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CHAPTER I
GENERAL SURVEY OF LATTICE GAUGE THEORIES.
1. Introduction.

Nowadays particle physics is formulated by gquantized
field theories., The procedures of quantization can be
classified into canonical operator formalism, Feynman path
integral formalism and stocastical formalism. Hereafter
we will be concentrated in Feynman path formulation, which
we think to provide a natural bridge between field theo-
ries and statistical mechanism. It is well known that non-
trivial field theories in the continuum are plagued with
infinities, These infinities are unphysical and can he a-
voided by the usual renormalization procedures. Moreover,
a field theory defined in continuum can only be tackled
properly by perturbations, which is rather limited in its
applications. Many crucial guestions and practical probi
lems like confinement and hadron mass spectra cannot be e-
ven hoped to be answered in perturbative regions. HMany
such motivations force us to find some alternatives to
solve these problem,

Wilson proposed (1) to put a Field theory on a lat-
tice. For a finite volume we are dealing with only finite
number degrees of fresdom. The lattice spacing provides a

natu;al cut off of momenta in the sense that distances

smaller than the lattice spacing have no meaning, and so
are the momenta larger than 70&. Therefore by defini-
tion there is no ultraviolet divergencies in the lattice
theory. The continuum theors is got by sending the lat-
tice spacing to zero at the end of calculations. Howe-
ver, one may take another point of view that our space
time is fundamentally discrete, that is to say that the
continuum approach is but an approximation to this fun-
damental lattice, when one goes into the sub-Planck
length scale one should see this lattice structure, as

recently advocated by T.D. Lee and others (2,3).

2. Lattice Gauge Theories.

COnce we have a lattice, we may assign our fields
{scalers, vectors, tensors) to different lattice topolo~-
gies. The basic cubic lattice structures are called
"-cells. A point is called a O~cell, a bond is a 1-cell,
a plaguette is a 2-cell and so on. The continuum analegs
are differential forms. Thus it is natural to put the
scaler on the points, vector on the links, tensor on the
plaquettes.

If we want to put photons on the lattice, we would

put our basic variables on links call it

(1.1)
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which is a complex number modula unity, or a abelian phase.
Out of these link variables we may define a action of

the theory

S‘(Z’_Z;-(l"“&}p) (1.2)

and the partition function

2 = (Puexpl-St
where Up is a product around a basic plaquette in the
ijattice. We see that such action is local gauge invariant,
At this stage the only criterion for the choice of action
is that it reduces to the continuum action when lattice

spacing goes to zero.

g ~ ~-!’5de B gz_i., (1.3)
0 4 m 29>
This limit sometimes is called'the naive continuum limit
because we have not included the quantum fluctuations ’
which are implied in the Feynman path integral eq. (12}
Now we have a well defined theory. One immediate

advantage is that we can do strong coupling expansions.

Take the Wilson loop for example
WY = S&U T UL ex]3§—37§ /.‘7 (1.4)
L&ec z

which represents the worldline of a guark pair created at

o

some moment and annihilated scme time later. If this ex-

pectation value behaves like

LWCECH> ~ exﬁwf‘a%(,@)} (1.5)

We may conclude that there is always a linear potential
acting between the two guarks, it would cost us infinite
energy if we want to separate them infinitely long apart,

so is the confinement picture. On the other hand if

LWCC)> v iﬂPi”pexime‘mf{C)} (1.6)

then to separate two gquarks costs virtually no energy.
Thus we have free quarks around and confinement is lost.

The nonabelian generalization is straightforward if
we want to put OCD on the lattice. Instead of an abelian
phase in eq. (1.1) we now have a SU (N) matrix and instead
of Up in eg. (1.2) we now have TrUp to ensure the local
gauge invariance. .

We shall argue later that whereas the nonabelian
gange theories have always confinement the abelian 1atticé
gauge theories have always a phase transition separating
the confining phase and deconfining phase.

The model proposed by Wilscen eqgs. (1.1,2) is called

compact action as constracted with

- o Ayl % O (1.7)
b oy ¢ AP :7'/'/5?;«‘(”>
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which is alsoc a lattice gauge theory enjoys also local
gauge invariance and reduces to the same continuum limit
eq. (1.3). For this latter model we cannot perform
strong coupling expansion. The crucial difference lies
in that in eq. (1.1) we can freely add ZﬂTﬁag to Ar\
without changing anything whereas it is not true for the ac-

tion in eq. (1.7).

3. Dual Meissner- Higgs effect and confinement.

One of the central aims in lattice gauge theories is
to understand why quarks are confined. Now people believe
that the confinement mechanism for abelian lattice gauge
theories is understood properly, at least qualitatively.
The basic argument in arriving at this conclusion is by
recognizing the crucial role played by the topological de-
fects such as monopoles in the compact models. Confinement
is realized in these models by the so-called dual Meissner
-Higgs effect as opposed to the superconductors, as advoca-
ted by Mandelstom and 'tHooft (4.5). ;n an abelian theory
one can argue it quantitatively. Take the Wilson action

for U(1) group.

Z=Y5n epi-s T

S= @Z Cos( \;"“AM(V\)—V},AFL,,))
e/

(1.8)

where
VFAV(‘A) = A,;(nflr\) — Ay(ﬁ)

To see the dual picture clearly one has to invoke an appro-
Ximation due to Villain (6). It says that for B large one
can expand the Boltzmann weight around the periodic gaus-
sian forms,
= BCOS(TnA ln) - T A #n)
e s\ (1.9)
— =B (DAt —OuA,80) 4 AW N0 )
(1) 2 e
—"V\F,‘w):ado )
where the integer field ﬁqu[ﬂ) is associated with each

plaquette. It is convenient to introduce the dual field
¢ as
fw?(“)

¢o T

)
2 =Tr Z S clf,,\u(*‘! g dA .
Npdy nwn;:-ca—va‘vr.l}—(’; oo 2

Tole oF Ly }
% Q”‘Pi—?-‘(")twu%w‘"’ +u %‘Ncm(o}.A‘,-O,,Au 4’2Trnr,))

Now we may integrate over fields Ar~and it renders th,j

(1.107

—~
: . " s be
divergenceless and summing over WLrVrestrlcts ﬁfpd to

aﬁiggr_valued and we have

= ! o 1 (1.11)
2= 2 g(\’%ﬁw‘;gxm-_‘ni‘ £

e e |

where we have been sloppy in gauge fixing factors, they

IS



. should bg inserted where appropriate, and

ii?“” :—?nﬂ _ ?(n«p) (1.12)

the constraint

\7\/\'9(.«\;)(“) = O\
can be solved by the ansatz
&) ‘9‘“9: ,,,yg-’gq—C? w 3 o{s‘m&m?m\s anc{

by Spv = 6?\?9‘5 _\erg

in four dimensions.

(1.14)

Let us first look at the three dimensional problem.
To extend the PVS from integer values to the whole range

we can again introduce an integer valued field M (n) and

;ince '9 > — ) \l'
rﬂQ - (iyrkcF J
we have
d»:) .
TT S S-1—7(\‘) 9 20 L11ien) M\’ (1.15)
J:fj% ﬁ:;ﬁ r L 285 A PR ALY @ {

We may interpret {}}(w) as monopole density since we can

relate it as

Vs = gwwsﬂr‘: TR (1.16)

9

obviously the A field is not integrable and we have dé—'
fects in the original model and such defects are called
monopoles. ' '

These monopoles interact Qia a scaler field (n)

In fact, we can carry out the(? integral to get

ey ST
2 =TT O QxP{ ;)mumu )x‘mt})‘ (1.17)

! mlwyz-is

whereqjkr) is the lattice Comlomb potential and has the

form "
vk
"Ucr>=? Pr o 1.18
o QT3 é").iMCOQ\%.« (1.18)

We see that 3-dimensiocnal lattice QED is equivalent to an
ensemble of monopoles interacting through a Comlomb poten-
tial. When B is large we expect that the density ofvmono—
poles is very small. ‘However, since they interact via a
long range force and we do expegt Debye screening for the
charged particles take place and confinement is always
there for charged particles for any finite low temperature.
This conclusion was first reached by Polyakov (7} and the
lattice formulation was done in ref. (8).

Now we go to four dimensions and we shall see that
conflnement is lost at low temperature.

In four dimensions instead of eq. (1.14a) using the

anstaz ey, (t.14y)



(1.19)

o A
OrAU \Z,A 3 ﬂm}}’ﬁ g

[ Tg—wl 33 opwpi

np -wur(sQ rtv

where we have imposed Qi:Q =0 to ensure the gauge inva-
riance. Thejzr field can be naturally interpreted as mo-
nopole loops which describe the monopole pair worldlines
in the space-time. We can also integrate out ?%:fields

and get instead of eg. (1.17)

Z= 7 Z_ S(WPQ,D)QXT ZQZ ¢ phlc-H 4.6 % " (1.20)

U(T\) = gr Qw 1R 3 +([“Mnl"\)

We have now an ensemble of monopole loops. At the

low temperature, we expect that the density and the lengthg
of these monopole loops to be small. Unlike the monopoles
themselves in three dimensions, the small ana sparse mono-
pole loops have only dipole type interaction at large di-
stances which are much weaker in character. So they can- -
not screen the charged forces at sufficiently low tempera-
tures and we don’t have confinement there. However, due
to their much larger entropy associated with larger loops,
we expect that as we increase the temperature, say T > Tc,
we would find infinite long loops everywhere. They have

finite density in space-time and they are energgtically

H

strong enough to squeeze the charged force lines and we
thereby get confinement. Therefore, four dimensional lat-
tice QED is a two-phase theory.

In later chapters we want to show that when external
random disorders are properly introduced, the theories
can be made manifestly confining. The idea for abelian
lattice gauge theory is most simple and we outline it be-
low.

Instead of the Wilson action we may define our theo-

ry like

=3 (1.21)
O=Z 6, U,
P
where we assign a complex coupling to each plaquette

By = &, exp(ariudy)

and we assume UD? to be quenched variables. That is, the

free energy of the theory is given byv

F((’;)-TTSCQN QS?%(LQ) (1.22)

th)_ S\Q‘A;xP?\»@LCQID’w’*y O A .ZTWMy)
If now we go through all the steps leading to eq.

A

(1.20) we would get

12
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= 7ﬁ? > o = a7 ’
Zrw] e o/?;-ﬁ,g( Y *0/")5(\_1 2 ) (1.23)
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PRELUDE TO CHAPTER II

As we shall bs concenirated on & spacisl model in
Chapter II, we want to explain briefly in this prelude
how the problem arises,

We have introduced a discretized manifold (lattice)
for fisld theories in Chaoter I, so we can proceed to
put the relevant oroblem on a computer to simulate it.
For example Creutz was the first to measure SU(2) lat-
tice gauge theory phase diagram by Monte Carlo simula-
tion, where it was found that the intermal energy fol-
lows a rather smooth curve as the temperature varies from
the high end to the low end without showing sign of la-
tent heat, in contrast to the U(1) lattice gauge theory
case, This kind of simulations gives indication that the
nonabelian lattice gauge theories are always in confining
phass, a long sought proverty by Physicists,

However later simulations using more complicated ac-
tions than Wilson action revealed a quite complicated
phase diagram, i.e, & multiphase picture. Thus it would
suggest that nonabelian lattice gauge theories might have
deconfining phases, But later analytic work by Bachos
and Dashan suggest that the phase transitions observed by
. Monte Carlo simulations are initiated by some artificial

lattice defects whose effects would not have any conse-

quence in the continuum limit., The Chapter II is devo-
ted to a model proposed by the author (Zhang ¥.C., Phys.,
Lett, 124B (1983) 394 and Fucl. Phys., B220 (1983) 302)
to show how would one systematically avoid these artifi-
cial phase transitions.

Also in the prelude we want to give a schematic
prescription of guenching procedure which is used exten—
sively in all later chapters in variocus versions.

Suppose our system is described by two kinds of

fields collectively denoted by U and V, the action is

s[u,v]

The usual quantum field theory is said %o be annealed

because the free energy is given by

P~ dog {BUDV oxp - SLUVIY

Howevsr, we can take part of the variables to be quenched,
say U, in a sense they ars taken to be slow variables and
their fluctuation can be neglected. The free energy in
the quenched prescription is

7= § BUF (V)
FﬂD=%j§@VL4€—SULV]}

| 6



end similarly we have expectation values in the guenched
preecription as

2007 = Sprexpi-sto,vak
{O>= S@J

LU]

Although in this paper we shall be only interested
in epplying guenched approaches o gasge sysitems, we
would like %o recall some extensive applications in ste-
tistical mechanics and some intuitive interpretation of
the realization of guenching disorders in physical reg-
1ity,

For this purpose let us meniion the spinglasses and
localization problems, which are still the foeusss in.
the field and undergo rapid Progressss,

Let us start with the Ising model

- Z, 75

zgf ;Ff —pH ]
o}

3 la stherwlse

with the above choice of J%& the model dsscribes pure

o

BV oo, vyexs]-Sro v

T (g when 1] ars nearest neighbors

%

J

ferromagnetic spin in the eguilibrium at the temperaturs
T = }é“ Howevsr in reality we may have situation in
which many background dsfects ars present. They are ran-
dom in character and influsnce the Ising spins in the o-
riginal model but they receive no feedback reaction from
the configuratione of Ising spins, To simulate such a

situation using a mathematic model it was suggested

(there is & vast literature in this subject, e.g, ref, (5.1)}

F=- logr_gfﬁpiw(&i—%}

where the bar dencies sverage over random links

Jt- =0
! b
- 5 S .
Tg Ty = 3 05194,

where the links are assumsd Yo be gaussian distributed,
In the language of the preceding general discussion
(s E_B,VL]} the U variables are just the random interac-
ting links and the V¥ variables sre just Ising spins, We
may say Ising spins are the fast variables while the ran-
dom links are slow wvarikblss,

Another populsr model using quenching ideas is lo-
ealization in which one studies the effsciive Hamiltonian

of the Scheringer squation of & noninteracting electron



(Ax '%\/("))'KIR:E’L!)

.where V(x) ie again assumed gaussian distributed

Py = vr?—/\wﬁi)}

with»}L measures the strength of disorders, ILocaliza-

tion is a phenomenon that when the disorders ars suffi-
ciently strong, the solution of the effective Schrodin-
&ger equation may be fast decaying function, which means
we do not havs macroscopic conductivity., We stop here

this digression and return to gauge systems,

CHAPTER II
A QUENCHED NONABELIAN LATTICE GAUGE MODEL.
1. Introduction.

(CD is now a generally accepted theory describing
the hadronic world. It is fashionable to put the theo-
ry on a lattice to go beyond the perturbative regions.

In the strong coupling limit confinement is manifest
since the Wilson loop decays according to an area law.
For a nonabelian gauge theory like pure gluonic QCD one
expects that the confining phase characterized by the
area law should persist to the weak coupling region with-
out encountering essential singularities. Such naive ex-
pectation was obscured by the sharp crossover in the lat-
tice SU(2) gauge thegry via Monte Carlo simulations (1 )
and subsequently by the peak in the specific heat ( 2).
The situation may be understoodvusing a generalized ac-
tion with both fundamental and adjoint representations
first studied numerically by Bhanot and Creutz (3), they
found a rich phase structure of the SU(2)~-S0(3) lattice
gauge mode;, there are first order phase transition lines

in the (8 } plane and the sharp crossover of the Wil-

a2
£'7°a
son action is believed to be the shadow of the transition

line. People have since argued that these first order

20



phase transitions are not deconfining; one can get rid
of these singularities by either going arcund them or by
choosing some suitable actions. There are many existing
explanations for the origin of these first order phase
transitions; Instantons {4), fluxons (5) or monopole
condensates (6 3. Most recently Bachas and Dashen propo-
sed a criterion for these first order phase transitions
{73, They observed that the transition lines discovered
by Monte Carle simulations lie always in regions in the
coupling plane where the plaguette actions possess non-
trivial minima.

However we will refer to these local topological
objects generically as lattice defects, since it is que-
stionable how relevant these lattice sffects are to the
continuum physics, where the correlation length in terms
of lattice spacing is infinite. Moreover these lattice
local topological objects are model dependent while we
assume the continuum limit is unigue. The presence of
these lattice defects can initiate the first order phase"
transitions in the region separating the strong and weak
coupling limits, just like the gas—-liquid transition as
the density of the local lattice defects varies. Such
first order phase transitions are responsible for the
singulaf structﬁres in the strong coupling approaches.
They stop us from extrapolating continuum physics smooth

ly from the strong coupling end, and also obscure the in-

O

formations obtained in the scaling regions in the Monte
Carlo simulations (8).

It would be nice to find a systematic way to avoid
the first order phase transitions caused by the conden-
sation of those lattice defects. Motivated by these ge~
geral considerations we proposed a quenching scenaric in
ref. (%) and we argued the quenched lattice gauge models
{QLGM) have smoother crossover behaviors by just avoiding
the first order phase transitions.

In thischqﬁer we spell out further the quenching sce
naric in following steps. In sec. 2 we discuss the local
minima in lattice gauge theories and the connection with
topolegical objects; in sec. 3 we describe the QLGM and -
discuss its weak and scaling regions, where we show theo-
ries scale universally, sec. 4 is devoted to solving QLGM
in two dimensions and at large N limit analytically and
showing the absence of Gross~-Witten transition (10) , in
sec. 5 we use the mean field approach to show the absenc?
of the first order transitions for generic QLGM and di-
scuss how the second order phase transitions can possibly
survive, in sec. 6 we point out some interesting connec-

tions between the random fluxes and confinement problem,



<o
2., Local minima, monopoles and fluxes. P ? ) (2.3)
furgy = Sty § acng
\ S -
We start with the lattice gauge models with both fun- The mapping from 8 _planes to the (B8 , B, ) plane is
damental and adjoint representations which have been stu- valid for B. > O. When BA approaches zero from above the
died extensively recently. We parameterize the theory in gaussian measure becomes a delta function and the action

the following way N ‘ reduces precisely to the Wilson action.

It was discussed in ref. {( 9) that the plaquette ac-
3 — d-. , .. 1
Z‘ - ﬁU UPAL (G‘O‘@I\”“H(u’_"’ ”"C’)*'A(ltfo:l ”’\3“) (2.1) tion in Eq. (2.2) may have minima when the plaquette va-
P ‘ ' d

riable Up {and thus also the link variables Ul) sit at

This parameterization is essentially the same as that used the element of their abelian subgroup Z(N) in the case of
in the literature but has the virtue that the procedure of SU(N) gauge group and u{1) in the case of U{(N) gauge group.
going to the continuum is done only by 80(80+ @) BA in a The corresponding abelian matrix

sense is orthogonal to Bo and plays the role of an auxi- .

liary parameter or soft parameter, as its physical meaning L)(Ozzle de? k)(O) ©@ W (2.4)
will be clear in the next sections. ? N — L) < V

Bachas and Dashen have studied the local minima of is the minimum solution to the plaquette action (whereLD

the action and found they are responsible for the first i§ a small hermitian matrix)

order phase transitions discovered by Monte Carlo simula~-

tions. However, for our later purpose, we will go to the --gP - @PN ({,YQ?, N ‘mC«. (2.5)
random complex coupllng planes by rewriting Eg. (1) as

only if the requirement
il ”» “(" gd ® )“"F(' 3? ‘M? ‘g%A ’\%’b“‘l’tl 8 N(‘l'ﬂ) ’22142!)4 C. T‘
_.J ES M%f((&;?)( Q(Qtybsqr \) .0\0{ ) >O

‘where Bp is the random complex coupling assigned to each !

unoriented plaquette and is gaussian distributed with is satisfied. Therefore we see con the half Bp plane

the common mean and variance with ( 52 Sp > 0) divided by the line through the origin

- ReBp
25 - =tava,
IV‘n Qp \ t‘

..2‘{;}..



(2.6)

the minima can be formed.
These configurations were first studied by Yoneya

(5} for the Wilson action as fluxons and theiy relevance

to the phase transition and conflnemenf was Dolntpd out
there, ' '

Now we want to study the partition. function Eg.

{2.2) with the gaussian randem coupling measure taken
out ) ' ' |

- T )i: 1‘ = :; 1 IV
< T e Dozt ) 706 o

%[@&32 S@u Q"Fi %‘\?W(‘CYUWM Yth.oo 7]’

) (2.8}
denote
Cot
Bz A Q\‘
v P > = (2.9)
i JLP “'(@p}
W& note in the expression
zL“\P'O‘Y] = ZIp (2.10)

if we make a change for a particular plaquette

25

’ (2.11)
[ +
>, ?o<p Yo
and let the phase shift Yp go to the varigble tr Up, then

we see the change of the system is, for the variable

T e, % tru, e
peC PeC '

the product is aroumd‘the cubes bordered at the pladuette
P, in three dimensions there is a pair of cubes with oppo-
site phase éhanges and in general there are (D-2) pairs
of them.

The choice of cubes is such because these variables
are invarieant under the so~-called third kind gauge trans-
formations {(11) {of course they are ordinary gauge inva-

riants)

L)Q_“-D LOQ'Q)R’ ' (2.13)

where Uz is link variable and(jé is the element of the cor-
responding abelian subgroup.

Now we can say that under £he change of Eg. (2.11) the
system is added with D-2 paires ofﬁabelian monopole-anti-
monopole with magnetic fluxes going through plaguette P.
The energy of such monopole pairs is carried by the fluxes

and can be measured by the difference in the free energies



'\?(y*’):’o"é‘z A Qo—(}zc)‘r,u‘,] . (2.14)

In the trivial two dimensional case (with free boundary
conditions) the fluxes are invisible since f(yp) = 0,

The three dimensional case is particular since there
are same number fo plaquettes and links. At first sight
it would seem that all the abelian phases in Egq. (2.9)
can be absorbed by the third kind gauge transformation
Eq. (2.14). But this is not true because the presence of
the abelian monopoles, presumably it can be achieved by
some singular gauge transformations like the ones in the
continuum case discussed by Wu and Yang (12) to make the
fluxes invisible (i.e. f(y ) = 0). However we do not
know how to realize this on a lattice. In higher than
three dimensions fluxes carry energy in whatsoever sense
since there are more plagquettes than links.

These kind of monopoles were early studied by Brower
Kessler and Levine (6) for the SU(2) Wilson action where
they found numerically that at the crossover région the
monopole density has a sudden drop. Thus they concluded
the sharp crossover for the SU(2) lattice gauge theory is
caused by transition in monopole phases.

In the next sections we will argue that a gquenching
scenarlo in random couplings is able to prevent there to-

pological objects to have phase transitions.

3. The quenching scenario.

In the preceeding section we have seen that in cer-
tain regions of coupling planes the lattice topological
objects are energetically favorable (being local action
minima); we assumed that their condensation can cause
phase transitions of the whole system. An analog with
condensed matter physics can be dirawn here. The motion
of electrons in the back ground random magnetic impuri-
ties is conventionally described by coupling the quen-
ched random external magnetic fields to the pure system
(13). In our case the monopele pairs discussed above
act as random magnets, and since our assumption is that
they are merely impurities in the lattice gauge sys-
tem we are led naturally to study the theory with these
impurities gquenched.

The quenched lattice gauge models (QLGM) can be de~-
scribed by saying that one averages over the random coup--
plings on physical observables rather than on the prati-,

tion function. For example, the free energy

Loyl

X

: . L
~F(@O)GA\)=T;(%A S QX})( %N{ﬁp Q ) (2.15)
2aq 7
J

and the correlation function

_ N = a il (2.16)
<«S:) ..,’[;]'(’;éb\ S\c\l@ )QK‘) %U (Q’ e’c\/{éA )
A(S—)a.
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where <})ﬂ is calculated using thé action Eg. (8).

For the QLGM to have any relevance to the continuum
physics they have to have the same continuum limit as in
the annealed case, the conventional two parameter lattice
gauge models expressed in Eq. (1). We will argue that it
is the case. A

In the weak coupling region (6\7 >>1}) we will parame-

trize the link variables as

A
o 6\0\ LN 2.17)
Unyn
instead of
\q A
U, = Q‘g pe? (2.18)
r‘vh E

since there is an ambiguity in assigning a coupling to a
link. Therefore, we will express the ordinary expansion’
in coupling constant as expansion in loops; = the two ap-

proaches are known to be formally equivalent.

We will first look at the annealed case Eqg.(2.2) which

is simply a rewriting of Eg. (2.1),. the expection value is
' - o R P ( A o
(—F)=§i;(%k§f\m)hp( 20104 /) Y 10 farapy

CBo2 NR(trUp =N g[epm-wurm)w.c.]}

This theory is known to have naive continuum limit
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B,= = ‘ (2.20)

and we suppose it is also true at the guantum level as u-
sual, aithough a rigorous proof like the one for QED by
Sharatchandra (26) is lacking.

Comparison of the diagrams between Eg. {2.19) and
continuum theory like OCD reveals that there are new ver-
tices thus new diagrams in the lattice theory. However
the naive power counting in lattice spacing a tells us
that they are less divergent or finite. Therefore the
parameters defining the theory such as the first two ef-
ficients of g~function should be the same as in the con-
tinuum case, while the parameter in general differs from
one subtraction scheme to another. This is the general
expectation toward the annealed case which should also
hold for the rewriting Eg. (2.19).

In Eg. (2.19) we see that besides the Feynman rules

in Wilson action, we have also the propagator,

C&4 Ba
N b

and new vertices proportional to SP. After calculating

SﬁU‘SDCA)Q*F?’S(@o,(%P)ﬁ’ (2.21)



to some loop order with Bp as external fields, thénAthe

average over Bp selects the diagrams with an even number
of legs. Now we shall see the difference in diagramatic
language between the annealed case and the quenched case.

In the average

$5,= Spudarexpi-Sceaeo |
AN

the vacuum diagram cancellation is incomplete due to the

(2.22)

presence of the external fields Bp. Taking a two point
Green's function for example symbolically we can write

(expanding in a power serles in B )

‘<§>o w@m + w@w << Q@KKAAQ \(;:23)
@ + @ £ @ N

where the dotted lines are Bp legs. Carrying out the ave-

rage over Bp’ we see, in the quenched case, there are new
diagrams coming from combination of diagrams in the nume<

rator and in the denominator (which is again expanded in

apower series in Bp). These new diagrams are necessarily

proportional to BV. However, therg is no new diagram in
character arising in the quenched case since the propaga-
tors ‘and vertices are the same. The difference is in the
weights of the finite and less divergent contributions
therefore we expect that the quenched case can also pro-

duce the same kind of continuum physics as in the annealed
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case when the lattice spacing goes to zero.

It is interesting to see how the /\ parameter chan-
ges in the quenching scenario. Using the perscription
Eq. (2.23) it is easily seen that in the gquenched case
the tadpole diagrams proportional to BA exactly cancel
at least to the orders required to calculate the /\ para-

mzter. Specifically
-~ (2.24)

On very general grounds we would expect that in the
annealed case the local topological objects which act as
megnets would be free to line up thus lowering the energy
of teh system, while in quenched case such a tendency is
minimized. When equaﬁing the energies of the lattice sy-
stems with that of continuum theory, the annealed case
requires a smaller /\ parameter than the quenched case to
compensate.

This argument can be readily seen using the back-
ground field method of Dashen and Gross ( 15). In place
of Eg. (2.13) of Ref. ( 15) we have

- i
-QQ‘;<Z L“) D &.0«'12 =L ‘”f< ”,,*’dA(m“)](‘u(hwj)

25)
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(2.26)

for the annealed case and quenched case, respectively.
Where A stands for annealed, Q stands for guenched, <. 4>
denctes the guenching average, g {a) is the bare lattice
coupling approriate for a lattice spacing a and is the
same for both annealed and quenched cases, gz(m) is the
coupling of the corresponding continuum theory using
Pauli-Villars regularization. The only scheme dependence

is contained in dA {ma) and dQ (ma), which are espressed
(151

dA,Q(WW\) = 1 ( egmq + ClN), Q ) {2.27)

‘?é

where we have used implicitly the assumption that the two
schemes have the same divergent structures as for the con--

tinuum theory. Applying Jensen's inequality (the quench-

ing measure is normalized properly to 1)

(Lﬁ}igﬂ) < eg <?&[QQ > : (2.28)

to Eq. {2.25) and (2.26) we get

C(M)C\ 3 C(H}A (2.29)

The /\ parameters are related as

5%

L

Mea  (Waa |

A = o ’ (2.30)
by

which in turn gives

/\L S L (2.31)
 ~

In arriving at thisiconclusion we have inplicitly assumed
that the inequality hglds also at the leading loop order.

Let us calculafe quantitatively /&é’. In the light
of Eg. (2.24) wé_would expect that the tadpole diagram
propoftional to BA does not appéar in the quenched case.
We knew previously (8,27) that the BA dependence of the
parameter in the annealed case to one loop order arises
solely from this tadpole diagram. Thus in the gquenched
case ﬁ&ishould be BA independent to that order.

Now we show the above assertion using the background
field method and we follow the notations in Ref. {(15). We
omit the almost identical steps in our calculétion, for
details we refer to Ref. (15). In place of the Eg. (3.8)

in Ref. (15) we have now
-S 2ty = 2Bt lOp=0p )+ Re By 20 Retr (U |
- ..’W\@PIU Im tv—U\s

= -Np, (D) &y ar*)——trw o~ b Go-2)
(2.32)

» ) N N - - .f_‘ r\(
+N @ EeSE, S FRePy N Ler(Gy b) te(vot’- o, ]
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where the slight difference in notations is due to our
parameterization Eq. (1) and we have used further con-
densed notation i?Pg_ng(x). In arriving at the last
expression we have dropped all the eventual high order
contributions inQO{'s and background fields. Only the
last piece is new. Note that the new term does not get
mixed with any other term to the leading order when we
carry out the (} integration.

The contribution to C(N)Q is proportional to

<9~ﬁ I+ L+ RQFPN[*VC Gy-2) - A] "(RQ@‘,MYAMG;,I?D(ZJM

where the X integration is done, L denotes collectively

the o0ld contributions (BA = 0) and A is a constant propor-

tional to 1/80.

If the quenching average were inside the logarithm,
as in the annealed case, only the last piece inside the
parenthesis survives.; EXpanding the logarithm we would *
obtain a contribution proportional to 8 /B to C(N) (we
have in mind that 8 ’\/B for finite N), We write down
that result explicitly for the SU(N) gauge theory (which

is known to the authers of Ref. (8,27) using different

parameterizations)

L Lo _NT Ba
Anlea,per  Axtorpo) NN TEy (2.34)
R - ) Q -

Apy Apy

. However, in the gquenched Case, we have first to eXpand the
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logarithm and then do the quenching average. It is rea-
dily seen that when expanding the logarithm, the coeffi-
cient of (ReB ) contains only higher order terms (i.e.
terms proportlonal to 1/8 or [tf((%;‘l)]v ). The low-
est order terms (proportlonal to tqu;~2)/@o ) are
cancelled out exactly. Just as we have anticipated from
Eq. (2.24), we have done an explicit calculation to show

/«L is BA independent to the leading order

)

Ag€Bn )= Agee.,00 = Al (8. (2.39)
where /\tj((;f) stands for the /\ parameter of thg corre-
sponding Wilson action. We have seen that in our QLGM
the f\ parameter does not depend on BA, therefore a ra-
ther board class of theories with different positive BA's
will scale universally just as the Wilson action, thus
giving comforting support to the current Monte Carlo re-
sult (28} . The theories with finite positive BA in the
QLGM, which presumably are not plagued with the first or-
der phase transitions, will scale just like the Wilson ac-
tion. Thus if we don't have to worry about the first or- '
der phase transitions, we can justvuse the Wilson action
to do the calculations. However, the Monte Carlo compari-

sons with this expectation are strongly suggested.
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4. BAbsence of the Gross-Witten transition in OLGM.

Gauge theories in two dimensions are essentially a
one plaguette problem when a proper gauge is chosen. In
the large N limit for the gauge gfoup U (N}, the saddle
point approximation is expected to be exact, thus render-
ing these models soluble. Gross éndWitten solved this
problem for the Wilson action and they found that there
is a third order phase transition separating the strong
and weak coupling phases (10). Such singular behaviour
was also found for the extended action in the annealed
case (17). However, it can be avoided by choosing §r0~
per actions (18). Here we will see that the quenching
scenario is a systematic way to eliminate such phase
transiﬁions.

The intensive free energy in this case is

-F = Yma

e S‘g@ 1:-“—6»‘ Sd Cp

(where LT is the two dimensional space time volume and

°’23an§>[_2_(%9~(£\“\) -N)the ] (2.36)

putting ‘the lattice spacing a to 1).

{2.37)

Sb e P%jf‘]duﬂgpw (ke ~-K) + an.}
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—F=2a, gq’(\a,eup%r\i !\f{r(‘*al/@,}{ w%ggc{uexm W\}(ho-(\})ﬂq‘cf

where the summation runs over LT terms, and now we have

8)

A similar procedure can now bz implemented for a rectan-

gular Wilson loop {(of size RI)

W =§®@(§;su wu(c)ufzf}l By CEvOp - L‘*C‘}//{C@P])

- T
= LuoilR
9)

Sd (N Q\CP( N ‘?p ¢ l/(ér\)\ducruu.{g sevo-4) H,, '-J

for a rectangular loop.

The expression

E(pp)= _;_1 Q&}S\d(}uf[ BN (FrO-N )+ l\‘C.X (2.40)

in Eq. (2.38) has a finite separate large N limit. Wri-
ting

_ vot - (2.41)
Bp= G =19

Eq. (2.40) becomes

LI C Sl
E:((SP) = vz

. N (2.42)
2@"*§96§1€>“‘g -2 DG (52;)



which is exact Gross-Witten solution when 0<= 0.
Finally the intensitive free energy is (with y=
2

8 4 kept finite (11,9))

»/

2 Lox Jo ’(Q}W:{)/f
'5. "(vf'@a)/b’ Z'\”CQ > Y B
P =5 § e e LEED +2 Jedo @ 0
4@%@3/3

203,
I(f:?) (2.43)
[
)
which is absent of the Gross-Witten phase transition.

x(2p- .7‘335329 ~% Yy~ yéedw
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5. Mean field analysis and survival of second order

phase transitions from the quenching scenario.

Mean field approximations were very successful in
statistical mechanics. Naive applications to gauge theo-
ries appear to be in contrast with the Elitzur's theorem,
However the mean field approximations in the present for-
malism can be phrased as the saddle point approximations
(19), and they are very impressive in predicting the first
order phase transitions. The comparison with Monte Carlo
results shows that they are qualitatively correct. As di-
scussed in the preceeding sections, the first order phase
transitions arise from the local minima of the action

where the correlation length is expected to be short, thus

%9

2950

giving rather sharp minima.

In the following we show that the first order phase
transitions are absent in the QLGM via a mean field ap~-
proximation. To see this we do not even have to go into
much detail.

For the QLGM we use a modified method of Drouffe

(19). Define a trial Hamiltonian

H=2 te(m] g +h.c) (2.44)
~ .

where Mz is an arbitrary N by N matrix.

We take the free energy in QLGM

—-‘F=Sb$ Q&aztﬂﬁf;} (2.45)
Jensen’s inequality gives a bound for EEIZGE]

o -SHH >

<o S+ Sz e (2.46)

where the expectation denotes

A> -~ o] A . (2.47)
<A> = Spy /Zn

;ZH = S;‘:U&“H

and S is the action in Eg.{2{2) and thus

Lo



F éS@@ (LS-H>~ ngzﬂ ) (2.48)
We, assume the parameterization

,M{Q:fm\/i’ ‘ ‘ (2.49)

where Vz is in SU(N) or U(N) gauge group.

The task of the mean field approximation is then re-
ducéd to find an m which optimizes the bound Eg. (2.48}.
The general feature is that the optimizing m is a functio-
nal of couplings (e.g.f, 1By in the annealed case and 8
in the quenched case) and we shall denote it as m (8). In
the coupling region m(B) may be qualitatively different;
it may have finite jumps when croésing some lines (e.g. it
can be somewhere zerc and soméwhere nonzero). When such
jumps occur the first order phase transitions are said to
be ’located’.

- In the quenching scenario, Eq. (2.48) means to sum o-
ver all the, optimizing points in the complex Bp planes, .
even though finite jumps for m(g} may occur. ‘The integrail
as a function of 8, and SA is a smooth function everywhere
in the upper (BO'BA) plane,

We conclude that in the framework of the mean field
approximation no first order phase transitions can occur,
or, to be prudent, the mean field approximation cannot
predict any phase transition in QLGM.

We have seen that with finite 8A' the guenching sce-

nario can smear a singular function, while for BA= 0 we
know the Wilson action for N >:4 has a first order phase
transition. Perhaps the best way to understand the tran-
sient regime is to draw an analog with heat conduction.

The quenching measure is like a heat propagating kernel

'and.BA plays a role of the relakation time. ' The possible

singular thermodynamic function acts as. a possible singu=

- lar beat distribution imposed as initial cenditions. Af-

ter a finite instant BA we always find a smooth distribu-
tion function. ' '

It is interesting to noie how can the quenching
scenario manages to eliminate the first order phaée tran-
sitions while keeping the second order ones intact. The
reason is in general in Eg. (15). In the quenching mea-

sure

o .,
TP[("{;’@A Sd(’-’?) 6»?(:%{4 (Qi:”(so )L/@A ) (2.50)

the exponent has a volume factor, which wouldbmean when
we go to the infinite volume limit the gaussian measure
is merely a delta function and the theory reduces just
to the Wilson action. The quenching scenario would have
no thermal dynamic conseqguences. Such a case indeed
happens- and an example can be found in ref. (20). Howe~
ver, such cases do not occur in the guenching scenario

generally, when the interactions in gauge fields are short
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ranged. An extreme example is the two dimensional gauge
theory discussed in the last section, where plaquettes
decouple and Bp are independent variables. At first or-
der phase transitions, the correlation lengths are fini-
te, therefore the quenching scenario is sufficient to
smear out the first order transitions.

The situation is quite different for the second or-
der phase transitions, where the correlation length in
gauge fields is divergent. Within such a correlation
range, Bp are effectively . coupled and the volume fac-
tor in the exponent Eg. (50) is important the fluctua-
tions of % are suppressed and the quenching measure
gives a delta function. We conclude that the gquenched
theories approach the same critical limit as in the
annealed case. Note that the continuum limit is just
an important example of this statement.

Strictly speaking, the quenched regulated func-

tions with finite positive 8, can be best said to be in .

the class Cw, but not necessarily analytic. Moreover,
the quenching scenario by itself cannot exclude any long
range order phase transitions (e.g. the second order
phase transitions) if there are any in the theory. The
leading order in strong coupling expansion of a Wilson
loop shows that the guenched theory is also confining
(being independent of SA). However, if long range phase

transitions take place in the intermediate coupling re-

L

gions, like the case of U(1) gauge group, the theory can
still have deconfining phases. The present appr&éch,
combined with the Bachas-Dashen criterion (which did not
predict the second order phase transition of the U(1)
gauge group Ref. (7)), may suggest an explicit demonstra-
tion that the artificial first order phase transitions
due to the choices of la?tice actions (including those
observed in the Monte Carlo simulations) could be gene-
rally avoided. However, in the present stage, we cannot
claim there are no long range singularities in the inter-
mediate coupling regions for the non-abelian lattice
gauge theories, though we do not expect any;

In the quenching measure there is another factor
proportional to D2 (D is the dimensionality). No matter
how local the theory is the D links are coupled together
through D(D-1)/2 plaquettes by definition, thus we expect
when D -  the theory also reduces to the annealed case
aﬁd the first order phase transitions can still survive in
large D limit. i

We can support the above expectation by following clo-
sely the work of Drouffe, Parisi and Sourlas (29), which
predicts first order phase transitions for all the lattice
gauge theories with Wilson action when[}»m. Their obser-
vation is essentially when doing the strong coupling expan-
sion, the dominant diagrams have a structure of three-di-

mensional cubes, arranged in a tree and each plaquette

L



has to be used at most once. Therefore, in our present
case (the expansion parameters ére By + Bp or Byt Bp), no
Bp dependence would appear to this leading order (D - ).
We should get an identical free energy as for the Wilson
action which in turn has a first order phase transition

in the parameter

6. Discussion.

We conclude this chapter with some speculations. It is

a well known fact that in condensed matter physics the
random quenched external fields coupled with the pure sy-
stem reduce effectively the space-time dimensionality by
twoe (21). Parisi and Soulas were able to explain this
fact by revealing that there is a hidden supersymmetry in
the mixed system (22). Their observation is_currently be-
ing followed vigorously by the MIT group (23) for the case
of a gauge theory in the continuum. There is a recent |
claim that confinement is manifest when the gauge theory
is coupled by hand with guenched random sources (24) since
the resulting theory is effectively a 4-2=2 dimensional
theory. The connection between confinement andé random
.quenched fluxes was pointed out by Parisi (14}and Olesen
(25). We may view the random complex guenched couplings

as a natural realization of the Parisi-Olesen fluxes. We

=Y

wonder if confinement can be manifest without doing

strong coupling expansion in QLGM.
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PRELUDE TO CHAPTER III

In the beginning of 1982, there was a great excit-
ment among physicists by the discovery made by Egzuchi
and Kawai showing the so-called large F rsduction.
¥Which roughly is to say that when the number of internsl
degrses of fresdom is sufficiently large, theory defined
in the infinite wvolume limit approaches the one defined
on & single point which greatly simplifies the original
theory. Howevér, as it was later shown both by analytic
work and computer simulations that such 2 reduction works
only at high temperatures, and there is a first order
phass transition in the reduced theory which doss not
exist for the theory in the infinite volume. It was sub-
sequently suggested by the Princeton group and Parisi
that a quenching procedure may help to reduce the theory
exactly from infinite volume to & single point. In such
a procedure the extra first order phase transition might
be avoided and it so leads to the reduction.

However there sre many different prescriptions of
the quenching procedurs., Chapter III is devotsd to a
detailed analysis of the guenched periodic boundary con-
dition approach and is based on published material in
(G. Pariei and Zhang Y.-C., Fhys, Lett, 114B (1982) 319
and Wucl. Phys., B216 (1983) 408),

In the studiss of reduced model, the quenching idea
plays only a partial role, the limit N going to infinity
is erucial here, Let us recall the basic elements of
1/N expansion as & preparation for Chapter IT.

Take a scalar field theory in which CQL has N com-
ponents and the action is designed so that it is inva-
riant under an internal SU(N) or SO(N) rotation, an exam-

ple can be
s =§c(bx -Z-(ar%)(bhc(?a) -f/l(iCbi)? %
i &

Fow guppose N is very large, we see that the first term
ig of order F while the second term is of order Ne. It
may seem that the whole action explodes, In order %o
have a nontrivial large ¥ limit, one has necessarily to
keep A"V 0(1). This model is generally called large W
vector model, in the large N limit mean field approxima-
tion is exact, therefore we expect it can be solved by
mean field technics,

Gauge theory is highly nontrivial under large N li-
mit, This is because that gauge fields are described by
mirices not by vectors, large K limit imposes only con-
straint on the eigenvalues but not on +the off-diagonal
elemsnts of the gauge fields. However, remarkable ex-

ception has besn made in zero and one space-time dimen-
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sions ZZ]g Despite these pessimistic remarks, we shall
see that significant simplification can be achieved in
the large K limit,.

Let us look at SU(N) geuge theory in the continuum,

2
§= Elﬂ"%' tr{ 9pGo-2,Cp )7 G, Gp])
4 {Ghost and gauge fixing)

where %» is N x K matrix. As explained in the wvector
model, the coupling g should pe order of ]h/ to have a
meaningful large N limit. Fow we look &t periurbation
disgram expansion, for simplicity we start with a two

point function
. =0
Etf(;f«

Laned
<(2:ij G, (07>
O(,é)c) °6 :/ e I\/

) 7

whers we have used double indexes for the gauge fields
instead of one which would have to run from { to N2 = 1o
This choice of bookkeeping greatly facilitates the cown-
ting rule of the leading Peynman diagram, Teke the dia-
gram

53

in double line representation of *itHooft it would look

like
3Mc
b \ / d

although the coupling is wsry smallfxfngﬁ we 8till

have a free index summastion which gives & factor N thus
the total contribution from this disgram is order one.

Then we can preceed o inspect more complicated dia-~

grams., For example

repeating the srgument vresented before we can be con-
vinced that this diagram is alss order one, In fact oms
can formulate the observation more rigorously using =8
topological theorem which says as long as the diagram
can be drawn on & plane with no line overlaping each o=
ther, the vertexss and the index loops keep a fixed re-
tio, thus ensures the over sll contribution is always
order one,

The above statement is no longer true when the dias-
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gram is nonplanar, for example

where the two internmal lines necessarily cross each o-
ther, We translate this diagram into double line Trepre=

sentation, i.e,

— A
=40

where we can see that from six verteces we get a factor
gG/N3 while we have only one free index %o sum and the
total contribution is order of 1/N2, therefore in the
large N limit this kind of nonplanar diagrams are to be
neglected,

At least in perturbation theory, when K is large
We can concentrate on a rather small portion of diagrams
i.e, the planar diagrams., People have since tried to
develop technics to sum planar disgrams which would mean
solve the theory exactly in large N limit, People be-
lieva'that even at infinite N the theory should still
" bear relevance to the theory with finite W, say SU(3)

QCD, For example, it is presumed that SU®Y) theory should

be still confining, that one of reasons why people are

working so hard in 1/N expansion studies,

In Chapter III we shall see that with some APPro-
priate quenching procedure we can even set equivalencs
a single point theory and a infinite volume theorye Wé
heve to stress here that progresses in this field are
8till continuing and in present chapter we will emphasis

only our point of view,
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CHAPTER III
ON LARGE-N REDPUCED MODEL USING QUENCHING IDEAS.
1. Introduction.

The 1/N expansion method has provided ué with a va-
luable approach to the understanding of gauge theories
and other field theory modéls in the non-perturbative re
gions. The main reason for this is that in the leading
order of the 1/N approximation of the region where N is
finite. For example, QCD in this leading order is the
sum of all the planar diagrams, and -confinement presuma-
bly persists to this level (1). People have since tried
to construct this leading - order contribution and indeed
results have been obtained in closed dorm for some nota-~
ble models (2}, It was advocated by Witten that for Noe
there is a dominating configuration which he called the *
master field, and this idea was even stated explicitly
by Coleman (3), claiming that the master fields should
bé formed in an appropriate gauge. Surprisingly such a
hope has recently been partially realized by Eguchi and
Kawai {(4). They claimed the conventional U(N) Wilson lat

tice gauge theory defined in the infinite volume.

B

=S -aT T ( f o (3.1)
VWP g F:zftr (U"‘!'“ Ussprv Vsew p Uy, )

5F

is eqguivalent to a much simpler model in the large-N li-

mi;;
.,QEK::Q,%"H"C\'(QVU,)L); Uj ] | 3.2)

They reduced the original model to a single point by i-

‘dentifying all the dynamical variables in the same direc-

tions; they have therefore implicitly employed the pe-

riedic boundary conditions

: UF(X-\-?A):’U}A{K} ) - (3.3)

However, as the authoré of ref. (5) pointed out,
their claim does not hold in the weak coupling regions,
and they propose a guenched model to remedy the EK mo-
del. 1In ref. (6) a genéralized periodic boundary condi-
tion was proposed and it was shown this . approach gives.
the same set of planar diagrams as those in the infinite,

volume for the scalar matrix model

0 | | U SR vl D
S = S\{W (@rM 'BPM’?){” ')*ﬂlf’Y(M[V[f)f %E\’CM‘% MM )/ o’ x

The following rule was adopted to reduce the theory

N -t
Mospr=€ Moe (3.4)
Q@ﬁi o CG’;‘A LI .
(e )Jx)’—‘obj‘e Gy=lisy N
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This approach was subsequently applied to gauge
theories in ref. (7). The main conclusion drawn there
was for O(N) gauge theory, and it was shown that no spon-
taneous symmetry breaking can occur in any coupling re-
gion,

In the present chapter: we intend to describe a more
complete account of the approach. We will consistently
follow the methods employed in ref. (6,7) using more e-
xamples and analysis; some points for U(N) gauge theory
will be furﬁher clarified.

The layout of the chapter is as follows., In sect. 2
we interpret the generalized periodic boundary conditions
with heuristic arguments which serve to explain the phy-
sical mechanism of ref. (6). Sect. 3 discusses the ba-
sic applications with the single model. Sect. 4 discus-
ses the non-linear matrix model or the chiral spin model
which serves to continue the approach., Sect. 5 contains
a discussion of problems in gauge theories and Sect. 6
is devoted to various applications of the approach, espei
cially for numerical simulations. In the conclusion we
also try to argue the possible connections between gauge

theory end the chiral spin model at the large ~N limit.

2. The generalized periodic boundary conditions.

The quenched background gauge field method was sug-
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gested in ref. (6) and was also employed in gauge theo-
ries (7). Here we explain its physical working by illu-
strations with intuitive argument.

It should be recognized that as the size of the sy~
stem becomes smaller and smaller, the boundary effects
become more and more important; in other words, an ap-
propriate prescription of boundary conditions becomes
more and more relevant. In order to resemble the phy-
sics of the infinite wolumé on a smaller size space-
time, the finite-size effects must be somehow maximally
eliminated. .

This goal can be achieved by using the method of
quenched gauge fields. For thé convenience of presenta-
tion, we take the continuum case and concentrate on one
of the directions in space-time. The range of this di-
rection is taken to be finite, with others finite.

We require for this direction

e ah 0o .
AY by = A2 0 Q&(ea %) (3.5)

ab TR X

| ok
Vatpr= o0 ¢ % (3:6)

The A an&ﬂL fields can be thought of as gluon and quark
fields on more generic fields in the regular and funda-
mental representations, respectively. The boundary con-
ditions demand that the field variables experience the

background gauge fields, the latter to be quenched.
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The system is depicted in Fig. 1. We use the wave
function and Feynman path integral language. Let us con-
sider a particle or any other object at point A; we are
interested in evaluating the total probability of arri~-
ving at point B. Suppose we have used the usual perio-
dic boundary conditions where the left and right bounda-
ries are identified. Typically the object would follow
two kinds of path a and b in the infinite volume as shown
in Fig. 1. However, due to the finiteness in that direc-
tion, we get some extra paths such as path ¢ in Fig. 1.
In order to correctly describe the physics of the infi-
nite volume in a finite region, the contributionswérising
from such (like path c¢) must be eliminated. This can be
achieved by averaging over the randomly distributed back-
" ground gauge fields. 1In this way an object annihilated
at the right-hand boundary and created again at the right
~hand boundary along the. path b in Fig. 1 will be asso-
ciated with the opposite path; after averaging over él,A
such a contribution survives, while an object‘following
path ¢ will necessarily have a non-trivial phase depen-
dence and the contributions so obtained will vanish af-
ter integrating over 9 . f

Hdwever there is a hole in the above argument. Let

us take for example a quark anti-guark combination ;Q'ﬁﬂ

M &

o A 2
Or a gluon field A ,. there are N of them. The above

argument would not hold if the two indices coincide; in

o)

Fig. 1. The heuristic diagram.

such a case, that object would not have a ﬁ-—dependence
and would still follow the "wrong paths" as before. But
there are only N such objects, so we have to send N to
infinity to suppress those unwanted contributions.
Moreover, sending N to infinity also serves to make
the phase centinuously distributed, since they would play
the role of momenta. In this way we have maximally re-

duced the finite volume effects in the large-N limit.

3. The basic approach.

In ref, (6) it was shown that the exact set of pla-
nar diagrams can be obtained at a ‘single point. The
proof was via perturbation theory proceeding order-by=- ox
der. The éroof could also be derived using non-perturba-
tive means such as the Dyson-5chwinger equations. Foxr
the case at hand, we will use perturbation theory for the

linear model and the D-S equations for its non-linear ge-
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neralization in Sect. 4. For completeness, we summarize
the results obtained in ref. (6). The model discussed
there was a linear scalar matrix model in D-dimensional

space-time.
S=5dT e (3,09, 47) + mier M + 2 (i o a7y
= Cxlfr P 3 4” .

where M is an arbitrary complex matrix. We use the dou-
ble line representation for the Feynman diagrams, where
we do not have to write down indices for Feynman values
(Fig. 2).

The Feynman rules for thé propagator and vertex are

extremely simple (see Fig. 2),

|

propagator -
2
Prtm (3.8)
vertex 3 .
N _ 4

where there is no summation over repeated indices.
At a single poiﬁt according to the generalized pe-
riodic boundary condition
l‘(&?—@\r‘) )
Mb]-(x;;i‘) = /‘45- (x) & ’ (3.9)

N

T 3 N
< . 1
J 3 /\
R R
Fig. 2. The propagator and vertex in double-line repre-
sentation.

we have the following action

— 2 2
S=F (607 1Ms | + MMM +  eitmel) (.10
5 1) 4\“ .
Now the Feynman rules are almost the same as (3.8), (3.9)

except that the propagator is replaced by

!

(8 -95)1*' v

(3.11)

The identification batween the correlation function
in the infinite volume and at a single point was proposed,

for example, for a two-point function as:

t

+ C(eé : e‘-\_s‘),x

<‘\4\5 (C)ij ¢4 )>=SIT£_Z; eﬁf ] <N"‘.F";f >e (3.12)
) )

where the left-hand side is evaluated using (3.7) and the
right-hand side using (3.10). This relation is obvious in

the free case.
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It is easily seen that the above relation persists
to higher orders of perturbation. Consider the graph

shown in Fig. 3, the contribution is

it 2 / /
<M:}—M?> =z (?\7) PP 2, 2 (3.13
G ['(@;%) T (gpegg)TEmt 3413

L /
\N
(6:-0-) ¢ m™ 2
T (é’k‘QA fom¥
identifying »

5’¢‘~§- =p BG4 = R gﬁ_e, =0
Co~8=p-k—p ‘ (3.14)

2 O r oo )
1 = _ Dfes ak
T‘»,%i"j\;ﬁ) 27,)

which is exactly the usual Feynman diagram in Fig. 3b,

It should be noted that the reult would not be true
if the two fiee indices k and 1 happened to coincide, '
but such =zvents occure rarely as in higher orders of 1/N.

Therefore in leadinngrder of 1/N we do not have to bother.

N
L

Fig. 3. Diagrams for the renormalization arguments.

&5

\
\ Ly 81
N
3 @’<ﬁz AQ»«
h b » P
| b) , A

Fig. 4. Diagrams for the renormalization arguments.

There is a sharp cut-off in the theory; we can re-

move it by extending the limit of integraticn from

{(-%,%) to (~w,»), The usual renormalization can be di-

scussed in a general way. Consider the two diagrams

shown in Fig. 4, where mass renormalization is required.

The contributions are respectively
5 - ! j
(2 -
) & (@8 e ] (6-0¢3 ¢ v

and

e )

(99 { \ | (

(3.

P ———
\) % I S

W (g, =00 (65 -Ce, )
= | / i

XD m—

D e —

r{ 7 : L Iy
38 DOy emm ™ (6. mog ) e (8- 0;) >
We make identifications similar to (3.14) which are

606

]

> 3
(8;,-Cey v (g, -8, Sl 3.16)



shown in Fig. 4c¢ and Fig. 4d. In this way all the refe-
rences to particular Gﬂs are only in the momentum forms,
which are appropriate to the corresponding Feynman dia-
grams in the usual sense. If we subtract the quadratic
divergent part in Fig. 4a, the subtraction will be the
same for Fig. 4b. It is thérefore renormalizable in the
usual sense.
In the infinite volume wé have the general factori-

zation property at the large N limit

{eAcr RO = L AD CEeRD (3.17)
where A and B are products of M's and are not necessarily
local objects. To be consistent, on a single point, we

have to have the factorization property of the type

’ &@ |
S <b{ﬁ\(9)t‘6(6’>> S ‘i@“(@z&cgb s
Rt

e ae e (3.18)
S:’, “(b\chéD@
which was implied in Ref. (6,7).

This can be seen as the
generalization of (3.17) at a single point in the presence
of backgrqund gaﬁge fields. 1Its validity can be checked
using perturbation theory and can also be understood by
inspection. Since in (tra (& tr B(®) there is no free
index summation joining two M's belonging separately to,

tr A(f#) and tr B(®, there are no ig—phases being assigned

et

identically from A(8) to tr B(§). While the index summa-
tions run independently, the indices belonging to tr A&
and tr B(§&) can run across each other accidentally, which
causes the connected correlations in @'s. But again this
occurs at higher order of 1/N in accordance with the ob-

servations made in Sect. 2.

4, Non-linear matrix model.

The non-linear generalization of (3.7), discussed in
this section, is called the chiral spin model in the 1li-
terature (8). It can bé reviewed as the non-linear gene-~
ralization of (3.8) in the following way. Take the theo-
ry tc be

S= Q;S {:r(\ormﬁbri‘/ﬁ)dp}" (3.19)

where M is an arbitrary complex matrix. The interaction

is induced by the constraint on the integral measure in

the same sense as is usually done for non-linear g’models
S(Mut -

) (3.20)

at every space-time point.

This model may be one of the simples to give planar

4
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diagrams at large N, as can be seen by introducing a dum-

my matrix field o{ {4). The partition function is now

Z= S?’ﬂ Dt QKPP(B Sl tr(aurty ™ € Strogrirtr) [ (3.21)

The planar diagram intefbretation at large N follows ob~
vicusly when we put M and into the double line represen-
tation (1).

At zero dimension, the planar diagrams are readily
summed '

YIRS OV ~Crol ~ Y logelet X
Z < y,B’a((defo() Ne e :ﬁ‘&c,(e -7 (3.22)

It is clear that the expression depends only on ei-
genvalues of the hermitian matrixS( ; the integral can be
evaluated by following closely the method of Ref. (2). At
one dimension on a lattice, thé theory is exacﬁ two-dimen-
sional lattice gauge theory (7).

Here we are mainly concerned with the lattice version,

which is the U(N) X U(N) chiral spin model

=S = (”zﬂ GO(X) Urcxin) + heoc. (3.23)
. U .

~Using the generalized boundary conditions (3.19), we reduce

the chiral spin model to a single point

< (3.24)
b
i

b}

-S= %%{tr@é‘.@" N

o9

In the following we will show that the two theories
are equivalent. We will proceed with the Dyson-Schwinger
equations and show that these thecries produce the same
set of DS equations and assume that the DS equations of
all kinds of correlation functions are sufficient to spe-
cify the theory (4). Thereby we establish the announced
equivalence.

We start with a simple expression
& UR) oy Try ' (3.25)

where the T!'s are U(N) generators. We get a DS equation

by making a shift at positionQ , U (L +cg thu@)

N¢ cruwu?,v)>ep%(troczau?mua@:dm) (3.26)
- (s‘; (U@ UGS =0

As in’a gauge theory we have to consider correlations with

more than one operator per site; for example
f; £
Lec QR U2 UG ORI > (3.27) -
/

is related to highér-order correlations via
b - Fra .
NLE Q@) Ut Ui  Co, Ui ORI Ctrticms G S

+p2 < e U) Ut ety Ctgr Ulee) Demy OT) >
F\

o o
B § CenUinlUT g ) D0 ) > = o (3.28)
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Repeating the above steps, for example, we start with

Here we have used the factorization assumption for the se-

. S Lo~ 0y
cond term at large N, which ensures the closedness of the < tr‘)ebz,v 8 Uf-?’)g L);.h/“‘@f‘ >(9 (3.31)
infinite set of DS equations. Y
2s in gauge theories we can go on to consider all 7 and get the same equation as (3.26) except with one more
complicated correlations by using the well-known flipping term
-switching methods (10). Note that since there is no lo- . . -
2N ¢ & 7p0p
cal gauge invariance, we will have the DS equations of the <:f)‘€; Ly r EVL)‘7 e~ L)f';> (3.32)
e G
type
t Aft i ’ i
A = + ~ er averaging over the background gauge fields and u-
X <tv(Xk)U’l&)oa“)u‘“ch: P 2<UVA) U(W?JU”“’> , S . '
§\ ‘? (3.29) sing the factorization properly discussed in Sect. 3
(ot
by shifting a variable at an arbitrary position m instead —(T a6 <4_ A & B _ d@"‘ G)\
' ‘ Pag SEIRER =T = Ay N 4R
of at two ends. JRRP A i i} POTD & 5
Next we work on a single point. The mapping between this contribution vanishes.
the theory defined in the infinite volume at a single The phaseé}'s ensure that just the correct source
point is proposed to be : ) - terms, as the second term in (3.28) are kept intact. One
— — cna proceed to convince oneself that one has the one—tof
C(‘@-h 3 ;‘h’-ﬁ ~ 20,8 .
<CT()(RD()7L(1)>= T « <ale I’Ufe P /-) (3.30) -one correspondence of the DS equations between the theo-
a . .
e o o ry defined at a single point and that in the infinite vo-
where‘ﬁk specifies the minimal number of steps needed to : lume. For the equations of the type (3.29), we simply
go from point k to 1 in the yth direction, which can be start with the expression
. ‘ .
: : $m s : . 74 \ N - — N
negative in the anti-direction; <8 denotes an average /t : »I“mt‘,n . —LZ‘-A"’»\Qt‘ - ?:j“;n@‘m B ‘LZ‘W/(E‘H
using the action (3.24). NS Ge g e - ) (3.33)

€

Therefpre, we have established the equivalence be-
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tween the two theories in the 1érge—N limit. -

It is interesting to check whether there is any kind
cof spontaneocus symmetry breaking in the weak coupling re-
gions, where it is séen that thé U matrix is fluctuating

around a diagonal form

. L + '
:v‘@t? V - p 'R 3,34
U V=e a3
where ?715 another diagonal matrix with the eigenvalues

of U,
let us Jock arF the free Quigy

~f_7’TAT”_ ?ﬁ(!///olgpa (f . sy i”’? %}”Qgr‘{w&f’z?

Carrying out the interaction over 4, which when ex-
panded to second order is gaussian, we notice that the
repulsion between the (§ eigenvalues is just cancelled out
by the attraction induced in the exponent; therefore,
the eigenvalues are perfectly randomly distributed even‘

in the weak coupling regions and there is no spontaneocus

symmetry breaking observed for gauge theory in Ref. (5).
5. Gauge theories.

In Ref. (7) we discussed gauge theories at large N

and the main conclusion for the O(N) gauge group. Some
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difficulty was pointed out for U(N); if we do not'séecify
a gauge condition, when reduced to a single point the
dependence can be transformed away completely, which is
again the Eguchi-Kawai model. This fact suggests that

the trouble with the gauge theories lies in the gauge
freedom in the infinite volume; To be consiskent, we have
to strip its freedom by %ixing the gauge condition before
reducing to a single point; stated equivalently, we have

to require that only physical variables can experience the

.background gauges at a single point. For simplicity, we

choose the axial gauge where U1 = 1.

The reduced action is now
. -&

J

- + o+ & v
fS:@Z €U0 Ufﬂc({,"zlwuq,ecufe “Lh.c  (3.36)
H i ) b4 ,

where i and j run from 1 to 3.

) We would first like to study the problematic weak
coupling region, in which the Ui's'fluctuate aicund the -
diagonal form (5). DNote also that how there is no U(N)
global gauge transformation which leaves the eigenvalues
of the Ui’s invariant, which may sgggest that the eigen-
values of the Ui’s do not play any particular role for
the physical observables.

We calculate the eigenvalue distribution for large

g following Ref. (5):

T
- T R X AG
/ &J\ 7] S z’c,?fr/ '1(9 ixﬂ( }\@75:&: «(o -8 )~
24 lrz} 7. c} “e

'y_)@ ¢

- 96? 2;/ Hft‘tal;f(é‘*t—éf J 3 )
- Fly -



(3.37)
where v runs fFom 1 to D and the Dth 9 is er, quenched by
assumption, ffu)denotes summation with the ith term mis-
sing., It is easily seen that this is consistent with
the observations made ‘in Ref. (5) that for D-> 2 the 8§ 's
will attract each other in weak coupling regions and de-
generacy in eigenvalues 6 ‘s may occur.

To first order, wé assume all eus are equal to one

2
value, ab, as in Ref. (5).

- [4
U(\_,.e e bcx:é‘:f ﬁ/é::o (3'37)

where the bi% are small. Whén expanding in bi we see in
the case that the first term of (3.36) gives a quartic

term while the second term gives a quadratic one. In o-
ther words, in the weak, coupling region, where degenera~

¢y in the eigenvalues occurs, the second term in (3.36)

dominates; therefore the internal energy is correctly ob-

tained in first order in 1/8, 1-(1/2D)N/8g.

Since the second term in (3.36) dominates in the weak
coupling region, the b eigenvalues are randomly distribu--
ted as in the case of the chiral spin; therefore, we ex-
pect that open Wilson loops in Ref. (4) will have a vani-
shing contribution even in the weak coupling. We have not

_shown this explicitly. It seems that only a Monte Carlo
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check can determine whether (3.36) is identical to the

Wilson theory in the intermediate coupling regions.

6. Monte Carlo simulations,

It is tempting to apply these results in simulating
QCD on a lattice. Thé most naive proposal would be to
take our formulation for the O(N) group (SO(N) and O(N)
are equal at N»« 1limit) and implement for N = 10~20.
What could we gain from the numérical calculation point
of view (we suppose 1/N corrections are negligible)?

It is clear that different Monte Carlo runs must be
made for different valués of 8. However the number of
8's which are extracted (Na) seens to be the critical pa
rameter. It is easy to undérstand that the single-point
system (at N <« 1) will simulate a system of volume pro-
portional to Ns'

This observation implies that at the end we cannot
avoid doing a number of extractions proportional to the
effective volume we consider.

The computation will become very long with increasing
If the main limitation is CPU time, nothing is gained.

If the main limitation is memory (and this will be the case

in the future), something important can be done.
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Indeed in an SU(N) theory Qe expect that the finite-
size effects should be reduced by quenching up to a fac-
tor aN/N = ¢. This means that in a typical Monte Carlo
simulation for SU(3) we could work on a large lattice
(say, 64) and reduce the finite volume effects by a fac-
tor of 10-20% by quenching the 6°s. This operation would
correspond to an increase in the volume by a small factor
{2~37}, and therefore it seems that it would not be ne-
cessary to use many different choices of 6.

For this purpose we need an algorithm for SU(3);
this is easy to implement on a computer. As discussed in
the preceeding secticn; the main difficulty with gauge
theories is that it is not so simple to superimpose a
background gauge field. Howevér if gauge fields are c¢om-
posite as in the CPnn‘j model, this difficulty disappears.
It was shown by Bars that SU(N) gauge theory can be writ-
ten in terms of "corner opgrators" Wu (x) on a lattice in

such a way that
Sy . F . A
U,M(t) = Wpic) Wm(t-é!.,. }
and the action is the standard one in terms of the U's.
Now the theory is obviously invariant under the transfor-

mation

VV/“ - "U;.\ i{
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R is an SU(N) rotation and

U = wlehwlesely = ),

We can now insert the background gauge fields acting on
the Wu's'from the right-hand side; the argument of the
preceeding sections shoulé apply here too. The final
theory is more complicated that O(N) theory which should
be preferred for analytic computations; however, the
former is more suited for numerical simulations. It is
easy to see that this choice leads to the form of the
action given in Ref. (3). '

In practice thé préscription on a lattice L4 amounts
to doing the standard computation for internal links and
extracting the links which are responsible for the boun-

dary conditions with a different measure, é.g.

* | )
Uienz, o= 2 gr,0we 00 Bowa,, ;s
. s

where
L~/ -
L’(]’%/f) = /"X Ulf'tly/%;r)
/

W is an SU(3) matrix extracted with the Haar measure and

Dx(e) is a diagonal U(3) matrix containing the 6°'s.

Ancther possibility, at least in the scalar case di-
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scussed before, would be to try to use the replica trick.

We write

<Q03' 2z >(9 = % <EV‘ >@’ s % L’:gd\v(QxP(S(P}’O)) ?

where S(M,9) is given in (3.10), ( ;% stands for

o des O

10y 4

and /\ plays the role of an ultraviolet cut-off.

For integer n, we have that

" h =
{2 = Sg( det“op (2 S(M% 6))
, : 7

where the index o runs over the different replicas.

The integration over the 8 is now trivial (gaussian)
and gives »

h n N mn
€202 [T drt —  exp (2. Gp0)
<=z p(vi) Y2 F ~z) Ok s

where SR(M) = mztr MM+ +g/4N tr (MM+MM+) and P(M) is a po-
lynomial of order 2N in the M:,b'

" If we know the value of (Z"‘)o for integral n, we can
extrapolate it at p-0. This can be done analytically
(that would solve the problem) in the limit N+» or numeri-

cally by Monte Carle techniques. The advantage here would
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be to bypass the problem of integrating over the 6s nume-
rically. It is clear that a lot of work has still to be

done in this direction.

7. Discussion

We have followed a systematic approach to reduce
some field theories from infinite volume to a single point.
As a result, the original models now become few matrix
problems; the linear and non-linear matrix models in D-
dimensional space~time is now a problem of integrating
one matrix coupled to d gaugé phases. U(N) gauge theory
in our description now is a problem if integrating D-1
U(N) matrices coupled to one gauge phase. A most intere-
sting and challenging problem would be to find exact solu-
tions. The relation b%twéen gauge theory and the chiralr
spin model, if there is any, could be discussed at a sin-
gle point if we are only interested in the large-N limit. .
We discuss one plausible relation between the U(N) gauge
theory and the chiral spin model in the following. Let
us consider U(N) lattice gauge theory at a single point
for D dimensions (3.36). Let us concentrate on the weak
coupling region B » 1; we knew that the U matrices are
restricted to fluctuate around their diagonal form. The

following parametrization might be possible; we choose

&0



one of the U matrices to be a fast cluctuating variable
which is an N x N unitary matrix, while choosing the o-
ther D - 2 to be slow variables which are already in
their diagonal forms (11). However, the fluctuations
of these diagonal matrices can still react back to the
"fast" variable, the N by N unitary matrix. In order to
make the diagonal matrices really slow variables, we
have to immobilize the eigenvalues of those D - 2 direc-
tions, i.e., gquenching. The free energy obtained in this
way 1is almost that of thé chiral spin model in D - 1 di-
mensions, except for some extra measure factors for eigen-
values, which are to make them repel each other; since
these variables are already quenched, these effects are
not important.

After completing this chaﬁter, several works came to
our attention (13=-17), in which various authors discuss
the EK model, or modifications thereof, from various

points of view. Many interesting guestions arise.
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PRELUDE TO CHAPTER IV

Chapter IV is the continuation of Chapter III, which
treats & more technical problem; since there exist two
different quenching vrescrivtions (the cne proposed by
the Princeton group and the one propossd by Parisi), what
is their relationship, and which is the correct prescrip-
tion?

This chapter gives a partial answer to this gquestion
by showing the two are inequivalent and the former quen-
ching prescription is trivial in the large N limit be-
cause their quenching measure becomes a delta function in
large K limit therefore quenching integral can be trivial-
1y carried out. This chapter is based on a published
note (Zhang Y.-C., Phys. Lett. 124B 506 (1983),

&b



CHAPTER IV
TRIVIALITY OF A MODIFIED EK MODEL

Eguchi and Kawai (1 recentlty discovered that lat-
tice gauge theory at large N has a drastical simplifica
tion; the theory defined on a single point, and that
defined on the infinite volume are equivalent. It was
soon pointed out by Bhanot et al. (2) that the EK model
experiences symmetry breaking in weak coupling regions
and they proposed a quenched EK model to rescue the EK
model in weak coupling regions; they suggested to
quench the eigen values of the unitary amtrices to pre-
sent the eigenvalues getting degenerate, since such de-
generacy can indeed happen in weak ccupling regions for
‘the EX model (2). We can phrase their model as "direct
quenching" since they quench exactly the variables whigh

could possibly go wrong.

Parisi subsequently suggested another quenching me |

chanism {3), his method is to assume non trivial bounda
ry conditions to the theory and the phases of the boun-
dary conditions are to be quenched. He showed that the
planar diagrams can be generated at large N1 and these

boundary phases have the natural interpretation of lat-
tice momenta.

His approach was followed and developed to some

depth in Ref. (4;.

Here we have two apparent different quenching pre-
scriptions; the one proposed in Ref. (2} and further e-
laborated in Ref. {5), the other is Parisi‘s model (3).
It was claimed in the literature that these two quench-
ing approaches are equivalent toieach other (5) since
they could interprete the guenched eigenvalues as lat-
tice momenta (2,5). 1In this note we shall show that the
two approached are essentially different and planar dia-
grams can not be generated if we want to interprete the
guenched eigenvalues as lattice momenta, contrar; to
one's expectation (5).

We start with the EK model (1)

b "y
25k3§$\C\Uv xS 2w o

Se (VW = BN gwtv“[u}&ul)u:o:]

since

- v t
Up= VDV,

(4.2)

Eq. (4.1) can be rewritten as
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fut = ey (4.3)

2600 =f Ty, expl See (G, Do)

The QEK model (2) differs for the EK model in that
the eigenvalue averages are not to be taken on the par—
tition function but on the physical observables like
free energy and correlation functions.

The free energy in QEK model is

l
Faer =) [T, & LT -g]

ﬁut L7
(4.4)

X UE Do z'cel)

and the correlation function

(())Q,Q S“T de ; Vil sz Siu % 6‘~¢9))]<@>D
<0%.= . STy RS 0]

)\O((/ ')

Now we analyse the FQ defined in (4), (1/N2) X
log Z1 (e ) is an intensive quantity in N, which means

(4.5)

it has a non trivial large N limit itself and the limit

© . can be taken separately on this part. The integral mea

&7

-

sure over the eigenvalues can be normalized in the fol-
lowing way as done in Refs. (6,7).

Define the normalized density function

NP =2 S&-6,) (4.6

the normalized measure for each direction is (up to a

term having finite large N limit),

_/\/7/ Py fg,(/d)o(q, QX/D[-MYﬂ(«d(g Lpe) Y7 JE g cpr- 55,
"[*&7/)'/%{(0(-(5 )/J}] 4.7

where PN denotes the permutation operator over the N ei .
genvalues of matrix Up, The term in the bracket of the

exponent is exactly the vacuum energy E_. obtained by

0
Gross and Witten (7) for the case of A»w,

Note the limiting definition of delta function
. .
lim N exp( =N X ) = §Scx) (4.8)
N=ob

the measure now becomes

)Dﬁ/jg olf@)‘:j 5('}%&«)» Yim) (4.9)

this means that all the quenching integrals inbthe-QEK
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model can be carried out with eigenvalues fixed at

A}
AN
:9/} = 2,7/2,‘%‘; (4.10)

i, . .
K is an arbitrary integer between 1 and N.
Now we are left with the permutations, however re-
call that there is always {(many not be unique) a unitary

matrix which does the reshuffling of the diagonal matrix.
oL

D:: w,. D, . { mo Samemaidln)  (4.11)
FE T

where Du is the diagonal matrix for the pth direction

and

Di’ = 5‘4}3}9 (4.12)
is independent on the directions, the unitary matrices
mu can be absorbed into Vu' the permutations are just
trivially reduced to 1.

Now we can rephase the QEX model defined by egs.
(4), (5), it is a. special case of the EK model in which
one fixes all the eigenvalues of all the link matrices

to the uﬁiform series of constants
L - N 4,
/1 = e (4.13)
~N

and there is no quenching integrals or permutations left

29

to carry out. It is clear that the spontaneous symmetry
breaking cannot occur for any coupling region, as the
computer simulations also suggested (2,8).

Next we would like to see how the QEK model would
behave at the weak coupling region, which means to consi-

der the following parametrization

V= € w0y

i

where Qu is a small hermitean matrix and wu is a? arbi-
trary unitary permutation matrix acting of D, since any
permutation gives equally minimum action. In Z}(el) we
keep only the terms O(az), because only the coefficient

of quadratic term can possibly become inverse propaga-

tors. The z?(ei) in eq. (4.4) now is Si independent

25 qar gt
fnc'f/' 46}’

Zz )gx ‘S\g'}{w“*‘ﬁgzz c/za'g- Q"/‘)Z*'?‘;F
) . (4.15)
wsin C4estoel J(E T Thcet-07) ]
Apart from a‘normalization constant, E{ZCfcqhis the
annealed averaging measure, in the restricted phase space
(it takes only the uniformly distributed values of Si's)

of the original measure in the EK model
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Thus, contrary to one's initial quenching motivation in
the definition eqs(4 4)Kh)5), we have ended at a annea-
led prescription. ? (1)

In the quenched approach of Parisi, there is no
measure associated with the random boundary phases, af-
ter taking the large N limit, there are always non tri- (2)
vial quenching integrations to be carried out. The me-—
chanism of this approach is not to quench the trouble-
some eigenvalues directly, but rather to quench the boun (3)
dary phases, which was ihtroduced in a natural way (3,4),
to prevent the eigenvalues getting degenerate. It is (4)
known that ih gauge systems more care is neede besides
Parisi rule (4), the most clean confirmation may be the
reduced U(N) chiral model, as recently computer simula-
tion (8).

To end this chapter we summarize the results. In the
QEK model (2,5) the quenching integrations can be just
carried out, we can rewrite the model as a special caséA
of EK model, with all eigenvalues fixed to a series u- )
niform constants. The weak coupling behavior of QEK mo—v (5)
del is an annealed theory with the eigenvalues in the
restricted phase space of EXK model. The equivalence
with Parisi's approach cannot be substantiated.

(6)
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PRELUDE TO CHAPTER V

This chapter can be viewsd as a continuation of
Chapter I and II. It is rather speculative because ma-
ny open problems remain to be explored. It is devoted
to show what kind of role the gusnched disorder varia-
bles have in the nonabelian lattice gauge theory. In
a model proposed in this chapter, we can show that non-
abelian lattice theories coupled with abelian disorders
could be made manifestly confining using duality argue-

ments,



CHAPTER V

THE ROLE PLAYED BY RANDOM DISORDERS IN THE PROBLEM OF
CONFINEMENT.

1 - Introduction.

It is generally believed that the nonabelian gauge
theories are the only candidates which accommodate the
asymptotic freedom and confinement peacefully. The com-
plexity of these theories so far frustratés attempts of
proving such coexistence rigorously. In this letter we
will be concerned with lattice gauge theories. We will
show when the sufficient random disorders are built into
these theories, with the constraint that they should re-
spect the asymptotic freedom (i.e. long distance beha-

‘Viors must not be changed), the confinement problem may
be facilatated.

We briefly review the various aspects of the random

disorders. By random disorders we mean guenched varia- -

bles, so even at very low temperatures like those of the
ground states of the system the fluctuations are forced
into the theory in contrast to the annealed variables
that they have to find their equilibrium states at a gi-
ven temperature according to a Boltzmann distribution.

There is a vast leterature in this subject in the con-
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densed matter Physics. For a general survey and refe-
rences we refer to Ref. (11). To a field theorist we
can classify the random disorders into three categories
according to their influence on the infrared divergence
structures (or long distance behaviors) of the corre-
sponding ‘pure’' systems. Let us start with a scalar theo-
ry (e.g. the Landau-Ginzburg model) in which we couple

the random disorders in the usual way

-SCth) = -SLCT + [ o’ 09 Pexs (5.1)

where h(x) is the quenched random variable and is taken
as gaussian distributed
Y
~ A b ol
Pifare~r e (5.2)

where X is the strength that the random disorders couple

to the system. A dimensionality analysis shows

~7 -2 3
é¢]:%_ C/,,J:D;Z (5.3)

thus,ﬁ is bound to have dimension

LA =—2 (5.4)

or, if the theory is lattice regqulated

d¢



J).f\/ O\L (5.5)

Therefore, the effective interactions induced by the ran-

dom exchanges are always propcrtional to

AN .
(=) (5.6)

with n being number of internal h lines.

We see that the random exchanges introduce new in-
frared divergence to the pure system. The original in-
teractions of the pure system would appear to be' ‘irre-
levant' compared to this effective interactions and to
the leading order they are to be neglected. This fact
leads to the well-known result that this kind of random
disorders effectively reduce the dimensionality by two
(2). Parisi and Sourlas found a supersymmetry which
nicely cancels the ‘irrelevant diagrams' and shows that
dimensionality reduction (3). This is the first kind of
;andom disorders whose importance overwhelms the inter-
actions in the pure systems by a simple power counting.
We will not be concerned with this kind of random dis-
orders in this letter.

The second kind of discrders have competing impor-
tance with respect to the pure systems. For example in

place of eqg. (5.1) we can have
~5(€L): WSLC% fjr;/*/’{‘( {’/,i(x) ;17";3‘()(/ (5.7)

K

if we take D = 4, then C:l] = 0. A simple power céun-
ting cannot exclude the logarithmic divergence which the
pure system is suppoéed to have and it accounts the long-
range order of the system (e.g. spin-wave phase) .

The third kind of disorders have less divergent ef-
fects on the pure systems. They will not modify the
lond distance behaviors of the system. An explicit ex-
ample is found in Ref. (4), , where it is argued that
while the random disorders do not affect.the correct
continum limit of the theories like lattice QCD they
play a significan role in the intermediate coupling ran-
ges and helé show the absence of a deconfining phase
transition.

It is the purpose of this Letter to see to what ex-
tent we are allowed to introduce random disorders and
how can they help prove the confinement problem while
respecting the same continuum limit. In short, we will
be interested in the third kind random disorders above

mentioned.

2 - The models.

In Ref. (4) we have proposed a model and here we
will use a modified version which extracts the essence
(at least we believe) of that model. For the nonabelian

gauge theory we will consider the model whose free ener-
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gy is defined as

pAE -
/)

- =2;2;} 'Q‘?fﬁ()@ ° a (5.8)

where O; is anabelian phase associated with every pla-
quette®, It reduées to the Wilson model if we put all
C; = 1. The annealed case of this model was studied by
Halliday and Schwimmer (5).

The difference between the annealed version and the
quenched version is only important in the low tempera-
ture region where we expect to get the continuum physics.
In the annealed case, when f+», all the link variables
as well as op are forced to be close to the unity.

While in the quenched case the o have to run all possi-
ble values. We will examine the ground states of the

" quenched theory. To facilitate the analysis we will

take the nonlinear o-model instead of gauge theories,
since the arguments are essentially the same. Given av
‘configuration cp , the system is introduced with a di~.
‘stribution of frustrations (1,6) (for gauge theories they
are called monopoles). The ground states will be those

where the nonabelian site variables sit at their abelian

o

which is an element of group Z(N) or U(1) if the gauge
group is SU(N) or U(N).

9

counterparts (4,7). Take the SU(2) group for exXample,
the ground states will be those like an Ising model
with the random exchanges. If all the bond random ex-
changes adjacent to a spin take the trivial value 1,

to flip that spin will cost an energy 2DB, if one of
the neighbour bonds is broken, that act will cost only
an energy 2(D-1)8, if D of them are broken, that spin
can flip back and forth freely, thus we have a degene-
racy. We refer to Ref. (6a) for a detailed analysis

of the frustration energetics. 1In this way we see that
with these frozen frustrations even at very low tempe-
ratures the spins are rather disordered, since the fluc-
tuations cost less energy than in the pure system. The
general conclusion about the energetics is that the ran-

dom disorders activate fluctuations significantly also

at low temperatures.

3. The confinement criterion.

It is by now the widely accepted notion that confi-
nement is realized via a dual supérconductivity mechanism
(8,9). 'tHooft proposed a criterion of confinement (8)
by saying that if the 'tHooft loop has a perimeter power
low behavior the magnetic fluxes are said to be defocu-
sed thus the electric fluxes are therefore focused and

that is the signature of the confinement. For discussions

\oo



on a lattice we refer to Ref. (10, 12). It is known
that 1f we use the Wilson action and take only into ac-
count of the abelian excitations, the 'tHooft locp has
an area law instead of the desired perimeter law. One
has to invoke the nonabelian excitations to prove the
perimeter law and which appears to be very difficult
{(12,13).

The ‘tHooft loop in our quenched model is defined

as
5 Scps
<B¥rery, =2 Joveniplone i, t
a 270,37

where Qf is some nontrivial abelian group element and

{5.9)

S(p) = 1 for a set of plaquettes which satisfieséig = C,
s{p)

..sponse of the theory to the introduction of an external

0 itgerwise. The 'tHooft loop measures the re-

magnetic flux. It is clear that in the annealed version
3 -

of this model the response is trivial since (f[ﬂ‘(c)}a =1

while the guenched model has nontrivial response eq. (5.9)

analogous to that for the Wilson action.

_<BTC'C) > :S\JEUQ«‘P%P%'CSCP?CYL)P \5/,2:5.10)

From now on we will concentrate on four dimensions.

It is known (10-13) if we use only the abelian excitations

— - (5.11)
<BT(‘C)>W ~ o o(ffmy\(S) ,

1O

since <quzcl>measures the energy difference respect to
the ground states system that difference is proportional
to the number of the flipped plaguettes.

Now we recall the so~called Anderson criterion for
the spin glasses (14). He observed while the energy dif-
ference is proportional to the number of flipped bonds
in a pure system that energy difference is proportional’
to the square root of that number in the random system.
Note that Anderson's observation can be generalized to
gaﬁge systems for sufficient large ‘tHooft loops. It

is

—ox ‘Ulroncs s

S HES S @ (5.12)

for a simple geometry this implies

: . et BerdmaterCS)
<BCcI>S , O S (5.13)
6
: J
which gives the desired perimeter law for the °‘tHooft
loop. According to the current folklore eq. (5.13) im~
plies the theory is confining. ‘

It remains to be shown how the random disorders af-
fect the long range behaviors of the theories. It turns
out that the abelian disorders do not affect the long
range behavior of the nonabelian gauge theories thus

they belong to the third kind of random disorders while

{02



the abelian disorders do affect the long range behavior
of the abelian gauge theories as they must be since the
abelian gauge theories should not confine at weak coup-

plings.

4. Compatibility of the abelian random disorders with

nonabelian gauge theories.

There is an explicit example showing the quenched
abelian random disorders do not effect the continuum li~-
mit of a nonabelian lattice gauge theory(4). Here for
simplicity we will use a two dimensional O(n)xU(1) non-
linear U ~model (n > 2) since there is no essential dif-
ficulty to perform the same kind of calculations for

. 9auge theories. On a lattice the free energy of the mo-

del is

.._.‘:' :Z Q'&‘} Yﬁg gs Z_ Q"@k’ﬁi)-"‘g—?v 4""':{5‘14)

: Ty o+ oo

where Di = QKGX')A ’ /SA'/ = 1. We may be interested

to control the strength of the disorders by changing eq.
(5.14) to

- =5 Q)%—O‘(f’jz f W‘b‘q (5.15)
2o F)BSeploz e ne 2

where T (p) is the product of four links around a pla-

|03

Sy

quette, since frustration is a gauge invariant concept

(15,6) .

It is still simpler to analyse the continuum ver-

sion of eq. (5.15)

~~—ﬁ80e ¢ﬂ7x /07/}7 23 ax/ﬁS/(sm

where

R —
DS = C0u+¢8)8

Fup = Dp 6, 046,

By a simple dimensionality counting we see
C"C):] = 7 C_? J =o (5.17)

EAY = -2 or o~ qu'

thus one would conclude these are the first kind of ragf
dom disorders discussed at the beginning since the ran-
dom exchanges would induce more severe infrared divergen-
6es. However, it is not true for the abelian case where
the random disorders 5%?decouple from the field variables
g. To see this let us choose a gauge so as to make S
real then

D

2 ) 22, a2,
/,,‘g )TLC-D’MS J = (akS) £ (G/"‘S) (5.18)

3 2 2
For the abelian case A}\ls a C—numbgr then (@is) = é&'.
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Therefore, the abelian random disorders (it is true also
for the annealed case) do not affect the continuum phy;
sics of the nonlinear model in the leading order and the
theory is asymptotically free as Polyakov showed (16).

How&verrthe above statement is no longer true if we
want to couple nonabelian random disorders to the same
model where y\is a B by n matrix. One can easily con-
vince oneself that there is no way to get the random
disorders and the field variables decoupled. Thus we
learn (various dirty examples have been tried which will
not be presented here) that the nonabelian disorders do
affect the continuum physics of the nonlinear model and
they belong to the first kind of random disorders dis-
cussed at the beginning, and presumably we shall lose
the asymptotic freedom (it is also true for the annealed
"case). In thelight of this analysis we doubt the ap-
proaches using nonabelian frustration variables have t@e
correct continuum physics (17).

We believe that the same analysis carries over to
the gauge theories without any gqualitative change in
conclusion.

What happens if we couple the abelian random disor=
ders to an abelian system? We believe these will be the
first or second kind random disorders, since an analysis
shows that these random disorders destrov the long range

correlations (18). It is interesting to pursue further

\05

how the random disorders for example affect the spin-
wave phase and the KosterlitZz-Thouless transitions

(19}, which we shall not do it here.

5. Conclusions.

To end this .chapter we. summarize the main ideas and
results. We have classified the random disorders into

three kinds according to their influences to the long
range orders with the emphasis on the usefulness of the
third. It is known in lattice gauge theories that we
can édd +o the Wilson action irrelevant pieces and the
resﬁlting theories stay in the same universal class.

In this Letter we learn (alsc from Ref {4)) that the
norabelian lattice gauge theories coupled with the
third kind random disorders defined in this Letter will
alsc respect this universality. It appears that these
third kind random disorders can be employed as a means'’
of regularizing lattice theories, since they activate
the possible fluctuations (uncer the constraint that
long range behaviors are not altered) even at low tempe-
ratures. We have shown in our model the 'tHooft loop

has a perimeter law, a suggestion of confinement.
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