we have
M, [(B™! = D)b1] — My, (B~ = Db]|ls <s € + 2D T5] 540 (4.6.91)

As before, we can use (4.3.23). We remark that

/Tbl(%y)dyz/T(ATal)(%y)dyz/Tal(%erB(%y))dy:/al(%w)(lJrﬁm(%x))dw,

T

hence, it remains to estimate
Moo [b1] = Ma[b1] = (My,o[on] — Me[on]) + (Mo o1 fe] — Melon Be)). (4.6.92)

The functions «; and «;f, are linear combinations of powers of ®5(7T5) (and its derivatives in the
x-variable), r1(Ts), ro(Ts), whose coefficients depend on ¢y, ..., c; and other real constants. Hence,
using the same reasoning adopted in the proof of the estimates (4.6.65)), we get

IDZ My wlon] = Malaal} s <s €'+ [ Tslls40 (4.6.93)

and the same estimate holds for D { M, ,[Bz01] — My[Bzcn]}. By following analogous arguments
used in the proof of the estimate (4.6.65)) we conclude.

FEstimate (4.6.83): By (4.6.59) and (4.6.78))

mq :/ by dxdgo—i—/ ¢1 dx dep.
’]TV+1 "H‘l/+1
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Moreover,

/ by dxdp = / (2019 + Ry ) da dyp + / (AT — Dy dz de.
"]Ir/+1 ’]1‘1/+1

’]1‘1/+1

Thus, the bound (4.6.83) comes from taking the maximum between

< |IRay llsy + (AT = D1 — a1, < €°

/ by do dy — 52/ (12 +a11 (B1)z) dpd
Tv+1 Tv+1

—2 _ _3-2a

and [|é s, < Ty 2= ¢

Estimate (4.6.85)): We observe that, by (4.6.38]),

do = *(AT = Nagz + ATRo + R + (T = Dby + T 0.

By Lemma, we have the following bounds

X Li L
e2(AT = D 2| FP0) <4 31+ |[35]|1520),  JATR[|L#D) <, 3 + &35 L,
L _ L1
IR; HL””)< &% 4 3| L) T e | FPO) < Ty 4 |35 P,
_ Li L
(T~ = Dbo||L#) <, €772 + & 3]| 2.

From these estimates we get (4.6.85)) for £ = 0. The estimate for £ = 1 can be obtained in the same
way, considering that w - dyp = O(57y~1) in low norm by (4.6.84). O

4.6.5 Linear Birkhoff Normal Form (Step one)

Let us collect all the terms of order ¢ and €2 of L3 (see (4.6.76))) in the operators

%1[h = Ozh + Qg1 h = am{(QCQ/U:Ex — 603’0) h},
Bolh] = {a12 — (a1,1)z B1} Oxh + {02 — (0 1)z B} h — OxRa[h].

(4.6.94)

Note that 21 and By are not the linear Hamiltonian vector fields of H é: generated, respectively,
by the Hamiltonians R(v%2) and R(v?z%) in at v = U, as expected. Indeed, as we said in
Remark some Hamiltonians of type R(v2z) have been eliminated by the diffeomorphism of the
torus @ defined in Section 8.1, and also the Hamiltonians R(v?22) have been modified by that.
Renaming ¥ = ¢,z = x we have

L3 =TI (w - Dy + M3Oyae + By + 2By + d10; + do)TTE + R (4.6.95)

where dy,dy, R are defined in (4.6.80) and (4.6.81).

The aim of this section is to eliminate 87 from . In the next section we shall normalize the
term Bo.

We conjugate L3 with a symplectic operator ®1: HgL(’JI"’“) — H, (T**1) of the form

A2 . R 5k:—3
P = exp(EAl) = IH§ +eA; + 82?1 + €3A1, A = Z T A]f, (4696)
k>3
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where A1(p)h =3, icge (Al)gl(go) hjr €77 is a Hamiltonian vector field. The map ®; is symplectic,
because it is the time-1 flow of a Hamiltonian vector field. Therefore

L3P — &1115(D,, + m30pe) s =

1 1
=g (e{Dw A1 + m3[Oaras A1] + B1} + 7 {B1A4; + By + 513 [0r A3 + 5(DwAf)} (4.6.97)

+ d10, + R3)1I3

where

- - - ~ o 1 N
R3 := d18x((131 — I) + do®1 + R+P1 + 52%2(@1 — I) -+ Eg{DwA1 + mg[axm;, Al] + 5’3114% + 8%1141}.
(4.6.98)

Remark 4.6.11. R3 has no longer the form ([4.5.5). However R = O(9!) because A; = O(9;1)

T

and therefore ®; — Iy, = O(9;1). Moreover the matrix decay norm of R3 is o(g?).

In order to eliminate the order ¢ from (4.6.97]), we choose

) B (%1)5(5) G0 P40 i eseteny
(A)f () = ¢ ilw- L+ ms(j? = 57)) ’ ’ ’ (4.6.99)

0 otherwise

This definition is well posed. Indeed, by (4.6.1)) and (4.6.94)

(B () = {(—Qij c2(j =) —6ijes)/1j— 51—y ij—j €S, L=1(j-])
20

0 otherwise.
(4.6.100)
In particular (%1)?(6) = 0 unless |[¢| < 1. Thus, for (¢,7,;') such that @£+ j"3 — 53 # 0, the
denominators in satisfy

w -l +ms(§? = )| = Ima(@ - £+ 5 — §%) + (w0 — maw) - {| >

e (4.6.101)
> [mgl| @ £+ % = 7| = |w —ms®] €] > 1/2, V|| <1

for e small enough, since m3 — 1 and w — @ are O(e?). A; defined in is a Hamiltonian
vector field as B;.
Lemma 4.6.12. (Lemma 8.16 in [§]) If j, 5/ € S¢,j —j € S, =1(j — j'), then
w0+~ =355 (1 — ) #0.
Corollary 4.6.13. (Corollary 8.17 in [8]) Let j,j' € S¢. If w-{+ j® — j3 =0 then (B1)] = 0.
By and the previous corollary, the term of order ¢ in is

1 (D A1 + m3[0pee, A1] + B1)I15 = 0. (4.6.102)

We now prove that A; is a bounded transformation.

Lemma 4.6.14. (Lemma 8.18 in [§])
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(i) Forall 0 €7V, j,5 € S°,
(AN (O < O+ 17D7Y (AT (O < e2(|j] + 15D~ (4.6.103)

(i1) (Al);:/(ﬁ) =0 forall £ €Z",j,7 € S¢ such that |j — j'| > Cg, where Cg := max{|j| : j € S}.
The previous lemma means that A = O(9;1). More precisely, we deduce that
Lemma 4.6.15. (Lemma 8.19 in [8]) |A19,]577) + 9,4, [F77) < O (s).
It follows that the symplectic map ®; in is invertible for € small, with inverse

n—1

(A A0 EPO) 4 (9, A1) < O().

<I>1_1 = exp(—¢cA;) = IH§ +eA;, A= Z
n>1

(4.6.104)
Since A; solves the homological equation (4.6.102)), the e-term in (4.6.95) is zero, and, with a
straightforward calculation, the e?-term simplifies to Bo + 1 [%1,A1] We obtain the Hamiltonian

operator
Ly =0 L30) =TI5(D, + mgam +d18, + 2By + = [%1, A1)} + RIS, (4.6.105)
Ry := (O] — DITE[*(By + = [’Bl,Al]) + d18,) + 7 IE R3. (4.6.106)

We split A; defined in (4.6.99), (£.6.100) into A; = A; + A; where, for all j,j’ € 5S¢, 0 € Z”,

o 2i _ = 6 — e
@) () = - dea(G—3)2 00— 76— + 103\/3 7'&5—; (4.6.107)

wel+ 57—

fw-l+3—3+40,j—4 €8, £=1(—4), and (Zl)gi’(z) := 0 otherwise.
By Lemma [4.6.12] for all 7,5’ € S¢,¢ € Z",

2 j—j’) — 1 — P
. —5C2 Vi =385 =23 = V1i —7'l§j—y  ifj—J €5,
Ayl =3 3 ( 7’ =71 G =g VI

0 otherwise,

namely
— 2
Arh = —§CQH§[UI (031 h)] + 2 3115 [(0; '0)(05 *h)],  Vh € HE, (TVTH). (4.6.108)

The difference is

i (2025 — i) +6c35)\/17 — 31— {(w—©) - L+ (mg —1)(5 — %)}
(Ar); (0) := G meP )@ T B (4.6.109)

for j,7' € S%j—43 €S =1(j—j), and (/Nll)gl(ﬁ) = 0 otherwise. Then, by (4.6.105]),

Ly = & (D,, 4+ m3dyae + di Oy + 2T + Ry)IIE, (4.6.110)

where
2

T :=B9 + — [%1,141] Ry := %[531,141} + R4. (4.6.111)

The operator T is Hamiltonian as B1,Bs, A1, because the commutator of two Hamiltonian vector
fields is Hamiltonian.
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Lemma 4.6.16. There is 0 = o(v,7) > 0 (possibly larger than in Lemma|.0.10)) such that
; — ~ nLi ~ N ~
|RafEP0) <, Ty 4 | Tall 57, 10iRalills <s ellillaro + I Tsllstolillpso)- (4.6.112)

Proof. The proof follows the one of Lemma 8.20 in [8]. The only difference is the estimate on the

coefficient dj (see (4.6.85)), that gives the term of size e"y~2 in ([#.6.112), instead of >y~ in the
inequality (8.95) in [§]. O

4.6.6 Linear Birkhoff Normal form (Step two)

The goal of this section is to normalize the term €27 from the operator £4 defined in .
We cannot eliminate the terms O(s?) at all, because some harmonics of €27, which correspond to
null divisors, are not naught.

We conjugate the Hamiltonian operator £4 via a symplectic map

22(k—2)

A (4.6.113)

By = exp(edy) =Ly + Ay +e'hy, Ay =y
k>2

where Aa(p) =3, icge (Ag)?((p)hj/eijx is a Hamiltonian vector field. We compute

LDy — BollE (D, + M30000) 1T = T (e2{ Dy Ay + m3[0rae, Ao] + T} + d10, + R5)IIE, (4.6.114)

Ry := & {eX(Dy, Ay + m3[0pea, A2)) + (d10y + 2T)(Dg — 1) + Ry®o IS, (4.6.115)
We define ‘
17 (0)
% - L w4 R -3 £,
() (1) = | T bamaR =y T (46.116)
0 otherwise.

The definition is well posed. Indeed the matrix entries le(ﬁ) =0 for all |j — j'| > 2Cs,¢ € ZV,
where Cg := max{|j| : j € S}. Also le(ﬁ) =0 for all 5,5/ € S |¢| > 2. Thus, arguing as in
(@.6.101), if w- €+ j — j2 # 0, then |w-€+m3(j” — j3)| > 1/2. The operator A is a Hamiltonian
vector field because 1" is Hamiltonian.

Resonant terms

Now we compute the terms of €27 that cannot be removed by the Birkhoff map ®,.

By (4.6.108), (4.6.111) we get, for h € Hg, ,

4
B1 Ai[h] = _gcg (%Hﬁ [Usa Hé [V (6ac_lh)]] + 4620361H§ [Umﬂé[(ﬁx_lﬁ) (8gc_lh)]]
+ deaes 0,15 [115 [02 (9, ' h)]] — 12¢30, 115 (0115 [(0; ') (0, "))
— 4
A8, [h] = —gcg HJS' [ﬁx HJS' [@;mh“ + 4CQC3HAJ§ [695 HJS' [@ h]]
+ deaesTIg (9, '0)IIg [Uar )] — 12c3105((0; '0) g [0 b))
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whence, for all j,j’ € S¢, ¢ € Z",

— 4 5. jitde — g5 7 -
@A) 0=y X (HERDARD) e,

J1,52€8,J1+je2=j—J,
J'+72€8°1(j1)+1(j2)=¢

. —JJTt 70135 —J1J20 —J3) .
+ 4cgesd Z ( ! j2’j1j21 2 > 171 5211 &5

J1,J2€8,51+j2=5—5’,
J'+52€8°1(51)+1(j2)=¢

.
. JJ1—7JJ2 .
+12c31 > <],jl]2> 71 721€: o -

J1,J2€8,J1+je2=5—J,
J'+72€5%,1(41)+1(j2)=£

(4.6.117)

If ([B1, A1])} (¢) # 0 there are jy,j2 € S such that j1 +ja = j — 5', 5" + j2 € S%,1(j1) + 1(j2) = £.
Then

WA+ = =0 100) + @ 102) +5° - 5 =+ + 57 -5 (4.6.118)

Thus, if @£+ ;% — 2 = 0, Lemma (4.1.3) implies that (51 + j2)(j1 + 5)(j2 +§) = 0. Now
g1+ 74, jo + 7 # 0 because ji,j2 € S,7' € S¢ and S is symmetric. Hence j; + jo = 0, which implies
j=4"and £ =0. In conclusion, if @- ¢+ j” — j3 = 0, the only nonzero matrix entry ([‘Bl,zl])g (0)

1S
1 o 4. . . o
SBLAN O =281 Y Bl +8eci Y hlklg
J2€S,ja+jES® J2€S,jo+jEeSe (4 6 119)
+12ci Y gy el &
J2ES jatjeSe

Now consider B, defined in (4.6.94]). We split B9 = By + By + B3 + B4 + Bs, where

Bilh] == a12hy, Balh] :==ag2h, Bs[h|:=—(a11)z 1 ha,
_ (4.6.120)
Bylh] := —(a01)z 1,  Bslh] := —0:Ralh].

We denote by (o), the (j,£)-th Fourier coefficient of a(p,z) as function of time and space. The
Fourier representation of B;,i =1,...,4 in (4.6.120]) is

(B (0) =15 (12)jmyagimgys  (B2)] (0) = (002)j-jra(jmg?)

(B3)) (0) = dereai ' (Vawa®)j—jra(jjry + %c%ij’(mm(ag '9)) - a7
— 121631 ' (002) j_jr1(j—g) — 4c2csif (02(05 '0))j—jr 1 (j—i7)s

(BaY] (0) = deres(Faras®);—atyy) + 33 Fareald D))y

— 12c¢qc3 (Www) 40203 (Em(ﬁajlﬁ))

Ji=3'1G-3) J=3'1G—=3")

If (Bk)gl(ﬁ) #0, k=1,...,4 there are ji1,j2 € S such that j1 + jo = j — j/,¢ = 1(j1) + 1(j2) and

([4.6.118)) holds. Thus, if @-£+ 3 —j3 = 0, Lemma (4.1.3) implies that (41 +j2)(j1+5") (G2 +5') = 0,
and, since j' € S¢ and S is symmetric, the only possibility is j; + jo = 0. Hence j = 5/, £ =0. In
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conclusion, if @ - £ 4 5" — j3 = 0, the only nonzero matrix element (Bi)gl(ﬁ),i =1,...,4, by (4.6.7),

is

i .. 4
(Bl)g(()) =1 Z(—QCGkQ —12¢7 + gcgkz + 40203) ‘k|§k,

kesS
(32)2(0) = Z(_40102 k' —12c1c3 k*) k|, (4.6.121)
kesS
. . 4 .
(B3)}(0) = ij Z(gcg K2+ deges) KISk, (Ba)(0) = (derca k' + 12¢1e3 k?) [k
keS keS

We note that ¢(§) defined in (4.6.82)) is equal to —iZ?:le (Bz)j(O) (observe that the term

! (B;);(0) is independent of j) and we write

1
(&) = Z (—4cg k® — 24c7k + ;cg k3 + 16cacsk) &,
kesS+t

16
= (3(;3 —4eg)vs - € + (16cac3 — 24cr)vr - &,
where v3 - £ = Zjes+ §3&; and vy - € = Zjeerjfj-
As before, the only possibility to get a zero at the denominator of (4.6.116)) is j1 + j2 = 0. Therefore

(4.6.122)

(Ba)j(0) =3 > j3lilg, +8cai Y il
j2€8.ja+j€S 72€8,52+j €5 (4.6.123)

+125 Y gy el
Jj2€S,ja+j€ES

We note that for every odd function f: S — Z, by the simmetry of S, we have

> f(2) &, =0.

j2€S
Thus, by (4.6.119) and (4.6.123), we get

; 1 — i 4 5. 3. . o . 1.
(B5);(0) + 5 (B, A1])3(0) = gcgl > 53 |jal&s + 8eacsi Y ja ljalésy + 12631 > iyt [d2l, = 0.

j2€S J2€S j2€S
Finally, we have
Ls:= &5 L4Dy = TTE(D,, + M30pes + (d1 + 2¢(€)) s + RT3, (4.6.124)
Rs := (051 — DL (dy + £2¢(€))d, + ®5 IE R5. (4.6.125)

Lemma 4.6.17. Rj satisfies the same estimates (4.6.112)) as Ry (with a possibly larger o ).

4.6.7 Descent method

The goal of this section is to transform L5 in (4.6.124)) in order to make constant the coefficient
in front of d,. We conjugate L5 via a symplectic map of the form

S = exp(ls (wd; NI = M I+ wd, NI+ S, S := l[r@(wa;l)]kna (4.6.126)
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Where w: T"T1 = R is a function. Note that II¢ (w@;l)Hé: is the Hamiltonian vector field generated
) fT dy'h)2dz,h € Hg . We calculate

L5S — SHJS'(Dw + m3Opzx + mlaz)Hé' = I_Ifg'<?)77”b31uuz + Jl + 820(5) — ml)dgﬂé + RG, (4.6.127)
Rg: = Hﬁ{(?)mgwm + (Jl + 520(5))H§w —maw)my + (Dyw + mawyes
+ (dy + €2¢(€))TEw, )0t 4+ DS + m3[0rae, S] + (di + £2¢(€))0,S — m1 50, + RsSHIS

where Rg collects all the bounded terms. By (#.6.80), (4.6.82)), we solve

3mswy + di + 626(5) —m1 =0

choosing w := —(3m3) 185 1 (dy +2¢(€) —my). For e sufficiently small, the operator S is invertible
and, by (4.6.127)),
Ls =S 1L4S =TI (D, + m3040s + m10)IS + Rs, Re:=S 'Re. (4.6.128)

Since S is symplectic, Lg is Hamiltonian.

Lemma 4.6.18. There is 0 := o(v,7) > 0 (possibly larger than in Lemma such that
; _ ~ L - . .
[SE = 1|FP0) <, Ty 2 4 e|FlI 57, 10 s <o e(lillsto + [Tsllstollillsore)-

The remainder Rg satisfies the same estimates of Ry (with a possibly larger o ).

Proof. By (E6:69), (E6:83), (E685), [lwlls™” <, e™y2 + ¢|3]| %", and the lemma follows
by the definition of S, see (£.6.126). Since S = O(8;2) the commutator [Opze,S] = O(32) and
()

L1 L
[Baaas S][EPD) <, [w HSO?;(; ]| O

s+3

4.6.8 KAM reducibility and inversion of L,
The coefficients m3, m1 of the operator Lg in (4.6.128)) are constants, and the remainder Ry is

a bounded operator of order 99 with small matrix decay norm. Then we can diagonalize Lg by
applying the iterative KAM reducibility Theorem 4.2 in 7] along the sequence of scales

N,:=N)X', n=0,1,2,..., x:=3/2, Ny>0. (4.6.129)

In Section 9, the initial Ny will (slightly) increase to infinity as € — 0, see (4.7.4)). The required
smallness condition (see (4.14) in [7]) is

N§O|Rg| 2Pt < 1, (4.6.130)

where 8 =77+ 6 (see (4.1) in [7]), 7 is the diophantine exponent in (4.3.3)) and (4.6.135)), and the
constant Cp := Cp(7,v) > 0 is fixed in Theorem 4.2 in [7]. By Lemma 4.6.18] the remainder Rg
satisfies the bound (4.6.112), and using (4.5.7) we get

[Re| 2D < Ce™2y7 = 0¥, |R[LM0)y 7T < el (4.6.131)

We use that p in (4.5.7)) is assumed to satisfy p > o +  where o := o(7,v) is given in Lemma
4.6.18
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Theorem 4.6.19. (Reducibility) Assume that w — is(w) is a Lipschitz function defined on some
subset Oyg C Q. (recall (4.3.2)), satisfying (4.5.7) with p > o + [ where o := o(1,v) is given in
Lemma and B :=T1 + 6. Then there exists oy € (0,1) such that, if

NEoeT™20472 = Nfoel=8e < 55, v :=e¥ a4 € (0,1/6), (4.6.132)

then

(i) (Eigenvalues). For all w € Q. there exists a sequence
d5° (w) = d*(w,i5(w)) == —mma(w) j° + M1 (w)j + 7°(w), j€ S5 (4.6.133)

where M3, m1 coincide with the coefficients of L¢ of (4.6.128) for all w € Oy. Furthermore,
for all j € S¢

g — 1)MP0) < Q2 vy — 2(€)|HP0) < Ced2, [ bp0) < 032 (4.6.134)

for some C'"> 0. All the eigenvalues id3° are purely imaginary. We define, for convenience,
dg®(w) :==0.

(ii) (Congugacy). For all w in the set

27 .— 02 (is) = dw w - > —dp”(w
03 = Q3 (is) { €00 w4 dPw) —df W)l 2 == (4.6.135)

Ve e ZV, Vi ke SCU {o}}

there is a real, bounded, invertible, linear operator ®oo(w): HL (Tv+1) — H:;L(TV‘H), with
bounded inverse ® 1 (w), that conjugates Lg in ([4.6.128) to constant coefficients, namely

Loo(w) := Pt (w) 0 L0 Pog(w) = w - Oy + Deo(w),

. . 50 (4.6.136)
Deo(w) = diag;ege{id;" (w)}-
The transformations ®.., @7 are close to the identity in matriz decay norm, with
0% — 170 <o €T 4 ey sl (4.6.137)

Moreover ®.., ®3! are symplectic, and Lo, is a Hamiltonian operator.

Remark 4.6.20. Theorem 4.2 in [7] also provides the Lipschitz dependence of the (approximate)
eigenvalues d with respect to the unknown io(i), which is used for the measure estimate in Lemma

ET3l

Observe that all the parameters w € 0x satisfy also the first Melnikov condition, namely
w4 d°(w)| = 295077, Ve, jeSE, (4.6.138)

because, by definition, pug° = 0, and the diagonal operator L, is invertible.
In the following theorem we verify the inversion assumption (4.4.29) for L, .



4.7. THE NASH-MOSER NONLINEAR ITERATION 99

Theorem 4.6.21. Assume the hypotesis of Theorem |4.6.19 and (4.6.132)). Then there ezists o1 :=
o1(t,v) > 0 such that, for all w € Qgg(i(;) (see (4.6.135)) ), for any function g € H;i“’l (TY*+1) the
equation L,h = g has a solution h = L g € HE, (T*+1), satisfying

_ Li — Li Li
L5250 <o 471 (|l P 4 ey |35 2000 | || L))
L L _ Li L Li
<o v IGNEPD 4 ey 1 To | ZE) 4 T | RO 2| RO Y gl ).

(4.6.139)

Proof. We semi-conjugated the operator £, in (4.5.33)) to the diagonal operator L., in (4.6.130)
with the following transformations (recall Lemmal4.6.3] (4.6.53)), (4.6.54), (4.6.75)), (4.6.96]), (4.6.113]),

(1.6.126), (1.6.136))

Lo=Mi LMy, My:=3BpT & 38D, My:=dBT 0 &3S Dy, (4.6.140)

where p means the multiplication for the function p(y) defined in (4.6.54). By (4.6.138]) and Lemma
4.2 of [7] we get the bound

1£5 g1 <o v HIglls2r+1.

By Lemmata [1.6.5, 4.6.9] [4.6.10] [4.6.18] the bound (-6.137) and the fact that |87 {77 < C(s),
|<I>§d]£w " <c (s) (recall that the decay norm controls the Sobolev norm, see (2.3.3))) we get

Li —171Le L -1~ 1L Li
| Mah|[EPO) 4 | MTRIEPD) < IR + ey sl s IRl e

By using the bound above and (4.4.9)) we obtain (4.6.139)). O

4.7 The Nash-Moser nonlinear iteration

In this section we prove Theorem [£.3.2] It will be a consequence of the Nash-Moser theorem
ATl

Consider the finite-dimensional subspaces
En = {3(90) = (@’ Y, Z)(SD) : @ = H?’L@a Yy = Hny7 z = an}

where N, := Ngfn are introduced in (4.6.129)), and II,, are the projectors (which, with a small abuse
of notation, we denote with the same symbol)

Hn@ Z Oy elfﬂ" Hny Z Yo il ¥ where @ Z O, 6164,0 ((,0) _ Z Yo ew'“’,
[¢|<Nn [6|<Nn, Lezv tezv
Opz(p,z) = Y 2 EPH7) where z(p,x)= Y 2o,
(€,5)|<Nn tezv jese
(4.7.1)
We define H,J; =1 —1I,. The classical smoothing properties hold, namely, for all a,s > 0,
I3[0 < N2 [36]270), aw) € He, |27 < Neo |3 57, vaw) e Bt

(4.7.2)
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We define the following constants

py = 3“4—9, = 3,&1"‘1, ay = (a_sl'l/)/27
1—3a (4.7.3)

E:=3(um+p 1) +1, =61 +3p " +3, 0<p< —— .
(p+p7) B1:=6p1 + 3p < Gt a)

where p:= pu(7,v) > 0 is the “loss of regularity” given by the Theorem [4.4.36|and C is fixed below.
We note that the constants in (4.7.3)) are the same of the ones defined in [8], but with a different

(larger) f.

Theorem 4.7.1. (Nash-Moser) Assume that f € C? with ¢ > S = so+ 1+ p+ 3. Let
T > v+ 2. Then there exist C; > max{u; + a,Cp} (where Cy := Cy(7,v) is the one in Theorem

, 0 :=6o(1,v) > 0 such that, if
NG ety =2 <6y yi=e? = Nyi= (v, b, =6— 20, (4.7.4)

then, for all n > 0:

(P1),, there exists a function (J,,(h): Gn C Qe — Epo1 X RYw — (Tp(w), (u(w)), (Jo, ) =
0.E_y = {0}, satisfying |G,|10) < CIFWIE,

L Li
1321527 < Cugby™, |F IR, < Cuc®, (4.7.5)

where Uy, := (in, Gu) with in(@) = (¢,0,0) + T,(p). The sets G, are defined inductively by:
Goi={weQ.|w-l >2¢)"", YV € Z" \ {0}},

2, -3 _k3

W’ Vi, ke SCU{0}, 0 e Z”},
(4.7.6)

where v, :=y(1+27") and d3°(w) := d3°(w, in(w)) are defined in (4.6.133) (and di°(w) =0).

The differences Tni=Tn — Tn_1 (where we set Jo = 0) is defined on G, , and satisfy

gwl::{uegnzw-e+d?an»—d?@m|z

L _ L _
I3IEE < Cuebyt, |3l < Cueby INGS, Wn> L (4.7.7)

(P2), |IF(U )HLZP < Cue® N % where we set N_q := 1.

. Lip( Li *
(P3)n, (High Norms). HJnHSOigB < Cie®~yINF | and | F(U )Hsof_(gl < Che™* Nk |

(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

9\ Go| < C.e® Dy, (G \ G| < CL®TUAN (4.7.8)
All the Lip norms are defined on G, namely |- HL”D(7 II Hstgpy :

Proof. Proof of (P1)o, (P2)o, (Ps)o. Recalling (4.3.7)), we have, by the second estimate in (4.3.17)),

IF(Uo)lls = 17 (2, 0,0),0)|s = | Xp(io)lls <5 £°~2".
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Hence the smallness conditions in (P1)o, (P2)o, (P3)o hold taking C, := Ci(so + 1) large enough.
Assume that (P1)n, (P2)n, (P3)n hold for some n > 0, and prove (P1)n+1,(P2)n+1, (P3)nt1. By

[73) and (7)

NOC16b*+1 2 _ NOC'1€1—3a _ 61—3a—pC’1(1+a)

v < dp

for € small enough. If we take C7 > Cp then (4.6.132) holds. Moreover (4.7.5) imply (4.4.6),

and so (4.5.7), and Theorem [4.6.21] applies. Hence the operator L, := L, (w,iy(w)) defined in
(4.5.33) is invertible for all w € G,,+1 and the last estimate in (4.6.139)) holds. This means that the

assumption (4.4.29)) of Theorem [4.4.11]is verified with Qo = G,1+1. By Theorem [4.4.11| there exists
an approximate inverse Ty (w) := To(w, in(w)) of the linearized operator L,(w) := d;¢F(w,in(w)),

satisfying (4.4.37). By (.7.4)), (£.7.5)

[Trglls <s v~ (HQHS—HL + 5'7_1{”jn||s+u + ’Y_lHjano-mH]'—(Un)”s+u}HgHso+#) (4.7.9)
HTngHSo —S0 '7 1||g||50+u (4710)

and, by (4.4.38), using also (4.7.4)), (4.7.5)), (4.7.2),

I(Ln 0 Tr = Dglls <y IFUn) lso+ullgllstn + 1FUndllstallgllsors
+ &7 Tnlls+ull F (Un) lsotull gll o) (4.7.11)
I(Ln © T = Dgllso <so7 ™ IFUn)llso-tsellgllso+r
Sso')’il(HHn}—( w)llso+u + HHL]:( Un)lso+) 19 so+1
<o NIV UIFUn)llso + N PIF U)o+ 119l so+4- (4.7.12)

The index S in (4.7.3) is an ultraviolet cut, and it has to be define in order to obtain the convergence
of the iteration scheme.
Now, for all w € G, 41, we can define, for n > 0,

Upit i=Un + Hps1, Hpy1 = Tns1, Cns1) i= —, TRl F(Uy,) € B, x RY, (4.7.13)
where I1,,(3,¢) := (I1,3,¢) with II,, defined in (£.7.1). Since L, := d; ¢ F(in), we write
F(Un+1) = F(Un) + LnHn 41 + Qn,
where
Qn:=QUn, Hyy1), QUn H):=FU,+H)—F(U,) —L,H, HeE,xR" (4.7.14)

Then, by the definition of H, ; in ([£.7.13), using [L,,II,] and writing II.-(J,¢) := (IL:3,0) we
have

F(Unt1) = F(Up) — LpIL, TLILF(Uy,) + Qn
= F(Up) — L, T, I, F(U,) + L,JI- T, I, F(Uy,) + Qn (47.15)
= F(Uyp) — M Ly Tl F(Uy) + (LpIL: — TR0 T, 1L, F(Uy) + Qn o
=10, F(Up) + Ry + Qn + Q,,
where
Ry = (LIt — L) T, F(U,), Q= —I,(L,T, — DI, F(U,). (4.7.16)
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Lemma 4.7.2. (Lemma 9.2 in [§]) Define
wn = F O B = er o + 2 IF O o (47.17)
Then there exists K = K(so, 1) > 0 such that, for all n >0, setting p1 = 3pu+9
Wpi1 < KNP PB4 KNMu? By < KNMHT'B, (4.7.18)
Proof of (P3)n+1. By and (Ps)n
Bny1 < KNP B < 20, Kebet iy 2Nmtr I NF < O gbe 1y "2 NF (4.7.19)
provided 2KNﬁl+p71_kNT’f_1 < 1,Vn > 0. Choosing k as in and Ny large enough, i.e. for ¢

small enough. By (4.7.17) and the bound (4.7.19) (P3)n+1 holds.
Proof of (P2)n+1- Using (4.7.17), (4.7.18) and (P2)n, (P3)n, we get

W1 < KN#1+p71_Ban + KN#leQL < KN#1+,071—,31QC*Eb*-i-l,Y—QN?llf_l
+ KNfl“ (C*€b*+1’7_2N;f1)2

and wy 11 < Cye®F1y"2 N2 provided that
AK Nt =hitank <1 9K C,eb Iy NN 20 < 1 v > 0. (4.7.20)

The inequalities in hold by , taking o« as in , C1 > p1 + « and &g in
small enough. By (4£.7.17), the inequality wy+1 < Cie®*T1y™2N@ implies (P2)nt1-
Proof of (P1)pn+1. The bound for J; follows by , (for s = sp + p) and
| F(Uo)lso+21 = IF((£,0,0),0)|ls0+21 <so+2u €. The bound for Jp41 follows by (@.7),
(P2)n and ((.7.3). It remains to prove that holds at the step n+ 1. We have

n+1
Hjn+1||50+ﬂ < ZHJkHSOJm < C*sb*V_l ZN]C__all < C*gb*'y_l (4~7-21)
k=1 k>1

taking a3 as in (4.7.3) and Ny large enough, i.e. ¢ small enough. Moreover, using (4.7.1)),
(P2)nt1, (P3)n+1, (@.7.3) we get

||~7:(Un+1)”50+u+3 < N#+3H-7:(Un+1)H80 + N#JrgiﬁlH-F(Un—H)HSOJrﬁl
< Chel NEF3=a o O ebs NiF3=O1tk < 0 b

which is the second inequality in (4.7.5)) at the step n + 1. The bound
Li Li
Gt < CF (Unga) 1557

is a consequence of Lemma (4.4.1).
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4.7.1 Measure estimates

In this section we prove (P4), for all n > 0. Fixed n € N, we have

G\Guri= U Rulin) (4.7.22)

ez 5 keSeU{0}

where
Ryji(in) == {w € Gn t [w - £+ d5°(in) — d°(in)| < 2 |5° — K*|(€) 77} (4.7.23)

Since, by (4.3.3), Rejr(in) = O for j =k, in the sequel we assume that j # k.

Lemma 4.7.3. (Lemma 9.3 in [§]) For n > 1,[{| < N,_1, one has the inclusion Ryji(in) C
Ry (in-1).

By definition, Ryjx(i,) C Gn (see (4.7.23)). By Lemma for n > 1 and |[¢| < N,_; we also
have Ryjk(in) € Ryji(in—1). On the other hand, Ryji(in) NGn = O (see (4.7.6)). As a consequence,
Ryji(in) = O for all |¢| < Np_1, and

Gu\Gni1 € |J  Rer(in) Yn>1. (4.7.24)

j,keScu{0}
‘Z|>Nn_1

Lemma 4.7.4. Let n > 0. If Ryi(in) # O, then || > C1|53 — k3| > % (72 +k?) for some constant
Cy1 > 0 (independent of €, j, k,n,in,w).

By Lemma it is sufficient to study the measure of the resonant sets Ryji(in) defined in
(4.7.23) for (¢,7,k) # (0,4,7). In particular we will prove the following Lemma.

Lemma 4.7.5. For all n > 0 and for a generic choice of the tangential sites, the measure
[ Reje(in)] < ¢~ D(0) 7.
By (4.7.23), we have to bound the measure of the sublevels of the function w — ¢(w) defined by

Pw):=w - L+d(w) —df(w) =w-{ — m3(w) (5% — k) +ma(j — k) + (r7° —rit)(w)  (4.7.25)

Note that ¢ also depends on ¢, j, k,i,. We recall that
mg = 1+ 2d(€) + Ty (W), my = e%c(€) 4+ rpm, (W) (4.7.26)

where
|rm3|Lip(7) < 063 ‘rml ’Lip(’y) < 053_2“ (4727)

and d(§), c(§) are defined in (4.6.61)) and (4.6.122)) respectively.
It will be useful to consider ¢(w) in (4.7.25)) as a small perturbation of an affine function in w.

We write it as
P(w) = ajk, + bejk - w + gjr(w), Le7”, jkese (4.7.28)
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where, by (4.2.18]), (4.6.61), (4.6.122)),

ajr = —{(° = K1 —dM™'@)] + (j — k)e(M ')}, (4.7.29)
busi =0 — (7% — K¥)[(24es — 48)M Ty + (dcg — Lfcg)M*Tvl], (4.7.30)

+ (j — k)[(—4cs + ?c%)Mflvg — (24¢7 — 16¢oc3)M o]}
Gk (W) = = Ty (W) (% = k%) + Ty () (F — k) + 75 (w) — r°(w) (4.7.31)

and by ([£.6.83), (£.7.27), (.7.31),

1 (@) < 353 — k3| + €320 — k| + 52,
g7 (@) < 2y (@)|P15° = K]+ 2y (@)1 = k| 4 [r5° = | (4.7.32)
< 3TN — B 3720y — k| el

Remark 4.7.6. The idea of the proof of Lemma is that generically (see Definition [1.1.2) a;,
has to be sufficiently far from zero or the modulus of the “derivative” b;;;, has to be big enough.

We shall use the following non-degeneracy assumptions

(H1)  d(¢)—1#0 at &=M'w, (4.7.33)
(H2),;x Fixed j,k € S¢, j #k, det(M+ B(j,k)) # 0, (4.7.34)
where )
. 1206 — 16¢
B(j, k) := — (24c4 — 48¢3 2 \DiUD?
(]’ ) ( C4 Cl+3(j2+k‘2+jk3)) S S
) (4.7.35)
16¢5 (16c2c3 — 24c7) 3
—=—4 DsUDz.
(T3~ et Ty g /PsUDs
In the next lemmata we prove that if the coeflicients c¢q,...,c7 are non-resonant and conditions

(C1)-(C2) hold, then there exist a generic choice of the tangential sites for which Lemma 4.7.10] and
Lemma M.7.13 hold true.

Lemma 4.7.7. Fiz v € N. If the coefficients c1,...,c7 are non-resonant and
(7—16v)c2 #6 (1 —2v)cs (4.7.36)

then the polynomial P(3y,...,7,) = d(M~'@) — 1 is not identically zero. As a consequence, the
assumption (H1) is verified for a generic choice of the tangential sites.

Proof. Suppose that d(M~'w) = 1, namely
16
P(Gy,..-,73,) = {(24cs — 48 ¢3)vs + (4cg — gcg)vl} Mg -1=0. (4.7.37)

We evaluate the polynomial P at the point (3;,...,7,) = A(l,...,1) = A, for some A\ to be
determined, and we claim that this is not a zero. This implies that the polinomial P in (4.7.37)
cannot be identically zero. We have

- 16 - oy
PAL) = {5 (24cy — 48 ¢3) + A3 (4cg — gc;)} (I-M(A)™'1) -1
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and M(AD) = a(\)I+ b(\) U, where

14

a(N) = (24¢2 — 12¢4) X0 + (?c% —deg) M+ (12¢0c3 — 12¢7) A2 — 663, (4.7.38)
32

b(A) = (—48¢3 + 24cy)N°® + (—gcg + 8c6) A + (—16¢acs + 24c7) A2 (4.7.39)

We note that a(\) # 0, because the coefficients are non-resonant. Moreover, by assumption (4.7.36))
a(A) + vb(\) # 0 and we have

I - M) = (4.7.40)

a(A) + b\’

Then P(AI) = 0 is equivalent to p(\) = 0, where

p(N) 1 = X{24¢ — 12¢4} + A\Y{ (% — —=)3 — 4(1 — v)eg)
+ A2{(12 — 16v)cacs — 12(1 — 2v)er} — 62
Suppose that c3 # 0, then p()\) is not trivial. If c3 = 0 and 2c? # ¢4 then we conclude the same,
because the monomial of degree six is not naught. If c3 = 0,2¢? = ¢4 then the monomial of minimum
degree, namely three, it is not zero if ¢; # 0, indeed v € N. Suppose now that c3 = c; = 0,2¢? = ¢4.

Eventually, by assumption (4.7.36|) the monomial of maximum degree, namely four, is not naught
and we conclude. O

Lemma 4.7.8. Fiz v € N. If ¢1,...,c7 are non-resonant and

3cg — 4c3

v ———2 ¢ {j*+ k> +jk : j,k € Z\{0}, j # k}, (4.7.41)
9c4 — 18c]

then the polynomials Pji(7y,--.,7,) := det(M 4+ B(j,k)) are not identically zero, for all j,k € S¢,
J#k.

Proof. By (4.7.35]) we have

14
M + B(j, k) = (24c3 — 12¢4) DS + (gcg — 4¢) D3
1 D)

52+ k2 + k0
+ 12(coc3 — 07)D§ — 60%1 + (16¢c2cs — 24¢7)DsUDg(1 —

1
+ (4eg — gcg)DgUDS(I -
1

—————D3%).
ErET k)
If ¢3 # 0 then the lowest order monomial of det(M+ B(j, k)) is not zero and the same holds if c3 = 0
and c¢7 # 0. If ¢3 = ¢; = 0 then the monomial of maximal degree is

12¢6 — 16¢3 3

U|D

3(52 + k2 + jk) ) §
and this is invertible if (4.7.41]) holds. O

DY <(24c% — 12¢4)T +
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Remark 4.7.9. By Lemma if (C2) holds, then the assumptions (H2);; are satisfied by a

generic choice of the tangential sites when j, k vary in a finite set of integers.
The rest of the section is devoted to the proof of Lemma [4.7.5

Lemma 4.7.10. Assume (H1). Then, for a generic choice of the tangential sites, there exists Cp > 0
such that for all j # k, j,k € S¢, with j2+k*> > Co and { € Z¥, we have |Ryji,| < C2V=D(0)7.

Proof. 1f j2 4+ k% > Cj for some constant Cp, then |j — k|/|j3 — k®| < 2C; ! and

. e 2 1
ag] > 17 — k) {\1—d<M %) - & Je( w}.

If d(M~'w) # 1 then, by taking Cp large enough, we get |a;x| > do|7® — k3|, for some Jp > 0. This
implies that for & := dp/2 we have |bgjj, - w| > 6]5° — k3|. Indeed, by (4.7.23), (4.7.32)

supr | - do .
bgjic - wl| > |aji] — [3(w)] = [gjn(w)| > (8o — 29m — |gjn(w)|*P)[5° — k°| > 5‘]3 - K,

for e small enough (recall that v, = o(e?)).

If b := byj, we have |b-w| < 2|b||&], because |w| < 2|&|. Hence |b] > &7 |53 —k3| where 61 := 6/(2[w]).
Split w = sb + v where b := b/|b| and v-b = 0. Let ¥(s) := ¢(sb+ v). For e small enough, by
, we get,

. |lip
] djk .
[@(s1) = D(s2)] > ([b] = lgsul"P)ls1 = 5o > (61 - M) 5 =l o1 — 52
o1, .
> 51“3 — k| |s1 — s2].

As a consequence, the set Ayji(in) = {s: sl+ve Ryji(in)} has Lebesgue measure

2 4’7n’j3_k53| < Cy

|Agjr(in)| < 51 |3 — k3| % — ()7

for some C > 0. The Lemma follows by Fubini’s theorem. O

Lemma 4.7.11. There exists M > 0 such that for all j # k, j,k € S¢, with j°> +k* < Cy (see
Lemmal4.7.10) and |€] > M, we have |Ry| < Ce2 V=D (0)7T

Proof. For £ # 0, we decompose w = sf + v, where £ := £/|f|,s € R, and £-v = 0. Let 1(s) :=
¢(sl +v). We remark that ¢(€) and d(€) are affine functions of the unperturbed actions ¢, hence

(@)™, e%d(¢)|"? < K

for some constant K depending only on the tangential sites and on the real coefficients ci,...,cr.
Then

[ms(s1) —1ma(s2)] < Kls1 — s2f,

[ (s1) = 1 (s2)] < (K + %7227 )|s1 — 82| < 2K |51 — s,

[75°(s1) — 5% (s2)] < %727 sy — sal.
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Then, if we take M large enough and ¢ small, we have

’g‘ 21K 5372(1771
|s1 — s2

- > - e — K — —
W)(Sl) ¢(82)| fl |] |(’j3—/€3’ |j2—|—k‘2 —|—jk| |j3—k‘3|

o, .
> 1150 = B[t s,

where ¢ is a positive constant. Indeed, Cy and K are fixed and it is sufficient to choose [¢| such

that
14| 2K

inf K ——=—>§>0.
k2 Hk2<Co |73 — K3 Co —
As a consequence, the set Agji(in) := {s: sl+ve Ryji(in)} has Lebesgue measure

: I ml® K| _Cy
Apir(ip)] < — <
Il

for some C > 0. The Lemma follows by Fubini’s theorem. O

It remains to investigate Ryj;, for a finite set of indeces (¢, j, k). We need the following Lemma.

Lemma 4.7.12. Suppose that ¢ € Z¥ and j,k € S¢ are such that @ - £ # 7> — k3 and

<M, |j2+k<C (4.7.42)
for some positive constants M and Co. Then Ry is empty.
Proof. We have

w4 ma(k® — %) = [ms(@- L+ k> — 53) + (w — ms@) - £] > |ms|[@- £ + & — 53|
—Jw — m3@|[f] > 1 — |w — @M — |m3 — 1|[@|M > 1/2

for & small enough, because |w — @|, |m3 — 1| < Ce?. Thus, by (4.7.25) we have

()] = 1/2 = 2[e(€)]lF — k| — [m1 — £2c(€)]|j — k| — |rj — x|

>1/2—¢? sup (Je(§)]) — 2032 > 1/4.
gef1,2]

O

Lemma 4.7.13. If j> + k* < Cy, j,k € S¢, |{| < M (see Lemma|4.7.10] and |4.7.11]) and (H2);y
hold, then, for a generic choice of the tangential sites, |Ryji| < Ce2v=Nr(p)T.

Proof. We can write (4.7.25)) as an affine function respect to the parameter ¢ as

P&) =w-L— (5° — k) + X{ME- € — d(&)(5° — k°) + (&) (G — k)} + ajn(al§)),

a s _ N - (4.7.43)
@jk((§)) = —Tmy ((€))(J° = k7)) + Ty ((§)) (5 — k) + 777 (a(§)) — g (a(§))-
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By the relation (4.2.18]), we can estimate the Lipschitz constant of ¢(w) with the derivative respect

to & of the expression (4.7.43)).
By Lemma [4.7.12, we consider the case @ - ¢ = j3 — k3. Thus

$(€) =e*[ME - £ = d(§)@ - £+ c(€)(J — k)] + g ((€))

e
j2 + kQ +]k
=M + B(j, k)] £ - € + g (a(6)).

where B(j,k) is defined in (4.7.35)). By assumption (H2), if [ # 0, then

= Mg - £~ d()w - L+ ]+ gjr(a(€)) (4.7.44)

6€jk = (M+ B(j,k))¢ # 0. (4.7.45)

Hence, by (4.7.32)), (4.7.44) and (4.7.45)), for € small enough, there exist a constant C' > 0 such that

0" > Spi — |gn|"P > C|5° — k3.

Then we conclude as in Lemma 7111 O

We have that Lemmata [4.7.10] [4.7.11] [4.7.13| implies Lemma By (4.7.22) and Lemma [4.7.5]
we get

' C ey 1 2(v—1)
|go\g1| < Z \Rfjk(loﬂ < Z W < (C'e .
27V ||, |k|<Ce)1/2 Lezv
For n > 1, by (4.7.24)),
. 052(11_1)’7 1_2(v—1) —1
‘gn \ gn-i—l’ < Z |R€jk(7/n)’ < Z @T < (e 7Nn—1
1> Nn—1, €[> N1
gl Ikl<Clet?

because 7 > v + 2. The estimate [ \ Go| < C'e2*~Vy is elementary.
O

Conclusion of the Proof of Theorem Theorem implies that the sequence (J,, )

is well defined for w € Goo := Ny>0Gy, and J,, is a Cauchy sequence in H'HsLji(l)gw, see (4.7.7)), and

G| EP0) — 0. Therefore J, converges to a limit Jo in norm HHf;f_(J)gw and, by (P2),, for all
W € Gooy oo (@) = (¢,0,0) + Too(¢p), is a solution of

Fli,0) =0 with  [[Jue| 2200, < 062y

by (4.7.5). Therefore ¢ — ix(p) is an invariant torus for the Hamiltonian vector field X (recall
[219)). By (L73),

12\ Gool <19\ Gol + D _1Gn \ Gnr1] £2C.2 Dy + CL?7Dy Y N < ey,

n>0 n>1

The set Q. in (4.3.2) has measure || = O(e?). Hence |Q: \ Goo|/|Q:| — 0 as € — 0 because
v = o(?), and therefore the measure of C. := G, satisfies (#.3.12).



CHAPTER 5

QUASI PERIODIC SOLUTIONS FOR HAMILTONIAN
PERTURBATIONS OF THE DEGASPERIS- PROCESI EQUATION

In this Chapter we prove Theorem In Section [5.1] we introduce the aspects of the integrable
structure of the DP equation which we use to perform the Birkhoff normal form of Section [5.2
In Section [5.2] we perform six steps of weak Birkhoff normal form in order to extract parameters,
which modulate the frequency-amplitude relation , and to provide a good first nonlinear ap-
proximation of the solutions.
In Sections and we introduce action-angle variables and we reformulate the problem
of finding quasi-periodic solutions as the search for the zeros of the nonlinear functional F defined in
. Adopting this new point of view, we devote the rest of the Chapter to the proof of Theorem
[5.4.1] which implies Theorem [1.2.3
In Section [5.5] we describe the construction of the approximate inverse for the linearized operator
following the abstract procedure developed in [21I]. Thus the main issue is the approximate
inversion of the linearized equations restricted at the normal directions, or equivalently the approxi-
mate inversion of the operator L, in , which acts on the normal variables space H §_
In Section we prove that £, has the form . In Sections and we conjugate L, to
a a diagonal operator Lo, (see Theorem and we provide tame estimates for the inverse of £,
(see Section 5.8.2)).
In Section we implement the Nash-Moser scheme of Theorem to the functional F (recall
(5.4.8))). In Section We prove the measure estimates. This concludes the proof of Theorem .

5.1 Integrable structure of the DP equation

In [48] the authors proved the existence of a Lax Pair for the Degasperis-Procesi equation. As
a consequence, infinitely many commuting constants of motions are produced by using the power
series expansion of a parameter of the spectral problem.
By following the procedure described in the Section 4 of [48] we generate some of these symmetries
and we use them in order to prove that, at any step of the Birkhoff normal form, there are not small
divisors.

In order to do that we have only to consider the quadratic parts of the constants of motion. We list

109
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here the ones that we used. For the complete expressions we refer to Appendix [C]

Ko(u) = H(u)

Ki(u) = ;/T(Jlux)uda:,

Ko(u) = ;/Tw?dHO(u?’),

Ky(u) = ;{QAdex+Aw§dx} +O(P), (5:.1.1)
Ky(u) == % {/ng da:+/Tw§x daz} + O(u?),

1
Ks(u) == 729{—Q/Twzda:—i—m/qrwidx—i—114/Tw32mdx+153/1rwimda:} + O(u).

where we denoted by
w = (A)_lu = U — Uy, A:=(1- 8m)_1. (5.1.2)

We remark that K is the momentum Hamiltonian (recall Section [2.1.1)).

In the sequel we will frequently use the following fact.

Lemma 5.1.1. Let
HP ()= il K®(u) =) kiluyl?

j#0 J#0

and consider a homogenous Hamiltonian of degree n € N
Flu):= > Fj -,
J15esin €ZN\{0}

such that

HKer(H(Q))HRg(K(Q))F = 0.
Then we have that

hjlw(jl) +--+ hjn(U(jn) =0 = ]lew(j1) + -+ kjnw(jn) =0 or Fjl---jn =0. (5.1.3)
Moreover, F € Ker(H®) N Ker(K®) contains only monomials with
hjlw(jl) +.. hjnw(jn) =0 kjlw(jl) +.. kjnw(jn) =0.

Definition 5.1.2. By denoting the quadratic part of K., r =0,...,5 in (5.1.1]) as

K (u) =YK Ju, [,

we say that an n-uple {ji,...,Jjn}, with n < N, is a N-resonance of order n for the DP hierachy if

S kw(@) =0 ¥r=0,...,N-1. (5.1.4)
=1
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Proposition 5.1.3. All the 6-resonances of the DP equations (5.1.1)) are trivial, namely there are
not resonances of order 3,5 and the ones of order 4,6 are, up to permutations, of the form

(4, —i,4,—3), 4,7 € N\{0},
(z’, —i,j,—j, k,—k), i,5,k€ N\{O}.
Proof. The dispersion law of the costants of motion are
NG = w(” =i+ 20+ 7 A6 =wi)l =)
AD () == w(E?D = j 4+ 7%) 1+ 52),
AOG) = w(DEY =2+ @+ 1 +5%, ADG) = w(iEY = 21+ 224+ 52),

2O () == w(G)EP) = j(—2 + 7852 + 11451 + 1537%) (4 + 77) (1 + 7).

We wish to prove that there are no solutions to the system

MO (z1) + X (z9) + A0 (23) + AXO (24) + A0 (z5) + A0 (26) = 0
AD () + XD (29) + AD (23) + XD (z4) + A0 (25) + XD (26) = 0
AP () + AP (29) + AP (23) + X (24) + AP (25) + AP (26) = 0 (5.15)
A (1) + A3 (22) + AB) (23) + X (z4) + 2B (25) + AO) (z6) = 0
A (21) + XD (25) + XD (23) + XD (24) + XD (25) + XD (26) = 0
MO (1) + A (25) + AO) (23) + AO) (z4) + AO) (25) + AO) (z6) = 0

except the trivial ones given by
1 +r2=23+23=25+26=0
and all its permutations. First one may replace in (5.1.5)),
AO s 1O = AO — xDy /30 AD s 1= A
A®) s @)= A@ 0 \G) [ 3) = \B) )\
AW s @ =A@ @) A6 )= (MO 42, — 78,3 4 114, /153
We then may rephrase the problem as follows, set
mO@G) =1, mO@G) =7 mP() = @+ 0+
m® () =57 (4457 14777 mO@G) =14 4527 mP) =044 (145)?

finding a solution of 1} is equivalent to finding integer values of {z;}%_; such that the matrix

O(z1) mO(z9) mO(z3) mO(zs) mO(z5) mlO(xe)

m(l)(:vl) mW(zg) mW(z3) mD(xy) mWD(zs) m(x6)
m®(z) m®(zz) mP(z3) mPD(xq) m®(z5) m®(x6)

Mo = m®(z1) mB(zz) m®(z3) m®(xg) MmO (z5) MmO (x6)
m®(z) m®(zz) m®(z3) mWB(xg) mB(z5) m® (x6)

m® (z1) mO(zy) mO®(z3) m®(xg) mO(z5) MmO (x6)



112 5.1. INTEGRABLE STRUCTURE OF THE DP EQUATION

has a non-trivial Kernel containing the vector

xr1 X9 xrs Ty x5 Ze
l+a3 1+23’ 1423’ 1423 1+a2 1+22)°
This requires in particular that the determinant of Mg should be equal to zero. It is evident that

the determinant of such a matrix has a factor, the term [], ,; (z2 - a:?) Indeed we get that

2 _ .2
det(Mg) = [ [ (27 — 23)P(x)
G
where P(z) is strictly positive. P(x) was explicitly computed using Wolfram Mathematica, it is
symmetric, even in each variable, with non-negative coefficients and with P(0) # 0. Hence in order

to have a non-trivial Kernel we need 22 = 22 (and all the permutations). Let us show that this leads
to the trivial solutions.

Case 1: x5+ g = 0. We just need to look at the system of four equations
0
0
(5.1.6)
0
0

We apply the same procedure as before and obtain a matrix My whose determinant has the form
H(x? - w?)P4.
i#]

So either z3 = —x4 or x3 = x4 (or permutations). In the first case we reduce to the set of two

equations

{Mm) (z1) 4+ p O (2) = 0 (5.1.7)

pD (1) + pM(z2) = 0

which only has the trivial solution z; 4+ 29 = 0 (this is the second equation). If x5 = x4 we reduce
to the following system of three equations

pO (1) + pO (22) + 26l (z3)
pD (1) + 5D (w2) + 2uD (23)
p® (1) + p® (22) + 2u2 (23)

0
0 (5.1.8)
0

we proceed as before, associating to this system the matrix
mO(z1) mO(zy) 2mO (a3)

Mgz = m(l)(xl) m(l)(xg) 2m(1)(x)
m(Q)(xl) m(Q)(mg) 2m(2)(x3)

w

and computing its determinant. We get

det(Mz) = [ (27 — 23)Ps
i7#]
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with Pj5 strictly positive. If x1 = —xz9 then z3 = 0 and we are in the trivial solution, if 1 = z9 then

we get 3 = —x9 and x4 = —x1 (since 3 = x4 and x9 = x1), again we are in the trivial solution.

Case 2: x5 —xg = 0.
We look at the first five equations.

and repeat the usual procedure, we obtain a matrix Ms whose determinant is

det(Ms) = [ [ (27 — 23)Ps.
i#]

So either x4 = x5 or 4 = —x5 (or permutations). If x4 = —z5 we get the system If x4 = x5

we get the equations

We repeat the same procedure as in ([5.1.6)).

5.2 Weak Birkhoff Normal form

The aim of this section is to construct a family of approximately invariant tori for the equation

(1.0.5) and to extract parameters £ that allow to control the frequencies w(§) of these tori. In

particular we will show that there exist a finite dimensional subspace of the phase space closed for

these approximate solutions. In order to do that we apply a normal form procedure to the DP

Hamiltonian (recall (1.2.4))

H(u) = H? (u) + H® (u) + HEY,

H® () := ;/u2d:c, H®) () := é/ugdx,
T T

HEI (y) := /T fu) dz.

We decompose the phase space as

HY(T):= Hs® Hg, Hg:=span{e®:je S}, Hi:={u= Z ujel® € HY(T)},

jese

(5.2.1)

(5.2.2)
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and we denote by Ilg, Hé the corresponding orthogonal projectors. The subspaces Hg and H é‘ are
symplectic respect to the 2-form Q (see (1.2.5))). We write

u=v+z v:=Igu:= Zuj T 2 =Tgu = Z uj e, (5.2.3)
j€S jese

For a finite dimensional space
E:=Ec:=span{e’*:0<|j|<C}, C>0, (5.2.4)

let IIg denote the corresponding L?-projector on F.
The notation R(v*~927) indicates a homogeneous polynomial of degree k in (v, z) of the form

R(,Uk—qZ‘Z) =M[wv,...,v ,z,...,2], M = k-linear.
——

(k—q) times q times

We denote with H(™2k) k) F0.<k) the terms of type R(v"~® z°), where, respectively, s > k,s =
k,s < k, that appear in the homogeneous polynomial H,, of degree n in the variables (v, z).
Given an n-uple {j1,...,jn} CZ\ {0} and a set B C Z\ {0} we define

8({j1,---,jn}, B) := number of j; belonging to B. (5.2.5)

In this way H (n:k) is supported on the set

n
{Jrdn €Z\(O} + D25 =0, #({jns. o dnh 5 = k.
i=1
Definition 5.2.1. Given a Hamiltonian H, we define HKer( H) 3 the projection on the kernel of
the adjoint action ad(H) := {H,-}.

Remark 5.2.2. We note that if ji,...,jxv € Z\ {0}, j1 + -+ jny =0 and

#({j1,--.,in} 59 <1

then max;—,_ n|ji| < (N —1)Cs, where Cg := maxjcg|j|. Thus, the vector field X (), generated
by the finitely supported Hamiltonian

N) _ (N)
F( )— Z FjlijUjl...UjN,
Jit+in=0
is finite rank, and, in particular, it vanishes outside the finite dimensional subspace E := E(y_1)cg
(see (5.2.4) ) and it has the form
Xpov (v) = HEX pov) (Lpu).

Therefore its flow ®) is analytic and invertible on the phase space H}(T,). We recall that the
condition Zi\; 1Ji = 0 corresponds to the fact that F (N) Poisson commutes with the quadratic

Hamiltonian K; (see (5.1.1)) and Section [2.1.1)).
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Proposition 5.2.3. There exists an analytic and symplectic change of coordinates
dp: HY(T,) — HY(T,)

of the form
CPp(u) =u+Y(u), VY(u) =lUp¥(Ilgu), (5.2.6)

where E is a finite dimensional space as in (5.2.4), such that the Hamiltonian H in (5.2.1)) transforms
into
Hi=Hodp=H® + 1D £ g o HGO 4 HEL22) 4 94522
+ HKer(H(2>)H(6’O) + Hq(6:22) 4 9/(7.22) | HKGT(H(Q))%(&O) (5.2.7)

+Hq®>2) 4 7—[(29),

where 1 1
HE2D = —/szdx— /Z3dx,
2 )t 6 Jr
1 w(2))
II 24(40) — = w2y
Wi+ J2) 2, 12 (5.2.8)
+ - g : s 12w
. ZJr w(‘]l)+w('72)_w(.71+32)’ Jl’ ‘ j2’
J1,j2€ST,
J1—72#0
w(j1 — j2) s
; ZJr w(]l) _(U(jz) _w(jl _]2)| .71| | jg’
J1,J2€S™,
J1—Jj2#0

and HZ) collects all the terms of order at least nine in (v,z).
The same change of variables ®p puts all the Hamiltonians in (5.1.1)) in weak Birkhoff normal form
up to order siz as in (5.2.7). In particular we have

Klo‘I)B :Kl.

Proof. Step (1). First we remove the cubic terms independent of z and linear in z from the
Hamiltonian

1 1 1 1 1
H(S):—/ugdx:—/v3d:n—/UQde—/UZde—/zgdx. (5.2.9)
6 Jr 6 Jr 2 Jr 2 Jr 6 Jr

Thus we look for a symplectic transformation ®3 of the phase space which eliminates the monomials
wj, uj, ujy of HG) with at most one index outside S.

Note that any homogenous Hamiltonian, which preserves the momentum and which is linear in z or
independent of z, has compact support. Thus by Remark [£.1.2] its flow is well defined on the entire
phase space.

We look for @3 := (@) ,)),_, as the time-1 flow map generated by the Hamiltonian vector field
X ), with an auxiliary Hamiltonian of the form

3
FO () := Z FJ(1 ;2 s Wit Wja U (5.2.10)
J1tj2+7j3=0
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The transformed Hamiltonian is
Hy:= Hody = H® + HY + B + HY, (5.2.11)
1
H® = (H® FO} 4 g® gO = S H® FO®Y}, FOY 1 (F®) FO)Y, (5.2.12)
where HBEZE)) collects all the terms of order at least five in (v,z). We choose F®) in (5.2.10) such

that the following homological equation holds

(H?, FOY 4+ HO) = G2 o (B FO} = Ty ey HO=Y, (5.2.13)

In Fourier coefficients, by (1.2.6) and ([5.2.9)), the equation (5.2.13) reads

. . . . 3 1
Do i) +wli) +wlis) By, whu, = — 3 wj gy, (5.2.14)
J1,92,J3€Z\{0}, J1.92,33€Z\{0},
Jit+j2+i3=0 1({51.,92,43},5°)<1
w(f1)+w(jz)+w(jz)#0
J1+j2+j3=0

®3)

and we have to determine F . Since j1 + j2 + j3 = 0 we have

J1J2J3
317273 2\° 3
w(it) + (i) + wljs) = — g IS g <j1 n ) 32l s0 (5219)
1+ +53)1+52) 2 47
since ji, j2,j3 # 0. Therefore, in order to solve (5.2.13]), we set
1
— X X s lfﬁ j17j27j3 7SC §17j1+j2+.j3:07
FY =1 6i(w(i) +w(i) +w(js)) 4 b &) (5.2.16)

otherwise.

By (5.2.15) HRg(H(z))H@Sl) = HG=D and we get (see (5.2.12), (5.2.13))

B = g2, g = JHOS) pO) 4 (562D, FO). (5217

By direct inspection {F®) K} =0, so Ki o ®3 = K;. We now claim that (recall the definition of
K in (5.1.1))

Kiz:=Kio®; =K + K 4 k) + K57 (5.2.18)

for ¢ = 2,...,5; namely that the change of variables ®3 puts simultaneously all the Hamiltonians
commuting with the DP Hamiltonian into Weak Birkhoff normal form up to order 4. We need to
show that

(K@ F®) 4 k¥ = kB2 o (K FO) = K&V =25 (5219

)

“HRrgx®)
Since H and K; Poisson commute, by (C.0.8) we have

(O, KPP0y = (K7, 1m0y,
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which in turn implies that

HRg(KZ(z))HKer(H(Q))H(S,gl) =0, HRg(H<2))HKer(Kf))K(g’gl) =0, (5.2.20)
Hpgpeoy HO D = (ad K)H{HE), KD}, (5.2.21)
By (5.2.20) we have
Il o HOSD =11 2y 1 o H®SD,
Rg(n®) Rg#@)HRg(r®)

Then we substitute (5.2.21)) in (5.2.13), which defines F(®) and obtain (5.2.19).

Step (2). We now construct a symplectic map ®4 to eliminate the term H?(,4’1) (which is linear
in z) and to normalize H§4’0) (which is independent of z). We look for a map ®4 := (@%(4))‘ —

which is the time-1 flow map of an auxiliary Hamiltonian

4) — (4) oy 0y
F¥(u) = Fj1j2j3j4 Uy Ujo Ujz Uy -
J1+j2+753+754=0

Note that we make the ansatz that the function F*) preserves the momentum, since the Hamiltonians

which we want to eliminate do it. The transformed Hamiltonian is

Hy:=Hsod,=H? + H®>2 4 g® 4 g=» g .= (g® W) 4 g¥ (5.2.22)
where H ES) collects all the terms of order at least five in (v, z). We choose F*) such that
{(H®, FW} + H§4) = HKer(H<2>)H?E4’S1) + H§4’22)- (5.2.23)

In Fourier representation we have
. . ) ) ) 4
(HO POy =~ N iw(in) + w(2) + w(is) +wia) Foi,
J1+j2+73+54=0
and then we set

(4)
— SRR b({y, o, s, 04, 99) < 1, SR w(Gi) # 0,

(4) ) T4 ;
Fjijagejs =4 1 i wlii) (5.2.24)
0 otherwise
where H§4j)1 jsjs ja 18 the Fourier coefficient of H§4) corresponding to the harmonic (j1, j2, J3,J4) -

We claim that for all ¢ =1,...,5

4,<1
HKGI’(H(Q))HRg(KEZ))Hé ) = 07 (5225)

indeed, since {H3, K;3} =0, by (5.2.11)), (5.2.18)), we have

(H? Ky — {£®, B + (5P K57 =0,

which implies

{(H®, K=} = (K@, 1<)
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Then (5.2.25) follows by using the same strategy as in Step (1). Formula (5.2.25) implies that
HKer(H<2>)H34’§1) is supported on the set of 6-resonances of order 4. By Proposition [5.1.3] we have

that such resonances are only the trivial ones, namely

(1 + j2)(j2 + 73) (1 + j3) = 0. (5.2.26)

We note that, by the symmetry of .S, the resonances (5.2.26)) cannot occur when one of the integers
J1, 72, J3,ja does not belong to S. Hence HKer(H(z))H3’1 =0.

Now we compute HKer(H<2))H?(>4’O)' We have

> w(j1 + Jj2) W Uy U (5.2.27)

1
I g0 _ = . - - -
Kerz@)413 8 w(j1) +w(je) — w1 + Jo2)

'jl’j27j3'7j4gs’
J1tj2+iz+ja=0
Jl+]2¢07]3+]47507

Zk:l w(jk):()

By (5.2.26) we have that the possible cases are
(1) {j2 # —jv,js = —jrja = =2} (id) {J2 # —J1,J3 # —Jr, Js = —Jj2, Ja = —j1}

and by the fact that w(—j) = —w(j) (see (1.2.7)) and the simmetry of A we have

(40 1 w(2j) 4
HKer(H(2>)H3 4 Z 2W(—|uj|

5 w() —w(2))
1 w(j1 + J2) 21, 12
ST D vy st et LRI
9 _
P w(j1) + w(ja) — w(is + Jj2) (5.2.28)
J1—J2#0
1 w(j1 — j2) 21,12
+ = . . g, 7|, 7.
9 ‘ Z+ w(]l) _W(]Z) _W(]l _]2)’ ]1| | .72‘
J1,j2€ST,
J1—J2#0
We conclude that
Hy=H® + B2 4 gt 4 g(t=2 4 g2 gt =T e B, (5.2.29)
As in the previous step, we have the same normal form for all the K3, namely
Kigi= K300, = K& + K& 4 g0 4 k422 4 g5
(4,0) (4,0) 7 7 7 (5.2.30)
Ki,4 = HKer(H(2>)Ki,3
fort=1,...,5.
Step (3). We want to remove the terms with at most one index among ji,. .., j5 outside S from
Hf). We claim that for all i =1,...,5
(5,<1) _
HKer(H(2))HRg(Ki(2))H4 - 0) (5231)

indeed, since {Hy4, K;4} = 0, using (5.2.29)), (5.2.30), we have
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{H?, K=Yy = (&, B=)

Then (5.2.31) follows by using the same strategy as in Step (1)-(2). Formula (5.2.31)) implies that
HKer( H(Q))H £5,§1) is supported on the set of 6-resonances of order 5, but by Proposition ([5.1.3))

there are not such resonances. We consider the auxiliary Hamiltonian

§ : 5
F(5) - Fj(lv)'“v.jS ujl T uj57 (5232)
Jittj5=0
oo
,J1J273J475 . L .
(5) . - N if ﬁ({]l’]2a]37]47]5}75 ) < ]-7
Fj1j2j3j4j5 = 1 2121 w(Ji) (5.2.33)
0 otherwise.

Let ®5 be the time-1 flow generated by X ). The new Hamiltonian is

4,>2)

Hs := Hyo®s = H® + HG22 4 g(*0 4 g 4 g 4+ HY,

(5.2.34)
HY = {H® FO} 4+ 1,

where H, 5(26) collects all the terms of degree greater or equal than six, and, by the definition of F®),

5
Y =3 R(WS9), (5.2.35)
q=2

Step (4). We now construct a symplectic map ®¢ to eliminate the term H( 1 (which is linear
in z) and to normalize H; (6,0) (which is independent of z). We follow exactly the same procedure
adopted in Step (2). We claim that for all i =1,...,5

(6,<1) _
HKer(H<2>)HRg(KZ§2))H5 =0, (5.2.36)

indeed, since {Hs, K;5} =0, by (5.2.11)), (5.2.18)), we have

(H?, kY — (@, B + (507 K57 =0,

which implies
{H, K5y = (K, 157

Then (5.2.25) follows by using the same strategy as in Step (2). Formula ([5.2.25) implies that
HKer(H(g))HE)ﬁ’Sl) is supported on the set of 6-resonances of order 6. By Proposition |5.1.3] we

have that such resonances are only the trivial ones. We note that, by the symmetry of S5, the

resonances (|5.2.26)) cannot occur when one of the integers ji, jo, ja, j1, j5, j¢ does not belong to §'.
(6,1) _

Hence HKer(H<2))H5 =0.

We look for a map @ := (' )},_, which is the time-1 flow map of an auxiliary Hamiltonian

(6) — (4)
F(u) :== Fj1j2j3j4j5j6 Uy Ugp Uz Ujy Ujs Ujg
Jit+je+js+jatis+ie=0
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and we note that by Proposition the 8-resonance of order 6 are only the trivial ones, namely
the ones given by

Ntje=Jjs+ja=Js+js=0 (5.2.37)
and all its permutations. Hence
6,0
HKer(H(2>)H5( ) = Z Mj1j2j3 |uj1‘2’uj2|2‘uj3’2 (5.2.38)
J1,J2,33€ST

where Mj, ;,;, are real numbers that we do not need to compute.
The new Hamiltonian is

5,>2)

He := Hs 0 g = H® + gG>2 4 g(40 4 gt=2) 4 622 4 g 4 gD, (5.2.39)

6,>2)

6 6,0
HE® o= T oy gy H + Hy (5.2.40)

where Hé27) collects all the terms of degree greater or equal than seven. Moreover

6
HZ? =3 R(uS-129). (5.2.41)
q=2
Step (5). We want to remove the terms with at most one index among ji,. .., j7 outside S from
Hé7). We consider the auxiliary Hamiltonian
7 7
FO= S FD g, (5.2.42)
Jite+57=0
g
%) — DNBIIAISISIT i () g, 3, a, G5, Js G7 ), S€) < 1
o . é . ) ) 9 9 9 9 9 = b
Jij2gsjagsjedr T 12 w(i) (5.2.43)
0 otherwise.

Let @7 be the time-1 flow generated by X (7). By the assumption (HO), see (|1.2.13)), this transfor-
F
mation is well-defined. The new Hamiltonian is
Hy:= Hgo®; = H® 4+ HG>? 4 g+ 4 g(+=?) 4 g(5>2)
+ mSY 4 gl6=2 4 gDy gl=®), (5.2.44)
7 7
Hé ) — {H(Q)’FW)} —|—Hé )7

where H§28) collects all the terms of degree greater or equal than eight, and, by the definition of
F

7
Y =37 R(vT929). (5.2.45)
q=2

Step (6). We now construct a symplectic map ®g to eliminate the term Hég’l) (which is linear
in z) and to normalize H78’0) (which is independent of z). We follow exactly the same procedure
adopted in Step (2)-(4). We note that, by the symmetry of S, the resonances (5.2.26|) cannot occur

when one of the integers j1, jo, j3, ja, J5, J6, j7, js does not belong to S. Hence HKer(H<2>)H§871) =0.
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We look for a map g := (@%(8)) which is the time-1 flow map of an auxiliary Hamiltonian

le=1

(8) o (6) e Al e Al Al Al A
F¥) () = Fj1j2j3j4j5j6j7jg Uiy Ugp Uj Uy W Uj Ugp Ujg
Ji+j2+iz+jatis+ie+ir+j8=0

and we note that by assumption (HO), see (1.2.13)), the 8-resonance of order 8 are only the trivial
ones, namely the ones given by

Ntje=J3+ja=Js+je=Jr+js=0 (5.2.46)
and all its permutations. Hence

8,0 ~
HKer(H@))}I§ = Z M;, 5234 ’uﬁ |2‘uj2 ’2’uj3 ‘Z‘Uj4 ’2 (5.2.47)
J1,92,73,J4€ST

where Mjl jajsja are real numbers that we do not need to compute.
The new Hamiltonian is

Hy = Hyo®s = H? + H®=) 4+ H* 4 g0 4 B2 4 g (5.2.48)
+Hé6,22) —|—H§7’22) +H§8) +H5(429)7 o
HE =g oy oy Hy Y + HEZ? (5.2.49)
where Hézg) collects all the terms of degree greater or equal than seven. Moreover
8
H# =37 R(wP29). (5.2.50)
q=2

Setting ®p := ®30 Py 0 P50 Pgo Py o Pg and renaming H := Hg = H o P, by Remark ((5.2.2)),
we conclude the proof of Proposition [5.2.3] O

5.3 Action-angle variables
On the submanifold {z = 0} we put the following action-angle variables
T xR} — {2z =0}
0,I) — v = Z \/.Tjeiej el (5:3.1)

JES
where RY is the set of v-ples of real and positive numbers. Note that this change of coordinates is
real (according to Definition (2.1.1)-(4)) if and only if I_; = I; and 6_; = —#6;.
The symplectic form in ([1.2.5]) restricted to the subspace Hg transforms into the 2-form

~ 1
Qg = E di; N ——dI;. 5.3.2
S . J w(]) J ( )
jES
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Hence the Hamiltonian equations of the system H(<8) .= H®) 1 H. §3) +H f) +H é5) +H, 6(6) +H §7) +H és)
(see (5.2.12), (5.2.22)), (5.2.34), (5.2.39), (5.2.44)), (5.2.49)) restricted to {z = 0} writes

0; = w(j) O HED(0,1,0),  jest,
. (5.3.3)
I; = —09,H=¥(0,1,0), je St

We have that

4,0 5,0 8,0
H(S8)(97LO) = Z I +HKer(H(2))H((4) )(I) +HKer(H(2))H((g) )(I) +HKer(H(2))H((8) )(I) (5.34)
jest

depends only by the actions I, thus we have

éj:wj<1)a jESJra

(5.3.5)
jj =0, Jje ST,
By (5.2.28) and (5.2.33)
oL w()w(2h) :
%u)_wuy+2%%$_wéﬁIrH%ﬂ%g%#bm&+gU) (5.3.6)
where
by i w(k + j) w(k — j)
T wlk) +w(i) —wlk+g)  wk) - w(i) - wk— ) (5.3.7)

_ 2 (A+R)A+)Q2+E +5%)

3B+ k242 +kj)(B+ k2452 — kj)
and G(I) is the sum of a bilinear and 3-linear functions of the variable I (see and (5.2.47)).
Hence, in a small neighbourhood of the origin of the phase space H{(T,), the submanifold {z = 0}
is foliated by invariant tori of amplitude ¢ and frequency vector w(€) := (w;(€))jes+ as in (5.3.6).
We shall select from this set of tori the approximately invariant quasi-periodic solutions to be contin-

ued and we will use their unperturbed actions & as parameters. Moreover, we shall require that the
frequencies of these tori vary in a one-to-one way with the actions £. Thanks to this fact, we could
control the conditions (Melnikov conditions) that we shall impose on the frequencies w through the
amplitudes, and viceversa.

We can write, in a compact form, the vector with components w;(I), j € S*, in , as

w(§) =w+ AL+ G(6), (5.3.8)
where @ is the vector of the linear frequencies (see (1.2.9)),
I, .. w(27) > . :
A=-Q diag | —————4— + Q B, Q= diag(w ) , 5.3.9
2 & <2w(j) —w(2]) ) jes+ 8 (‘]))JES+ ( )

where B is the v x v matrix defined by (recall (5.3.7))

Clo =k
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and G(&) is the sum of a bilinear and 3-linear functions of £ € R” (see (5.3.6), (5.2.38)), (5.2.47))).
The function of £ in (5.3.8]) is the frequency-amplitude map, which describes, at the main order, how
the tangential frequencies are shifted by the amplitudes &.

In order to work in a neighbourhood of the unperturbed torus {I = £} it is advantageous to introduce
a set of coordinates (6,y,z) € TV x R” x ng adapted to it, defined by

w=0ua(0,y,2) = VLAt L=t kG, €S (5.3.10)
uj 1= zj, j € S¢,
where (recall @; = u_;)
E-j=¢&, &>0, y_j=vy;, 0_j=-0;, 0,€T, y;€R, Vjebl. (5.3.11)
For the tangential sites S* := {7;,...,7,} we will also denote
03, = 0i, Y3, =y, &, =&, wj i =w, i=1,...,1
The symplectic 2-form 2 in becomes
W = Zd@ Ady; + = Z dz] Ndz_j = (Z do; A dyl> @ QgL = dA, (5.3.12)
GSC =1

where Qg1 denotes the restriction of Q to Hy and A is the Liouville 1-form on T" x R x H&
defined by Ag, ) RY X R x H§ — R,

L 1,
MNoy)00,9,2] == —y -0+ §(J 1Z7Z)L2(’]I‘)- (5.3.13)

Working in a neighbourhood of the origin of the phase space, it is convenient to rescale the unper-
turbed actions & and the variables 0, y, z as

Ers e, y— ey, 2zl (5.3.14)

The symplectic form in (5.3.12)) transforms into €2 . Hence the Hamiltonian system generated by
H in (5.2.7) transforms into the new Hamiltonian system

0 = OyH-(0,y,2),
§=—0pH.(0,y,2), H.:=e%Ho A, (5.3.15)
’é = aZvZHE(Qv Y, Z)7

where

Ac(0,y,2) =cv(0,y) + %2, ve(0,y) =) \/fj + 20D |w(j) |y; €% 7. (5.3.16)
JES

We still denote by
XHg - (asty _89H€7 8JTVZH6>
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the Hamiltonian vector field in the variables (0,y,2) € TV x R¥ x H §- We now write explicitly the
Hamiltonian defined in (5.3.15). The quadratic Hamiltonian H®) in (5.2.1)) becomes

1
e 2H® o A, = const + Z w(j)y; + 3 / 22 dx, (5.3.17)
jes+ T

and by (5.2.1), (5.2.12)), (5.2.22)), (5.2.40)), (5.2.49) and (5.2.45)), (5.2.50)) we have (writing v, :=
Us(eay))

1 b
HE(G,y,z):e(ﬁ)—}—a(f)'y—f—/z2dx—€/vg(0,y)z2dx—€/z3d:c
2 Jr 2 Jr 6 Jr

2b
4 % AQy -y + 2D 0(ey?) + 20D 0(22) + 20 (y?)

+e2R((ve(0,y))?2%) + " TP R(v-(0, ) 2°) + 3 R((v=(0,))32?)

5 6
2SI R (1, (0,))02) 4 0 3 DI Ry (5.3.18)
q=3 q=3
7 8
4 g4tb Z E(b*l)(qf?’)R(Uﬁqzq) 4+ g5t Z E(bfl)(qf?»)R(vaqzq)
q=3 q=3
+ e P Hg(ev-(0,y) + €°2)
where e() is a constant and «(§) is the frequency-amplitude map (recall ([5.3.8))
alé) =w+ A6+ G(¢). (5.3.19)

Note that AQ is symmetric.

Remark 5.3.1. By assumption (H2) in (1.2.15]) the function ([5.3.19) is a diffeomorphism for € small
enough and the system (|5.3.5) is integrable and non-isochronous.

We write the Hamiltonian in (5.3.18)), eliminating the constant e(§), which is irrelevant for the
dynamics, as

1
H.=N+P N(0y,2) = &) -y + 5(N(O)z2)r2(m),
1

SN 0)22)120m) = 5 (QVHIO0.00E] amy = 5 [ 2o (5.320)

= 5 [ e0.0)2 ot R 0.05) + SR(w:(0.0)) + .

where N describes the linear dynamics, and P := H. — N collects the nonlinear perturbative effects.

5.4 The nonliner functional setting
We look for an embedded invariant torus

i: TV =T xR x Hg, ¢ i(p) = (0(0),y(¢), 2(9)) (5.4.1)
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of the Hamiltonian vector field Xp_ supporting quasi-periodic solutions with diophantine frequency
w € RY, that we consider as independent parameters. We require that w belongs to the set

Qe :={a(&) : € €[1,2]"}, (5.4.2)

where « is the function defined in (5.3.19) and, by Lemma it is a diffeomorphism for a generic
choice of the tangential sites.
We shall require also some diophantine conditions on the frequencies w € .. We define the sets

O fwe Qi fw-l] >y (), V0 ez’\{0}} (5.4.3)
G = {w € Qo £+ 2AE £+ w(j') — w(f) + 2w )Ny — w(i)A))] = C,

./ . o (5.4.4)
ijel +7 -7=0, VW <3, leZ” \ {0} JJ € SC}
i=1
for some constant C' depending on S, where A is defined in (5.3.9) and
2 (1+53)(1+5) (2 + 73 + 5%)
= (3475 — j2j + 52 (B + 55 + jaj + 52
j2€S
We require that
weGo=3g"nglM. (5.4.5)
Since w € €. are 2-close to the rational vector @ := (w(7),...,w(7,)) € Q”, we require that the
constant ~y satisfies
v =¢e?* for some a > 0 (5.4.6)

in order to prove that the set Gy has large positive measure. This point will be analyzed in Section
- Note that the definition of ~ in is shghtly stronger than the minimal condition, namely
~v < ce?, with ¢ > 0 small enough. In addltlon to we shall also require that w satisfies the
first and the second order Melnikov non-resonance conditions. We fix the amplitude £ as a function
of w and ¢ so that (see (5.3.19))

alf) =w.
Consequently, H. in becomes a (w, €)-parameter family of Hamiltonians such that for P =0
possess an invariant torus at the origin with frequency w.
Now we look for an embedded invariant torus of the modified Hamiltonian vector field X H.e =
Xu. +(0,¢,0),¢ € R”, which is generated by the Hamiltonian

H.:(0,y,2) == H(0,y,2) +(-0, (e€R". (5.4.7)

We introduce ¢ in order to control the average in the y-component of the linearized equations (|5.5.23))
(see (5.5.25))). However, the vector ¢ has no dynamical consequences. Indeed it turns out that an
invariant torus for the Hamiltonian vector field X H.. 18 actually invariant for Xp_ itself.

Thus, we look for zeros of the nonlinear operator

‘F(laC) = ‘F(i7<7w’5) = DW’L(QO) - XN(Z(SO)) - XP(Z(SO)) + (O,C,O) (548)
w0(p) — Oy H-(i()) D,O(p) — 0,P(i(¥))
= Dwy(@)Jr@eH (i() + ¢ | = | Duyle) + 159( ( (©))z(©))z2(m) + 99 P(i(9)) + ¢

Doz(p) — 0V He(i()) Doz(p) = 0N (0(p)) 2(¢) — 3 V2 P(i(p))
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where O(yp) := 6(p) — ¢ is (2m)"-periodic and we use the short notation
Dy :=w - Op. (5.4.9)
The Sobolev norm of the periodic component of the embedded torus

I(p) ==i(p) — (»,0,0) == (O(p), y(»), 2(¢)), (5.4.10)
131ls = 1Ol ms + llyllms + |21l (5.4.11)

where |[z[[s := ||z[[n3 , is defined in (2.1.2).
We link the rescaling of the domain of the variables (5.3.14]) with the diophantine constant v = £2¢

by choosing

y=e2tr =20 pi=14 (a/2). (5.4.12)
Other choices are possible (see Remark 5.2 in [9]). We fix
50 = [%} +3. (5.4.13)

Theorem 5.4.1. There exists a small constant ¢ > 0 such that for any choice of the tangential sites
(see (1.2.8)) generic in V(c) (according to Definition[1.2.9) there exists €9 > 0, small enough, such
that the following holds.

For all € € (0,e9) there exist a constant C > 0 and a Cantor-like set C. C Q. (see ), with
asymptotically full measure as € — 0, namely

lim C| =
e—0 |QE’

1, (5.4.14)

such that, for all w € C., there exists a solution is(¢) := ioo(w,)(p) of the equation F(ioo,0,w,e) =
0 (see (5.4.8)). Hence the embedded torus ¢ — ioo(p) is invariant for the Hamiltonian vector field
Xp_, and it is filled by quasi-periodic solutions with frequency w. The torus i~ satisfies

) 7CE — —
lice () = (12,0,0)[ 355, < C ¥ 2047 (5.4.15)

for some p:= pu(v) > 0. Moreover the torus is is linearly stable.

Theorem is proved in Sections 5.90 It implies Theorem where the & in (1.2.17)

are the components of the vector A~!w — @].

Now we give tame estimates for the composition operator induced by the Hamiltonian vector
fields X and Xp in (5.4.8).
Since the functions y — \/f + 2001y § — €'? are analytic for ¢ small enough and |y| < C, the
composition lemma[A.0.3implies that, for all ©,y € H*(T",R") with [|O||s,, [ly[ls, < 1, one has the

tame estimate
[0=(0(), y(@))ls <s T4 [[O]]s + [yl (5.4.16)

Hence the map A, in (5.3.16)) satisfies, for all ||3||ZOO <1

In the following lemma we collect tame estimates for the Hamiltonian vector fields Xxr, Xp, Xg_,

see (|5.3.20)).

19 <, e(1+]7)179). (5.4.17)
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10 < Ced 2y=1. Then

Lemma 5.4.2. Let J(p) in (5.4.10) satisfy ||7|

so+1 —
_ ~7,0
10, PG| 7C <o €7 + 2|31 5, 0o P ()27 <o €27 2(1 + |31 15), (5.4.18)
IV.P@)IT < 68‘b+€9‘b ] S HXP(')HZ’O< 97 1 B3 15, (5.4.19)
1000, P(0) |27 <o €7+ 337131100, 10, VP )| <y €57 4+ 271|375, (5.4.20)
2b
. & ,0 _
\\3ny(Z)—7AQ\IZ <o PP 4 Oy 7)1 (5.4.21)
and for all i := (0,7, 2),
N[ ,O _
10y Xp(i)[i]]ly~ <o 1(II illvys + 13112 ys e 1295, (5.4.22)
|di X . (4)[2] + (0 0,7 )77 <y e(llillyys + 131175l 12:95), (5.4.23)
1d2 X gz, (D)2, 3112 <o el alalln s + 1312 (2 il17:75)%). (5.4.24)

In the sequel we will use that, by the diophantine condition (4.3.3), the operator D! (see (5.4.9))
is defined for all functions w with zero p-average, and satisfies

— 7,0 —
1D ulls <o v ullsirs D5 S <o v ull3iar- (5.4.25)

5.5 Approximate inverse

We will apply a Nash-Moser iterative scheme in order to find a zero of the functional F(i,()
defined in (5.4.8). In particular, we shall construct a sequence of approximate solutions of

F(i,¢) =0 (5.5.1)

that converges to a solution in some Sobolev norm. In order to define this sequence we need to solve
some linearized equations and this is the main difficulty for implementing the Nash-Moser algorithm.
Zehnder noted in [97] that it is sufficient to invert these equations only approximately to get a scheme
with still quadratic speed of convergence. We refer to [97] for the precise notion of approzimate right
inverse, whose main feature is to be an exact right inverse when the equation is linearized at an exact
solution. Hence, our aim is to construct an approximate right inverse of the linearized operator

d; ¢ F (i, Co)[i, €] = Dt — di X 1. (i0())[i] + (0,¢,0) (5.5.2)

at any approximate solution 7y of the equation , and to verify that satisfies some tame esti-
mates.

Note that d; ¢ F(io, o) = d;i ¢ F(ip) is independent of (y (see (5.4.8)).

We will implement the general strategy in [21], [22] which reduces the search of an approximate right
inverse of to the search of an approximate inverse on the normal directions only.

It is well known that an invariant torus i¢p with diophantine flow is isotropic (see e.g.[21]), namely
the pull-back 1-form ¢gA is closed, where A is the Liouville 1-form in (5.3.13f). This is tantamount
to say that the 2-form W in ([5.3.12)) vanishes on the torus ig(T"), because ifW = ifdA = difA.
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For an “approximately invariant” embedded torus iy the 1-form ijA is only “approximately closed”.
In order to make this statement quantitative we consider

ipA = Zak )deor,  ai(p) == —([0,00(2)]"y (@))k+1(8wk20(90) 0; ' 20(#)) 12y (5.5.3)

and we quantify how small is

ioW = digh = Z Ap (o) dor Ndpj, A (@) := 0p,a;(p) — Op,ar(p). (5.5.4)
1<k<j<v

In order to get estimates for an approximate inverse we need to take in account the size of the “error”
function

Z(p) := (21, Za, Z3)(p) := F(i0, o)(¢) = w - Oio(p) — X ., (i0()), (5.5.5)

which gives a measure of how iy is near to be an exact solution.
Along this section we will always assume the following hypotesis (which will be proved at each step
of the Nash-Moser iteration):

e Assumption. The map w — ip(w) is a Lipschitz function defined on some subset Oy C Gy C
Q., where Q. is defined in (5.4.2)), and, for some fi := ji(r,v) > 0,

190ll7,55 < 7y, 2]

< : 1O < 97y e g (5.5.6)

So-‘rli —

where Jo(p) :=io(¢) — (¢,0,0).
The next lemma proves that if ig is a solution of the equation , then the parameter ¢ has to
be naught, hence the embedded torus ig supports a quasi-periodic solution of the “original” system
with Hamiltonian H..

Lemma 5.5.1. (Lemma 6.1 in [8]) We have

o 0
PR ClZ|5T

o

In particular, if F(io, (o) =0 then (o =0 and the torus ig(p) is invariant for the vector field X .

Now we estimate the size of ig)V in terms of the error function Z.

By (5.5.3), (5.5.4) we get

’Y)OO

O ~e
AR5 <s 10l 532"

Moreover, we have the following bound.
Lemma 5.5.2. (Lemma 6.2 in [8]) The coefficients Ay (@) in (5.5.4) satisfy

O - 70
1Ak TP <s vy Z12 5042 + 12

,Oo |1~ ,O
s+27+ ZO+°1||J0HZ+2°T+2)- (5-5-7)

As in [21], the idea is to analyze the operator linearized at an isotropic embedded torus is, be-
cause the isotropy of the torus allows to construct a symplectic set of coordinates around it for which
the linear tangential dynamic and the normal one are decoupled. Thus, the linear system becomes
“triangular” and the hard part is to solve the equation in the normal directions (see Section 7).
Now we see that we can slightly modify iy (indeed, it is sufficient to move the y-component only) to
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obtain an isotropic torus is, that is an approximate solution as well as 7. At the end of this section,
we will prove that we are able to construct an approximate right inverse of (5.5.2)) starting from an
approximate inverse of d; ¢ F(is, o), C]-

In the paper we denote equivalently the differential 0; or d;. We use the notation A, :=

ZZ:I a?ok :

Lemma 5.5.3. (Isotropic torus)(Lemma 6.3 in [8]) The torus is = (6o(v),ys(¥), z0(p)) defined
by

vs =40 + [0,00(2)] T (), pi(9) = ALY D, Aki(9), (5.5.8)
k=1

is isotropic. If (5.5.6|) holds, then, for some 0 :=0(v, 1),

,O — ,Oo (1~ ,O ,O0 |1~ ,O
lys = 9ol <s v HUIZIZE 1T0ll35% + 121355113011 3520), (5.5.9)
. ,O ,O ,Oo ||~ ,O
17 (s, QT <s 121125 + 1211550110l 333° (5.5.10)
10425 ls <s llills + [1Tolls+ollills- (5.5.11)

We introduce a set of symplectic coordinates adapted to the isotropic torus i5. We consider the
map Gs: (¢,n,w) — (0,y,z) of the phase space TV x R” x Hg defined by

Y 0o (%)
y| =G| n| = |ys(®)+[8,00(¥)] "+ [(99Z0)(Bo()]" T w (5.5.12)
z w ZO(¢) +tw

where %y := 20(0 1(0)) (indeed 6p: TV — T is a diffeomorphism, because 6o(p) — ¢ is small). Tt
is proved in [21] (Lemma 6.3) that G5 in (5.5.12) is symplectic, using that the torus i is isotropic.
In the new coordinates, is is at the origin, i.e. (1,n,w) = (¢,0,0). The transformed Hamiltonian

K = K(¢,n,w, (o) is (recall (5.4.7))

K = He ¢, 0Gs=00(1) - Co+ Koo(¥) + K1o0(¥) - 1+ (Ko1(¥), w) p2(1y + %KZOW)U Tt (5.5.13)

1
+ (En (@), w)reem) + 5 (Ko ($)w, w)p2(r) + Kx3(4,7, w)

where K>3 collects the terms at least cubic in the variables (n,w). At any fixed v, the Taylor
coefficient Koo(1)) € R, K19(¢) € R, Ko1(v)) € Hg, Koo(t) is a v x v real matrix, Koa(¢)) is a
linear self-adjoint operator of Hg and Ki1(¢)): RV — Hg .

Note that the above Taylor coefficients do not depend on the parameter (.

The Hamilton equations associated to are

b = Kio(y) + Koo()n + K () w + 9y K>3(¢, n, w)
i) =— [0400()]" o — Oy Koo(¥) — [0 10(4)] 0 — [0y Kor ()] w—

— Oy (;Kbo(lﬁ)n 0+ (K (¥)n, w)r2(r) + %(Koz(w)w,wn%m + K239, n,w))
W = J(Ko(¥) + Ki1(¥)n + Koa(¥)w + Vi K>3(4, 0, w))

(5.5.14)




130 5.5. APPROXIMATE INVERSE

where [0y K10(¥)]T is the v x v transposed matrix and [0y Ko (¥)]T, K{;(¥): H — RY are defined
by the duality relation

(O Kor () [, w) 2(ry = ¢ - [OpKon ()] "w, Vi) € RV, w € Hg,
and similarly for K. Explicitly, for all w € H Sl, and denoting e;, the k-th versor of R”,

v v

Kfi()w =Y (Ki()w-ep)ep = Y (w, Ku(¥)ep) 2 (myer, € R”. (5.5.15)

k=1 k=1
In the next lemma we estimate the coefficients Koo, K19, Ko1 in the Taylor expansion (5.5.13]). The
term K79 describes how the tangential frequencies vary with respect to w. Note that on an exact

solution (ig,(p) we have Kyo(v)) = const, K19 = w and Ky = 0.
Lemma 5.5.4. (Lemma 6.4 in [8]) Assume (5.5.6)). Then there is o := o(1,v) such that

70 70 ,O 70 ,O ~ ,O
19y Koo[37° + [ K10 = wl[37 + Ko l37° <s 121355 + 1211555190l 54 5

Remark 5.5.5. By Lemma if F(ip,¢o) = 0 and, by Lemma the Hamiltonian ((5.5.13)

simplifies to

1 1
K = const +w-n+ §K20(¢)"7 0+ (K1 (¥)n, w) g2y + E(Koz(l/))wj w)p2(r) + K>3 (5.5.16)
In general, the normal form ([5.5.16)) provides a control of the linearized equations in the normal

bundle of the torus.

We now estimate Koo, K11 in (5.5.13). The norm of Koy is the sum of the norms of its matrix
entries.

Lemma 5.5.6. Assume (5.5.6). Then for some o := o(v,7) we have

o i~ .0 0

[ K20 — fAQHV " <o 04 e 301 + Sy Tl I 21 (5.5.17)
o _ ,0 _ ~ N6, 1~ .0 ,0 ,0

K 1amlls " Il + 2 0125 + v To s 1 21 re) Il (5.5.18)
O 11~ ,0 ,0 o

1K w70 <, ey Ywll) s +€2” H130l3ss + v 30l 121300 e (5.5.19)

In particular

520 o )

, _ ,O _ ,O ,O _ ,O
1Ko — -AQfl * <™y Kl * <™y Hinlly, 7 IEGwlyy < ey Hlwlg

We apply the linear change of variables

v Fy00() 0 0 0
DG;(,0,0) | 71 | = | dyus(v) [0b0(@)]™" —[(D0Z0)(Go(p)]" 0" | | 7 (5.5.20)
w Oyzo(p) 0 I w.

In these new coordinates the linearized operator d; ¢ F(is, (o) is “approximately” the operator obtained
linearizing (5.5.14) at (¢, n,w,¢) = (p,0,0,{y) with D, instead of J;, namely

Dt = 9 Kuo(9)[0] — Kaole)ih — Ky ()
Desi) + 000 (9)]7C + 0y (0400 ()] [, Co] + s oo (9) [1] + [0 K 10(0)]T 1) + [0y Ko ()]
Dy = J{0y Ko1 (@) [¢] + K11(#)7 + Koz ()}
(5.5.21)
We give estimate on the composition operator induced by the transformation .
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Lemma 5.5.7. (Lemma 6.7 in [8]) Assume (5.5.0) and let i := (4,7, %). Then, for some o :=

o(1,v), we have

IDGs(,0,0)[illls + 1 DGs(, 0,0) " illls <s ll2lls + (1F0llsto + 3~ N1 Tollsto | Zlls+o) il

ID?Gs(,0,0) i1, 22]ls < [fanllsl22llso + lallsollells + (1Tolls+o + 7 ITollsoro1Z 1 s40) Ellso 122l so-
(5.5.22)

v,0¢

Moreover the same estimates hold if we replace ||-||s with ||-||s " -

In order to construct an approximate inverse of (5.5.21)) it is sufficient to solve the system of
equations

X ) Do) — Kao(¢)i — Kﬂ(@m g1
D[, 7, b, ¢] := Do) + [0y00(0)]7¢ = |9 (5.5.23)
D — JK11(p)h) — J Koz (¢) g3

which is obtained by ([5.5.21]) neglecting the terms that are naught at a solution, namely, by Lemmata
" and ‘ y 8¢K10,8¢¢K00,8¢K00,6¢K01 and 8¢[8¢00(@)]T[-,C0].

First, we solve the second equation, namely

~

Dy = g2 — [Oybo(9)]C. (5.5.24)

We choose 6 so that the ¢-average of the right hand side of ([5.5.24]) is zero, namely

~

¢ = (92)¢- (5.5.25)

Note that the p-averaged matrix ((0y00)7), = (14 (9y00)T ), =1 because O(¢) = ¢ + Op(p) and
Oo(¢p) is periodic. Therefore

=D, (92 — [0p00(0)] (92)¢) + (s (D) €RY, (5.5.26)

where the average (1), will be fix when we deal with the first equation.

We now analyze the third equation, namely
L= g3+ JK11()), Ly:i=w- 8<p — JKp2(p). (5.5.27)

If we fix 7, then solving the equation (5.5.27)) is tantamount to invert the operator L. For the
moment we assume the following hypotesis (that will be proved in Section 8)

e Inversion Assumption. There exists a set (2o C 2. such that for all w € Q, for every
function g € H;J[“(']I‘”“‘l) there exists a solution h := L'g of the linear equation L,h = g
which satisfies

- ,O — ~ 70 ,O 7Qoo
on e T 30l 35 I 2105 gl ) (55.28)

so+o s+o’

_ fo 114~
T <y gl + ey {1190

for some o’ :=o'(7,v).

By the above assumption, there exists a solution of ((5.5.27))

W= L5 g5 + J K11 (). (5.5.29)

w
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Now consider the first equation

Duth = g1 + Kaof) — KTy (). (5.5.30)
Substituting ([5.5.26)), (5.5.29)) in the equation ([5.5.30)), we get
Doth = g1+ Mi(0)(A) + Ma(p) g2 + M (p)gs — Ma(0)[060]" (92).s, (5.5.31)

where
Mi(p) = Kao(o) + K1 () L5 0: K1 (9),  Ma(p) = Mi(@)D,",  Ma(p) = Kii(9)L," (5.5.32)
In order to solve the equation ([5.5.31)) we have to choose (1), such that the right hand side in (5.5.31])

has zero p-average.
By Lemma [5.5.6(and (5.5.6)), the p-averaged matrix (Mj), = £2’A + O(1%y73). Therefore, for ¢
small, My,[M;] is invertible and M,[M;]7! = O(e7%) = O(y~!). Thus we define

(M = —((M1)p) " {{g1)p + (M2g2) + (Msgs)p — (M2(9y00)" ) (92)}- (5.5.33)
With this choice of (1), the equation has the solution
=D, (91 + M) (M) + Ma(p)g2 + M3(p)gs — Mz(%)[ﬁweo}T@zM)- (5.5.34)

In conclusion, we have constructed a solution (1&, N, W, 6 ) of the linear system ({5.5.23)). We resume
this in the following proposition, giving also estimates on the inverse of the operator D defined in
(15.5.23)).

Proposition 5.5.8. Assume (5.5.6) and (5.5.28)). Then, for all w € Q, for all g := (g1,92,93),

the system (5.5.23) has a solution D™1g := (@,ﬁ,w,é) where (1/3,77,117,6) are defined in ((5.5.34]),
(5.5.26)), (5.5.29), (5.5.25)). Moreover, we have

— Qoo — 7900 - - ~ 70 - ~ 70 > 70 7900
D™ gl 3% <5 v llglldne +ev™ v HTollzey + 2 3ol IF Go, Co)ll 2o Higllesse ). (5-5.35)

Proof. The proof follows exactly the same arguments of the Proposition 6.9 in [§]. O
Eventually we prove that the operator
Ty := (Déé)((ﬁa 0, 0) oD o (DG(;((,D, 0, 0))_1 (5536)

is an approximate right inverse of d; ¢« F(ip) where Gs5((1h,n,w), ) is the identity on the ¢-component.
We denote the norm [|(s, 1, w, Q)3 := max{]|(w, 7, w) |77, |}

Theorem 5.5.9. Assume (5.5.6) and the inversion assumption (5.5.28|). Then there exists p =

wu(t,v) such that, for all w € Qo , for all g := (g1,92,93), the operator Ty defined in (5.5.36))
satisfies

ITogl 7%= <577 (llg

It is an approzimate inverse of d; ¢ F (i), namely

Vo) (55.37)

Qoo P ) EETIPG, ,
wo ey Il + v HIToll B F (o, o) so+i

S+ s+p so+p

,O
S g

) - - y 70 :QOO
1(ds ¢ Flig) o To — I)g|| 7 <, ety 2(Hf(lo, Collsgrpllallys
. 0 _ .
+ {1 F o, C) 150 + v~ I F (o, Go)

o o 0 (5.5.38)
7,0 Hjo"yu O}”g”77 oo)
Proof. The proof follows the same arguments of the Theorem 6.10 in [§]. O]

so+H S+ S0+H
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5.6 The linearized operator in the normal directions

In this section we give an explicit expression of the linearized operator
ﬁw =W - acp - JKOQ(QO). (5.6.1)

To this aim we compute %(Kog(w)w,w)Lz(T),w € HZ, which collects all the terms of (H. o
G5)(¢,0,w) that are quadratic in w.
First we recall some preliminary lemmata.

Lemma 5.6.1. (Lemma 7.1 in [§]) Let H be a Hamiltonian function of class C*(Hg(T,),R) and
consider a map ®(u) := u + ¥Y(u) satisfying V(u) = HpVY(Ilgu), for all w, where E is a finite
dimensional subspace as in (5.2.4]). Then

Ou[V(H o ®)|(u)[h] = (8, VH)(®(u))[h] + R(u)[h], (5.6.2)
where R(u) has the “finite dimensional” form

R(u)[h] = Y (h gj(w) r2(m)x; (u) (5.6.3)
lil<c

with x;(u) = €% or gj(u) = €Y%. The remainder in (5.6.3)) is

R(u) = Ro(u) + Ri(u) + Ra(u)

with
Ro(u) = (0uVH)(®(u)0u ¥ (u), Ri(u) = [0u{¥ (w)}][-, VH(S(u))], (5.6.4)
Ra(u) = [0,V (w)]" (0, VH )(®(1))0u®(w).
Lemma 5.6.2. (Lemma 7.3 in [8]) Let R be an operator of the form
1
Rh= 3 [ hgy (o) (5.6.5)

lil<C

where the functions g;(7),x;(7) € H*,7 € [0,1] depend in a Lipschitz way on the parameter w.

Then its matriz s-decay norm (see (2.3.1)-(2.3.2)) ) satisfies
[RIZPOY < > sup (G (MIEFPDNgi 1577 + [ (157015 () [57). (5.6.6)
lil<c T€[0,1]
5.6.1 Composition with the map G

In the sequel we use the fact that J5 := J5(p;w) = i5(v; w) — (@, 0, 0) satisfies, for some p’ > 0,

,O 9-2b, —1
ZOJ’_(L/ S CE r)/ . (5.6.7)

We now study the Hamiltonian K := H. 0 G5 = e ?H 0 A. 0 G5 (see (5.3.20))). Recalling (5.3.16)),
A; o G has the form

Ac(Gs(v,m,w)) = eve(Bo(v), ys(¥) + L1()n + La(w)w) + " (20(¥) + w) (5.6.8)

1351
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where
Ly (V) := [000()] ™", La(¥) := [(8p70) (00 (¥))]" T . (5.6.9)
By Taylor formula, we develop in w at (n,w) = (0,0), and we get

(Ac 0 Gs)(¥,0,w) = T5(¢) + Th(Y)w + Ta () [w, w] + T>3(¢, w),

where
T5(¢) = A=(G5(¢,0,0)) = cvs(vh) +"20(1),  v5(1) := ve(Bo(¥), ys(1)) (5.6.10)
is the approximate isotropic torus in the phase space H& (T) (it corresponds to is),
Ti()w = 27U ()w + Lw;  To(¥)[w, w] := e 30Uy () [w, w] (5.6.11)
; . oilfo(¥)];
U1(1/1)w ::EZ |w(j)‘[L2(¢)'w]J€ 7 (5612)

J5 24/ + 20Dl [ (0)];

(.d(j)Q [L2(¢)w]§ ei[eo(w)]j
Ua(9)[w, w] = —e 5 5.6.13
oAk Jze; 8{&; + 2O D]w(i)llys(¥)];}2 ( )

and T>3(1,w) collects all the terms of order at least cubic in w. In the notation of ([5.3.16), the

function vs(¥) in (5.6.10)) is vs(v) = v=(00(¥), ys(v0)). The terms Uy, Us in (5.6.12)), (5.6.13) are
O(1) in e. Moreover, using that La(7) in (5.6.9) vanishes at zp = 0, they satisfy

1Urwlls <s [1s]lsllwllso + 1 Tsllsolwllss  (U2w, wllls <s 13611501 Ts 156 llwllz, + 135113, lwllso 1]l
(5.6.14)

and also in the norm HH;VOO We expand H by Taylor formula
1
H(u+h) =H(u) + (VH)(u),h) 2y + 5((8UV’H)(U) [h], h) 2 () + O(h?). (5.6.15)

Specifying at u = T5(v)) and h = T3 (¢)w + To(¢)[w, w] + T>3(¢», w), we obtain that the sum of all

components of K = e 2(H o A. o G5)(1),0,w) that are quadratic in w is
1 B e—2b
& (oo, w) o) = € (VH)(T5), Tl ) ) + g (0 VH) (T3) [Taw], Tow) ey, (5610

Inserting the expressions (5.6.12)), (5.6.13)) in the equality (5.6.16[), we get

Koo(¥)w =(8,VH)(Ts)[w] + 2e*71 (8, VH) (Ts) [Uw]+

5.6.17
+ 2=DUT (9, VH)(T5) [Urw] + 22 3Usw, 1T (VH) (Ts). ( )

Lemma 5.6.3. The operator Koo reads
(Koaw, w) 21y = ((OuVH)(T5)[w], w) 21y + (R(¢)w, w) r2(7) (5.6.18)

where R(Y) has the “finite dimensional” form

R(yw = (w,g; () r2(m) x5 (¥)- (5.6.19)

lil<C
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The functions gj,x; satisfy, for some o :=o(v,7) >0,

70 70 aO ,O b~ ,O
g 120 s 13570 + g 30 s 132 <s € 113sl1345 (5.6.20)

1055211 s11x s + 11059512l |0 1X;51s + 19515 19ix (2]l so 4 11951150 10X 2] |
<s 51+bHi”s+a + 52b_1||35||s+0||i“s+0 (5.6.21)

In conclusion, the linearized operator to analyze after the composition with the action-angle

variables, the rescaling and the transformation Gy is
w s (0, VH)(Ts)[w], we Hs
up to finite dimensional operators which have form (5.6.19)) and size (5.6.20)).

5.6.2 The linearized operator in the normal directions

In this section we compute ((0,VH)(Ts)[w],w)r2(r), w € HZ, recalling that H = H o ®p and
®p is the Birkhoff map of Proposition [5.2.3] It is convenient to write separately the terms in

H=Hodz=(H® +H®)odp+ HZY 0 dp, (5.6.22)

where

1 1
H® (y) = /qux, H® (u) = —/u?’d;r, HE) (y) ::/f(u) dz.
2 T 6 T T
First we consider H(Z% o ®5. By (5.2.1)) we get
VHE) (u) = mo[(9uf) (u))-
Since the Birkhoff transformation ®p has the form (5.2.6)), Lemma [5.6.1] (at u = Tj) implies that

0.V (HE 0 &p)(T5)[h] = (0.VHZV)(@5(T5)) ] + Rygezo (T5)[h] =

(5.6.23)
=r10(Ts5)h + Ryeo (T5)[h]
where the multiplicative function ro(7Ty) is
ro(Ts) == 00(®B(T5s)), oo(u) = (Ouuf)(u), (5.6.24)

the remainder R o) (u) has the form (5.6.3) with x; = €% or g; = €% and it satisfies, for some
o:=o(v,7)>0,

~ 70
190 4 |g; 11790 <y €T (1 + ||T5]1250),

O
g5 112 x|
R R R R 7 A ~ ~
1059, (8]l 11X |lso + 11029518l 5o 1115 + 1195115 19ix5 (el so + 19510 10X [Ellls <s € (|l s+o + [|Tslst2[2lls0+2)-

Now consider the contribution of (H® + H®)) o ®p. By Lemma [5.6.1] and (&.1.1)) we have

0V ((H® + H®) 0 ®p)(T5) (1] = (1 — D5(T5))h + Ry (T5)[h] + Ry (T[], (5.6.25)
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where ®p(Tj) is a zero space average function, indeed ®p maps H{(T.) in itself by Proposi-
tion (5.2.3). The remainder Ry ), Ry have the form (5.6.3) and, by (5.6.4), the size (Ry@ +
R ) (T5) = O(e). We develop this sum as

Ry + Ry@)(Ts) = Ry + e Ra + Rsa, (5.6.26)
where R~ has size o(c?). Thus we get, for all h € Hz,
1150,V ((H® + H®) o ®5)(Ts)[h] = S[(1 — ®5(T5))h] + TE(eR1 + 2Ry + Ru2)[h].  (5.6.27)

Now we expand ®p(u) = u+Wa(u)+W>3(u), where W (u) is a quadratic function of u, ¥>3 = O(u?)
and both map HE(T,) in itself. At u = Ts = evs + 2 we get

Op(Ts) = Ts + Vo (T) + Us3(Ts) = evs + £2Wo(vs) + g, (5.6.28)
where § = €29 + Wa(Ts) — e2Wq(vs) + U>3(T5) and it satisfies
11127 <s €% + 135127, 13idlillls <s e®(ls + 1350512l s0)- (5.6.29)
Note that also ¢ has zero space average, indeed § = ®5(Ts) — cvs — e2Ws(vs) and
Wy (v) := JVF®) (v) € H}(T,), (5.6.30)
®p(Ts),vs belong to Hi(T,).

Remark 5.6.4. We observe that the terms O(g) come from the monomials R(v 22) of Hz and the
ones of size O(e?) from H® +H*2) (see ({1.8)). Thus, we compare with IT& (9, V(H® +
HEO + 1 E2))(Ty)[R], using [@1.8), and, by (5.6.28), we obtain Ry =0 and R, is the L?-gradient
of the Hamiltonian composed by the terms R(v? 22) of the Poisson bracket 2-1{H(&=D F®)}

In conclusion, we have the following proposition.

Proposition 5.6.5. Assume (5.6.7). Then the Hamiltonian operator L, for all h € Hg, (T"*1),
has the form

Loh = Dyh — J Kooh = 1Ig (Duh — J [(1 — ®p(Ts) — ro(T5))h] — e?J Roh — JR.K)  (5.6.31)
where Ro is defined in Remark[5.6.4,

R = Roa + Ryo (T5) + R(y), (5.6.32)

with R(y) defined in Lemma[5.6.9, ro in (5.6.24), Ts in (5.6.10), Rsz in (5.6.20) and ®5(Ts) in
(.6.29).

Furthermore, we have, for some o :=o(v,7) >0,
~ O A~ . .
1@B(TH)I77° <s e M+ [Ts1220),  10:@5(T5)[illls <s e(lillsto + [ Tsllstollillsoro)s  (5.6.33)

where Js5(p) == (6o(p) — v, ys(p), z0(p)) corresponds to T5. The remainder Ra has the form (5.6.3)
with

@) O ~ ,O A A A ~ A
g ll370 + x5 11370 <o T+ 136013557 19ig50illls + 1005 llls < llso + 1TsllstollEllso+o (5.6.34)
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and also Ry has the form (5.6.3)) with

,O ,0 ,O ,O b~ 17,0
g IG5 + g7 150G T <s €% + 0013511, (5.6.35)
10ig5 (211X so + 19:5 [il |l [1X s + 1195 10 1065 |5 + 1195 110 [1s0 (5.6.36)

<s 51+b||iHs+a + 52b71||35||s+0||€‘|80+a-

The linearized operator L, := L, (w,i5(w)) depends on the parameter w both directly and also
through the dependence on the embedded torus is5(w). The estimates on the partial derivative respect
to i (see (5.4.1))) allow us to control, along the Nash-Moser iteration, the Lipschitz variation of the
eigenvalues of L, with respect to w and the approximate solution is.

Hamiltonian of the linearized operator

Consider the following symplectic form in the extended phase space R¥ x R¥ x H §

1
Qelpm2) =dnAdp+ Y mdzj ANdz_; (5.6.37)
jesjoy Y

with the following Poisson brackets

{F,G}. := 0,F0,G — 8,F0,G + {F,G} (5.6.38)

where {-,-} is defined in (1.2.6)).

We denoted by v the function

B(p,z) = /Um0 (5.6.39)

jes
where 1(7) is the j-th vector of the canonical basis of Z".

We observe that
lvs — D170 < [|35[13°. (5.6.40)

In the dynamical variables (v,z) the point (7,0) represents a torus supporting a quasi-periodic
motion which is invariant for the system with P = 0. Namely (7,0) is the approximate
solution from which we bifurcate. By (5.6.39) and ([5.3.14) we see that v is rescaled with .

Along this section we want to point out the Hamiltonians that generate vector fields of size €,e? and
3. In order to do that we consider the map ®p(T}) in as function of two variables x := ev;
and y := €2 (recall the definition (5.6.10))).

We Taylor expand ®p(Ts)(z,y) at x = €7,y = 0 with increment h = e(vs — T) + €29 and we get

Op(Ts) = p(T5s)(v,0) + O(h)

= eU 4 e2Uy(T) + e W3(T) 4+ Us4(eT) 4+ O(h) (5.6.41)

where U4 is a function with a zero at the origin of degree four. The terms ®p(75)(ev,0) has size,
up to constants, a pure power of ¢, whereas the remainder denoted by O(h) has size ¢||J5||s for some
s, see (5.4.11), (5.6.40). In the low norm Js is smaller than &* (recall (5.6.7))), hence, whenever we
shall focus on the terms O(g), O(¢?), O(g3), we will consider the Taylor expansion truncated
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at the remainder ¥>4(¢v) + O(h).
Recall also that the frequency w has a expansion in powers of ¢ (see ([5.3.19)).

The Hamiltonian of the operator (5.6.31]) respect to the symplectic form ([5.6.37)) is
H = Ho + eH1 + e®Ha + e®Hz + Hx + e®Hr, + Hg,

with

1 1
HO:w-n+/z2dx, le—/vzzda:,
2 Jr 2 Jr
1
ngAf-n—/\IIQ(v)ZQd:E, H3:—/\I’3(’U)dl‘
2 Jr T

and by (5.6.41)), (5.6.24)

Hs = _% /(‘I)B(T6) — et — e2W(v) — £2W3(0) + 70(Tp)) 2° da,
T

1@ 5(T5) — cv — 2Wa(D) — 23 (D) + ro(T5)||I7 < & + 2| s[5
for some o > 0 and Hg,, Hg, are such that V;2Hg, = Ra2, V2Hz, = R..

In the following we adopt the notation |-|Y := |-[7$%.

(5.6.42)

(5.6.43)

(5.6.44)

5.7 Reduction of the linearized operator in the normal directions

In this section we conjugate, by symplectic, tame and bounded changes of coordinates, the lin-

earized operator (5.6.31]) to a diagonal one, up to smoothing remainders.
We shall require that these remainders belong to the following class of operators.

Definition 5.7.1. Fix b € N and consider O C R”. We denote by €, = €;,(O) the set of the
linear operators A = A(w): H*(T"™!) — H*(T"™!), w € O which satisfy the following for any

S0 < 8 < Sz (With possibly Spez = +00):

o (D)'2A(D)?, (Do)V208 A(Dy)Y2, (Dy)V/2[08, A, 0,)(Dy)'/?, for m = 1,...

by < b are Lip-0-tame operators (see Definition [2.3.5)) with

Mooy, 4L =T g apayr(0:9)
Mo 1400 H ) = M g taa,iipan (9
We define
Bi(a,0) = g, mox (M, (-1, 9) My, (219).

m=1,...,v

v, 0 <

(5.7.1)

(5.7.2)

Assume now that the set O and the operator A depend on i = i(w), and are well defined
for w € O C R” for all i satisfying (5.6.7). We consider i; = i1(w), i = i2(w) and for

w € O(i1) N O(ia) we define
A12A = A(Zl) - A(ZQ)

We require the following;:

(5.7.3)
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° (Dx>1/28};mA12A<Dx>1/2, <Dz>1/2[8};mA12A, 8x]<Dx>1/2 for m =1,...,v, 0 < by <Db are
0-tame operators (see Definition [2.3.4) with

7 _ —omY
SmaZImAmA( 173) = m<Dz>1/26<,bDl7nA12A<Dz>1/2(07S)’ (5 74)
v _ oY 7.
mazlm [AuAﬁz]( L,s) = m(Dml/w%[AmA,azKDz)l/z(Ov5)-
We define
— B N B
Baals,b) =  max, mox (M, 4,00 L) Mo sz L.s)). (5.7.5)

m=1,....v

Remark 5.7.2. We note that in Proposition we have proved C! dependence on the embedding
1, while in the class we are just requiring a “Lipschitz” regularity. This is due to the fact that
the set O on which operators are defined, after the reduction procedure, depends on the embedding
i; hence we require weaker conditions (see .

We will discuss the choice of the number b in Section see (5.8.1)).

For notational convenience we write the linearized operator ((5.6.31]), defined for w € Oy C €., as

L, =Tg5(Dy — J o (1+ag(p,z)) + Qo) (5.7.6)

where we have, for some o9 > 0 (recall and (5.6.24)),
ao(p, x) := —(®p(T5) +r0(Ts)), Qo:=—J(ERa+ R.). (5.7.7)
laoll? % <y e(1+ 113s12550),  1iaolillls <s e(lillson + 1Tslls+oolils) (5.7.8)

In particular Qg has the finite-dimensional form (5.6.19)) and satisfies the following estimate

~ ,O
My, (s) <o €”(L+ 1176/ 25) (5.7.9)
and by (5.6.34) and ([5.6.35)
Mo, 001 (5) s € Ellsa0 + 27 H|Ts s 2] (5.7.10)
; Qo [i] =5 s+o0 §lls+oo so+o0- .

Now we state the precise result we want to prove in this Section.

Theorem 5.7.3. Consider L,, = L,(J5) in (5.7.6) and fir b = s9+67+6. There exists o > 0 such
that, if condition (5.6.7) is satisfied with p' = o, then the following holds. There exists a constant
m(w) defined for w € Q. with

|m — 1|78 < Ce?,  m|"P < C (5.7.11)
such that for all w in the set O (see (5.4.5)), where (recall that Oy C Gy, see (5.4.5))

2
O =02()) i={weO: |w-l—mw)j| > ﬁ VeeZv, Vi eZ\ {0}}, (5.7.12)
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there exists a real, bounded linear operator T = T (w) : H{, — H{, such that
Lo=TL, Tt =114 (Dw —mJ —2D(€) + R) (5.7.13)
where D (&) is the diagonal operator of order —1 defined as

D = D(¢) = diag(ir; ) jese,

2 > (14 (7 + 552 + j5 + 352) ¢ eR (5.7.14)
(B+45—joj + 5B+ 3 +jaj + 527

Jo€ST
The constant m depends on i and for w € OX(iy) N O (iz) one has
|Ajom| < elli1 — i2||so+0s (5.7.15)
where Ajgm :=m(i1) —m(iz). The R belongs to €1 = CLb(Og;’) (see Def. with

_ BTG
B, (s,b) <s e* ™37 4+ ey 35| 150,

P N o (5.7.16)
Ba,r(8,0) <s ey ([li1 — i2lls4o + [|Tslls+ollir — i2llso+o)-
Moreover if u = u(w) depends on the parameter w € (’)gg in a Lipschitz way then
0% 0% —1y5, 7@ 0%
ITull39% <s flull 79 + ey~ Ts )1 Tia ull 37 - (5.7.17)

The rest of the Section is devoted to the proof of the Theorem [5.7.3] First we exploit the pseudo
differential structure of the operator L, in order to conjugate it to an operator which has constant
coeflicients up to a smoothing remainder of order —1, but such that the bounds do not hold.

Then we apply a Linear Birkhoff Normal Form in order to reduce the size of this remainder and
achieve . In order to perform the first step we need some abstract results on the flows of
pseudo differential hyperbolic PDEs, which we shall use as changes of coordinates for our purposes.
In particular we need to work in a smaller class of operators with respect to the class in Definition
[5.7.1] because we need some precise information on the pseudo differential structure.

Definition 5.7.4. Fix p € N, with p > 3 and consider any subset O of R” (recall (5.4.2))). We
denote by £, = £,(0) the set of the linear operators A = A(w): H*(T"™!) — H¥(T"™!), w € O
with the following properties:

e A is Lipschitz in w,

e the operators BE)A, [agA, dy], for all b = (by,...,b,) € NV with 0 < [b| < p — 2 have the
following properties, for any sg < s < Syaz, With possibly Spq. = +00:

(i) for any mi,ms € R, my,ma > 0 and my + mg = p — |b| one has that the operator
(D)™ 02 A(D;)™2 is Lip-0-tame according to Def. and we set
Y Bl o) — Y .
maﬁA(_p + |b|7 5) T sup ~ m(Dz)mlﬁsA(DzY”Q (Oa S)a
® mi1+mo=p—|b| i

m1,m2>0

(5.7.18)
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(ii) for any my,me € R, mi,ma >0 and my +mg = p — |’5 — 1 one has that the operator
(D)™ [02A, 0z](Dy)™? is Lip-0-tame according to Def. and we set

54,0, (P [Pl + 1) 1= . ; . 71
Mo 0, (—P F [1+1,5) mﬁmfifimflmwxm[agA,ame)mz(o’8) (5.7.19)
m1,m2>0
We define for 0 <b < p—2
M’Y b = ’Ya _ B ’y_‘ . 6» 1 .
1(s,) = max max (smazA( p+1Bl s (p+1B]+ ,s>> (5.7.20)

Assume now that the set O and the operator A depend on i = i(w), and are well defined
for w € Op C Q. for all ¢ satisfying (5.6.7). We consider i; = i;(w), i2 = i2(w) and for
w € O(i1) N O(i2) we require the following (see (5.7.3))):

e The operators QEAHA, [OEAQA,OI], for 0 < [b| < p — 3, have the following properties, for
any sg < s < Sinaz, with possibly Sie. = +00 :

(iii) for any mi,mg € R, mi,ma2 >0 and mj +mg = p — €| — 1 one has that the operator
(D)™ 02 A12A(D,)™? is 0-tame according to Def. and we set

imazf,Ale(—P + bl +1,5) := sup 9ﬁ<Dz>m185A12A<DI>m2 (0, 5); (5.7.21)
m1+ma=p—|b|—1
mi1,m2>0

(iv) for any mq,mg € R, my,ms > 0 and mq +me = p — \5| — 2 one has that the operator
(D)™ [8};A12A, 0:](Dy)™2 is 0-tame according to Def. and we set

m[aEA12A,81](_p + ‘b| + 2) S) = ml+n){821,1:1)pib72 m(Dw>m1[agA12A7ax}<Dw>m2 (O, S). (5722)
m1,m2>0

We define for 0 <b < p—3

Ma,,4(s,b) := s max (QﬁagAmA(—p 1B+ 1,8), Mg 4.0, (= + 1B +2, s)) .
(5.7.23)

By construction one has that M’(s,by) < M) (s,bg) if by < by < p — 2 and Ma,,4(s,by) <
Ma,4(8,b2) if b1 <by < p— 3.

5.7.1 Properties of pseudo differential operators and the class £,

In the first step of our reduction procedure we work with operators which are pseudo differential
up to a remainder in the class £,. In the following we shall study properties of such operators under
composition, inversion etc...

The following Lemma guarantees that the class of operators in [5.7.4]is closed under composition.

Lemma 5.7.5. If A and B belong to £,, for p >0 (see Def. , then AoB € £, and

M p(s,0) <ep D (M (s0,b1)MJ(s,b2) + M (s,b1)M}(s0,b2)) , (5.7.24)
b1+bo=b
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Ma,o(408)(8,0) s D (May,a(s,01)Mp(s0,b2) + Ma,,4(s0, b1)Mp(s, ba)
b1+ba=b (5.7.25)

+ M4 (50, b1)Ma,,B(8,b2) + Ma(s,b1)Ma,,B(s0,b2) ) ,
forv<p—2 and sog < s < Spax-

Proof. We start by noting that 9 5(—p, s) defined in (5.7.18) with A ~~ Ao B is controlled by
the r.h.s. of ((5.7.24)). Let mi,ms € R, mi,mgo > 0 and my + mg = p. We can write

(D)™ Ao B(Dy)™ = (Dq)"™ A(Dg)"* (D) " (D)™ B(Dy)"™.

By hypothesis we know that A belongs to the class £,, hence by item (i) of Definition one
has that (D)™ A(D,)™? is a 0—tame operator. For the same reason also (D)™ B(D,)" is a
0—tame operator. Note also that, since p > 0, then (D,)~? : H*(T!) — H*(T!) is a 0—tame
operator. Hence, using Lemma [2.3.6 for any u € H® one has

(D)™ Ao B(Dz)"™ulls <s (Mal=p, s)Mp(—p, s0) + Ma(=p, s0)Mp(=p, s))||uls

(5.7.26)
D=, 50)M5(—p, o)l
where M4 (—p, s), Mp(—p, s) are defined in ((5.7.18). Then we may set
mtAOB(ipa S) = C(S) (EIRA(*,O, S)SIRB(ipv 50) + mA(ipa SO)WB(*/)) S)) .
Reasoning as in (5.7.26)) one can check that
DﬁloB(_pv S) S C(S) (mz(—P, S)W%(_pv 30) + ml(_pa SO)mﬂBé(_pa S)) .
Let us study the operator 8}2(14 oB) for b € N” and |b| < p—2. We have
B(AoB) = > (88 A)2B). (5.7.27)

b1+ba=b

We show that any summand in ([5.7.27) satisfies item (¢) of Def. (5.7.4). Let mi,me € R, mi,mg >0
and my +my = p — |b|. We write

(D)™ (981 A) (082 B)(Dy)™2 = (D)™ (981 A)(Dy)¥(Dy) ™Y~ "(D,)* (982 B)(D,)™

with y := p—|b1|—m1, w = p—|ba|—my and note that —y—w = —p < 0. Moreover m;+y = p—|by],
and w + my = p — |ba|. Hence the operators (D)™ (98! A)(D,)¥ and (Dg)"(852b)(D,)™ are Lip-
0-tame operator. Hence, using Lemma [2.3.6] one has

1(D2)™ (9 A)(@F B)Da)™ 7€ < M (=p+ 1], 5) . (=p+ sl so)[ulls  (5.7.25)

Pl A 2B
+ 9 (—p + b1, 50)DE (—p + [b2l, 5)]|ull
+ 90, (—p + [bil, 50)Mp(—p + [b2l, s0) ulls,
s Y o o :
for u € H®. We can conclude that Smag(AoB)( p +|b|,s) is controlled by the r.h.s. of (5.7.24)).
Regarding the operator [A o B, d,] we reason as follows. We prove that

[AoB,8,] = A[B, ] + A, 8, B. (5.7.29)
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satisfies item (i7) of Definition (5.7.4]). Let mq, mo € R, my, mo > 0 and mj+mg = p—1. Moreover
(Dz2)™[A, 0:]B(Dg)™* = (D)™ [A, 0](D2)?(Dz) Y *(Ds)* B{Dg)™?,

with y = p—1—my, 2 = p—mga. Hence by definition (see Def. ) we have that the operators
(D)™ A, 0;](D)Y and (D.)*B(D,)™ are Lip-0—tame. Thus one can conclude, as done above,
that M4 9,18(—p + 1,5) is controlled by the r.h.s. of . One can reason in the same way for
the first summand in and for the operator [85(143), dy]. This proves (5.7.24).

Let us study the term
Alg(A o B) = A19AB + AA5B. (5730)
By definition both (D)™ A12A(D,)"™2, (D;)™ A19B(D,)™2 with mj; + mg = p — 1 are 0-tame

operators (see (5.7.23) and Def. [2.3.4). In order to prove (5.7.25) one can bound the tameness
constant of the two summand in ([5.7.30)) by following the same procedure used to prove (5.7.24). [

The next Lemma shows that S77 C £,.

Lemma 5.7.6. Fiz p € N and consider a symbol a = a(w,i(w)) in S™P depending on w € O C R
and on i in a Lipschitz way. One has that A := op(a(p,z,§)) € £, (see and

M (5,b) <s lal 540

(5.7.31)
Ma,4(8,b) <sp [A12a]—pt1,54+p-1,0-

Proof. Let mi,ma € R, mi,me > 0 and mj + ma = p. We need to show that (D,)™ A(D,)™2
satisfies item (i) of Definition [5.7.4] By definition it is the composition of three pseudo differential

operators hence, by Lemma and by formula (2.2.13)) of Lemma one has that
0
My ymr a(p,yms (058) s [(Da)™ A(Da)™ |50 (5.7.32)

< KDY ™ s 0lal72, o oDl ™l s 0 o a0 o (5.7.33)
This means that
M (—p,s) <s lal s 0
Secondly we consider the operator (ngp(a(go, z,§))) = op(@}éa(@, z,€)) for b€ NV and |b| < p— 2.
It is pseudo differential and its symbol aba(go, x,§) is such that

|8b |’Y, |%

poo <1120

Following the same reasoning used in (5.7.32)) one obtains

M (=p+ 1B, ) < a™?

B A —p,s+|b|+p—[b],0"

The operator [A,0,] = A0, — 0, A can be treated in the same way, discussing each of the two
summands separately, (we are not taking advantage of the pseudo dfferential structure in order to
control the order of the commutator).

0,s5) <s ’<Dx>mlazA<D >m2’050 ‘ i

2
m —p,5+p,0

(D2ym19, A(Dgym2 (

The same strategy holds for [8514,&] Hence one gets the first of (5.7.31)). The second bound in
(5.7.31) can be obtained by noting that Aj2A4 = op(Aj2a)[] and then following almost word by
word the discussion above. 0
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The next Lemma shows that £, is closed under left and right multiplication by operators in S0,
Lemma 5.7.7. Let a € S° and B € £,, then Op(a) o B,BoOp(a) € £, and satisfy the bounds

M’ép(a)oB(S7b) 5,p \a| s+p0MV (s0,b) + ]a\ so+p0M (s,b) (5.7.34)
MAa,,(0p(a)oB) (8:0) <sp ([A12a]1,54p0MB(S0,b) + [A120]1,50+p,0MB (8, b)

+ [alo,s0+0,0Mna1,B(8,b) + |alo,s+p,0Ma,,B(50,b) ),
for all sg < s < Syar. Moreover if B € £,41 then

0p,B,[0:,B] € £,, m=1,...,v
and satisfy the bounds

Mgme('s’b)aMFahB](svb) §M’é($,b—|—1), b<p-—2

(5.7.35)
M&PmAlgB(S?b)a M[ax,AlgB](Sa b) S MAlgB('S?b + 1) ) b S P — 3

for all so < s < Syaz. Note that in the constants in the right hand side control the tameness
constants of B as an element of £,41.
Proof. We start by studying the Lip-0-tame norm of
(D)™ 35 Op(a) 0 92 B(D,)™ = (Dy)™ 9 Op(a)(Dy) ™™ o (D)™ 02 B(D,)™
By Lemma and formula

.
SDt(Dm)’"lBilOp(an)(DagY’" (0,5) < |a|0 sH[B1[+m1,0 = <la |0 5100

hence by Lemma we have

mZDz>mlag(Op(a)B)<Dz)m2 (_p + ‘6’7 ) < |a’0 ,5+p,0 M%(S(]? ) + ‘a|0 ,80+p, OM%(&b) :
Regarding
(D)™ OB [0y, Op(a) B)(Dy)™ = (D)™ OB ([8, Op(a)| B){Dy)™2 + (D)™ 85 (Op(a) [z, B]){Dy)™

we only need to consider the first summand as the second can be discussed exactly as above. Recalling
that by definition m; +mo = p — |E\ — 1 we write

m1 qb b. mo __ mi qb —mi1—1 mi+1 qb: m
(Dy) 18@1 [ Op(a)]@ﬁB(Dl«) > = (Dy) 18@1 [0z, Op(a)[(Dz) ™™ (Dy)™ 8@23<D:v> :
and the result follows by recalling that

¥ v,0
(D)™ O [8I,Op(a)]<Dz>*m1*1(0’ 8) = |a 0,5+[B1|+m1,0 = < e |0 s+p,0

The next Lemma shows that the finite rank operators of the form (5.6.5)) are in £,.
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Lemma 5.7.8. Fiz p > 3. Let R be an operator of the form (5 , where the functions g;(T), x;(T)
belong to H® for T € [0,1] and depend in a Lipschitz way on the pammeter w € O CRY. Then there
is o1 = o1(p) > 0 such that R belongs to £, and
v,0
M;Z(va) SS Z sup (HXJ(T)| s+01||gj| so—i-al + ”X]( )’ so—l—al ||g]( )| s—i—al)

2 2o (5.7.36)

Ma,,%(s,b) <o > sup (||A12Xj(7)||s+ol||gj!|so+al + 1 A12x5 () ls0+01 195 (T) [ 5401
e Tl (5.7.37)

x5 (M llsto1 181205 [0 +01 + [|A12X5(T) 5001 HAmgj(T)Hsm)-

Proof. The Lemma follows by using the reasoning in proof of Lemma and using the explicit
formula (5.6.5)). O

The next Lemma gives a canonical way to write the composition of two pseudo differential opera-
tors as a pseudo differential operator plus a remainder in £,. Of course Lemma says that such
a composition is itself a pseudo differential operator, so in principle one could take the remainder
to be zero. The purpose of this Lemma is to get better bounds with respect to , the price
to pay is that we do not control the symbol of the composition but only an approximation up to a
smoothing remainder of order —p.

Lemma 5.7.9. Let a = a(w) € S™, b = b(w) € S™ be defined on some subset O C RY with
m,m’ € R and consider any p > max{—(m + m/' + 1),1}. Assume also that a and b depend in
a Lipschitz way on the parameter i. There exist an operator R, € £, such that (recall Definition

(2.2.3) ) setting N=m+m/ +p>1

Op(a#b) = Op(¢) + R,, ¢ := a#toybe S™™ (5.7.38)
0 0 0
‘C 7n+7TL'7S7Oé Ss,p,a,m,m’ |a”7n S, N— 1+a‘b‘:/n 50+N 17O‘ (5739)
+ ‘ ‘m ,80,N— 1+a|b‘m Ss+N—-1,a
where 0
N
MR/O(S’ ) —=s,p,m,m/ |a’m 5+P N‘ m/,s0+2N+|m|,0 (5.7.40)
+ ‘a m,so, N’ m/ s+p+2N+|m| 0
for all0 <b < p—2 and sg < s < Spaz - Moreover one has
’AIQC‘erm’,s,a Ss,a,p,m,m’ ‘A12a‘m,s,N—1+a’b’m’,so+N71,a
+ |A12a|m,30,N71+a|b|m’7s+N—1,o¢ (5741)
+ |a|m,s, N—14a|D12b]m/ so+N—1.a
+ |a|m,so,N—1+a|A12b|m’,s+N—l,aa
Ma,R,(5,0) <s pmm’ 1A120]m41,51p,N bl so+2N+]m,0
+ ‘A12a‘m+1,so,]\f’b|m’,s+p+2N+|m|,0 (5742)

+ |a|m,s+p,N|A12b|m’+1,so+2N+|m|,0
+ ‘a’m,SO,N‘Al?b’m’+1,s+p+2N+|m|,0'
orall 0 <b<p—3 and sg < s < Spmaz-
P
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Proof. To shorten the notation we write ||-||s := H||z’(9 For 8 € R we have

N-1

1 G1+k k

= A > Cup0dt a0 ok, (5.7.43)
k=0 B1+B2=p

then, by the tameness of the product, we get

N-—1
k k
107 clls <. E > Cou (102 alls 102205b] 5 + 1105 all, 11072 05D]]). (5.7.44)
k= 0 514—52 B

Thus

N-—1
c fen < — max sup C P kg 8628]%
’ |m+m 5,0 s kZ:O k! 05520 feRﬂ % 5152(” H ” ”50

+ 102 alls, 9205b]|5) (6) =
Nfl1
k m —m/
oD momax, D Couse sup (108 alls (€)™ 1075150 ()
k=0 T Byt By =8 SeR
+ ||aﬂl+’fa|| (€)M |02 0] o (6) ")

Br+k —m+p1 B2 gk —m’+6;
<sa Z m sup ogl@’?}é H8€ al|s(&) Oénﬁggallag 0;bll50(&)

B1+k m+f1 B2 ok —m/+B2
+ nax 0" Valls, (™ max [10¢705b]ls(6) ).

Then by definition ([2.2.10]) we get (5.7.39). In the same way we obtain the bound (5.7.41f) by using
the following fact

A12(0Fa bb) = 0F (Ar2a) OFb + 0Fa ) (A12b).
We remark that R, is the pseudo differential operator Ry considered in Lemma m (recall N =

m+m' + p). By Lemma [5.7.6]

M’}ng §57p7m7m/ |RP’7973+P70

then by formula (2.2.14)) of Lemma we get the bounds ([5.7.40)).
The bounds (5.7.42)), follow in the same way.

Remark 5.7.10. Note that if m + m’ < —p then by Lemma [5.7.6) Op(a) o Op(b) € £,.

Corollary 5.7.11. Fiz p>3. Let a € S~', p > n € N depending in a Lipschitz way on a parameter
i. Then there exist a symbol ™) € S™ and a operator RE)”) € £, such that

Op(a)™ = Op(c™) + R(™. (5.7.45)

Moreover the following bounds hold

7,0

7,0 7,0 n—1l
’C(n) Cnsa Sngsanp ’a‘fl,s+(n71)(p73),a+p*3(‘a’*1,SO+(7L*1)(P*3)701+P*3) ’

(5.7.46)
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—1
|A12C(n)|fn,s,oz,p < |A12(L|_1 ,s+(n—1)(p—3), a+p—3|a‘r_ll s0+(n—1)(p—3),a+p—3

(5.7.47)

+ 10|15+ (n—1) (0-3) 0+ p—3 B 12| 1,50+ (n—1)(p—3) a+p—3la[" 150+(n 1)(p—3),a+p—3

and where Rf)n) belongs to £, with

, n—1
MR )(8:0) Zspom \a|71 y5+n(p—3)+p,p— 2(’ WlsoJrn(p 3)+p.p— 2)

72

and
-1
MAIZR(pn>(S) Ssinb ‘Al?a‘078+n(p—3)+p,p—2(’a‘—l,so+n(p—3)+pvp—2)n

+ |A12a|0,so+n(p—3)+p,p—2 |a|—1,s+n(p—3)+p,p—2

-2
(’a‘—l,so+n(ﬂ—3)+pvp—2)n
for all sy < s < Spaz-

Proof. We define for n > 2

)= a#<p_gc(”*1), where ¢ :=ae 8571,

n—2
RV :=">"[0p(a)]*Op(a# >, o FY)
k=0

By Lemma we have

’ |725a —S,x |CL’_1 ,5+p—3,a+p— 3|a|—1 ,50+p—3,a+p—3

(5.7.48)

(5.7.49)

and so ([5.7.46) is satisfied for n = 2. Now given ((5.7.46)) for n we prove it for n 4+ 1. For simplicity

we write <, s o=<. We have

) 70
’a#<P—26 ’—n 1,5,a0 = ‘a‘%l ,8,0+p— B‘C(n)‘—n ,s0+p—3, + m,v 1 SQ,OH-,D 3’a(n Zn ,5+p—3,a
~,0 n—1
< ‘a‘—l ,8,Q+p— 3|a’ 1,s0+n(p—3),a+p— 3( 1 so+(n 1)(p—3),a+p— 3)

s 'Y, s n—1
+‘a| ls+n(p—3),a+p—3‘a| 1,s0,a+p— 3(|a|—l,so+(n—1)(p—3),a+p—3)

’77 n
<‘ | 1,s4+n(p—3),a+p— 3(| |—nso+np 3),a+p— 3) ’

hence (|5.7.46|) is proved. Arguing as above one can prove ((5.7.47)).

Now fix 2 < k € N and denote by
T = a#zp_gc(kil).

We apply repeatedly formula (5.7.34]) in oder to get

.
Mop(a)0p(r,_s)) (5:P)

k-1 ) 0
Sspb (]a|71 ,50+p, 0) (|a|’yl s+p, OM’(y)p(rn—k)(SO’b) + |a|zl,80+ﬂ,0Mgp(%—k)(S’b)) )

Now by Lemma we have that for all k > 2

Mop(re) (5:0) Sapi |Tk’—pvs+pv
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Now by ([2.2.14) with m = —1,m' = —k+1,N = p — 2 we have

o0 < Il
psO— k—p k+2,5,0
o k—
< a0yl VY

7k

) ,0

k+1,50+2(p— 2)+10‘Ha’ 1,50,p0— 2’0

(p—2)+1,0
5. 746

jal ) Lot k(p—3).p—2(1 al?y)

)kfl
L,so+k(p—3),p—2

Then
MR ,(s,0) <

~v,0 n—1
¢ (p—3)+p.p— 2(’ & 1,s0+n(p—3)+p,p— 2) ’

We follow the same strategy in order to study the operator
JAND) (Op(a)kRp(n_k)) = kOp(a)k_lOp(Alga)Rp(n_k) + Op(a)kAlng(n—k)

and we get (5.7.49)). O

Remark 5.7.12. Note that if n > p then Op(a)” € £,, by Lemma [5.7.6|

Corollary 5.7.13. Let a € S™! and consider I—(Op(a)+T), where T € £,. There exist a constant
C(Smaz, @, p) such that if

O
C(Spazs @, p) (yaw_ O bttty M}(so,b)) <1 (5.7.50)

then I — (Op(a) + T') is invertible and

(I-(Op(a)+T)) ' =1+0p(c) + R, (5.7.51)
where
70 ,O
|C’11,s,a SS,OZ,P |a|zl,s+(p—2)(p—3),o¢+p—3’ (5752)
|A12¢] 15,0 < [A120]| 1 51 (9—2)(p—3),a+0—3 (5.7.53)
+ |a|—1,s+(p—1)(p—3),a+p—3|A12a|—l,so+(p—2)(p—3),a+p—3

and R, € £, with

M}, (s,b) < ja| st (p-1)(p—2)+3.p—2 T M7 (s, D), (5.7.54)

MAlsz(Sv b) < ‘Al?a‘71,s+(p71)(p72)+3,p72 + Ma,,r(s,b), (5.7.55)
for all sy < s < Sphaz-
Proof. To shorten the notation we write |- ]m 5,0 = |"|m,s,a- We have by (5.7.50) and Neumann series

-1

(I— (Op(a) +T)) ™ =1+ (Op(a) + T)" =1+ < n Z R ) +3 Opla

n>1 1 n>p

R}

3
Il

—1
Lemmgml_i_ pz (Op(c(”)) n Rgn) + R,(On)) + Z (Op(a)” + R/()n))
n=1

n>p
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where R,()n) := (Op(a) +T)" —Op(a)™ (and we are setting RE,I) =0). We define ¢ := Zp ™ and
by (5.7.46)
p—1
‘C’—l,s,a Ss,a,p Z’a‘—l,s+(n—1)(p—3),a+p—3(‘a’—1,so+(n—l)(p—3),a+p—3)

n=1

Formula ([5.7.53)) s obtained as above by using (5.7.47]).
Using ((5.7.34)), the operator R;n) € £, with

n—1

n -1
M (5:8) e Co)” X (2 ) ((alrrpn) ™ O 60,00l

M (5.7.56)

(|a|,1,so+p,o)"2<M%<50,b))”l—lM%s,b))

My, 500 (5:0) <s
1
n( < ) OM%’O(SO,b)nQ(|G‘71,s+p,0)n1
ni+nz=n,
n1>1n2>0
“1
+ <n1>n1n2|a! Lstp.0Ma 57 (50, B)ME (50,0)™ 7 (la] -1,501p0) ™
fffiln s (5.7.57)
¥ (:)nsz% (5,0) ol 1 p0)™ M} (50, b) !
1
n @) _
+ Z ( >n2(|a—1750+p,0)n1MA12T(5’b)M% (50,)"™ 1)
ni
ni1+n2=n,
n1>0,n2>1

We define Q, := > "_ ( oy R(n)) and then by Lemma|5.7.11 we have (note that if n < p then
all the constants Cy, can be absorbed in the <, symbol)

p—1

v,0 ~¥,0 n—1
MQ (S b) —5P Z|a| 1,5+n(p—3)+p,p— 2(‘ | 1,s0+n(p—3)+p,p0— 2)
n=2
1
(Z Z lal™ so+p0 (soﬁb)nz)‘a’—l,%p,o
1
(NG (5.7.58)

p—1
-1
(X Xl epoM(50,0)™ 7 )M (s, )
n=1 ni+nz2=n,
n2>1,n1>0
s |0l -1 51 (p—1)(p—2)43,p—2 + M} (s, D)
by our smallness condition.
It remains to bound

Z Rg”) + Z Op(a)™

nzp nzp
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The first summand is controlled by

o

n -1
St X () ((altuwn)™ O 505l s
n=p ni+nz=n, 1

n12>1,n22>0
(Ial-1,50.0)"™ (M (0, )"~ M (s, b)

Ssp ’a‘—l,s+p,0 + M}(s, b).
The second summand is controlled by Lemma and by formula ([5.7.34) by
_ —p—1
’Op(a)p‘—p7s+p,0’a‘z1fso+p,o + |Op(a)p|—P,so+070‘a|ﬁ1,@o+p,0|a|—178+070 .

The bound follows by using repeatedly the bound (2.2.13)).
In order to bound the ¢ variation we note

Ap(1 = (Op(a) +T)) ™" = —(1 = (Op(a) + T)) " (Op(Ai2a) + ApaT)(1 — (Op(a) + T)) 71,
and proceed as above. O

We now wish to study conjugation of £, with the torus diffeomorphism

A"h(p, ) := (1 + 78:(p, 7)) W0, x + TB(p, 7)), peT’, zeT,

! . 5.7.59
(AT)'h(p,y) = (14 By(T,0.9) ke, y + B(T,0,9)), @ €T/, yeT. ( )

We refer to the Appendix for some properties of the operator A™ in (5.7.59)). We recall that A7

satisfies

(5.7.60)

O =R aoh b b
=0, 0b, = .
A =1. ’ 1+ 75,

We have the following Lemma.

Lemma 5.7.14. Fiz p € N with p > 3, consider O C R” and let R € £,(0) (see Def. :
Consider a function B such that B = B(w,i(w)) € H¥(T**1) for some s > so, assume that it is
Lipschitz in w € O and i. Let A™ be the operator defined in (5.7.59)). There exists p = p(p) > 1
and § > 0 small such that if Hﬁ”zé?ru < 6, then the operator M™ := ATR(A™)™1 belongs to the class
£,. In particular one has, for so < s < Spaz,

M}, (s,b) < M(s, b) + | B12:0M (s0,b), (5.7.61)

foro<p—2 and

MA12MT (S,b) < MAmRT (S?b) + H/BHS-FMMAMRT (SO’b)

(5.7.62)
+ |1A128] 54, M- (50, b) + [[A126]|s4 .M - (5, b)

forb<p-—3.
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Proof. We start by showing that M satisfies item () of Definition|5.7.4] Let mq1,mg € R, mi,mg >0
and my + mo = p. We write

(D)™ M (Dy)™2 = (Dg)™ AT(Dg) ™™ (D)™ R{D3)™* (D) ~"2 (A7) ~H(Dg ).

Recall that by hypothesis the operator (D,)™ R(D,)™? is Lip-0-tame with constants M} (—p, s)

see (5.7.18]). Lemma (A.1.2]) imply the estimates

(D)™ AT (9)(Da) ™™ ][ 79, I(D2) ™2 (AT ()" D)™ ullZ <sp ulls + 18Il o

for 7 € [0, 1], which imply that (D,)™ M (D,)™? is Lip-0—tame with constant
,0
szleM(Dz)mZ (0,8) <sp m?a(‘ﬂa s) + 8] Z+um7%(—p, 50)- (5.7.63)

Hence M is Lip-(—p)-tame with constant 9}, (—p,s) = Supm;tma=p mZDz>mlM<Dz>m2 (0,s). Fix

m1,mz2>0

b < p—2 and let mi,ms € R, my,mo > 0 and m; + ma = p —b. We note that for any be N
with o] = b ) ) o
8ZM = Z C(|b1], [bal, ]b}])(@ZIAT)azgR(az‘?’ (AT, (5.7.64)
b1+b2+b3=b
for some constants C(|by|, bz, |b3]) > 0, hence we need to show that each summand in
satisfies item (i) of Definition We write

(Dy)™ (1 A7) R(O% (A7) "1)(Dy) ™ =

. . . (5.7.65)
= (D)™ (0 AT)(Da)*{ D) (832 R){Da)* (D) (9 (A7) ™) D)™,
where y = —|b1| —m1, z = p— |b2| — |b1| —my. Since y +my = —|by| and —z+ my = —|bs|, hence

by Lemma the operators
(D2)™ (DR AT)(D2)?,  (Da) (95 (AT))(Da)™,

satisfy bounds like (A.1.9). Moreover —y + z = p — |bg| and —y, z > 0, hence, by the definition of
the class £,, we have that the operator (D;)~¥(922R){D,)* is Lip-0-tame. Following the reasoning

used to prove ([5.7.63]) one obtains

SmZDI)m 8, M(Dg)m2 (0, 3) <sp m]a(_P +D,s) + ”5”3;393?7%(_/) +D,s). (5-7-66)
Let us consider the operator [M, 0;]. We write
[M,0,] = AT[R, 0,](AT) ™t + ATR[(A") 1, 0,] — [A7, 9] R(AT) 7}, (5.7.67)

for 7 € [0,1]. We need to show that each summand in (5.7.67)) satisfies item (4¢) in Definition (5.7.4)).
Let mq,mo € R, my,me >0 and my +mo = p — 1. We first note that

<D$>m1AT[R, ax](AT)fl<Dx>m2 _

i B » (5.7.68)
= (D)™ A™(Dz)™" (D) ™ [R, O] (Dar) ™ {Da) "™ (A7) (Dg) ™,

hence, by applying Lemma to estimate the terms

(D) T2 (A7) THDG)™2,  (Dy)™ (AT)TH(Dg) ™
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and using the tameness of the operator (D)™ [R, 0;](D;)™? one gets
,0
ED?ZDIVMAT[R,BE](AT)*(DQU)WQ (0,5) <s,p Mp(s,b) + [|8]| 4, ME (50, b). (5.7.69)

The term [A", 9;]R(A™)~! in (5.7.67) is more delicate. Let m1,ma € R, my,ma > 0 and mq +mg =
p— 1. We write

(Dg)™ A, 04] <Da:>_ml_1 <Dm>m1+1R<Dz>m2 (Dg)—™m2 (AT)_l (D)™ (5.7.70)

By Lemma we have that (D,)~™2(A7)~1(D,)™ satisfies a bound like (A.1.9) with o = 0. The
operator (D)™ R(D,)™2(D,)™ ™ R(D,)™ is Lip-0-tame since R € £, and m; + 1+ my = p.
Moreover by an explicit computation (using formula (5.7.59))) we get

Baa

7,0 = T AT 0. 771
[A", 0] 7'1_{_7_596./4 + 78, A0, (5.7.71)
We claim that, for s > sy and u € H?®, one has
m T —mi— ,0 ,O
(D2) ™ (AT, 8:)(D2) ™™ | 79 < p NullslBlligsn + 18I el so (5.7.72)

for some p > depending only on s,p. The first summand in (5.7.71) satisfies the bound (5.7.72))
thanks to Lemma to estimate the composition (D)™ B..(1 + 76;) 1{D;)~™ and thanks
Lemma to estimate (D,)™A7(D,)"™ . For the second summand we reason as follow: we

write
(Da)™ 7B, A70p (D) ™ = ((Da)™ Ba(Da) ™™ ) ({D2)™ A (D) ™™ ) 00 D)~

and we note that the operator 9,(D,)~! is bounded on H?®. Hence the bound (5.7.72) follows by
applying Lemmata [2.2.5] and [A.T.2] By the discussion above one gets

mZnym [A7 85 R(AT)~1(Dg)™2 (0,8) <s,p Em]z(‘ﬂ +1,5)+ ||ﬂ”z~’39ﬁ7{(_P +1,s). (5.7.73)

One can study the tameness constant of the operator A7 R[(A7)~!,d,] in by using the same
arguments above.

We check now that M satisfies item (i77) of Def. . Let mq,mg € R, my,mg > 0 and mi+mgy =
p—b—1. We write for b € N, [b] =b

EATR(AN L0 = Y0 C(il il b)) | (0F AD@OZR)OP(AD T 57
bi+ba+bs=b
and we note that
(051 A) (O R) (D5 (A7) 1), 4] = (95LA") (92 R), 0, ] (957.47) )
+ (O AT OFR) (9T ), 0 (5.7.75)
— [(@5an), 0, (9 R) (@5 (AT) ).
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The most difficult term to study is the last summand in (5.7.75). We have that

(Da)™ [(95.A7), 0| (98 R) (9 (A7) ™) (D)™ = 5276
= (D)™ (05 A7), 0, (D) (D2 (95 R)(Da)* (D)~ (05H(AT) " )(Ds) "™, -

with z = my + [b| and y = p — [ba| — |bs| — ma. Note the operator (Dy)~*(8% (A7)~ 1)(Dy)™
satisfies bound like (A.1.9) with ag; moreover the operator <Dx>y(8;’:2R) (Dz)* is Lip-0-tame since
y+ 2z = p— |ba|. Note also that, since m; +mg = p — |b| — 1, one has y = my + |b1| + 1. We now
study the tameness constant of

(D™ (@5 A7)0, ) (Dy) i1,
By differentiating the ((5.7.71]) we get

FUAT. 0 = Y 7(8g) (05 A7) + 7(0F B ) (0F A7), (5.7.77)
B 457 =5,

where g = Bz2/(1 + 75;). We claim that

o —mi—|by|— ,0 0
(D)™ 01 AT, 0a](Da) ™™ P |79 < lullsl1BI %5, + 18125 ullso, (5.7.78)

for some p > 0 depending on s, p. We study the most difficult summand in (5.7.77). We have

<D:)3>m1 (a}z/lBx)(aglllAT)ax<Dw>—m1—\S1|—1 _ <Dx>m1 (651,833)<Dx>_m1_‘b1|+‘b/1,|
% <Dm>m1+|51\—|5'1'\(3};/1/“47)<Dx>—m1—513x<Dz>—l.

The (5.7.78)) follows for the term in ([5.7.79)) by using Lemmata and the fact that 9, (D) "
is bounded on H?. On the other summand in ([5.7.77) one uses similar arguments. By the discussion

above one can check that

(5.7.79)

gﬁV

O
oy pugra 0:8) Sa M(5.0) + 81} s0,0). (5.750)

s+u

The fact that the operator M satisfies items (iii) — (iv) of Definition (5.7.4) can be proved arguing
as done above for items (i) — (7). O

We conclude this section by showing the connection between the class £, and the class €3 in
Definition B.7.11

Lemma 5.7.15. Consider b € N and p € N with p > b+ 3. The following holds.

1) If A€ £, (see Def. |5.7.4]) then A € €1y, (see Def. |5.7.1) with
P )

B (s,b) <,s M)(s,p—2). (5.7.81)

BAlQA(Sv b) Sp,s MAlgA(57 P — 3) (5782)
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(ii) Consider a symbol a = a(w,i(w)) in S™ with m < —1 depending on for w € Oy C R” in a
Lipschitz way and on i in a Lipschitz way and let A := op(a(x,&)). Then one has that A € €
with

,O
B)(s,b) < lal,, sib+2,a~ (5.7.83)

(iii) Let A,B € €1y. Then Ao B € €1y with

IBSZloB(s,b) < Bl(s,b)ﬂ%}(so, )—G—IB% (so, )B}(s,b) (5.7.84)

Bas(408)(5,0) <sp Baj,a(s,b)Ba(so,b) + Bay,a(s0,b)Ba(s,b)

(5.7.85)
+ BAIQB(S’ b)BA(‘SOv b) + BA123(507 b)BA(Sv b)'

Proof. Let us check item (7). The fact that (D,)'/2A(D,)'/? is Lip-0-tame follows by ([5.7.18) since
—p < —1. Indeed for any h € H?

1(D2)2 A(D,) 2 h|[ 790 < |[(Dy)*TH(D,)?~2 A(D,) 2 h|| 7O

0 0
<s M (—p, )| RlI370 + D0 (—=p, s0)[[A]TT.

By studying the tameness constant of the operators
OB, [A, 8], (0B A, 0] A12A, OB A1 A, [A124,0,], [05A124, 8]

for b € N”, [b| = b, following the same reasoning one gets the (5.7.81)) and (5.7.82).
In order to prove item (i) one can follow almost word by word the proof of Lemma m

Let us check (5.7.84). Let ¢ € N¥ with || =c, 0 < ¢ <b. One has

(Da)20%(A0 B)(Dy)2 = Y C(|B1], Bal)(Da) (65 A) (952 B)(Da) . (5.7.86)
b1+b2 c
We show that each summand in (5.7.86) is a Lip-(0)-tame operator. We have for h € H®
y =
(D)= (85 A) (982 B)(D) 2|79 <
1 1 1. b 1
< (D23 (03 A) (D)3 (D)D) 3 (9 B) (D) ]| 700 (5.7.87)
<5 (B}, (s,b)B)(s0,b) + B (50, b)BY(s,b))|| 2] 1,

+

B, (s0, ) B (s0, b) || 7

this bounds holds for any |bi|,|[bs] < b. In (5.7.87) we used the fact that <Dw>%(8:;1nA)(Dx)%
and (Dw>%(ﬁz§nB)<Dx>ﬁé are 0-tame by hypothesis (see Def. (5.7.1)). This proves (5.7.84) for the
operators Ao B and Jg(Ao B) for any [c| < c, 0 < c <b. One concludes the proof of (5.7.84) and
(5.7.85) followings the same ideas used above. For further details we refer to the proof of Lemma
[5.7.5] which is very similar. O
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5.7.2 Flow of hyperbolic Pseudo PDEs and Egorov Theorem

The goal of this section is to provide the tools we need to construct changes of coordinates that
conjugate L, in (5.6.31) to an operator with constant coefficient at order one (the highest order of
differentiation).

We study the flow map @7 of the vector field generated by the Hamiltonian

S(t,p,2) = /b(T, o, )22 dx b(T, @, ) := % (5.7.88)

We first need to show that ®7 is well defined as map on Hg, (see Proposition and Lemma
5.7.18). Then we study the structure of ®7L,,(®7)~1. This is the core of our analysis and such study
is performed in Proposition [5.7.21]

Let us start with two preliminary results. Instead of studying the flow generated by the Hamil-
tonian (|5.7.88)) we first consider the time one flow map of the pseudo differential PDE

{ -0 (u) = (J 0 b)¥™ (u),

5.7.89
Py = u, ( )

where b(7, p,x) is defined in with B € H*(T*™!) to be determined.
In the following proposition we prove that the flow of is the composition of the diffeomorphism
of the torus with a pseudo differential operator of order —1 up to smoothing remainders
belonging to the class £, for any p € N.

First we note that J = 0 + 3A0, (recall for the definition of A) and we define

B
Y :=3A0; ob, = .
3A0,0b, b [y

We note that A” defined in ([5.7.59) is such that (5.7.60|) holds.

Proposition 5.7.16. Fiz p > 3, Spax > So large enough, and consider a function B := B(w,i(w)) €
C>®(TY*Y), Lipschitz in w € O C RY and Lipschitz in the variable i. There exist o1 = o1(p) > 0
and 0 = §(p, Spaz) > 0 such that if

(5.7.90)

18134, <6, (5.7.91)

so+0o1

then, for any ¢ € T?, the equation has a unique solution in the space
C([0,1); HS) nCH([0,1]; HE™Y),  Vsp < 8 < Siae-
One has 9™ = AT o C™ where A" is defined in and
C"=0"4+R"(v), O7 := Op(1+9(7,p,x,8)) (5.7.92)

with, for any s > sg,

,O ,0
’ﬁ‘zl,s,a <sap 18 34-017 (5.7.93)
[A129] 15,0 Ss,a.p [A128][s401 + ”BHS-&-Sp—&-?||A12ﬂ||so+<f1‘ (5.7.94)
and R (p) € £, (see Def. with, for sop < s < Spmaz,
,O
ME. (5,0) <s.a,0 [16] Z+01, (5.7.95)
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forall0 <b<p—2 and
Ma e (5,0) <sp [|A128] 5401 + || Bllst01 [|A128]] s9+01 (5.7.96)
forall0<b<p-—3.
Proof. Let us reformulate the problem as
=A"o(C", CT:=(A)1ow” (5.7.97)

where the operator C7 satisfies the following system

0-C™u = L7C"u,
(5.7.98)
C% = u,
where L7 is the pseudo differential operator Op(I(7, ¢, z,£)) of order —1
L= A (3A6$ o b(r)) (A7)
1 B (5.7.99)
—(1-A%) o Aog(r,p,2)00: 0 Blp,a)
where (recall (5.1.2))
g(t,0,2) :==3(1 + Bg(@,ﬂf)), R = Op(folp,z) + fi(p)if),
a2 on (1 +52) 1
folg,x) == 55 + 2B, 5 O Ak (5.7.100)
2050 (17 53)
, L) 1= —— 1 + T 633 =] .
fi(g, ) 2( Bz) (14 5,)2
Analysis of L7. The following estimates hold
lgllZ© < C()A+IBITAIBILT s 1foll7C < COIBILS,  I1AITC < Ce)BI,
[A129][s <s [[A12B][s+1[1Bllso+1 + | A128ls0+111Bls+1, (5.7.101)

[A12folls < C(s )HA125Hs+37 [A12fills < C(s)][A128] s +2,
|fo+ f1 15‘15a <C(s )Hﬁ’ 543>

By the fact that L7 in (5.7.99) is regularizing, the problem ([5.7.98) is locally well-posed. By Lemma
£.7.9 we have that

I-AR=1-(Op(r) + R), (5.7.102)
such that (see (5.7.101))
’ ,O
|T|’y 1,s,a S C(S « p)”ﬁ’ s+p+3’ M’}Yz(svb) S C(S, p)||/6||z+2p+3‘ (57103)

By Lemma |5.7.13| and ([5.7.103|) we have that

-1 ~
(1-A%)  =1+0p) + R, |10, < Cls,a p)\|5||s+p s gio
M (s) < C(s, 0, p) 18I

(5.7.104)

s+p —3p+9
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By Lemma we have Ao god, o = Op(d)+ Q, with

Elves o M (s) < 1817540, (5.7.105)
Then
L™ =(I+ Op(7) + R) o (Op(d) + Q) = Op(d) + Op(7#d) + Q,
N . P—— ) (5.7.106)
+O0p(7)0oQ,+RoOp(d) + RoQ, ~ ="""0p(d+d)+ R,
where

717, Y
|d‘z ||/3| s+a’1 ||/8| SOJFUI, M (87 ) s+g—17 (57107)
MAme(S b) < Ss.p |A128]| 515, + HBHS-i-mHAlQ/BHso-&-m

for some constant &1 = d1(p). Note that in principle we get a slightly different constant in each
inequality, we are just taking the biggest of them for simplicity.
We call | := d + d and we write

= Op(l) + RP’ |ZW1 ,8,0 <s OGP HB‘ s+crl’

(5.7.108)
|Av2l]-15.0 <sp [[A128]ls1+5, + | Blls+5, | A128]]s0+51 -

Approximate solution of ([5.7.98). Now we look for an approximate solution
©7 = Op(1 + (7, ¢, 7,§))

for the system (5.7.98]). In order to do that we look for a symbol ¢ = Zg: Ik (7, p,2,§) such that

0 =1+ I#HY+ 57,
# (5.7.109)
90, ¢, z,€) = 0.
We solve recursively as follows
0r9_1 =1, 09 _ ) =r_g, 1<k<p—1
{ ! { ko Tk p (5.7.110)
19—1(())()07'%'16) =0 ﬁ—k((),@,x,f) =0
where
k—1
ropi= Y I#9 ;€87 (5.7.111)
j=1
then i i
I_1(1) = / I(s)ds, k(1) = / r_(s)ds. (5.7.112)
0 0
By recursion we have that
0k o < Clso o R)IBIT G, (BN g T 1<k <p—1, (5.7.113)
’Alﬂg k‘ ks Ss,o0k Hﬁ||s+k+01 ”A12ﬁ||80+k+01 ||/B”50+k—|—gl (5.7.114)

+ 1BIE e 12128 | skt
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and so we get (5.7.93), (5.7.94). We write C™ = ©" + R", where R” is an operator which satisfies
the equation

0;R"=L"R" T
e (5.7.115)
RY =0,
where
p—1
k=1
and by Lemma [5.7.0]
Mg (5:) < 181352, 18137, (5.7.117)

with &9 := d2(p) > 1. By Lemma , the operator Q" belongs to £, and we have the following
bounds

M- (s,0) < Mo (8,D) + My o (5,0) < MY (s, b) +2M, (s,b) (5.7.118)
+ 1917 o Mp, (s0,b) < 18123,
MAHQT(&b) < ”A12ﬁ”s+52 + HﬁH8+52HA12/8H80+527 (5-7'119)

note that these bounds hold uniformly for 7 € [0,1]. Now we have to prove that R” is belongs to
the class £, (see Def. [5.7.4). By this fact we will deduce that C7 and its derivatives are tame on
Hs(Tv+1).

Estimates for the remainder R™. We prove the bounds (5.7.95) and (5.7.96) (i.e. we show that
R™ belongs to £, in Def. for 7 € [0,1]). We use the integral formulation for the problem

(5.7.115)), namely

R = / T(Lth + Q") dt. (5.7.120)
0

We start by showing that R7 satisfies item (i) of Definition with b = 0. Let my,ms € R,
mi,mg > 0 and my+mg = p. We check that the operator (D)™ R™(D,)™? is Lip-0-tame according
to Definition 2.3.51 We have

(D)™ RT(Dg)™ = /0T<Dx>m1Lt(Dx)_m1 (Da)™ R'(Dy)™ dt

: (5.7.121)
—I—/ (D)™ QY D,)™2dt.
0
By (5.7.118]) we have, for sg < s < Sjnaz, that
H/ )™ QUD) ™ udt |70 < |1BIT ullso + 1811555, lulls, (5.7.122)

for 7 € [0,1], u € H®. Moreover, by recalling the definition of L' in (5.7.108]), by using the fact that
R, in (5.7.107)) is in the class £, and using the estimates (5.7.108) on the symbol | we claim that

|| / DL wdt][ 70 <o 18178 Talsy + 18125, Tl (5.7.123)
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Indeed the bound for Op(l) are trivial. In order to treat the remainder R, we note that
(D)™ Ryp(Dy) ™™ = (D)™ Rp(Dy)? ™" (D) ™"

and (Dz)™ R,(D,)P~™! is Lip-0-tame, since R, € £,, moreover (D,)™” € £,. Then by Lemma
2.3.0l our claim follows.
By using bounds (5.7.122)) and (5.7.123|) with s = sg one obtains

sup [(Da)™ R™(Da)™ul 2 <, 181275, sup [[(De)™ R™(Dy)"™ul| 3,0 + 18]l so15 [[ullso
7€[0,1] T€[0,1]

(5.7.124)
hence, by ((5.7.118)) and for § in ([5.7.91]) small enough, one gets
sup [[(Dz)™ R”(Dy) ™ u| 3 < 20 sl (5.7.125)
T7€[0,1]
for any w € H®. Now for any so < s < Spaz, again by (5.7.122)), (5.7.123), we have
sup [[(Da)™ R7(D)"™2ul 79 <, 1BI72, sup [{Dz)™ R (D)™ ul| 3
T€0,1] 7€[0,1]
+ 11811275, s (D2)™ R7 (D)™l 70 (5.7.126)
T€[0

+ 1811575, Iulls + 18175, lullso,

for any v € H?, sy < s < Spaz- Thus, by the smallness of 5 in ([5.7.91) and estimate (5.7.125]), the

bound (5.7.126f) implies

sup [[(Dx)™ R™(Da) ™l 7 <o 118125, 1l s 20l so. (5.7.127)
T7€[0,1]
This means that
sup MY (—p,s) = sup  sup m(Dz>m1R7<Dz)m2 (0,s) <s,p ||B||S+S2 (5.7.128)
T€[0,1] r€[0,1] m1+ma=
ml,m2>0

For b € N” with [b| = b < p — 2, we consider the operator QERT and we show that the operator
(Dx)mlaszT<Dx>m2 is Lip-0-tame for any mi,ms € R, mi,ms > 0 and my; +mo = p—b. We
prove that

mZDm>m185RT<Dz>m (0.5) <op 18IS, m1+ma=p—b, (5.7.129)

for some &3 := &3(p) > 3 > 0, by induction on 0 < b < p—1. For b = 0 the bound follows
by (5.7.128)). Assume now that (5.7.129)) holds for any b such that 0 < b < b < p — 2. We show

(5.7.129) for b =b+ 1. By (5.7.120)) we have

(D >mlabRT Z C([o1], b2 /< x>m1(aglLt)ag‘;z(Rt)<Dx>m2dt
leTer =b (5.7.130)
+ [ Dm0 Daat
0
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By (5.7.118) we know that, for any ¢ € [0, 1], the operator (D)™ (8}2Qt)<Dx>m2 is Lip-0-tame. We

write
(D)™ (@51 LD () (Da) ™ = (D)™ (0 LDy~ =P (D)™ 9% (D)™, (5.7.131)

We study the case |bz| < b—1. By the inductive hypothesis we have that <Dm>m1+|b1‘8‘1;;(Rt)<Dx>m2
is Lip-0-tame since m; + |by| + ma = p — |ba|, hence the bound (5.7.129) holds for b = |bs|. By
reasoning as for the proof of the bound (5.7.123]) we have

|{Dg)™ (a;lLt)<Da:>7m1*\b1‘u||z’ s 18] 5+03”UH50 + 18] 80+03Hu||s7 (5.7.132)
for u e H®, so < s < Smaz- By (5.7.132)), the inductive hypothesis on GgQRT and (5.7.118]) we get
! - (0,8) <o 18I, (5.7.133)

(D) ™1 (93 L) (RY)(Dy)™2

Note also that By Lemma bounds ((5.7.107) and (5.7.108) we have that ([5.7.132)) holds for

b1 = 0. Hence

sup [|(Dy)™ G5 R™(Da)™ul| 7€ <y sup (D)™ L7OSRT (D)™l
T€[0,1] T€[0,1]

,0
s+o'3HuH50 + ||IB||30-1-0'3HUHFSy

E7I5) )
oo 18125, Sl[lpl]H<Dx>m182RT<Dx>m2uH;;O (5.7.134)

T7€]0,

- e
s sup (D)™ OQR™(Da) ™ ull]
T

D ullso + 1BILS 5, lulls-
Hence using ((5.7.134)) for s = sp and the smallness of 3 in ([5.7.91]) we get

sup [[(D;)™ 2R (Dy) ™ ull 3 < 1BI15S 5, Il so- (5.7.135)

Then using again (5.7.135)) one obtains the bound for any sg < s < Siaz

sup M. (—p+b,s) = su su m? 5.7.136
TE[OI,)l] (=¢ ) TG[OF,)l}ml-HMp:P b (Da)™OLRT(Ds)m2 (0:9) < o ( )
m1,m2>0
|b]<b

The estimates for Mz~ 5,1(s) and M5 pr o ](3) follow by the same arguments. We have obtained
[¥2} YT

the estimate for M}, (s,b) in (5.7.95). The estimate on the Lipschitz variation with respwct to the

variable i ([5.7.96|) for the variable i follows by by Leibnitz rule and by (5.7.95)), (5.7.108]), (5.7.119)

as in the previous cases.

We proved ([5.7.95) with o1 = 73. [

Corollary 5.7.17. Fiz b € N. There exists pn = u(p) such that, if ||ﬁ||so+# < 1, then the flow
) of (5.7.89) satisfies for s > sq,

sup [ 79 <, ((Jull
T7€[0,1]

2O+ b7l ) ; (5.7.137)
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sup (97 = Dul} <o (18IS w2 + 18IS IS, ) (5.7.138)
7€|0,
sup [[(U7)*ul| 7 < (ull 7€ + 18175041 Il %°
%p” Ul s u s+50+1 u S0 (57139)
7€|0,
Sl[BPI]H((‘I’T)* — Dull° (HB| Ll 355+ 1B el so+1) (5.7.140)
7€|0,
For any |a| < b, mi,ma € R such that my + ma = |af, for any s > so there exist p, =
ps(|al,m1, mo) and § = 6(mq,s) such that if ||3]] 80+u* < 0, then one has
sup {D2) "™ 83W7 (0)(Da) ™2 ul| 77 S ,ma NullTE + BT el 3. (5.7.141)
T7€|0,

and for my +mg = |a| + 1,

sup [[(Da)” ™ 05 A1 7 (0)(Da) ™" uls
el (5.7.142)
Sspmims [UllsllAa2Bllsorp + Nullsor1 (18128540 + 1| Ar2Bllsotull Bl s10)-

We omit the proof of the corollary above since it follows by using the same arguments of Lemma
[A1.2] and by using the result of Proposition [5.7.16]

In the following we investigate the structure of an operator obtained by conjugating an operator
like by a transformation ®” which is the flow of the system

{6T<I>Tu = Ig[(J o b)IIg[®7u]], (5.7.143)

0y = u.

First we need study how the flow &7 differs from Y7 in (5.7.89). Secondly we study how symbols
in the class S transform under changes of coordinates in the variables (x,£). The proofs of the
following Lemmata are in the Appendix [B]

Lemma 5.7.18. Fiz p > 0. There exist o1 := o1(p) such that if holds with 1 = o1 then
the following holds. Let W™ be the flow of the system and ®7 be the flow of . The
map ®7 satisfies bounds like (5.7.137))-(5.7.142)) (with a possible larger = p(so, p) ).

In particular one has ®F = H§W1H§0(1+R) where R is an operator with the form . Moreover
R belongs to £, and satisfies

M (3 b) < HBHero‘p (5.7.144)

MAmR(S b) =s ”A12»8”s+01 + ||A125Hso+01”5H5+01 (5'7~145)

As a consequence ® := ®! satisfies the estimates (5.7.137)-(5.7.142)) with a possibly larger > 0.

The system is an Hyperbolic PDE, thus we shall use a version of Egorov Theorem to
study how pseudo differential operators change under the flow ®7. This is the content of Theorem
which provides precise estimates for the transformed pseudo differential operators. Before to
do that we need the following lemma.
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Lemma 5.7.19. Let O be a subset of RY. Let A be the operator defined for w € S™ as
1

Aw = w(f(z),9(z)), f(z):=x+p(), g(z)= (5.7.146)
14 Be
for some function 8 such that H6H250+2 < 1. Then A is bounded, namely Aw € S™ and
|Aw‘msa = ‘w’msa + Z ‘wms1,a+52‘|/8| 53+80+2 (57147)
S$1+s2+s3=s,
51<s,51,52,5320,
s1+s2>1
for s > 0. For s = sqg it is convenient to use the rougher estimate
otso- (5.7.148)

Lemma follows directly by Lemma in Appendix [A]

Theorem 5.7.20 (Egorov). Fiz p € N, m € R with p+m > 0. Let w(z,&) € S™ with w =
w(w,i(w)), Lipschitz in w € O CRY and in the variable i. Let AT be the flow of the system (5.7.60)).
There ezist o1 := o1(m, p) and 6 := §(m, p) such that, if

181255, < (5.7.149)

then A"Op(w)(A7)™! = Op(q(x,€)) + R where ¢ € S™ and R € £,. Moreover the following
estimates hold.

7,0 0
|q m, s lo] Sm,s,a,p ‘w m,s,a+01 + Z ‘w Zn,sl,a—i—sg—l—al ||/6| 53—1—017
81+82+s3=s, (57150)

51<8,51,52,53 >0,
s1+s2>1

|A12q‘m,s,a Sm,s,a,p |w|m,s+1,a+al ||A12,8||30+1 + |w|m,so+1,a+01 ||A12B||5+1 + |A12w|m,s,a+ol

+ Z |w‘m751,a+52+01||5H53+01||A12/8||50+1

S1+s2+s3=s+1,
51<8,51,82,53>0,
s1+s2>1

+ Z |A12w’m,81,82+04+01 ||ﬂ”53+01-

s1+s2+s3=s,
51<5,81,52,53>0,

s1+s2>1
(5.7.151)
Furthermore for any b < p—2 and sqg < s < Smax
M,y (8 b) —S,m,p ‘w’m ,8+p,01 + Z "U) 52+0'1H/8||53+0'17
81+82+83=s+p, (57152)
51<8,81,52,53>0,
s1+s2>1

and for any b < p—3, so < s < Spaz

May,r(s,b) < Sm,s,p |w|m s+p,01 HA125H50+01 + ‘|A125Hs+01|w|m s0+p,01 |A12w’m,s+p,01

+ Z |w|m,51782+01HB‘|S3+U1HA125”50+01
$1+82+s3=s+p,

51<5,81,82,53>0,
S1+s2>1 (57153)

+ Z |A12w‘m,sl,82+01 ”BH83+01'

s1+s2+s3=s+p,
51<8,51,82,83>0,
s1+s2>1
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Proof. The operator P(7) := A7Op(w)(A7)~! satisfies the equation

{aTP(r) = [X,P(7)], X=28,0b=:0p(x), (5.7.154)

P(0) = Op(w).

We construct an approximate solution of (5.7.154)) by considering a pseudo differential operator
Op(q) with

m+p—1
> neile.6) (5.7.155)
k=0
such that (see (5.7.154) for the definition of x)
= {b¢, OrGm—t = {0&, Gm—1k} + Tm—
{ Tqm = { 3 Qm} { Tdm—k { §, Gm k} Tm—k k> 1 (5.7.156)
qm(0) = w gm-£(0) =0
where for k > 1 (recall (2.2.20))
k—1
Tm—k @ = {bazv Im—ki1} = O Gm-nrr1-nX
h=0
1 = 1
__ _ k+1—h k+1—h m—k
- i8§Qm—k+1 by hz;) ikJrl,h(k +1-— h)' (af Qm—h)(aa: X) €s :
By Lemma [5.7.9] or directly by interpolation, one has
k—1 k—1
0
|Tm k|m k,s,a < |qm h|m h,s,a+k+1— h+Z|Qm h|m hso,oa—&-k-i—l—hHBHz—i-k—i-S—h’ (57157)
h=0 h=0
k—1 k—1
A2 m—klm—ksa < Y |A12¢m—hlm—hsatk+i—h + Z|A12qm—h\m—h,so,a+k+1—h||5Hs+k+3—h
h=0 h=0
k—1
+ ) lgm—nlm—n.s.atbt1-nll D128l sgrrrs—n
h=0
k—1
+ > |m—hlm—h.s0,a+k+3—h||D128|| s k43—
h=0
(5.7.158)
Hence we can solve (|5.7.156)) iteratively. The first equation has the solution
G (7, 7,6) = w(y™(z,€)) (5.7.159)
where
1
7,0
Nz, &) = T,2),£9(T,x)), T,x) :=x+ 178(x), T, T) = ————. 5.7.160
7w,6) = (f(r,0).é9(ra)),  f(r.a) B@). glre) = g (1160
Hence by Lemma we have
|qm m, s [} SS el |w mg,a + Z a+S82 ||B| 53+50+2 (57161)

s1+s2+s3=s,
$1<8,51,52,83>0,
s1+s2>1
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For any k > 1, the solution of ([5.7.156)) is

G (7.2, €) = /0 (12, €)) d. (5.7.162)

We observe that

im0z, €) = (f,§€) (5.7.163)

with

1+ tB(x+ Tﬁ(.ﬁ))‘

fz) =2+ + B(t,z + , §(z) := 5.7.164
fla) =t 7o) + Bt 78(@), (o) = LTS (5.7.164
Thus if Ar:=r(f,§€) we have (recall that 7 € [0,1])
v,0
|Gm— Kl m—k,s,a <s,a |Arm k‘m ks, |G — k| —k,s50,a <a |ATm k| —k,sg,a0 = < |rm— k‘m k,s0,a+50
(5.7.165)
and by Lemma [5.7.19| with A ~ A
~,0
|C]m k m kys,o _sa ‘Tm k‘m k,s,a + Z |Tm k|m ks1,o¢+82||/6| 33+so+2 (5'7'166)

Ss1+s2+s3=s,
51<8,51,82,53>0,
s1+s2>1

We want to prove inductively (here we are dropping the constraints s; < s,s1, $2,83 > 0 and
s1+ s2 > 1 in the sum over si, s2,s3 only to shorten the notations)

~,0

|Qm k m ]{;soé SS a:P|w‘msa+2k

+ Z ‘ ‘m ,51,a+52+k(s0+2) Hﬁ’ 33+so+2+k’ k= O’ st p (5.7.167)

Ss1+s82+s83=s

~,0
m—k,so,x _oc,p| ‘m ,80,a+s0+k(so+2)"

For k = 0 this is proved in ((5.7.161)). Now assume that (5.7.167) holds, up to some £k —1 > 0. We
use ((5.7.157)) to bound ¢,,_j. First we give a bound for r,,_; in terms of the norm of the symbol w
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by substituing the inductive hypothesis ((5.7.167)).

0
’"I’m k|m k,s,a s O Z|w‘m s,a+h+k+1 + Z|w|m s0,a+k+1—h+so+h(so+2) ||/B||z+k+3—h

’Y7
+Z > el
h=0s1+s2+s3=s
k—1

7,0
s3+so+2+h

7,0
m,s,a+h+k+1

SO[

+ Z ‘w|mso,a+k+1 h+so+h(s0+2) |’5Hs+k+3 h
h:k>2h—1 (5.7.168)

7,0
+ Z ’wms1,a+k+1 h+s2+h(so+2) +SOH/8”53+SO+I€ h+3
s1+82+83=s,
h:k>2h—1

+ Z ‘w’m ,80,a+k+1—h+so+h(so+2) Hﬁ”s—&—k—l—iﬂ h
h:k<2h—1

7,0 7,0
+ Z ’w m,s1,a+k+1—h+s2+h(so+2)+so H/BHss—l-so-l-Zl-h
s1+82+83=s,
h:k<2h—1

,O
Ss,a,p|wm,s,a+2k + Z

s1+s82+s83=s

Then by (5.7.166) and ((5.7.168])

0 ,O
‘w :n,sl,oz+32+k(so+2) HBHZg—l—so—l-Q—l-k'

7,0 7,0
|qm k m k,s,a SS o,k ‘U)| m,s,a+2k + Z | |m ,$1,0+s2+k(s0+2) ||B||83+80+2+k
s1+s2+s3=s
O
+ Z |w 7n,31,a+32+2k”/8| 53+50+2

s1+s2+s3=s,
51<8,51,82,83>0,
s1+s2>1

7,0
+ Z ( Z |w m,ni,a+na2+k(so+2)+s2 ||B||n3+so+2+k> ||B||83+80+2

$1+82+s3=s, ni+ng+nz=si+k
51<,51,52,53 >0,

s1+s2>1
7,0 v,0 ~,0
Ss,a,k ‘w|m,s,o¢+2k + Z "U} m,s1,a+s2+k(so+2) ||/8”S3+50+2
s1+s2+s3=s+k
7,0
+ Z Z \w m,ny,a+na+k(so+2)+s2 ||ﬂ||n3+83+so+2+kHm|80+2

$1+82+83=S, ni+nso+tnz=si+k
51<s,51,52,532>0,
s1+52>1

77 ’Y,O
SS a, k ‘w| m,s Oé+2]€ + Z | m 517a+82+k’(80+2)||B||53+30+2+k
s1+s2+s3=s

that is the estimate (5.7.167). By (5.7.162)) we have

A12Qm—k(7_a z, g) = /OT JAND (T‘m—k(VO 8’77— 0( x, f))) ds (57169)
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and recalling (|5.7.164))

’AIQQm—k|m—k,s,a Ss,aVI(a’Erm—k) (A12f)|m—k,s,oz + ‘A(afrm—k) (AIQg £)|m—k,s,oc
+ ‘A(Aurmfk”mfk,s,a-

The first two terms of the right hand side in (5.7.170) are bounded by (5.7.168)) and (2.1.4}). For the
last summand we proceed by induction as above using ((5.7.158]). We obtain

(5.7.170)

‘AIQmek ’mfk:,s,a S ‘w’m,s+1,a+2k+1 HAIQ/BHS(H—I

+ Z |w‘m,51,a+82+so+1+k(so+2)”5"83+280+2+kHA125H80+1

s1+s2+s3=s+1 (5 7 171)
+ W] so+1,a4s0+14k(s0+2) [ 2128|541 + [A12W]m, 5,042k

> 1AW s ratk(sor) 1B]lss2so 2 k-
s1+s2+s3=s

Then we have (5.7.150)) and (5.7.151)). Now we have (recall ((5.7.155)))

P(t)=Q+R, @ =Op(q) € OPS™ (5.7.172)

and by the construction of () we get that

O-R(1) = [X,R] + M,
(1) =[x B + (5.7.173)
R(0)=0
where
m+4p—1
M= —Op(i{bx,q_p_H} + Z qm_k#zm_k+1+px> € OPS™", (57174)
k=0

By Lemma M € £, and using (2.2.14]) (recall also the Definition (2.2.3)) we have for all
80 < 8 < Spaz With b < p—2

7,0
M}v{(& ) <s s,p,m |’LU m,s+p,01 + Z |w m 31,52+0'1 HB| 53+01 (57175)
S1+s2+s3=s+p

and for b<p—3

Ma,m(s,b) <s ‘w|m s+p,a1||A12B||80+01 o1 1128|540,

+ HA12/8H50+01 Z |w|m,51,82+01 Hm|83+01
S1+82+83=s+p (57176)

+ |A12w’m,s+a1,01 + Z
s1+s2+s3=s+p

for some o1 > 0. If V(1) := R(7).A" then

s2+01 ||ﬁ||8+017

0,V =XV +MA" (5.7.177)
and so

/ AT(A)IMASds = R(r / AT (A5 I MAZ (A7) ds. (5.7.178)
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By Lemma 4 R € £, for any 7 € [0,1]. By (5.7.61)) we have that, for any 7 € [0,1], taking oy
possibly larger than before in order to fit the assumptions of Lemma [5.7.14

M- (s, 1) <s M (s) + 1811250, M} (s0)- (5.7.179)

Then by Leibniz rule and Lemma we have by (5.7.176))

May,r(8,0) <s M} (s,b)[[A128]ls + M (50, 0) | A128]|s + M (50, D) || A125]ls6 [| BI04
+ MA12M(S’b) + Mﬁle(SO’b)H/BHS-i—Ul'

We obtain (5.7.152)) and (5.7.153)) by using respectively (5.7.175)) and (5.7.176)). O

The following proposition describes the structure of an operator like £, conjugated by a flow of

a system like (5.7.143]).

Proposition 5.7.21 (Conjugation). Let O be a subset of R”. Fiz p >3, a € N and consider a
linear operator

J (Dw — Jo(m+alg,x)) + Q) (5.7.180)

where m = m(w) is a real constant, a = a(w,i(w)) € C®°(TY) is real, both are Lipschitz in
w € O and a is Lipschitz in the variable i. Moreover Q = Op(q(p,z,§)) + Q with Q € £, and
q=q(w,i(w)) € S7t satisfying

A 77s 0 <o k1 +kallpI 75, (5.7.181)

|A129] 1,50 <s,a B3([[A12D]| 5105 + [|A12D] 50400 [Pl 5102 )- (5.7.182)

Here ki,kg, k3,09 > 0 are constants depending on q while p = p(w,i(w)) € C®(T**1), is Lipschitz
in w and in the variable i .
Assume that

18IS o + llallZs S oy + Eallpll%D e, + X1 + M5 (50,b) < ds, (5.7.183)

for some o3 := o3(p) large enough and 6, := d.(p) small enough, so that in particular (5.7.91)) is
satisfied. Consider ® := ®' the flow at time one of the system (5.7.143)), where b is defined in
(5.7.90). Then we have

Lo = BLOT = TIL (pw ~ Jo(m+ap(p,x)) + Q+> (5.7.184)
where

m+ay(p,x) == —(DuB)(p, 2+ Blp, ) + (m+alp, 2+ B(p,2))) (1 + Ba(p, @ + B, ) (5.7.185)

with B the function such that x + ,@(90,33) is the inverse of the diffeomorphism of the torus x —
x4 B(p,x). The operator Q4 = Op(qy(p,z,£)) + Q4 , with

|’Y’

|a+ 1o + 18I, + llal 25,
’Al?q-i—’—l,&a Ss,a,p (kl + ka|pllstos + [|Blls+os + Ha||s+03)”A12/8”so+03
+ k3([[A12plls+os + [[A12P]ls0+03 [Pl st05) + [ D128 5405 + [[A120][ 540
+ (k3”A12pH80+03 + HA12,3H50+03 + HAlQaHSO—&-Ug) HﬁHS-i-Os

lsa—Sa,P

(5.7.186)
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and @+ € £, with, for sop < s < Spaz,

,O ,O ,O
ML (5,5) < ML (5,5) + 8IS, + 1 +kallpl 10, + alliS,. (5.7.187)

for any b < p—2 and
(s,b) <sp MA12Q<3ab)
+ (k1 + Kollpllstos + [1Bllstos + lallsto; +MG(5,0)) | A128]l 50105

+ k3(HA12pH5+g3 + HAI?pHso-i-%HpHS-i—Us) + HA125H5+03 + HAlQaHS-HTB
+ (k3HA12pH80+03 + A2l sg+05 + MAIQQ(SOab)) [1Bls+0s

MA12@+

(5.7.188)

for any b < p—3.

Proof. The strategy is the following.

(1) We conjugate
LY =D, —Jo(m+alp,z)+Q (5.7.189)

by the flow ¥7 in (5.7.89).We find a transformation W7 such that W7 LO(W7)~! differs from
UTLY%(PT)! by a remainder, which belong to the class £,. Then we compute explicitly
WTEO (WT) -1 )

(2) The operator £° differs from £ by a infinitely regularizing operator of the form (5.6.5)). By using
this fact and Lemma [5.7.18 we estimate the difference between ®7L£(®7)~! and U™L0(¥7)~1.

Step (1). Let ™ be the flow in (5.7.89)).

We can write
U= A"o(OT +R"), (5.7.190)

where AT is defined in (5.7.59)), and ©7, R™ given by Prop. [5.7.16| in (5.7.92)) with R™ € £,. We
define the map

WT:=A"00". (5.7.191)
We claim that setting B™ = (O7)"'R™ we have
97— WTLO(WT)*I[ - \I]TEO(‘IJT)fl _ WT(EO - (I + ET)LO(I + Er)fl)(WT)fl
_ AT(_)T[EO’ﬁT](I_"_ET)—].(@T)—].(AT)—:L c £p’

and sup, ¢ 1) Mg- (s,b), sup,¢o 1) Ma,,57 (s, b) satisfy bounds (5.7.187) and (5.7.188). We first study
the conjugation of £° by W7. In order to prove our claim we just have to note that R e £y11 by

Lemma moreover, by formula (5.7.35) , [Dw, R7] = w - 8,R™ and [9,, R7] € £,. This means
that [£0, R7] € £,, so that our claim follows by Lemmata|5.7.5} [5.7.7, [5.7.13| and [5.7.14] .

(5.7.192)

Conjugation by ©7. By Lemma [5.7.13
(©7) 1 :=1—0p(¥) +Ry,

with

7.9 (5.7.193)

97,0 s
’19‘/11,8,0! SS,O{,p Hﬂ s+00
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and for sg < s < Sz,

M’y (8’ ) SﬂHB‘eraov bSp—Q

(5.7.194)
Mayam, (5, b) <sp |A128]ls100 + [Blls+00 1212850100 © < p— 3,

for some 99 = 0g(p). Throughout the proof we shall denote by d; an increasing sequence of constants,
depending on p and possibly on o1, which keeps track of the loss pf deriviartives in our procedure.
Moreover we shall omit writing the constraints sg < s < Spaz, b < p—2, b < p— 3 in the bounds
on the operators belonging to £,.

We wish to compute

O"B(O") ' =B +[07,B](07)"! = B+ [0Op(¥), B]Op(1 — 9) + [Op(¥), BJR, (5.7.195)

for B=1D,,J o (m+ a),0p(q), Q.
Let us start by studying the commutator [Op(1), B], our purpose is to write it as a pseudo differential
term plus a remainder in £,. We have (recalling the Definition and formula (2.2.22)))

[Op(¥), D]
[Op(¥), J o (m + a)]

—Op(D,9) (
Op (9 *<pt1 (W(E)F#<pr1(m + a))) (
Op(¥ x>p11 (W(E)#(m + a)) + U x<pi1 (W(E)#>pr1(m + a)))
Op(¥ *<p-1q) + Op(9 *>p-19)) - (

5.7.196)
5.7.197)

+

[Op(?), Op(q)]
Here w(§) is the symbol of the Fourier multiplier J = 0, + 3A0,

i€
14¢2

5.7.198)

w() =il +3

One can directly verify that all the symbols above are in S~!, indeed the commutator of two pseudo
differential operators has as order the sum of the orders minus one. By Lemma we verify that
[Op(¥), Q) [Op(¥), B]R, € £, for all choices of B. By Lemma m and (2.2.6) we have that the
second summands in (5.7.197) and (5.7.198) belong to £,. We have proved that

[Op(9), B] = Op(rg) + Rp, rpe€S', RpegL,.

Using (5.7.93), (5.7.181)) and (5.7.183), we have by (5.7.39)

‘TB’%1 18,00 <s 040 ”B’ s+D1 + HB’ 50+D1 (kl + k2”p‘ s+01 + Ha||s+b1) (57199)
Similarly, by (5.7.40) we have
M, (5,b) <ap 18173, + 181355, (1 + kallpl 75, + lall 75, +M5(s,b))- (5.7.200)

Analogously by (5.7.41]) and (5.7.42)) we have

|A127B| 1,50 <s,ap [1A128]]s101 + [|A128]| 5940, (K1 + k2|l 510, + [lals1oy)
+ [1Blso+o, (k3([[A12p]ls10, + [[A12D] 59401 1P/ 5101 ) + | A120] 540, ) (5.7.201)
+ 118l s+01 (k3] A12pl 50101 + [[A126]| 59401 )-
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Similarly, by (5.7.40)) we have

MA12RB (Sab) gs;p ||A12ﬁ||8+01 + ||A12ﬁ‘|80+01 (kl + k2Hp||s+01 + HaHSJrDl + Mé(svb))
+ 11Bls+0: (k3| Ar2pl[sg4+2, + [[A12al[sp+2, + My, 5(50,b)) (5.7.202)
+ [1Bllso+01 (ks ([ Ar2pllso, + [[Ar2pllso+21 [[Plls+01) + [[Ar2a][s42, + My | 5(s,b)).

By Lemmata [5.7.9, 5.7.7 and [5.7.5] we have that

[Op(¥), B]Op(1 — 0) = Op(7p) + Rp, Tp€ S, Rpe&L,,

and 7, Rp satisfy bounds like (5.7.199)-(5.7.202), with possibly a larger ;. Analogously, by Lem-
mata and we have that [Op(0), BJR, € £, satisfies estimates like (5.7.200)), (5.7.202). We
conclude that

07L%e7) ! = L% + Op(ry) + Ro
where rg € S71, Rg € £, and satisfy the bounds (5.7.199)-(5.7.202)) with possibly larger ;.

Conjugation by A”. We proved that
WTLOWT) = ATLO(AT) !+ ATOp(ro) (A7) ! + ATRp(AT) . (5.7.203)
First we note that
Du(A7) ! = (A7) "D + (Do) Ty + (1 + B2)(DuB) T30 (5.7.204)

consequently )
ATDw(AT)il =Dy, + 0z 0 (ﬁﬂpwﬁ)
=Dy + J o (Tr5DuB) + Op(r1) + Ry

where 11 € S71, Ry € £, are defined by

(5.7.205)

= =3¢/ (1+ E))#cp1Tr8(DuB), Ri:=—30p((&/(1+ &) #>p-1Tr5(Duf)),  (5.7.206)

and, by (5.7.39),(5.7.41), (5.7.40), (5.7.42)), satisfy the following bounds

|71 Z’fs,a Ssa,p ||5||Z—7|—(%27
|A7127’1\—1,s,a §s7a,pJ\§125!\s+02 1|8l s105 | A128]] 5005 (5.7.207)
Mnl(sab) <s,p Hﬁ”s7+027
MR, (8,0) <sp [|[A128]s105 + (|8l 5102 2128 59402 -
Moreover
AT(T o (m+a) (A7) = T o Tog ((1+ B (m + @) ) + R®) (5.7.208)
where

R® .= ((1 — AR - 1) oAogod,oTrs ((1 + o) (m + a)>
+ ((1 AR - 1) oAo(g—3)0dy0Trg ((1 + o) (m + a)) (5.7.209)
+ <(1 — A%)71> oMNo(g—3)o0,07T3 ((1 + Bx)(m + a))
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with g and % defined in (5.7.100). In particular R®) = Op(ry)+Rg, ro € S71, Ry € £, and satisfy
the following bounds

|7“2|’Y’

1,5, S+03 + ||B| so+03||a”8+03’

|A12T2|—1,8,a >s,00p HA12BHS+D3 + HA125H80+03(H6L”5+D3 + ”BHS-&-DJ)
+ HA12aHsO+03H5Hs+03 + [[A120| 505 | Bl s0-+0s

., (5.7.210)
MRQ(Sab) Ss,p Hﬁl s+03 + 18] 50-1-05“@”5-1-03;
Ma5Rs(8,0) Ss,p [[A128]|s405 + [[A128]]s0+05 ([|alls5 + [[Blls+2s)
+ [[Ar2allso 405 1Bl s+05 + [[A12alls405 18] so+05-
Then
WL W)™t =D, —Jo(m+ay)+ Q. (5.7.211)
where by (5.7.203))
Q. := A"Op(q +10) (A7) H + A™(Q + Ro) (A7)
D(a+70) (A7) + A7(G + Ro) (A7) .
+ Op(r1 +7r2) + R1 + Re.
By Theorem and Lemma, we have
ATOp(q+70)(A7) "L = Op(r3) + R, A(Q+Ro)(A) ' =Ry (5.7.213)

where r3 € S™1 and Rz, R4 € £,. In order to bound r3 we use ([5.7.150) with w = q + 7 so that

]w|7 1,500 Ss,a,p K1+ k2||p’ 5404 s+a4 + Ha| s+a4 (5.7.214)

Note that in the formula ((5.7.150|) (recall the notations used in formula (5.7.150) and the fact that
S1, S2, s3 >0 and s; + s2 + s3 = s) we have by interpolation

,O
’71 ,S1, a+52+o'1 ||/8| 83+O'1 — (kl + k2Hp| 81+D4 + ||/8| 51+04 + HCL| 51+D4)H6‘ S3+01

<o (k2llpl75, + 18125, 205 + 1Blls105 (61 + Kallp[ 270, + 181570, + lal25as)-
Thus we get by ((5.7.183))

|7"3’%1 ,8,0 Ss,a,p K1+ k2HP||s+a5 + ||/8||s+05 +|la ”s+o5,
|A1973] 150 <sap (k1 4 K2l[Pllstos + [[Bllstos + [lallstos) 1A128]]50-+05
+ k([ Ar2pl[s405 + [A12D]lso+051[Plls+05) + [A128][ 5405 + | Ar2a]ls+05
+ (k3)|Ar2pllso 405 + HA125Hso+as + [|A120lls0-+05) [1Bls+05
MV ( b) <sp k1 + k2||pHs+05 s+05 + HaHeray
Ma,,Rs(5:0) <sp (k1 + K2|[Pllst05 + 18]lst05 + [lallstos) 1 A128]]50-+05
+ k3([|A12ps+05 + [|A12P| 50405 [[Plls+05) + [[A128][ 5105 + [[A12a] 5405
+ (ksl|Ar2pl 505 + [ A120lls0+05) [15]]s+05-

w

s+bo)

(5.7.215)
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Moreover by (5.7.183))

M7, (5,0) <s, MQ(S b) + H5”s+a6 + 18] so+aﬁ(
Ma,,Rr, (va) SS,P MA12Q(va) + ||A125||5+06
+ [[A1208]s0+06 (k1 + k2(|Pls+06 + [|alls+os + 18] s+06 + Mé(svb)) (5.7.216)

+ 1| Bl s0+06 (k3 ([| A 120 s106 + [|A12D] 50406 1Pl s106) + | D120 s406)
+ [[Bls+0s (k3| A12pl sg426 + [[A12al 59106 + M, 5(50,P))

s+06 + Ha" s+06)

By (5.7.212) and (5.7.213) Q, in (5.7.211) is

Q. =O0p(q4) + @*, qy =11+ ry+r3, @* =Ri1+Ro+R3+Ry (5.7.217)
with the following bounds

,O
‘q-i-‘zl,S,a Ssa,p K1+ k2Hp”s+a5 + ”BHH% + Ha! 5105
|A12q+|71,5,a Ss,anp (kl + k2||p||3+35 + ||ﬂ”s+05 + Ha||s+05)HA125”80+05

(5.7.218)
+ k3([[Ar2pl[s105 + [[A12D][so+205 [[Plls+05) + [[A128][ 5105 + [[A120] 5405
+ (k3llAr2pllso+os + 1A128ls0+05 + 1A120]l59+05) [ Bll 5405
and
M (5,b) <5, M5(s,b) + 181125, + k1 + kallpl 25, + lal 256
A12é*(s,b) <y MA Q(s b)
+ (k1 + k2 |[plls+o + 1 Blls+o6 + llalls+os + Mé(svb))||A125HSo+06 (5.7.219)
+ k3([[A12pls106 + [[A12Dlso+06 [Plls+06) + [[A128] 5106 + [[A120] 5406
+ (kal| Ar2pllso-+05 + [[A126]|59+05 + My 5(50,0)) 185406
Step (2). If y :=x + B(p,z) then we have
LYh =L = Dyh — J{(m + ay(p,z)) h} + Opl(ay) + Quh,
m+ a4 (p,x) == —DuB(p,y) + (m + ale,y))(1 + Balp, y)).
By Lemma [5.7.18| we have (recall (B.0.6)), )
Qpp i= OLO ™ — TELLITS = TEWLOU g + TMgWLOU ™ + LT 4 ULRY (5.7.220)

+URLTT ! — UL T — DT LITE W

We define the remainder

@J,- = @* + Q**-

To conclude the proof we show that @** satisfies the bounds ((5.7.187)) and ([5.7.188|).
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We note that

Hé\l}ﬁo lﬂsh Z h g QX] , g](l) = eijﬂﬂ’ Xgl) — \I/,CO\I/_leijx’

jES
U LU th = Z (h gj 2xj , g](?) =00l X§‘2) =€z,
JES
y 3 (5.7.221)
VLTI = Z(h,g§3))sz§-3), 9§3) = (U1)*e?, X§-3) = LT,
jes
I LG U =3 (h, g\ ) o, gl = (crmgwtyrelie, Y = weli,
Jj€ES

Thus by Lemma Corollary |5.7.17| (for the estimates on W) and (5.7.189) we get the bounds

(5.7.187) and ([5.7.188)) for the operators ([5.7.221]).
The bounds on VLI~ WLRY L WRLIW ! follow by Proposition [5.7.16), (5.7.144)), (5.7.145)).

O

5.7.3 Straightening theorem

By Proposition the coefficient a, of the transformed operator £, = ®L®~! is given by
(5.7.185)). The aim of this section is to find a function 8 (see (5.7.88)), or equivalently a flow ®
of , such that a4 is a constant, namely such that the following equation is solved (recall
(5.7.59)))

DS — (m + a)(1 + ;) = constant. (5.7.222)

This issue is tantamount to finding a change of coordinates that straightens the 1-order vector field
0 0
Yog (m + a(ep, x))%-

This is the content of the following proposition. Actually this is a classical result on vector fields on
a torus (see for instance [2], [82]), adapted to our purposes. Let Oy be a compact set in Q. (see
(5.4.2)). Recall sop = [v/2] +3 and fix 7 =v + 2.

We use the notation ||u||? := [|u]|7% and |m|" = |m[¥2= | |m|iP := |m|'P2 (recall [.1.9), ([2.1.10)
and (522)).
Proposition 5.7.22. Consider for w € Oy C Q. a Lipschitz family of vector fields on TVT!
0 0 2 3 -
Xoi=w-— — (mg+ao(z, p;w))=—, =<mg<~=,|mol'™ < My<1/2
55 ( N3z 3 5 > [mol / (5.7.223)

Moreover a(x, p;w) = a(z, p,i(w);w) and it is Lipschitz in the variable i. There exists d, = 0.(s1) >
0 and s1 > so + 27 + 4 such that, for any v > 0 if

C(s1)yHao|[ 1 == 6 < 6, (5.7.224)

then there exists a Lipschitz function mueo(w) = Moo (w,i(w)) with

1
5 <Moo < 2, Ywe ., |Meo — mol” < 70, (5.7.225)
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such that in the set

2y

W )

O ={weO: |w-l—me(w)j| > Ve ez, ¥jeZ\{0}} (5.7.226)

the following holds. For all w € OX
|A12moo| < 2[A12(a0)]
and there exists a map
B 0p x T SR, 80979 <g v Haol| P2y Vs > s0 (5.7.227)

so that W) : (o, ) — (o, x + ) (¢, 2)) is a diffeomorphism of T"*' and for all w € O

o 0 o)\ o o)y O 3} 0
v X, ::w-—so—k(\lf( )) 1(w-8¢5( ) — (mo+ag) (145 )))—:w'——moo(w)a—x

o 5 . (5.7.228)

In order to prove Proposition [5.7.22] we apply recursively a KAM step which we now describe.
KAM step. Consider for w € O C Oy a Lipschitz family of vector fields on T**!

0 0 1 i
X=w-——(m+alp,z;w)=—, =<m<2, mP<M<I,
dp ( re)a, 3 g (5.7.229)

CL(-, ';w) € HS(TV+1,R) Vs > 5.

The constant m and the function a in depend on the variable i.
Fix so = [v/2]+3, T=v+2. Given K > 1 and v > 0 assume that for some domain O C Oy we
have

Clso)y K7 Ha| 29, < 1. (5.7.230)

Let

O =Cymio ={weO: |w-L—m(w)j| > <€> Vel : 0| <K, VjeZ\{0}}, (5.7.231)

and for all w € Oy set a(p,z;w) to be

: : , l—mi
= Y gty = 2 .XM(W J ) (5.7.232)
<K i(w-€—mj)

where y — X¢~(y) is a smooth function defined on R such that 0 < x;~(y) <1 and

0 if |yl < <Z>
Xeo (y) = i s (5.7.233)
1 Yy
0

Lemma 5.7.23. We have

|90 < v Ykalll 5,0 < 7 K2 al 29, (5.7.234)

s+27+1
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moreover, for all w € Oy

lAnals <o 77 (IMkArzallsr +7 7 Arml[Tkallssoria ),

(5.7.235)
[Asa{a)| < 771(!A12<a>| + 7*1|A12m|\|a||50),
so that the map
@ (p,x) = (¢, 2+ alp,2))
is a diffeomorphism of TVT1. We may set
¢, X =w i—(m +at(z,p;w))=— (5.7.236)
*A = 9 + +{Z; ©; or -
with m4 defined for w € Q¢ and Lipschitz with the bounds
m| = lal%° < [ms| < m| + [lal|3,”,  for allw € Q,
me [ < M + [l 39, (5.7.237)

|Ajgmy| < [Aram]| + ||Ar2alls,  for allw € O
The function ay is defined and Lipschitz for all w € O4 (see (5.7.231)) and satisfies the bounds

7,04+ < CSO(K50—81 HaHzi(’) + 030’7_1K2T+2(”a

50
70 70 - 70 ,O
295 < a9 + CorT KT a1 10 lallY

WA+ T al|3)

llay

(5.7.238)
llat

for some constants Cs,,Cs > 0. Moreover for p = so,s0 + 1 the following estimates hold, for all
w € O.|_

[Arzay|lp < [TxAall, + [lallpr1y ™ " K212 (|Asall, + v Arm||lall,) ,

, B (5.7.239)
|A12(ag)| < llallsey ™" ([(Ar20)] + 7~ Ar2m]alls, ) -

Proof. By definition of || ||, (5.7.232)) and (5.7.231) we have |jal|s <s v 'K7|als for all w € O,..

By construction

laeg (€] + |Auwml)
w-C—mjP

XenllBuwrans| | laesl|DuwXey
lw-€—mj] lw-€—mj

|Ay el < (5.7.240)

hence by the fact that |x,,| <1 for all 4,5 and by (5.7.231)), K > M (see (5.7.229)) we have
| 3€ <5 v KT |a]| 3O (5.7.241)
Similarly one can prove (5.7.235)) by using the following expression

(Avzar;) Xeq(w - € —m(ir)j) + apj(iz)(A12xey) N ag,j(i2)xeq (i2)i(A12m)
i(w - € —m(i1)j) (w-€—=m(i1)j)(w- £ —m(iz)])

Appoy; =

and the fact that the derivative of X, is bounded. We claim that o satisfies the hypotheses of
Lemma hence @ is a diffeomorphism. Indeed, since so = [v/2] + 3, by (5.7.241)) and (5.7.230)

we have

1
’O 9 - b
ol < Csollal 37 < Copy K> Hla| 20 < 5

2
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if C(sp) in (5.7.230) is sufficiently large. By definition of pushforward

+ ot (Do — (m+a)(1+ ozx))g

P X :=w e

Oy
and by (5.7.232)
(m + a)(l + O[x) - Dwa =m+ <(I(§O, x»'ﬂ“”*l + HJI%(I(Q[% JE) =+ a(907 .T)Oéw((p, $)

Now we extend (a(p,x))v+1 from O to the whole €. by Kirtzbraun theorem, preserving the Lips-

chitz norm. We set

my = m+ <a(()0ax)>%l)f~t%1 ’ a—i—(gpvx) =® (HKG(Soa ) + a(@?'x)aw(@vx))? (5'7'242)

and immediately one can check that (5.7.237)) hold, and, if z — x + &(p, x) is the inverse diffeomor-
phism of z — z + a(p,x), we have

Apgmy = Apom + (A2a)pv+1,
Apay = TE[® HA )] + TTE[® Hag) (A1d)] + @ H(Apaay) + P HaApa,)  (5.7.243)
+ (A12a) @ (9x(a o).

The bounds follow by repeated use of Lemma indeed setting
f=Tga(p, ) + alp, 2)as(p, z) (5.7.244)

we have by (A.0.8))

@ ,0 ,O ) ,O
la 137 < IAITE + Cs (AT *IIO&IISO+1+IIaIIZHIIfII” ),

(5.7.245)
IF1179% < [Mxa(p, 2)129 + Cs( 25+ a7l )-

Then if s = sg by applying the smoothing estimates in the second inequality in ([5.7.245|) we get

IFI30 < Ko al| 1€
ET2

S0

K- *all3,° ‘1CSOK27+2(||a||3(;O)2, (5.7.246)
las |37+ < ( O+ Coy KT ([la]| 30)P) (1 + Oy T2 200).

If s> sp by (b.7.245)) and (5.7.241]) we just get

las]| 79 <s A7 1+ Coy T K720 10) + Coy ' K272l 2O £113,°¢ (5.7.247)
with
+ _
A7 < Tgal| 7€ + 20y K*742]|a)| 29| af| 7€ (5.7.248)

By using (5.7.243), (5.7.235), (A.0.8) and (5.7.230) we get (5.7.238) and (5.7.239).

O]

Now we describe the iteration of the KAM step.
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Lemma 5.7.24. Consider the vector field Xo in (5.7.223)). Fiz v > 0 set (recall sy = [v/2] + 3,
T=v+2)

3
X=75, u=6v+22 op=2v+9, s =4v+21. (5.7.249)

There exists Ky depending on sg,v such that if

C(s1)do(s)) K37 <1, where  o(s1) := v ]ao|| (5.7.250)

S1

then, for all n > 0, the following holds. We set K, := KS‘” , X :=3/2 and

Ont1 = Crpy K, 00 1= {w €O, |w-L—myj| > B VeeZ : |l| <Ky, YjEZ\ {O}}

@0
(5.7.251)
and for all w € Oy we set ant1(p,x;w) to be (recall (5.7.233) for the definition of x )
W) = (n+1)_i(L-p+j) (1) _ a5 Xt (W €= )
anpi(p msw) = Y o et tin) g T YRR (5.7.252)
[U|<Kn
and
n = [(Arzan)], () i= 7~ 797 (5.7.253)

Moreover we set
Ai=1/(s—so+274+2), M(s):=max{dp(s1),00(s+ 27+ 2)}.

Then the following holds.

(P1)n. Set ag = 0. For all n > 0 the torus diffeomorphism ®,, : (¢, z) — (¢, z + an(p,z)) is well
defined from H? to itself Vs > sg and setting

X = (9p)eXp1 i=w- (;1 — (my, + an(go,a:))((fx (5.7.254)
we have the bounds
[y — 1 |" < A00(s1) K KY | < Mo+ 6o(s1) Y 277, (5.7.255)
j=1
n—1 ‘
|Aqgmy,| < 22_J€0
j=0

and there exist C1(s) and Ca(s), positive constants depending on s, such that

Sn((s0) < do(s1) Kb K *, 6n(s) < Ci(s)do(s)(1+ Z 277), s>sg (5.7.256)
j=1

en < 27", (5.7.257)

| ||7790 < 6, (s 4 27 + 1) < Ca(s) K;)‘“Ké‘“ M(s), s> so. (5.7.258)



178 5.7. REDUCTION OF THE LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS

(P2)n. The torus diffeomorphism defined by

Ty =1,
0 (5.7.259)
U, =®, 00, ,

is of the form U, : (p,x) — (@, z + Bn(p,x)) with (recall (5.7.258)) for the definition of M(s))

18nll 2% < Cls0)do(s51) Y 277, ||Ball7?° < Ca(s)M(s +1) Y 277, Vs > s, (5.7.260)
7=0 -

7=0
1Bt = BallZ2?° < C(50)00(51)27™,  ||Bne1 — Bull 70 < Cu(s)M(s +2)27" Vs >sg, (5.7.261)
Proof. The proof is postponed in Appendix [B] O

Now we can prove the Proposition [5.7.22

Proof of Proposition[5.7.29 We fix s asin and choose d, so that implies .
Consider now the sequence 3, defined in Lemma [5.7.24(P;). By formula this is a Cauchy
sequence in H*(T"*™!) for all s > s9. Let us denote by B(>°) its limit. We note that 5> belongs
to Ns>so H*(TYT1), hence it is a C°° function in the variables ¢, z.

In the same way, by the sequence m,, is a Cauchy sequence and we denote by my its limit.
We claim that

(WD) (w- 0,8 — (o + ag) (1 + (B)),) ) = mec. (5.7.262)
First we prove by induction that (recall (5.7.254))
(0n)« X0 = X (5.7.263)

For m = 0 this is trivially true. Now prove the n + 1-th step. Recalling the definition ([5.7.259)), by
the composition of pushforward

(\I’n+1)*XO = (q)nJrl)*(\Ijn)*XO = (q)nJrl)*Xn = Xnt1.
Now by (5.7.263) we have that
(W)™ (- 0,80 = (mo + ao)(1+ (8°),) ) = ma + an (5.7.264)

by (5.7.256)) the 1. h. s. of (5.7.264) converges in H®® to mq,. By the fact that £, converges to

B°) in H®, for every s > sq, then

()7 (w- 9,80 = (mo + a0) (1 + (8)2) ) = () ™ (w- 9,8 = (mo + a0) (1 + (8, )

converges to 0 in H*® by using triangle inequalities and the bounds given in Lemma Then
we proved our claim.

By (5.7.262), setting U(®) : (o, z) — (p,z 4+ B (¢, z)), we have

() v 0 0
\Il* Xo = : - e’} ) n-n-
0=w P m (w)ﬁx Yw € N, O
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The bounds (5.7.225)) follow by (5.7.255)). In order to complete the proof we need to show that
0% () On.
n

We prove this by induction. By definition 0% c Oy. Suppose that 0% c 0, and we claim that
0% is included in Ony1-
Fix w € 03 and |[¢| < K,,. Now suppose that [j| < K2, then by (5.7.255), (5.7.250) and recalling
that u = 4v + 12 we have

. . ) Y - v
o €= 11 2 o = moc| = oo = il 2 5z (1= So(st) KE R KGKG) 2 5
Otherwise, if |j| > K2 then
£ —m | > |j] — |wl Ky > K2~ 2@ K, > 1> 2<Z>T.
This prove the claim and concludes the proof of the proposition. O

Lemma 5.7.25. Under the assumption of Proposition the function ) defined in the Propo-
sition satisfies the following estimate on the variation of the variable i

18128, <, 77 (81280l s30-41 + 181071 As200]l g 3741 ) (5.7.265)

for some ¢’ > 0.

Proof. By (5.7.228) the function 3(°) satisfies the equation

w - Dy — (mg + ag(p, 2))(1 + L)) = —me (5.7.266)
and differentiating this equation by ¢ we get that a(oo)(cp, x) = Aaf (o) satisfies the following
La'™ = f(p,z),  L:=w-d,— (mg+ao)ds (5.7.267)
where
flo,z) := —Ajame + (A12a0)(1 + B). (5.7.268)
By Proposition the map ®: H*(T"t!) — H*(T**!) defined by
du(p, ) == u(p, x + ) (¢, z)) (5.7.269)
is such that
dLO (G = (w 9, — moo81> @), a0 = (). (5.7.270)

Hence the equation (5.7.267)) transforms into
(0 8~ medy)d™ =g, gi=a7'f

and by Lemma (5.7.227)) and (5.7.225)) we get

138y <oy gllosarsr <o v (I12a0llsr2r11 + 18411 Ar2ao]lss ). (5.7.271)
By definition
1> s <5 @7l <, 7*1(||A12a0Hs+2r+1 + ||ﬁ(°°)Hs+a'HA12a0Hso+2T+1). (5.7.272)
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5.7.4 Reduction at the highest order

We want to make constant coefficient at the highest order of the operator L, defined in ((5.6.31]).
In order to do that we shall apply Proposition [5.7.21] which gives an explicit formula for the new
coefficient at the highest order (see ([5.7.185))). Then Proposition [5.7.22| provides the solution for the

equation (5.7.222)). This is possible if the smallness assumption (5.7.224)) is fullfilled. By (5.7.8)) the

coefficient ag in L, does not satisfy this condition. Hence we have to perform some preliminary
steps in order to enter in a perturbative regime for the scheme described in the proof of Proposition

0. (.22

Consider
p > 5o+ 67+ 9. (5.7.273)

We shall use the smallness assumption in (5.6.7) with some p' such that
W >a>o05+00+(s1—80)+o1+p+1, (5.7.274)

where & is the loss of regularity in Lemmal5.7.45] o has been introduced in Section see estimates

(5.7.7)- (5.7.9), o1 is the index appearing in (5.7.91)), while sg + 27 + 4 < s1 (see Theorem [5.7.22]).

The constant og > 1 depends only on p. Essentially the constant og will be given by Proposition
5.7.21] (see (5.7.183))).

Step (). Consider the Hamiltonian

S(t) = 1/Tb1(7, »,T) 2dr = eSi(r) + 6252(7') + €3S3(7') + Sy(7),

2 (5.7.275)
o SBi(00) "
o1+ 71e(Br)s]

1 2 T 2\ 2 72 2

Sii=5 | prztde, Sy=— [ 0u(B])z"dz, Sz:=— | Bu(Br);dz, (5.7.276)
2 Jr 4 Jr 2 Jr
for some function ; to be determined. The Hamiltonian system associated to €57 is

ur = 1g[(J 0 b1(7)) . (5.7.277)

We call ®; the flow at time one of the system ([5.7.277)), then the Hamiltonian of the conjugated
linearized operator @lﬁwq)l_l is (recall (5.6.42)), (5.6.43))

1
Ho @ = H o+ o{ 1, H)e + 22(5 {81, {Si, Hbefe + $2(1))
(5.7.278)

e3
+5 (é{Slv {517 {Sl, H}e}e}e + {Sl, {SQ, H}e}e + {SQ, {Sl, H}e}e + S3<1)> + 0(53)7

where {-,-}. are the Poisson brackets defined in ([5.6.38) respect to the extended symplectic form
(15.6.37)).

In particular, we have
1
Ho CI)l—l = Hg + E(Hl + {51, H0}€> + g2 (H2 + Sz(l) + {S1, Hl}e + 5{{51, {Sl, Ho}e}e + HRQ)
1 1
+ &% (Ha + 5 {82, {51, Hidebe + 50 {82, Hu}e e

1
+ E{Sl’ {S1,{S1,Ho}e}te}e + S3(1) + Hr, 3 + AE - @oHl) + o(e?),
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where Hg, 3 collects the terms of size O(£3) in Hg, (recall that Hp, generates a finite rank vector

field, see (5.6.32))). We want to solve the following equation
Hi + {S1,Ho}e = Hi + {S1,Ho} + D551 = F, (5.7.279)

where F' is some Hamiltonian of the form F := (Az,2)p2(r) with A pseudo differential operator of
order —1. Recall (5.6.43)), then the equation ([5.7.279) is equivalent to the following one

Dz61 — (Bl)x —v=0. (57280)

Hence we choose 1 = 1(Ad;)~'v and we note that
leBrllT <s e, Vs> s, (5.7.281)

thus the assumption ([5.7.91) is satisfied and Proposition |5.7.16| applies.
By (5.7.8), (5.7.9)), (5.7.10) and using the assumption (5.6.7)) with u' given in ((5.7.274)) the condition
(5.7.183)) holds. In this case q ~» 0 (see (5.7.181)).

Then Proposition [5.7.21] applies and the new linearized operator is

L= L,07) = I <Dw — Jo(1+a(p,x)) + Oplar) + @1>. (5.7.282)

Hence by (5.7.281), (5.7.9), (5.7.187), (5.7.135)), (5.7.7), we have that O, € £, (see Definition [5.7.4)
(with p asin (5.7.273)) and for 0 <b < p—2

1210 Ssiap (1 + [T

7,00 )
stoo+o3/)

S > Sp

o (5.7.283)
M’él (5,D) <s,p €(1+ || Ts] ZJ!—U%—I—U?,)’ 80 < 8 < Smaz;
for0<b<p-—3
|A12a1]-1,50 Ssap (it = i2llstooros + [Tsllsron+oslli = i2llsorootas), 52 so, (5.7.284)
MA12Q1 (s,b) <s,a e(llir = 22lls+o0+0s + | Tsllsto0+as i1 — i2llso+o0t0s), S0 < 8 < Spmag,
70 2 ~ 77(9
lar[[37° <s €% + el Ts 11 300405 (5.7.285)

||A12a1||3 <s 5(||i1 - i2||s+ao+03 + ||36||s+ao+03||i1 - i2||80+00+03)a

with o( in the estimates of (| and o3 given in Proposition
The only estimates that are not given by Lemma [5.7.21f are (|5.7. 285]) The coefficient a; is given by

(5.7.185) with m ~» 1, a ~~ ag, ay ~» a; and § such that = +— = + § is the inverse of x — x + .
By the choice of £; in ((5.7.280)) we have eliminated the e-terms from aj. Hence by (5.7.281)) and

(5.7.8)) we get ([5.7.285)).

Step (¢?). Now we want to diagonalize the Hamiltonian ([5.6.42)) at order €2. In order to do that,
we consider the auxiliary Hamiltonian

5252

m’ (5.7.286)

- 1 - .
S(r) = 3 /Tbg(z:,go) 22dr =285+ 8y, by:i=

1 - ~ ~
2= 5 / Bo 2 dx, Sy:=5—¢5, (5.7.287)
T
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where s is some function to be determined. The Hamiltonian system associated to Ss is
ur =I5 [(J 0 ba(7)) ul. (5.7.288)

If @5 is the flow at time one of the system (|5.7.288|), then the Hamiltonian of the conjugated linearized
operator Lo := <I>2£1Q>2_1 is

~ 1
Ho q>1—1 o q>2—1 =Hq + s/%l(z) 2dx + &2 (H2 + S9(1) + Hg, + {S2,Ho}e + 5{SI, Hy}

+ (S [ Ba(e)zde}) + 2 (Haot (o, (SuHibede + 5151, (5o Hul)e

1
+ {51, 181, {51 HobeheYe + S(1) + Hr. o + AS 8¢H1> +o(e%),

with
531 = [3/\81,61] (5.7.289)

In particular

1 1 [_ 1 [_

—{S1,H1} = /vzj(ﬁlz) dx — /vz JIg[p12] dx, (5.7.290)

2 2 Jp 2 Jr

%{sl, / Bi(2) zda} = — / Bu(2) JILL 61 2] da. (5.7.201)

T

Since [3A0,, £1] is a pseudo differential operator of order —2, the Hamiltonian (5.7.291)) generates a
vector field of order —1. We write

~ 1
Hz, == Hg, — 3 /Tvz JIg[B12] dx. (5.7.292)

Note that %fT vz JIlg[B12] dz generates a finite-rank vector field and ®5 is I+ O(e?), hence the
terms of size O(g) in ®;L£,®7" are not changed. We want to solve the equation

- ~ ~ 1 1
Hy + Sg(l) + HR2 + DSy + {SQ, HO} + 5 / vz J(ﬁlz) dr — 2{/ Bl(z) zdz, Sl} =F (57293)
T

where F' is some Hamiltonian of the form F := (Az,z)2(1) with A a pseudo differential operator
of order —1, namely

Hy + So(1) 4+ DySa + {Sa, Ho} + ;/vz 0r(B12) dx = F. (5.7.294)
T

Hence equation (5.7.294)) is equivalent to

D2 — (B2)a — W2(V) + %&c(ﬂf) - %Bﬁx + %@(51):,; =0. (5.7.295)

Note that Wy(D), 8104, (81).0 and ? are quadratic functions of ¥ (recall (5.6.39)) and by the fact
that the index of time 1(j) of v is tied with the Fourier index of the space j we have

w- (10j1) + 1(j2)) = w(jr) + w(ja),  Vij1,j2 €S- (5.7.296)
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We have that w(j1) + w(j2) — (j1 + j2) = 0 if and only if j; + jo = 0, since ji1jo # —1. Hence we
can choose [y such that

1 1 1 1
DBz — (B2)x — Va2 (V) + 589[;(5%) — 5510 + 50(B1)e = 3 /Wl(v2 + 72) dz, (5.7.297)

since Wy () and 0,(5?) have spatial zero average. Therefore

L= BoL1®;) = 114 (Dw ~ Jo (14 2e(€) + as(p, x)) + QQ), (5.7.298)
with 1 5
(&) =32 (1+i0& =3 > 1+ (5.7.299)
jes jEST

and, by noting that
€282 7€ <5 % Vs > so, (5.7.300)

by (5.7.283)-(5.7.285)) and using the assumption (5.6.7) with p’ given in (5.7.274]) the condition
(5.7.183) holds. In this case q ~» qi, hence by (5.7.283)), (5.7.284) the bounds (5.7.181)), (5.7.182)

hold with ky ~~» €, ko ~» €, k3 ~» €, p ~» Js5. Then Proposition [5.7.21| applies and by (|5.7.300]),
(5.7.283))-(5.7.285)), (5.7.188)), we have for 0 <b < p — 2

,O ~ 17,0
a2l "1 00 Ssa (1 + 135/ 00 10,)s 5> S0,

- R (5.7.301)
M@Q(Sab) Ss,p 5(1 + ||J5||sjro'0+o4)v 50 < 8 < Shaz
and for 0 <b<p—-3
|A1202] 1,50 <s,a (|21 — @2]|s+00+04 + [Tl st00+0alli1 — P2]lso+00+04)s S > S0, (5.7.302)

MA12@2(57b) <s,p e(flir — i2||s+ao+o4 + Hj5||s+ao+a4||i1 - i2||80+ao+04)7 50 < 8 < Smaz,

’O 3 ~ 770
Jaal 7% <, e+ e300 50

[A12a2]ls <s e(lliv — t2l[s+o0+0s + [|Tslls+o0+0alli1 — i2llso+o0+404)
for o4 > 0 given by Proposition [5.7.21]
Step (&%). Now we want to diagonalize the Hamiltonian ([5.6.42)) at order 3. In order to do that,
we consider the auxiliary Hamiltonian

S(r) = ;/Tbs(ﬂf, ¢) 2 dr =295+ S5, by = Hi% (5.7.304)
Sy = ;/Eﬁg 2dr, Sg:=9—¢e3S; (5.7.305)

where (3 is some function to be determined. The Hamiltonian system associated to S is
ur =g [(J 0 bs(1)) ul. (5.7.306)

If @3 is the flow at time one of the system ([5.7.306), then the Hamiltonian of the conjugated linearized
operator L3 := <I>3£2<I>§1 is (recall ((5.7.299))

2
Ho® ' od,'ody! = <1 + % c(&)) Ho + €K1 + 2K + £3KC3 + o() (5.7.307)
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with

K1 ::/’Bl(z)zdm,

1
Koy = Af'n—f—/%g(z)zdx—l-Q{5'1,/%1(2)de}+/€732,

. . (5.7.308)
K3 := {S3, Ho}e + Hz + 5{527 {S1,Hi}ee + 5{51, {S2,Hi}ete
1
+ 5191, {51, {51, HoJeJebe + S3(1) + Hr, 3 + AL OpH1,
where K, is the Hamiltonian Hg, (v, z) in (5.7.292) evaluated at (7,0) and
By 1= 3[Ady, Bo]. (5.7.300)
We want to solve the equation
N 1 1
Hs + S3(1) + {53, Ho}e + 5{527 {S1,Hi}e, Je + 5{51, {82, Hite}e
(5.7.310)

1
+ 6{517 {Sh {Sh HO}e}e}e + Dw—GHl =F

where F' is some Hamiltonian of the form F := (Az,z)2(1) with A a pseudo differential operator
of order —1. This equation is equivalent to

DBz — (83)s = —W3(v) + f3(0) — A& - 9,01, (5.7.311)

where f3 and W3 are cubic functions in T (recall (5.6.43)), (5.6.28)) and so they are supported on

few harmonics in time. We are not intersted in the exact expression of f3.
We have that

W (1) +1(2) +1(J3) =1 —J2— s #0 Vi1, j2,j3 €S. (5.7.312)
Then we can choose B3 such that equation (5.7.311)) is satisfied. Hence we have

Ly = @3L507" =TI (Dy — J o (14 €%6(¢) + as(p,2) + Qs ). (5.7.313)

and by noting that
1% 85]177C <5 €* Vs > so, (5.7.314)

the assumption ((5.7.91)) is satisfied for the system (5.7.306). By (5.7.301)-(5.7.303)) and using the

assumption ((5.6.7]) with ' given in (5.7.274) the condition ([5.7.183)) holds.
In this case q ~~ q2, hence by ((5.7.301f), (5.7.302)) the bounds ([5.7.181]), (5.7.182)) hold with ki ~ ¢,

kg ~» &, kg ~> &, p ~ J5. Hence Proposition [5.7.21| applies and by (5.7.314)), (5.7.301))-(5.7.303]),
(5.7.187))-(5.7.188)), we have for 0 <b < p—2

,O ~ ,O
‘q3’11,2,a Ssva 8(1 + HJ5||Z+O%+O'5)7 52> 50, (5 - 315)
MY (5,0) <sp e(1+ 36l 3500 405)s 50 < 8 < Simas, B
and for 0 <b<p—3
‘A12q3’—11570¢ SS’CV g(Hil - i2H$+Go+Us + H35H8+00+0’5Hi1 - i2H80+00+05)7 s > 50, (5.7.316)

MAlgég (S’b) Ss,p 6(H1’1 - 1:2H5+0'0+0'5 + ||36||5+UO+‘75||7:1 - i2||50+00+05)7 S0 S S S Smax,
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,O 4 ~ 170
las|[37° <s e + £||Ts] s+0?)+05’ (5.7.317)

||A12a3”s <s E(Hil - i2||s+00+05 + H35||s+00+05||i1 - i2||80+00+05)7
for o5 > 0 given by Proposition [5.7.21]

Step (¢*)-(¢%). Consider i = 4,5. We proceed exactly as in the previous steps. We consider a
change of coordinates ®; as the time-one flow map of

ur =I5 [(J 0 bi(7)) ul. (5.7.318)

where ,
£'Bi
b = ————
1+ 627'(62')3;
for some function B; € H® to be determined. We choose ; in order to solve an equation like the

(5.7.319)

following
DgBi — (Bi)z = 9(v), (5.7.320)

where g is a function with a zero of order ¢ at the origin.

The condition (H1) in ([1.2.14) implies that the equation (5.7.320]) for ¢ = 4 is solved up to

remainders of the form
d€) = Y dlj1j2)&n - (5.7.321)
J1,J2€8
The condition (H1) in (|1.2.14]) implies that there are no small divisors for (5.7.320) if i = 5.
Thus we have

L5 = (050 ®y)L3(P50Py) ! =1l (Dw — Jo (1+e%(€) +e'd(€) + as(p, x)) + Q5) (5.7.322)

and by noting that
I€"Bill7° <s " i=4,5, Vs > s, (5.7.323)

the assumption (5.7.91)) is satisfied for the system ([5.7.318]). By (5.7.315))-(5.7.317)) and using the

assumption ((5.6.7)) with ' given in (5.7.274) the condition ([5.7.183)) holds.
Hence Proposition [5.7.21| applies and by (5.7.323)), (5.7.315)-(5.7.317)), (5.7.187)), (5.7.188)), we have

for0<b<p—2

e, ~ 17,0
9501 60 Ssia €1+ 136l 0 +07)s 5 > S0,

~ O
I\/J%5(s,b) <sp 1+ 1Ts5l 0 i6.)s 50 <5 < Spaw

(5.7.324)

and for 0 <b<p—3

|A12q5’—1,87a Ssa e(lli1 — ©2llstootor + 1Tsllsro0tor 111 — i2/lsoro0407), S > S0 (5.7.325)

MAHQS(S,b) <s,p e(lli1 — i2||s+ao+a7 + ||jé||s+ao+07||i1 - Z.2||L<>‘o+cro+07)v 50 < 8 < Smaz,

7700
oot o (5.7.326)
[Ar2asls <s e([li1 — i2lls+oo+or + 1 Tsllstootorlli1 — i2llso+ooter)s

with o7 > 0 given in Proposition Now we apply Proposition [5.7.22]in order to make constant
the coefficient as of the linearized operator L5, namely we find 5 such that

lasl 79 <, €% +¢|175

DB — (1 + as(p, z))(1 + B,) = constant. (5.7.327)

Note that the smallness condition ([5.7.224)) is satisfied.
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Proposition 5.7.26. Let 8 be the function such that x — x+ B(p, ) is the inverse diffeomorphism
of the torus of x +— x4+ B() (¢, z) with B(>) in and let ®g be the flow of the Hamiltonian
PDE

ur =g [(J o b(7)) u)], (5.7.328)

where

- Nyl
b(1) := b(7, ¢, ) 181790 <s v HaslLozas Vs > so. (5.7.329)

ETTA
Then the conjugated of the operator Ls in ((5.7.313)) is

Lo =B L5 5" = I1E (Do — mJ + Qs)), (5.7.330)
where Qg = Op(qe) + QG as in Proposition |5.7.21| and m is a constant such that

Im — 1Y < Ce?,  |m|'? < C, |Aam| < ey — ia)|sgr2, Yw e OX. (5.7.331)

Moreover, for any s > sg

70231 ~ 70
a6/ 2755 <s €1+ 113611275, (5.7.332)
[A12a6]-1,50 <s €77 (i1 = dallsve + [1Ts s+ llin = i2lls0+6) (5.7.333)

and @GEEP with for 0 <b < p—2 and sp < s < Spax
~ ,O
M3 (s,0) <5 e(1+ 1935 (5.7.334)
for 0<b<p—3 and sog < s < Spmaz
My .5, (5:0) <s ey (llin = dollste + 1Tsllstollin — iallsors), (5.7.335)

with 6 = og + 08 + p+ s1 — so for some og, possibly larger than o7 .

Proof. The first order linear differential operator (recall (5.7.299)), (5.7.321)))

D, — (1+ e2c(€) + ¥d(€) + as(p, )0y (5.7.336)

defined on H$, (T¥*!) is associated to the vector field

Xo i o = (14 2(e) + <'dlE) + an(i,)) o (5.7.337)

By assumption (5.7.274) and by ([5.7.326]) (recall that s; and 6* are given in Proposition -5.7.22 see
(5.7.224))
2
C(s1) 7 Hasl|Z0% < C(s1)et 3 = 6" < 1. (5.7.338)

Thus the condition ([5.7.224)) is satisfied and the Proposition|5.7.22|applies to the vector field (|5.7.337)).
In particular, we have that the operator (5.7.336) conjugated by the transformation

7-ﬁ(00) : U((,O, .%') = U((P, T+ /8(00)((107'7;))
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is associated to the vector field

v Xy = w- 51 (WO (D509 — (14 2(€) + £1d(€) + as(p,a) 1+ 52 )

and by Proposition [5.7.22]

Hence () solves the equation . Now we take [ in as the function such that
z+— x + B(p, ) is the inverse of the torus diffeomorphism z — z + 3 (¢, ).

The bound in follows by .

The constant m in is Mmoo (recall (5.7.225)).

By (5.7.227), (5.7.317) and (5.7.274), for € small enough, the function /3 satisfies (5.7.91), indeed

0 B o (5.7.326)) 3 O (5.7.274) .
11 304—2‘1 < C(s1)y 1||a5||30+01+27+4 < CO(s1)y 1(56 +¢||Ts Zo+(/)/) < CO(sp)e" 7"

(5.7.340)
Hence ®g is well defined (see Propositions[5.7.16}5.7.18)). By (5.7.326|) the bounds ((5.7.181)), (5.7.182)
hold with ky ~» €%, ko ~» £, k3 ~» £ and Proposition applies.
The estimates follow by (5.7.225)), (5.7.326)) and the fact that m = 1 + O(?).
The estimates on Qs satisfies , then by Lemmal@l the bound holds on @6.
The estimate follows by and . By Lemma we have ,
(6-7-335). O

5.7.5 Linear Birkhoff Normal Form

Fix
b:=sg+ 67 + 6. (5.7.341)

We recall that the linearized operator is now

Lo = II& (Dw —mJ + Qﬁ) (5.7.342)

where Qg = Op(qgg) + @6, g6 € S7! and @6 € £, (recall the Definition .
If ®:= ®g0P50P,0P30Py0 Py then the Hamiltonian of the operator Lg is (recall and
(p.7.342))

K:=Hod®d ' =Ho+eki+e2Ky+3K3 +o(?) (5.7.343)

where K1, K2 and K3 collect all the terms of order e, 2 and &3 respectively (recall (5.7.308),
(5.7.289)), (5.7.309)).
The aim of this section is to eliminate K1, K3 from ([5.7.343)) and normalize the Hamiltonian .
We have

Lo =15 (D, — mJ — eXi, — 2 Xx, — ° X, + R) (5.7.344)
where (recall (5.7.330)), (5.7.308))

Xx, = JVK; i1=1,3, Xic, := JV (a2 — AE - 1),

) ; (5.7.345)
R = Qs + eJVK; +e2JVKs + 2 JVK.
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Remark 5.7.27. Note that eXj,, e2Xi, and 3Xj, are pseudo differential operators of order —1
(see ) Indeed, Hg, 3 generates a finite rank vector field and S7, Sz and S5 in ,
generate a pseudo differential vector field and clearly also the Poisson brackets of these
Hamiltonians.

In particular e Xy, , €2 Xy, and 53X;C3 are the terms of order ¢, €2 and &2 of the Taylor expansion
of Qg (see Proposition |5.7.26). Indeed, Ho ®~! and f in are functions of (evs,e%2). We
consider the Taylor expansion at (£7,0) and increment h := e(vs — v) + %2

Hod ' =Ho® (c7,0) + O(h).

Since the coefficient a5 in has a zero of order six at (¢7,0), by and the fact that
gl0=2by=2 — g4-3¢ with q < 1, the terms of order ¢,e% and € in H oq)fl o-- -oq)gl are not changed
by applying the transformation ®g defined in Proposition [5.7.26

By Lemmal.7.15}(ii) Xk, ,e2Xk,,e>Xi, belong to €, and satisfy, by (5.7.289), (5.7.281)), (5.7.309),

(5.7.300), (5.7.314),

Bl o, (s:b) < eC(s,D),
Bl jox, (5:b) < €2C(s,b), (5.7.346)
Bl i, (s,D) < £3C(s,b).
Lemma 5.7.28. We have that R € (’:171,(023) with
Ba(s )S A (5.7.347)
Baam(s,0) <s €77 (Ilin = dzllsso + [ Tslls+o /i — iallso+o),

for 6 =o0g+ 00+ (s1—s0)+p+1 (recall (5.7.274)).

Proof. By the definition of R, see (5.7.345)), and by the fact that, by Lemma [5.7.15} (), (i), the

pseudo differential of order —1 belong to € (in particular, for any choice of b) and the elements of

the class £, with p as in (5.7.273) are included in €1 with b as in (5.7.341)), we have that R € €1 .
Note that only Qg in ([5.7.345)) depend on the torus embedding is, then the second bound in ([5.7.347))

follows by (5.7.333)) and ([5.7.335)). The first bound in m ) follows by the Remark m and the

bounds ((5.7.329) and ([5.7.326)).

Remark 5.7.29. In the following steps of linear Birkhoff normal form we shall use the relation
D a7 —i=0 if [(|<3, Vi, j €S,
i=1

which holds by the conservation of momentum.

Step one (order ¢)

We look for a symplectic change of variable Y1: Hg, (Tv+1) — HE, (T**1), that is the time-1
flow of a quadratic Hamiltonian

Ha(u):=¢ Y (A)] () ujr 1y, (5.7.348)
j,j'ese
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where A;(y) is a self-adjoint operator Vi € T and thus

6]{?73

k!

JA)?
Y1 = exp(e JA) = Ly +2JA; + 52(21) +&%Ry, Ri=)_
k>3

(JAp)". (5.7.349)

Then
KW =Koo' = Hy+ ek 4260 + 3K +0(e%), K =Ky + DgHa, + {Ha,,Ho}

1 1
K = Ky + 5 U +DH A, + {Hay Ho} + K} + 5 {Ha, Ko}

(5.7.350)
We choose A; such that
DuHa, + {Ha,,Ho} + K1 = 0. (5.7.351)
We have
Ki(u):= > (B1)] (@) uju_j,
J,3'ese
(5.7.352)
i A+G =)A=y o
J ?) = J—J a4 0 =1(i — /
(%1)] ( ) (1+]2)(1 +j/2) ) J—J € Sa (.7 J )7
then we choose
(B1)] (0 ,
i — 77 €8 j—4 €8, £=1(—7),
(A1)} (0) = i(w- L+ w(j’) —w(y)) 2] J=J (7 =7 (5.7.353)
0 otherwise
(recall (5.6.39)) for the definition of 1(j — j')). This operator is well defined since
w-1(j =) +w(i’) —w() =w(i —5) - w(i) +w(i’)
UGB+ G =0 (5.7.354)
(L+72) @+ 521+ (G- 5)%)
and |w —w| < Ce?.
Lemma 5.7.30. For j,j' € S¢, j—j €S, |¢] <1 we have that
, K
(A1)} (O)] < 7 (5.7.355)

for some constant K1 = K1(S) > 0 depending only by the set S. Otherwise we have that (Al);:/(f) =
0.

Proof. By (5.7.352)), (5.7.353)), (5.7.354)) we have

N B e 1 R )
W O=3556=mn6+i+G -7 V9

Since 1 < |j — j'| < 2Cs, where Cg :=max{|j| : j € S}, |w —©| < Ce?,
GG+ + G =)= 5 Vi#s, - jil<2ij] (5.7.356)
and by (5.7.331]) we have (5.7.355]).
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Lemma 5.7.31. The linear vector field X 4, := JA; belongs to the class €1y, in particular it satisfies

the following
B),  (s,b) < C(s,b)e. (5.7.357)

EXAl

Note that X 4, does not depend on i(w).

Proof. We have
(D2)2 T A1 (D) 213

< Y (X ORI € O ke pl)

jeSe Lezv ez i’ eSe,

! (Ot G Fhee 1y (5.7.358)
. 2

+ (X OMeOIIA] €= ONGY PR ) (0

jeSe Lerv l'ez”,j'eSe,

(szvj*jl>>2<zluj/>
It (¢—20,5—3" <2(¢,j) then
<£7j> S <glvj/> + <€ - Elaj _j/> S 3<£/7j/>'

Hence
\1/2/01/2, i’ / 152
(X OMEOPRGIIAY] €~ Ol heg L))
JESC LeZV verr.j'ese,

<‘€7€/’j7j/>g2<£/’j/>

< Y (X OENOIA] €0
jESC UELY ey j'ese,
(€=t j—3"<2(t',5")

((—L,j—j5)%
<£ - El?j - j/>so

2
e g 15

(5.7.359)
and by Cauchy-Schwarz
. i’ E—f’,j—j/ %0 . 2
S (X el -0 g = e y)
jese ez ey j'ese, )=
(e~ j—i <2t ) (5.7.360)
< (4Cg)**C Y > YW@ PIADT (€= )P he o 5%

IS A=Y/ d eV ,j'ese,
<£_Z/7‘7_]/>§2<617]/>

where

~ 1
C= — < 00.
ﬁ’ez%;esa (=05 =)
(€= ,j—3")<2(¢',5")
Note that fixed £ and j, since |[¢ — ¢| < 2 and |j — j'| < 2Cyg, the sum above is finite and C' does
not depend on ¢ or j.
By Lemma and the fact that |w(j)| < 3|j| we have that

> > Gy wDPIADT (€= )P Lhe 5 P, 5
jESC LTV V'ez? j'eSe,
<£_£/7]_]/>§2<£l7]/>

<9K? > [ o |20, 5)2°.

jESC LTV Le7v j'ese,
(=0 ,5—35")<2(¢ 5"

(5.7.361)
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Thus we get
. 2
(X OO = Ol he L)) < 3 Clso) IRl
jeSe ez ez j'ese,

(00 ,5—35")<2(¢',5")
(5.7.362)
The case (¢ —¢',j — 7"y > 2(¢',j') is analogous. By the definition (5.7.353)) of A; and we
have that the argument proved above holds also for the norm ||-||*© since 3 in is Lipschitz
inw.
The matrix elements of 95 Xa,, [Xa,,0:], (05, Xa,,0:] are respectively (£, — E;n)bw(j)(Al)gl (¢—

Y, (4 —j’)w(j)(Al);:,(é—ﬁ’), (b —£,)°(5 — 3" )w(§) (A1)} (£ — ). Note that by the definition of 4,

in (5.7.353)
(b — 0V, 15— J| < C

for some constant C' depending on the set S. Thus arguing as above one can easily prove that
angAl , [Xay, 04, [aszAl,ax] are —1-Lip-tame operators. This concludes the proof. O

By Lemma [5.7.15(and (5.7.357)) we deduce the following result.

Corollary 5.7.32. The transformation Y1: H*(T"*1) — H$(T**) defined in (5.7.349)) is invertible
and satisfies, for any w = u(w) € H® Lipschitz in w € 0%,

2 2 2
[(TE — Dul| 197 <4 C(s0,b)el|ul| 7O + C(s, b)elu]| L. (5.7.363)

Proof. By (5.7.349) we have

Xff‘ U _ Xﬁ U
(T1 —Du = o (0 '—Du=) (-1)F o (5.7.364)
k>1 k>1
By using iteratively the property (iii) of Lemma |5.7.15 and Lemma |5.7.31| we have that

k o k— 0% k 03
IX5,ul 7> < B, (s,0)(Bx, (s0,b)) M2 + (B, (50,0))"[[ull{

_ _ 2y 2y
< sC(s,b)ek 1C(so,b)k 1HuHZ[;O°° —|—€kC(so,b)kHqu’O°°.

By using this relation to estimate the Lip-Sobolev norm of (5.7.364) and by noting that £"C/(sg,b)"
is a summable sequence for £ small enough we prove the thesis.

O
To shorten the notation in the following lemma we write
adxa, [] = [Xa, ).
Lemma 5.7.33. The transformed operator is (recall (5.7.350))
Lohi=T1LeTT" = 11§ (D = mJ - X, ) — X + R7) (5.7.365)

where

1 1
X = IVKY = X, +adx,, [Xi,] + §ad§(A1 D, —mJ] (5.7.366)
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1

1 1
Xy = JVKSY =X, + adx, [Xi,] + §ad§(Al (X, + 6ad§(A1 D, —m.J] (5.7.367)
R7:=R+ecadx,, [ Xk, + R
2
& 2 .2 _ .3
+ 5 adXAl[ e“ Xy, —e° Xiey + R (5.7.368)
e’ 3 2 3 ek ok
+ EadXAl [—eXk, —e" Xk, —e° Xk, + R] + Z Hadeh (L]
k>4
and the following holds : the operator Ry € €1 with
BY, (s,b) < e3¢ 4 ey ~1) 357,
R (5:P) 7 sl (5.7.369)

Bars (5,0) <s €77 (i1 — dallsve + [Tslls+allis — iallsos),

for some 6 > o9+ 0g+b+ 1451 —sg (recall the loss of regularity in (5.7.332)), (5.7.334)), (5.7.335)) ).

Proof. By Lemma [5.7.15(if Y € € then ad])c(Al [Y] € € for any k> 1. Moreover

B’Y

adx . [Y](s,b) <s B}Al (s,b)BJ (s0,b) + IB%}AI (s0,b)By(s,b).

and by applying iteratively this estimate we get, for any k£ > 1,

k-1 k
B (s,b) < B}Al(s,b) (B}Al (50,b))" BJ(s0,b) + (IB%}(A1 (s0,b)) "By (s,b). (5.7.370)

Y
adk , [V]

Hence, if 2, =3 ;- %adl)“(Al [Y] for any n > 1, by (5.7.357)) we have

k k
€ k—1 € k
B%, (5:b) <sBX, (s:0)BY(s0,0) > o+ (BY, (50,0))" +BY(s,0) > -+ (BY, (s0,b))
k>n k>n
<s C(S’ba n)BA}Y/(SOa b) =+ 0(507 bv n)Bg/(sab)
(5.7.371)
In (5.7.368) there are terms of the form ad’)“(Al [Y], for some k > 1, with YV = Xi,, Xk, Xxs, R

which belong to € by Lemmata |5. 7.15| and 5.7.28[
We note that by (5.7.351))

adXA1 ['Dw — mJ] = —EX}CI — Dw—wXAl - (m — 1)[XA1, J] < Qtl,ba (5.7.372)

since [{ —0'| <C, j—j €8, hence D,_5Xa,,[Xa,,J] € €1y (see the proof of Lemma [5.7.31). By
G7363), (B.7.370), (5.7.371), (5.7.372), (5.7.346), (5.7.347) and the fact that |w — @] < Ce2 we get
the bounds (5.7.369)). ]

Step two (order £?)

2

The purpose of this section is to normalize the terms of size €. In particular, we look for a

symplectic change of cooordinates Yo as the time-1 flow map of an Hamiltonian system

Ha,(u) = Y (o)) () uy T, (5.7.373)
3,j'ese
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with Ao a self-adjoint operator and thus it has the form

Ty = exp(e® JA2) = Iy +e?JAs + 'Ry, Ry = P
E>2

(JAz)". (5.7.374)

Then
K@ = KW o015t = Hy+ 2K + 362 +0(e?), KD = {Ha, Hole + K5, (5.7.375)
where by (5.7.360))

15 (1) = Ka(u) + %{HAUICI}(U) = > (Ba)] () uy ;. (5.7.376)

j,j'ese
Note that, by the definition of Ki,Ks in (5.7.308|) and of Ay in (5.7.353), if the matrix element
(B2)j (¢ —¢') # 0 then [j — j'| <2Cg, [ -] < 2.
Therefore we choose A9 such that

G if @ £+ w(i) —w(j') 0,
-/ (o - 1) — U ) [ ./
(As)7 () = (@ l+w()—wl) 44 eS8 1i—j<2Cs | <2, (5.7.377)
0 otherwise
or equivalently
1 1
D a, + {Hay, Hop = K5 — Tl oy K5V (5.7.378)
We write N
®B)7 0= > OVEE, (5.7.379)
J1,52€S5,
J1tje=j—j’

and (B2)§,(£) # 0 implies that ¢ = 1(j1) + 1(j2). Moreover, the support of HKer(HO)Kél) is the set
of 7,5/ € 8¢ such that j1 +jo+j—7 =0
@ (1(1) +1(52) + w(i) = w(i') = w(it) + w(jz) + w (i) - w(i’)
Nl e e (5.7.380)
= (1 +42) (U1 + 4) (G2 + §) P(j1 J2. )

and P is the rational function

Pl Z)_i3+x2—|—y2+22+xy+a:z+yz+xyz(a:+y+z)
T T ) )+ )yt 2)?)

(5.7.381)

We claim that (71 + j2)(j1 + 7) (G2 + ) P(J1, j2,7) = 0 if and only if j; + jo = 0. This claim is a
consequence of Proposition Therefore

1 .
MR ergin 5 = > | D Cld2) & | s (5.7.382)
JESC \Jj2€S5
where the C(j,j2) are constants.
The following Proposition provides also a way to compute explicitly the coefficients C(7j, j2) in

(5.7.332).
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Proposition 5.7.34. If ®,, is the symplectic change of coordinates (5.3.10)) that puts a Hamiltonian
in action-angle variables and 1%=F denotes the projection of a homogenous polynomial on the terms
with degree k in the z wvariables, then

1 =1
T e K5 = [n Kergroy 1~ (5{ H®, p®) })} © Ruqy - (5.7.383)

Proof. By recalling the notations used in Section 3, we define the projector of a homogenous Hamil-
tonian of degree n on the monomials with degree less or equal than k in the normal variable z

as

We recall the symplectic change of coordinates ®,,(0,y, 2) = u defined in (5.3.10) and we denote by
d¢,dy,d, the degree in the variables &,y, z respectively.

By Taylor expansion in y = 0 (recall (5.3.10])) we have that

k
o Wil '
uj = @-elel E Ck ( jy]) , ¢ €R, JES

k>0 &

hence the total degree of a monomial R(v"*2F) is given by d = 2d¢ +2dy + d. .
By (5.2.29)) we have that, after two steps of weak Birkhoff normal form, the Hamiltonian of degree

less or equal than 4 is
N4y = H® + 1022 + gt + g2 g = g e B, (5.7.385)

We look for the correction at order O(e?) of the eigenvalues of the quadratic Hamiltonian in z. By
(5.3.14) the monomials of degree greater than 4 are not involved in this computation. We define

K :=TI%%H, 0 &, (5.7.386)
in particular

KD =g 00y :=wy+ Y zzy, KL :=H" oy =AE+y) v,
jese (5.7.387)
K(372) = H(372) o0 Puql,_ s K(4’2) = H(4’2) o®,,
ly=0 4 ly=

We want to diagonalize K32 + K(*2)  we can ignore the terms R(v" *2*) with k > 3, since we
will use changes of coordinates which preserve the degree in z.

The strategy is the following:

(i) we apply any transformation generated by an Hamiltonian of the form S®2)(¢,6, 2) such that
the flow is well defined, regular and d¢ > 1/2;

(ii) we perform others steps of Birkhoff normal form which diagonalizes the hamiltonian quadratic

in 2.
We start by applying the flow of a Hamiltonian independent of y

532 (£.0,2) (5.7.388)
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with degree d¢ = 1/2 and flow at time 1

(®56.2),r = P1

Actually this kind of Hamiltonian is like S; defined in ((5.7.276]) considered in the first preliminary
step (Section [5.7.4). We remark that the flow of this Hamiltonian is well defined and smooth.

We evaluate now the terms of the conjugate hamiltonian with d¢ <1 and 2d, +d. = 2. We have

(1)K = K@ + K62 4 g2 4 (@) 6621 4 (B2 ¢(.2))
(5.7.389)

res

+ %{{K(Q), SG2Y 5B 1 k&Y 1 0(e?).

We define
662 = _[adK @] ( K62 L (K@) 5<372>}) (5.7.390)

and we conjugate the Hamiltonian (®1),K in (5.7.389) through the flow at time one of G(32). We
call

Tl = (@8(3’2> ) “r:l :
Actually this transformation can be considered as the map defined in ([5.7.349)), Section 8.4. We have

(T1)u(®1)K = K@ + K& 4 (KB 562 1 gB2) 4 g2

Tes

1

+ 5{{[((2)’ 5§32 L B2y 562 L B2y (5.7.391)
1

+ §{K(2), {5G2 GBI} 1+ 0.

We define
F® .= g2 4 gB2) —[ad K71 (K (32)), (5.7.392)

At order €2 we have

n%=2 HKer(K(z))(Tl)*((I)l)*K =%=2K® 4 K40 4 HKer(Ktz))K(472)

Tes

1 (5.7.393)
+ §HKer(K(2)){S(3’2) +GG2), K(3’2)}-

Now we want to show that the Partial Birkhoff normal form procedure, that is pure formal, gives
the same corrections to the eigenvalues at order £ of the quadratic (in z) Hamiltonian.

In order to do that we consider the first Birkhoff transform that eliminates the monomials R(vz?)
in the Hamiltonian H

FG2) .= [adHP |1 HG2), (5.7.394)
Then by the definition of F®) (see (5.7.392))

{H® 0 040, FOD 0 By} ) = (H? 0 dyq),,_, = K&, (5.7.395)
since ®,, is symplectic. Moreover we have that
M-=2{ (32 pG21 (®a)),_ = (K32 pG2)y (5.7.396)
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Hence we rewrite (5.7.393|) as

— 1 ~
ne=2K® 4 g12 HKer(K(2>)§{K(3’2), FG2Y =

. (5.7.397)
= <H<dz=2>HKer [H @+ Hy+ S {H?, F(?’»?)}]) © Paal,_-
We claim now that on the diagonal, at order O(g?) we have
_ 1
<HKer(H(2))H(dz 2) [H@) + 5{ H®), F(3)}D 0 Paal, (5.7.398)
where
F® .= _[adH®]TH®) (5.7.399)

is the generator of the first transformation of the Full Birkhoff normal form that removes completely
HO),
Since in the original system ([5.2.1)) the term H®) is zero, then (5.7.398) implies the thesis.

In order to prove ([5.7.398)) we evaluate the term Hy in (5.7.397). We have

Hy o= HD 4 (g®, pe<iy _ Lige<n pes<ny
) 2 )

1 (5.7.400)
— HgW 4+ —rgB<l) pGB<l) HG>D pB<hy
+ S {(HOSD, pOSD) 4 (gO>D), po)
It is important to note that
M= pGs) gG>Dy — (d==2) (B0 gB2y L (pGD G311 (5.7.401)
but also
HKerH(2) {F(371)? H(S,S)} = 0. (57402)
In the same way
I 2 A== pG3) g — 11 (2 A== p33) gy — 0
Ker(H(2) Ker(H2) (5.7.403)

1_[Kelf(h”?)){F(B’Q)?H(S’O)} =0; HKer(H(z)){H(g’z), F(3’0)} =0.
This implies that
Ok er(ey 12 {F®, HOY = Ty g 12 ({H =D pEDy 4 (HG>D), F(Sél)})
o+ MR opron 42 ({HOO, FED} 4 (HGD, pEDY} 4 (HED, pE3)})

= O er(gen 14~ ({H(?”Sl), FGSDY 4 (gB2), F(372)}>,

(5.7.404)
This implies that equation (5.7.398)) is equivalent to (5.7.397)). ]
By (5.7.383)), (5.2.16), (5.2.1]) we have
1 w(j2 +J)
n w1 ( . : &, ) 5.7.405
Ker(Ho)™2 ) Z Z w(ja) + w(j) — w(jz + 7) & ) lusl ( )

jJESC joeS
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and by (5:3.7)
w(jz +J) 2 L+ +)C+i3+5%) A
2 ) F (i) —wla+9) 3 2 R I ) U By o) LM
j2€S j2€5+ 2 2 2 2
We define ( 2 2 2 | )
2 1+55)A+5%)2+j5+7
=3 > G- R, 2, (5.7.407)
— 5 = J2J + 523+ J5 + j2j + 5%)
j2€S
and the diagonal operator (recall (5.7.299)))
D= @(f) = diag (iﬂj)jesc, Kj = w(j) ()\] — C(f)) e R (57408)
Lemma 5.7.35. The operator ©(§) € €1, and its eigenvalues satisfies, for some C >0,
l7] |5 < C VieS kj=—kKk_j. (5.7.409)

Proof. By (5.7.299)) and (5.7.407)) we have

-2 -2 -4 -2 .
Aj_c(g):_g 3 (1+43)(7 + 555 + ja + 35°) 6, = P(5)

3 4= (3473 —ji +52)B+43+jei+52)7" Q3)
jo€S

where P(j) is a polynomial of degree 4v — 2 in j and Q(j) is a polynomial of degree 4v (recall
[T23)).
Then there exist a constant C' > 0 such that [\; — ¢(¢)| < C/42. By the definition of #; and the

fact that |w(j)| < 3|j| we get (5.7.409). By the fact that D(£) = diag;cs-(D(£));(0) we have
(D) D)D) 212 < Y () D il ke 3IP < Clkli2.

jese lezr

Note that ©(£) does not depend on ¢ and [D(§),d;] = 0 since D (&) is diagonal. This concludes
the proof. ]

In the next lemma we provide a bound for the denominators in (5.7.377)). Note that if (j1, jo, j)
are such that P(j1,j2,j) = 0 then by Proposition [5.7.34] the numerator in (5.7.377)) is naught.

Lemma 5.7.36. If j1,j2 € S, £ =1(j1) + 1(j2), 7,5 € 5S¢, |j —j'| <2Cs and (j,j1,j2) are such
that P(j1,j2,7) # 0, then
|-+ w(") —w(y)| > Ko (5.7.410)

for some constant Ko = Ko(S) > 0 dependent only by the set S.

Proof. 1t |j| > N, where N = N(S) is a large constant to be fixed and which depends on the set S,

then, recalling ([5.7.380]) and (|5.7.381))
Gy + 42) (1 + 5) (G2 + 5)| = C1j°

for some constant C7 := C1(N) > 0 (possibly small). Moreover

(L + j1j2)s* + (32 + J173)5 + 3+ j1 + j3| = Ca 4%,
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(1 +5D) (1 +53) 1+ 7)1 + (i + 2 + 4)°| < Cs 5
for some small constant Cy := Co(N) > 0 and some large constant C3 := C3(N) > 0. Thus

C1Cs

-+ w(i") —w(h)] > > 0.

Now consider |j| < N. For (j1,jo,j) belonging to the compact set S x S x {j € Z: |j| < N} we
have

(1 + G2) (1 + ) Gz + DI+ G1d2)5” + (Gide + 5153)5 + 3+ 55 + 43| > My
(L4 5D A+ 53) L+ 7)1+ (1 + 2+ 5)% < Mo

for some constant M;p, My > 0 dependent on S. Set Cy:= M;/Ms.
Therefore |- ¢+ w(j’) —w(j)| > Cy > 0. Now take K := max{Cy, C1C2/Cs}. O

Remark 5.7.37. Let A = Op(a) be a pseudo differential operator of order m € R. Then

Au = Z (A)zl (Z — f’)’UJlelei(szre"P) — Z CL(] _ j/’]’/’ g _ f’)uE/j/ei(jz'M'(p)-
J,j €S Ll ELY j.j'eSe L ez

We know that there exists a constant C' > 0 such that
la(z, &) ||s(€)™ < |alm,so < C < +oc.

Hence for any j, 7’ € S¢ we have

C

s/

(A)] (O] =la(i — 4,5, 0)] < G e
Lemma 5.7.38. For j,j' € S¢, |7 — 7| <2Cs, |¢| <2 we have that (recall ((5.7.376)), (5.7.377)))
y C
[(A2)} (O] < =5 (5.7.411)

151
for some constant C' > 0. Otherwise we have that (AQ)? (¢)=0.

Proof. We have

(adx,, [Xic, )T (0) = 3 wi)(ADEO(Xk, )] (6) — w (i) (Xic,)E (0 (A1)}, (0). (5.7.412)
keSec

We have for any k € S¢ that |j — k|, |j’ — k| < 2Cg by (5.7.377), hence the sum in ([5.7.412)) is finite
and the number of the summands does not depend on j, j'. We know that Xy, and X, are pseudo

differential operators of order —1, hence by Remark [5.7.37 and ([5.7.411))

, - 5] ¢
[(adux,, Xk )] (O] < C Y 7Pl 1

) - (5.7.413)
[(Xic,)} (0)] < [Tk

for some constant C' > 0. By (5.7.376|) and ([5.7.410) we conclude. ]
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Lemma 5.7.39. The linear vector field X 4, := JAg belongs to the class €1, in particular it satisfies
the following
IB’Y

EQXAz

(5,b) < C(s,b)e>. (5.7.414)
Note that X a, does not depend on i(w).

Proof. The proof follows by the same arguments of the proof of Lemma [5.7.31] The key points are
the estimate ((5.7.411)) on the modulus of the coefficients of the matrix Ay (defined in (5.7.377)),
which is similar to (5.7.355)). By the fact that for some constant C' > 0

(bm = £,)° i =51 < C
we obtain an estimate like (5.7.355|). O

By Lemma [5.7.15( and (5.7.414]) we deduce the following result.

Corollary 5.7.40. The transformation Yo: HS(TV*1Y) — HS(T**1) defined in (5.7.374)) is invertible
and satisfies, for any uw = u(w) € H® Lipschitz in w € 0%,

2y 2 2
H(TQil —Dh Z’OOO <4 520(50,b)HuHZ’O"° + 520(3,b)Hu] %Ow. (5.7.415)

Proof. The proof is analogous of the proof of Corollary [5.7.32] In this case we use Lemma
instead of Lemma B.7.31) O

Lemma 5.7.41. The transformed operator is (recall (5.7.365)))

Lg = ToLr Ty =115 (Dw —mJ —*D(6) -’ X, ) + Rg) (5.7.416)
3

where K§2) = IC:(;), D (&) is the diagonal operator of order —1 defined in (5.7.408|) and
€2k
Rs = Ry + ’adx, [-£°D(E) — E3X,ng> +Rs+ —7 adx, [£7]. (5.7.417)
E>2

Moreover the following holds. The operator Rg € €1y with

BY, (s,b) <s ¥ 3% 4 ey 1|75 70,
Ba,rs(8,0) <s ey (lli1 — dalls+s + 1Tslls+allin — i2llso+5),

for some & possibly larger than the one in Lemma|5.7.35

Proof. The proof follows by using the same arguments of the proof of Lemma [5.7.33] in particular

we use the bounds ((5.7.370)), (5.7.371)) and the fact that, by (5.7.378)) and Proposition [5.7.34

adyx,, [P —mJ] + K3 = —=D(€) — DX, — (m — 1)[Xa,, J].

By (5.7.35) ©(§) € € and by the fact that |¢ — ¢'| < C, |j — j/| < 2Cs (see (5.7.377)) also
Dy—wX Ay, [Xa,,J] € €1p. The bounds (5.7.418)) are obtained by (5.7.415) and the estimates for Rz
in (5.7.369). -
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Step three (order c?)

3

The purpose of this section is to eliminate the terms of size °. In particular, we look for a

symplectic change of cooordinates Y3 as the time-1 flow map of an Hamiltonian system

Hay(u) = (A3)] () wyr 5, (5.7.419)
j.j'ese

with Az a self-adjoint operator and thus it has the form

T3 :=exp(e’ JAs) = Iy, +e°J A3 + "Ry, Ry = > (JA3z)E. (5.7.420)

k>2
Then
K& = K@ o1yt = Ho + 25 + 65 + (),

g2 5.7.421
’C:(’,?’) = {Ha,,Ho + A& - n+ 5 Z Ai(€)zj 2 jYe + ’Céz)- ( )

jese

Note that we consider in the normal form also the e2-terms. We define the matrix B3 in the following

way (recall (5.7.367)) ‘
K () = K () = Y (Bs)) () uy . (5.7.422)
7,j'ese

Note that, by the definition of Ky, Ko, K3 in (5.7.308)) and (|5.7.367)), if the matrix element (Bg);, (£—
£)#0 then |j — j'| < 3Cs, [~ €] < 3.
We choose Az as

(Ba)] () i@ L+ w() - w(i) £0,

. : ., - c .
(A3)7 () = 10755 3.3 € 5% 15— £3Cs, |¢] <3, (5.7.423)
0 otherwise
where
Oy =W L+ 2AE L+ w(j) —w(f) + 2w ()N — w(F)\)) (5.7.424)
so that (recall ((5.7.407))
2
€
DserngHa + {Hay Ho+ 5 D X&)z 25} + K57 =0, (5.7.425)
JjES®

Note that Az is self-adjoint since By is self-adjoint and idg;;7 = i0_gjr;.

We recall that w € Gy (see (5.4.5)), (5.4.4)), hence by Remark [5.7.29 we have the bound
@ £+ AL+ w(j) — w() + 2w Ay — w(l)A)| > Cr. (5.7.426)

Lemma 5.7.42. For j,j' € 5S¢, |j — j'| <3Cs, |¢| <3 we have that (recall (5.7.422)), (5.7.423))
C~yt
132

for some constant C > 0. Otherwise we have that (A3>;:, (¢) =0.

(As)] (0)] < (5.7.427)
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Proof. Recall the definition of Ag in ([5.7.423]). First we estimate the matrix entries of the numerator
B3, see (5.7.422). The following bound on the modulus of the matrix entries of the operators Xy, +
adXA1 (X
, C
|(Xicy + adx,, [Xic,)); (0] < T
is obtained as in the proof of Lemma[5.7.38 Let B be an operator with a Fourier representation as
matrix B} (¢). We omit the index ¢ of the time. We have

(adk, [BD] = > (A)5(A0)K BL — (A1) By Al +BJ (A)j (Av)j, — (A1)} B (Ar)j.. (5.7.428)
k,k'eSe
Then by (5.7.423)) |j — k|, |j — K|, |K" — k|, |j — k| < 3Cs, hence the sum above is finite and the
number of summands is independent of j and j'.

By (5.7.372]) we have that
adk, [D. —mJ] = —adk, [eXk, + Du-oXa,)-

Hence to estimate the remaining terms of XIC§2> we use ([5.7.428)), the fact that Xy, is a pseudo
differential operator of order —1 (see Remark |5.7.37) and the same arguments of Lemma [5.7.38

Thus the entry (j,j’,¢) of the numerator is bounded by a pure constant divided by [j'|?>. By
(5.7.426)) we conclude. O

Thus we have the following result.

Lemma 5.7.43. The linear vector field X 4, := J A3 belongs to the class €1y, in particular it satisfies
the following

B’Y

lix,, (5:0) < C(s,0)e%y 1 = C(s,b)e " (5.7.429)

Note that X a, does not depend on i(w).

Proof. The bound for the tame constant of the operator (D,)Y/?X 4,(D,)/? is obtained as in Lemma

5.7.31| and by using the bound (5.7.427)).

The matrix elements of 95 Xa;, [Xas,0:], (05, Xas,0:] are respectively (£, — E;n)bw(j)(Ag)g/ (—

Y, (4 —j/)(,U(j)(Ag,)g, (6=10), (b —£3,)°(j — ' )w(5)(A3)} (£~ ). Note that by the definition of A3
i

(Em - €;n>ba |J - ]/’ <C
for some constant C' depending on the set S. Thus arguing as done for the bound of the tame
constant of (D;)'/2X 4,(D,)'/? and by using one can easily prove that 95 Xa,, [Xas, 0:],
[ngX As, Oz] are —1-Lip-tame operators with constant B?(s,b) given in (5.7.429). O

Corollary 5.7.44. The transformation Y3: H3(T"*1) — HS(T**1) defined in (5.7.420)) is invertible
and satisfies, for any w = u(w) € H® Lipschitz in w € 0%,

J(CEY — DAJFO% <4 e279C (s0,b) [ul| 7O + 17005, b) ul| O (5.7.430)

Proof. The proof is analogous of the proof of Corollary [5.7.32] In this case we use Lemma [5.7.43
instead of Lemma [B.7.31] O
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Lemma 5.7.45. The transformed operator is (recall (5.7.365)))
Lo = T3LsT3! = I1% (Dw —mJ —29(€) + Rg) (5.7.431)
where D(§) is the diagonal operator of order —1 defined in (5.7.408) and
1
Rg := Rg + 53adXA3 [—53X’ng) + Rs] + Z Had];(AS [Lg]. (5.7.432)
k>2
Moreover the following holds. The operator Ry € €1y with

77(20
e o (5.7.433)
Bayre(8,0) <s e ([[i1 — dolls+a + [|Tsllst+allir — 2lso+5)

By (s,0) <s 7% + 77 1|35

for some & possibly larger than the one in Lemma|5.7.41].

Proof. The proof follows the same arguments used for proving Lemma [5.7.33] We note that by

(5.7.425)) we have (recall (5.3.19) and (5.7.299))

adx,, [Dy —mJ — 2D(¢)] = 53XIC

since [{ — V| < C and |j — j'| < C (see (5.7.423))). Hence the bounds ([5.7.433)) follows by (/5.7.430])
and the estimates for Rg (see (5.7.418)). O

Proof of Theorem [5.7.3. We choose o as & in (5.7.433)). Define the map (recall (5.7.343)), (5.7.349),
(.7.374), (5.7.420))

@ + Dugcrnes — (m — 1= £2¢(6)[Xay, 7] € €,

T::TgngoTloq).
By (5.7.281)), (5.7.300), (5.7.314), (5.7.323), (5.7.363), (5.7.415)), (5.7.430), (5.7.329), (5.7.326), Lemma

5.7.18 we have (5.7.17)).
The result follows by setting £ := Lg (see (5.7.431))), m :=m, R := Rgy and by noting that (5.7.433))
implies ((5.7.16)), (5.7.331) implies (5.7.11)) and (5.7.15)). O

5.8 KAM reducibility scheme

We introduce the following parameters
T=2v+6, by:=67+6, b=Dby+ sp. (5.8.1)
The aim of this section is to prove the following theorem.

Theorem 5.8.1. (Reducibility) Let . := /% (see (5.4.6)). Assume that w — is(w) is a Lipschitz

function defined on some subset Oy C Q. (recall (5.4.2))), satisfying (5.6.7) with p' > o where
o :=0o(v) is given in Proposition[5.7.3 with b fized in (5.8.1). Then there exists &y € (0,1), No >0,
Co > 0, such that, if

NOC%4_3“7*_1 = Nocosl_(g/z)“ <8y, =gt a1, (5.8.2)

then
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(i) (Etgenvalues). For all w € Q. there exists a sequence

dj°(w) = dj°(w,is(w)) = m(w)w(j) + ek j(w) + r°(w), j €S (5.8.3)
with m and k; in (5.7.331) and (5.7.408)) respectively. Furthermore, for all j € S¢
sup(j)|r{™) [ < Cetie, s = (5.8.4)
J

for some C > 0. All the eigenvalues 1d3° are purely imaginary.

(ii) (Conjugacy). For all w in the set

294 .
Q02 = Q2 (ig) = {w €0 w- L+ dP (W) — dP(w)| > —=, V€ T, Vj,k € 5°

0
(5.8.5)
there is a real, bounded, invertible, linear operator ®oo(w): Hg, (Tv+1) — HE, (TY*+1), with
bounded inverse ®_(w), that conjugates L in (5.7.13)) to constant coefficients, namely

Loo(W) 1= Poo(w) 0 Lo P (w) = w - 0y + Doo(w),
Do (w) = diagjege{id;” (w)}-

The transformations ®, @} are tame and they satisfy for so < s < Spmax

(5.8.6)

QQ’Y*

* gg* - - - - ~N 70 * 39 Loo - - * 5 gg*
(@2 =DAIT=" <o (' ey I TSl 2 ) 1Rl + et 720 YRl (5.8.7)
Moreover ®.,, @5} are symplectic, and Ly is a Hamiltonian operator.

In order to prove this theorem we need to work in the class of Lip-—1-majorant tame operators.
We have the following Lemma

Lemma 5.8.2. The operator L in (5.7.13)) is of the form D, — Mgy with

. (4 + 52
Mo =Dy + Py, Do=diag(id)jese, di’=m (W) + &2k, (5.8.8)

Here the functions d;o) are well defined and Lipschitz in the set Qg, |m — 1]7795 < %, while Py is
defined and Lipschitz in w belonging to the set 0% (see ((5.7.226)) ). We have that

M (s0,bo) < €737, (5.8.9)
Moreover m, Py and the set 0% depend on i = i(w) and satisfy the bounds
|Aram| < elli1 — i2|sg4o (5.8.10)
(D)2 A1aPo( D) 2 cgarsoys (D) > B12(00)* Po( D)2 carsoy < €7 llin = iz lsovor
for all w € Ogg(il) N (923(@). Here o is given in Theorem .

Proof. Lemma [2.3.13| trivially implies that any operator A € €, with b := s9 + by (recall the
Definition and the fact that v, < 7), satisfies

m%’y*(—l’s),m%’y*(—l,s,bo) SS BA(&b) (5811)

The same holds for H(Dm)1/2A12<8@>b0730<Dz)1/2HC(HSO). Thus the bound (5.8.9) and the second
estimate in (5.8.10)) follow by (5.6.7) and (5.7.16f), provided e is small enough. The first bound in

(5.8.10) follows by (5.7.331). O
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5.8.1 A reduction algorithm for linear Hamiltonian vector fields

We say that a bounded linear operator B = B(¢p) is Hamiltonian if B(y)z is a linear Hamil-
tonian vector field w.r.t. the symplectic form J. This means that the corresponding Hamiltonian
3(z,J7'B(p)2) is a real quadratic function provided that z; = z_; and ¢ € T".

In matrix elements this means that
(J7'B(y))) = (J_IB(¢))§/, (J”B)ﬁi/(f) = (J7'B)ZJ (-0)

or more explicitely:

BJ (¢) = —;J((j,))Biﬁz(w), B! (1) =B~/ (~1). (5.8.12)

This representation is convenient in the present setting because it keeps track of the Hamiltonian

structure and

B= %(z, J'B(p)2), G= %(z, J7'G(p)2) = {B,G} = %(zw T B, Gl2).

We investigate the reducibility of a Hamiltonian operator of the form (recall ([5.7.408]))

My =Dy +Py, Do=diagid”), d”=m (W) + 2k (5.8.13)

Here the functions d§0) are well defined and Lipschitz in the set Q., |m — 1|7 < &2, while Py is
defined and Lipschitz in w belonging to the set O . We fix

a:=67+4, T1 =27 + 2, (5.8.14)

we require that Py, (9,)*°Py are Lip —1- modulo tame, with constants denoted by smggg*(s) and

931533* (s,bo) respectively, in the set OZ. Moreover m and Py and the set OZ depend on i = i(w)
and satisfy the bounds

[A1om| < Blji1 — d2[[s+o (5.8.15)
1(D2)""? A2 Po (D)2l 2oy, 11(Da)? A12(8pY Po( D) || (ars0) < Eollin — iallseo

for all w e O3 (i1) N OX (iy) with B,mtggz*(so),mggz*(so,bg) < Eg. We recall that || - [|z(gso is the
operatorial norm. We associate to the operator ([5.8.13]) the Hamiltonian

1
Ho:=w-n+ i(z, JMjz).

Proposition 5.8.3. (Iterative reduction) Let o > 0 be the loss of derivatives in Theorem [5.7.5
Consider an operator of the form (5.8.13)) . For all Spax > So, there is Ny := No(Smaz,bo) € Ry

such that, if (recall (5.8.14]))
NGO (s0,b0) 7t <1, 9MET*(s,b) o= MET*(s,b) (5.8.16)

then, for all k > 0:
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(S1)k

(52)k

(S3)k

there exists a sequence of Hamiltonian operators
My, =D+ Py, Dy = diagjege(id), (5.8.17)
with d;k) defined for w € Q. and
(k) — 400 (k) 0 ._ (k) (k) _ _ (k)
di"(w):=d;" +r; (w), 17 =0, r;7 €R, r" =—r’ (5.8.18)

The operators Py are defined for k> 1 in a set

QY = {w ey wt+d Y —al Y > <z>*T, V|0 < Np_y, V5,4 € SC} (5.8.19)

Y . 2V — A(3/2)F bo —1- - ;
where (15" := O and Nj := N, . Moreover Py, and (0,)*°P), are —1-modulo-tame with

modulo-tame constants respectively
ML (5) o= MET*(s), ML (5,bg) 1= MET*(s,b0), k>0 (5.8.20)
for all s € [sg, Saz]. Setting N_1 =1, we have
MET (5) < MG (5,b0) N2y, O™ (s,bp) < IMET* (5, b0) Nj_1 - (5.8.21)

While for all k > 1
(1A — dF D] < ME™ (s0, bo) N2, (5.8.22)

For k > 1, there exists a linear symplectic change of variables Qi_1, defined in QZ* and such
that
My, = Q1w - 0,95, + Qu1My_19; . (5.8.23)

The operators

\Ifk_l = Qk—l —1I (5824)

and (0,)®°Wy_1, are —1-modulo-tame with modulo-tame constants satisfying, for all s €

[807 Sma:c] ;

MG (5) < NTL NZ2MME™ (5, b0) , MY (5,b0) < v, ' N7L, N oM™ (5,00) . (5.8.25)
Let i1(w), i2(w) such that Po(i1), Poliz) satisfy (5.8.15). Then for all w € Q' (i1) N Q) (i2)
with y1,7v2 € [7+/2, 2] we have

(D) "? Mg P D) || £rrs0) < EoNp2 lix — iallso-so (5.8.26)
(D)2 (8,)* A1a P D) || £(r0y < BoNp—1li1 — izlsgo - (5.8.27)

Moreover for all k =1,...,n, for all j € S¢,

() A = Aarl* D] < (D)2 A19Pe (Da) 2 (150 » (5.8.28)
() 18127 < Eolliy — iz llsgsor (5.8.29)
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(S4)x Let iy, ig be like in (S3)kx and 0 < p < v./2. Then

EoNJ M i1 —dollsoro <p = Q"(i1) C QP (i2). (5.8.30)

The Proposition is proved by applying repeatedly the following KAM reduction procedure :

Fix any N > 1 and consider any operator of the form
M =D(w) + Plp,w),  Dw)=diag(idj(w))jez, dj=d\ +r;.
Here the r; € R are well defined and Lipschitz for w € €2, and such that

’]”j — —’,“_j’ Sup<j>‘7«j|7*7ﬂs < 29)’{553* (807b0) (5831)

J

Assume that in a set O = O(i) C OZ (i) C Q. the operators P, (Dp)PP are Hamiltonian, real and
—1-modulo tame with
A INZTTR2 R (50) < 1. (5.8.32)

Assume finally that d; = d;(i) , P(i), (0p)*P(i) are Lipschitz w.r.t. ¢ namely for all w belonging
to 0(21) N 0(22)

sup(j)|A12r;| < 2Eolli1 — d2llspto
j (5.8.33)
(D)2 A12(0,)“P (D) 2 c(rr00) < B(@)llir — dsllsg+or s @ = 0,0

for some constants B(0) =: B and B(bg) (recall that Eq is defined in ((5.8.15))). Let

C=Cy ™M e O lwl+d—dy| > =, Y(5,5) #(0,4,4), [(| <N, j,i € 5.

@’
(5.8.34)
For w € C let A(y) be defined as follows
P
7 (g . ) (O || <N,
0 otherwise.

Lemma 5.8.4 (KAM step). The following holds:
e A in (5.8.35)) is a Hamiltonian, —1-modulo tame matriz with the bounds
M (s,a) = 72 N> (5,0),
D)2 A19(0,) A(D ) < C~7INTTHLB Eoyo lome) i —
[{Dz) " A12(9) " A(Dz) """ || c(a20) < C s (B(a) + Eovs D57 (s0,a))[lin — d2lso+0) »
for a =0,b9 and for all w € C(i1) NC(iz).

o The operator Q = e = D k>0 AT:C 1s well defined and invertible, moreover ¥ = Q — 1 is a
—1-modulo tame operator with the bounds

mtﬁcj_*l(s, a) < 293?&7*(5,@) < 27;1N2T+19ﬁg§7*(8, a), (5.8.36)
1(D2) 2 A12(8,) QD) 2 £ a0y < 297 EN?THL(B(a) + Eory 95T (50, a)) [[i1 — ilse+o)

for a = 0,bg. Finally z — Qz is a symplectic change of variables generated by the time one
flow of the Hamiltonian S = (2, J 1 Az).
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Set, for w € C (see (5.8.34))),
0w -0,07) + QD) + Plp,w) @ =M, =D () + PF(pw)  (5.831)

where DT (w) = diag(id;r) 1s Hamiltonian, diagonal, independent of ¢ and defined for all
w € Q. with

0 N *
df = 4ol rf =ty ()l = 0 <O (s0),

J J
. ! ' . (5.8.38)
sup(j)|Ara(rj — )| < Blliv — i2llsgra,  Yw € C(i1) N C(i2).
J

For w € C we have the bounds

M7 () < N2 (5,bg) + C(s) N2 Ha 1M (5)0057 (s0) - (5.8.39)
ML (5,bo) < M (s, bo) (5.8.40)

+ N2y =105, by) (gﬁgﬂ*(&bo)mgﬂ*(so) +9ﬁ§ﬁ*(807b0)9ﬁ§ﬂ*(3)) :

Moreover for all w € C(i1) N C(i2)

1A12P " || £(zz50) < NT°0B(bo)li1 — i2/lsto(o0) (5.8.41)
+ C(s0) Ny 1 (s0) (B + 77 9 (s0)Eo ) lia — iollsvo
1812(0) P || £(750) < B(bo)lli1 — d2[|s+o (5.8.42)

+ N2T+1’y;10(80, bo) (imgﬁ* (S(), bQ)B

+ 97" (s0) (B(bo) + 75 "™ (50, Bo)Eo )

+ g ENZTHLORE* (50) 9057+ (0, bo) (B + 7?193?357*(80)130)) i1 — d2ls+o-
The action of Q on the Hamiltonian H is given by (see (5.8.37)))

1
H+ = e{sv'}H =w-n =+ i(w’ J_1M+W)-

Proof. The first statement is obvious from the definitions, indeed by ([2.3.19))

while

since

(0,)"A =<7, INT(0,)*P,  for a = 0, by,
(0) Dot A 2 ENT(D) By P+ NPTHH) P, for a = 0,bg

i BewPIO) PO ([~ ) 4w = )]+ A (d; — dy))
Aw,w Aj (6) = i(w‘€+dj—dj/) (w-f—{—dj—dj/)Q

and (5.8.31)), (5.8.32)) hold. So we may apply Lemma [2.3.14] (i). The bounds on Aj;s come from
applying the Leibniz rule and by ([5.8.33))

8P (O] [P](0)]|A12d; — Avady|

A A7 (0)] <
[BuzA; (5)’—|w-e+dj—dj/| (- +dj — dyr)?

(5.8.43)
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We remark that in the second summand (recall that B < Ey)

[Ar2dj — Auodyr| _ Al w(j) —w(G) | [Arer] + [Agary|
‘W'K—Fdj—dj/’_ ’(AJ'K—Fdj—dj/‘ ’CU'e—Fdj—dj/‘
EBED

<

'Y;l(BNT+1 + NTEO)Hil - i2”80+0 < 'Y;lNTJrlEOHil - Z'2H50—i-a'

The estimate on the first summand follows from the estimates on Ajgm and the fact that if |w(j) —
w(j")| > C|¢| with C > 1 then |w-£+d; —dj| > Clw(j) — w(j")| with C' > 0; the estimate on the
second summand comes from ([5.8.31)), (5.8.32)). In conclusion we get (recall (5.8.33)) for the definition
of B(a))

(D2) 2 A2 (0p)  A(DL) 2| 210y < C(7 NTB(a) + 7 2N HERE (s0, a))[[i1 — 2]l so+o

for all w € C(i1) NC(i2). The fact that A is Hamiltonian follows from and from the fact
that d; is odd in j (recall and (5.8.13)).

The second statement comes from the definition of Q, Lemma (iv-v) and the smallness
condition ((5.8.32). By definition

DY+ Pt =D+P—-w-8,A+[AD+P) +Za“i§j)k(p+7>) —Zad(“:!)k_l(w.awt). (5.8.44)
E>2 k>2
Again by definition, A solves the equation
w-OpA+ D, Al =TINP — [P, [PY () = 5(£,0)6(5,5) P/ ().
Substituting in we get
DY 4Pt =D+ [P+ TP+ ad(k«!“)k P -3 W(nw — 7)) (5.8.45)
k>1 k>2

By the reality condition (5.8.12)) we get ij (0) = P:;(O) = —77; (0), which shows that Pg (0) is purely
imaginary and odd in j. By Kirtzbraun Theorem we extend Pj (0) to the whole Q. preserving the

| - |7 norm. We set

af = d; —i(PJ(0)",

where (-)®* denotes the extension of the eigenvalue at (2., so that the bound (5.8.38) follows, by
Lemma [2.3.14] (i), from the bounds on P and AP (see (5.8.33)). Now for w e C

a k a k—1
Pr=IxP+) dgj) (P)=> d(“:!)mw - [P]). (5.8.46)
k>1 k>2

By Lemma [2.3.14} (iv) we have

mﬁgg yp(s) < C(s)* ((mﬁ;l%(so))'faﬁ;ﬁ*(s) k(R (s0)) T LomE (s)9mE (30)) (5.8.47)
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which implies (5.8.39)), by using also [2.3.14|(%ii). Finally

m?aﬁzl)kp(s’bﬂ) < C(s,bo)" <(9ﬁw*(30))k9ﬁgﬂ*(37bo)

- R(IRET (50)) 1 (050 (5, b0) ™ (s0) + 9 (0, Bo) M (5)) (5.8.48)

(k= 1) (s0)) 205" ()05 (50, bo) M (s0))

which implies (5.8.40). In order to obtain the bounds ([5.8.41)) and (5.8.42) on Ay, we just apply
Leibniz rule repeatedly in (5.8.46) and then procede as before. More precisely we have for all

w € C(i1) NC(ig)

App(ad(A)FP) = ad(A)FALP+ Y ad(A)ad(ApA)ad(A)=P.
ki+ko=k—1

Now we note that H(Dw>1/2A(Dx)1/2HE(Hs0) < S)th* (so) and that for any matrices A, B we have

(D) 2ad(A) B(D) | £(ie0y < C(50) (D22 ADLY | £ (10 (D)2 B{DY 2| £ 1700
This implies that for all w € C(i1) N C(i2) (recall (5.8.33) for the definition of B)

1(D2)"? Ao (ad (AP (D)2 £ezs0y < (C(50) M (50)) "B (5.8.49)
+ EC(50)F (M5 (50)) 1 LOMET™ (50) (NTB + 77 ENZTHEGINET™ (50)) [li1 — d2|so-o-

Now by definition

APt = AP + 3 Am adg"l) P) —ZAH(T(HNP— ), (5.8.50)

k>1 k>2

so we use Lemma [2.3.14] (i) in oder to bound the first summand and ([5.8.49) in order to bound the
remaining ones. In the same way

A12(0,)™ (ad(A)PP) = ad(A)FA12(0,)™P+ > ad(A)ad(ArpA)ad(A) ()P
k1+ko=k—1

+ ) ad(A)Fad((9,)™ A)ad(A) 2 AP

ki+ko=k—1

+ > ad(A)Mad(Ar2(0,)™ A)ad(A)P

k1+ko=k—1

+ > ad(A)Frad((9,)™ A)ad(A)ad(ArpA)ad(A)FP
ki1+kot+ks=k—2

+ > ad(A)Mad(ApA)ad(A)*2ad((9,)> A)ad(A)"
k1+kot+ks=k—2

'Recall the usual convention that a(A12b)c = a(i1)(A12b)c(iz).
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where the last two terms appear only if £ > 2. We proceed as for (5.8.49) and obtain the bound
(D2)"? A19(0,)™ (ad (A)*P) (D)2 a0y < (Cs0)MET* (50)) B(bo) (5.8.51)
+ kC (50)F (M (50))F 5 1" (50, bo) (NTB + 7 N2 H R (s0))
+ kC (50)R (M5 (50))F LML (50, b0) B
+ KC (s0)F (MMET (50))" s 90T (50) (NTB(bo) + 72 N7 EoMER (0, b))
+ 2k (k — 1)C (s0)* (M (50))* 007" (s0, bo) e MG (s0) (5.8.52)
(NTB + 7, N> B (s0)) i1 — ol s 4o

Now we can prove Proposition [5.8.3] by using Lemma [5.8.4]

Proof of Proposition[5.8.3. Items (S1)g — (S4)o follow trivially from the definitions. So we
proceed by induction, assuming that (S1)x — (S4)x hold.

We start by proving (S2)x+1. We wish to apply the KAM step with Py = P, dg-k) =dj, N, =N,
etc. By the first of (5.8.21), (5.8.16) and (5.8.14)), we have that holds, similarly
holds since, by

k
1] < ST — a7V < 2087 (s0, bo).
h=1

We now choose as change of variables Q the one denoted by @ in the KAM step. The bounds

(5.8.25)) follow from ([5.8.36)) since
2,Y>:1N]3T+19ﬁ%% (S) < 27*—1le'1 mgﬁ* (S, bO)Nk_jl
2,7;1N]3T+19ﬁ%7* (8, bO) < 27;1]\]]1’19)’{%7’7* (8, bO)Nk—l
by the definition of 71 (see (5.8.14))). Formula ((5.8.23)) follows by (5.8.37) with My, = M.

We now pass to proving (S1)ky1. As said above Py = PT of the KAM step, d§k+1) = dj, etc...

In order to prove ([5.8.22)), we use the bound ([5.8.38)), we get

sup(j)|d T — d\P P = sup(jy T P2 < ami (s0) < MET* (50, bo) N2,
J J

In order to prove ([5.8.21]) we use the bounds (5.8.39)), (5.8.40)). Indeed

MY (5) < N 9T (s, Bo) + C() N ™ ()90 (s0)
< NPT (5,bo) N1 + C(8) NZTTEN 22y 7L o0E™ (s, bo) 5™ (50, bo) < N 29057 (s, bg)

by using (5.8.16]), the fact that bp —2/3 > a and a/3 > 27 + 1 (recall (5.8.14)) and (5.8.1))) and
provided that we take Ny = No(Smaz) large, in order to absorb the constants. Regarding the second
bound we have

M (5,b0) < ML (s, bg)
+ NETE O s, bo) (97 (s, Do) G (s0) + O™ (s0, bo) L™ (5) )
< Neo1O57 (s, b0) + NZTHINLZ 297 C (5, bo) MG (5, bo) M ™ (0, bo)
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again (5.8.21)) follows by using (5.8.16|), the fact that 2a/3 > 27+ 1 (recall (5.8.14) and (5.8.1])) and

provided that we take Ny = No(Smaz,bo) large, in order to absorb the constants.
Item (S3)ki1, follows just as item (S1)kiq from the corresponding bounds (5.8.41) and ([5.8.42)).
Indeed (here By, By (bo) are just the constants B, B(bg) in formula (5.8.33) for Py)

1A 1Pyl £ a0y < (Nk—boIB%k(bo) + C(so)ngrH,y;lgﬁiﬁ*(so) <]B3k + fy;lf)ﬁ%%(so)EO)) i1 — i2||st+o

< (N ™ BoNe-1 + Clso) NET 19 N300 (s0,b0)Eo (1492907 (s0,b0) ) ) it = izllsso

< Bo(N;, ™% 420 (so) NN, T < BgN 2

Similarly

1812(0) ™ Prs1l £(ars0) < Br(bo)llin — d2[ls+o

+ N2 1C(s0,bo) (fmi’%(so,bo)Bk
+ 9B (s0) (Bk<b0) + 5 LT (s, bO)EO)
oy N (50) I (0, bo) (B 7 T (50)Eo ) ) lin — oo
< <Nkf1 + NETHE7R0520 710 (5, 10) 9067 (50, bo)
+7;2N:T+2+2/3—4/3a(mg;y* (s0, bo))2) Eol[i1 — 2|50 »

and the result follows as in the previous cases. The estimate ([5.8.28)) follows from the second formula
in ((5.8.38)) while (5.8.29) follows by ([5.8.28]) and the bounds (|5.8.26)).

In order to prove (S4)iy1 we note that for h <k, [(| < Nj, and w € Q)"
€ d (i) = 3 (i2)] > e € (i) = di ()] = [ Dram(w(f) = w(i") + Baa(rf” =)
T o,
- (@r
Now if [w(j) — w(j’)| > C(¢) for an opportune constant C' > 0 then for i = i1,y

. N TR
w- €+d" (@) = dP @) = 5lw(i) —w()],

— (Blw(j) — w(3")] + Eo)llir — i2llso+o-

hence QZ* = (). Otherwise, if Ny is large enough to absorb the constants, we get

T« — P
@

o 0+ (i2) = 5 (12)| 2 vz = Bolw)) = w7 + o)l = izllyso =

Eventually, we are in the position to prove Theorem |5.8.1

Proof of Theorem [5.8.1. We want to apply Proposition to the operator £ in (5.7.13)) in

Proposition[5.7.3] It is convenient to remark that £ gives the dynamics of a quadratic time-dependent
Hamiltonian. Passing to the extended phase space, £ corresponds to the Hamiltonian

1
H:H(Zﬂ?):W‘W+§(Z7J_1MZ)» M =Dy + Py
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where DO,PO are deﬁned in and satisfy (5.8.10) m The smallness assumption m follows
by formula in Lemma and by the smallness condition on ¢ in 2|) provided that Ng
in formula is chosen as in Proposmon “ We can conclude that Pr0p081t10n applies
to the operator E in (5.7.13).

By (5.8.22)) we have that the sequence (df) ken is Cauchy, hence the limit d7° = d§0) + 777 exists

and, also by (9.8.18)), r7° satisfies (15.8.4)).
Now we claim that (recall (5.8.5)) and (5.8.19))

02 c (9. (5.8.53)
k>0
Indeed we have by (5.8.22), for |¢] < Ny
k k 00 00 k 00
lw-l+di —dj| > |w- €+ d;° —dj7| - ]r =1 =) =y
2’)/* . mgﬁ* (507b0) > Vx
(o7 Ni, 7

since smﬁ 7 (s0,b0) < 7Ny ™ and (()T < NJ < NP, due to (5.8.14).
2 Y :
QQYe conclude that Q53" C Q)" ;. Thus the sequence (Vg )ren (recall (5.8.24) is well defined on
We define
Pp=Qpo-- 0.

We claim that there exists @, := limy_,o, 1. First we note that by using ([5.8.25))

k k
MET () < D | M (o) [[ MG (s0) | <2 mE(s) <C1 +]£%axkzmﬁ (), k.
=0 i#j §=0
(5.8.54)
By Lemmata [2.3.14] and [2.3.13] we have

My (5,0) <e MG 4 (s,b) <o M (s, bg) + mg;z*(so,bo)jglaxkzmg;j*(s,bo)

Ve

+ M%7 (s,bg) max Emﬁy*’ﬁ(sojbo)
k j=0,....k
5.8.25) i oy .
0(807b)Nk1Nk71m’t0’ *(SabO)fY*

Thus by
k+m

[(@htm — Pr)h|T < (@5 — ®;-1)hl]
j=k

and by (5.8.11) we have that (recall ((5.8.16|) and (5.8.14)))

Mp g, (5,0) < Cls0,b)BE (s, b)NI N2t - < Clso, )N, 2T/,
hence (®y)ken is a Cauchy sequence in L(H?®) and for ®, the estimate (5.8.7)) holds. The operators

®;. are close to the identity, hence the same is true for ®,, and by Neumann series it is invertible.
It is easy to prove that for ®2! the estimate (5.8.7) holds. O
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5.8.2 Inversion of L,

Let us define (recall ([5.4.6)))

Fi5) = {w € Op : |w- L — dF(in)| > <2£> Wl € 7V Y € S°) (5.8.55)

We have the following result.

Theorem 5.8.5. Assume the hypotesis of Theorem with /> sop+b+o+27+1,
where o is given in Theorem|5.7.5, and (5.5.6) with i > p' 4+ 0, where 0 is given in Lemma .
Then for all w € Qoo = Q2" (i5) N Fad (is) (see (5-85)), for any function g € HthTH(']I‘”H) the
equation L,h = g has a solution h = L;'g € Hg, (TY*1), satisfying

Qoo - 7Qoo - - ~ 7Qoo ,Qoo
P <oy llglisre ey I TSl 2 gl )

- Qoo —1.~1g~ 17 —1y1~ 11720 Qoo Qoo
<s7 1(”g| ;/+27+1 +ey 17* 1{HJ0 3.4_“/4_0 + 1HJ0H30+0 ‘ZH;_M/.Q}HQ‘ ;yo )
(5.8.56)

I£5'g

Proof. We conjugated the operator £, in (5.6.31]) to a diagonal operator Lo, = xL,x ', see (5.8.6)),
with (recall (5.8.7) and Theorem [5.7.3))

X :=Pyo0T. (5.8.57)
Moreover, by (5.7.17)) and (5.8.7) and Lemma we had the following estimates
oo s boo - - ~N 70 s boo
IR <o P79 + ey HITs 1 e pa o RIS (5.8.58)
We have
- gej (ot
Llg= , J el(tetio) (5.8.59)
> #;ﬁéol(w-ﬁ—d‘;o(w))
and then
- - 7900
12309179 < Hlgldysssa: (5.8.60)
Thus, by (5.8.58) and (|5.8.60]) we get the estimates ([5.8.56)). OJ

If the assumption (5.5.6)) is satisfied with fi = so +b + o + 27 + 1 4+ 9, where o is the loss of
derivatives in (5.7.16[), b is given in Theorem and 0 in Lemma then Theorem implies

the inversion assumption ((5.5.28)) with ¢/ = fi.
5.9 The Nash-Moser nonlinear iteration

In this section we prove Theorem [£.3.2] It will be a consequence of the Nash-Moser theorem
(92

Consider the finite-dimensional subspaces

By ={3(¢) = (0,y,2)(¢) : © =110,y =Ty, z = T2}
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where N, := NS‘n are introduced in (4.6.129)), and II,, are the projectors (which, with a small abuse
of notation, we denote with the same symbol)

I1,0(p Z o, elfcp Ly (e Z Yo it ?. where O(y Z 0, elego y(p) = Z Yo eif-cp,
[el<Nn |e|<Np tezv iz
I z(p, z) := Z 205 EPHIT)  where  z(p,x) = Z 2 ell-ptiz)
(€.5)I<Nn ez jese
(5.9.1)

We define H# =1 —1I,. The classical smoothing properties hold, namely, for all a,s > 0,
ITL30250, < N2 9slI3C, Va(w) € He, 3170 < No32s,  ¥aw) € HF. (5.9.2)

We define the following constants

pa = 3p+ 3, a:=3u; +1, ay = (a—3u)/2,
_ _ 1/1-(9/2)a 1-(9/2)a (5.9.3)
k=3 oy, = 6uy +3p 43, — () <p< =22
(mi+p ")+ Br:=6p +3p " + e G

where p:= pu(7,v) > 0 is the “loss of regularity” given by the Theorem [5.5.36|and C is fixed below.

Remark 5.9.1. We remark that p > [ given in Theorem and i > o where o is given in
Theorem [£.7.3

Theorem 5.9.2. (Nash-Moser) Assume that f € C*. Let 7 := 2v + 6. Then there exist
Cy > max{u1 + a,Co} (where Cy := Cy(T,v) is the one in Theorem , 00 1= 6o(T,v) > 0 such
that, if

Noc'lé.b*Jrl,yfl,y;l <8, 7= g2ta — 52b7 Yy = 73/27 Ny = ( ey l)p’ b, =9 — 2b, (594)

then, for all n > 0:

(P1),, there exists a function (Jp,(n): Gn € Qe — En1 X RV, w = (Tp(w), Gu(w)), (Jo, o) =
0,E_1 := {0}, where the set Gy is defined in (5.4.5) and the sets G, for n € N are defined
inductively by:

29,
AV = {w € Gnt lw- €4 mlin)j| = T

——, Vjesle ZV} ,
(07

: 2 n . c v
Affll-—{wegnzlw-€+d§°<zn>rz<€§T, vjes el }
(2) o o 2 . , (5.9.5)
Al = w € Gyt w4 dP(in) — df (zn)IZW, Vi, ke S LelZ;,
gn+1 —ﬂAn+1a
1=0

where v, == y(1+27"), 75 = %(1+27") and dj°(w ) = do-o(w,in(w)) are defined in ([5.8.3)
(and pP(w) =0). Moreover (|79 < C||F(Uyn) |3 :Gn

~ g”L * g’n *
13 [l5g45 < Cs eyl IF et < Cue™, (5.9.6)



5.9. THE NASH-MOSER NONLINEAR ITERATION 215

where Uy, = (in, ) with in(@) = (9,0,0) + Tn(p). The differences Ty, = T — TIn_1 (where
we set Jg = 0) is defined on G, , and satisfy

130153, < Cue® ™ 3all5T, < Cue®y N, Ynz 2. (5.9.7)

(P2)n H]:(Un)H'YQ" < Cyeb*N N, where we set N_j :=1.

(P3)n (High Norms). |[J3nll7s < CiebyINF_| and | F(U,)| i S Cwe?*NF_|

(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

€22\ Go| < 0*52(11_1)’77 Gn \ G| < 0*52(V_1)'YN7;11' (5.9.8)

Proof. To simplify the notations we omit the index v, G, on the norm |||s.

Proof of (P1)o, (P2)o, (Ps3)o. Recalling (5.4.8]), we have, by the second estimate in (5.4.19)),
IFWo)lls = IF((,0,0),0)[ls = | Xp(io)[ls <5 £*~".

Hence the smallness conditions in (P1)o, (P2)o, (P3)o hold taking C, := Ci(so + 1) large enough.
Assume that (P1)n, (P2)n, (P3)n hold for some n > 0, and prove (P1)n+1, (P2)n+1, (P3)n+1. By

F33) and (93)

N06*15b*+1,y—1,y;1 _ N001€4—3a,y;1 — 1=(9/2)a=pCi(1+a) 5o

for € small enough. If we take Cy > Cj then ) holds. Moreover (5.9.6)) imply -, and so
(5.6.7), and Theorem applies. Hence the operator Ly = Ly(w, zn( )) in (5.6.31)) is defined

on (’)0 = G, and is invertible for all w € G, 1 since G,i11 C QZZ (in) N .7:27"( in) and the last
estimate in ([5.8.56)) holds. This means that the assumption (5.5.28|) of Theorem is verified with
00 = Gnt1. By Theorem there exists an approximate inverse T, (w) := To(w,in(w)) of the

linearized operator Ly (w) := d; ¢F(w,in(w)), satisfying (5.5.37). By (5.9.4), (5.9.6)

ITnglls <s 77 Nglls+n + v 7 {1 Tnlls4p + v‘lIIJnHSOWHF(Un)st}llgllsw) (5.9.9)
ITngllso <so ¥ llgllso4s (5.9.10)

and, by (5.5.38)), using also (5.9.4)), (5.9.6)), (5.9.2),

[(Ln o Ty = Dyl S8521)_17_2(H-;’:(Un)||so+u||g||s+u + 1F(Un) s+l s0-+
+ e Tnlls+ulF (Un) lso+ullgllso) (5.9.11)
I(Zn © T = Dgllsy <o 2 IF On) g9l 01
<s 521’ By 2D F (Un)llsotse + Iy F(Un) s+ 119l o1
<50 Y ENEIF U llso + N PIF U llsort 80 1911044 (5.9.12)

The index B in ([5.9.3)) is an ultraviolet cut, and it has to be define in order to obtain the convergence
of the iteration scheme.
Now, for all w € G, 11, we can define, for n > 0,

Upyr:=Up+ Hpp1, Hppr = Gpg1, Cug1) = =, TLIL,F(U,) € E, x R, (5.9.13)
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where II,,(7,¢) := (I,,3,¢) with II,, defined in (5-9.1)). Since L, := d; F(in), we write
F(Uny1) = F(Un) + LnHni1 + Qn,
where
Qn = QUp, Huy1), Q(Un,H) := F(Up + H) — F(Uy,) — LuH, H € E,xR”.  (5.9.14)

Then, by the definition of H,y; in (5.9.13), using [Ly,,1I,] and writing ﬁf{(j, ¢) == (II;}3,0) we
have

F(Upy1) = F(Up) — Ly, TWIL F(Uy) + Qn = F(Uy) — Ly T I, F(Uy) + LpIL-T, 1L, F(U,) + Qn

= F(Up) = 0, L, T 1L, F(Uy,) + (LpIT: — IIEL,) T, 1L, F (Uy) + Qn
= HTJL_]:(Un) + R, +Qn +Q;1

(5.9.15)
where
Ry = (LpII- — L L) T I, F(Uy,), Q' = —I1,(L, T, — DIL,F(Uy,). (5.9.16)
Lemma 5.9.3. Define
wn = e FC)lss Bai= o1 ullgss + 7 2F U)ot (5.0.17)
Then there exists K := K(so, 1) > 0 such that, for all n >0, setting 1 = 3pu + 3
Wpi1 < KNP PB4 KNMu? By < KNMHP'B, (5.9.18)
The proof of Lemma is similar to the one of Lemma 9.2 in [KdVAut]|.
Proof of (P3)n+1. By and (Ps)n
Bni1 < KNMHP7 B < 20, Kb iy 2Nmtr™ ' NE < 0 cbet1y =2 NF (5.9.19)

provided QKN#IJFP_Lka_l <1,¥n > 0. Choosing k as in (5.9.3) and Ny large enough, i.e. for e

small enough. By (5.9.17) and the bound (5.9.19) (P3),+1 holds.
Proof of (P2)n+1- Using (5.9.17), (5.9.18) and (P2)n, (P3)n, we get

W1 < KNP PB4 KNFw? < KNI 0190, b1 "2 Nk | KNP (CLeb Ty 2N —2))?
and wy 1 < Cye®*T1y=2N - provided that
AK Nt =hitank <1 9K Ceb Iy NN 20 < 1 v > 0. (5.9.20)

The inequalities in (5.9.20) hold by (5.9.4), taking « as in (5.9.3), C1 > u1 + a and Jp in ((5.9.4))
small enough. By (5.9.17)), the inequality wy,11 < Cie®F1y"2N-% implies (P2)ni1.
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Proof of (P1)ny1. The bound (5.9.7) for J; follows by (5.9.13), (5.9.9) (for s = sg + p) and
|F0) sy = (90,0, 0) 25 Syt . The bound (B9 for Fup1 follows by (B:91),
(P2)n, and (5.9.3)). It remains to prove that (5.9.6)) holds at the step n + 1. We have

n+1

9nstlloptn € 3 I3klsatn < Coc™y ™t 3N < Cuely ! (59.21)
k=1 E>1

taking «; as in (5.9.3) and Ny large enough, i.e. & small enough. Moreover, using (5.9.1)),
(P2)n+1, (P3)n+1, (9.9.3) we get

HF(Un-i-l)HSO—&-u-i-l < N#+1”}_(Un+l)”50 + N#+1761H]:(Un+1)‘|80+51
< C*eb*N#+1_a + C*gb*N#-‘rl—Bl—i—k < C*Eb*,

which is the second inequality in (5.9.6) at the step n + 1. The bound [(u41|7 < C||F(Un+1)|3 is
a consequence of Lemma (5.5.1).
5.9.1 Measure estimates

In this section we prove (Py), for all n > 0. First we estimate the measure of Gy.

Lemma 5.9.4. We have that |Q. \ Go| < Ce2*~Dry (see (5.4.5)).

Proof. Tt is well known that |\ Q(()O)] < Ce*=Dy . Thus we focus on the estimate for the measure
of Q[()l). We have that

Q:\ g(()l) = U Tyjk
LeZ” 0|<3,
j,k€S,|j—k|<3Cg
where
Tojr = {w € Qi [ £+ 2AE - £+ w(j) — w(k) + 2 (W) — w(k) M) < Oy} (5.9.22)

for j,k € S¢ such that 7 ;7,6 +j =k.
Let us first study the e-independent part of our small divisor i.e.
3 . . 3 . .
(D=1 Ji +7)

_ ) Ji J
W l+w(y) —wlk)=3 5 +3 -~ -3 I (5.9.23)
;1+J¢ L+5% 1+ (0 ji + 4)?

for ji,j2,73 € S. By our genericity assumption (H1) in ((1.2.14) Z?:1 11"].2 # 0 and hence it is

bounded by some positive number K (S). We deduce that for j large enoughl, ie. [j| > ¢(S)max7;,
(5.9.23) is bounded from below by K(S)/2. We note that

w(j) —w(k)] <@L+ w(j) —wk)| +[w- £
then, since [¢] < 3,

@ - £+ AL L+ w(G) (L +e2Ag) — w(k)(1+2)p)]
> [@ -+ w(j) —w(k)] = Ce2|t] = C'e(jw - £+ w(j) —w(k)| + |w - £]) > K(5)/4
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for € small enough. This implies that T, = O.

We are left to deal with the case |j| < ¢(S)max7;. We write as P(7;,7)/Q(F;,7) where
P, @ are polynomials with integer coefficients. We remark that 1 < @ < C(S) due to the condition
l7] < ¢(S) < e(S)max7;. If P # 0 then |P| > 1 and again is larger than some K(S). We
conclude that Ty, = © by reasoning as done in the case j large. Now we study the case in which
P =0. Fixed j1,j2,j3 € S in , then P has degree four in j and so the condition P = 0 fixes
at most four choices of j. We have for P =0

O 0+ 2AE L+ w(f) (1 + %)) —w(k) (142 \g)
= (ALt (W) — ()T € + () — wr) - €) (5.9.24)
= e (AL L+ (@ O)T- &+ (wj — wi) - ),

where 7 := (2/3)(1 +72)%_,. These are a finite number of linear functions of {. We compute the
derivative in £ which is
(AT + 50T)0 + (w; — wy). (5.9.25)

The condition (H3) in (|1.2.16)) implies that the quantity (5.9.25)) is bounded from below by a constant
depending on S. This lower bound and Fubini Theorem imply that |T;;| < Cse2(=N~ for some
Cs depending on S. By the discussion above we have

NG < DT Tl < Cee Yy,
[€1<3,14],| k| <K(S)

where K(S) >0 and Cg > 0 are constant depending on the set S. This implies the thesis.

Fixed n > 1, we have
G \Gui1= | (jok(in) U Qujin) U ng(in)) (5.9.26)
Ler” ,j,kesSe

where

Ryji(in) :={w € Gn + [w - £+ dj (in) — di°(in)| <27, (077},
Qrj(in) ={w e Gp: |lw-L+m(in)j| <27 )"} (5.9.27)
Prjlin) = {w € Gu: [ £+ d2(in)| < 23a(6) T}
Since, by (5.4.5)), Ryjk(in) = @ for j =k, in the sequel we assume that j # k.
Lemma 5.9.5. Let n > 0. If Ryjr(in) # O, then (| > Cilw(j) —w(k)| > % |7 — K| for some
constant C > 0 dependent of the tangential set and independent of £, 7, k,n,in,w.
If Quj # O then |l > Calj| for some constant Co dependent of the tangential set and independent
Of 'g,j,k7n’in’w.
If Pyj # O then |€| > Cs|j| for some constant C3 dependent of the tangential set and independent
Of é?j7k7n7in7w'

Proof. We claim that 8|w - ¢| > |w(j) — w(k)|. Then this would imply

0> CLlol) —w(k),  Cri= —. (5.9.28)
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If Ryji(in) # O, then there exist w such that

102 (w0 in()) — 02 (w0 in ()] < fg el (5.9.29)

Moreover, recall (5.8.4)),

|d5° (@, in (w)) = 2 (w, in (@) = [mllw(5) = w(k)] = €[] = | = [75°] = ||

> gl(i) - w] - 06 (- + 1) (59.30)
> 2lo(j) - (k)
Thus, for ¢ small enough
2] 2 202 (5 - oo ) W) — ()] gluli) = w(h)

and this proves the first claim on Ry .

It |mj| > 2lw- {] then by (5-4.3)

\w-£+mﬂZ!m\!j!—!w'f\ZQ\W'K\—!@)%!:\W'K\Z<g7-
Hence if Q¢; # © we have
|.|<2|w‘€\<i’€| C'—m
TSl TG T Al

Following the same arguments and by using that |d;| > C|j| for some constant C' > 0 we get the
last statement. O

Lemma 5.9.6. For n > 1,|{| < N,_1, one has the inclusion Ryji(in) € Rejk(in—1), Qej(in) C
Qﬁj(infl) and PZ](Zn) - Péj(infl)-

Proof. We first note that, by Lemmal5.9.5] if |w(j)—w(k)| > O '[¢] then Ryjx(in) = Rejp(in-1) = D,
so that our claim is trivial. Otherwise, if

lw(j) — w(k)| < CTHe] < C7 ' Ny
we claim that for all j,k € Z we have (recall (5.8.14)))
|(d° = i) (in) = (d° = di°) (in—1)| < e'%°N,2 Yw € Gn, (5.9.31)

where d$° = d3°(w,in(w)). We first prove that (5.9.31) implies that Ryji(in) C Rejk(in—1). For all
j#k, |f| < No_1, w € Gy by (5.9.31)

w0 £ AP (i) — A (in)| = | €+ AP (in1) — A ()] — (A — d°)(in) — (d° — di°) (i)

> 295 (0)T — VTN > 29 (0) T
(5.9.32)
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since E473a%:1]\f7:—(2/3)a2n+1 <1.
Proof of (5.9.31). By (5.8.3) (recall that w(j) := j(4 + 52)/(1 + j%))

(d5° = di”)(in) = (d7° = di°)(in-1) = (M(in) = m(in-1))(w(5) — w(k))
(r7°(in) = 75 (in-1)) + (7 (in) — 755 (in-1)),

where m = m(w, ip(w)) and similarly for x; and r3°. We first apply Proposition (S4)x with

(5.9.33)

+

E=n+4+1,v=7_1, % —p=1, and i1 ~> iy_1,12 ~> iy, in order to conclude that
Y
Qn+1l (Zn 1) - Qn+1(ln) (5.9.34)

The smallness condition in (5.8.30) is satisfied (recall (5.8.15)), Eg = ey~ !), indeed by (5.9.7) and
Remark (.9.1]

ey INT iy, — din1||sgro < Cue™ Ty 2 NTHIN (5.9.35)
NT =@ gy decreasing sequence (see (5.9.3))) and by (5.9.4)
5771N£+1Hin —in—1llsoto S Yp—1 = Vn = 12" (5.9.36)
Then by definitions (5.9.5)) (see also the proof of Theorem [5.8.1))
2, o i EZED .
Gr € Gn1 N Q" (in1) € [ 2" (in-1) € 2,7 (in—1) QP (in). (5.9.37)
k>0
For all w e G,, C QZL’le (tp—1) N Qn+1(zn) we deduce by Proposition |5.8.3- (S3)x with k=n+1
(5.8.29) (5.9.7)
<J>|Tjn+1(ln) TgH_l(Zn ) < 5771Hin —in—1llso+0 SSmas C*gb*+1'772Nn_—al (5.9.38)
<g 64—30,Nn—(2/3)a‘
We have, by (5.8.22), for any n € N
G5 (in) =5 in)] < 0) D [+ (in) = 7§ (in)| < ™ (s0,0) D Ni®
hzntd Fzn (5.9.39)
5'83'9 64—3aNn—a_

Therefore Yw € G,,, Vj € Z we have

D7 (in) = 15 (In-1)] < (4 >(|T"“(Zn) 13 )|+ 750 (in) = 54 (i)

5.9.38)),(5.9.39)
+[75°(in-1) —7’”“(%—1)\) -—Sn’ ABa N @B L 9MET (50, D) N,y ® <5, €PN

¥ max

Now we prove that Qp;(in—1) € Qe;(in). We have

. . : i nr—a
|m(zn)—m(zn,1)|\]| < 053||Zn_zn 1||So+2|]| < Ceb 3y an—a1|]| (5.9.40)

< CEb*+3 71N |£’
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and then
w - €+ m(in)j] = |w- £+ m(in-1)j| = [m(in) — m(in—1)||] (5.9.41)
> 291 ()77 — TN > 29 (0) 77
since 0| < Np—q.
Now we prove that Ppj(in—1) € Prj(in).
We claim that for all j,k € Z we have (recall ([5.8.14)))
|d° (in) — dj°(in-1)| < gh-day—a Yw € G,. (5.9.42)

We first prove that (5.9.31) implies that Ppji(in) C Ppjr(in—1). Forall j #k, [{| < Np_1, w € G,

by (5.9.31))
|w - £+ d5%(in)| > |w - €+ d5°(in—1)] — |d5°(in) — d5° (in—1)] (5.9.43)
> 29 1(0) T — eTIUNR > 29, (0) -
since 54*36‘7*1]\75_(2/3)212"“ < 1. The proof of ([5.9.42)) follows by the same arguments used for the

proof of ((5.9.31]).
O]

By definition, Ryjk(in), Qe;(in), Prj(in) € Gn (see (5.9.27)). By Lemma for n > 1 and
|I] < Np—1 we also have Ryji(in) € Reji(in-1), Qej(in) € Quj(in—1) and Py;j(in) € Prj(in-1) . On

the other hand, Ryji(in) N Gn = O, Qui(in) NGy = @ and Ppj(in) NG = O (see (5.9.5)). As a
consequence, Ryji(in), Qrj(in), Pyj(in) = O for all |[¢| < Np_1, and

G\Gui1 € U (Benlin) UQui(in) U Pi(in) ), ¥ > 1. (5.9.44)
j,kese

|€|>Nn71
By (5.9.27)), we have to bound the measure of the sublevels of the function w +— ¢(w) defined by
Pr(w) == iw - £+ d°(w) — di°(w) = iw - £ + im(w)(w(j) — w(k)) + iez(mj — k) + (177 =) (W),
pg(w) :==iw - £+ m(w)j.

(5.9.45)
Note that ¢ also depends on ¢, j, k,i,. We recall that
m =14 e%(&) + rp(w), c(6)=v-¢ TeRY ¥:=(2/3)(1+77)5,
’ij(é.) = wj - 57 wj € RV? Wy = _(2/3)w(j)Gj(jla <o 7.71/) (5946)
_ _ 1+72)(7+ 57 + 74 + 352\ y
Gj(.]lv"'a]y) = <<3 k2)(2 6k .2k*2 74) SN
(3+72)2 + (64 72)7; + i k=1
where
Iy = eld(€) + 0(9), |Verm| < C(S)e? 4+ 0y (5.9.47)
|t | < Cet, G;] < clj]™2 (5.9.48)

with C = C(S). It will be useful to consider ¢(w) in (5.9.45) as a small perturbation of an affine
function in w. We write it as
Or(w) = ajk + gk - w + qr(w),  LEZY,j keSS

e ) (5.9.49)
dQ(w) == fi + g - w + hj(w), te?’, jkese
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where, by (5.3.19)), and calling

£(6) = —e AT (w —w - 22A8), £ < et £ < O (5.9.50)
aj = i((W() — wkD[1 — c(A™D) + (wp —w))-A7'D),  fi=ij(1-c(A™®)),  (5.9.51)
bijpe = i<€ + A To(w(j) — wik) + AT (w; — wk)), g = i<£ i A‘TU>, (5.9.52)
4k(@) = (En(w) + T £(E) () — w(k)) + e2(w; — wp) - £(E) + 15(w) — 17 (w), (5.9.53)
hj = rm(w)j + (T-£(£))J (5.9.54)

and by (5.9.48)), (5.9.54),
(@) < C*j — k| + &%,
g (@) [P < [ (@) w(f) — w(k)| + |5 — r < O(S)e?]j — k| + €14, (5.9.55)

hj (W) < O, [hy(w)|"P < CeyHjl.

By Lemma it is sufficient to study the measure of the resonant sets Ryjy(in) defined in
(5.9.27) for (¢,7,k) # (0,7,7). In particular we will prove the following Lemma.

Lemma 5.9.7. Let us define for n < C(S)+/e and 0 € N> 0

2
Reji(n,0) = {w: [w- £+ d° — d°| < ﬁ ,
L2
Qej(n,0) ={w: |w-L+mj| < #}, (5.9.56)
0| o~ 2N
Prj(n,0) ={w:|w-£+d5°| < W}

Then for a generic choice of the tangential sites we have that |Ryji(n,o)| < 2=Dp(py=7.
The same holds for Qj(n,o) and Py;(n,s).

We give the proof of Lemma for the set Ryji, which is the most difficult case.
Lemma 5.9.8. Let vo = e'/* and 1o € N. If || < e 1/(470) and

@ £t w(f) — (k)] = 30(0)™ (5.9.57)
then jok(n, o)=0.

Proof. We have by Lemma (recall ((5.9.45))

o £ 45 = 0| 2 2000 = m = 1]lol) ~ ()] — O(8) £ () = e =)

> q0(0) 7 — C(8)e* ™) > (/e — C(S)e¥? > \f
(5.9.58)

O]
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Lemma 5.9.9. Let vg = el/4 and 0 € N>0. If [{| < e~ 1/4m) and
[+ w(j) —wlk)| <)~ ™ (5.9.59)
then ‘szk(ﬁ,o'” < 52(V_1)77<€>_U'

Proof. Let us call p := @ - £ + w(j) — w(k) and note that p = C'e'/4. By definition (see (5.9.52)),
(.9.54))

Vo®r(w) = ibgk, + Vagix = i(z —~ATE@ - 0) — AT (wy — wy) + O(|)e?) + 0(51/4))

since
PP = 0(e7),  |Varm(W)[*Plw(j) —w(k)| < C(S)e, |ATH(G; —Gr)) p|*™ < CeM%. (5.9.60)
By the assumption (|1.2.16)) we have

(1 - A‘Tﬁ(w)T>£ £ AT (w; —wy),  j ke S (5.9.61)

Thus |bgji| > ¢ for some ¢ independent of ¢.

Lemma 5.9.10. If || > ¢=/(470) then |Ryj(n, o) < e2V=Vn(e)=7.

Proof. We consider two cases: |j — k| > C5 and |j — k| < Cs for some constant C; > 0 to be
determined.

In the first case we have (recall (5.9.48))

AT (w; — wy,)

aij—k(l—A_lw-ﬁ— ,
a2 15— kI -t

\) > 55 — | (5.9.62)

with § > 0 for Cs large enough. In particular the constant ¢ does not depend on S by Lemma [B.1.1]
By (5.9.27), (5.9.55)

n
(£)7Cs

: J, .
ik - w| = laji| = [or(W)] = lgjn(w)] = (6 = = CeM)j — k| > 517 — K,

for € small enough and o > 1.

If b:= bgjr we have |b-w| < 2|b[[&], because |w| < 2[w|. Hence [b| > d1 |j — k| where 6; :=6/(2[w]).
Split w = sb+ v where b :=b/[b| and v-b = 0. Let Wg(s) := ¢(sb+ v). For ¢ small enough, by
, we get

[WR(s1) — Ur(s2)| = (|b] — |gjn]™®)|s1 — sa| = (61 — 3y 1) |j — Kl |s1 — s

5 (5.9.63)
> 51\] — kl[s1 — s2l.

As a consequence, the set Agjp(in) == {s: sl+ve Ryji(in)} has Lebesgue measure

2 417<Cn

| Ak (in)| < AT R
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for some C' > 0. The Lemma follows by Fubini’s theorem.

In the second case we estimate directly the derivative of ®r(w), namely
lbeji| > €] = Cs|ATa] — [AT (w; —wy)| > eV — C(8) > 0 (5.9.64)
for € small enough. We conclude as in ((5.9.63]). 0

The proof of Lemma for the sets Ryj follows by Lemmata [5.9.8] [5.9.9] [5.9.10] The proof
for the sets Q;; and Pp; follows using the same arguments used for Ryjy.

Lemma 5.9.11. Let |j|, |k| > C6(O)™y~V/2) with 7 > 1 > 7 then
Rui(v*,7) € Quji(7,72). (5.9.65)
Proof. We have that

w4 d® — | = w0+ m(G — k)] — mllw() — j + k — w(k)| — e2w; — wy] — 1] = ]

2y . C Ce?
> —— —2|j — k|= -
R T T TN,
S 2y Cr _062\/’7> ~y ( B C B Ce? )
= <g>72 C6<€>2ﬁ_1 C6<€>T1 — <g>7-2 2C6<g>2n—7—2—1 2ﬁc6<g>n—m
3/2
> 1 57
(O™ = (o7
(5.9.66)
for Cg big enough and since £2(/7) ' < 1. O

We are in position to prove (5.9.8)). Let 7 > max{m +v + 2,72} and 72 — 1 > (v + 1). We have
by Lemma

U Belin)| < > | Rejio(in)| + 3 Rugelin).
fERr ket 3> No 1.3, k1> (6) 1= (172 1> N 1|31, k1 <Co (£) 1= 112
On one hand we have that, using Lemma,
2 Bl <C Y SO <020y 3 (7D
61> N1, 1 k| > Co ()14~ (1/2) i—k=h.|h|<C] [€1> Ny

< C2 DN,
for some C > 0. On the other hand

> |Reji(in)| < CHB/D71) %" V?W}Ti
€[> N1, 4], k| <C6 (€)1~ (1/2) | —k|<C¢| [€|>Nn—1 Vi)
< C,y€2(u—l) Z <£>—(T—n—1)
[|>Nn—1

< Cye?UNL

We conclude by fixing 70 = 71 = v + 2. Recalling (5.8.1]) we check that actually 7 > 71 +v + 2. The
discussion above implies estimates (5.9.8]).



APPENDIX A

TECHNICAL LEMMATA

In this Section we present standard tame and Lipschitz estimates for composition of functions
and changes of variables which are used in the Thesis. We refer to the Appendix of [7] and [5] (and
references therein) for more details. In particular in [7] the results below are proved for the Lipschitz
norm ([2.1.8)).

Let us denote W™ := W#*(T94 C) and L*® := L>(T%, C) with d > 1. The norms of these

spaces are respectively indicated with |-|s s , ||z = |-|0,00 and are defined by
Jul g == sup [u(x)], |ulsoo = D D™ ulre, |Dulpe = sup |95 ulree, (A.0.1)
z€Td s1<s |51]=s1

here D? is the s-th Fréchet derivative with respect to x, hence D?® is a symmetric multi-linear
operator.

Let us denote with H® := H*(T¢, C) the space of Sobolev functions on T? defined in [2-1.2). We
shall actually use the equivalent norm

Julls :== HUHHS(W) = HUHL2(W) + HDSUHLZ(W), HDSUHB(W) = su_pH@iuHLz(Td). (A.0.2)

Remark A.0.1. In the following Lemmata the estimates which hold for the Lipschitz norm ||- HSL”’ ™,

defined in (2.1.8), hold also for the slightly different Lipschitz norm |-||7'° defined in ([2.1.9). One can

repeat the proofs of these Lemmata for the bounds of the variation (u(w) —u(w’))/(w — ') (see for

instance the Appendix of [7]) and then pass to the equivalent (to ||-[|2°°) norm max{||u[3*?, v||u]"“?,

7,0
i

to prove the same bounds for |-
We remark that the main difference in estimating with the norm ||Hz’o is for the bound (A.0.8) in
Lemma [AL0.5

Lemma A.0.2. Let so > d/2+ 1. Then the following holds.
(1) Embedding. |u|p~ < ||u|ls, for all we H®.
(17) Algebra. ||uv||s, < C(so)llulls,llvllse for all u,v € H®.
(131) Interpolation. For 0 < s; <s<s3, s=As; + (1 —A)sa, A €[0,1],
fulle < ull Jull i, Vo B,
Let ag,bgp >0 and p,q > 0. For all w e HWTPte 4 ¢ Hbotpta

[ellagtpllvllbo+q < lltullag+ptallvllsg + lullag lVllog-+p+q-

225
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Similarly
[t 5,00 < C(sl,SQ)]u\s1 v =2 gy e W2

= S9,00

and for all u € Wa0tPHa o ¢ Whotprta
|Ulag+p,00|V]bo+g,00 < €@, bo, P, @)|Ulag+p+a,00|V]ve,00 + [Ulag,c0V]be+p+g,00-
(7v) Asymmetric tame product. For s > sg
luvlls < Clso)llullsllvllse + Cls)lullsollolls,  Vu,v e H?.
(v) Asymmetric tame product in W*>. For s € N
3 5,00
[uvs 00 < §|u|Loo|v|s,OO + C(s)|uls,co0|v|poe, Yu,ve W,

If u=u(w) and v =v(w ) depend in a Lipschitz way on a parameter O C RY, all the previous

||I|ls with the Lipschitz norms |- |Lw(’7 IE ||L2p

The following Lemma is a classical result on tame estimates for the composition of functions. We
refer to [81] and Lemma B.3-(4¢7) in the Appendix of [5] for the proof.

Fix p € N. A function f: T¢x B; — C, where B; := {y € R™ : |y| < 1}, induces the composition
operator

Fw) (@) = £, u(e), Du(z), Du(z), ..., DPu(i) (4.03)
where D¥u(z), k=1,...,p denotes the partial derivatives 0%u of order |a| = k.

Lemma A.0.3. (Composition of functions) Assume f € C"(T? x By). Then for all u € H™*P
such that |ulp oo < 1, the composition operator (A.0.3|) is well defined and

IF@)llr < Cllfler (ullrp + 1),

where the constant C' depends on r,d,p. If f € C""2 then for all |ulpco, |h|p oo < 1/2,

k ~ .
f
1fu+n) =" e < C I fllerrallbl Foe (1l + Rl zoe fullrp)- (A.0.4)
=0

The same holds by replacing ||-||, with the norm |-|; .

Lemma A.0.4. Lemma 6.3 in [7] Let d € N, d/2 < s9 < s,p > 0,7 > 0. Let F be a C'-map
satisfying the tame estimates: for all ||ullsg+p < 1,h € H*1P,

[F(u)lls < C(s)(1 + [[ulls+p),
10uF (W) [A]lls < C(s)([1Pllstp + lulls+pllAllso+p)-

For O C RY, let u(w) be a Lipschitz family of functions parametrized by w € O with Hu||folf_p <1.
Then

1F (w)[|XP0) < O(s)(1 + [Jul Z27).
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The following Lemma is classical, see for instance Appendix G of [69].

Lemma A.0.5. (Change of variable) Let p: R? — R? be a 27— periodic in each variable function
in W%, s >1, with |pli1c <1/2. Let f(z) =x+ p(x). Then:

(i) f is invertible, its inverse is f1(y) = g(y) = y + q(y) where q is 27— periodic in each variable,
q € Wo*(T4RY) and |qsco < C|pls.ce. More precisely,

lq|Le = [plLe, |Dq|re < 2[Dp|p, |DQ|s—l,oo < C|Dp|s—1,ooa (A.0.5)

where the constant C' depends on d,s.
Moreover, assume that p = px depends in a Lipschitz way by a parameter A € O C R”, and
suppose, as above, that |Dypx|ree < 1/2 for all X. Then q = qy is also Lipschitz in X, and

L
jq| L2 (W +{sup alssn, oo}|pr;p‘”) < Clp|ZH0), (A.0.6)

the constant C' depends on d,s (it is independent on =y ).
(43) If u € H*(T%C), then uo f(x) = u(z + p(z)) € H®, and, with the same C as in (i) one

has
Juo flls < llulls + C(llulls|pl1,00 + |Dpls—1,00llull1), (A.0.7a)
luo f—ulls <C( 2), (A.0.7b)
luo fIEFPO) < C(Jul 25 + |p|Lint HUHL”’ ), (A.0.7¢)
Moreover
luo FI7° < [ul 7€ + CullZCIpI 2y + Il ul20), (A.0.8)

the constant C' depends on d,s (it is independent on =y ).

(i7i) Part (i7) holds also with the Sobolev and Lipschitz norms replaced by |-|s 0o and |- ’sz 0
Proof. All the items are proved in [5] and the Appendix of [7], except for the bounds (A.0.7a) and
(A.0.8). These estimates are easily proved by following the proof of Lemma B.4-(i7) in [5] and by
treating in a different way some terms arising from the Faa di Bruno’s formula. More precisely, we
consider the expression

(uo f) Z > Cy (D*u)[DIrf,. .., D*f]

k=1j1++jr=s,ji>1

and we note that if j; = 1 then D7 f =1+ Dp. We split the sum above in the following way

D*(uo f)=D*u+Y» C. (D°u)[Dp,...,Dp, I,...,1]

r=1 . .
r times s—r times

. (A.0.9)
+3 Y G DD, D

k=1 jit--+jr=s,
Hi Jji>1
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Thus from the first term of the right hand side of we get the first term of the right hand side
of (A.0.7a)). For the remaining terms one can follow exactly the same proof of Lemma B.4-(ii) in
[5].

The bound follows by for the estimate of sup,|ju o f]||s. For the Lipschitz variation
of A\ the proof follows the arguments used for , see the Appendix in [7]. We note that
u(z + pa(x)) — u(x + py(x)) is estimated with the z-derivative of u, but the norm ||-||© requires
the estimate of the Lipschitz variation of A only for the norm ||-||s—1. This is why in there
is a loss of one derivative which does not appear in (A.0.8). 0

We now give a lemma on symbols defined on T¢. Recalling Definition [2.2.2{and (2.2.10)) we define

AWl 5.0 = O Aw|| s (€)~mHa] A.0.10
| Aw| gseuﬂgog‘rﬁlxwll e Aw||s(€) ( )

where

d
= H@;m, a:= (oW, .. o).
i=1

Lemma A.0.6. Let O be a subset of RY. Let p = py as in the previous lemma, let A be the linear
operator defined for all w = wy(z,£) € S™(T9), A€ O, as

Aw = w(f(x),9(x)€), f(z):=z+p(x), g(x)=I+Dp)~t, zeT%¢cR? (A.0.11)

such that ||pH28 4o < 1. Then A is bounded, namely Aw € S™, with

’Aw|mso¢ —§,m,x |w‘msa + Z |w‘m 51,a+32”p‘|s3+so+2 (A012)

Ss1+s2+s3=s,
51<8,51,82,83>0,
s1+s2>1

Proof. We adopt the notation |-|yys.e instead of |-|s . (see (A.0.1))) in order to avoid confusion with
the norm of the symbols. We also denote with Dg the s-th Fréchet derivative with respect to &.
We study

s k
wf,06) =Y > Chejn (DD w)[DI'f,..., DI f,D™MgE,..., D™ "gé,g,...,g)
k=1 r=0, Y
> (itns)=s o times
(A.0.13)
where j := (j1,...,J4r), n:= (n1,...,nk_,). In the following formulas we shall denote g,...,g by
——
o times
g%. For k=1 and r = 0 we get from the expression (A.0.13|) (and estimating |g|p~ < 2)
(D w)[Dg &, g% 12(re) <o (A.0.14)
and for r =1
(D¢ Dw)[D* f, g%l 214y <ar (A.0.15)
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For k = s we have that j; =n; =1 for all ¢ and we get from (A.0.13)

s s
HZ(DgirJraDrw) [pfv .»Df,Dgé§,...,Dg Svga]HL?(’]I‘d) < Z|w|m,7“,oé+(8—7”)|f’£l/1v°° |D2p|i;r

r=0 . . r=0
r times s—r tlimes

<s Y [Whnsiars D S 0lmsa+ D [Wlnsars Dl

S1+s2=s, s1t+s2=s,

81,5220 81,52>0,51<s
(A.0.16)
It remains to estimate
s—1 k ‘ )
> Chejn (DETTOD™W)[DI f,..., DI f, D™ g, ..., D™g§&, g% (A.0.17)
k=2

r=0,
> (Jitni)=s
We call £ > 1 the number of indices j; that are > 2 and we rename these ones o;. Then ), (0;+n;) =

s—(k—¥)=s—k+ (. The L?-norm of (A.0.17) can be estimated by

s—1

M=

> 1wk (o) DI ELID e . |D7 f oo | D™ g oo .| D57 g oo

B
||
N
w s
I
=)

Z|w\mm+ | D72D?p| oo .. | D72 D?p| 1o | DI D?p| oo . [ D™ T D2

[V
||
— N

IA IA
ML IM!

Z‘w‘m,r,aJr(kfr) ‘D2p‘lz—;€—r—l ‘D2p’W5—2k—Z+r,oo
l

IA
[
LT
3
= |l
o

s |w|m,r,a+(kfr)|D2p|WS—k—1v°° < Z ’w|81,a+82|D2p|W53’°°‘

s1+s2+s3=s—1,
§>51,52,53>0

w
m
S
I
o

(A.0.18)
Then by (A.0.14), (A.0.15), (A.0.16), (A.0.18) we have (A.0.12) for |Aw|m . For the Lipschitz

variation we observe that

A (w(A, £(N),g(N)E)) = A(Ax vw) + ADw[A) x f] + A Dew[Ax xg &l (A.0.19)

One follows exactly the strategy above but considering s—1 derivatives instead of s (recall (2.2.11)).
This is important since in formula (A.0.19) we have one extra derivative either in x or &. OJ

A.1 Properties of torus diffeomorphisms
We give some properties of A" defined in (5.7.59)). First of all we recall that A" is the flow of

Or A" = XA, X:=08,0b, b p
:= 0z 0b, = .
./40 =1 7 1+ T/BI

(A.1.1)

Lemma A.1.1. Assume that B := B(w,i(w)) € H*(T"*1) (see (65.7.88) ) for some s > so, is lipschitz
inw € O C Q. and Lipschitz in the variable i. If HﬁHso—l-,u <1, for some p > 1, then, for any
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s> so and u € H® with uw = u(w) depending in a Lipschitz way on w € O, one has

sup A7 29 <, (Iull2 + 18178, ull2;®) (A12)
T€[0,1]

sup [[(A” = Du|7€ <, lull 25 + 118117 ull2;°

E[Opl] S so+1 s+1 s+so+1 S0 (A13)
sup [[(A7) ull7C < (7€ + 18175 llulLC
p S s+so+1 S0 (A14)
T7€[0,1]

sup [|((A7)" = Dull7C <o (18127 Il 25 + [1BI12 [ul ) -

E[Opl] s so+1 s+1 s+so+1 S0 (A.1.5)

The inverse map (A7)™1 satisfies the same estimates.

Proof. The bounds (A.1.2)-(A.1.5) in norm ||-||s follows by an explicit computation using the formula
(5.7.59) and applying Lemma (A.0.5) in Appendix [Al If § = f(w) is a function of the parameters

w € O, hence we need to study the term

oy A7 @1) = A7) (A16)
w17ws w1 — wa

in order to estimate the Lip-norm introduced in (2.1.9). We reason as follows. By ([5.7.59) we have
for wi,ws € O

(AT (w1) — AT (w2))u = (1 + 7Bz (w1)) [u(wr, z 4+ B(w1)) — u(wr,z + B(ws))]
+ 1—{—7‘BI wr)) [u(wr, z 4+ B(w2)) — u(wz, z + B(ws))] (A.1.7)
+ Tu(wr, x + B(w2))(Bz(wi) — Bu(w2)).

Using the (A.0.7bf) and interpolation arguments we get

[u(wr, = + Blw1)) — w(wr, @ + B(w2))ls—1 <s [[B(w1) — Blwa) s, l|ulls
+[18(w1) = B(wa)lls+1llwlls

O )
<o (1817, sl + 18I Il fon = wal

The term we have estimated above is the most critical one among the summand in (A.1.7). The
other estimates follow by the fact that u(w,p,z) and S(w,p,z) are Lipschitz functions of w € O.
One can reason in the same way to get the estimates on the inverse map (A7)~! (see (5.7.59)). O

Lemma A.1.2. Let b € N. For any |a| <b, mi,ma € R such that my +mg = |a|, for any s > s
there exists a constant p = p(|a|,m1,ma) and 6 = §(mq,s) such that if

HBH280+|m1|+2 S 57 H/BHS +M (A18)

then one has

P (D2 ™™ 02 AT (2)(Da) ™" ul| 7 <somums [[ulls + 18I ullso- (A.1.9)
T€|0,

The inverse map (A7)~ satisfies the same estimate.
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Proof. We prove the bound for the ||-||s norm since one can obtain the bound in the Lipschitz
norm || - ||7° using the same arguments (recall also the reasoning used in (A.1.7)). We take h € C*,
so that 9ZAT(p)h € C* for any |a| < b and we prove the bound in this case. The thesis
will follows by density.

We argue by induction on a. Given a € N we write o/ < « if o), < a, for any n =1,...,v and
o #a.

Let us check for @« = 0. Let us define U7 := (D)™ A" (¢)(Dy)™™ with m = —m; = ma.
One has that WY :=T (where I is the identity operator). One can check that U™ solves the problem

(vecall (A1)
0,7 = XUT + G, (A.1.10)

where G7 := [(D;)™,X](Dg)~™. Therefore by Duhamel principle one has
T
VT = A" 4 .AT/ (A7) 1G7 V7 do.
0

By Lemma and ([2.2.23) one has that
‘GT|0,S,0 <s HﬂHs-{—m—l—iﬁy s 2 So,

hence by estimate (A.1.2)), Lemma we have

sup [[W7h|ls <s [|Blls + IB]s+so+1llPllso + |B]lso+m+3 sup [[WThA[s
7€[0,1] T€[0,1]

+ (HﬁHS—&-m—l-?) + Hﬁ”s+80+1) sup H\IIThHSO‘
T7€[0,1]

For § in (A.1.8) small enough, then the (A.1.11)) for s = so implies that sup (o 1) V7|5, <so [R5, -

Using this bound in (A.1.11)) one gets the (A.1.9)).
Now assume that the bound (A.1.9) holds for any o/ < « with |a| < b and my,me € R with

m1 +ma = |o[. We now prove the estimate (A.1.9) for the operator (Dy)~™105A" (¢){Dy)~™2 for
mi1 + mg = |a|. Differentiating the (A.1.1)) and using the Duhamel formula we get that

(A.1.11)

A () = A () /0 (A7 () do,

(A.1.12)
FJ = Z Can, a2)0:(95'0)052 A% ().
a1 tas=a
For any mj + mg = |a| and any 7, s € [0, 1] we write
Dy) ™ 0,(0510)052 A% () (D)™™
(D)™ 0,02 DA () (D) s,

= (D) "™ 05(931b) (D) 2102 (D)2 71021922 A7 (0) (D) T2

Hence in order to estimate the operator (D,) ™1 (A%(p)) 1FJ(D,)~™ we need to estimate, uni-
formly in 7,s € [0,1] the term

(Do) AT (A7) H D)™ ) ({D2) ™ 00 ) (D)~ 1)) (D)™ 032 A7 () (D) ™2 ).
(A.1.14)
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For s > sg, by the inductive hypothesis one has

(D)™™ AT (A7) D)™ hls sy [1]ls

S—‘r,u,HhHS()v (A115)

(D)™ 71921082 A% (0) (D) ™2 bl <spms 1R lls + 18175 Pllso- (A.1.16)
provided that oy # 0. We estimate the second factor in (A.1.14). We first note that

—my —mo+ 1+ |as] =1+ |ag| — |a| <0.

This implies that (D,)~™10,(95'b) (D,)~m2Hle2] helongs to OPSY, and in particular, using Lemma
[2.2.5| and ([2.2.12]), we obtain

(D)™™ 02(950)(Dxr)

s [l (A.1.17)

To obtain the bound (A.1.9) it is enough to use bounds (A.1.17)), (A.1.16),(A.1.17), Lemma [2.3.§
and recall the smallness assumption (A.1.8)). O

Lemma A.1.3. Let b € N. For any |a| < b, mi,ma € R such that mi +mge = |a| + 1, for any
s > so there exists a constant p = pu(|a|,mi,ma) and 6 = 6(s,m1) > 0 such that if

1Blso+n < 0, (A.1.18)

then one has

sup [[(Dz) "™ 05 A1 AT () (D) "2 ul|
e (A.1.19)
§57b7m17m2 HUHSHA125HSO+H + HU”50+1(HA125H54—M + HAIQBHSO—HLHBHS-HL)'

The operators A12(A)*, A12(A)~1 satisfy the same estimate.

Proof. The Lemma can be proved arguing as in the proof of Lemma [A.1.2] O



APPENDIX B

PROOFS

Here we collect the proofs of some lemmata.

Proof of Lemma [5.7.18] Let us define Y7 := (¥7)~! 0 ®”. Then by substituting in (5.7.143))

we have

(0, 97)(T7u) + W7 (3, Y7) = (J o B [W7 (Y )] — TLs[(] o BT [ U7 (Y7w)

= (Job)UT(TTu) — ((J o b)[Lg[U™ (YTu)] + Ig[(J o b)ILL [\I/T(TTu)D.

Thus by ([5.7.89) we have
0 YTy = —(\IIIZ) T7u,
Tou=u

with

(B.0.1)

(B.0.2)

Zu = (J o WTIs[u] + Ts[( 0 HITTE[u] = 3 (g5(r), ) gy %5 () + 30 (@5(7), ) 2y K57,

JjeS JjeS

where
gi =xj =€’ x; =J(b(r)e’"), gj = w(j)Hﬁ[b(T) ev*].

Equation (B.0.2)) is well posed on H*.
We show that Y7 — I is of the form ([5.6.5)). By Taylor expansion at 7 =0 we get

TTu—u= —T(\IIIZ(TTU))|T:0 + /OT(I — ) (0x X" (w)) dt.

Note that

(B.0.3)

WIZ(T7u) = 3 ((®7) 057 1) o,y (T 7 (0) + D (87 35(0). 1) g, (07) 15 (7)

jes jes
has already the form (5.6.5) and
(\I’IZ(TT’LL)> = Zu.

|T:0
We denoted by (¥7)* the flow of the adjoint PDE
O (U u = —=bJ((¥7)*u),

233

(B.0.4)
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by (®7)* the flow of
O (®7) u = —II5 b J ILE[(P7)*u). (B.0.5)

These maps satisfy estimates like (5.7.139)),(5.7.140). We have

/(1—t)8tt’r ds—Z/ (1 —t)(g(t), ) o, £ dt—i—Z/ (L =) (&j(1)u) par, £ (t) dt

JES jes

where
gj = (— (P52)7(2°)" — (Y°)"b J((‘I’S)*))(gj% £5:= —(J o b) (L) ")x; + (¥°) LI (b (s)e™),

gj = (— (W3z2)"(2%)" — (T°)"b J((\I’S)*))(Elj) + (@) WGV ()], £ := —(J o b)((L°) ),
Thus by , for T =1 we get

T'u —u = Ru, Ru := Riu + Rou (B.0.6)

1
Row = —Zu,  Rou = / (1 — )0 T (u) dt (B.0.7)
0

where R has the finite dimensional form (5.6.19) and R2 has the form (5.6.5). Hence by Lemma
b£.7.8 we have

M, (s,0) <o Y sup (I£5(0)I17 g (ML + £33 lgs (1) 17°). (B.0.8)
ljl<C T€[0,1]

My, (s,b) <s Z Slﬁ)pl(Hfj(T)HZ’OO||gj(7')||3500+ I1£;,(T) 1L 1g; ()1179°). (B.0.9)
ljl<c TEO

By using the estimates in Proposition [5.7.16] we have

O = O ,O ,O
1511770, 1851170 <s 1Bl +2 + 10-D(T)I1237° (B.0.10)
= 17,0 O ;O o
£ 0370, g5 1370 <s 110l 42
In the same way, the bounds for the variation on the i-variable (5.7.145)) follows by the estimates
on the derivatives of the coefficients g;, g;, xj,X; whose depend on the variation Ajs of the flows

®7, U™ and their adjoints, for instance recall (5.7.142). We have proved that Y!'u = u 4+ Ru and

hence ®'u = ¥l o (I+ R)u. By (B.0.8), (B.0.9) and (B.0.10) we obtain (5.7.144)). O

Proof of Lemma [5.7.24. (P ) are trivial.

Now suppose that (P;2), hold and we prove that (P 2),+1 also hold.

We have to prove that the (n + 1)-th diffeomorphism of the torus is well defined from H?® to itself
for all s > sg.

We show that holds with K ~~ K,, and a ~ a,.

We first recall that ||a
arguments (see Appendix we have that

19 < 7_1||a||;”0. We set A = 1/(s1 — sg). By classical interpolation

A\ (5.7.256)

- ,On - VUn\1— sUn 1-A - -
 HanllZ < (v M anllZO) Ay 2O T C(sy) o(s) KLUV KN (BLOMT)
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Therefore we have
C(s1) 0n(s0 + 1)K§T+4 < C(s1) 60(s1) Kgf+4f(14)ﬂK0(1—A)u'

Since A < 1/2 then p(1—A) > 27+4, then K§T+4_(1_>‘)” is a decreasing sequence and by (5.7.250))
(since o > 3)

C(s1) 6o(s1) K2 < C(61) 6o (1) KZTH <1 = C(s1) 6a(s0 + KT < 1,
(B.0.12)
Now we apply the KAM step and have a4 ~ a,41-
Snt1(s0) < 77 Cog (K0 lan |1, 447 T ([lanl| 7)) (1 + 5~ K42 anl|35)

B.0.13
< Cog (B~ 0n(s1) + K372 (0n(50)*) (1 + K37280(s0) ) ( )

We first note that Kp T2 "8o(s1) K% < 1. Indeed since p > 27 + 2, this is a decreasing sequence

and by (5.7.250) and the definition of o (see (5.7.249)))

CSOK,%T+2_M(50(81)K5 S CSOK3T+250(81) < 1.

Hence
Bue1(s0) < Cly (K010, (s1) + K272, (s0)?)

and then we have to prove that

Cs, 6n(51)K7;(31—30) < %50(51) K(’f K;fl (B.0.14)
Csg 0n(50)2 K572 < 500(s1) Kb K .
Thus, by the inductive hypotesis, we have to prove
20 K, 180X o < 1 20 8o (s1) K K227 200 < 1. (B.0.15)
Since 9 42
s1—so>1+xu, p> 5

then the sequences in are decreasing and we just need
2CSOKO—(SI—SO)+1+N(X—1) <1, 208050(81)K§T+2+u(x—1) <1
which follows by taking K sufficiently large (K¢ > 2Cj,) and by , since
0=3+pu(x—1).

Regarding the estimates in high norm, by (5.7.245)) we have for all s > sg

7,0n

lan 1797+ < Ylan 3O + C(s)y ™ Ko™ llanl|3,2" [lan]| 29"

Note that there exists ng(s) € N sufficiently large such that for any n > ng(s)

C(s) K227 P K So(s1) <2773, (B.0.16)
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Then we have by
Spi1(8) < 0n(s)(1+ CoK2TT271 K S (51)) < Ci(s)do(s)(1 +Zz N +2773)
n+1 "~
< Cy(s (1 + Z 279
for s > sg. For s > sg, setting A=1/(s —sgp+1) <1, we have
lantallZO+ < (lan i 1309 Nlansa [ 25772, (B.0.17)

from which we may deduce that

Sns1(s) < Ko M (K HGo(51)) (Gpar (54 1) < 201 (s4+1) K, MK max(do(s1), do(s+1)) (B.0.18)

now by (5.7.258)) and (B.0.18))

letnt1]| 2790 < Gpp1(s + 27 + 1) < Oa(s) K, M K" max(do(s1),90(s + 27 +2)), s> s0. (B.0.19)

It remains to prove (5.7.257) for n + 1.
By the inductive hypothesis, (5.7.239) and (5.7.255|) we have

o1
Eng1 < 50[(571(1 +25n)] < 2—(n+1)60. (B.0.20)

The (B.0.20) implies the last bound in (5.7.255)) in (P1)n+1-

Now we prove (P2)n+1. By construction

Br+1(x) = ant1(x) + Bu(x + ant1(z))
thus, by

70 70 ,O vO ,O 70
1B 1370 < Nloma 370 + 18l (1 + Collantall35) + Csll Ball ™ llamsal[ 27

By the inductive hypotesis (see (5.7.260)))

3

1Ball79° < C3(s) max(8o(s1),d0(s +27+3)) Y 277, s> (B.0.21)
7=0
and
n .
18211370 < C(s1)d0(s1) D 277, (B.0.22)
7=0

By (B.0.19)), (B.0.21) and (B.0.22) we have

1Bl < Cals) K 24 Ko (s + 1) (14 18| 270)+
n
Cs(s)U(s +1) > 277 (1+ C KK do(s1)) <
j=0
n+1

C3(s) max(dp(s1),00(s + 27+ 3)) Z 97
7=0
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provided that K, < Cs27 which holds for n > ng(s) for some ng(s) sufficiently large.
ded that K, " Kj" < Cs2~ (1) which holds f f fficiently 1

By (B.0.19), (B.0.21)) and (B.0.22|) we have

70 90 70 ,O 70 ,O
18n+1 = Balld™ < Nlana 270 + Cl)UBall 3 lanta 3570 + 1Ballggt lon+11350) <

< Cu(s)M(s +2) 27"
for 04(8) > CQ(S) + C; CQ(S) 50(51) 03(8 + 1) + 203 02(8) . O

B.1 Generic conditions

In this Section we prove the genericity of the conditions assumed in the Chapter

Lemma B.1.1. There exists a constant c; > 0 independent of the set ST (recall (1.2.8)) such that
the assumption (1.2.15) is generic in V(cy).

Proof. Recalling (5.3.9) and (5.3.19) we define a matrix K so that A = (2/9) diag (w(ji)(l +j§)>K.
In this way the entries of K are bounded by some constant independent of the 7, . Let us assume
that 7; is the largest of the 7; (which we recall are positive) and write

oz, g~ pifz, 0<pi <1, (B.1.1)

so that P(z,p) = det(K) is a rational function of its variables. It is easily seen that K computed at
pi = 1 for all 4, coincides with the matrix (recall that U;; =1 Vi,j=1,...,v)
1
M(z) =1+29(x) (U -1,  gl@) =gz~

so that its determinant is
(222 + (2v — 1))

(3224 1)
we note that this function is > 1 at x = 0. We conclude that there exists xy < 1 and a constant c
so that for all

det M =

x <x,|pi—1] <c onehas detK2>1/2.

This implies that, for suitable choice of cy, the bound (|1.2.15) holds for any choice of tangential
sites in the set given ((1.2.12). In (1.2.11)) the determinant of A is an analytic, non identically zero,

function of 7;. Hence for a generic choice of the tangential site it is different from zero. In particular
in the ball of radius C1_1 (recall that the variables J, are integers) the minimum of det A depends
only on the constant c;. This implies for a suitable constant co. Let us check . We
first note that
det(I— A Yooy =1- A7 @

The function 7- A~'@w is an algebraic function of the variables 7;. We must show that it is not iden-
tically zero. Consider the change of variables and set A = 1/z. By an explicit computation
one can note that the matrix A in at (7;)%_; = AL (vecall that 1:=(1,...,1)) is given by

A=d\)[I+eNU],
_ 1
ATl = m[l—f(A)U},
24+ 22)(3+ 222 + ) Y 2)\2 ‘ e(\)
IN(3+ A2) e T+ ve())

(B.1.2)

d(\) :=

T 3o AL
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By (B.1.2)

A= g/\(zl FA(T-ATM) = g/\(4 + ,\2)2(4 - /\2)?;/1(2(45 123)/\2 T (B.1.3)
We note that, for x = 0, one has

|det(I — A~ tooT)| > 1,
hence there exists zg < 1 and a constant ¢ so that for all
T < xo,|pi— 1) <c onehas det(I—A lowT)>1/2.
One concludes as done for .
O

Lemma B.1.2. There exists a constant co > 0 independent of the set S such that the assumption

(1.2.16) is generic in V(c2).

Proof. Similarly to the previous Lemma, we define H so that (see (5.3.9))A = QHdiag(d;) and
w; = diag(¥;)b; with |b;j| < C with C independent of the J; and j. Similarly to the previous
Lemma, the entries of H are uniformly bounded. Then

AT (w; —wy) = QTHTT (b — by). (B.1.4)
Following [B.I.T] we can conclude that there exists some constant C' > 0, independent of J;, such that
H-T(b; —by)| < C (B.1.5)
In the same way we can conclude that
(I-AT5@) )y <Clyl  VyeR” (B.1.6)
Moreover (recall for the definition of 2)
I-ATo@T =0 ' 1-HTU)Q, (B.1.7)

then in the set ((1.2.12)) (with a possible smaller constant c;) the entries of this matrix are uniformly
bounded by some constant independent of the 7,. By Lemma the determinant is bounded from
below, so that there exists R independent of S such that if max(j;) > R then

‘(I - A‘TU(E)T>_1Q_1H_T(I)]- —by)| < 1. (B.1.8)

In the case max(7;) < R consider max{|j|, |k|} > M with M > 0 independent of the set S. Then
if M is sufficiently large then holds.

In the case max(7;) < R and max{|j|, |k|} < M we reason as follows.

Note that

-1
‘(I—A‘Tﬁ(w)T> QL HT (b, — by)| < K
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where K > 0 independent of S, hence for |¢| > K then (1.2.16]) holds. Otherwise we show that the

following rational function of the tangential sites are non identically zero
P(l,j,k,75,) = (1 — A—Ta(w)T)f — AT (w; — wy).

We remark that 7; — P(¢, j, k,7;) are a finite number of the functions since |[¢| < K and |j], |k|] < M.
By evaluating the w; at (J)i_; = A we get

274457 M7 45+ 4357
3 (1472 B+A2=XNj+72)B+ 4N +352)

w; = wlj, A :=

Hence condition (|1.2.16)) reads

04 2 1= TV (i) = ulk ADT =

1—wvr())

ey (w[j, \] — wlk, \]T. (B.1.9)

We show that there exists A € R such that the function

1 —wvr(X)

slj, k, A = a0

(wlj, A] — wlk, A]) (B.1.10)

does not belong to Z for any v € N and any |j|,|k| < M. We have that

, 12 k(4 + k2)(13 + 3k2 j(4472)(13 + 352
slj, k, 1] = ( 2)( I )6— ( .2)( - ,)6 , (B.1.11)
5(3 4 10v) \ 16 4 23k2 + 8k4 + k6 16 4 2352 + 854 + j
and we note that 19
k1< —2 4 <1
|57 %, ”—5(3+10u) <5h

for any v € N. This implies that for any fixed j, k, ¢ the functions P(¢, j, k,7;) are not identically
zero. Hence the thesis follows. O






APPENDIX C

INTEGRABLE STRUCTURE OF THE DEGASPERIS-PROCESI
EQUATION

We write the complete expression of the constants of motion (5.1.1)) computed thanks to the
procedure of Section 4 in [4§].

1

K, = /(Jlug;)udx, (C.0.1)
2 Jr

Ky = /(—1 +u— um)% dz, (C.0.2)
T

1
K3 = —5 /(_1 +u— uazx)_% (Ux - uazxz)z + 9(_1 +u— U:c:r:)% dz, (COS)
T

2Tm?2 9m?2 27m3 729m4 27m3
 Tmae | 379351mS N 3283m
27Tm2 | 19683m7 | 729mP

K, = / m_§< Opm | 2Magea | 17Tm3,,  1880m3,  3lmi,
T

46m2  112mm,  TTMapeeMaes
81m3 27m3 81m3 (C.0.4)
682M4peem?  3394mgemd
 243m? 243mb
BMazeme  108386mimy, — 22240m2m?2,
 3m3 2187TmS 729m5
1688m§mm _290mxmmxmm _ 1 )da:
243m4 27m4 27Tm '

In Section we use the infinite dimensional version of the following lemma about the normal
form of commuting Hamiltonians.

Lemma C.0.1. If two finite dimensional Hamiltonians
H:=H® 4+ HE  g.=K® 4 g3 (C.0.5)

are such that {H,K} = 0, then, for any n € N\ {0}, there exist a Birkhoff transformation ®,42
which puts H and K in normal form up to order n

Ho®,,o=H® 4+ 27, + HZ")  Kod,,,=K% 1w, +KE") (C.0.6)

where Zy,, and W, are polynomial of mazimal degree at most n+ 2, commuting both with H® and
K®.

241
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Proof. By assumption
(H K}y ={H® K®} + {H® K@} 4+ {H? KO} 4+ hot=0, (C.0.7)
then this identity holds for each degree, namely
(HO K@y =0, {HO®O KD 4+ {(H? K®}=0,... (C.0.8)
We decompose P*) | the space of polynomials of finite degree k, as
P = Ker(H®) g Rg(H?), P® = Ker(K?)a Rg(K®)

where Ker(H?) is the kernel of the adjoint action {H®, -}, same for Ker(K(?)).
First we prove the following claim: given an integer k > 2, if

{(H®) KOV 4+ {H?) KFY =, (C.0.9)
then

k k k k
HRg(H(?))H( )= HRg(K(2))HRg(H(2))H( ) HRg(K(?))K( )= HRg(H(?))HRg(K@))K( ) (C.0.10)

In particular, we prove that

k k
HRg(K(2>)HKer(H(2))H( ) =0, HRg(H@))HKer(K@))K( ) = 0. (C.0.11)

The main point is that, given f € Kery ), one has {K @ } € Kery 2, namely the adjoint actions
of H? and K® commute. Indeed {H®), K} =0 and the result follows by the Jacobi identity.
Thus {Ilg ey gy H*, K®} € Ker(H®) and by (C.0.9) we have

(T gy H® . K@} = —{TIpy oy HP, K@} — {H® KW} € Rg(H?).

Therefore {HKer(H@))H(k)’ K®} =0 and follows. By exchanging K'®), H*) and repeating
the same arguments we deduce our claim.

We now proceed the proof by induction on the number n of the Birkhoff normal form steps.

The base of the induction is trivial, because ®(©) is the identity map. Thus suppose that we have
performed n > 0 steps. By substituting H and K in (C.0.7) with H o ®, and K o ®,,, and looking
at each degree separately, we get

{H® K®} =0,
{Zy, KD}y + {H® W} + IE+2 {7, W} =0, (C.0.12)
I3 Z, Wt + {H") K@Yy 4 {H®) K0+3y —¢ .

By the inductive hypothesis Z,,, W,, belong to Ker(H®)nKer(K®) so {Z,, K&} = {H® W, } =

0 and by (C.0.12) II(="+2{z, W,} =0.
Again by the inductive hypothesis (and the Jacobi identity) we know that {Z,, W, } € Ker(H®)n

Ker(K®)). Then, by (C.0.12), we have I™+3{Z, W, } = 0, because

HgerrentH? KUY =0, e (H, K} = 0. (C.0.13)
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Hence we conclude that H(5"+3){Zn, W, } = 0. By this fact, the third equation in (C.0.12)) becomes
{HO+3) KOV 4 {H@) g0+ — ¢ (C.0.14)

and, by the claim above, we have

+3) _ +3)

HRg(H@))H(n HRg(H(2))HRg(K(2>)H(n

and

J(n+3) K (n+3)

HRg(x) = lRgme)HRgr@)

In order to obtain the normal form at step n + 1 of (C.0.5) we apply a change of variables ()
generated by the Hamiltonian F' () and we define D1 = &M P,,. The function F™ is determined
by solving the homological equation for H

" ni3) [C013) n
(H®, py = —HRg(H(g))H( +3) = —HRg(K(Q))HRg(H@))H( +3) (C.0.15)

We now prove that F(™ solves also the homological equation for & . Indeed by (C.0.15)

(K@, FM} = —(adH®) K TRy e TRg gy H "}

)

and by (C.0.12), (C.0.11)) we get

{K®, HRgenRgme) 7 Iy = {1, HRg(xe)TRgm@) K . (C.0.16)
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