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Abstract

In this thesis we develop a framework for performing bootstrap computations in 4-
dimensional conformal field theories. We use the conformal symmetry to construct generic
2-, 3- and 4-point functions and in turn generic bootstrap equations. An emphasis is made
on the unification of all the obtained theoretical results and on their implementation into a
Mathematica package “CFTs4D” for an easy and convenient use.

The two main conceptual problems one faces are the construction of generic n-point tensor
structures and the construction of generic conformal blocks.

We address the first problem using 2 alternative methods: the covariant (embedding
space) formalism and the non-covariant (conformal frame) formalism. Both have their ad-
vantages and disadvantages. We establish a precise connection between them which allows
their interchangeable use depending on the situation.

We address the second problem by reducing generic conformal blocks to an (infinite) set
of seed conformal blocks. This is done using the so called spinning differential operators.
We first construct explicitly a suitable (finite) set of such operators. We then introduce a
new formalism which provides an (infinite) set of conformally covariant differential operators.
The spinning operators are obtained as their invariant products. This heavily enlarges the
original list of spinning differential operators.

Finally we compute the seed conformal blocks in two different ways: by directly solving
the Casimir equation and by using the shadow formalism augmented with group-theoretic
properties of our new covariant differential operators.
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Chapter 1

Introduction

Motivation Conformal Quantum Field Theories (CFTs) is an important sub-class of Quan-
tum Field Theories (QFTs). They describe fixed points of UV-complete QFTs. The primal
interest for studying CFTs in 4 space-time dimensions (4D) is to learn the IR behavior of
gauge theories possessing a non-trivial fixed point. Besides being interestin per se, this studies
might also find applications in physics beyond the standard model, see [1] for a discussion.

The most famous example of a 4D gauge theory is the Quantum Chromo Dynamics
(QCD). It consists of Nf Weyl fermions transforming in fundamental and Nf Weyl fermions
transforming in anti-fundamental representation of the SU(Nc) gauge group. The theory
exhibits an IR fixed point for

N?
f < Nf ≤

11

2
Nc, (1.1)

where the upper limit can be studied in perturbation theory [2]; the lower limit lies in the
strongly interacting regime and currently can only be determined with the lattice techniques.
For current estimates of N?

f with Nc = 3 see for example [3].1 The range of parameters (1.1)
is called the conformal window. A lot of work was also devoted to SU(2) gauge theories
with fermions in adjoint representation [7–10]. Gauge theories with other gauge groups and
different representations were considered in [11–18]. See also [19].

Conformal Bootstrap Approach One powerful non-perturbative method to study CFTs
is the conformal bootstrap [20–24] (see [25, 26] for recent introduction). In this approach
CFTs are described by the local CFT data (an infinite set of parameters), which consists
of scaling dimensions and Lorentz representations of local primary operators together with
structure constants of the operator product expansion (OPE). The observables of the theory
are correlation functions which are computed by maximally exploiting the conformal sym-
metry and the operator product expansion. The CFT data is heavily constrained by the
associativity of the OPE, which manifests itself in the form of consistency equations called
the crossing or the bootstrap equations.

To analyze the bootstrap equations and to put any constraints on the CFT data one faces
a very difficult technical problem of constructing generic bootstrap equations. This task can
be logically split in two steps. First, one has to construct and classify the so called tensor
structures2 for 2-, 3- and 4-point functions. Second, one should reduce 4-point functions to
3-point functions by means of the OPE. This reduction allows to rewrite any 4-point function
in terms of the CFT data and the so called conformal blocks.

It should be noted right away that the bootstrap approach deals only with fixed points and
is blind to any microscopic realizations of the IR fixed point. Thus, it is not straightforward
to apply it for studying gauge theories. To get any constraints on a specific gauge theory one
should inject all available information about the UV theory to the bootstrap set up. In some

1Further studies of Nc = 3 case were performed in [4–6].
2We call tensor structures the algebraic objects which carry information about the spin of operators in the

correlation function.
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cases the knowledge of the global symmetries might suffice. In general one could try to inject
an approximate spectrum of IR operators obtained using other methods (e.g. perturbation
theory, lattice).

1.1 A Brief Review of Existing Results

In recent years there has been an immense progress in the bootstrap program in d ≥ 3
CFTs. In a seminal work [27] it was shown how constraints on a finite subset of the OPE
data can be extracted numerically from the scalar bootstrap equations.3 In 4D the approach
of [27] was further developed in [1, 28–39]. In 3D a major advance came with the numerical
identification of the 3D Ising [40, 41] and the O(N) models [42–45]. An analytic approach for
analyzing the bootstrap equations was proposed in [46, 47] and further developed in [48–57].
In addition, we have analytic results for the conformal collider bounds [58–61] and the average
null energy condition [62]. Many more results were obtained and new promising directions
were considered in [63–110].

Most of these studies, however, focus on correlation functions of scalar operators, and
thus only have access to the scaling dimensions of traceless symmetric operators and their
OPE coefficients with a pair of scalars. In order to derive constraints on the most general
elements of the CFT data, one has to consider more general correlation functions. To the best
of our knowledge, the only numerical studies of a 4-point function of non-scalar operators in
non-supersymmetric theories up to date were done in 3D for a 4-point function of Majorana
fermions [111, 112] and for a 4-point function of conserved abelian currents [113] and energy-
momenutm tensors [114].

One reason for the lack of results on 4-point functions of spinning operators is that
such correlators are rather hard to deal with. This difficulty increases with the dimension
d due to an increasing complexity of the d-dimesnional Lorentz group. For instance, the
representations of the 4D Lorentz group are already much richer than the ones in 3D.

The problem of constructing tensor structures has a long history [111, 115–123]. In
4D all the 3-point tensor structures were obtained in [124] using the covariant embedding
formalism approach. Unfortunately, in this approach 4- and higher-point tensor structures are
hard to analyze due to a growing number of non-linear relations between the basic building
blocks. This problem is alleviated in the conformal frame approach [118, 125, 126]. In [126]
a complete classification of general conformally invariant tensor structures was obtained in a
non-covariant form.

The problem of computing the conformal blocks for scalar 4-point functinons was solved
by a variety of methods in [40, 43, 124, 127–131].4 Spinning conformal blocks were consid-
ered in [110, 111, 123, 124, 138–143]. Remarkably, in [138] it was found that the Lorentz
representations of external operators can be changed by means of differential operators. In
3D, this relates all bosonic conformal blocks to conformal blocks with external scalars. These
results were extended to 3D fermions in [111, 140] completing in principle the program of
computing general conformal blocks in 3D.

Results of [138] concerning traceless symmetric operators apply also to 4D, but are not
sufficient even for the analysis of an OPE of traceless symmetric operators since such an OPE
also contains non-traceless symmetric operators. The expression for a 4D spinning conformal
block was obtained in [139] for a special case of 2 scalars and 2 vectors.

3The bootstrap equations constitute an infinite system of coupled non-linear equations for the CFT data.
4Recently conformal blocks got some attention from the AdS prospective when a relation between them

and Witten diagrams was discovered [132–137].
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1.2 A Brief Review of Novel Results

In this thesis we develop and unify all necessary theoretical ingredients and tools for con-
structing general bootstrap equations in 4D CFTs. The main goal of this thesis is to make
future studies of dynamical quantities (the OPE data) widely accessible with both numerical
and analytical techniques. We leave any applications for future research.

This thesis is based on the following works [144–148]. Below we briefly summarize the
main novel results and outline the structure of the thesis.

chapter 2 We describe our formalism giving precise definitions to all the main objects:
n-point functions, tensor structures, spinning differential operators, Casimir operators, con-
formal blocks, seed conformal blocks and the bootstrap equations. We show how to reduce
generic conformal blocks to an (infinite) set of seed and dual conformal block

H(p)
e (z, z) and H

(p)
e (z, z), e = 0, . . . , p (1.2)

by means of the so called spinning differential operators. We do not provide explicit realization
of all these objects, this is done in chapter 3 instead.

chapter 3 We develop two independent formalisms for constructing tensor structures and
differential operators: the covariant (embedding formalism) approach in section 3.1 and non-
covariant (conformal frame) approach in section 3.2. Both approaches have their advantages
and disadvantages. We unify them by providing an explicit connection in section 3.2.2,
making it possible to switch between them at any time.

We construct and attempt to classify tensor structures in the embedding formalism
in (3.32). We provide a set of spinning differential operators in (3.34), (3.35) and (3.36).
We construct and classify tensor structures in the conformal frame in (3.61) and (3.68). Fi-
nally we explain how to take derivatives in the conformal frame allowing to translate all the
differential operators found in the embedding formalism into non-covariant language.

Many important relevant details of this chapter are moved to the set of appendices A. Ap-
pendices A.1 and A.2 summarize our conventions in 4D Minkowski space and 6D embedding
space, as well as cover the action of P- and T -symmetries. Appendix A.2 also contains details
of the embedding formalism. In appendix A.3 we give details on normalization conventions
for 2-point functions and seed conformal blocks. Appendices A.4 and A.5 contain details on
explicitly covariant tensor structures. In appendix A.6 we describe all 3 Casimir generators of
the four-dimensional conformal group. Appendices A.7 and A.8 cover conservation conditions
and permutation symmetries.

chapter 4 We address the problem of computing seed and dual seed conformal blocks (1.2).
In section 4.1 we derive a system of Casimir partial differential equations for them in a
compact form. We solve the Casimir system in section 4.2 by introducing a proper ansatz.
The solution for the seed and dual seed blocks is given in (4.33) and (4.34). Schematically it
has the following form ( zz

z − z

)2 p+1 ∑
m,n

cem,nF
− (...)
...+m, ...+n(z, z), (1.3)

where F− are the eigenfunctions of the scalar Casimir operator in 2D. The coefficients cem,n
are computed using the recursion relation (4.32). We find their explicit form for p ≤ 4. The
properties of the F-functions are given in appendix B.2. An explicit p = 1 solution for the
coefficients cem,n is given in appendix B.3.
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A crucial role in constructing the ansatz was played by the results of appendix B.1. There
we find a compact integral representation for the seed conformal blocks. Using this expression
we show how to reduce seed and dual seed blocks to the scalar Dolan and Osborn block.5 We
then compute explicitly the p = 1, 2 cases.

chapter 5 We introduce here a new powerful formalism based on representation theory of
the conformal group. We show in section 5.1 the existence of covariant differential operators
corresponding to finite-dimensional representations of the conformal group. In section 5.2 we
explain that these operators satisfy a very special “crossing” equation which can be used to
move an action of a covariant differential operator from one point to another.

We construct explicitly these differential operators in section 5.3 in the case of fundamental
and anti-fundamental representations of the conformal group SU(2, 2) in 4D, the result is
summarized in (5.38). We show then how the spinning differential operators (3.35) and (3.36)
are related to (5.38).

We combine the “crossing” equation with the shadow techniques in section 5.4. We use
this to derive recursion relations6 for the seed and dual seed blocks of the form

H(p)
e (z, z) =

∑
e′

#H
(p−1)
e′ (z, z), (1.4)

which allow to reduce successively any (dual) seed conformal block to the scalar Dolan and
Osborn block (p = 0). This result is an example of changing the spin of “exchanged” (internal)
operators in the OPE and can be consider as a generalization of results [138] to internal
operators.

The CFTs4D Package The results of chapters 2-5 are technically complicated. For their
practically efficient use we introduce a Mathematica package “CFTs4D”. It allows to work
with general 2-, 3- and 4-point functions and to construct arbitrary spin crossing equations in
4D CFTs. The package can be downloaded from https://gitlab.com/bootstrapcollaboration/CFTs4D.
Once it is installed one gets an access to a comprehensive documentation and examples. We
also refer to the relevant functions from the package throughout the thesis as [function].

5The task of reducing the seeds to scalar blocks is also addressed in chapter 5. However the results of
appendix B.1 are weaker since they apply only to the seeds, whereas the formalism of chapter 5. applies to
generic blocks. Also in appendix B.1 we do not take care of the overall normalization which is extremely
tedious to compute. This issue is solved beautifully in chapter 5.

6A posteriori we notice that we could have derived these relations using our results in the shadow appendix
(without fixing an overall normalization), see also footnote 5.

https://gitlab.com/bootstrapcollaboration/CFTs4D#cfts4d
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Chapter 2

The Framework

In this paper we consider only the consequences of the conformal symmetry. In particular, we
do not consider global (internal) symmetries because they commute with conformal trasfor-
mations and thus can be straightforwardly included. We also do not discuss supersymmetry.

The local operators in 4D CFT are labeled by (`, `) representation of the Lorentz group
SO(1, 3) and the scaling dimension ∆.In a CFT one can distinguish a special class of pri-
mary operators, the operators which transform homogeneously under conformal transforma-
tions [20]. In a unitary CFT any local operator is either a primary or a derivative of a primary,
in which case it is called a descendant operator. A primary operator in representation (`, `)
can be written as1

Oβ̇1...β̇`
α1...α`(x), (2.1)

symmetric in spinor indices αi and β̇j . Because of the symmetry in these indices, we can
equivalently represent O by a homogeneous polynomial in auxiliary spinors sα and sβ̇ of

degrees ` and ` correspondingly

O(x, s, s) = sα1 · · · sα`sβ̇1
· · · sβ̇`O

β̇1...β̇`
α1...α`(x). (2.2)

We often call the auxiliary spinors s and s the spinor polarizations. The indices can be
restored at any time by using

Oβ̇1...β̇`
α1...α`(x) =

1

`! `!

∏̀
i=1

∏̀
j=1

∂

∂sαi
∂

∂sβ̇j
O(x, s, s). (2.3)

In principle the auxiliary spinors s and s are independent quantities, however without loss
of generality we can assume them to be complex conjugates of each other, sα = (sα̇)∗. This
has the advantage that if O with ` = ` is a Hermitian operator, e.g. for ` = ` = 1,

Oαβ̇(x) = (Oβα̇(x))† , (2.4)

then so is O(x, s, s),
O(x, s, s) = (O(x, s, s))† . (2.5)

More generally for non-Hermitian operators we define

O(x, s, s) ≡ (O(x, s, s))† , (2.6)

see (A.8) for the index-full version.

1Our conventions relevant for 3+1 dimensional Minkowski spacetime are summarized in appendix A.1.
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Conformal field theories possess an operator product expansion (OPE) with a finite radius
of convergence [117, 125, 149, 150]

O1(x1, s1, s1)O2(x2, s2, s2) =
∑
O

∑
a

λa〈O1O2O〉
Ba(∂x2 , ∂s, ∂s, . . .)O(x2, s, s), (2.7)

where Ba are differential operators in the indicated variables (depending also on x1−x2, sj , sj ,
where j = 1, 2), which are fixed by the requirement of conformal invariance of the expansion.
Here λ’s are the OPE coefficients which are not constrained by the conformal symmetry.
In general there can be several independent OPE coefficients for a given triple of primary
operators, in which case we label them by an index a.

The OPE provides a way of reducing any n-point function to 2-point functions, which
have canonical form in a suitable basis of primary operators. Therefore, the set of scaling
dimensions and Lorentz representations of local operators, together with the OPE coefficients,
completely determines all correlation functions of local operators in conformally flat R1,3. For
this reason we call this set of data the CFT data in what follows.2 The goal of the bootstrap
approach is to constrain the CFT data by using the associativity of the OPE. In practice
this is done by using the associativity inside of a 4-point correlation function, resulting in the
crossing equations which can be analyzed numerically and/or analytically. In the remainder
of this section we describe in detail the path which leads towards these equations.

2.1 Correlation Functions of Local Operators

We are interested in studying n-point correlation functions

fn(p1 . . .pn) ≡ 〈0|O(`1,`1)
∆1

(p1) . . . O(`n,`n)
∆n

(pn)|0〉, (2.8)

where for convenience we defined a combined notation for dependence of operators on coor-
dinates and auxiliary spinors

pi ≡ (xi, si, si). (2.9)

We have labeled the primary operators with their spins and scaling dimensions. In general
these labels do not specify the operator uniquely (for example in the presence of global
symmetries); we ignore this subtlety for the sake of notational simplicity. For our purposes
it will be sufficient to assume that all operators are space-like separated (this includes all
Euclidean configurations obtained by Wick rotation), and thus the ordering of the operators
will be irrelevant up to signs coming from permutations of fermionic operators.

The conformal invariance of the system puts strong constraints on the form of (2.8). By
inserting an identity operator 1 = UU †, where U is the unitary operator implementing a
generic conformal transformation, inside this correlator and demanding the vacuum to be
invariant U |0〉 = 0, one arrives at the constraint

〈0|
(
U †O(`1,`1)

∆1
U
)
. . .
(
U †O(`n,`n)

∆n
U
)
|0〉 = 〈0|O(`1,`1)

∆1
. . .O(`n,`n)

∆n
|0〉. (2.10)

The algebra of infinitesimal conformal transformations, as well as their action on the primary
operators are summarized in our conventions in appendix A.1.

2Besides the correlation functions of local operators one can consider extended operators, such as conformal
defects, as well as the correlation functions on various non-trivial manifolds. In order to be able to compute
these quantities one has to in general extend the notion of the CFT data.
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The general solution to the above constraint has the following form,

fn(xi, si, si) =

Nn∑
I=1

gIn(u) TIn(xi, si, si), (2.11)

where TIn are the conformally-invariant tensor structures which are fixed by the conformal
symmetry up to a u-dependent change of basis, and u are cross-ratios which are the scalar
conformally-invariant combinations of the coordinates xi. The structures TIn and their number
Nn depend non-trivially on the SO(1, 3) representations of Oi, but rather simply on ∆i, so
we can write

TIn(xi, si, si) = Kn(xi)T̂In(xi, si, si), (2.12)

where all ∆i-dependence is in the “kinematic” factor Kn3 and all the the ∆i enter Kn through
the quantity

κ ≡ ∆ +
`+ `

2
. (2.13)

Note that T and T̂ are homogeneous polynomials in the auxiliary spinors, schematically,

TIn, T̂In ∼
n∏
i=1

s`ii s
`i
i . (2.14)

In the rest of this subsection we give an overview of the structure of n-point correlation
functions for various n, emphasizing the features specific to 4D.

2-point functions A 2-point function can be non-zero only if it involves two operators
in complex-conjugate representations, (`1, `1) = (`2, `2), and with equal scaling dimensions,
∆1 = ∆2. In fact, it is always possible to choose a basis for the primary operators so that
the only non-zero 2-point functions are between Hermitian-conjugate pairs of operators. We
always assume such a choice.

The general 2-point function [n2CorrelationFunction] then has an extremely simple
form given by

〈O(`,`)
∆ (p1)O(`,`)

∆ (p2)〉 = c〈OO〉 x
−2κ1
12︸ ︷︷ ︸
=K2

[
Î12
]`[Î21

]`︸ ︷︷ ︸
=T̂2

, (2.15)

where c〈OO〉 is a constant. There is a single tensor structure T̂2, and the building blocks Îij are
defined in appendix A.4. Changing the normalization ofO one can rescale the coefficient c〈OO〉
by a positive factor. The phase is fixed by the requirement of unitarity, see appendix A.3.
We can make the following choice

c〈OO〉 = i`−`, c〈OO〉 = (−)`−`c〈OO〉 = i`−`, (2.16)

where the factor (−)`−` appears due to the spin statistics theorem.

3This does not uniquely fix the factorization, and we will make a choice based on convenience later.
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3-point functions A generic form of a 3-point function [n3ListStructures,

n3ListStructuresAlternativeTS] is given by4

〈O(`1,`1)
∆1

(p1)O(`2,`2)
∆2

(p2)O(`3,`3)
∆3

(p3)〉 =

N3∑
a=1

λ
(a)
〈O1O2O3〉〈O1O2O3〉(a), (2.17)

where
〈O1O2O3〉(a) ≡ Ta3 = K3 T̂a3. (2.18)

In case of a single tensor structure we will use the notation 〈. . .〉(•). The kinematic factor
[n3KinematicFactor] is given by

K3 =
∏
i<j

|xij |−κi−κj+κk . (2.19)

The necessary and sufficient condition for the 3-point tensor structures T̂a3 to exist is that the
3-point function contains an even number of fermions and the following inequalities hold,

|`i − `i| ≤ `j + `j + `k + `k, for all distinct i, j, k. (2.20)

A general discussion on how to construct a basis of tensor structures T̂a3 is given in section 3.1.
For convenience we summarize this construction for 3-point functions in appendix A.5.

The fact that the OPE coefficients enter 3-point functions follows simply from using the
OPE (2.7) and the form of (2.15) in the left hand side of (2.17). It is also clear that one can
always choose the bases for Ba and T̂a3 to be compatible.

There is a number of relations the OPE coefficients λa〈O1O2O3〉 have to satisfy. The simplest

one comes from applying complex conjugation to both sides of (2.17). On the left hand side
one has

〈O1O2O3〉∗ = 〈O3O2O1〉. (2.21)

Using the properties of tensor structures under conjugation summarized in appendix A.4 one
obtains a relation of the form (

λa〈O1O2O3〉

)∗
= Cab λb〈O3O2O1〉

, (2.22)

where the matrix Cab is often diagonal with ±1 entries. Other constraints arise from the
possible P- and T -symmetries (see appendix A.1), conservation equations (see appendix A.7),
and permutation symmetries (see appendix A.8). Importantly all these conditions give linear
equations for λ’s, which can be solved in terms of an independent set of real quantities λ̂ as

λa〈O1O2O3〉 =

N̂3∑
â=1

P a â
〈O1O2O3〉λ̂

â
〈O1O2O3〉, N̂3 < N3. (2.23)

It will be important for the calculation of conformal blocks that we can actually construct
all the tensor structures Ta3 in (2.17) by considering a simpler 3-point function with two out

of three operators having canonical spins (`′1, `
′
1) and (`′2, `

′
2), chosen in a way such that the

3-point function has a single tensor structure

〈O(`′1,`
′
1)

∆′1
O(`′2,`

′
2)

∆′2
O(`3,`3)

∆3
〉 = λ Tseed. (2.24)

4For notational convenience we use lowercase index a instead of capital index I to label the 3-point tensor
structures.
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A simple choice is to set as many spin labels to zero as possible, for example

`′1 = `
′
1 = `′2 = 0, `

′
2 = |`3 − `3|. (2.25)

As we see in section 3.1.2 one can then construct a set of differential operators Da acting on
the coordinates and polarization spinors of the first two operators such that

Ta3 = Da Tseed. (2.26)

We will call the canonical tensor structure Tseed a seed tensor structure in what follows.
Our choice of seed structures is described in appendix A.3. When the third field is traceless
symmetric, one has obviously `

′
2 = 0, thus relating a pair of generic operators to a pair of

scalars [138].

4-point functions and beyond In the case n = 4 one has

〈O(`1,`1)
∆1

(p1)O(`2,`2)
∆2

(p2)O(`3,`3)
∆3

(p3)O(`3,`4)
∆4

(p4)〉 =

N4∑
I=1

gI4(u, v) TI4, (2.27)

where gI4(u, v) are not fixed by conformal symmetry and are functions of the 2 conformally
invariant cross-ratios [formCrossRatios]

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.28)

In most of the applications it will be more convenient to use another set of variables (z, z)
[changeVariables] defined as

u = zz, v = (1− z)(1− z). (2.29)

We classify and construct all the 4-point tensor structures T4 [n4ListStructures,

n4ListStructuresEF] in section 3.2. Following the literature we choose the kinematic factor
[n4KinematicFactor] of the form5

K4 =

(
x24

x14

)κ1−κ2
(
x14

x13

)κ3−κ4

× 1

xκ1+κ2
12 xκ3+κ4

34

. (2.30)

The case of n ≥ 5 point functions is similar to the n = 4 case with a difference that the
number of conformally invariant cross-ratios is 4n− 15. We briefly discuss the classification
of tensor structures for higher-point functions in section 3.2.

In general 4- and higher-point functions are subject to the same sort of conditions as
3-point functions. Reality conditions and implications of P- and T -symmetries are not con-
ceptually different from the 3-point case. However, implications of permutation symmetries
and conservation equations are more involved than those for 3-point functions, see [151], due
to the existence of non-trivial conformal cross-ratios (2.28). See also appendices A.8 and A.7
for details.

5In section 3.2 we never separate the kinematic factor which has an extremely simple form (zz)−
κ1+κ2

2 in
the conformal frame.
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2.2 Decomposition in Conformal Partial Waves

Since the OPE data determines all the correlation functions, the functions gI4(u, v) entering
(2.27) can also be computed. To compute gI4(u, v) we use the s-channel OPE, namely the
OPE in pairs O1O2 and O3O4. One way to do this is to insert a complete orthonormal set
of states in the correlator

f4 =
s−OPE

〈O1O2O3O4〉 =
∑
|Ψ〉

〈O1O2|Ψ〉〈Ψ|O3O4〉. (2.31)

By virtue of the operator-state correspondence, see for example [25, 26], the states |Ψ〉 are in
one-to-one correspondence with the local primary operators O and their descendants ∂nO.
This allows us to express the inner products above in terms of the 3-point functions 〈O1O2O〉
and 〈OO3O4〉 with the primary operator O and its conjugate O, resulting in the following
s-channel conformal partial wave decomposition

〈O1O2O3O4〉 =
∑
O

∑
a,b

λa〈O1O2O〉W
ab
〈O1O2O〉〈OO3O4〉

λb〈OO3O4〉
. (2.32)

The objects W ab are called the Conformal Partial Waves (CPWs). The summation in (2.32) is
over all primary operators O which appear in both 3-point functions 〈O1O2O〉 and 〈OO3O4〉
and we can write explicitly ∑

O
=

∞∑
|`−`|=0

∞∑
`=0

∑
∆,i

, (2.33)

where i labels the possible degeneracy of operators at fixed spin and scaling dimensions
(coming, for example, from a global symmetry). Note that according to properties of 3-point
functions (2.20), there is a natural upper cut-off in the first summation

∞∑
|`−`|=0

=

|`−`|max∑
|`−`|=0

, (2.34)

where
|`− `|max = min(`1 + `1 + `2 + `2, `3 + `3 + `4 + `4). (2.35)

Furthermore, if the operator O is bosonic then |`−`| assumes only even values; if the operator
O is fermionic |`− `| assumes only odd values. The CPWs can be further rewritten in terms
of Conformal Blocks (CB) and tensor structures as

W ab
〈O1O2O〉〈OO3O4〉

=

N4∑
I=1

GI,ab〈O1O2O〉〈OO3O4〉
(u, v) TI4, (2.36)

inducing the conformal block expansion for gI4

gI4(u, v) =
s−OPE

∑
O

∑
a,b

λa〈O1O2O〉G
I,ab

〈O1O2O〉〈OO3O4〉
(u, v)λb〈OO3O4〉

. (2.37)

Computation of Conformal Partial Waves The CPWs can be computed by using
the shadow formalism, see (5.54) and (B.2) or the Casimir equations (see below). However
computing generic case is rather difficult. Luckily there is a way of reducing them to simpler
objects called the seed CPWs by means of differential operators [138, 145].
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For example, the s-channel CPW appearing due to the exchange of a generic operator

O
(`,`)
∆ , p ≡ |`− `| (2.38)

by using (2.26) can be written as

W ab
〈O1O2O〉〈OO3O4〉

= Da〈O1O2O〉D
b
〈OO3O4〉

W seed

〈F(0,0)
1 F(p,0)

2 O〉〈OF(0,0)
3 F(0,p)

4 〉
, (2.39)

where Fi are the operators with the same 4D scaling dimensions ∆i as Oi, see section 3.1.2.
The seed CPWs are defined as the s-channel contribution of (2.38) to the seed 4-point function

〈F (0,0)
1 F (p,0)

2 F (0,0)
3 F (0,p)

4 〉. (2.40)

An important property of the seed 4-point function (2.40) is that it has only p + 1 tensor
structures. We will distinguish two dual types of seed CPWs, following the convention of [146],

W
(p)
seed ≡W

seed

〈F(0,0)
1 F(p,0)

2 O〉〈OF(0,0)
3 F(0,p)

4 〉
, if `− ` ≤ 0, (2.41)

W
(p)
dual seed ≡W seed

〈F(0,0)
1 F(p,0)

2 O〉〈OF(0,0)
3 F(0,p)

4 〉
, if `− ` ≥ 0. (2.42)

The case W
(0)
seed = W

(0)
dual seed reproduces the classical scalar conformal block found by Dolan

and Osborn [127, 128]. The seed CPWs [seedCPW] can be written in terms of a set of seed

Conformal Blocks H
(p)
e (z, z) and H

(p)
e (z, z) as6

W
(p)
seed = K4

p∑
e=0

(−2)p−eH(p)
e (z, z)

[
Î42
]e[Î42

31

]p−e
, (2.43)

W
(p)
dual seed = K4

p∑
e=0

(−2)p−eH
(p)
e (z, z)

[
Î42
]e[Î42

31

]p−e
, (2.44)

where the tensor structures are defined in appendix A.4.

The seed Conformal Blocks H
(p)
e (z, z) and H

(p)
e (z, z) will be computed in chapter 4

and chapter 5 analytically in two different ways. [plugSeedBlocks, plugDualSeedBlocks,

plugSeedRecursion, plugDualSeedRecursion]. Other relevant functions are [plugCoefficients,
plugKFunctions, reduceKFunctionDerivatives, plugPolynomialsPQ].

The Casimir Equation A very important property of the CPWs is that they satisfy the
conformal Casimir eigenvalue equations [128, 129]7 which have the form(

Cn − En
)
W ab
〈O1O2O〉〈OO3O4〉

= 0, (2.45)

where n = 2, 3, 4 and C2, C3 and C4 are the quadratic, cubic and quartic Casimir differential
operators respectively [opCasimirnEF, opCasimir24D]. They are defined in appendix A.6
together with their eigenvalues [casimirEigenvaluen], where the conformal generators
LMN given in appendix A.2 are taken to act on 2 different points

LMN = LiMN + Lj MN , (2.46)

6The factors (−2)p−e are introduced here to match the original work [146].
7DK thanks Hugh Osborn for useful discussion on this topic.
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with (ij) = (12) or (ij) = (34) corresponding to the s-channel CPWs8.
The n = 2 Casimir is used in chapter 4 for constructing the seed CPWs. Given that the

seed CPWs are known, in practice the Casimir equations can be used to validate the more
general CPWs computed using the prescription above.

Conserved and Identical Operators, P− and T −symmetries As noted in section 2.1,
in general there are various constraints imposed on 3- and 4-point functions, such as reality
conditions, permutation symmetries, conservation, and P− and T − symmetries. Recall that
the most general CPW decomposition is given by (2.37),

gI4(u, v) =
s−OPE

∑
O

∑
a,b

λa〈O1O2O〉G
I,ab

〈O1O2O〉〈OO3O4〉
(u, v)λb〈OO3O4〉

. (2.47)

According to the discussion around (2.23), the general solution to these constraints rele-
vant for this expansion is

λa〈O1O2O〉 =
∑
â

P a â
〈O1O2O〉λ̂

â
〈O1O2O〉 and λb〈OO3O4〉

=
∑
b̂

P b b̂
〈OO3O4〉

λ̂b̂〈OO3O4〉
. (2.48)

Besides that, if the pair of operators O1 and O2 is the same as the pair of operatirs O3 and
O4, there has to exist relations of the form

λb〈OO3O4〉
=
∑
b

N b c
〈OO3O4〉

λc〈O1O2O〉
. (2.49)

Once the relations (2.48) and (2.49) are inserted in the general expression (2.47), the re-
sulting 4-point function will satisfy all the required constraints which preserve the s-channel.9

In particular, the “reduced” CPWs corresponding to the coefficients λ̂ will also satisfy these
constraints automatically. Note that by construction the reduced CPWs are just the linear
combinations of the generic CPWs.

2.3 The Bootstrap Equations

The conformal bootstrap equations are the equations which must be satisfied by the consistent
CFT data. They arise as follows. The s-channel OPE (2.31) is not the only option to compute
4-point functions, there are in fact two other possibilities. One can use the t-channel OPE
expansion

f4 =
t−OPE

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

± 〈O3(p1)O2(p2)O1(p3)O4(p4)〉
∣∣∣
p1↔p3

= ± 〈O1(p1)O4(p2)O3(p3)O2(p4)〉
∣∣∣
p2↔p4

(2.50)

8Notice that the eigenvalue of C3 taken at (ij) = (34) will differ by a minus sign from the eigenvalue of C3

taken at (ij) = (12).
9Possible constraints which do not preserve s-channel are permutations of the form (13), etc. Such permu-

tations, if present, are equivalent to the crossing equations discussed below.
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or the u-channel OPE expansion

f4 =
u−OPE

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

± 〈O4(p1)O2(p2)O3(p3)O1(p4)〉
∣∣∣
p1↔p4

= ± 〈O1(p1)O3(p2)O2(p3)O4(p4)〉
∣∣∣
p2↔p3

. (2.51)

In the above relations we permuted operators in the second and third equalities to get back the
s-channel configuration. Minus signs are inserted for odd permutation of fermion operators.

In a consistent CFT the function f4 is unique and does not depend on the channel used
to compute it, leading to the requirement that the expressions (2.31), (2.50) and (2.51) must
be equal. These equalities are the bootstrap equations. To be concrete we write the s-t
consistency equation using (2.32) and (2.50)

f4 =
s−OPE

∑
O
λa〈O1O2O〉W

ab
〈O1O2O〉〈OO3O4〉

λb〈OO3O4〉
, (2.52)

f4 =
t−OPE

±
∑
O
λa〈O3O2O〉W

ab
〈O3O2O〉〈OO1O4〉

λb〈OO1O4〉

∣∣∣∣∣
p1↔p3

. (2.53)

In this example the tensor structures T̂In transform under permutation of points pi ↔ pj as

T̂I〈O3O2O1O4〉

∣∣∣
p1↔p3

= M IJ
p1↔p3

T̂J〈O1O2O3O4〉, (2.54)

since they form a basis. Further decomposing these expressions using the basis of tensor
structures one can compute the unknown gI4(z, z)

gI4(z, z) =
s−OPE

∑
O

∑
a,b

λa〈O1O2O〉G
I,ab

〈O1O2O〉〈OO3O4〉
(z, z)λb〈OO3O4〉

, (2.55)

gI4(z, z) =
t−OPE

±M IJ
p1↔p3

∑
O

∑
a,b

λa〈O3O2O〉G
J,ab

〈O3O2O〉〈OO1O4〉
(1− z, 1− z)λb〈OO1O4〉

. (2.56)

Equating (2.55) and (2.56) we get N4 independent equations. In a presence of additional con-
straints discussed in appendices A.1, A.7 and A.8, not all the N4 equations are independent,
and one should chose only those equations which correspond to the independent degrees of
freedom. In the conventional numerical approach to conformal bootstrap, when Taylor ex-
panding the crossing equations around z = z = 1/2, one should also be careful to understand
which Taylor coefficients are truly independent. Among other things, this depends on the
analyticity properties of tensor structures T4, see appendix A of [126] for a discussion.
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Chapter 3

Embedding Formalism and
Conformal Frame

3.1 Embedding Formalism

The EF is based on a key observation that the 4D conformal group is isomorphic to SO(4, 2),
the linear Lorentz group in 6D. It is then convenient to embed the 4D space into the 6D space
where the group acts linearly, lifting the 4D operators to 6D operators [124]. In particular,
the linearity of the action of the conformal group in 6D allows one to easily build conformally
invariant objects. However, non-trivial relations between these exist, posing problems for
constructing the basis of tensor structures already in the case of 4-point functions. This
motivates the introduction of a different formalism described in section 3.2.

The details of the 6D EF, its connection to the usual 4D formalism, and the relevant
conventions are reviewed in appendix A.2. In this section we discuss only the construction
of n-point tensor structures and the spinning differential operators. Our presentation focuses
on the EF as a practical realization of the framework discussed in section 2.1

Embedding Let us first review the very basics of the EF. We label the points in the 6D
space by XM = {Xµ, X+, X−}, with the metric given by

X2 = XµXµ +X+X−. (3.1)

The 4D space is then identified with the X+ = 1 section of the lightcone X2 = 0, and the
coordinates on this section are chosen to be xµ = Xµ.

A generic 4D operator Oβ̇1...β̇`
α1...α`(x) in spin-(`, `) representation can be uplifted according

to (A.66) to a 6D operator Oa1...a`
b1...b`

(X) defined on the lightcone X2 = 0 and totally symmetric

in its both sets of indices. We can define an index-free operator O(X,S, S) using the 6D

polarizations Sa and S
b

by

O(X,S, S) ≡ Oa1...a`
b1...b`

(X)Sa1 . . . Sa`S
b1 . . . S

b` . (3.2)

The 6D operators are homogeneous in X and the 6D polarizations,

O(X,S, S) ∼ X−κ S` S`, κ = ∆ +
`+ `

2
. (3.3)

1Note that most of the results discussed in section 2, like the explicit construction of 2- and 3-point tensor
strucutures [121, 124, 144] and the existence of the spinning differential operators [138, 145] were originally
obtained within the EF.
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It is sometimes useful to assign the 4D scaling dimensions to the basic 6D objects as

∆[X] = −1 and ∆[S] = ∆[S] = −1

2
. (3.4)

According to (A.69) there is a lot of freedom in choosing the lift O(X,S, S). We can
express this freedom by saying that the operators differing by gauge terms proportional to
SX, SX or SS are equivalent. Note that O(X,S, S) is a priori defined only on the lightcone
X2 = 0, but it is convenient to extend it arbitrarily to all values of X. This gives an additional
redundancy that the operators differing by terms proportional to X2 are equivalent.

The 4D field can be recovered via a projection operation defined in appendix A.2,

O(x, s, s) = O(X,S, S)

∣∣∣∣
proj

, (3.5)

which essentially substitutes X, S, S with some expressions depending on x, s, s only. All
the gauge terms proportional to SX, SX, SS or X2 vanish under this operation.

Sometimes it is convenient to work with index-full form Oa1...a`
b1...b`

(X) and to fix part of the

gauge freedom by requiring it to be traceless. We can restore the traceless form from the
index-free expression O(X,S, S) by

Oa1...a`
b1...b`

(X) =
2

`! `! (2 + `+ `)!

(∏̀
i=1

∂ai

)∏̀
j=1

∂bj

O(X,S, S), (3.6)

where2

∂a ≡
(
S · ∂

∂S
+ S · ∂

∂S
+ 3

)
∂

∂Sa
− Sa

(
∂

∂S · ∂S

)
, (3.7)

∂b ≡
(
S · ∂

∂S
+ S · ∂

∂S
+ 3

)
∂

∂S
b
− Sb

(
∂

∂S · ∂S

)
. (3.8)

Correlation functions A correlation function of 6D operators on the light cone must
be SO(4,2) invariant and obey the homogeneity property (3.3). Consequently, it has the
following generic form

〈O(`1,`1)
∆1

(P1) . . . O
(`n,`n)
∆n

(Pn)〉 =

Nn∑
I=1

gI(U)T I(X,S, S), (3.9)

where T I(X,S, S) are the 6D homogeneous SU(2, 2) invariant tensor structures and gI(U) are
functions of 6D cross-ratios, i.e. homogeneous with degree zero SO(4,2) invariant functions
of coordinates on the projective light cone. We also defined a short-hand notation

P ≡ (X,S, S). (3.10)

2These operators are constructed to map terms proportional to SS to other terms proportional to SS.
In the equivalence class of uplifts, given an operator O(X,S, S) one can find another operator O′(X,S, S) =
O(X,S, S) + (SS)(. . .)O which differs from O by terms proportional to SS and encodes a traceless operator
O
a1...a`
b1...b`

(X). Since after taking the maximal number of derivatives the SS terms can only map to zero, we

can safely replace O by O′. The action on O′(X,S, S) is proportional to the action of ∂
∂Sa

and ∂

∂S
a and thus

provides an inverse operation to (3.2).
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Tensor structures split in a scaling-dependent and in a spin-dependent parts as

T I(X,S, S) = KnT̂
I(X,S, S), T I , T̂ In ∼

n∏
i=1

S`ii S
`i
i . (3.11)

The object Kn is the 6D kinematic factor and T̂ I are the SO(4, 2) invariants of degree zero
in each coordinate. The main invariant building block is the scalar product3

Xij ≡ −2 (Xi ·Xj), (3.12)

The 6D kinematic factors [n3KinematicFactor, n4KinematicFactor] are given by

K2 ≡ X
−κ1

2
12 , K3 ≡

∏
i<j

X
−
κi+κj−κk

2
ij , (3.13)

and

K4 ≡
(
X24

X14

)κ1−κ2
2
(
X14

X13

)κ3−κ4
2

× 1

X
κ1+κ2

2
12 X

κ3+κ4
2

34

. (3.14)

We also define the 6D cross-ratios by taking products of Xij factors. For n = 4 only two
cross ratios can be formed

U ≡ X2
12X

2
34

X2
13X

2
24

, V ≡ X2
14X

2
23

X2
13X

2
24

. (3.15)

With these definitions, under projection we recover the usual 4D expressions:

Xij

∣∣∣
proj

= x2
ij , Kn

∣∣∣
proj

= Kn, U
∣∣∣
proj

= u, V
∣∣∣
proj

= v. (3.16)

Finally, given a correlator in the embedding space one can recover the 4D correlator

〈O(`1,`1)
∆1

(p1) . . .O(`n,`n)
∆n

(pn)〉 = 〈O(`1,`1)
∆1

(P1) . . . O
(`n,`n)
∆n

(Pn)〉
∣∣∣
proj

, (3.17)

with the projections of the 6D invariants entering the 6D correlator given in the formula (3.16)
and appendix A.4.

3.1.1 Construction of Tensor Structures

Let us discuss the construction of tensor structures T̂ In(X,S, S). In index-free notation, this
is equivalent to finding all SU(2, 2) invariant homogeneous polynomials in S, S. All SU(2, 2)
invariants are built fully contracting the indices of the following objects:

δab , εabcd, ε
abcd, Xi ab, X

ab
j , Sk a, S

a
l . (3.18)

With the exception of taking traces over the coordinates tr[XiXj . . .XkXl],
4 all other tensor

structures are built out of simpler invariants of degree two or four in S and S.

List of non-normalized invariants By taking into account eq. (A.50) and the relations
(A.68) and (A.72), it is possible to identify a set of invariants with the properties discussed
above. These can be conveniently divided in five classes. The number of possible invariants

3Notice a difference in the definition of Xij compared to [144–146]: Xhere
ij = −2Xthere

ij .
4All such traces can be reduced to the scalar product Xij = −Tr[XiXj ]/2.
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increases with the number of points n. Below we provide a complete list of them for n ≤ 5
and indicate their transformation property under the 4D parity. In what follows the indices
i, j, k, l, . . . are assumed to label different points.

Class I constructed from Si and Sj belonging to two different operators.

n ≥ 2 : Iij ≡ (SiSj)
P−→ −Iji,

n ≥ 4 : Iijkl ≡ (SiXkXlSj)
P−→ −Ijilk ,

n ≥ 6 : . . . . . . . . .

(3.19)

Class II constructed from Si and Si belonging to the same operator.

n ≥ 3 : J ijk ≡ (SiXjXkSi)
P−→ −J ikj = J ijk,

n ≥ 5 : J ijklm ≡ (SiXjXkXlXmSi)
P−→ −J imlkj ,

n ≥ 7 : . . . . . . . . .

(3.20)

Class III constructed from Si and Sj belonging to two different operators.

n ≥ 3 : Kij
k ≡ (SiXkSj)

P←→ K
ij
k ≡ (SiXkSj),

n ≥ 5 : Kij
klm ≡ (SiXkXlXmSj)

P←→ K
ij
klm ≡ (SiXkXlXmSj),

n ≥ 7 : . . . . . . . . . . . .

(3.21)

Class IV constructed from Si and Si belonging to the same operator.

n ≥ 4 : Lijkl ≡ (SiXjXkXlSi)
P←→ L

i
jkl ≡ (SiXjXkXlSi),

n ≥ 6 : . . . . . . . . . . . .
(3.22)

Class V constructed from four S or four S belonging to different operators.

n ≥ 4 : M ijkl ≡ ε(SiSjSkSl)
P←→M

ijkl ≡ ε(SiSjSkSl). (3.23)

Basic linear relations Simple properties [applyEFProperties] arise due to the rela-
tion (A.50). For instance

J ijk = −J ikj , Kij
k = −Kji

k , K
ij
k = −Kji

k (3.24)

for n ≥ 3. Consequently not all these invariants are independent and it is convenient to work

only with a subset of them, for instance J ij<k, K
i<j
k , K

i<j
k . For n ≥ 4 other properties must

be taken into account:

Iijkl + Iijlk = −XklI
ij , Lijkl = Li[jkl], M ijkl = M [ijkl], M

ijkl
= M

[ijkl]
. (3.25)

These can be used in analogous manner to work only with a subset of invariants, for instance

Ii<jk<l , I
i>j
k>l , L

i
j<k<l, M

1234 and M
1234

. Another important linear relation is

J i[jkXl]m = 0 (3.26)

where m is allowed to be equal to i.
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Non-linear relations Unfortunately, even after taking into account all the linear rela-
tions above, many non-linear relations between products of invariant are present, see equa-
tions (A.122) - (A.125) for n ≥ 3 relations [applyJacobiRelations] and appendix A in [145]
for some n ≥ 4 relations.5 We expect that they all arise from (A.73).6 As an example consider
the following set of relations

M ijkl = −2X−1
ij

(
Kjk
i Kil

j −K
jl
i K

ik
j

)
, (3.27)

M
ijkl

= −2X−1
ij

(
K
jk
i K

il
j −K

jl
i K

ik
j

)
. (3.28)

They show that M ijkl and M
ijkl

can be rewritten in terms of other invariants; hence class
V objects are never used. All the relations obtained by fully contracting (3.18) with (A.73)
in all possible ways, involve at most products of two invariants in class I − IV . In fact, we
will see in section 3.2.2 that all non-linear relations have a quadratic nature. However, these
quadratic relations can be combined together to form relations involving products of three
or more invariants.7 See appendix A.5 for an example of such phenomena in the n = 3 case.

Normalization of invariants The T̂ In(X,S, S) are required to be of degree zero in all
coordinates. It is then convenient to introduce the following normalization factors

Nij ≡ X−1
ij , N ij

k ≡

√
Xij

XikXkj
, Nijk ≡

1√
XijXjkXki

. (3.29)

Using these factors [normalizeInvariants, denormalizeInvariants] it is possible to de-
fine normalized type I and type II tensor structures

Îij ≡ Iij , Îijkl ≡ NklI
ij
kl , Ĵ ijk ≡ NjkJ

i
jk, Ĵ ijklm ≡ NjkNlmJ

i
jklm, (3.30)

and normalized type III and type IV tensor structures

K̂ij
k ≡ N

ij
k K

ij
k , K̂ij

klm ≡ NklmK
ij
klm, L̂ijkl ≡ NjklL

i
jkl, (3.31)

with the analogous expressions for parity conjugated invariants K̂
ij

k , K̂
ij

klm and L̂
i

jkl. In
appendix A.4 we provide an explicit 4D form of these invariants after projection. Notice the
slight change of notation from previous works8.

Basis of tensor structures Given an n-point function, one can construct a set of tensor
structures [n3ListStructures, n3ListStructuresAlternativeTS, n4ListStructuresEF]

5Mind the difference in notation, see footnote 8 for details.
6In principle the Schouten identities might also contribute, see the footnote at page 26 of [124]; we found

however that the Schouten identities, when contracted, give relations equivalent to (A.73) for n ≤ 4.
7In other words, we have a graded ring of invariants and an ideal I of relations between them. The goal is

to find a basis of independent invariants of a given degree modulo I. In principle, I is generated by a quadratic
basis, but it is not trivial to reduce invariants modulo this basis. One would like to find a better basis, e.g. a
Gröbner basis, which then will contain higher-order relations.

8The correspondence with the notation of [144–146] is as follows: Îij ∼ Iij , −2 Îijkl ∼ Ĵij, kl, −2 Ĵ ijk ∼

Ji, jk,
√
−2 K̂ij

k ∼ Kk, ij ,
√
−2 K̂

ij

k ∼ Kk, ij ,
√
−8 L̂ijkl ∼ Ki,jkl,

√
−8 L̂

i

jkl ∼ Ki,jkl, where the expressions
in the l.h.s. represent our notation and the expressions in the r.h.s. represent their notation.
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by taking products of basic invariants as

T̂ In =
{ ∏
i,j,...

[
Îij
]#︸ ︷︷ ︸

n≥2

[
Ĵ ijk
]#[

K̂jk
i

]#[
K̂
jk

i

]#︸ ︷︷ ︸
n≥3

[
Îijkl
]#[

L̂ijkl
]#[

L̂
i

jkl

]#︸ ︷︷ ︸
n≥4

[
Ĵ ijklm

]#[
K̂jk
ilm

]#[
K̂
jk

ilm

]#︸ ︷︷ ︸
n≥5

. . .
}
.

(3.32)
The subscripts stress that for a given number of points n not all the invariants are defined.
The non-negative exponents # are determined by requiring T̂ In to be of degree (`i, `i) in
(Si, Si). Generally, not all tensor structures obtained in this way are independent, due to
the properties and relations discussed above. The number of relations to take into account
increase rapidly with n. For n ≤ 3 the problem of constructing a basis of independent tensor
structures has been succesfully solved in [124, 144]; we review the construction for n = 3 in
appendix A.5. However the increasing number of relations makes this approach inefficient to
study general correlators for n ≥ 4, mainly because many relations which are cubic or higher
order in invariants can be written. In section 3.2 an alternative method of identifying all
the independent structures is provided. Using this method we will also prove in section 3.2.2
that any n-point function tensor structure is constructed out of n ≤ 5 invariants, namely the
invariants involving five or less points in the formula (3.32).

3.1.2 Spinning Differential Operators

Let us now discuss the EF realization of the spinning differential operators used in (2.26)
which allow to relate 3-point tensor structures of correlators with different spins9

〈O(`i,`i)
∆Oi

O
(`j ,`j)
∆Oj

O
(`,`)
∆O
〉 ∼ Dij 〈O

(`′i,`
′
i)

∆′Oi
O

(`′j ,`
′
j)

∆′Oj
O

(`,`)
∆O
〉. (3.33)

The operators10 Dij are written as a product of basic differential operators

Dij =
{ ∏
i,j=1,2

∇#
ijI

#
ij d

#
ijd

#
ijD

#
ij D̃

#
ij

}
. (3.34)

The exponents are determined by matching the spins on both sides of (3.33). The basic
spinning differential operators are constructed to be insensitive to pure gauge modifications
and different extensions of fields outside of the light cone as stressed in (A.74). The action
of these operators in 4D can be deduced by using the projection rules given in (A.76).

We provide here the list of basic differential operators11 entering (3.34) arranging them
in two sets according to the value of ∆` = |`i + `j − `i − `j | = 0, 2. For ∆` = 0 we have

Dij ≡
1

2
SiΣ

MΣ
N
Si

(
XjM

∂

∂XN
i

−XjN
∂

∂XM
i

)
∼ SiSi,

D̃ij ≡ SiXjΣ
N
Si

∂

∂XN
j

+ 2Iij Sia
∂

∂Sja
− 2Iji S

a
i

∂

∂S
a
j

∼ SiSi,

Iij ≡ SiSj ∼ SiSj ,

∇ij ≡
[
XiXj ]

b
a

∂2

∂Si a ∂S
b
j

∼ S−1
i S

−1
j .

(3.35)

9This relation is of course purely kinematic, it holds only at the level of tensor structures and does not
hold at the level of the full correlator.

10We distinguish the operators D here and the operators D described in section 2.1 because acting on the
seed tensor structures they generate different bases. The basis spanned by D is often called the differential
basis.

11Notice a change in the normaliztion of the basic spinning differential operators compared to [145].
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For ∆` = 2 we have

dij ≡ SjXi
∂

∂Si
∼ S−1

i Sj

dij ≡ SjXi
∂

∂Si
∼ S−1

i Sj .
(3.36)

Note that for any differential operator Dij we necessarily have ∆` even, since it has to preserve
the total Fermi/Bose statistics of the pair of local operators.

The basic spinning differential operators described above carry the 4D scaling dimension
according to (3.4), thus it is convenient to introduce an operator Ξ which formally shifts the
4D dimensions of external operators in a way that effectively makes the 4D scaling dimensions
of Dij vanish. The action of Ξ on basic spinning differential operators is defined as

Ξ[Dij ]fn = (Dijfn)
∣∣∣
∆j→∆j+1

, Ξ[D̃ij ]fn = (D̃ijfn)
∣∣∣
∆i→∆i+1

(3.37)

and
Ξ[op]fn = (op fn)

∣∣∣
∆i→∆i+1/2

∣∣∣
∆j→∆j+1/2

, (3.38)

where op denotes any of the remaining spinning differential operators.12 These formal shifts
of course make sense only if the scaling dimensions appear as variables in fn. The use of the
dimension-shifting operator Ξ allows to keep the same scaling dimensions in the seed CPWs
and the CPW related by (2.39).

The relevant functions in the package are [opDEF, opDtEF, opdEF, opdbEF, opIEF,

opNEF] and Ξ.

3.2 Conformal Frame

For sufficiently complicated correlation functions one finds a lot of degeneracies in the em-
bedding space construction of tensor structures. There exists an alternative construction
[118, 126] which provides better control under degeneracies. More precisely, it reduces the
problem of constructing tensor structures to the well studied problem of finding invariant
tensors of orthogonal groups of small rank.

Our aim is to describe the correlation function fn(x, s, s) whose generic form is given
in (2.11). The conformal symmetry relates the values of fn(x, s, s) at different values of x.
There is a classical argument, usually applied to 4-point correlation functions, saying that
it is sufficient to know only the value fn(xCF , s, s) for some standard choices of xCF such
that all the other values of x can be obtained from some xCF by a conformal transformation.
This conformal transformation then allows one to compute fn(x, s, s) from fn(xCF , s, s).
The standard configurations xCF are chosen in such a way that there are no conformal
transformations relating two different standard configurations, so that the values fn(xCF , s, s)
can be specified independently. Following [126], we call the set of standard configurations
xCF the conformal frame (CF).

The usefulness of this construction lies in the fact that the values fn(xCF , s, s) have to
satisfy only a few constraints. In particular, these values have to be invariant only under the
conformal transformations which do not change xCF [126]. For the conformal group SO(1, d+
1) such conformal transformations form a group Gn which we call the “little group”.13 which

12The shift in the last formula can alternatively be implemented with multiplication by a factor X
−1/2
ij .

13 The little group or the stabilizer group is defined as follows. Given a group G which acts on space X,
the little (stabilizer) group H for an element x ⊂ X is a subgroup of G which leaves the element x invariant.
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is

Gn =

{
SO(1, 1)× SO(d) n = 2,

SO(d+ 2−m) n ≥ 3,
(3.39)

where m = min(n, d + 2) for n-point functions in d dimensions.14 For example, for 4-point
functions in 4D it is SO(2) ' U(1). One can already see a considerable simplification offered
by this construction for 4-point functions in 4D, since the invariants of SO(2) are extremely
easy to classify.

We use the following choice for the conformal frame configurations xCF for n ≥ 3,

xµ1 = (0, 0, 0, 0), (3.40)

xµ2 = ((z − z)/2, 0, 0, (z + z)/2), (3.41)

xµ3 = (0, 0, 0, 1), (3.42)

xµ4 = (0, 0, 0, L), (3.43)

xµ5 = (x0
5, x

1
5, 0, x

3
5), (3.44)

where if n = 3 we can set z = z = 1/2 and if we have more than 5 operators, the unspecified
positions x≥6 are completely unconstrained.

Here L is a fixed number, and we always take the limit L→ +∞ to place the corresponding
operator “at inifinity”. In this limit one should use the rescaled operator O4

O4 → O4 L
2∆4 (3.45)

inside all correlators to get a finite and non-zero result.
The variables z, z, x0

5, x
1
5, x

3
5 and the 4-vectors x6, x7, . . . are the coordinates on the

conformal frame and thus are essentially the conformal cross-ratios. Note that we have 2
conformal cross-ratios for 4 points, and 4n− 15 for n points with n ≥ 5. Notice also that for
4-point functions the analytic continuation with z = z∗ corresponds to Euclidean kinematics.
It is easy to check that there are no conformal generators which take the conformal frame
configuration (3.40) - (3.44) to another nearby conformal frame configuration.

3.2.1 Construction of Tensor Structures

Three-point Functions As shown in appendix A.5, an independent basis for general 3-
point tensor structures is relatively easy to construct in EF, and there is no direct need for
the conformal frame construction. Nonetheless, in this section we employ the CF to construct
3-point tensor structures in order to illustrate how the formalism works in a familiar case.15

The little group algebra so(1, 2) which fixes the points x1, x2, x3 is defined by the following
generators

M01, M02, M12, (3.46)

see appendix A.1 for details. According to our conventions, the corresponding generators
acting on polarizations sα are

S01 = −1

2
σ1, S02 = −1

2
σ2, S12 =

i

2
σ3, (3.47)

14For n ≥ 3 and generic x. The little group is trivial for n ≥ d+ 2.
15The CF construction of 3-point functions is not implemented in the package.
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and the generators acting on sα̇ are

S01
=

1

2
σ1, S02

=
1

2
σ2, S12

=
i

2
σ3. (3.48)

It is easy to see that if we introduce tα ≡ sα and t̃α ≡ σ3
αβ̇
sβ̇, then t and t̃ transform in the

same representation of so(1, 2).
General 3-point structures are put in one-to-one correspondence with the so(1, 2) ' su(2)

conformal frame invariants built out of ti and t̃i, i = 1, 2, 3. This gives an explicit imple-
mentation of the rule [118, 125, 126] which states that 3-point structures correspond to the
invariants of SO(d− 1) = SO(3) group(

(`1, `1)⊗ (`2, `2)⊗ (`3, `3)
)SO(3)

=
(
`1 ⊗ `1 ⊗ `2 ⊗ `2 ⊗ `3 ⊗ `3

)SO(3)
. (3.49)

Using this rule, we can immediately build independent bases of 3-point structures, for example
by first computing the tensor product decompositions

`i ⊗ `i =

`i+`i⊕
ji=|`i−`i|

ji, (ji + `i + `i even) (3.50)

and then for every set of ji constructing the unique singlet in j1 ⊗ j2 ⊗ j3 when it exists.
A more direct way, which does not however automatically avoid degeneracies, is to use the

basic building blocks for SO(3) invariants, which are the contractions of the form tαi tj α, tαi t̃j α
and t̃αi t̃j α. It is then straightforward to establish the correspondence with the embedding
formalism invariants

Iij ∝ t̃itj , J ijk ∝ t̃iti, Kij
k ∝ titj , K

ij
k ∝ t̃it̃j , (3.51)

where it is understood that i, j, k are all distinct. Up to the coefficients, this dictionary is
fixed completely by matching the degrees of s and s on each side.

Correspondingly, as in the embedding space formalism, we have relations between these
building blocks, which now come from the Schouten identity16

(AB)Cα + (BC)Aα + (CA)Bα = 0. (3.52)

For example we can take A = ti, B = tk, C = t̃j and contract (3.52) with t̃k to find

(titk)(t̃j t̃k) + (tk t̃j)(tit̃k) + (t̃jti)(tk t̃k) = 0, (3.53)

which corresponds via the dictionary (3.51) to an identity of the form

#Kik
j K

jk
i + #IjkIki + #IjiJkij = 0. (3.54)

This gives precisely the structure of the relation (A.122). We thus effectively reproduce the
EF construction.

Finally, let us briefly comment on the action of P in the 3-point conformal frame. The par-
ity transformation of operators (A.26) induces the following transformation of polarizations

sα → isα̇, sβ̇ → isβ =⇒ t→ iσ3t̃, t̃→ iσ3t. (3.55)

16Which itself follows from contracting εβγ with the identity A[αBβCγ] = 0 valid for two-component spinors.
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The full parity transformation does not however preserve the conformal frame since it reflects
all three spatial axes and thus moves the points x2 and x3. We can reproduce the correct
parity action in the conformal frame by supplementing the full parity transformation with
iπ boost in the 03 plane given by e−iπS

03
= iσ3 on t and by σ3e−iπS

03
σ3 = −iσ3 on t̃. This

leads to
t→ t̃, t̃→ −t. (3.56)

Note that according to (3.56) the transformations properties of (3.51) under parity match
precisely the ones found in (3.19) - (3.21).

Four-point Functions In the n = 4 case the little group algebra so(2) ' u(1) which fixes
the points x1, x2, x3, x4 is given by the generator

M12. (3.57)

Note that the algebra so(2) is a subalgebra of the 3-point little group algebra so(1, 2) discussed
above. According to (3.47), its action on both t and t̃ is given by

S12 =
i

2
σ3. (3.58)

This generator acts diagonally on t and t̃, so that we can decompose

sα ≡
(
ξ
η

)
, sβ̇ ≡

(
ξ
η

)
=⇒ t ≡ sα =

(
ξ
η

)
, t̃ ≡ σ3

αβ̇
sβ̇ =

(
η

ξ

)
. (3.59)

Note that our convention sα̇ = (sα)∗ implies that ξ = ξ∗ and η = η∗. Appropriately defining
the u(1) charge Q we can say that

Q[ξ] = Q[η] = +1 and Q[η] = Q[ξ] = −1. (3.60)

Tensor structures of 4-point functions are just the products of ξ, ξ, η, η of total charge Q = 0.
These are given by [CF4pt,n4ListStructures][

q1 q2 q3 q4

q1 q2 q3 q4

]
≡
∏4
i=1 ξ

−qi+`i/2
i η

qi+`i/2
i ξ

−q1+`i/2
i η

qi+`i/2
i ,

qi ∈ {−`i/2, . . . , `i/2}, qi ∈ {−`i/2, . . . , `i/2},
(3.61)

subject to
4∑
i=1

(qi − qi) = 0. (3.62)

It is clear from the construction that these 4-point structures are all independent, i.e. there
are no relations between them. It is in contrast with the embedding space formalism, where
there are a lot of relations between various 4 point building blocks.

As a simple example, consider a 4-point function of a (1, 0) fermion at position 1, a
(0, 1) fermion at position 2 and two scalars at position 3 and 4. The allowed 4-point tensor
structures are then [

+1
2 0 0 0

0 +1
2 0 0

]
and

[
−1

2 0 0 0
0 −1

2 0 0

]
. (3.63)

To compute the action of space parity, we need to supplement the full spatial parity
(3.55) with a π rotation in, say, the 13 plane in order to make sure that parity preserves the
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4-point conformal frame (3.40) - (3.43). In this case the combined transformation is simply
a reflection in the 2’nd coordinate direction. It is easy to compute that this gives the action

ξ → −iξ, ξ → iξ, η → −iη, η → iη. (3.64)

Note that this does not commute with the action of u(1) since the choice of the 13 plane
was arbitrary – we could have also chosen the 23 plane, and u(1) rotates between these two
choices. It is only important that this reflection reverses the charges of u(1) and thus maps
invariants into invariants.

From (3.64) we find that the parity acts as

P
[
q1 q2 q3 q4

q1 q2 q3 q4

]
= i−

∑
i `i−`i

[
q1 q2 q3 q4

q1 q2 q3 q4

]
. (3.65)

From the definition (3.61) we also immediately find the complex conjugation rule[
q1 q2 q3 q4

q1 q2 q3 q4

]∗
=

[
q1 q2 q3 q4

q1 q2 q3 q4

]
. (3.66)

According to (A.36), by combining these two transformations we find the action of time
reversal

T
[
q1 q2 q3 q4

q1 q2 q3 q4

]
= i

∑
i `i−`i

[
q1 q2 q3 q4

q1 q2 q3 q4

]
. (3.67)

Five-point Functions and Higher In the n ≥ 5 case there are no conformal generators
which fix the conformal frame. It means that all ξ, ξ, η, η are invariant by themselves.17 This
allows us to construct the n-point tensor structures[

q1 q2 . . . qn
q1 q2 . . . qn

]
≡

n∏
i=1

ξ
−qi+`i/2
i η

qi+`i/2
i ξ

−q1+`i/2
i η

qi+`i/2
i , (3.68)

with the only restriction

qi ∈ {−`i/2, . . . `i/2}, qi ∈ {−`i/2, . . . `i/2}. (3.69)

3.2.2 Relation with the EF

In practical applications, 3- and 4-point functions are the most important objects. It is
possible to treat 3-point functions in the CF or the EF. Since the latter is explicitly covariant,
it is often more convenient. On the other hand, 4-point functions are treated most easily in
the conformal frame approach. This creates a somewhat unfortunate situation when we have
two formalisms for closely related objects. To remedy this, let us discuss how to go back and
forth between the EF and the CF.

Embedding formalism to conformal frame It is relatively straightforward to find the
map [toConformalFrame] from the embedding formalism tensor structures to the conformal
frame ones. First one needs to project the 6D elements to the 4D ones and then to substitute
the appropriate values of coordinates according to the choice of the conformal frame.

17More precisely, there is still the Z2 kernel of the projection Spin(1, 3)→ SO(1, 3), which gives the selection
rule that the full correlator should be bosonic (in this sense ξ, ξ, η, η are not individually invariant).
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For 6D coordinates according to (A.65) and the definition of the conformal frame (3.40)
- (3.43) one has

X1 = (0, 0, 0, 0, 1, 0),

X2 = ((z − z)/2, 0, 0, (z + z)/2, 1,−zz),
X3 = (0, 0, 0, 1, 1,−1),

X4 = (0, 0, 0, L, 1,−L2),

(3.70)

and for the 6D polarizations according to (A.71) one has

(Si)a =

(
(si)α

−xµi σ
α̇β
µ (si)β

)
, (Si)

a =

(
(si)β̇σ

β̇α
µ xµi

(si)α̇

)
. (3.71)

In the last expression it is understood that all the coordinates x belong to the conformal
frame xCF (3.40) - (3.43).

The final step is to perform the rescaling (3.45) and to take the limit L→ +∞. There is
a very neat way to do it by recalling that 6D operators O according to (3.3) are homogeneous
in 6D coordinates and 6D polarizations, thus

O(S4, S4, X4)L2∆4 = O(S4, S4, X4)L2κO−`4−`4 = O(S4/L, S4/L,X4/L
2). (3.72)

It is then clear that the final step is equivalent to the following substitution of the 6D
coordinates at the 4th position

X4 → lim
L→+∞

X4/L
2 = (0, 0, 0, 0, 0,−1) (3.73)

and for the 6D polarizations

(S4)a → lim
L→+∞

(S4)a/L =

(
0

−σα̇β3 (s4)β

)
, (S4)a → lim

L→+∞
(S4)a/L =

(
(s4)β̇σ

β̇α
3

0

)
. (3.74)

Conformal frame to embedding formalism As discussed in section 3.2.1, 4-point tensor
structures are given by products of ξi, ξi, ηi, ηi with vanishing total U(1) charge. It is easy
to convince oneself that any such product can be represented (not uniquely) by a product of
U(1)-invariant bilinears

ξiξj , ηiηj , ξiηj , ξiηj , (3.75)

where i, j = 1 . . . 4. For n ≥ 5-point a general tensor structure is still represented by a product
of bilinears, see footnote 17, but since there is no U(1)-invariance condition, the following set
of bilinears should also be taken into account

ξiξj , ηiηj , ξiξj , ηiηj , ηiξj , ξiηj , (3.76)

where i, j = 1 . . . n.
These bilinears themselves are tensor structures with low spin. Noticing that the EF

invariants are also naturally bilinears in polarizations we can write a corresponding set of EF
invariants with the same spin signatures. Translating these invariants to conformal frame
via the procedure described above [toConformalFrame], one can then invert the result and
express the bilinears (3.75) and (3.76) in terms of covariant expressions. We could call this
procedure covariantization [toEmbeddingFormalism]. The basis of EF structures is over-
complete so the inversion procedure is ambiguous and one is free to choose one out of many
options.
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Since there is a finite number of bilinears (3.75) and (3.76) there will be a finite number
of covariant tensor structures they can be expressed in terms of after the covariantization
procedure. It is then very easy to see that one needs only the class of n = 4 tensor structures
to cover all the bilinears (3.75) and the class of n = 5 tensor structures to cover all the
bilinears (3.76).

The ambiguity of the inversion procedure mentioned above is related to the linear rela-
tions between EF structures. Non-linear relations between EF structures arise due to the
tautologies such as

(ξiξj)(ηkηl) = (ξiηk)(ξjηl). (3.77)

This observation in principle allows to classify all relations between n ≥ 4 EF invariants.

Example. By going to the conformal frame we get

Ĵ1
23 =

z

z − 1
ξ1ξ1 −

z

z − 1
η1η1, Ĵ1

24 = −z ξ1ξ1 + z η1η1, Ĵ1
34 = −ξ1ξ1 + η1η1. (3.78)

Inverting these relation one gets

ξ1ξ1 = − z − 1

z (z − z)

(
(z − 1) Ĵ1

23 + Ĵ1
24

)
, η1η1 = − z − 1

z (z − z)

(
(z − 1) Ĵ1

23 + Ĵ1
24

)
. (3.79)

We see right away that the invariants J1
23, J1

24 and J1
34 must be dependent. One can easily

get a relation between them by plugging (3.79) to the third expression (3.78). The obtained
relation will match perfectly the linear relation (3.26).

Note that there is a factor 1/(z − z) in (3.79), which suggests that the structure ξ1ξ1

blows up at z = z. This is not the case simply by the definition of ξ and ξ; instead, it is the
combination of structures on the right hand side which develops a zero giving a finite value
at z = z. However, this value will depend on the way the limit is taken. This is related to the
enhancement of the little group from U(1) = SO(2) to SO(1, 2) at z = z. At z = z it is no
longer true that ξ1ξ1 is a little group invariant. This enhancement implies certain boundary
conditions for the functions which multiply the conformal frame invariants. See appendix A
of [126] for a detailed discussion of this point.

3.2.3 Differentiation in the Conformal Frame

Now we would like to understand how to implement the action of the embedding formalism
differential operators such as (3.35) and (3.36) directly in the conformal frame. We need to
make two steps. First, to understand the form of these differential operators in 4D space.
This is done by using the projection of 6D differential operators to 4D given in appendix A.2.
Second, to understand how to act with 4D differential operators directly in the conformal
frame. We focus on this step in the remainder of this section. For simplicity, we restrict the
discussion to the most important case of four points.

A correlation function in the conformal frame is obtained by restricting its coordinates
x to the conformal frame configurations xCF . The action of the derivatives ∂/∂s and ∂/∂s
in polarizations on this correlation function is straightforward, since nothing happens to
polarizations during this restriction. The only non-trivial part is the coordinate derivatives
∂/∂xi: in the conformal frame a correlator only depends on the variables z and z which
describe two degrees of freedom of the second operator and it is not immediately obvious
how to take say the ∂/∂x1 derivatives.

The resolution is to recall that 4-point functions according to (2.10) are invariant under
generic conformal transformation spanned by 15 conformal generators LMN . By using (A.57)
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one can see that it is equivalent to 15 differential equations

(L1MN + L2MN + L3MN + L4MN ) f4(xi, si, si) = 0. (3.80)

The differential operators LiMN defined in (A.58) together with (A.76) and (A.77) are given
by linear combinations of derivatives ∂/∂xi, ∂/∂si and ∂/∂si. Out of 15 differential equa-
tions (3.80) one equation (for L12) expresses the little group invariance under rotations in
the 12 plane and thus when restricted to the 4-point conformal frame (3.40) - (3.43) does
not contain derivatives ∂/∂xi. The remaining 14 equations allow to express the 14 unknown
derivatives ∂/∂xµi restricted to the conformal frame in terms of ∂/∂x0

2, ∂/∂x3
2, ∂/∂si and

∂/∂si. Higher-order derivatives can be obtained in a similar way by differentiating (3.80).
Computation of general derivatives can be cumbersome, but in practice it is easily auto-

mated with Mathematica. We provide a conformal frame implementation of the differential
operators (3.35) - (3.36) [opD4D, opDt4D, opd4D, opdb4D, opI4D, opN4D] as well as of
the quadratic Casimir operator [opCasimir24D] acting on 4-point functions. As a simple
example (although it does not require differentiation in x), we display here the action of ∇12

on a generic conformal frame structure

∇12

[
q1 q2 q3 q4

q1 q2 q3 q4

]
g(z, z) =− (`1 + 2q1)(`2 + 2q2)

4

[
q1 − 1

2 q2 q3 q4

q1 q2 − 1
2 q3 q4

]
zg(z, z)

+
(`1 − 2q1)(`2 − 2q2)

4

[
q1 + 1

2 q2 q3 q4

q1 q2 + 1
2 q3 q4

]
zg(z, z).

(3.81)

Other operators, e.g. (3.35), give rise to more complicated expressions which however can
still be efficiently applied to the seed CPWs.
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Solving the Casimir Equation

We would like to address now the problem of computing the seed conformal blocks H
(p)
e (z, z)

and H
(p)
e (z, z) defined in (2.43). We start by deriving a system of linear partial differential

equations for them. We then solve this system by using a proper ansatz found in appendix B.1.

4.1 The System of Casimir Equations

The second order casimir equation (2.45) for the seed CPWs reads as

(C2 − Ep` )Wseed(p) = 0, (4.1)

where the casimir eigenvalue (A.134) is

Ep` = ∆ (∆− 4) + `2 + (2 + p)(`+
p

2
). (4.2)

The identical equation holds for the dual seed CPWs.1 Splitting up the CPW in (4.1) into
conformal blocks one can find the system of Casimir equations for conformal blocks H

K4

p∑
e=0

Cas(p)
e (H)

[
I42
]e[
I42

31

]p−e
= 0 ⇒ Cas(p)

e (H) = 0, (4.3)

where Cas
(p)
e (H) are the p+ 1 Casimir equations. An identical system of equations holds for

the dual seed blocks H. The system Cas
(p)
e (H) can be cast into the following remarkably

compact form

Cas(p)
e (H) =

(
∆

(a
(p)
e ,b

(p)
e ; c

(p)
e )

2+p − 1

2

(
Ep` − ε

p
e

))
H(p)
e +

Ape zz L(a
(p)
e−1)H

(p)
e−1 +Be L(b

(p)
e+1)H

(p)
e+1 = 0 , (4.4)

where the coefficients are given by

εpe ≡ 3
4 p

2 − (1 + 2e) p+ 2e (2 + e), Ape ≡ 2(p− e+ 1), Be ≡
e+ 1

2
. (4.5)

The differential operators entering (4.5) are split into linear operators and second order
operators. The second order operator is

∆(a,b;c)
ε = D(a,b;c)

z +D
(a,b;c)
z + ε

zz

z − z

(
(1− z)∂z − (1− z)∂z

)
. (4.6)

1seed and the dual seed blocks are solutions to the same system of equations, they differ however by their
asymptotic behavior.
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It consists of two separate hypergeometric differential operator

D(a,b;c)
x ≡ x2(1− x)∂2

x −
(
(a+ b+ 1)x2 − cz

)
∂x − abx (4.7)

and a mixing part. The linear operator is given by

L(µ) ≡ − 1

z − z

(
z(1− z)∂z − z(1− z)∂z

)
+ µ. (4.8)

The parameters describing the conformal blocks are defined as

a(p) ≡ −∆1 −∆2 − p/2
2

, b(p) ≡ +
∆3 −∆4 − p/2

2
(4.9)

and
a(p)
e ≡ a(p), b(p)e ≡ b(p) + (p− e), c(p)

e ≡ p− e. (4.10)

We might sometimes drop the upper index (p) to simplify notation.

In (4.4) it is understood that H
(p)
−1 = H

(p)
p+1 = 0. A remarkable property of the Casimir

system (4.4) is that, for each given e and p, at most three conformal blocks mix with each
other in a sort of “nearest-neighbour interaction”: He mixes only with He+1 and He−1. The

Casimir equations at the “boundaries” Cas
(p)
0 and Cas

(p)
p involve just two blocks. For p = 0,

the second and third terms in (4.4) vanish and the system trivially reduces to the single
equation found by Dolan and Osborn.

4.2 Solving the System of Casimir Equations

The goal of this section is to find an explicit form of the conformal blocks H
(p)
e and H

(p)
e by

solving the Casimir system (4.4). In doing it we adopt and expand the methods introduced
by Dolan and Osborn in refs. [128, 129] to obtain the 6D scalar conformal blocks.

Before jumping into details let us outline the main logical steps of our derivation. In
section 4.2.1 we start with an ansatz for the seed and dual seed conformal blocks motivated
by the computations done in shadow formalism given in appendix B.1. Plugging this ansatz
into (4.4) in section 4.2.2 we reduce the problem of solving the system of linear partial
differential equations of second order in two variables to a system of linear algebraic equations
for the unknown coefficients entering the ansatz. Then in section 4.2.3 we show that the non-
zero coefficients in the ansatz admit a geometric interpretation. They form a two-dimensional
lattice with an octagon shape structure. This interpretation allows us to precisely predict
which non-zero coefficients enter our ansatz for any value of p. Finally, in section 4.2.4 we show
that the linear algebraic system admits a recursive solution and we discuss the complexity of
deriving the full solutions for higher values of p. In section 4.2.5 we draw an analogy between

our seed bloks H
(p)
e , H

(p)
e and the symmetric scalar blocks in d even dimensions.

4.2.1 The Ansatz

The key ingredient of the ansatz is the function k
(a,b;c)
ρ (z) defined as2

k(a,b;c)
ρ (z) ≡ zρ 2F1(a+ ρ, b+ ρ; c+ 2ρ; z) . (4.11)

2We adopt here the notation first used in ref.[27] for this function, but notice the slight difference in the
definition: kthereρ = khereρ/2 .
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which is an eigenfunction of the hyper-geometric like operator (4.7)

D(a,b;c)
z k(a,b;c)

ρ (z) = ρ (ρ+ c− 1) k(a,b;c)
ρ (z). (4.12)

Using (4.12) one can define an eigenfunction of the operator ∆
(a,b;c)
0 defined in (4.6) as the

product of two k-functions

F (a,b;c)
ρ1, ρ2

(z, z) ≡ k(a,b;c)
ρ1

(z)k(a,b;c)
ρ2

(z), (4.13)

F± (a,b;c)
ρ1, ρ2

(z, z) ≡ F (a,b;c)
ρ1, ρ2

(z, z)±F (a,b;c)
ρ1, ρ2

(z, z). (4.14)

These functions played an important role in ref.[128] for the derivation of an analytic closed
expression of the scalar CBs in even space-time dimensions. In our case, the situation is much
more complicated, because we have different blocks appearing in the Casimir equations. We

notice, however, that the second order operator ∆ in each equation Cas
(p)
e acts only on the

block H
(p)
e , while the blocks H

(p)
e−1 and H

(p)
e+1 are multiplied by first order operators only. Since,

as we will shortly see, first order derivatives and factors of z and z acting on the functions F
can always be expressed in terms of functions F with shifted parameters, a reasonable ansatz

for the CBs is to take each He proportional to a sum of functions of the kind F (ae,be;ce)
ρ1, ρ2 (z, z)

for some ρ1 and ρ2. Taking also into account (B.34), the form of the ansatz for the blocks

H
(p)
e should be3

H(p)
e (z, z) =

( zz

z − z

)2 p+1
g(p)
e (z, z), g(p)

e (z, z) ≡
∑
m,n

cem,nF
− (a

(p)
e ,b

(p)
e ;c

(p)
e )

ρ1+m, ρ2+n (z, z), (4.15)

where cem,n are coefficients to be determined and the sum over the two integers m and n in
(4.15) is so far unspecified. Notice that all the functions F entering the sum over m and n

have the same values of a
(p)
e , b

(p)
e and c

(p)
e .

4.2.2 Reduction to a Linear System

The eigenfunctions F± (a,b;c)
ρ1, ρ2 (z, z) have several properties that would allow us to find a solution

to the system (4.4). In order to exploit such properties, we first have to express the system

(4.4) for H
(p)
e in terms of the functions g

(p)
e (z, z) defined in (4.15). We plug the ansatz (4.15)

into (4.4) and use the following relations

∆(a,b;c)
ε

( zz

z − z

)k
=

( zz

z − z

)k(
∆

(a,b;c)
ε−2k + k (k − ε+ c− 1)− k (k − ε+ 1)

zz(z + z)− 2zz

(z − z)2

)
,

L(µ)
( zz

z − z

)k
=

( zz

z − z

)k(
L(µ) + k

z + z − 2zz

(z − z)2

)
, (4.16)

to obtain the system of Casimir equations for g
(p)
e :

C̃as
(p)

e (g) ≡ Cas0 g(p)
e + Cas+ g

(p)
e+1 + Cas− g

(p)
e−1 = 0 . (4.17)

We have split each Casimir equation in terms of three differential operators Cas0, Cas+,

Cas−, that act on g
(p)
e , g

(p)
e+1 and g

(p)
e−1, respectively. In order to avoid cluttering, we have

3Recall that the conformal blocks are even under z ↔ z exchange, that leaves u and v unchanged.



32 Chapter 4. Solving the Casimir Equation

omitted the obvious e and p dependences of such operators. Their explicit form is as follows:

Cas0 =
(z − z

zz

)2(
∆

(ae,be;ce)
0 + (1 + 2p)(2p− 2− e)− 1

2

(
Ep` − ε

p
e

))
−3p

z − z
zz
×
(

(1− z)∂z − (1− z)∂z
)
− p (1 + 2p)

z + z − 2

zz
, (4.18)

Cas+ = Be
z − z
zz
× z − z

zz
L(be+1) + (1 + 2p)Be

z + z − 2zz

zz

1

zz
, (4.19)

Cas− = Ape
z − z
zz
× (z − z)L(ae−1) + (1 + 2p)Ape

z + z − 2zz

zz
. (4.20)

Notice that the action of ∆
(ae,be;ce)
0 in (4.18) on g

(p)
e is trivial and gives just the sum of the

eigenvalues of the F− (a,b;c)
ρ1, ρ2 (z, z) entering g

(p)
e . It is clear from the form of the ansatz (4.15)

that the system (4.17) involves three different kinds of functions F−, with different values of
a, b and c (actually only b and c differ, recall (4.10)).

Using properties of hypergeometric functions, however, we can bring the Casimir system

(4.17) into an algebraic system involving functions F− (ae,be;ce)
ρ1+r, ρ2+t (z, z) only, with different values

of r and t, but crucially with the same values of ae, be and ce. In order to do that, it is useful to
interpret each of the terms entering the definitions of Cas0, Cas+ and Cas− as an operator
acting on the functions F− shifting their parameters. Their action can be reconstructed
from the more fundamental operators provided in the appendix B.2. For each function F−
appearing in the ansatz (4.15), we have

Cas0F −(a,b;c)
ρ1+m, ρ2+n(z, z) =

∑
(r,t)∈R0

A0
r,t(m,n)F− (a,b;c)

ρ1+m+r, ρ2+n+t(z, z) , (4.21)

Cas+F− (a,b;c)
ρ1+m, ρ2+n(z, z) =

∑
(r,t)∈R+

A+
r,t(m,n)F− (a,b+1;c+1)

ρ1+m+r, ρ2+n+t(z, z) , (4.22)

Cas−F− (a,b;c)
ρ1+m, ρ2+n(z, z) =

∑
(r,t)∈R−

A−r,t(m,n)F− (a,b−1;c−1)
ρ1+m+r, ρ2+n+t(z, z) , (4.23)

where A0, A− and A+ are coefficients that in general depend on all the parameters involved:
a, b, ∆, `, e and p but not on z and z, namely they are just constants. For future purposes,
in (4.21)-(4.23) we have only made explicit the dependence of A0, A− and A+ on the integers
m and n. The sum over (r, t) in each of the above terms runs over a given set of pairs of
integers. We report in fig. 4.1 the values of (r, t) spanned in each of the three regions R0,
R+ and R−. We do not report the explicit and quite lengthy expression of the coefficients
A0
r,t, A

+
r,t and A−r,t, but we refer the reader again to appendix B.2 where we provide all the

necessary relations needed to derive them. Using (4.15) and (4.21)-(4.23), the Casimir system
(4.17) can be rewritten in terms of the functions F− only, with the same set of coefficients
ae, be and ce:

4∑
m,n

( ∑
(r,t)∈R0

A0
r,t(m,n) cem,n +

∑
(r,t)∈R+

A+
r,t(m,n) ce+1

m,n +
∑

(r,t)∈R−

A−r,t(m,n) ce−1
m,n

)
F− (ae,be;ce)
ρ1+m+r, ρ2+n+t = 0 .

(4.24)

The functions F− appearing in (4.24) are linearly independent among each other, since they
all have a different asymptotic behaviour as z, z → 0. Hence the only way to satisfy (4.24) is

4It is understood that c−1
m,n = cp+1

m,n = 0 in (4.24).
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Figure 4.1: Set of points in the (r, t) plane forming the regions R0 (13
points), R+ (12 points) and R− (12 points) defined in (4.21)-(4.23).

to demand that terms multiplying different F− vanish on their own:∑
(r,t)∈R0

A0
r,t(m

′ − r, n′ − t)cem′−r,n′−t +
∑

(r,t)∈R+

A+
r,t(m

′ − r, n′ − t)ce+1
m′−r,n′−t

+
∑

(r,t)∈R−

A−r,t(m
′ − r, n′ − t)ce−1

m′−r,n′−t = 0 , ∀m′, n′, e = 0, . . . p , (4.25)

where m′ = m + r, n′ = n + t. The Casimir system is then reduced to the over-determined
linear algebraic system of equations (4.25).

4.2.3 Octagons and Recursion Relation for the Coefficients

In order to solve the system (4.25), we have to determine the range of values of (m,n) entering
the ansatz (4.15), that also determines the size of the linear system. By rewriting the known
p = 1 and p = 2 CBs found using the shadow formalism in the form of (4.15), we have
deduced the range in (m,n) of the coefficients cem,n for any p (a posteriori proved using the
results below). For each value of e, the non-trivial coefficients cem,n span a two-dimensional
lattice in the (m,n) plane. For each e, the shape of the lattice is an octagon, with p and
e dependent edges. The position and shape of the generic octagon in the (m,n) plane is
depicted in fig. 4.2. One has

nmin = − p, nmax = e+ p, mmin = e− 2 p, mmax = p . (4.26)

For e = 0 and e = p, the octagons collapse to hexagons. The number N e
p of points inside a

generic octagon is
N e
p = 2p (2p− e) + (1 + e) (3p+ 1− e) (4.27)

and correspond to the number of non-trivial coefficients cem,n entering the ansatz (4.15). The
total number Np of coefficients to be determined at level p is then

Np ≡
p∑
e=0

N e
p = (1 + p)

(
1 +

17

6
p+

25

6
p2
)
. (4.28)

The size of the linear system grows as p3. The first values are N1 = 16, N2 = 70, N3 = 188,
N4 = 395. For illustration, we report in fig. 4.3 the explicit lattice of non-trivial coefficients
cem,n for p = 3.
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n
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p

Figure 4.2: The dimensions of the generic octagon enclosing the lattice of
non-vanishing coefficients cem,n entering the ansatz for mixed tensor CBs in

(4.33).

The system (4.25) is always over-determined, since it is spanned by the values (m′, n′)

whose range is bigger than the range of (m,n) ∈ Oct(p)e (spanning all the coefficients to be
determined) due to the presence of (r, t) ∈ [−2, 2]. There are only Np−1 linearly independent
equations, because the system of Casimir equations can only determine conformal blocks up
to an overall factor. The most important property of the system (4.25) is the following: while
the number of equations grows with p, the total number of coefficients cem,n entering any given
equation in the system (4.25) does not. This is due to the “local nearest-neighbour” nature
of the interaction between the blocks, for which at most three conformal blocks can enter the
Casimir system (4.4), independently of the value of p. More precisely, all the equations (4.25)
involve from a minimum of one coefficient cem,n up to a maximum of 37 ones. Thirty seven
corresponds to the total number of coefficients A0, A+ and A− entering (4.21)-(4.23), see
fig.4.1. The only coefficients that enter alone in some equations are the ones corresponding
to the furthermost vertices of the hexagons, namely

cp0,−p, c
p
0,2p, c

0
p,0, c

0
−2p,0 . (4.29)

For instance, let us take n′ = −2− p and e = p in (4.25), with m′ generic. Since nmin = −p,
a non-vanishing term can be obtained only by taking t = −2. Considering that cp+1 = 0 and
R− does not include t = −2 (see fig.4.1), this equation reduces to

A0
0,−2(m,−p)|e=p cpm,−p = 0 , ∀m, (4.30)

where m′ = m, since the point in R0 with t = −2 has r = 0. This equation forces all the
coefficients cpm,−p to vanish, unless the factor A0

0,−2(m,−p) vanishes on its own. One has

A0
0,−2(m,n)|e=p ∝ (m+ n+ p)∆ + (m− n− p)`+m2 +

1

2
m(p− 2) + (n+ p)(n+

3

2
p− 2) .
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Figure 4.3: Set of non-vanishing coefficients cem,n (represented as black dots)
entering the ansatz for mixed tensor CBs in (4.33) for p = 3 and e = 0, 1, 2, 3.

For e = 0 and e = p the octagons collapse to hexagons.

This factor is generally non-vanishing, unless m = 0 and n = −p, in which case it vanishes for
any ∆, ` and p. In this way (4.30) selects cp0,−p as the only non-vanishing coefficient at level

n = −p for e = p. Notice that it is crucial that A0
0,−2(m,n)|e=p vanishes automatically for

a given pair (m,n), otherwise either the whole set of equations would only admit the trivial
solution cem,n = 0, or the system would be infinite dimensional. A similar reasoning applies
for the other three coefficients. One has in particular

A0
0,2(0, 2p)|e=p cp0,2p = 0 ,

A0
2,0(p, 0)|e=0 c0

p,0 = 0 , (4.31)

A0
−2,0(−2p, 0)|e=0 c0

−2p,0 = 0 ,

that are automatically satisfied because the three coefficients A0
0,2, A0

2,0 and A0
−2,0 vanish

when evaluated for the specific values reported in (4.31) for any ∆, ` and p.
The system (4.25) is efficiently solved by extracting a subset of Np−1 linearly independent

equations. This can be done by fixing the values (r, t) = (r∗, t∗) entering the definitions
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of (m′, n′). There are 4 very special subsets of the Np − 1 equations (corresponding to
very specific values (r∗, t∗)) which allows us to determine the solution iteratively starting
from (4.25). They correspond to a solution where one of the four coefficients (4.35) is left
undetermined, in other words (r∗, t∗) can be set to be (0,−2), (0, 2), (2, 0) or (−2, 0). For
instance, if we choose c0 ≡ cp0,−p as the undetermined coefficient, a recursion relation is found

from (4.25) by just singling out the term with t = −2 in A0 and setting (r∗, t∗) = (0,−2).
Such a choice leads to m′ = m, n′ = n− 2, and one finally gets

−A0
0,−2(m,n)cem,n =

∑
(r,t)∈R0

(r,t)6=(0,−2)

A0
r,t(m− r, n− 2− t)cem−r,n−2−t

+
∑

(r,t)∈R+

A+
r,t(m− r, n− 2− t)ce+1

m−r,n−2−t (4.32)

+
∑

(r,t)∈R−

A−r,t(m− r, n− 2− t)ce−1
m−r,n−2−t .

It is understood in (4.32) that cem,n = 0 if the set (m,n) lies outside the e-octagon of coeffi-
cients. The recursion (4.32) allows us to determine all the coefficients cem,n at a given e = e0

and n = n0 in terms of the ones cem,n with n < n0 and cem,n0
with e > e0. Hence, starting from

c0, one can determine all cem,n as a function of c0 for any p. The overall normalization of the
CBs is clearly irrelevant and can be reabsorbed in a redefinition of the OPE coefficients. From
(4.25) one can easily write the three other relations similar to (4.32) to determine recursively
cem,n starting from cp0,2p, c

0
p,0 or c0

−2p,0.

4.2.4 The Solution

We write down the full analytic solution for the CBs H
(p)
e :

H(p)
e (z, z) =

( zz

z − z

)2 p+1 ∑
(m,n)∈Oct(p)e

cem,nF
− (ae,be;ce)
∆+`+

p
2

2
+m,

∆−`+ p
2

2
−(p+1)+n

(z, z), (4.33)

where cem,n satisfy the recursion relation (4.32) (or any other among the four possible ones)
and (m,n) runs over the points within the e-octagon depicted in fig.4.2. By convention we
have chosen the coefficient cp0,−p to be undetermined.

A similar expression holds for the dual blocks H
(p)
e :

H
(p)
e (z, z) =

( zz

z − z

)2 p+1 ∑
(m,n)∈Oct(p)p−e

cem,nF
− (ae,be;ce)
∆+`− p2

2
+e+m,

∆−`− p2
2

+e−(p+1)+n
(z, z), (4.34)

where cem,n satisfy the recursion relation similar to (4.32); the hexagon vertices’s are given by

c0
0,−p, c

0
0,2p, c

p
p,0, c

p
−2p,0 (4.35)

and we have chosen the undetermined coefficient to be c0
0,−p.

One can find that expressions (4.33) and (4.34) in the limit z ∼ z ∼ 0 give (A.92)
and (A.94). Comparing them to the direct OPE evaluation, one fixes the undetermined
coefficients

cp0,−p = (−1)` ip and c0
0,−p = 2−p (−1)` ip. (4.36)
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See appendix A.3 for details. It is also interesting to note, that the coefficients c and c are
relate by

cem,n(a(p), b(p), ∆, l, p) = 4e−
p
2 cp−em,n

(
− a(p) +

p

2
, −b(p) − p

2
, ∆, l, p

)
. (4.37)

Generating the full explicit solution from (4.32) can be computationally quite demanding
for large values of p. For concreteness, we only report in appendix B.3 the explicit form of
the 16 coefficients cem,n for p = 1 and a = −b = 1/2. The general form of cem,n for p = 1, 2, 3, 4
and any a, b, ∆ and ` are implemented in the “CFTs4D” package.

It is important to remind the reader that the CBs H
(p)
e computed here are supposed to be

the seed blocks for possibly other 4-point correlation functions, whose CBs are determined

by acting with given differential operators (3.34) on H
(p)
e . The complexity of the form of the

blocks H
(p)
e at high p is somehow compensated by the fact that the operators one has to act

with become simpler and simpler, the higher is p. An example should clarify the point. Let us
consider a 4-point function of spin two operators. In this case, one has to determine conformal

blocks associated to the exchange of operators O(`,`+p) (and O(`+p,`)
) for p = 0, 2, 4, 6, 8 (and

any `). The conformal blocks associated to the traceless symmetric operators are obtained
by applying up to 8 derivative operators in several different combinations to the scalar CB

H
(0)
0 . Despite the seed block is very simple, the final blocks are given by (many) complicated

sum of derivatives of H
(0)
0 . The p = 8 CBs, instead, are essentially determined by the very

complicated H
(8)
e (and H

(8)
e ) blocks, but no significant extra complications come from the

external operators.

4.2.5 Analogy with Scalar Conformal Blocks in Even Dimensions

It is worth pointing out some similarities between the CBs H
(p)
e for mixed symmetry tensors

computed above and the scalar conformal blocks Hd in d > 2 even space-time dimensions

(H4 = H
(0)
0 in our previous notation). The quadratic Casimir equation for scalar CBs in any

number of dimensions is

∆
(a,b;0)
d−2 Hd(z, z) =

1

2
E`(d)Hd(z, z) , (4.38)

where

E`(d) = ∆ (∆− d) + `(`+ d− 2) (4.39)

is the quadratic Casimir eigenvalue for traceless symmetric tensors. The explicit analytical
form of scalar blocks in d = 2, 4, 6 dimensions has been found in refs.[127, 128]. The same
authors also found a relation between scalar blocks in any even space-time dimensionality,
(5.4) of ref.[128] (see also the more elegant (4.36) of ref.[129]), that allows us to iteratively
determine Hd for any d, starting from H2. The d = 4 and d = 6 solutions found in ref.[128]
have the form

Hd(z, z) =
( zz

z − z

)d−3
gd(z, z) , gd(z, z) =

∑
m,n

xm,nF− (a,b;0)
∆+`

2
+m, ∆−`+2−d

2
+n

(z, z), (4.40)

where a and b are defined in (4.9) with p = 0 and xm,n are coefficients that in general
depend on ∆, l, a and b. In d = 4 there is only one non-vanishing coefficient centered at
(m,n) = (0, 0), while in d = 6 there are five of them. They are at (m,n) = (0,−1), (−1, 0),
(0, 0), (1, 0) and (0, 1). These five points form a slanted square in the (m,n) plane, centered
at the origin. The explicit form of the coefficients xm,n is known, but it will not be needed
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Figure 4.4: The dimensions of the generic slanted square enclosing the lattice
of non-vanishing coefficients xm,n entering the ansatz for scalar symmetric CBs

in (4.40).

in what follows. It is natural to expect that (4.40) should apply for any even d ≥ 4, with
a number of non-vanishing coefficients that increases with d.5 This is not difficult to prove.
From the first relation in (4.16) we can get the form of the Casimir equation for the function
gd(z, z) defined in (4.40), that can be written as(1

z
− 1

z

)(
∆

(a,b;0)
0 + 6− 2d− 1

2
E`(d)

)
gd = (d− 4)

(
(1− z)∂z − (1− z)∂z

)
gd . (4.41)

Using the techniques explained in subsection 4.2.2 and the results of appendix B.2, it is now
straightforward to identify which is the range of (m,n) of the non-vanishing coefficients xm,n
for any d (see fig.4.4).6 In d dimensions, the minimum and maximum values of m and n are
given by

nmin =
4− d

2
, nmax =

d− 4

2
, mmin =

4− d
2

, mmax =
d− 4

2
. (4.42)

The number Ñd of coefficients xm,n entering the ansatz (4.40) for scalar blocks in d even
space-time dimensions is easily computed by counting the number of lattice points enclosed
in the slanted square. We have

Ñd =
d2

2
− 3d+ 5 . (4.43)

For large d, Ñd ∝ d2 and matches the behavior of Np
e ∝ p2 for large p in (4.27).

Let us finally emphasize a technical, but relevant, point where the analogy between Hd

in d dimensions and H
(p)
e in 4 dimensions does not hold. A careful reader might have noticed

that in the Casimir equation for gd the term proportional to (z + z) − 2, namely the third

5See also ref.[152], where similar considerations were conjectured.
6Alternatively, one might use (4.36) of ref.[129] to compute Hd and then recast it in the form (4.40).
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term in the r.h.s. of the first equation in (4.16), automatically vanishes. Indeed, if we did not
know the power d− 3 in the ansatz (4.40), we could have guessed it by demanding that term
to vanish. On the contrary, no such simple guess seems to be possible for the power 2p + 1

entering H
(p)
e , given also the appearance of the operator L defined in (4.16). As discussed,

we have fixed the power 2p+ 1 by means of the shadow formalism.
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Chapter 5

Covariant Differential Operators
Formalism

We introduce here a new powerful formalism based on representation theory of the confor-
mal group. In section 5.1 we show the existence of covariant differential operators (5.17)
corresponding to finite-dimensional representations of the conformal group. In section 5.2
we explain that these operators satisfy a very special “crossing” equation (5.23). In these
sections we make only a short summary of the arguments, see [148] for detailed and more
precise discussion. All the ingredients of sections 5.1 and 5.2 are purely mathematical and
do not have a physical meaning. The formalism however turns out to be very convenient for
obtaining (5.17) and (5.23).

We proceed with explicit construction of the conformal differential operators in sec-
tion 5.3. We systematically construct covariant differential operators in fundamental and
anti-fundamental representations (5.38) and also discuss briefly higher-dimensional represen-
tations. Finally we make connection with spinning differential operators of section 3.1.2.

We discuss the shadow formalism in section 5.4. Combining it with the “crossing” equa-
tion one arrives at a very powerful “integration-by-parts” formula (5.55). We proceed with
computation of seeds (2.41). We derive the recursion relations (5.81) and (5.96) which allow
to reduce them recursively to the known scalar Dolan and Osborn blocks. These procedure
is an example of a general idea of changing spin of internal “exchanged” operators, see [148]
for more details. One can consider it as a generalization of the results [138] (applicable only
to external operators) to internal operators.

5.1 Existence of Covariant Differential Operators

We discuss here the conformal group SO(2, d). In what follows we consider primary operators
and their descendants. As already briefly discussed in chapter 2 these operators are labeled
by representations (ρ)∆ of the subgroup

SO(2, d) ⊃ SO(1, 1)× SO(1, d− 1). (5.1)

For future purposes it will be convenient to write an explicit decomposition of a finite-
dimensional representation, denoted by W from now on, under the sub-group (5.1)

W =
⊕

(λ)∆ =

j⊕
k=−j

(λk)∆=k, j ∈ 1
2N. (5.2)

Here k is a label. We will see explicit examples of this decomposition in (5.27)-(5.30). The
scaling dimensions ∆ in (5.2) are integer-spaced and must be integers or half-integers.
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Verma module Consider a primary operator1

O{µ}(0), (5.3)

which has a scaling dimension ∆ and the collective spin index2 {µ} in representation ρ of
SO(1, d− 1) in (5.1). We can then construct an infinite-dimensional conformal multiplet or
generalized (parabolic) Verma module,3 denoted by V(∆, ρ) from now on, spanned by the basis
of operators

O{µ}(0), ∂ν1O{µ}(0), ∂ν1∂ν2O{µ}(0), . . . (5.4)

The operator
O{µ}(x) (5.5)

is an element in the space spanned by (5.4) since it can be written in terms of the basis (5.4)
using the Taylor expansion around x = 0.

Finite-dimensional representations Consider now a very special situation when starting
from some N we set all the derivatives in (5.4) to zero

w{µ}(0), ∂ν1w
{µ}(0), . . . , ∂ν1 . . . ∂νNw

{µ}(0). (5.6)

In the above expression it is understood that some derivatives inside (5.6) can also and
generically do vanish. The multiplet (5.6) can only be consistent with the conformal symmetry
if it defines some finite-dimensional representation of the conformal group W . The dimension
of this representation dimW is equal to the number of non-zero elements in (5.6).

The operator
w{µ}(x). (5.7)

is an element in the linear space spanned by (5.6). Using the Taylor expansion around x = 0
it can be written in terms of the basis elements (5.6). Since there are only finite number of
non-vanishing derivatives, (5.7) is a polynomial in x of degree N .

The operator (5.7) compared to the operator (5.5) is extremely degenerate and thus should
satisfy some conformally invariant equation (“shortening” condition). It can be decomposed
in some basis of the finite-dimensional representation {e} as

w{µ}(x) = w
{µ}
A (x)eA, A = 1, . . . ,dimW. (5.8)

The functions w
{µ}
A (x) are the coefficients in the expansion (5.8). Finally according to (5.2)

the scaling dimensions of the elements (5.6) are not generic and only take integer or half-
integer values. For instance the primary state has the dimension

w
{µ}
∆=−j(0), (5.9)

where j is the lowest weight of SO(1, 1) representation in (5.2).

1In what follows we will not deal with a physical interpretation of primary operators, quantization procedure
or the operator-state correspondence. We will rather treat then as some abstract objects.

2We stress that we work with generic representations of the conformal group, thus the index {µ} denotes
not only tensor but also spinor representations.

3See section 6.2 in [141] for more details.
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Example Consider the adjoint representation of the conformal group SO(2, d). Un-
der (5.1) it decomposes as

= ( )−1 ⊕ (• ⊕ )0 ⊕ ( )1. (5.10)

The operator wµ(0) is thus a vector with dimension ∆ = −1. A basis for W = is given
by {e} = {Kµ, D,Mµν , Pµ} and the coefficients wµA(x) in this basis are the usual conformal
Killing vectors on Rd

wµ(x) = Kµ − 2xµD + (xρδ
µ
ν − xνδµρ )Mνρ + (2xµxν − x2δµν )P ν . (5.11)

In this case the differential equation satisfied by wµ(x) is the usual conformal Killing equation

∂µwν(x) + ∂νwµ(x)− trace = 0. (5.12)

Tensor products of representations We consider now a tensor product of the Verma
module and the finite-dimensional representation. It can be shown that

W ⊗ V(∆, ρ) =

j⊕
k=−j

⊕
τ∈λk⊗ρ

V(∆+k, τ) =
⊕

(k,s)∈Π(W )

V∆+k,ρ+s, (5.13)

which follows intuitively from (5.2). The last equality holds only when the Dynkin indices
of the representation ρ are sufficiently large.4 Here, Π(W ) denotes the weights of W (with
multiplicity). At the level of operators it is equivalent to taking a tensor product

w{µ}(x)⊗O{ν}(x). (5.14)

We would like to build all primary operators out of the product (5.14). Their number should
be equal to the number of Verma modules (with multiplicities) in the right-hand side of (5.13).
The ansatz for theses primaries is5

O′{σ}(0) = π
{σ}{κ}
{µ}{ν}

(
c1∂κ1 · · · ∂κmw{µ}(0)⊗O{ν}(0) + c2∂κ1 · · · ∂κm−1w

{µ}(0)⊗ ∂κmO{ν}(0) + . . .
)

(5.15)
with the coefficients ci determined from the requirement that the primary is annihilated by
1⊗Kµ +Kµ ⊗ 1. Finally one defines a covariant differential operator DA via

O′{ρ}(0) ≡ O′{ρ}A (0) eA ≡ eA (DA){ρ}{σ}O{σ}(0). (5.16)

The expression for DA can be read off from (5.15) using (5.8).
We can see that there exist operators DA which transform a generic primary6 O to a

primary O′ by shifting its weight according to (5.13) as

D(n)
A : [∆, ρ]→ [∆ + kn, ρ+ sn], n = 1, . . . ,dimW. (5.17)

We thus call these operators the weight-shifting operators. Their total number corresponds
to the dimension of the representation W . To indicate this we have add an extra index (n).

4This relation is called the Brauer’s formula or the Klimyk’s rule [153, 154].
5This ansatz is written in a schematic form. For instance the projector π can be different for each term

in (5.15).
6In case of a non-generic primary the last equality in (5.13) does not hold and we have to use the first one

instead. In section 5.3 we are interested in building all possible operators and thus we deal with a generic
situation.



44 Chapter 5. Covariant Differential Operators Formalism

The labels kn and sn are all the weights of the representation W .
The operators DA correspond to the finite-dimensional representation W and transforms

in the dual representation W ∗. We indicate this by the lower position of its index A. Analo-
gously there exist operators DA corresponding to the finite-dimensional dual representation
W ∗ and transforming in the representation W .

5.2 Covariant Tensor Structures and the 6j Symbols

Let us consider an (n+1)-point function of n primary operators Oi and one highly degenerate
operator w associated to a finite-dimensional representation of the conformal group

〈O{µ1}
1 (x1) · · · O{µn}n (xn)w{ν}(y)〉 = 〈O{µ1}

1 (x1) · · · O{µn}n (xn) eA〉 w{ν}A (y). (5.18)

The right-hand side of (5.18) contains a conformally-covariant n-point function7

〈O{µ1}
1 (x1) · · · O{µn}n (xn) eA〉 =

∑
I

T{µ1}...{µn}, A
I (xi)g

I(u). (5.19)

Here we make a distinction between conformally-covariant and conformally-invariant objects.
For us, the former carry finite-dimensional SO(2, d) labels A, whereas the latter do not. As
in the usual case of invariant n-point functions (2.11), u are the conformal cross-ratios of

points xi and T{µ1}...{µn}, A
I are the conformally-covariant tensor structures. One can classify

these structures in the conformal frame approach of [125, 126]. Here we discuss only how
they can be constructed in practice. It can be done by using covariant differential operators
DA (which transforms O′ to OA) acting on invariant n-point tensor structures.

Let us focus on the n = 3 case, then

T{µ1}{µ2}{µ3}, A
I =

∑
m,p

MImp D(m)
x3

A〈O{µ1}
1 (x1) O{µ2}

2 (x2) O′{µ3}
3 (x3)〉(p), (5.20)

T{µ1}{µ2}{µ3}, A
I =

∑
m,p

NImp D(m)
x1

A〈O′{µ1}
1 (x1) O{µ2}

2 (x2) O{µ3}
3 (x3)〉(p). (5.21)

In (5.20) and (5.21) it is understood that for every D(m)A (in the sum over m) there is its own
O′. We do not add a label (m) to O′ in order not to clutter the notation. In the right-hand
side of (5.20) and (5.21) we use the notation for tensor structures as in (2.18). The symbols
M and N denote some constant matrices. One can convince him or herself in the validity
of (5.20) and (5.21) by proving that8

dim({I}) = dim({m, p}), (5.22)

so M and N are the square matrices. An analogous statement can also be proved for n = 2.9

7This correlator is a purely abstract construction and does not have any physical meaning.
8Using conformal frame approach one should count independently the number of tensor structures in (5.19)

and in the right-hand side of (5.20) or (5.21). Turns out that they match precisely.
9Using the conformal frame approach as usually the cases n = 2 and n = 3 should be considered separately

due to the different structure of the “little” group (3.39).
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As we can see from (5.20) and (5.21) there are two bases related by a linear transformation.
This fact can be expressed in a form of the relation

D(r)
x3

A〈O1(x1)O2(x2)O′3(x3)〉(p) =
∑
m,n

{
O1 O2 O′1
O3 W O′3

}pr
mn

D(n)
x1

A〈O′1(x1)O2(x2)O3(x3)〉(m)

(5.23)

which we call the “crossing” equation. The coefficients {. . .} in (5.23) are called the 6j
symbols or the Racah-Wigner coefficients.10,11,12 Exactly as in equations (5.20) and (5.21)

for each operator D(n)
x1

A (in the sum over n) in the right-hand side of (5.23) there is its own

operator O′. One uses (5.13) to understand what D(n)
x1

A and O′ can contribute. In simple
words the sum of weight of operators at every point in the left- and right-hand side of (5.23)
should match

∀n : O1(x1) ∼ D(n)
x1

A O′1(x1) and D(r)
x3

AO′3(x3) ∼ O3(x3), (5.24)

where r is fixed. For explicit examples see (5.59) and (5.62).
The equation (5.23) also holds for n = 2. In that case O2 should be just replaced by the

identity operator 1 and since there is only a single structure in 2-point functions, (p) = (•)
and (m) = (•).

The 6j symbols for operator representations (generalized Verma modules) of the conformal
group have seen some recent interest for their role in the crossing equations for CFT four-
point functions [70–72]. Here, we have a degenerate form of these objects, where one of
the representations appearing is finite-dimensional. These degenerate 6j symbols enter in a
degenerate crossing equation (5.23) where the objects on both sides live in a finite dimensional
space.

5.3 Construction of Covariant Differential Operators

For practical construction13 of the covariant weight-shifting operators it is convenient to use
the embedding formalism 3. From now on we focus solely on the 4D case. The branching (5.1)
takes the following form then

SU(2, 2) ⊃ U(1)× SU(2)× SU(2). (5.25)

We consider few smallest finite-dimensional representations of the conformal group SU(2, 2):
fundamental, anti-fundamental, anti-symmetric and adjoint. They are denoted as

S ≡ , S ≡ , A ≡ , Adj ≡ . (5.26)

10Technically, Racah and Wigner coefficients are sometimes defined to differ by various normalization factors.
We will not distinguish between them and use both terms to refer to the coefficients.

116j symbols depend only on a set of representations and three-point structures. However, for brevity, we
often label them with operators Oi transforming in those representations, as in (5.23).

12One can define 3(k− 1)− j symbols as coefficients in a decomposition of tensor product ρ1⊗ . . .⊗ ρk into
irreducible representations. The case k = 2 was first considered by Clebsh and Gordon. This coefficients are
well studied in the case of SU(2) group, since they play an important role in the theory of angular momentum
in Quantum Mechanics.

13One could of course use (5.15) and (5.16) directly. But this procedure is tedious.
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These representations decompose14 under (5.25) as

= (1, 0)
−1

2
⊕ (0, 1)1

2
, (5.27)

= (0, 1)
−1

2
⊕ (1, 0)1

2
, (5.28)

= (0, 0)−1 ⊕ (0, 0)1 ⊕ (1, 1)0, (5.29)

= (0, 0)0 ⊕ (1, 1)−1 ⊕ (1, 1)1 ⊕ (2, 0)0 ⊕ (0, 2)0. (5.30)

The subscript denotes the U(1) charge (the scaling dimension). It is normalized in such a
way to be consistent with (3.4). The tensor products of finite-dimensional representations
with Verma modules for the representations (5.26) are easily obtained from (5.27)-(5.30)

V(∆,`,`) ⊗ = V
(∆−1

2 ,`±1,`)
⊕ V

(∆+
1
2 ,`,`±1)

, (5.31)

V(∆,`,`) ⊗ = V
(∆−1

2 ,`,`±1)
⊕ V

(∆+
1
2 ,`±1,`)

, (5.32)

V(∆,`,`) ⊗ = V(∆±1,`,`) ⊕ V(∆,`±1,`±1), (5.33)

V(∆,`,`) ⊗ = 3V(∆,`,`) ⊕ V(∆±1,`±1,`±1) ⊕ V(∆,`±2,`) ⊕ V(∆,`,`±2). (5.34)

Each shift in the weight of the Verma module V(∆,`,`) according to section5.1 corresponds to
a covariant differential operator.

Operators in representations S and S We construct systematically such operators for
the representations S and S. As in section 3 we denote the fundamental and anti-fundmantal
indices of SU(2, 2) by a. Thus the index of finite-dimensional representation of the conformal
group is A = a.15 In the notation (5.13) the decompositions (5.31) and (5.32) read

Π(S) = {(−,+, 0), (−,−, 0), (+, 0,+), (+, 0,−)}, (5.35)

Π(S) = {(−, 0,+), (−, 0,−), (+,+, 0), (+,−, 0)}. (5.36)

The operators Da are then labeled by the weights (5.36) of S,and the operators Da are labeled
by the weights (5.35) of S∗ = S.

We use the following shorthand notation

∂S,a ≡
∂

∂S
a , ∂aS ≡

∂

∂Sa
,

∂ab ≡ Σm
ab

∂

∂Xm
, ∂

ab ≡ Σ
mab ∂

∂Xm
. (5.37)

14An excellent tool for working with finite-dimensional representations of Lie group is the Mathematica
package “LieART” [155].

15That basis vectors for S are ea (so that we can contract them with Sa) and for S the basis vectors are ea
(so that we can contract them with S

a
).
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The differential operators corresponding to (5.35) and (5.36) have the following explicit ex-
pressions

Da−0+ ≡ S
a
,

Da−0− ≡ X
ab
∂S,b,

Da++0 ≡ a∂
ab
Sb + S

a
(S∂∂S),

Da+−0 ≡ bc∂aS + bS
a
(∂S∂S) + cXbc∂

ab
∂cS − S

a
(Xbc∂

bd
∂cS∂S,d),

D−+0
a ≡ Sa,

D−−0
a ≡ Xab∂

b
S ,

D+0+
a ≡ a∂abS

b
+ Sa(S∂∂S),

D+0−
a ≡ bc∂S,a + bSa(∂S∂S) + cX

bc
∂ab∂S,c − Sa(X

bc
∂bd∂S,c∂

d
S), (5.38)

where

a = 1−∆ + `
2 −

`
2 , a = 1−∆− `

2 + `
2 ,

b = 2(`+ 1), b = 2(`+ 1),

c = −2 + ∆− `+`
2 . (5.39)

The coefficients above come from requiring that the operators preserve the gauge choice (A.72)
together with X2 = 0. We have added these operators to the CFTs4D Mathematica package
as [spinorD,spinorDb] functions.

Operators in representations A and Adj We do not consider systematically differential
operators corresponding to representations A and Adj and instead construct only few of
them. For A one can have

D−100
ab ≡ Xab, D0++

ab ≡
(
Sa ∂bc − Sb ∂ac

)
S
c

(5.40)

with their dual ones. For Adj one for example has

D000 c
a ≡ Xab ∂

bc
+ 2

(
Sad

c − Scda
)

+ (∆ + `) δca. (5.41)

Differential operators in higher-representations can always be obtained from the S and S
operators. For example

aD0++
ab = D−+0

a D+0+
b −D−+0

b D+0+
a . (5.42)

Relation with spinning differential operators By forming invariant products of the
operators (5.38), (5.40) and (5.41) one can form numerous invariant operators which change
spin and/or scaling-dimensions. We will use them extensively in section 5.4. Here will only
provide connection with the spinning differential operators obtained in chapter 3 in (3.35)
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and (3.36). For (3.35) one has

Dij =
1

2
Diab0++ · Dj −100

ab , (5.43)

D̃ij = Dai−0+ · D000
j

c
a · D−+0

i c , (5.44)

Iij = Dai−0+ · D
−+0
j a , (5.45)

∇ij = D−−0
i a · Daj−0−. (5.46)

For (3.36) one has

dij = D−+0
j a · Dai−0−, dij = Daj−0+ · D

−−0
i a . (5.47)

5.4 Conformal Blocks

A general CPW can be expressed as the integral of a product of three-point functions. For
simplicity, consider the case where the external and internal operators are scalars. Given
three-point functions 〈φ1(x1)φ2(x3)φ(x)〉 and 〈φ(y)φ3(x3)φ4(x4)〉, the following object is a
solution to the conformal Casimir equation with the correct transformation properties to be
a scalar CPW

1

N∆

∫
ddx ddy〈φ1(x1)φ2(x3)φ(x)〉 1

(x− y)2(d−∆)
〈φ(y)φ3(x3)φ4(x4)〉, (5.48)

where ∆ = ∆φ. This can be understood, for example, by writing the integral in a manifestly
conformally-invariant way [124].16,17

Let us denote the operation which glues two φ-correlators by18

|φ〉 ./ 〈φ| ≡ 1

N∆

∫
ddx ddy|φ(x)〉 1

(x− y)2(d−∆)
〈φ(y)| (5.49)

We should choose the normalization N∆ by demanding that

〈φ| |φ〉 ./ 〈φ| = 〈φ|. (5.50)

That is, we demand that the shadow integral acting on a two-point function 〈φφ〉 gives the
identity transformation. In the case of scalars, this fixes the normalization factor to be
[124, 157]

N∆ =
πdΓ(∆− d

2)Γ(d2 −∆)

Γ(∆)Γ(d−∆)
. (5.51)

16In Euclidean signature, we take the range of integration of x, y to be all of Rd. In this case (5.48)
produces a solution to the conformal Casimir equation with the wrong boundary conditions to be a conformal
block. However, the conformal block can be extracted by taking a suitable linear combination of analytic
continuations of the integral [124]. One can alternatively isolate the conformal block by performing the
integral in Lorentzian signature over a domain defined by the lightcones of the four points x1, x2, x3, x4 [156].
Calculations involving differential operators are insensitive to these issues because the differential operators
always transform trivially under monodromy. Thus, our methods allow us to study spinning versions of any
of the solutions to the Casimir equation.

17We expect that (5.48) only converges when ∆ lies on the principal series ∆ ∈ d
2

+ iR. We obtain a general
conformal block by analytically continuing in ∆.

18Instead of thinking of the gluing operation (5.49) in terms of shadow integrals, we can alternatively think
of it as simply a sum over normalized descendants of φ. The only properties of the gluing procedure that we
use in this work are that it is bilinear, conformally-invariant, and satisfies the normalization condition (??).
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For spinning operators, O glues to its dual-reflected representation O† — i.e. the repre-
sentation with which O has a nonzero two-point function,

|O∆,ρ〉 ./ 〈O†∆,ρ† | ≡
1

N∆,ρ

∫
ddx ddy|O∆,α(x)〉 tαα(x− y)

(x− y)2(d−∆)
〈O†∆,α(y)|. (5.52)

Here, tαα(x − y) is the tensor structure appearing in the two point function of the shadow
operators 〈ÕÕ†〉. The operation (5.52) can be realized in the shadow formalism, see (B.2).
Here we will not need the explicit expression of (5.52), but simply the normalization condition

〈O| |O〉 ./ 〈O| = 〈O|. (5.53)

A general CPW is given by

W ab ≡ 〈O1O2O〉(a) ./ (b)〈O†O3O4〉 (5.54)

We will perform some explicit calculations using (5.54) and (5.52) in appendix B.1.
In what follows we will only need the formula which explains how to move covariant

differential operators from one side of a shadow integration (5.52) to another

|D(c)AO〉 ./ 〈O′†| =
∑
m

{
O† 1 O′†
O′ W O

}·c
·m
|O〉 ./ 〈D(m)AO′†|. (5.55)

Equation (5.55) essentially implements two integrations by parts in the double integral (5.52).
To derive this formula we consider a two-point function. Moving a differential operator

past a two-point vertex is a special case of the definition of a 6j symbol

D(b)A
x2
〈O†O〉(·) =

∑
m

{
O† 1 O′†
O′ W O

}·b
·c
D(c)A
x1
〈O′†O′〉(·). (5.56)

Adding shadow integrals onto both O and O′ in the above diagram and using (5.53), we
find (5.55).

According to (5.54) the seed CPWs are given by

W
(p)

`,`
≡ 〈F (0,0)

∆1
F

(p,0)
∆2
O(`,`)

∆ 〉(·) ./ (·)〈O(`,`)
∆ F

(0,0)
∆3

F
(0,p)
∆4
〉, (5.57)

with |`−`| = p. Depending on the values ` and ` the seed blocks split into primal seed blocks
and dual seed block, see the convention (2.41). In what follows we address the computation
of seed and dual seed blocks separately.

5.4.1 Seed Blocks

We first rewrite the right three-point function entering (5.57) as

〈O(`+p,`)
∆ F

(0,0)
∆3

F
(0,p)
∆4
〉(·) = (D−+0

0 · D4,−0+) 〈O(`+p−1,`)
∆+1/2 F

(0,0)
∆3

F
(0,p−1)
∆4+1/2〉

(·). (5.58)

The subscript 0 indicates that D−+0
0 acts on the internal operator O. We would like to move

it across ./ (integrate by parts) using the rule (5.55).
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Crossing of 2-point functions The definition of the 6j symbol entering (5.55) in the
present case is

D+0−
2 a 〈O

(`+p,`)
∆ (X1, S1, S1)O(`,`+p)

∆ (X2, S2, S2)〉(·)
= AD−+0

1 a 〈O
(`+p−1,`)
∆+1/2 (X1, S1, S1)O(`,`+p−1)

∆+1/2 (X2, S2, S2)〉(·), (5.59)

where

A ≡

{
O(`+p,`)

∆ 1 O(`+p−1,`)
∆+1/2

O(`,`+p−1)
∆+1/2 S O(`,`+p)

∆

}·(+0−)

·(−+0)

= 2i(`+ p)(∆− p
2 − 1)(∆− `− p

2 − 2). (5.60)

Applying (5.55) and (5.58) to (5.57) we arrive at

W
(p)
seed = A−1 (D+0−

0 · D4,−0+)〈F (0,0)
∆1

F
(p,0)
∆2
O(`,`+p)

∆ 〉(·) ./ (·)〈O(`+p−1,`)
∆+1/2 F

(0,0)
∆3

F
(0,p−1)
∆4

〉, (5.61)

where D+0−
0 now acts on the left three-point function.

Crossing of 3-point functions We now use the crossing equation for the 3-point function

D+0−
0 a 〈F

(0,0)
∆1

F
(p,0)
∆2
O(`,`+p)

∆ 〉(·) =
2∑

n=1

B(n)D−−0
1 a 〈F

(1,0)
∆1+1/2F

(p,0)
∆2
O(`,`+p−1)

∆+1/2 〉(n)+

2∑
n=1

C(n)D+0−
1 a 〈F

(0,1)
∆1−1/2F

(p,0)
∆2
O(`,`+p−1)

∆+1/2 〉(n), (5.62)

where B(n) and C(n) denote the 6j symbols

B(n) ≡

{
F

(0,0)
∆1

F
(p,0)
∆2

F
(1,0)
∆1+1/2

O(`,`+p−1)
∆+1/2 S O(`,`+p)

∆

}·(+0−)

(n)(−−0)

,

C(n) ≡

{
F

(0,0)
∆1

F
(p,0)
∆2

F
(0,1)
∆1−1/2

O(`,`+p−1)
∆+1/2 S O(`,`+p)

∆

}·(+0−)

(n)(+0−)

. (5.63)

The 3-point functions in the right-hand side of (5.62) have the following form

〈F (1,0)
∆1+1/2F

(p,0)
∆2
O(`,`+p−1)

∆+1/2 〉(n) = K3[Î32]p−1[Ĵ3
12]`−1

(
Î32K̂13

2

Î31K̂23
1

)
,

〈F (0,1)
∆1−1/2F

(p,0)
∆2
O(`,`+p−1)

∆+1/2 〉(n) = K′3[Î32]p−1[Ĵ3
12]`−1

(
Î13Î32

Î12Ĵ3
12

)
. (5.64)



5.4. Conformal Blocks 51

We can find the 6j symbols B(n) and C(n) by an explicit calculation

B(1) = B(2) − `(∆1 + ∆2 + ∆− `− p− 6)

4(∆1 − 2)
×(

4(`+ p+ 1)(∆1 −∆2 + `+
p

2
+ 1) + (∆1 −∆2 + ∆ + `)(2∆− 4`− 3p− 6)

)
,

B(2) = −p(∆1 −∆2 + ∆ + `)(2∆− 2`− p− 4)(∆1 + ∆2 + ∆− `− p− 6)

4(∆1 − 2)
,

C(1) = −`(2∆ + p− 2)(∆1 −∆2 −∆ + `+ p+ 2)

4(∆1 − 3)(∆1 − 2)
,

C(2) =
p(−2∆ + 2`+ p+ 4)(∆1 −∆2 −∆ + `+ p+ 2)

4(∆1 − 3)(∆1 − 2)
. (5.65)

Differential basis The last step is to relate the 3-point functions entering (5.62) to the seed

3-point functions 〈F (0,0)
∆′1

F
(p−1,0)
∆′2

O(`,`+p−1)
∆+1/2 〉 with shifted dimensions by using the differential

basis trick

〈F (1,0)
∆1+1/2 F

(p,0)
∆2

O
(`, `+p−1)
∆+1/2 〉(n) = Mnr

1 Dr
1 〈F

(0,0)
∆r

1
F

(p−1, 0)
∆r

2
O

(`, `+p−1)
∆+1/2 〉(·), (5.66)

〈F (0,1)
∆1−1/2 F

(p,0)
∆2

O
(`, `+p−1)
∆+1/2 〉(n) = Mnr

2 Dr
2 〈F

(0,0)

∆′ j1
F

(p−1, 0)

∆′ j2
O

(`, `+p−1)
∆+1/2 〉(·), (5.67)

where the differential operators are defined as

Dr=1
1 ≡ (D−+0

1 · D2,++0) and Dr=2
1 ≡ (D1,++0 · D

−+0
2 ), (5.68)

Dr=1
2 ≡ (D+0+

1 · D2,++0) and Dr=2
2 ≡ (D1,−0+ · D

−+0
2 ). (5.69)

One can read off easily the dimension in the right hand side of (5.66)

∆r=1
1 = ∆1 + 1, ∆r=1

2 = ∆2 − 1/2, ∆r=2
1 = ∆1, ∆r=2

2 = ∆2 + 1/2, (5.70)

∆′ r=1
1 = ∆1 − 1, ∆′ r=1

2 = ∆2 − 1/2, ∆′ r=2
1 = ∆1, ∆′ r=2

2 = ∆2 + 1/2. (5.71)

The matrices Mnr
1 and Mnr

2 are found to be

Mnr
1 =

1

`(2∆ + p− 2)

(
∆1−∆2+∆+`

2∆2+p−4
−∆1+∆2+∆−`+p−2

2(∆1−1)
−∆1+∆2−∆+`

2∆2+p−4 −−∆1+∆2+∆+`+p−2
2(∆1−1)

)
(5.72)

and

Mnr
2 =

(
− 1

(∆1−2)`(2∆2+p−4)(2∆+p−2) − (∆1+∆2−∆+`−2)(−∆1−∆2−∆+`−p+6)
2`(2∆+p−2)

0 1

)
. (5.73)
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The recursion relation Combining the expressions (5.61), (5.62), and the differential
basis (5.66) we find the following recursion relation

W
(p)
∆,`; ∆1,∆2,∆3,∆4

=

A−1

(
v1(D−−0

1 · D4,−0+)(D−+0
1 · D2,++0) W

(p−1)

∆+
1
2 ,`; ∆1+1,∆2−1

2 ,∆3,∆4+
1
2

+v2(D−−0
1 · D4,−0+)(D1,++0 · D

−+0
2 ) W

(p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+v3(D+0−
1 · D4,−0+)(D+0+

1 · D2,++0) W
(p−1)

∆+
1
2 ,`; ∆1−1,∆2−1

2 ,∆3,∆4+
1
2

+v4(D+0−
1 · D4,−0+)(D1,−0+ · D

−+0
2 ) W

(p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

)
, (5.74)

where the coefficients vi are given by

v1 ≡ B(1)M11
1 + B(2)M21

1 , v2 ≡ B(1)M12
1 + B(2)M22

1 ,

v3 ≡ C(1)M11
2 + C(2)M21

2 , v4 ≡ C(1)M11
2 + C(2)M21

2

and according to (5.65), (5.72) and (5.73) have the following explicit form

v1 =
(∆ + ∆1 −∆2 + `)(−∆−∆1 + ∆2 + `+ 2)(∆ + ∆1 + ∆2 − `− p− 6)

4(∆1 − 2)(2∆2 + p− 4)
,

v2 =
(−∆ + ∆1 −∆2 + `+ p+ 2)(∆ + ∆1 −∆2 − `− 2p− 2)(∆ + ∆1 + ∆2 − `− p− 6)

8(∆1 − 2)(∆1 − 1)
,

v3 =
−∆ + ∆1 −∆2 + `+ p+ 2

4(∆1 − 3)(∆1 − 2)2(2∆2 + p− 4)
,

v4 = −(−∆ + ∆1 −∆2 + `+ p+ 2)(−∆ + ∆1 + ∆2 + `+ 2p− 2)(∆ + ∆1 + ∆2 − `− p− 6)

8(∆1 − 3)(∆1 − 2)
.

(5.75)

Decomposition into conformal blocks By using (2.43) one can write the recursion

relation (5.74) at the level of seed conformal blocks H
(p)
e (z, z).

First we notice that according to chapter 4 the components H
(p)
e (z, z) of the seed blocks

depend on the external scaling dimensions ∆i only via the quantities

ape ≡ a(p), bpe ≡ b(p) + p− e, cpe ≡ p− e, (5.76)

where

a(p) ≡ −∆1 −∆2 − p/2
2

, b(p) ≡ +
∆3 −∆4 − p/2

2
. (5.77)

Let us now analyze the expression (5.74). Almost all the conformal blocks entering the
right hand side of (5.74) correspond to the same parameters a(p) and b(p) (the difference in p
is compensated by a difference in ∆i). The only exception is the conformal block

W
(p−1)

∆+
1
2 ,`; ∆1+1,∆2−1

2 ,∆3,∆4+
1
2

(5.78)

which contains a(p) − 1 and b(p). We can use a dimension shifting operator to simplify the
structure of the recursion relation (5.74). The only difference is that we need to shift the
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external dimensions of a general seed block. We find

W
(p−1)

∆+
1
2 ,`; ∆1+1,∆2−1

2 ,∆3,∆4+
1
2

= E−1(D1,+−0 · D
−−0
2 )(D1,++0 · D

−+0
2 )W

(p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

,

(5.79)
where

E ≡ −(p+ 1)(∆1 − 1)(∆1 − 2)(∆ + ∆1 −∆2 + `)(∆ + ∆1 −∆2 − `− 2). (5.80)

Note that this is in fact completely analogous to the differential basis trick, except that
instead of changing the external spins, we change the external dimensions.

Plugging the relation (5.79) in (5.74), stripping off the kinematic factor and decomposing
this relation into components according to (2.43) one obtains a recursion relation for the seed
blocks of the form

H(p)
e (z, z) = − A

−1

z − z

(
D0 H

(p−1)
e (z, z)− 2D1 H

(p−1)
e−1 (z, z) + 4cp−1

e−2zzD2 H
(p−1)
e−2 (z, z)

)
,

(5.81)
where the conformal block in the l.h.s depends on [∆, `; ∆1,∆2,∆3,∆4] while the conformal
blocks in the r.h.s. depend on [∆ + 1

2 , `; ∆1,∆2 + 1
2 ,∆3,∆4 + 1

2 ]. The differential operators
Di are given by

D0 ≡∇z[bp−1
e ]D(p−1,e)

z −∇z[bp−1
e ]D

(p−1,e)
z

+ k
(
D(p−1,e)
z −D(p−1,e)

z

)
− (cp−1

e + 1)L[bp−1
e ]B

[
−k(k − 2)

1 + cp−1
e

]
, (5.82)

D1 ≡z∇z[bp−1
e−1 + cp−1

e−1]D(p−1,e−1)
z − z∇z[bp−1

e−1 + cp−1
e−1]D

(p−1,e−1)
z

+ k
(
zD(p−1,e−1)

z − zD(p−1,e−1)
z

)
+ (2cp−1

e−1 + 1)zzL[bp−1
e−1](z − z)−1L[a]− (k − 2)(k − cp−1

e−1 − 1)(z − z)B[k], (5.83)

D2 ≡D(p−1,e−2)
z −D(p−1,e−2)

z − L[a]B
[
k − cp−1

e−2 − 1
]
, (5.84)

where the coefficient k is

k ≡ 4−∆ + `

2
+

3p

4
. (5.85)

The elementary differential operators19 used here are

D(a,b;c)
x ≡ x2(1− x)∂2

x −
(
(a+ b+ 1)x2 − cx

)
∂x − abx, (5.86)

∇x[µ] ≡ −x(1− x)∂x + µx, (5.87)

L[µ] ≡ ∇z[µ]−∇z[µ], (5.88)

B[µ] ≡ zz

z − z
((1− z)∂x − (1− z)∂z) + µ, (5.89)

and we also use the following short-hand notation

D(p,e)
x ≡ D(ape ,b

p
e ;cpe)

x . (5.90)

5.4.2 Dual Seed Blocks

In this appendix we provide the final expression for the dual seed conformal blocks recursion
relation omitting all the derivations. All the quantities below carry a bar to distinguish them

19Exactly the same differential operators (except for ∇x[µ]) enter the quadratic Casimir equation for the
seed blocks in chapter 4. Note that here the definition of L differs by a factor of z − z.
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from their analogous in the seed case.
By performing calculation completely analogous to the previous section, we find that the

dual seed conformal blocks obey the following recursion relation

W
(p)
∆, `; ∆1,∆2,∆3,∆4

=

A−1

(
v1 (D−−0

1 · D4,−0+) (D−+0
1 · D2,++0) W

(p−1)

∆−1
2 , `; ∆1+1,∆2−1

2 ,∆3,∆4+
1
2

+v2 (D−−0
1 · D4,−0+) (D1,++0 · D

−+0
2 ) W

(p−1)

∆−1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+v3 (D+0−
1 · D4,−0+) (D+0+

1 · D2,++0) W
(p−1)

∆−1
2 , `; ∆1−1,∆2−1

2 ,∆3,∆4+
1
2

+v4 (D+0−
1 · D4,−0+) (D1,−0+ · D

−+0
2 ) W

(p−1)

∆−1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

)
, (5.91)

where the coefficients are20

A = − i (`+ p)(∆ + ∆3 −∆4 + `+ p− 2)

2∆ + 2`+ p− 2
(5.92)

and

v1 =
(∆−∆1 −∆2 + `+ p+ 2)(−∆−∆1 + ∆2 + `+ p+ 2)

2(∆1 − 2)(2∆ + p− 4)(2∆2 + p− 4)
,

v2 = −(∆−∆1 −∆2 + `+ p+ 2)(∆−∆1 + ∆2 + `+ 2p− 2)

4(∆1 − 2)(∆1 − 1)(2∆ + p− 4)
,

v3 = − 1

2(∆1 − 3)(∆1 − 2)2(2∆ + p− 4)(2∆2 + p− 4)
,

v4 = −(∆−∆1 −∆2 + `+ p+ 2)(∆ + ∆1 + ∆2 + `+ 2p− 6)

4(∆1 − 3)(∆1 − 2)(2∆ + p− 4)
. (5.93)

Analogously to the primal seed case, we replace one of the conformal blocks on the right hand
side of (5.91) by using the dimension-shifting operator

W
(p−1)

∆−1
2 , `; ∆1+1,∆2−1

2 ,∆3,∆4+
1
2

= E−1
(D1,+−0·D

−−0
2 )(D1,++0·D

−+0
2 )W

(p−1)

∆−1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

,

(5.94)
where

E ≡ (p+ 1)(∆1 − 2)(∆1 − 1)(∆ + ∆1 −∆2 + l + p− 2)(−∆−∆1 + ∆2 + l + p+ 2). (5.95)

Decomposition into components Plugging the relation (5.94) in (5.91), stripping off the
kinematic factor and decomposing this relation into four-point tensor structures according
to (2.44) one obtains a recursion relation for the dual seed blocks of the form analogous
to (5.81)

H
(p)
e (z, z) = −A

′−1

z − z

(
D0 H

(p−1)
e (z, z)− 2D1 H

(p−1)
e−1 (z, z) + 4cp−1

e−2zzD2 H
(p−1)
e−2 (z, z)

)
,

(5.96)
where the blocks in the l.h.s depend on [∆, `; ∆1, ∆2, ∆3, ∆4] and the blocks in the r.h.s.
depend on [∆− 1

2 , `; ∆1, ∆2 + 1
2 , ∆3, ∆4 + 1

2 ].

20Here A is not the 6j symbol analogous to A, but simply an overall coefficient.
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The overall coefficient is

A′ ≡ −(∆ +
p

2
− 2)(∆ + ∆1 −∆2 + l + p− 2)A. (5.97)

The differential operators Di are given by the expression (5.82)-(5.84) with the parameter k
replaced by k

k ≡ ∆ + `

2
+

3p

4
. (5.98)
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Chapter 6

Conclusions and Discussions

In this thesis we have developed a formalism for working with arbitrary spin 2-, 3- and 4-point
functions and for constructing general bootstrap equations in 4D. Here we discuss further the
obtained results. In the end we comment on their applications.

chapter 2 We have made an overview of our framework for constructing generic 2-, 3-,
4-point functions and the bootstrap equations. The precise formalism for constructing tensor
structures and differential operators is addressed in chapter 3 instead. We have explained how
to reduce generic conformal blocks to the set of simpler seed conformal blocks. Depending

on the spin they split into 2 dual types: the seed H
(p)
e and the dual seed H

(p)
e blocks. We

have computed them in chapters 4 and 5.

chapter 3 We have developed and unified two alternative formalism for performing com-
putations in 4D CFTs: covariant (embedding space) approach and non-covariant (conformal
frame) approach.

In the embedding formalism we have explained the recipe for constructing tensor struc-
tures of n-point functions in the 6D embedding space. We have also summarized the so called
spinning differential operators relating generic CPWs to the seed CPWs. The conformally
covariant expressions in 4D are easily obtained from the 6D expressions by using the so called
projection operation. For the objects like kinematic factors and 2-, 3-, and 4-point tensor
structures we have performed the projection operation explicitly.

The construction of a basis of tensor structures in the embedding formalism requires
however the knowledge of a complete set of non-linear relations between products of the
basic conformal invariants. Starting from n = 4 it is rather difficult to find such a set of
relations and thus the embedding formalism turns out to be practically inefficient for n ≥ 4.
This problem is solved using the conformal frame approach.

In the conformal frame we have provided a complete basis for (n ≥ 4)-point tensor
structures in a remarkably simple form. For instance in the n = 4 case the tensor structures
are simply monomials in polarization spinors with vanishing total charge under the U(1) little
group. In the n < 4 cases the little group is larger and constructing its singlets becomes harder
whereas the embedding formalism is easily manageable. Since the embedding formalism is
also explicitly covariant it becomes preferable for working with 2- and 3-point functions.

With practical applications in mind, we have found the action of various differential
operators on 4-point functions in the conformal frame formalism. We have also shown how
to apply permutations in the conformal frame. These results allow one to work with the
4-point functions (and, consequently, the crossing equations) entirely within the conformal
frame formalism.

We have established a connection between the tensor structures constructed in the em-
bedding and the conformal frame formalisms. The embedding formalism to conformal frame
transition is straightforward and amounts to performing the 4D projection of the 6D struc-
tures and setting all the coordinates to the conformal frame. The conformal frame to the
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embedding formalism transition is slightly more complicated since it is not uniquely defined
due to redundancies among the allowed 6D structures. After “translating” all the basic 6D
structures to the conformal frame one inverts these relations by choosing only the independent
6D structures.

In the appendices we made our best effort to establish consistent conventions; we have
provided a proper normalization of 2-point functions and the seed conformal blocks and
summarized all the Casimir differential operators available in 4D. We have also given some
extra details on permutation symmetries and conserved operators.

chapter 4 We have computed the seed conformal blocks by solving the system of Casimir
equations (4.4) using an ansatz. The final solution is given in (4.33) and (4.34). The coef-
ficients cem,n can be determined recursively, by means of (4.32). An explicit example of the
p = 1 coefficients is given in (B.53). For each conformal block, the coefficients cem,n span a
2D octagon-shape lattice in the (m,n) plane with the size depending on p and e.

We have computed explicitly the coefficients cem,n for completely generic values of `,∆ and
external dimensions for p ≤ 4. Unfortunately these explicit solutions have a very complicated
form and become unmanageable for p > 5 in a generic situation.

Things improve when studying the blocks in the light-cone limit. In that case the seed
blocks either contain (for exchanged operators with finite spin) only very few terms with very
simple coefficients cem,n

1 or (for exchanged operators with large spin) the form of generic cem,n
simplify considerably in the large ` limit.

Unfortunately even the p ≤ 4 solutions are not applicable for performing numerical boot-
strap since their present form does not admit an efficient polynomial approximation. New
insights on the seed blocks discussed in chapter 5 are needed.

chapter 5 We introduced new mathematical tools for performing computations in confor-
mal representation theory. We show the existence of covariant (weight-shifting) differential
operators corresponding to finite-dimensional representations of the conformal group. We
construct explicitly a list of such operators in (5.38) corresponding to fundamental and anti-
fundamental representations of the conformal group SU(2, 2) in 4D.

We then make a connection with spinning differential operators 3.35 and 3.36. We show
that they essentially are the invariant product of covariant differential operators correspond-
ing to fundamental, anti-fundamental, anti-symmetric and adjoint representations of SU(2, 2).

We discuss group-theoretic property (5.23) of covariant differential operators which allows
to move their action from one point to another. Finally we combine this property with the
shadow techniques to obtain an “integration by parts” formula 5.55.

The main application of this formalism is a reduction of any spinning conformal block
to the scalar Dolan and Osborn conformal block. We apply this to the case of seed blocks.
The result is the recursion relations (5.81) and (5.96). These recursion relations match
precisely the solution obtained in chapter 4: (4.33) and (4.34). We will discuss their practical
importance below.

The CFTs4D Package We have implemented our framework in a Mathematica pack-
age “CFTs4D” freely available at https://gitlab.com/bootstrapcollaboration/CFTs4D. It can
perform any manipulations with generic 2-, 3- and 4-point functions in both covariant and
non-covariant formalisms. It also allows to switch between formalism when needed. The
explicit form of conformal blocks is implemented for p ≤ 4 together with their recursion

1These coefficients always lie on the boundary of the octagon and have the simplest form among all, see
for instance (B.53) for a p = 1 example.

https://gitlab.com/bootstrapcollaboration/CFTs4D#cfts4d
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relations. We have also implemented spinning differential operators together with more fun-
damental weight-shifting operators. A detailed documentation is incorporated in the package
with many explicit examples.

Future Applications It is our hope that the results of this thesis will facilitate the boot-
strap studies of 4D CFTs using spinning correlators such as 4-point functions of fermionic
operators, global symmetry currents and stress-energy tensors.

Analytic Bootstrap The formalism of weight-shifting operators will be very useful for
generalization of the scalar inversion formula [69] to the spinning case: using the integration
by parts procedure one can obtain a spinning inversion formula by reducing it to the scalar
one. It can then be used for a systematic analytic studies of spinning 4-point functions.

Numerical Bootstrap For performing numerical analysis the full analytic expressions
for spinning conformal blocks are not suitable and not needed. Instead one needs an ap-
proximate rational form of them and their derivatives at the crossing-symmetric z = z = 1

2
point. The recursion relations (5.81) and (5.96) provide an efficient way for finding such an
approximation.

The idea is to rewrite the relations (5.81) and (5.96) for the seeds and their derivatives
at the crossing symmetric point and then use them to successively obtain a polynomial
approximation2 of the p-seeds starting from the polynomial approximation of the p = 0
blocks (which is well studied).

We hope to perform an analysis of 4-fermion correlator which provides an access to com-
posite “baryons” of gauge theories in the near future.

2Instead of dealing with rational approximations we will work only with polynomials keeping track of the
denominators separately.
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Appendix A

Details of the Framework

A.1 Details of the 4D Formalism

We work in the signature −+ ++ and denote the diagonal 4D Minkowski metric by hµν . We
mostly follow the conventions of Wess and Bagger [158].

The representations of the connected Lorentz group in 4D are labeled by a pair of non-
negative integers (`, `). These representations can be constructed as the highest-weight ir-
reducible components in a tensor product of the two basic spinor representations (1, 0) and
(0, 1).

We denote the objects in the left-handed spinor representation (1, 0) as ψα, α = 1, 2, and
the objects in its dual representation as ψα. The original and the dual representations are
equivalent via the identification

ψα = εαβψ
β, ψα = εαβψβ, (A.1)

where
ε12 = −ε21 = ε21 = −ε12 = +1. (A.2)

Because of the equivalence between (1, 0) and its dual representation, we will not be careful
to distinguish them in the text, the distinction in formulas will be clear from the location of
indices.

The right-handed spinor representation (0, 1) is the complex conjugate of the left-handed
spinor representation, and the objects transforming in (0, 1) representation will be denoted
as χα̇. Here the dot should not be considered as part of the index, but rather as an indication
that this index transforms in (0, 1) and not in (1, 0) representation. For example, the definition
of (0, 1) representation is essentially

ψ†α̇ = (ψα)†. (A.3)

The dual of (0, 1) is equivalent to (0, 1) via the conjugation of (A.1)

χα̇ = εα̇β̇χ
β̇, χα̇ = εα̇β̇χβ̇, (A.4)

where εα̇β̇ ≡ εαβ, ε
α̇β̇ ≡ εαβ. We use the contraction conventions

ψ1ψ2 = ψα1ψ2α, χ1χ2 = χ1α̇χ
α̇
2 . (A.5)

The tensor product (1, 0)⊗ (0, 1) = (1, 1) is equivalent to the vector representation, and
the equivalence is established by the 4D sigma matrices σµ

αβ̇
and σµα̇β, which we define as

σ0 =

(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.6)
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and σ0 = σ0, σ1 = −σ1, σ2 = −σ2, σ3 = −σ3. For a convenient summary of relations
involving sigma-matrices see for example [159].1

For primary operators we adopt the convention to write them out with dotted indices
upstairs and the undotted indices downstairs

Oα̇1...α̇`
β1...β`

,
(
Oα̇1...α̇`
β1...β`

)†
= O†α1...α`

β̇1...β̇`
. (A.7)

In this notation the index-full version of (2.6) is

Oβ̇1...β̇`
α1...α`

≡ (−1)`−` εα1α′1
. . . εα`α

′
`
εβ̇1β̇′1 · · · εβ̇`β̇′`O†

α′1...α
′
`

β̇′1...β̇
′
`

. (A.8)

Action of Conformal Generators We denote the conformal generators by P,K,D,M .
We choose to work with anti-Hermitian generators (related to the Hermitian ones by a factor
of i)

D† = −D, P † = −P, K† = −K, M † = −M, (A.9)

which allow us to avoid many factors of i in the formulas below (note that even though D is
anti-Hermitian, its adjoint action has real eigenvalues). These generators satisfy the following
algebra

[D,D] = 0, [D,Pµ] = Pµ, [D,Kµ] = −Kµ, (A.10)

[Pµ, Pν ] = 0, [Kµ,Kν ] = 0, [Kµ, Pν ] = 2hµνD − 2Mµν , (A.11)

[Mµν , D] = 0, [Mµν , Pρ] = hνρPµ − hµρPν , [Mµν ,Kρ] = hνρKµ − hµρKν , (A.12)

[Mµν ,Mρσ] = hνρMµσ − hµρMνσ − hνσMµρ + hµσMνρ. (A.13)

The action of the conformal generators on primary fields is given by

[D,O(x, s, s)] = (xµ∂µ + ∆)O(x, s, s), (A.14)

[Pµ,O(x, s, s)] = ∂µO(x, s, s), (A.15)

[Kµ,O(x, s, s)] = (2xµx
σ − x2δσµ)∂σO(x, s, s) + 2(∆xµ − xσMµσ)O(x, s, s), (A.16)

[Mµν ,O(x, s, s)] = (xν∂µ − xµ∂ν)O(x, s, s) +MµνO(x, s, s), (A.17)

where the spin generators are

MµνO(x, s, s) =

(
−sα(SSµν)α

β ∂

∂sβ
− sα̇(SSµν)α̇β̇

∂

∂sβ̇

)
O(x, s, s). (A.18)

We have defined here the generators of the left- and right-handed spinor representations

(SSµν)α
β = −1

4
(σµσν − σνσµ)α

β, (A.19)

(SSµν)α̇β̇ = −1

4
(σµσν − σνσµ)α̇β̇, (A.20)

1One should download and compile the version with mostly plus metric. Notice also a factor of i difference
between their σµν and σµν and ours SSµν and SS

µν
.
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which satisfy the same commutation relations as Mµν . Notice that as usual the differential
operators in the right hand side of (A.14)-(A.17) have the commutation relations opposite
to those of the Hilbert space operators in the left hand side. This is because if the Hilbert
space operators A and B act on fields by differential operators A and B, then their product
AB acts by BA.

Action of Space Parity If a theory preserves parity, there exists a unitary operator P
with the following commutation rule with Lorentz generators

PM0iP−1 = −M0i, PMijP−1 = Mij , (A.21)

where i, j = 1, 2, 3. Applying this to (A.17) at x = 0, we see that

[Mµν ,POα(0)P−1] = (SSµν)α̇β̇POβ(0)P−1. (A.22)

This implies that we can define an operator Õ as

Õα̇(x) ≡ −iPOα(Px)P−1 (A.23)

which transform as a primary operator in the representation (0, 1). We also have Px0 =
x0, Pxk = −xk, k = 1, 2, 3. More generally, it is easy to check that we can consistently define

Õα̇1...α̇`
β1...β`

(x) ≡ (−i)`+`POβ̇1...β̇`
α1...α`(Px)P−1. (A.24)

The factor of i was introduced to reproduce the standard parity action on traceless symmetric
operators in the Õ = O case.

The above definition provides the most generic action of parity on the operators O which
can be slightly rewritten as

POβ̇1...β̇`
α1...α`(x)P−1 = i`+`Õα̇1...α̇`

β1...β`
(Px), (A.25)

or equivalently in index-free notation

PO(x, s, s)P−1 = Õ(Px,Ps,Ps), (Ps)α̇ = isα, (Ps)α = isα̇. (A.26)

Notice that if O transforms in the (`, `) representation then the operator Õ transforms in
(`, `) and may or may not be related to the operator O defined in (2.6) or to O itself if
` = `. This depends on a specific theory. What is important for us is that in a theory which
preserves P there is a relation between correlators involving Oi and Õi

〈0|O1(x1, s1, s1) · · · On(xn, sn, sn)|0〉 =

=〈0|PO1(x1, s1, s1)P−1 · · · POn(xn, s1, s1)P−1|0〉

=〈0|Õ1(Px1,Ps1,Ps1) · · · Õn(Pxn,Psn,Psn)|0〉. (A.27)

Written in terms of tensor structures this equality reads as∑
I

TIngIn =
∑
I

(PT̃In)g̃In, (A.28)

where PT̃In is given by T̃In with x → Px, s → Ps, s → Ps and T̃In are the tensor structures
appropriate to the correlators with the operators Õi.2 We provide the rules for the action of

2If there are any parity-odd cross-ratios (i.e. n ≥ 6) then g̃ should have these with reversed signs.
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P on various tensor structures in equations (A.114), (A.115) and (3.65) [applyPParity].

Action of Time Reversal If a theory has time reversal symmetry, there exists an anti-
unitary operator T with the following commutation rule with Lorentz generators

TM0iT −1 = −M0i, TMijT −1 = Mij , (A.29)

where i, j = 1, 2, 3. Applying it to (A.17) at x = 0, we see that

[Mµν , T Oα(0)T −1] =
[
(SSµν)α̇β̇

]∗
T Oβ(0)T −1. (A.30)

This implies that T Oβ(0)T −1 transforms as ψβ and we can define the operator Ô as

Ôα(x) ≡ −iεαβT Oβ(T x)T −1, (A.31)

where T x0 = −x0, T xk = xk, k = 1, 2, 3. One can similarly define

Ôα̇(x) ≡ iεα̇β̇T Oβ̇(T x)T −1 (A.32)

and extend the above definitions to arbitrary representations in an obvious way. For traceless
symmetric operators in the Ô = O case, this reproduces the standard time reversal action.
In index-free notation we can write3

T O(x, s, s)T −1 = Ô(T x, T s, T s), (T s)α = is∗α̇, (T s)α̇ = −i(s∗)α. (A.33)

Again, Ô may or may not be related to O depending on a theory. The only important point
is that there is a relation between correlators with Oi and Ôi in a theory preserving the time
reversal symmetry

〈0|O1(x1, s1, s1) · · · On(xn, sn, sn)|0〉 =

=
[
〈0|T O1(x1, s1, s1)T −1 · · · T On(xn, s1, s1)T −1|0〉

]∗
=
[
〈0|Ô1(T x1, T s1, T s1) · · · Ôn(T xn, T sn, T sn)|0〉

]∗
, (A.34)

where the conjugation happens because of the anti-unitarity of T .4 Written in terms of tensor
structures this equality reads as ∑

I

TIngIn =
∑
I

(T T̂In)(ĝIn)∗, (A.35)

where T T̂In is given by (T̂In)∗ with the replacements x → T x, s → T s, s → T s made before
the conjugation and T̂In are the structures appropriate for the operators Ôi.

Computing T T̂In is easy, since we can construct T conjugation from P and the rotation
eiπM

03+πM12
. The latter rotation sends s → s, s → −s, which takes T s and T s to Ps and

Ps. The end result is
T T̂In =

(
PT̂In

)∗
. (A.36)

We list the rules for the action of T on tensor structures in equations (A.116), (A.117)
and (3.67) [applyTParity].

3Note that T s and T s are not complex conjugates of each other even if s and s are, so to avoid confusion
here we do not assume that s and s are complex-conjugate. There is always a second complex conjugation
(see below), so this is only intermediate.

4As an extreme example T iT −1 = −i, so we have i = 〈0|i|0〉 = [〈0|T iT −1|0〉]∗ 6= 〈0|T iT −1|0〉.
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A.2 Details of the 6D Formalism

In this appendix we describe our conventions for the 6D embedding space. We mostly fol-
low [124, 144].

We work in the signature {−++++−}, and we denote the 6D metric by hMN . We often
use the lightcone coordinates

X± ≡ X4 ±X5, (A.37)

and write the components of 6D vectors as

XM = {Xµ, X+, X−}. (A.38)

The metric in lightcone coordinates has the components

h+− = h−+ =
1

2
, h+− = h−+ = 2. (A.39)

The 6D Lorentz group Spin(2, 4) is isomorphic to the SU(2, 2) group. The latter can be
defined as the group of 4 by 4 matrices U which act on 4-component complex vectors Va and
preserve the sesquilinear form

〈V,W 〉 = gab(Va)
∗Wb, 〈UV,UW 〉 = 〈V,W 〉. (A.40)

Here the metric tensor gab is a Hermitian matrix with eigenvalues {+1,+1,−1,−1}, which
we choose to be

gab ≡ gba ≡


0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0


ab

. (A.41)

The bar over the index a indicates that this index transforms in a complex conjugate repre-
sentation. In other words, we say that Va transforms in the fundamental representation while

V ∗a ≡ (Va)
∗ (A.42)

transforms in the complex conjugate of the fundamental representation (that is, by matrices
U∗). The metric gab establishes an isomorphism between the complex conjugate representa-
tion and the dual representation

V
a ≡ gabV b. (A.43)

We say that V
a

transforms in the anti-fundamental representation (that is, the anti-fundamental
representation is the dual of the fundamental representation). The inverse isomorphism is
established by the tensor

gab ≡ gba ≡ −gab. (A.44)

We have the relations
gabg

bc = gcbgba = δca, (gab)∗ = gab. (A.45)

The isomorphism between Spin(2, 4) and SU(2, 2) can be established by identifying the
vector representation of Spin(2, 4) with the exterior square of the fundamental or anti-
fundamental representations of SU(2, 2).5 This equivalence is provided by the invariant

5The fundamental and anti-fundamental representations themselves are the two spinor representations of
Spin(2, 4).
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tensors ΣM
ab and Σ

M ab
defined by

Σµ
ab =

(
0 −(σµε) β̇

α

(σµε)α̇β 0

)
, Σ+

ab =

(
0 0

0 2 εα̇β̇

)
, Σ−ab =

(
−2 εα̇β̇ 0

0 0

)
, (A.46)

and

Σ
µab

=

(
0 −(εσµ)α

β̇

(εσµ) β
α̇ 0

)
, Σ

+ ab
=

(
−2 εαβ 0

0 0

)
, Σ

− ab
=

(
0 0

0 2 εα̇β̇

)
. (A.47)

These tensors have the following simple conjugation properties,(
ΣM
ab

)∗
= gaa′gbb′Σ

M a′b′ (
Σ
M ab)∗

= gaa
′
gbb
′
ΣM
a′b′ . (A.48)

The above sigma-matrices satisfy many useful relations, for an incomplete list of them see
appendix A in [144]. Using the sigma matrices we define the coordinate matrices

Xab ≡ XMΣM
ab = −Xba, X

ab ≡ XMΣ
M ab

= −X
ba
, (A.49)

which satisfy the algebra

a(XiXj)
b + a(XjXi)

b = 2 (Xi ·Xj)δ
b
a. (A.50)

We can now identify the SU(2, 2) generators corresponding to the standard 6D Lorentz
generators

ΣMN ≡ 1

4
(ΣMΣ

N − ΣNΣ
M

), Σ
MN ≡ 1

4
(Σ

M
ΣN − Σ

N
ΣM ), (A.51)

satisfying the commutation relations

[ΣMN ,ΣPQ] = hNPΣMQ − hMPΣNQ − hNQΣMP + hMQΣNP , (A.52)

[Σ
MN

,Σ
PQ

] = hNPΣ
MQ − hMPΣ

NQ − hNQΣ
MP

+ hMQΣ
NP

, (A.53)

thus establishing the isomorphism Spin(2, 4) ' SU(2, 2) at Lie algebra level.
By comparing the expressions for Σµν and Σ

µν
with SSµν and SS

µν
, we find that under

the Lorentz Spin(1, 3) subgroup of Spin(2, 4) the fundamental and anti-fundamental repre-
sentations of SU(2, 2) decompose as

Va =

(
Vα
V α̇

)
, W

a
=

(
W

α

W α̇

)
. (A.54)

In other words, we write Vα or V α̇ to refer to first two or second two components of Va, and
analogously for W

a
.

Conformal algebra in 6D notation We can identify explicitly the conformal generators
with the 6D Lorentz algebra

Mµν = Lµν , D = L45, Pµ = L5µ − L4µ, Kµ = −L4µ − L5µ. (A.55)

With these conventions, the generators LMN satisfy the algebra

[LMN , LPQ] = hNPLMQ − hMPLNQ − hNQLMP + hMQLNP . (A.56)
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These generators act on the 6D primary operators as

[LMN , O(X,S, S)] = LMNO(X,S, S), (A.57)

where the differential 6D generator is defined as

LMN ≡ −(XM∂N −XN∂M )− SΣMN∂S − SΣMN∂S . (A.58)

It is sometimes convenient to work with the conformal generators in SU(2, 2) notation

La
b ≡

[
ΣMN

]
a
b LMN , LiMN = −1

2
La

b
[
ΣMN

]
b
a. (A.59)

In this notation the conformal generators obey the commutation relations[
La

b, Lc
d
]

= 2δbc La
d − 2δda Lc

b. (A.60)

We also have the following action on the primary operators

[La
b, O(X,S, S)] = La

bO(X,S, S), (A.61)

where La
c is the differential operator associated to the 6D generator La

c in Hilbert space

La
b ≡ −1

2

[(
XΣ

M) b
a
∂M −

(
ΣMX

) b
a
∂M

]
+

1

2
δba
(
S · ∂S − S · ∂S

)
− 2

(
Sa∂

b
S − S

b
∂S a

)
.

(A.62)

Embedding formalism In the embedding formalism the flat 4D space is identified with a
particular section of the 6D light cone X2 = 0. Namely, we take the Poincare section X+ = 1,
which then implies

X− = −XµXµ. (A.63)

The 4D coordinates xµ are identified on this section as

xµ = Xµ. (A.64)

In particular, on the Poincare section we have

XM
∣∣∣
Poincare

= {xµ, 1, −x2}. (A.65)

Consider an operator Oa1...al
b1...bl

(X), defined on the light cone X2 = 0, symmetric in its two

sets of indices. Following [124], it can be projected down to a 4D operator Oβ̇1...β̇`
α1...α`(x) as

Oβ̇1...β̇`
α1...α`(x) = Xα1a1 . . .Xα`a`X

β̇1b1 . . .X
β̇`b`Oa1...a`

b1...b`
(X)

∣∣∣∣
Poincare

. (A.66)

If the 6D operator satisfies the homogeneity property

Oa1...al
b1...bl

(λX) = λ−κOOa1...al
b1...bl

(X), (A.67)

where κO is defined in (2.13), then the resulting 4D operator will transform as a primary
operator of dimension ∆O under conformal transformations. We call O a 6D uplift of O.
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Notice that the 6D uplift O is not uniquely defined. Indeed as a consequence of the light
cone condition in terms of the matrices in (A.50),

X2 = 0 =⇒ a(XX)b = 0 and a(XX)b = 0, (A.68)

the 6D operator is defined up to terms which vanish in (A.66), leading to the following
equivalence relation

Oa1...a`
b1...b`

∼ Oa1...a`
b1...b`

+ X
a1 cAa2...a`

c b1...b`
+ Xb1cB

c a1...a`
b2...b`

+ δa1
b1
Ca2...a`
b2...b`

. (A.69)

Furthermore, in order to simplify the treatment of derivatives in the embedding space, it is
convenient to arbitrarily extend O(X) away from the light cone X2 = 0 and treat all the
extensions as equivalent. This means that we can also add to O(X) terms proportional to
X2. Following the terminology of [138], we refer to this possibility as a gauge freedom and

the terms proportional to Xab ,X
ab
, δab or X2 will be called pure gauge terms.

It is convenient to use the index-free notation (3.2). Contracting the 4D auxiliary spinors
with (A.66), we find that

O(x, s, s) = O(X,S, S)

∣∣∣∣
proj

, (A.70)

where we introduced the formal operation |proj defined as

XM
∣∣∣
proj
≡ XM

∣∣∣
Poincare

, Sa

∣∣∣
proj
≡ sαXαa

∣∣∣∣
Poincare

, S
a
∣∣∣
proj
≡ sβ̇X

β̇b
∣∣∣∣
Poincare

. (A.71)

As a consequence of the gauge freedom, the index-free 6D uplift O(X,S, S) is defined up
to pure gauge terms proportional to SX, SX, SS or X2. Note that they all vanish under
the operation of projection (A.70) due to (A.68)

X
ab
Sb

∣∣∣
proj

= 0, S
b
Xba

∣∣∣
proj

= 0, S
a
Sa

∣∣∣
proj

= 0, X2
∣∣∣
proj

= 0, (A.72)

We will always work modulo the gauge terms (A.72). In practice this is taken into
account by treating (A.72) as explicit relations in the embedding formalism even before the
projection. Note then that as a consequence of the relations (A.68), (A.72), the anti-
symmetric properties (A.49) and the relations (A.7) in appendix A of [144], the following
identities hold6 which we call the 6D Jacobi identities

S[aXbc] = 0, S
[a

X
bc]

= 0, X[abXc]d = 0, X
[ab

X
c]d

= 0. (A.73)

Differential operators In section 2 we commented upon the importance of some dif-
ferential operators, such as the conservation operator (A.142), spinning differential opera-
tors (3.35), (3.36) and the Casimir operators entering (2.45). To consistently define these
operators in embedding space, we require their action to be insensitive to different extensions
of fields outside the light cone and the other gauge terms in (A.72). This results in the
requirement7

D

(
∂

∂XM
,
∂

∂Sa
,
∂

∂S
a , X, S, S

)
·O(X2, SX, SX, SS) = O(X2, SX, SX, SS). (A.74)

6We thank Emtinan Elkhidir for showing this simple derivation.
7In this equation O stands for the usual big-O notation and not the 6D operator.
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To go from 6D differential operators to 4D differential operators, we need to find an
explicit uplift of the 4D operators O(x, s, s) to the 6D operators O(X,S, S). As noted above,
there are infinitely many such uplifts differing by gauge terms, but all lead to the same result
for 4D differential operators if the 6D operator satisfies (A.74). For example, we can choose
the uplift

O(X,S, S) = (X+)−κOO(Xµ/X+, Sα, Sα̇). (A.75)

In particular, X−, Sβ̇, S
β

derivatives of this uplift of O vanish. By applying 6D derivatives
to this expression we automatically obtain the required 4D derivatives on the right hand side.
For instance, we find for the first order derivatives after the 4D projection

∂/∂XM
∣∣∣
proj

= {∂/∂xµ,−κO − xν∂/∂xν , 0} , (A.76)

∂/∂Sa

∣∣∣
proj

= {∂/∂sα, 0} , ∂/∂S
a
∣∣∣
proj

= {0, ∂/∂sα̇} . (A.77)

Reality properties of the basic invariants Using the reality properties (A.48) of the
sigma matrices, the projection rules (A.71) for S and S, and the reality convention for 4D
auxiliary polarizations sα = (sα̇)∗, we can find the following reality properties for the basic
objects hold

(Xab)
∗ = Xab,

(
X
ab
)∗

= Xab, (Sa)
∗ = iSa, (S

a
)∗ = iSa. (A.78)

Due to the relations such as Y aWa = YaW
a, we have an extremely simple conjugation

rule for the expressions such as
(
SiXjXkSl

)
: replace X ↔ X, S ↔ S and add a factor of i

for each S and S.

Action of Space Parity To analyze space parity, let us denote by PMN the 6x6 matrix
which relfects the spacial components of Xµ. We also denote by â indices transforming in the
representation reflected relative to the one of a.8 Note that the reflection of the fundamental
representation is equivalent to anti-fundamental and vice versa and this equivalence should
be implemented by some matrices pâb and pâb. In terms of these matrices we then have

PMN ΣN
ab = Σ

N
âb̂ = pâa′pb̂b′Σ

M a′b′
, (A.79)

PMN Σ
N ab

= ΣN âb̂ = pâa
′
pb̂b
′
ΣM
a′b′ . (A.80)

It is easy to check that these identities (as well as the equivalence between the representations)
are achieved by choosing

pâb = pbâ = −pâb = −pbâ =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


ab

. (A.81)

From the above we deduce the action of parity on on X and X

Xab 7→ Xâb̂, X
ab 7→ Xâb̂. (A.82)

8The reflected representation is the representation with the Lorentz generators Mrefl
MN given by Mrefl

MN =
PM

′
M PN

′
N MM′N′ , where M are the original generators.
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We can also check, based on 4D projections of S and S, that

Sa 7→ −Sâ, S
a 7→ Sâ. (A.83)

Due to the identities such as Y aWa = YâW
â, we have the following parity conjugation rule

for the products like
(
SiXjXkSl

)
: replace X ↔ X, S ↔ S and a factor of −1 for each S in

the original expression.

Action of Time Reversal As discussed in appendix A.1, see equation (A.36), the time
reversal transformation can be implemented by combining the space parity with complex
conjugation. Using the above rule, T acts simply as a multiplication by i

∑
i `i−`i on each

structure.

A.3 Normalization of Two-point Functions and Seed CPWs

In this appendix our goal is to fix the normalization constants of 2-point functions (2.16) and
the seed CPWs (4.36).

The phase of 2-point functions is constrained by unitarity. A simple manifestation of the
unitarity is the requirement that all the states in a theory have non-negative norms

〈Ψ|Ψ〉 ≥ 0. (A.84)

Our strategy is to define a state whose norm is related to 2-point functions (2.15) and use
this relation to fix the phase (2.16). In particular, we set

|O(s, s)〉 ≡ O(x0, s, s) |0〉, xµ0 ≡ {iε, 0, 0, 0}, (A.85)

where ε > 0. Here we are working in the standard Lorentzian quantization where the states
are defined on spacelike hyperplanes. The state |O(s, s)〉 can then be interpreted as a NS-
quantization state in a Euclidean CFT [26]. Note that we have

|O(s, s)〉 = e−εHO(0, s, s)|0〉. (A.86)

Here H = −iP0 is the Hamiltonian9 of the theory, and thus its spectrum is bounded from
below. Therefore, we need ε > 0 in order for |O(s, s)〉 to have a finite norm. To compute this
norm, we first consider the conjugate state

〈O(s, s)| = 〈0|(O(x0, s, s))
† = 〈0|O(−x0, s, s), (A.87)

where we used x∗0 = −x0. Then the norm is given by

〈O(s, s)|O(s, s)〉 = 〈0|O(−x0, s, s)O(x0, s, s)|0〉. (A.88)

By using (2.15) to further rewrite (A.88), with the invariants x2
12, I21 and I12 taking the form

x2
12 = 4ε2, I21 = 2iε s†s, I12 = −2iε s†s, (A.89)

we find
〈0|O(−x0, s, s)O(x0, s, s)|0〉 = c〈OO〉(2ε)

−2∆(s†s)`+`i`−` ≥ 0, (A.90)

9Recall that in our conventions P is anti-Hermitian.



A.3. Normalization of Two-point Functions and Seed CPWs 71

where s†s = |s1|2 + |s2|2 ≥ 0. This equation fixes the phase of c〈OO〉, and we can consistently
set

c〈OO〉 = i`−`. (A.91)

Normalization of seed CPWs One can find the leading OPE behavior of the seed and
the dual seed conformal blocks by taking the limit z, z → 0, z ∼ z, of the solutions (4.33)
and (4.34). In particular, for the seed blocks we find

lim
z,z→0

H(p)
e = cp0,−p

(−2)e−p p! (p− e+ 1)e
e! (`+ 1)p

(zz)
∆+e−p/2

2 C
(p+1)
`−p+e

(
z + z

2 (zz)1/2

)
, (A.92)

and for the dual seed blocks

lim
z,z→0

H
(p)
e = (−2)p c0

0,−p
(−2)e−p p! (p− e+ 1)e

e! (`+ 1)p
(zz)

∆+e−p/2
2 C

(p+1)
`−e

(
z + z

2 (zz)1/2

)
, (A.93)

where C
(ν)
j (x) are the Gegenbauer polynomials, which in the limit 0 < z � z � 1 read as

C(p+1)
s

(
z + z

2 (zz)1/2

)
≈ (p+ 1)s

s!
z−

s
2 z

s
2 . (A.94)

We remind that cp0,−p and c0
0,−p are some undetermined overall normalization coefficients.

The purpose of this paragraph is to find the values of these coefficients appropriate for our
conventions for 2- and 3-point functions.

In order to fix these coefficients, it suffices to consider the leading term in the s-channel
OPE in the seed 4-point functions. We have checked that the OPE exactly reproduces the
form of (A.92) and (A.93) if one sets

cp0,−p = 2p c0
0,−p = (−1)` ip. (A.95)

Let us stress that this normalization factor is fixed by the convention (2.15) and (2.16) for
the 2-point functions, and the definitions of the seed 3-point functions

〈F (0,0)
1 (p1)F (p,0)

2 (p2)O(`, `+p)
∆ (p3)〉(•) = [̂I32]p [Ĵ3

12]`K3, (A.96)

〈O(`+p, `)
∆ (p2)F (0,0)

3 (p3)F (0,p)
4 (p4) 〉(•) = [̂I42]p [Ĵ2

34]`K3, (A.97)

and the dual seed 3-point functions

〈F (0,0)
1 (p1)F (p,0)

2 (p2)O(`+p, `)
∆ (p3)〉(•) = [K̂23

1 ]p [Ĵ3
12]`K3, (A.98)

〈O(`, `+p)
∆ (p2)F (0,0)

3 (p3)F (0,p)
4 (p4) 〉(•) = [K̂

24

3 ]p [Ĵ2
34]`K3, (A.99)

where in each equation K3 has to be replaced with the appropriate 3-point kinematic factor
as defined in (2.19).

Equation (A.95) can be derived from these three-point functions and the corresponding
leading OPE terms

F (0,0)
1 (0)F (p,0)

2 (x2, s2) =
(−i)p

`!(`+ p)!
|x2|∆−∆1−∆2−`(s2∂s)

p(xµ2∂sσµ∂s)
`O(`+p,`)

∆ (0, s, s) + . . . ,

(A.100)

F (0,0)
1 (0)F (p,0)

2 (x2, s2) =
ip

`!(`+ p)!
|x2|∆−∆1−∆2−`−p(xµ2s2σµ∂s)

p(xµ2∂sσµ∂s)
`O(`,`+p)

∆ (0, s, s) + . . . ,

(A.101)
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where we have defined

(∂s)
α ≡ ∂

∂sα
, (∂s)

α̇ ≡ ∂

∂sα̇
. (A.102)

The normalization coefficients in these OPEs can be computed by substituting the OPEs
into (A.96) and (A.98) and using the two-point function (2.16). The normalization coefficients
for the CPWs are then obtained by using these OPEs in the seed four-point function

〈F (0,0)
1 F (p,0)

2 F (0,0)
3 F (0,p)

4 〉 (A.103)

and utilizing the 3-point function definitions (B.6) and (B.8). In practice, when comparing
the normalization coefficients, we found it convenient to use the conformal frame (3.40) -
(3.43) in the limit 0 < z � z � 1 and further set η2 = 0 and e = p for the seed CPWs or
ξ2 = 0 and e = 0 for the dual seed CPWs.

A.4 4D Form of Basic Tensor Invariants

Here we provide the form of basic tensor invariants in 4D for n ≤ 4 point functions. They
are obtained by applying the projection operation (A.71) to the basic 6D tensor invariants
constructed in section 3.1.1

(Îij , Îijkl, Ĵ
k
ij , K̂

ij
k , K̂

ij

k , L̂ijkl, L̂
i

jkl) ≡ (Îij , Îijkl , J
k
ij , K

ij
k , K

ij
k , L

i
jkl, L

i
jkl)
∣∣∣
proj

, (A.104)

where

Îij = xµij (siσµsj), (A.105)

Îijkl =
1

2x2
kl

×
(

(x2
ikx

µ
jl − x

2
ilx

µ
jk) + (x2

jkx
µ
il − x

2
jlx

µ
ik)− x

2
ijx

µ
kl − x

2
klx

µ
ij

− 2iεµνρσxik νxlj ρxlk σ

)
× (siσµsj), (A.106)

Ĵkij =
x2
ikx

2
jk

x2
ij

×
(
xµik
x2
ik

−
xµjk
x2
jk

)
× (skσµsk), (A.107)

K̂ij
k =

1

2

|xij |
|xik||xjk|

×
(

(x2
ik + x2

jk − x2
ij)(sisj)− 4xµikx

ν
jk (siσµνsj)

)
, (A.108)

K̂
ij

k =
1

2

|xij |
|xik||xjk|

×
(

(x2
ik + x2

jk − x2
ij)(sisj)− 4xµikx

ν
jk (siσµνsj)

)
, (A.109)

L̂ijkl =
2

|xjk||xkl||xlj |
×
(
x2
ijx

µ
klx

ν
il + x2

ikx
µ
ljx

ν
ij + x2

ilx
µ
jkx

ν
ik

)
× (siσµνsi) , (A.110)

L̂
i

jkl =
2

|xjk||xkl||xlj |
×
(
x2
ijx

µ
klx

ν
il + x2

ikx
µ
ljx

ν
ij + x2

ilx
µ
jkx

ν
ik

)
× (siσµνsi) . (A.111)

We recall that xµij ≡ x
µ
i − x

µ
j and ε0123 = −1 in our conventions. From these expressions it is

possible to derive the conjugation properties of the invariants. They read as follows(
Îij
)∗

= −Îji ,
(
Îijkl
)∗

= −Îjilk ,
(
Ĵkij
)∗

= Ĵkij , (A.112)(
K̂ij
k

)∗
= −K̂

ij

k ,
(
L̂ijkl

)∗
= −L̂

i

jkl. (A.113)
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Their parity transformation can be deduced from (A.26)

P Îij = −Îji , P Îijkl = −Îjilk , P Ĵkij = Ĵkij , (A.114)

P K̂ij
k = K̂

ij

k , P L̂ijkl = L̂
i

jkl. (A.115)

Finally, according to (A.36) one gets transformations under time reversal

T Îij = Îij , T Îijkl = Îijkl , T Ĵkij = Ĵkij , (A.116)

T K̂ij
k = −K̂ij

k , T L̂ijkl = −L̂ijkl. (A.117)

The same properties follow from the discussion of P-, T -symmetries, and conjugation in
appendix A.2.

A.5 Covariant Bases of Three-point Tensor Structures

Let us review the construction [n3ListStructures] of 3-point function tensor structures [144].
According to the discussion below (3.32) one has

T̂a3 =
{∏
i 6=j

[
Îij
]mij × ∏

i, j<k

[
Ĵijk
]ni[K̂jk

i

]ki[K̂jk

i

]ki}, (A.118)

where the exponents satisfy the following system

`i =
∑
l 6=i

mli +
∑
l 6=i

kl + ni, (A.119)

`i =
∑
l 6=i

mil +
∑
l 6=i

kl + ni. (A.120)

Let us also define the quantity

∆` ≡
∑
i

(`i − `i). (A.121)

Due to relations among products of invariants, not all the structures obtained this way
are independent and constraints on possible values of the exponents in (A.118) must be
imposed. Theses relations come from the Jacobi identities (A.73) by contracting them with
6D polarizations and 6D coordinate matrices in all possible ways.

The first set of relations reads

K̂ik
j K̂

jk

i = − ÎkiÎjk − ÎjiĴkij , (A.122)

K̂ij
k K̂

ij

k = Îij Îji − Ĵjki Ĵikj . (A.123)

If ∆` 6= 0 we use these relations to set ki = 0 or ki = 0 for ∀ i in the expression (A.118); if
∆` = 0 we set instead ki = ki = 0 ∀ i.

The second set of relations reads

ĴjikK̂
ik
j = ÎjiK̂jk

i − ÎjkK̂ij
k , (A.124)

ĴjikK̂
ik

j = ÎijK̂
kj

i + ÎkjK̂
ij

k . (A.125)

This allows to set either ni = 0 or ki = 0 if ∆` > 0 and either ni = 0 or ki = 0 if ∆` < 0
in (A.118).
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If ∆` = 0 it might seem that the relations (A.124) and (A.125) do not play any role, since
all K and K are removed by mean of (A.122) and (A.123). However it is not the case, by
combining (A.124) and (A.125) with (A.122) and (A.123) one gets a third order relation

Ĵ1
23Ĵ2

13Ĵ3
12 =

(
Î23Î32Ĵ1

23 − Î13Î31Ĵ2
13 + Î12Î21Ĵ3

12

)
−
(
Î21Î13Î32 − Î12Î31Î23

)
. (A.126)

This allows to set in (A.118) either n1 = 0 or n2 = 0 or n3 = 0 when ∆` = 010. It can be
verified that no other independent relations exist.

In the case when all operators are trace-less symmetric, i.e. `i = `i for each field, it is
convenient to work in terms of structures manifestly even or odd under parity. Following [145],
the most general parity definite tensor structure reads as

T̂a3 =
{(

Î21Î13Î32 + Î12Î31Î23
)p ×∏

i,j

(
Îij Îji

)mij
×
∏
i, j<k

[
Ĵijk
]ni}, (A.127)

where the structure is even if p = 0 and the structure is odd if p = 1. The form of this basis
is structurally identical to the one found in [121]. This basis has extremely simple properties
under complex conjugation, parity and time reversal(

T̂a3
)∗

= (−1)p T̂a3, P T̂a3 = (−1)p T̂a3, T T̂a3 = T̂a3. (A.128)

This basis can be constructed using [n3ListStructuresAlternativeTS].

A.6 Casimir Differential Operators

The Lie algebra of the 4D conformal group is a real form of the simple rank-3 algebra so(6).
Therefore, it has three independent Casimir operators, which can be defined using the 6D
Lorentz generators (A.57) as follows

C2 ≡
1

2
LMN LNM , (A.129)

C3 ≡
1

24i
εMNPQRS LMN LPQ LRS , (A.130)

C4 ≡
1

2
LMN LNP LPQ L

QM , (A.131)

where ε012345 = ε012345 = +1.
To write out the Casimir eigenvalues for primary operators, it is convenient to introduce

also the SO(1, 3) Casimir operators using the 4D Lorentz generator (A.17). There are two
such Casimirs

c+
2 ≡ −

1

2
LµνL

µν , c−2 ≡
1

4i
εµνρσLµνLρσ, (A.132)

with the eigenvalues

e+
2 =

1

2
`(`+ 2) +

1

2
`(`+ 2), e−2 =

1

2
`(`+ 2)− 1

2
`(`+ 2). (A.133)

10Notice that for ∆` 6= 0 at least one ni is always 0 and hence (A.126) does not give new constraints.
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The conformal Casimir eigenvalues are then given by

E2 ≡ ∆(∆− 4) + e+
2 , (A.134)

E3 ≡
(
∆− 2

)
e−2 , (A.135)

E4 ≡ ∆2(∆− 4)2 + 6 ∆(∆− 4) +
(
e+

2

)2 − 1

2

(
e−2
)2
. (A.136)

Note that c−2 is parity-odd and therefore e−2 changes the sign under `↔ `. The same comment
applies to C3 and E3.

It is convenient to write the Casimir Operators in the SU(2, 2) language by plugging (A.59)
into the expression (A.129), (A.130) and (A.131)

C2 =
1

4
trL2, (A.137)

C3 =
1

12

(
trL3 − 16C2

)
, (A.138)

C4 =− 1

8

(
trL4 − 8 trL3 − 12C2

2 + 16C2

)
. (A.139)

Let us emphasize that the Casimir operators Cn are the Hilbert space operators. Their
differential form Cn can be obtained by replacing the Hilbert space operators LMN and La

c

with their differential representations LMN and La
c given in (A.58) and (A.62) together with

reverting11 the order of operators LMN and La
c in equations (A.129) - (A.131) and (A.137)

- (A.139).

A.7 Conserved Operators

By conserved operators we mean primary operators in short representations of the conformal
group, i.e. those possessing null descendants and thus satisfying differential equations. In a
unitary 4D CFT all local primary operators satisfy the unitarity bounds [160, 161]12

∆ ≥ 1 +
`+ `

2
, ` = 0 or ` = 0, (A.140)

∆ ≥ 2 +
`+ `

2
, ` 6= 0 and ` 6= 0, (A.141)

and unitary null states can only appear when these bounds are saturated.
The operators of the type ` = 0 or ` = 0 with ∆ = 1 + (` + `)/2 satisfy the free wave

equation13 ∂2O(`,`)
∆ = 0 [162], which immediately implies that such operators can only come

from a free subsector of the CFT. The operators of the second type, `` 6= 0, ∆ = 2+(`+`)/2,
are the conserved currents which satisfy the following operator equation14

∂ · O(`,`)
∆ (x, s, s) = 0, ∂ ≡ (εσµ)α

β̇
∂µ

∂2

∂sα ∂sβ̇
. (A.142)

Of particular importance are the spin-1 currents Jµ in representation (1, 1), the stress tensor
Tµν in representation (2, 2) and the supercurrents Jµα and Jµα̇ in representations (2, 1) and

11See the discussion below (A.20).
12An operator with ` = ` = 0 has an extra option ∆ = 0. This is the identity operator.
13This is not the conformally-invariant differential equation satisfied by these operators, but rather its

consequence.
14The operator ∂ can be applied in the conformal frame [opConservation4D] or in the embedding formalism

[opConservationEF].



76 Appendix A. Details of the Framework

(1, 2). Note that an appearance of traceless symmetric higher-spin currents is known to imply
an existence of a free subsector [163, 164].

The conservation condition results in the following Ward identity for n-point functions

∂ · 〈. . .O(`,`)
∆ (x, s, s) . . .〉 = 0 + contact terms, (A.143)

where the contact terms encode charges of operators under the symmetry generated by the

conserved current O(`,`)
∆ . Note that since ∂ ·O(`,`)

∆ is itself a primary operator in representation
(`−1, `−1), ∆ = 3+(`+`)/2, the left hand side of the above equation has the transformation
properties of a correlation function of primary operators and thus can be expanded in a basis
of appropriate tensor structures.

For 3-point functions, the Ward identities imply two kind of constraints. First, the validity
of (A.143) at generic configurations of points xi implies homogeneous linear relations between
the OPE coefficients entering 3-point functions. Second, the validity of (A.143) at coincident
points relates some of the OPE coefficients to the charges of the other two operators in a
given 3-point function (this happens only if special relations between scaling dimensions of
these operators are satisfied). The solution of these constraints is of the form (2.23), where
some of λ̂ can be related to the charges.

For 4-point functions the situation is more complicated, since (A.143) at non-coincident
points leads to a system of first order differential equations for the functions gI4(u, v) of the
form

BAJ(u, v, ∂u, ∂v) g
J
4 (u, v) = 0, (A.144)

where A runs through the number of tensor structures for the correlator in the left hand
side of (A.143). The constraints implied by these equations were analysed in [151]. It turns
out that one can solve these equations by aribtrarily specifying a smaller number N ′4 of the
functions gI4(u, v) and a number of boundary conditions for the remaining gI4(u, v).15 It is
generally important to take this into account when formulating an independent set of crossing
symmetry equations. We refer the reader to [151] for details. In [151] the value N ′4 was found
for 4 identical conserved spin 1 and spin 2 operators. The same values N ′4 were found later
by other means in [145] and a general counting rule was proposed in [126].

Conservation operator in the Embedding Formalism The conservation condition (A.142)
can be consistently reformulated in the embedding space [opConservationEF] as follows

D O
(`,`)
∆O

(
X,S, S

)
= 0, ∆O = 2 +

`+ `

2
(A.145)

and the differential operator originally found in [144] is given by16

D ≡ 2

` `
(
2 + `+ `

) (XMΣMN∂N
)b
a
∂ ab , (A.146)

where we have defined

∂ ab ≡
1

1 + `+ `
∂ a∂ b =(

4 + S · ∂
∂S

+ S · ∂
∂S

)
∂

∂Sa

∂

∂S
b
− Sb

∂

∂Sa

∂ 2

∂S · ∂S
− Sa ∂

∂S
b

∂ 2

∂S · ∂S
. (A.147)

15DK thanks Anatoly Dymarsky, João Penedones and Alessandro Vichi for discussions on this issue.
16We note that there is a mistake in the original paper [144] due to a wrong choice of the analogue of (3.6).
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In this identity we dropped the terms which project to zero upon contraction with
(
XMΣMN∂N

)b
a
.

A.8 Permutations Symmetries

When the points in (2.8) are space-like separated, the ordering of operators is not important
up to signs coming from permutations of fermions. In particular, if some operator enters
the expectation value more than once, say at points pi and pj , the function fn enjoys the
permutation symmetry

fn(. . . ,pi, . . . ,pj , . . .) = [(ij)fn](. . . ,pi, . . . ,pj , . . .) ≡ ±fn(. . . ,pj , . . . ,pi, . . .). (A.148)

Here we used the cycle notation for permutations, for instance (123) denotes 1 → 2, 2 → 3,
3 → 1. In general, there may be more identical operators in the right hand side of (2.8) in
which case fn is invariant under some subgroup of permutations Π ⊆ Sn.

The degrees of freedom in fn are described by the functions gIn defined via (2.11)

fn(xi, si, si) =

Nn∑
I=1

gIn(u) TIn(xi, si, si). (A.149)

One can then find the implications of the permutation symmetries directly for gIn. Note that
since the exchanged operators are identical, a permutation π ∈ Π acting on a tensor structure
gives a tensor structure of the same kind, and thus we can expand it in the same basis

πTIn =
∑
J

πJI (u)TJn. (A.150)

This means that in general the consequence of a permutation symmetry is

gIn(u) =
∑
J

πIJ(u)gJn(πu). (A.151)

At this point we should divide all the permutations into two classes. We call the permuta-
tions which preserve the cross-rations (πu = u) the kinematic permutations and all the other
permutations will be referred to as non-kinematic. The group of kinematic permutations
Πkin
n is Sn for n ≤ 3 since there are no non-trivial cross-ratios in these cases. We also have

Πkin
4 = Z2 × Z2 = {id, (12)(34), (13)(24), (14)(23)} and Πkin

n is trivial for n ≥ 5.
This distinction is important because for kinematic permutations the constraint (A.151)

becomes a simple local linear constraint,

gIn(u) =
∑
J

πIJ(u)gJn(u), (A.152)

which we can be solved as
gIn(u) =

∑
A

P IA(u)ĝAn (u). (A.153)

In the case of 3-point functions the solution (A.153) has a particularly simple form (2.23).
Applying permutation [permutePoints] and computing πIJ(u) is straightforward in the

EF – we simply need to permute the coordinates Xi and the polarizations Si, Si. It is
somewhat trickier to figure out the permutations in the CF [126], and we describe the case
n = 4 in the remainder of this section. We also comment on how to permute non-identical
operators, which is required, for example, in order to exchange s- and t-channels.
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Appendix B

Constructing the Ansatz

B.1 Shadow Formalism

A straightforward method to obtain CBs in closed analytical form uses the so called shadow
formalism. It was first introduced by Ferrara, Gatto, Grillo, and Parisi [115, 165–167] and
used in [127] to get closed form expressions for the scalar CBs. In this section we apply the
shadow formalism, using the recent formulation given in [124], to get compact expressions for

W seed(p) and W
seed

(p) in an integral form for any p and `.1 Using these expressions we first

compute the CBs H
(p)
e and H

(p)
e for ` = 0 and generic p. We then show how to reduce the

integral expressions for the seeds to scalar conformal blocks. We use this method to compute

H
(p)
e and H

(p)
e for p = 1 and H

(p)
e for p = 2 explicitly. A much better use of this formalism

would be to obtain a recursion relations for the seeds as done in chapter 5. We missed this
obvious possibility at the time.2

B.1.1 CPW in Shadow Formalism

We recall (5.57) and write the CPW associated to an exchange of a given operator O(`,`)
∆

inside the seed 4-point function

W
(p)

`,`
≡ 〈F (0,0)

∆1
F

(p,0)
∆2
O(`,`)

∆ 〉(•) ./ (•)〈O(`,`)
∆ F

(0,0)
∆3

F
(0,p)
∆4
〉, (B.1)

where |`− `| = p. In the embedding formalism

〈. . . O(`,`)
∆ 〉(a) ./ (b)〈O(`,`)

∆ . . .〉 =

ν

∫
d4X0 〈. . . O(`,`)

∆ (X0, S, S) 〉(a)←→Π `,`
(b)〈Õ(`,`)

4−∆(X0, T, T ) . . .〉
∣∣∣
M
, (B.2)

where ν is a normalization factor, the projector gluing two 3-point functions is given by

←→
Π `,` = (

←−
∂ SX0

−→
∂ T )`(

←−
∂ SX0

−→
∂ T )` , (B.3)

and Õ is the shadow operator

Õ
(`,`)
4−∆(X,T, T ) ≡

∫
d4Y

1

(−2X · Y )4−∆+`+`
O(`,`)

∆ (Y, Y T , Y T ) . (B.4)

1The shadow formalism given in an index-free 6D embedding twistor space has also been used in refs.[168,
169] to compute CBs in supersymmetric CFTs.

2In what follows we do not pay attention to the overall normalization of CPWs. Fixing normalizations
with the standard techniques used here is a tedious task.
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The integral in (B.2) would actually determine the CPW associated to the operator O
(`,`)
∆

plus its unwanted shadow counterpart, that corresponds to the exchange of a similar operator
but with the scaling dimension ∆ → 4 −∆. The two contributions can be distinguished by
their different behaviour under the monodromy transformation X12 → e4πiX12. In particular,
the physical CPW should transform with the phase e2iπ(∆−∆1−∆2), independently of the
Lorentz quantum numbers of the external and exchanged operators. This projection on the
correct monodromy component explains the subscript M in the bar at the end of (B.2).

The seed tensor structures were given in (A.96) and (A.98). We applying the shadow
transformation if the seed structure appears to the right in (B.2). Summarizing we have

〈F (0,0)
1 (p1)F (p,0)

2 (p2)O(`, `+p)
∆ (p0)〉(•) = [̂I02]p [Ĵ0

12]`K3, (B.5)

〈Õ(`, `+p)
4−∆ (p0)F (0,0)

3 (p3)F (0,p)
4 (p4) 〉(•) ∝ [K̂

04

3 ]p [Ĵ2
34]`K3

∣∣
∆→4−∆

, (B.6)

and

〈F (0,0)
1 (p1)F (p,0)

2 (p2)O(`+p, `)
∆ (p0)〉(•) = [K̂20

1 ]p [Ĵ0
12]`K3, (B.7)

〈Õ
(`+p, `)

4−∆ (p2)F (0,0)
3 (p3)F (0,p)

4 (p4) 〉(•) ∝ [̂I40]p [Ĵ2
34]`K3

∣∣
∆→4−∆

, (B.8)

Using the above relations, after a bit of algebra, one can write

W seed(p) =
ν

X
a12+ `

2
12 X

a34+ `+p
2

34

∫
D4X0

N`(p)

X
a01+ `

2
01 X

a02+ `+p
2

02 X
a03+ `+p

2
03 X

a04+ `
2

04

∣∣∣
M=1

, (B.9)

W
seed

(p) =
ν

X
a12+ `+p

2
12 X

a34+ `
2

34

∫
D4X0

N `(p)

X
a01+ `+p

2
01 X

a02+ `
2

02 X
a03+ `

2
03 X

a04+ `+p
2

04

∣∣∣
M=1

,(B.10)

where

a01 =
∆

2
+
p

4
− a, a02 =

∆

2
− p

4
+ a, a12 =

∆1 + ∆2

2
− ∆

2
,

a03 =
4−∆

2
+
p

4
+ b, a04 =

4−∆

2
− p

4
− b, a34 =

∆3 + ∆4

2
− 4−∆

2
, (B.11)

and

N`(p) ≡ (SS2)p(SX2X1S)`
←→
Π `,`+p(S4X3T )p(TX4X3T )`, (B.12)

N `(p) ≡ (S4S)p(SX3X4S)`
←→
Π `+p,`(S2X1T )p(TX1X2T )`. (B.13)

We will not need to determine the normalization factors ν and ν in (B.9) and (B.10). Notice
that the correct behaviour of the seed CPWs under X12 → e4πiX12 is saturated by the factor
X12 multiplying the integrals in (B.9) and (B.10). Hence the latter should be projected to
their trivial monodromy components M = 1, as indicated. Notice that (B.12) and (B.13) are
related by a simple transformation:

N `(p) = (−1)p PN`(p)
∣∣∣
1↔3, 2↔4

, (B.14)

where P is the parity operator acting on the 6D structures as found in (A.82) and (A.83).
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We can recast the expression (B.12) in a compact and convenient form using some ma-
nipulations. We first define 3 variables

s ≡ 1

26
X12X34

4∏
n=1

X0n, (B.15)

t ≡ − 1

24
√
s

(
X02X03X14 −X01X03X24 − (3↔ 4)

)
, (B.16)

u ≡ −X02X03X34

23
√
s

. (B.17)

Then we look for a relation expressing the generic N`(p) in terms of the known N `(0):

N`(0) = (−1)`(`!)4 s`/2C1
` (t) , (B.18)

where Cp` are Gegenbauer polynomials of rank p. Starting from (B.12), after acting with the
S and T derivatives, one gets

N`(p) = (`!)2(
−→
∂ SX0

−→
∂ T )`+p

(
(SS2)p(S4X3T )p(SΩT )`

)
, (B.19)

where we have defined Ωab ≡ (X2X1X0X3X4)ab . In order to relate N`(p) above to N`+p(0)

in (B.18), we look for an operator D̃ satisfying

D̃p (
−→
∂ SX0

−→
∂ T )`+p(SΩT )`+p = (

−→
∂ SX0

−→
∂ T )`+p

(
(SS2)p(S4X3T )p(SΩT )`

)
. (B.20)

We deduce that D̃ should be bilinear in S4 and S2 and should commute with (
−→
∂ SX0

−→
∂ T ).

In addition to that, it should have the correct scaling in X’s and should be gauge invariant.
It is not difficult to see that the choice of D̃ defined below

D̃ =
D

2X01X04
, D ≡ (S4X0Σ

N
S2)

∂

∂XN
2

(B.21)

fulfills all the requirements. One has D̃(SΩT ) = (SS2)(S4X3T ). Iterating it p times gives
the desired relation:

N `(p) ∝ D̃pN`+p(0) . (B.22)

The operator D annihilates all the scalar products with the exception of X12, in which case
we have DX12 = −2 I42

01. The action on the s, t, and u variables is

D s = −2X−1
12 s I42

01 , D t = X−1
12 (u−1 I42

30 + t I42
01 ), D u−1 = −X−1

12 u−1 I42
01 , (B.23)

on Gegenbauer polynomials is

DCλn(t) = 2λCλ+1
n−1(t)D t , (B.24)

and vanishes on I42
01 and I42

30 . Using recursively the identity for Gegenbauer polynomials

n

2λ
Cλn(t)− t Cλ+1

n−1(t) = −Cλ+1
n−2(t) , (B.25)
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we can write the following expression for N`(p):

N`(p) ∝ s
`
2

p∑
w=0

(
p

w

)
uw Cp+1

`−w(t) [I42
30 ]p−w[I42

01 ]w, (B.26)

where
(
p
w

)
is the binomial coefficient. Combining together (B.9), (B.10), (B.14), (B.17) and

(B.26) we can finally write

W seed(p) = ν ′
p∑

w=0

(
p

w

)
1

X
a12+w

2
12 X

a34+ p−w
2

34

∫
D4X0

Cp+1
`−w(t) [I42

30 ]p−w[I42
01 ]w

X
a01+w

2
01 X

a02+ p−w
2

02 X
a03+ p−w

2
03 X

a04+w
2

04

∣∣∣∣
M=1

,

W
seed

(p) = ν ′
p∑

w=0

(
p

w

)
1

X
a12+ p−w

2
12 X

a34+w
2

34

∫
D4X0

Cp+1
`−w(t) [I42

30 ]w[I42
01 ]p−w

X
a01+ p−w

2
01 X

a02+w
2

02 X
a03+w

2
03 X

a04+ p−w
2

04

∣∣∣∣
M=1

(B.27)

where ν ′ and ν ′ are undetermined normalization factors.

B.1.2 Seed Conformal Blocks and Their Explicit Form for ` = 0

The computation of the CBs H
(p)
e and H

(p)
e starting form (B.27) is a non-trivial task for

generic ` and p, since we are not aware of a general formula for an integral that involves
Cp+1
`−w(t) for p 6= 0. For any given `, one can however expand the Gegenbauer polynomial, in

which case the CBs H
(p)
e and H

(p)
e can be computed. In this subsection we first discuss the

structure of CBs for generic ` and then compute them for ` = 0 and generic p.
Recalling the definition of t in (B.17), one realizes that the Gegenbauer polynomials in

(B.27), when expanded, do not give rise to intrinsically new integrals but just amounts to
shifting the exponents in the denominator. The tensor structures in the numerators bring p
open indices in the form XN1

0 . . . X
Np
0 , which can be removed by using (3.21) in ref. [124]. In

this way the problem is reduced to the computation of scalar integrals in d ≡ 2h = 2(2 + p)
effective dimensions, of the form:

I
(h)
A02, A03, A04

≡
∫
D2hX0

1

XA01
01 XA02

02 XA03
03 XA04

04

∣∣∣∣
M=1

, (B.28)

where A01 + A02 + A03 + A04 = 2h. The capital A0i are used for the exponents in the
denomentaor with all possible shifts introduced by the Gegenbaur polynomials. This integral
is given by

I
(h)
A02, A03, A04

∝ XA04−h
13 XA02+A03−h

14 X−A02
24 Xh−A03−A04

34 ×R(h)(z, z; A02, A03, A04), (B.29)

where

R(h)(z, z; A02, A03, A04) ≡
(
− ∂

∂v

)h−1
f(z; A02, A03, A04)f(z; A02, A03, A04), (B.30)

f(z; A02, A03, A04) ≡ 2F1(A02 − h+ 1, −A04 + 1; −A03 −A04 + h+ 1; z).(B.31)

The derivative −∂/∂v in (z, z) coordinates equals to

− ∂

∂v
=

1

z − z

(
z
∂

∂z
− z ∂

∂z

)
. (B.32)

In the case of ` = 0, all the above manipulations simplify drastically. The Gegenbauer
polynomials Cp+1

`−w(t) vanishe for all the values w except for w = 0, leaving only one type
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of tensor structure: [I42
30 ]p for W seed(p) and [I42

01 ]p for W
seed

(p). This leads to a one-to-one
correspondence between CBs and integrals:

H(p)
e ∝ Xp−e

13 Xe
34K−1

4 I
(2+p)

a02+ p
2
, a03+ p

2
, a04+e

∝ (zz)
∆+

p
2

2 R(2+p)(z, z; a02 +
p

2
, a03 +

p

2
, a04 + e), (B.33)

H
(p)
e ∝ Xe

12X
p−e
13 K

−1
4 I

(2+p)

a02+e, a03+p−e, a04+ p
2
∝ (zz)

∆− p2
2

+eR(2+p)(z, z; a02 + e, a03 + p− e, a04 +
p

2
).

We have omitted here the relative factors between different CBs. They must be restored if

one wants to check that H
(p)
e and H

(p)
e in (B.33) satisfy the Casimir system (4.4). For generic

` the CBs are a sum of expressions like (B.33) with different shifts of the parameters A0i,
weighted by the relative constants and powers of v (coming from the Gegenbauer polynomial).
Since all these terms have p+ 1 derivatives with respect to v, the highest power in 1/(z − z)
appearing in H

(p)
e and H

(p)
e is ( 1

z − z

)1+2 p
. (B.34)

The asymptotic behaviour of the CBs when z, z → 0 (u → 0, v → 1) for ` = 0 is easily
obtained from (B.33) by noticing that R(h)(z, z; A02, A03, A04) is constant in this limit. Then
we have

lim
z→0, z→0

H(p)
e ∝ (zz)

∆
2

+ p
4 , lim

z→0, z→0
H

(p)
e ∝ (zz)

∆
2
− p

4
+e . (B.35)

Notice that the behavior (B.35) of the CBs for z, z → 0 when ` = 0 is not guaranteed
to be straightforwardly extended for any ` 6= 0. Indeed, we see from (B.27) that for a given
p, the generic CPW is obtained when ` ≥ p, in which case all terms in the sum over w are
present. It might also seem like all the values of ` < p should be treated separately.

B.1.3 Computing the Conformal Blocks for ` 6= 0

A useful expression of the CBs for generic values of ` can be obtained using (B.22) and the
known closed form of W seed(0). Recall that

W seed(0) =

(
X14

X13

)b(0) (
X24

X14

)−a(0)

H
(0)
0 (z, z)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

, (B.36)

where a(0) and b(0) are as in (4.9) for p = 0 and H(0)(z, z) are the known scalar CBs computed
in [127, 128]

H
(0)
0 (z, z) = H

(0)
0 (z, z; ∆, l, a, b) = (−1)`

zz

z − z

(
k

(a,b;0)
∆+`

2

(z)k
(a,b;0)
∆−`−2

2

(z)− (z ↔ z)

)
. (B.37)

Comparing (B.36) with (B.27) for p = 0, one can extract the value of the shadow integral in
closed form for generic spin ` [124]:

I` ≡
∫
D4X0

C1
` (t)

Xa01
01 X

a02
02 X

a03
03 X

a04
04

∣∣∣
M=1

∝
(
X14

X13

)b(0) (
X24

X14

)−a(0)

H
(0)
0 (z, z; ∆, `, a, b)

X
∆
2

12X
4−∆

2
34

.

(B.38)



84 Appendix B. Constructing the Ansatz

Using the relations (B.18) and (B.22) one can recast W seed(p) and W
seed

(p) in the form

W seed(p) ∝
DN1 ...DNp
X
a12+ `

2
12 Xa34

34

X
`+p

2
12

∫
D4X0

C1
`+p(t)X

N1
0 ...X

Np
0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

∣∣∣∣
M=1

,

W
seed

(p) ∝
DN1 ...DNp
Xa12

12 X
a34+ `

2
34

X
`+p

2
34

∫
D4X0

C1
`+p(t)X

N1
0 ...X

Np
0

Xa01
01 X

a02+ p
2

02 X
a03+ p

2
03 Xa04

04

∣∣∣∣
M=1

, (B.39)

where D = PD|1↔3,2↔4, as follows from (B.14), D = DMXM
0 , D = DMXM

0 . The tensor
integral is evaluated using the SO(4, 2) Lorentz symmetry. One writes∫

D4X0

C1
`+p(t)X

M1
0 ...X

Mp

0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

=
∑
n

An(Xi) τ
M1...Mp
n (Xi) , (B.40)

where n runs over all possible rank p traceless symmetric tensors τn which can be constructed
from X1, X2, X3, X4 and ηMN ’s, with arbitrary scalar coefficients An to be determined. Per-
forming all possible contractions, which do not change the monodromy of the integrals, the
An coefficients can be solved as linear combinations of the scalar block integrals I` defined in
(B.38), with shifted external dimensions.

In this way, we have computed the CBs H
(p)
e with p = 1, 2 and H

(p)
e with p = 1 for general

∆, `, a, b. In all cases the CBs satisfy the Casimir system (4.4).
The expression (B.39), (B.39) and B.40 allow to reduce the seed and the dual seed CPWs

to the scalar Dolan and Osborn CPWs. Instead of this one could have related the unknown
(p)-seeds with unknown (p− 1)-seeds. We missed this obvious possibility at the time.

B.2 Properties of the F Functions

In this Appendix we provide all the properties of the functions F (a,b;c)
ρ1, ρ2 needed for the system

of Casimir equations and more specifically to derive (4.21)-(4.23). We will not consider the

functions F± (a,b;c)
ρ1, ρ2 here, since their properties can be trivially deduced from the ones below

by demanding both sides to be symmetric/anti-symmetric under the exchange z ↔ z.
The fundamental identities to be considered can be divided in two sets, depending on

whether the values (a, b, c) of the functions F are left invariant or not. The former identities
read(1

z
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1−1,ρ2

−D(a,b,c)
ρ1

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

(B.41)(1

z
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1,ρ2−1 −D

(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2+1 (B.42)

L0F (a,b;c)
ρ1,ρ2

= ρ2F (a,b;c)
ρ1,ρ2−1 − ρ1F (a,b;c)

ρ1−1,ρ2
− (ρ2 + c− 1)B(a,b,c)

ρ2
F (a,b;c)
ρ1,ρ2+1 + (B.43)

(ρ1 + c− 1)B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

+
1

2
(2− c)(D(a,b,c)

ρ1
−D(a,b,c)

ρ2
)F (a,b;c)

ρ1,ρ2
,

where
L0 =

(
(1− z)∂z − (1− z)∂z

)
, (B.44)
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and we have defined

C(a,b,c)
ρ =

(a+ ρ)(b− c− ρ)

(c+ 2ρ)(c+ 2ρ− 1)
, (B.45)

B(a,b,c)
ρ = C(a,b,c)

ρ C
(b−1,a,c−1)
ρ+1 =

(ρ+ a)(ρ+ b)(ρ+ c− b)(ρ+ c− a)

(2ρ+ c)2(c+ 2ρ+ 1)(c+ 2ρ− 1)
,

D(a,b,c)
ρ =

(2a− c)(2b− c)
2(c+ 2ρ)(c+ 2ρ− 2)

. (B.46)

The latter identities read

F (a,b;c)
ρ1,ρ2

= F (a,b−1;c−1)
ρ1,ρ2

− C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

− (B.47)

C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 + C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

F (a,b;c)
ρ1,ρ2

= F (a−1,b;c−1)
ρ1,ρ2

− C(b,a,c)
ρ1

F (a−1,b;c−1)
ρ1+1,ρ2

− (B.48)

C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1,ρ2+1 + C(b,a,c)

ρ1
C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1+1,ρ2+1 ,

1

zz
F (a,b;c)
ρ1,ρ2

= F (a+1,b+1;c+2)
ρ1−1,ρ2−1 , (B.49)

(z − z)L(a)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b−1;c−1)
ρ1,ρ2

− (ρ1 + ρ2 + c− 1)C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

+ (B.50)

(ρ1 + ρ2 + c− 1)C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 − (ρ2 − ρ1)C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

z − z
zz

L(b)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b+1;c+1)
ρ1−1,ρ2−1 − (ρ1 + ρ2 + c− 1)C(b,a,c)

ρ1
F (a,b+1;c+1)
ρ1,ρ2−1 + (B.51)

(ρ1 + ρ2 + c− 1)C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1−1,ρ2

− (ρ2 − ρ1)C(b,a,c)
ρ1

C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1,ρ2

.

The relations (B.41)-(B.43) were first derived in ref.[128] (see also ref.[129]), while the re-
lations (B.50) and (B.51) are novel. It is straightforward to see that (4.21)-(4.23) can be
derived using proper combinations of (B.41)-(B.51). For instance, the action of the first
term appearing in the r.h.s. of (4.20) is reproduced (modulo a trivial constant factor) by
taking the combined action given by ( (B.42)−(B.41) )× (B.50)× (B.47). All other terms in
(4.18)-(4.20) are similarly deconstructed.

B.3 The Conformal Blocks for p = 1

We report in this appendix the full explicit solution for the two conformal blocks H
(1)
0 and

H
(1)
1 associated to the exchange of fermion operators O(`,`+1) for the specific values

a(1) =
1

2
, b(1) = −1

2
. (B.52)

We choose as undetermined coefficient c1
0,−1 and report below the values of the coefficients

normalized to c1
0,−1. We have

c0
−2,0 =

(2 + `)

2 (1 + `)
, c0
−1,−1 = − `

2 (1 + `)
, c1
−1,0 = −(3 + `)

1 + `
. (B.53)
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c0
−1,0 =

(3 + `)(−1 + 2∆)(−1 + 2`+ 2∆)

8(1 + `)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
−1,1 = − (2 + `)(5 + 2`− 2∆)2(−7 + 2∆)

32(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)
,

c0
0,−1 = −(−1 + 2∆)(−1 + 2`+ 2∆)

8(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
0,0 =

`(−7 + 2∆)(−1 + 2`+ 2∆)2

32(1 + `)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
,

c0
0,1 = − (3 + `)(5 + 2`− 2∆)2(−5 + 2∆)(−1 + 2`+ 2∆)

128(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
1,0 =

(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)2

128(−3 + 2∆)(1 + 2`+ 2∆)2(5 + 2`+ 2∆)
,

c1
−1,1 = − (2 + `)(5 + 2`− 2∆)(−1 + 2∆)

4(1 + `)(7 + 2`− 2∆)(−3 + 2∆)
,

c1
0,2 =

(2 + `)(1 + 2`− 2∆)(5 + 2`− 2∆)2(−5 + 2∆)

64(1 + `)(3 + 2`− 2∆)2(7 + 2`− 2∆)(−3 + 2∆)
,

c1
1,0 = −(−7 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

16(−3 + 2∆)(1 + 2`+ 2∆)2
,

c1
1,1 = −`(5 + 2`− 2∆)(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

64(1 + `)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)2

c1
0,0 =

1

4(1 + `)(11 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×(

576− 384∆ + `
(

627− 2`(−29 + 2`(7 + 2`))− 472∆ + 4`(−47 + 4`(3 + `))∆

+8(−9 + `(19 + 2`))∆2 − 16(−6 + `)∆3 − 16∆4
))

,

c1
0,1 =

(5 + 2`− 2∆)

16(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×(

`(643− 14`(−3 + 2`(9 + 2`))) + 4`(−232 + `(−115 + 4`(1 + `)))∆ + 8(3 + `)

(−24 + `(17 + 2`))∆2 − 16(−7 + `)(3 + `)∆3 − 16(3 + `)∆4 + 27(9 + 4∆)

)
.

The asymptotic behaviour of the CBs for z, z → 0 is dominated by the coefficients with
n = −1 and the lowest value of m, i.e. c0

−1,−1 and c1
0,−1. For ` = 0, the asymptotic behaviour

of H
(1)
0 is given by the next term c0

0,−1, since c0
−1,−1 in (B.53) vanishes. Notice how the

complexity of the cem,n varies from coefficient to coefficient. In general the most complicated
ones are those in the “interior” of the octagons (hexagons only for p = 1).
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