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Abstract

The discovery of neutrino oscillations caused by non-zero neutrino masses and neutrino
mixing opened new field of research in particle physics. The impressive experimental
progress made in the last two decades allowed to measure neutrino oscillation parameters
with a relatively high precision. However, in spite of the experimental progress, the
mechanism of neutrino mass generation as well as the dynamics behind the peculiar
pattern of neutrino mixing which emerged from the experimental data remain currently
unknown. The present PhD thesis is devoted to the problem of understanding the origin
of the observed pattern of neutrino mixing and, more generally, the origin of (lepton)
flavour. Our particular focus is on predictions for leptonic CP violation, since the status
of CP symmetry in the lepton sector is also unknown at the moment. Driven by the
measured values of the neutrino mixing parameters, we adopt symmetry approach to
neutrino mixing, based on the assumption of existence of a (lepton) flavour symmetry
described by a non-Abelian finite (discrete) group. At low energies this symmetry is
broken down to residual symmetries of the charged lepton and neutrino mass matrices.
The residual symmetries correspond to Abelian subgroups of the original flavour symmetry
group. The most distinct feature of the discrete symmetry approach is correlations between
the neutrino mixing angles and the CP violation phases present in the neutrino mixing
matrix. These correlations are referred to as neutrino mixing sum rules. We first consider
all types of the residual symmetries for which such correlations are expected and derive
the corresponding sum rules for the Dirac CP violation phase. Using the derived sum
rules, we obtain predictions for the Dirac phase in the cases of several discrete flavour
symmetries. Further, we concentrate on a scenario in which the main contribution to
neutrino mixing comes from the neutrino sector and explore in a systematic way possible
charged lepton corrections. These corrections are required to reconstitute compatibility
of highly symmetric mixing patterns, such as, for instance, tri-bimaximal mixing, with
the experimental data. Again, our main focus is on leptonic Dirac CP violation. In a
number of phenomenologically interesting cases, we perform a statistical analysis of the
predictions for the Dirac phase, using (i) the results of the global analysis of neutrino
oscillation data and (ii) the prospective uncertainties on the neutrino mixing angles. Next,
we derive sum rules for the Majorana phases, which are present in the neutrino mixing
matrix if massive neutrinos are Majorana particles. We demonstrate how generalised CP
invariance of the neutrino Majorana mass term constrains the Majorana phases and obtain
predictions for the effective Majorana mass in neutrinoless double beta decay. Finally, we
investigate the impact of renormalisation group corrections on the sum rule predictions
for the Dirac phase in the cases of the neutrino Majorana mass term generated by the
Weinberg (dimension 5) operator added to (i) the Standard Model and (ii) the Minimal
Supersymmetric Standard Model.
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Chapter 1

Introduction

In spite of the tremendous success of the Standard Model (SM) [1–3] of particle interactions
in understanding fundamental physics at distances as tiny as 10−18 meters (or energies
as high as hundreds of GeV), now we certainly know that the SM is incomplete. The
most conspicuous reason of this incompleteness, and thus a clear indication of existence
of physics beyond the SM (BSM), is the experimentally established fact that neutrinos
have mass. In the SM neutrinos are massless. The phenomenon of neutrino oscillations,
induced by non-zero neutrino mass and non-trivial neutrino mixing, was first theoretically
predicted by Bruno Pontecorvo in 1957 [4, 5]. It took more than forty years before this
phenomenon was firmly established experimentally. The discovery of neutrino oscillations
by the Super-Kamiokande (Super-K) experiment in Japan in 1998 [6] and by the Sudbury
Neutrino Observatory (SNO) in Canada in 2001 [7] led to the Nobel Prize in Physics
awarded in 2015 to Takaaki Kajita and Arthur B. McDonald.

The impressive experimental progress made in the last two decades allowed to measure
neutrino oscillation parameters with a relatively high precision (see, e.g., [8]). However,
notwithstanding this progress, many long-standing fundamental questions in neutrino
physics still remain unresolved. They include questions from the list given below.

• What is the nature of massive neutrinos, i.e., are they Dirac of Majorana particles?

• What is the absolute neutrino mass scale, i.e., what is the mass of the lightest out of
three neutrinos, existence of which have been firmly established?

• What type of the mass spectrum do neutrinos obey, with so-called normal ordering,
i.e., with m1 < m2 < m3, or with inverted ordering, i.e., with m3 < m1 < m2?

• What is the mechanism of neutrino mass generation?

• Is CP invariance violated in the lepton sector of particle interactions?

• What is the origin of the observed pattern of neutrino mixing? Is there any symmetry
behind this pattern?

• Do sterile neutrinos, i.e., those that take no part in the standard weak interactions,
exist?

• Are heavy sterile neutrinos, if any, responsible for generating the observed baryon
asymmetry of the Universe (BAU)?

The present PhD thesis is devoted to the problem of understanding the origin of the
observed pattern of neutrino mixing. This problem is an integral part of the more general
fundamental problem in particle physics of understanding the origins of flavour in the
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quark and lepton sectors, i.e., of the patterns of quark masses and mixing, and of the
charged lepton and neutrino masses and of neutrino mixing.

Driven by the measured values of the neutrino mixing parameters, we decide to adopt
symmetry approach to this problem, which is based on the assumption of existence at
some energy scale of a (lepton) flavour symmetry. Moreover, this symmetry is assumed to
correspond to a non-Abelian finite group. Before describing this approach in detail, let
us first recall the reference 3-neutrino mixing scheme and the current knowledge of the
neutrino oscillation parameters.

1.1 Three neutrino mixing
All compelling neutrino oscillation data are compatible with the existence of three flavour
neutrinos: electron neutrino, νe, muon neutrino, νµ, and tauon neutrino, ντ [8]. These
neutrinos take part in the charged current (CC) weak interactions, which are described by
the following Lagrangian density:

−LCC =
g√
2

∑
`=e,µ,τ

`L(x) γα ν`L(x)Wα†(x) + h.c., (1.1)

with g being the weak gauge coupling constant, and `L and ν`L being the left-handed (LH)
charged lepton and flavour neutrino fields, respectively. The flavour neutrino fields are
linear combinations of the LH components of the fields νj(x), j = 1, 2, 3, of neutrinos with
definite masses:

ν`L(x) =
3∑
j=1

U`j νjL(x) , (1.2)

where U is the 3× 3 unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing
matrix [4, 5, 9]. In the standard parametrisation1 this matrix reads [8]

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

1 0 0

0 ei
α21
2 0

0 0 ei
α31
2



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 ,

(1.3)

where θ12, θ13, θ23 are the three neutrino mixing angles, θij ∈ [0, π/2], (cij ≡ cos θij and
sij ≡ sin θij), δ is the Dirac CP violation (CPV) phase, δ ∈ [0, 2π), and α21, α31 are the
two Majorana CPV phases [13], αij ∈ [0, 2π). The Majorana phases are present in the
neutrino mixing matrix only if massive neutrinos are Majorana particles.

Together with three masses of νj, m1, m2, m3, we obtain 7 parameters in the case of
Dirac neutrinos (3 angles and 1 Dirac phase) and 9 parameters in the case of Majorana
neutrinos (3 angles, 1 Dirac phase and 2 Majorana phases), which should be added to the
list of 19 parameters of the SM to account for massive neutrinos. We recall that the 19
parameters of the SM are 3 charged lepton masses, 6 quark masses, 3 mixing angles and 1

1For the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [10, 11] the parametrisation in
eq. (1.3) (obviously, without the diagonal phase matrix on the right) has been first proposed in [12].
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CPV phase of the CKM matrix, 3 gauge coupling constants, corresponding to each factor
of the SU(3) × SU(2) × U(1) gauge group of the SM, mass of the Higgs boson and its
vacuum expectation value (VEV), and the QCD vacuum angle.

The neutrino oscillation probabilities depend on the neutrino masses via the neutrino
mass squared differences ∆m2

ij ≡ m2
i −m2

j , i 6= j. In the case of 3-neutrino mixing there
are two independent neutrino mass squared differences, which can be chosen as ∆m2

21

and ∆m2
31. The standard choice has become 0 < ∆m2

21 < |∆m2
31| [8]. The smaller mass

squared difference is responsible for the solar νe oscillations, while the larger one drives
the atmospheric and accelerator νµ and νµ oscillations. For this reason, ∆m2

21 and ∆m2
31

are sometimes referred to as the solar and atmospheric neutrino mass squared differences.
At present, the sign of ∆m2

31 is unknown. This gives rise to two possible types of the
neutrino mass spectrum:

• spectrum with normal ordering (NO), for which

m1 < m2 < m3 , m2 =
√
m2

1 + ∆m2
21 , m3 =

√
m1 + ∆m2

31 ; (1.4)

• spectrum with inverted ordering (IO), for which

m3 < m1 < m2 , m1 =
√
m2

3 + ∆m2
23 −∆m2

21 , m2 =
√
m2

3 + ∆m2
23 . (1.5)

Note that we have expressed the neutrino masses in terms of the (unknown at the moment)
lightest neutrino mass, m1 for NO andm3 for IO, the solar neutrino mass squared difference
∆m2

21 and the largest positive mass squared difference in each case, i.e., ∆m2
31 for NO and

∆m2
23 for IO.
All the neutrino oscillation parameters except for the Dirac CPV phase δ, i.e., sin2 θ12,

sin2 θ13, sin2 θ23, ∆m2
21 and ∆m2

31 (∆m2
23) in the case of NO (IO) neutrino mass spectrum,

have been determined with a relatively high precision in the latest global analyses of the
neutrino oscillation data [14, 15] (see also [16]). In Table 1.1 we present the best fit values,
1σ, 2σ and 3σ allowed ranges of the neutrino oscillation parameters found in [14]. The
best fit values of sin2 θij given in the table translate to θ12 ≈ 33.02◦, θ13 ≈ 8.43◦ (8.45◦),
θ23 ≈ 40.7◦ (50.1◦) for the NO (IO) neutrino mass spectrum. Thus, the observed pattern
of neutrino mixing is very different from that of quark mixing, for which the corresponding
mixing angles read: θq12 ≈ 13.00◦, θq13 ≈ 0.211◦ and θq23 ≈ 2.42◦ [17].

It follows from the results presented in Table 1.1 that the 1σ relative uncertainties in
the determination of the oscillation parameters, defined as (xup − xlow)/[3 (xup + xlow)],
where xup (xlow) is the upper (lower) 3σ bound on a parameter x, read: 5.7% (sin2 θ12),
4% (sin2 θ13), 8% (sin2 θ23), 2.3% (∆m2

21) and 1.6% (∆m2
31, ∆m2

23).
What concerns the Dirac CPV phase δ, the latest global analysis [14] disfavours values

of δ in the range 0.17π–0.76π (0.15π–0.69π) in the case of NO (IO) spectrum at more
than 3σ confidence level (C.L.), thus strengthening the hint found in the earlier global
fits [16, 18,19] that δ lies around 3π/2. If δ is neither 0 nor π, CP invariance in the lepton
sector does not hold. In this case, taking into account the measured values of the neutrino
mixing angles, δ generates CP-violating effects in neutrino oscillations, i.e., a difference
between the probabilities P (ν` → ν`′) and P (ν` → ν`′), ` 6= `′ = e, µ, τ , of ν` → ν`′ and
ν` → ν`′ oscillations in vacuum [13,20,21].

The magnitude of CP-violating effects in neutrino oscillations is controlled by the
rephasing invariant JCP [22]:

JCP = Im
(
U∗e1 U

∗
µ3 Ue3 Uµ1

)
, (1.6)
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Table 1.1. The best fit values, 1σ, 2σ and 3σ ranges of the neutrino oscillation parameters
obtained in the global analysis of the neutrino oscillation data performed in [14].

Parameter Best fit 1σ range 2σ range 3σ range

sin2 θ12/10−1 2.97 2.81–3.14 2.65–3.34 2.50–3.54
sin2 θ13/10−2 (NO) 2.15 2.08–2.22 1.99–2.31 1.90–2.40
sin2 θ13/10−2 (IO) 2.16 2.07–2.24 1.98–2.33 1.90–2.42
sin2 θ23/10−1 (NO) 4.25 4.10–4.46 3.95–4.70 3.81–6.15
sin2 θ23/10−1 (IO) 5.89 4.17–4.48⊕ 5.67–6.05 3.99–4.83⊕ 5.33–6.21 3.84–6.36
δ/π (NO) 1.38 1.18–1.61 1.00–1.90 0–0.17⊕ 0.76–2
δ/π (IO) 1.31 1.12–1.62 0.92–1.88 0–0.15⊕ 0.69–2

∆m2
21/10−5 eV2 7.37 7.21–7.54 7.07–7.73 6.93–7.96

∆m2
31/10−3 eV2 (NO) 2.56 2.53–2.60 2.49–2.64 2.45–2.69

∆m2
23/10−3 eV2 (IO) 2.54 2.51–2.58 2.47–2.62 2.42–2.66

which is analogous to the Jarlskog invariant of the CKM matrix [23,24]. In the standard
parametrisation of the PMNS matrix, the rephasing invariant reads

JCP =
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ . (1.7)

Thus, taking into account a relatively good precision in the determination of the neutrino
mixing angles, the size of CP-violating effects in neutrino oscillations depends on the value
of δ, which has yet to be determined with higher confidence. Using the best fit values of
sin2 θij and δ from Table 1.1, we find JCP ≈ −0.0301 (−0.0267) for the NO (IO) neutrino
mass spectrum. If the current best fit value of δ does not change significantly in the future,
CP-violating effects in neutrino oscillations will be relatively large.

Establishing the status of Dirac CP violation is among the highest priority goals of the
research programmes of the current and future planned accelerator long-baseline (LBL)
neutrino oscillation experiments. The Tokai to Kamioka (T2K) [25–28] and NuMI2 Off-
Axis νe Appearance (NOνA) [29–31] experiments in Japan and the USA, respectively, are
currently taking data. The T2HK experiment [32], in which the future Hyper-Kamiokande
(Hyper-K) detector is planned to be used as a far detector instead of the Super-K detector
used in T2K, and the Deep Underground Neutrino Experiment (DUNE) [33–36] in the
USA are presently being developed. If δ is indeed around 3π/2, T2HK and DUNE will be
able to establish CP violation at more than 5σ C.L.

Unlike the Dirac phase, the Majorana phases α21 and α31 do not affect the flavour
neutrino oscillation probabilities P (ν` → ν`′) and P (ν` → ν`′) [13, 37]. However, they are
very important for processes characteristic for massive Majorana neutrinos, in which the
total lepton charge L changes by two units, ∆L = 2 (see, e.g., [38,39] for reviews). One
widely discussed and experimentally relevant example is neutrinoless double beta decay
((ββ)0ν-decay),

(A,Z) → (A,Z + 2) + e− + e− , (1.8)

(see, e.g., [40–42] and also [43,44] for the latest reviews), which we will discuss in Chapter 4.
The predictions for the rates of the lepton flavour violating processes, µ → e + γ and

2NuMI stands for Neutrinos at the Main Injector.
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µ → 3 e decays, µ− e conversion in nuclei, etc., in theories of neutrino mass generation
with massive Majorana neutrinos also depend on the Majorana phases (see, e.g., [45–47]).

In addition, there exists the intriguing possibility that the Dirac phase and/or the
Majorana phases in the PMNS matrix can provide the CP violation necessary for the
generation of the observed matter-antimatter asymmetry of the Universe [48, 49]. This
possibility can be realised within the leptogenesis scenario of the baryon asymmetry
generation [50, 51], which is based on the type I seesaw mechanism of neutrino mass
generation [52–55].

Depending on the absolute neutrino mass scale, i.e., the value of the lightest neutrino
mass, which is at present unknown, the neutrino mass spectrum can be

• normal hierarchical (NH), if m1 � m2 < m3 and thus

m2 ≈
√

∆m2
21 ≈ 0.0086 eV and m3 ≈

√
∆m2

31 ≈ 0.0506 eV ;

• inverted hierarchical (IH), ifm3 � m1 < m2 and thus, neglecting also ∆m2
21/∆m

2
23 ≈

0.03,
m1 ≈ m2 ≈

√
∆m2

23 ≈ 0.0504 eV ;

• quasi-degenerate (QD), if m1 ≈ m2 ≈ m3, and thus

m2
j � ∆m2

31 (∆m2
23) , mj ∼> 0.1 eV , j = 1, 2, 3 .

Here we have used the best fit values of the neutrino mass squared differences from
Table 1.1.

All the three possibilities above are compatible with the existing limits on the abso-
lute neutrino mass scale. The most sensitive model-independent and direct method of
determining the neutrino mass is the investigation of the endpoint region of a β-decay,

(A,Z) → (A,Z + 1) + e− + νe , (1.9)

spectrum [56,57]. Usually the “average electron (anti)neutrino mass” mνe is determined:

m2
νe =

3∑
j=1

m2
j |U2

ej| . (1.10)

This sum averages over all the three neutrino mass eigenstates νj contributing to the
(anti)electron neutrino and no phases of the PMNS matrix U enter, i.e., the decay modes
into the different νj states add incoherently (see, e.g., [58]). The most stringent upper
bounds on mνe have been obtained in experiments measuring the endpoint of the electron
spectrum in the β-decay of tritium,

3H → 3He+ + e− + νe . (1.11)

Namely, the Troitsk and Mainz neutrino mass experiments set, respectively, the following
limits:

mνe < 2.05 eV [59] and mνe < 2.3 eV [60] , (1.12)

both limits are at 95% C.L. The Karlsruhe Tritium Neutrino (KATRIN) experiment plans
to improve this limit by one order of magnitude down to 0.2 eV (90% C.L.) or discover
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the actual mass at 5σ, if it turns out to be larger than 0.35 eV [61]. Thus, this experiment
will probe the region of the QD neutrino mass spectrum. For a review on direct neutrino
mass experiments see, e.g., [62].

Cosmology also provides information on the absolute neutrino mass scale. The relevant
cosmological observable is the sum of neutrino masses

∑
jmj. Assuming a modified by

three degenerate massive neutrinos version of the Λ Cold Dark Matter (ΛCDM) model,
the Planck collaboration has obtained the following limit [63]:∑

j

mj < 0.23 eV (95% C.L.) . (1.13)

This bound has been obtained taking into account the cosmic microwave background
(CMB) temperature power spectrum data, low multipole, ` < 30, polarisation data, results
on gravitational lensing, and in addition, baryon acoustic oscillation (BAO) measurements
and supernovae data. The sensitivity to

∑
jmj is planned to be improved by the future

Euclid mission [64]. Note, however, that the cosmological bounds are to some extent model
and analysis dependent.

Thus, the data show that neutrino masses are much smaller than the masses of all
the other fermions present in the SM. This fact points towards the existence of a new
fundamental scale in particle physics, i.e., to new physics beyond that predicted by the
SM.

1.2 Discrete flavour symmetries
The masses of quarks, charged leptons and neutrinos, and the forms of the quark and
neutrino mixing matrices result from the corresponding mass matrices formulated in
the flavour basis. Let us briefly consider how this happens in the lepton sector. After
electroweak (EW) symmetry breaking the charged lepton mass term reads

`LMe `R + h.c., (1.14)

where `L = (eL, µL, τL)T , `R = (eR, µR, τR)T , and Me is the charged lepton mass matrix.
What concerns neutrinos, the existing data imply that the flavour neutrinos ν` (antineu-
trinos ν`) produced in weak interaction processes are predominantly LH (right-handed
(RH)) [8]. Using only the LH fields ν`L, one can construct the so-called Majorana mass
term:

(νL)cMν νL + h.c., (1.15)

where νL = (νeL, νµL, ντL)T , (ν`L)c = C ν`L
T , C being the charge-conjugation matrix, and

Mν is the neutrino Majorana mass matrix. If the RH neutrino fields NiR, i = 1, ..., n, exist,
then one can build also the Dirac mass term:

NRM
D
ν νL + h.c., (1.16)

with NR = (N1R, ..., NnR), and MD
ν being the neutrino Dirac mass matrix.

Diagonalising the charged lepton and neutrino mass matrices, we can go to the mass
basis in which the charged lepton and neutrino fields possess definite masses. Namely,
since Me is a complex matrix, it can be diagonalised as

U †e Me Ve = diag(me,mµ,mτ ) , (1.17)
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with Ue and Ve being 3 × 3 unitary matrices. The neutrino Majorana mass matrix Mν

is a complex symmetric matrix. Thus, it can be diagonalised by a unitary matrix Uν as
follows (see, e.g., [38]):

UT
ν Mν Uν = diag(m1,m2,m3) . (1.18)

In the case of Dirac neutrinos, diagonalisation of MD
ν is analogous to that of Me in

eq. (1.17), namely,
V †ν M

D
ν Uν = diag(m1,m2,m3) , (1.19)

where Vν and Uν are unitary matrices. Expressing the LH charged lepton and neutrino
flavour fields, which take part in the CC weak interactions, eq. (1.1), in terms of the fields
with definite masses, we find that the PMNS matrix is given by

U = U †e Uν (1.20)

for both Majorana and Dirac neutrinos. Thus, we see that the structure of the neutrino
mixing matrix U originates from the forms of the charged lepton and neutrino mass
matrices.

The fundamental question one would like to answer is whether there exists any
organising principle which dictates the flavour structures of the mass matrices Me and Mν ,
and thus explains the observed neutrino mixing pattern. We share the viewpoint of the
author of [65], who writes: “We believe, and we are not alone in holding this view, that with
the observed pattern of neutrino mixing Nature is “sending” us a message. The message
is encoded in the values of the neutrino mixing angles, leptonic CP violation phases and
neutrino masses.” In the present thesis, we try to decipher the Nature’s message relying
on symmetry principles, which proved to be so powerful in particle physics. Namely, we
take the view that the forms of the mass matrices, and hence the observed neutrino mixing
pattern, are dictated by a flavour symmetry.

This is one of the possible approaches to the flavour problem, which, however, can be
motivated by the data on neutrino mixing summarised in Section 1.1. Indeed, inspecting
Table 1.1, we see that the best fit values of θ12 and θ23 deviate from the possible symmetry
value of π/4 (the case of maximal mixing) by approximately 0.2 and 0.08, respectively,
while the best fit value of θ13 deviates from 0 (no mixing) by approximately 0.15. Note
that these corrections are of order of or smaller than the Cabibbo angle θq12 ≈ 0.225, which
might hint on a possible connection between the quark and lepton sectors. This connection
can be realised, e.g., within grand unified theories (GUTs) [66,67].

A flavour or family symmetry is sometimes referred to as a horizontal symmetry,
as opposed to a GUT symmetry which unifies quarks and leptons within a family. A
flavour symmetry can be either Abelian or non-Abelian. The idea of an Abelian flavour
symmetry goes back to 1978, when Colin Froggatt and Holger Nielsen proposed to explain
the hierarchies of the quark masses and mixing angles in terms of an underlying U(1)FN
symmetry [68]. Namely, in their set-up, the three generations of quark fields are assumed
to have different charges under U(1)FN. Hence, the Yukawa interaction terms of the form

QiLH qjR , (1.21)

where QiL and qjR, i, j = 1, 2, 3, are the quark weak doublets and singlets, respectively, and
H is the Higgs doublet, have positive integer charges nij. These charges get compensated
by introducing a scalar field φ with a U(1)FN charge of −1 and multiplying eq. (1.21) by

cij

(
φ

Λ

)nij
,
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with cij being order one coefficients and Λ being a high-energy scale. The field φ is called
flavon. After φ acquires a VEV, 〈φ〉, which breaks the U(1)FN symmetry, the matrix of
Yukawa couplings Yij reads

Yij = cij ε
nij , where ε =

〈φ〉
Λ

.

Providing appropriate assignment of the U(1)FN charges, the matrix Yij has hierarchical
structure. Thus, this approach is mainly useful to explain hierarchies between the Yukawa
couplings and not their absolute values, since the coefficients cij are undetermined.

A description of non-hierarchical flavour structures such as the observed pattern
of neutrino mixing requires a non-Abelian flavour symmetry. In this case, the three
generations of leptons (and quarks) can be unified into multiplets which transform under
certain irreducible representations of the flavour symmetry group Gf . If one aims at
unification of all three families at high energies, Gf must contain a 3-dimensional irreducible
representation. Requiring this representation to exist restricts Gf to be U(3) or a subgroup
thereof.

The flavour symmetry group can be either continuous or discrete.3 The latter allows for
rotations in the flavour space by fixed (large) angles, which is particularly attractive in view
of the fact that two of the three neutrino mixing angles are large. Before the discovery of a
non-zero value of the reactor mixing angle θ13 by the Double Chooz [69], Daya Bay [70] and
RENO [71] experiments in 2012, neutrino oscillation data were highly compatible with the
tri-bimaximal (TBM) mixing pattern [72–75] (see also [76]) characterised by sin2 θ12 = 1/3,
sin2 θ23 = 1/2 and sin2 θ13 = 0. This highly symmetric mixing pattern can be derived from
small non-Abelian discrete groups such as A4 [77–79]. A4 is the group of even permutations
of four objects, which is isomorphic to the group of rotational symmetries of a regular
tetrahedron. In light of the present neutrino oscillation data implying the non-zero value
of the reactor angle and pointing to a deviation of the atmospheric angle from π/4 and
a non-trivial value of the Dirac CPV phase δ (see Table 1.1), TBM mixing is ruled out.
However, it can still be viewed as a leading order approximation which requires certain
corrections. In the next chapters we will study possible corrections to this and other
symmetric mixing patterns in great detail. Now let us briefly review the basic concepts of
the approach to neutrino mixing based on a discrete flavour symmetry (see [80–82] for
reviews).

The approach of interest is based on the assumption of the existence at some high-
energy scale of a (lepton) flavour symmetry corresponding to a non-Abelian discrete group
Gf . Different fields contained in a theory transform under irreducible representations of
the flavour symmetry group. Namely, a field ϕ(x) in a generic irreducible representation r
of Gf transforms under the action of Gf as

ϕ(x)
Gf−→ ρr(g)ϕ(x) , g ∈ Gf , (1.22)

where ρr(g) is the unitary representation matrix for the element g in the irreducible
representation r. The theory at high energies is invariant under these transformations.
Usually, the representation under which the LH lepton fields are transformed is assumed
to be 3-dimensional, because one aims at unification of the three lepton families at high
energies.

3Throughout this thesis under discrete groups we will mean those with finite number of elements. They
are also called finite groups. Note that there are also discrete groups with infinite number of elements as,
e.g., the braid groups.
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At low energies the flavour symmetry has necessarily to be broken such that the three
flavours can be distinguished. In specific models Gf gets broken spontaneously after flavon
fields φi, which are neutral under the SM gauge group, but transform in certain irreducible
representations of Gf , acquire VEVs. After flavour symmetry breaking some subgroups
of Gf may remain unbroken in the charged lepton and neutrino sectors. We will denote
these subgroups as Ge and Gν , respectively, and refer to them as residual symmetries of
the charged lepton and neutrino mass matrices.4 These symmetries must be Abelian for
the reason explained below.

The largest possible exact symmetry of the neutrino Majorana mass matrix Mν ,
eq. (1.15), having three non-zero and non-degenerate eigenvalues, is a Z2 × Z2 × Z2

symmetry. The largest possible exact symmetry of the charged lepton Dirac mass matrix
Me, eq. (1.14), is U(1)× U(1)× U(1). Restricting ourselves to the case in which Gf is a
subgroup of SU(3) instead of U(3), the indicated largest possible exact symmetries reduce
respectively to Z2 × Z2 and U(1) × U(1) because of the special determinant condition
imposed from SU(3). The residual symmetries Ge and Gν , being subgroups of Gf , should
also be contained in U(1)×U(1) and Z2×Z2 (U(1)×U(1)) for massive Majorana (Dirac)
neutrinos, respectively. Thus, Ge and Gν must be Abelian.

The residual symmetries constrain the forms of the 3× 3 unitary matrices Ue and Uν ,
and thus, the form of the PMNS matrix U (see eq. (1.20)). The matrix Ue diagonalises
the product MeM

†
e as

U †e MeM
†
e Ue = diag(m2

e,m
2
µ,m

2
τ ) . (1.23)

The invariance of the charged lepton mass term under Ge, i.e., under transformations

`L(x)
Ge−→ ρ3(ge) `L(x) , ge ∈ Ge , (1.24)

where the three generations of the LH lepton fields are assumed to transform in a 3-
dimensional irreducible representation 3 of Gf , implies

ρ3(ge)
†MeM

†
e ρ3(ge) = MeM

†
e , ge ∈ Ge . (1.25)

As can be seen from this equation, the matrices ρ3(ge) and MeM
†
e commute, implying that

they are diagonalised by the same matrix Ue, namely,

U †e ρ3(ge)Ue = ρ3(ge)
diag , ge ∈ Ge . (1.26)

Thus, knowing the matrices ρ3(ge), one can derive the form of the matrix Ue.
Analogously, the invariance of the neutrino Majorana mass term in eq. (1.15) under

Gν , which acts on νL(x) as

νL(x)
Gν−→ ρ3(gν) νL(x) , gν ∈ Gν , (1.27)

implies
ρ3(gν)

T Mν ρ3(gν) = Mν , gν ∈ Gν . (1.28)

It is not difficult to show that also in this case the matrices ρ3(gν) and M †
νMν

5 commute,
and therefore they can be diagonalised simultaneously by the same matrix Uν , i.e.,

U †ν ρ3(gν)Uν = ρ3(gν)
diag , gν ∈ Gν . (1.29)

4Note that the residual symmetries can be bigger than subgroups of Gf , if accidental symmetries are
present.

5We assume the right-left convention for the neutrino mass term, i.e., that used in eq. (1.15).
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Again, once the matrices ρ3(gν) are specified, the form of Uν is known up to diagonal
phase matrix on the right containing two phases which contribute to the Majorana phases
α21,31 and permutations of columns. In the case of Dirac neutrinos with the mass term
given in eq. (1.16), the condition in eq. (1.28) is modified as follows:

ρ3(gν)
†MD†

ν MD
ν ρ3(gν) = MD†

ν MD
ν , gν ∈ Gν . (1.30)

The types of residual symmetry allowed in this case and discussed in detail in Chapter 2
are the same as those of the charged lepton mass term.

In the case of Majorana neutrinos, there are two possible types of the residual symmetry
Gν . It can be either a Z2 × Z2 symmetry (which sometimes is identified in the literature
with the Klein four group) or a Z2 symmetry. These two types characterise two approaches
in model building: direct approach when Gν = Z2 × Z2, and semi-direct approach when
Gν = Z2 [82]. Since the neutrino Majorana mass matrix Mν is always symmetric under a
certain Z2 × Z2 symmetry (see, e.g., [82] for a proof), the second Z2 factor in semi-direct
models arises accidentally. To be more specific, below we present a concrete example of
how TBM mixing arises in the direct and semi-direct approaches.

First, let us consider S4 as a flavour symmetry group. S4 is the symmetric group
of permutations of four objects. This group is isomorphic to the group of rotational
symmetries of a cube. It has 24 elements in total. S4 can be defined in terms of three
generators S, T and U , satisfying [83]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 , (1.31)

with 1 being the identity element of the group. In the basis for S4 from [84] the matrices
for the generators S, T and U in the representation 3 read6

S =
1

3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω2 0
0 0 ω

 and U = −

1 0 0
0 0 1
0 1 0

 , (1.32)

where ω = e2πi/3. It is worth noting that this basis for S4 has been worked out in [84]
in order to connect S4 downwards to A4 generated by S and T . Indeed, S and T in
eq. (1.32) represent the widely known Altarelli-Feruglio basis for A4 [85]. S and U are
order two elements (because their square is 1) and each of them generates a Z2 subgroup
of S4, namely, ZS

2 = {1, S} and ZU
2 = {1, U}. Moreover, since they commute, they form

the ZS
2 × ZU

2 = {1, S, U, SU} subgroup of S4. We notice further that both S and U are
diagonalised by the TBM mixing matrix UTBM, which reads

UTBM =


√

2
3

√
1
3

0

−
√

1
6

√
1
3
−
√

1
2

−
√

1
6

√
1
3

√
1
2

 . (1.33)

T is an element of order three, and thus, it generates the ZT
3 = {1, T, T 2} subgroup of S4.

If Ge = ZT
3 and Gν = ZS

2 × ZU
2 , we have Ue = diag(1, 1, 1) and Uν = UTBM. Thus, the

PMNS matrix U = UTBM. This is an example of the direct approach.
6For simplicity we use the same notation (S, T and U) for the generators and their 3-dimensional

representation matrices.
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Now let us consider Gf = A4. As we have mentioned earlier, A4 is the group of even
permutations of four objects, and it is isomorphic to the group of rotational symmetries of
a regular tetrahedron. A4 is a subgroup of S4 consisting of 12 elements. It can be obtained
from S4 by simply dropping U generator, which leads to the following presentation rules:

S2 = T 3 = (ST )3 = 1 . (1.34)

Now Gf can be broken down to ZS
2 in the neutrino sector. In order to gain TBM mixing

the U symmetry must arise accidentally. An example of such a semi-direct model is
provided by the famous Altarelli-Feruglio A4 model of TBM mixing [79,85].

In principle, the flavour symmetry Gf can be fully broken in the neutrino sector, such
that no Z2 factor of the low-energy Z2 × Z2 symmetry forms a subgroup of Gf . This is
so-called indirect model building approach. Finally, we note that the classification in the
direct, semi-direct and indirect approaches is entirely based on the origin of the Z2 × Z2

symmetry of the neutrino Majorana mass matrix, formulated in a basis of (approximately)
diagonal charged leptons (see [82] for further details).

Except for A4 and S4, many discrete groups have been extensively studied in the
literature, including S3, T ′, A5, ∆(27), ∆(96) and Dn (we refer the reader to ref. [81] and
to Table 2 in [82] for the original references), as well as series ∆(6n2) [86] and Σ(nφ) [87].7
The choice of these groups is related to the fact that they lead to values of the neutrino
mixing angles, which can differ from the measured values at most by subleading corrections.

For instance, the groups A4, S4 and T ′ are commonly utilised to generate TBM mixing,
as we have already seen. The group S4 can also be used to generate bimaximal (BM)
mixing [88–90].8 This symmetric mixing pattern is characterised by maximal solar and
atmospheric mixings, i.e., sin2 θ12 = sin2 θ23 = 1/2, and by θ13 = 0. The BM mixing matrix
UBM reads

UBM =


1√
2

1√
2

0

−1
2

1
2
− 1√

2

−1
2

1
2

1√
2

 . (1.35)

The group A5, which is the group of even permutations of five objects, and which is
isomorphic to the rotational symmetry group of an icosahedron, can be utilised to generate
golden ratio type A (GRA) mixing [92–94]:

UGRA =


√

r√
5

√
1√
5 r

0

− 1√
2

√
1√
5 r

1√
2

√
r√
5
− 1√

2

− 1√
2

√
1√
5 r

1√
2

√
r√
5

1√
2

 , (1.36)

where r = (1 +
√

5)/2 is the golden ratio (a solution of x2 − x− 1 = 0). Thus, this mixing
pattern is characterised by sin2 θ12 = 1/(

√
5 r) ≈ 0.276, sin2 θ23 = 1/2 and sin2 θ13 = 0.

The dihedral groups D10 and D12, which are the symmetries (rotations and reflections)
of a regular decagon and a regular dodecagon, can lead to golden ratio type B (GRB)

7We would like to note that the Dn groups, and, in particular, S3
∼= D3, do not admit 3-dimensional

irreducible representations.
8Bimaximal mixing can also be a consequence of the conservation of the lepton charge L′ = Le−Lµ−Lτ

(LC) [91], supplemented by a µ− τ symmetry.



12 Chapter 1. Introduction

mixing [95,96] and hexagonal (HG) mixing [97,98], respectively. D10 leads to θ12 = π/5,
which is the external angle of a regular decagon, and the GRB mixing matrix UGRB reads

UGRB =


r
2

1
2

√√
5
r

0

− 1
2
√
2

√√
5
r

r
2
√
2
− 1√

2

− 1
2
√
2

√√
5
r

r
2
√
2

1√
2

 , (1.37)

which corresponds to sin2 θ12 =
√

5/(4 r) ≈ 0.345, sin2 θ23 = 1/2 and sin2 θ13 = 0. Analo-
gously, D12 leads to θ12 = π/6, which is the external angle of a regular dodecagon. The
HG mixing matrix yields

UHG =


√
3
2

1
2

0

− 1
2
√
2

√
3

2
√
2
− 1√

2

− 1
2
√
2

√
3

2
√
2

1√
2

 . (1.38)

Thus, in this case we have sin2 θ12 = 1/4, sin2 θ23 = 1/2 and sin2 θ13 = 0.
All these highly symmetric mixing patterns per se are nowadays ruled out. However,

they still can be viewed as a leading order approximation which requires certain corrections.
These corrections should be able to generate a non-zero value of θ13 as well as a possible
deviation of θ23 from π/4. One obvious source of such corrections is the charged lepton
sector. Namely, if a model is formulated in a basis of non-diagonal charged leptons, but
the neutrino mass matrix is still invariant under certain residual symmetry, there will
be a contribution to the PMNS matrix from the matrix Ue which diagonalises MeM

†
e

(cf. eq. (1.20)). This contribution can provide the requisite corrections to the symmetric
mixing patterns discussed above. These charged lepton corrections will play central role in
the neutrino mixing schemes constructed and discussed in the next chapters.

The current value of θ13 opens up a possibility to observe CP violation in neutrino
oscillations, and thus, to establish the value of the Dirac CPV phase δ. In theories with
discrete flavour symmetries the values of (some of) the mixing angles in the reference
3-neutrino mixing scheme we are going to consider in what follows, if not fixed, are
often correlated between themselves. Moreover, there exists a correlation between the
value of the Dirac CPV phase δ and the values of the three neutrino mixing angles θ12,
θ13 and θ23, which includes also symmetry dependent fixed parameter(s) (see [99–107]
and references quoted therein). These correlations are usually referred to as neutrino
mixing sum rules. As we have already indicated, the sum rules for the Dirac phase δ,
in particular, depend on the underlying symmetry form of the PMNS matrix [99–103]
(see also, e.g., [104,105,107]), which in turn is determined by the assumed lepton favour
symmetry that typically has to be broken, and by the residual unbroken symmetries
in the charged lepton and neutrino sectors (see, e.g., [80, 81, 101, 103, 108]). They can
be tested experimentally (see, e.g., [100, 104, 106, 109–111]). These tests can provide
unique information about the possible existence of a new fundamental symmetry in the
lepton sector, which determines the pattern of neutrino mixing [99]. Sufficiently precise
experimental data on the neutrino mixing angles and on the Dirac CPV phase can also be
used to distinguish between different possible underlying flavour symmetries leading to
viable patterns of neutrino mixing.

The neutrino mixing sum rules constitute the main subject of the present thesis. In
particular, in Chapter 2, we will systematically derive such sum rules for all types of the
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residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, for which
correlations between the mixing parameters are expected. Further, in Chapter 3, we will
perform a comprehensive phenomenological analysis of predictions for the Dirac CPV
phase δ in a number of phenomenologically interesting cases.

Before concluding this brief introduction to the discrete symmetry approach to neutrino
mixing, we would like to point out that alternative approaches, such as anarchy [112–
115], have been studied in the literature. In the anarchy paradigm the neutrino mixing
angles are treated as environmental quantities. The main consequence of this approach
is the absence of whatever correlations between the neutrino oscillation parameters.
On the contrary, the most distinctive feature of the symmetry (order) approach is the
correlations we have mentioned above. Recently, there was a new interesting proposal [116]
generalising the current discrete symmetry approach. The author has considered a class of
supersymmetric (SUSY) and modular-invariant models, in the simplest version of which
Yukawa couplings are modular forms and the only flavon whose VEV breaks a flavour
symmetry is the modulus, a complex field transforming in a certain way under the action
of the modular group. In the particular case of modular forms being constant functions,
the new construction reproduces a class of SUSY models with discrete flavour symmetries
which has been extensively studied in the literature so far.

1.3 Generalised CP symmetry
Discrete flavour symmetries can also be combined with CP invariance in a non-trivial
way [117, 118]. This, in particular, allows one to obtain predictions for the Majorana
phases in the PMNS matrix, which otherwise remain typically unconstrained. Indeed,
eq. (1.29), which represents the residual flavour symmetry constraint on the matrix Uν , is
invariant under re-phasing of columns of Uν . This implies that Uν , and thus, the PMNS
matrix U , are defined up to re-phasing of columns, i.e., a flavour symmetry alone does not
constrain the Majorana phases.

Let us first recall how CP transformations are defined in a consistent way without
imposing any flavour symmetry. Taking into account the mass terms in eqs. (1.14) and
(1.15) and the CC weak interactions described by eq. (1.1), we obtain the following
Lagrangian (valid at energies below the EW symmetry breaking scale):

−L = `LMe `R + (νL)cMν νL +
g√
2
`L γα νLW

α† + h.c. (1.39)

The so-called generalised CP transformations are defined as follows [119]:

`L(x)
CP−−→ iXLγ

0C `L
T

(x′) , (1.40)

`R(x)
CP−−→ iXRγ

0C `R
T

(x′) , (1.41)

νL(x)
CP−−→ iXLγ

0C νL
T (x′) , (1.42)

where XL and XR are unitary matrices acting on flavour space and x′ = (t,−x). Note
that the transformations of `L and νL should involve the same matrix XL in order to
preserve CP invariance of the CC weak interaction Lagrangian in the flavour basis. Then,
the Lagrangian in eq. (1.39) conserves CP if and only if the charged lepton and neutrino
mass matrices satisfy the following relations:

X†LMeXR = M∗
e , (1.43)
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XT
L Mν XL = M∗

ν . (1.44)

We would like to notice that the “canonical” (traditional) CP transformations can be
obtained from those given in eqs. (1.40)–(1.42) by setting both XL and XR to the identity
matrix.

Now we turn to a theory that respects both a flavour symmetry and a generalised
CP symmetry. Such a theory in addition to be invariant under the transformations from
eq. (1.22), will remain unchanged under the generalised CP transformation given by

ϕ(x)
CP−−→ Xr ϕ

∗(x′) , (1.45)

where Xr is a unitary matrix, and the action of CP on the spinor indices given in
eqs. (1.40)–(1.42) has been omitted for the case of ϕ being a spinor.

The form of Xr is constrained considerably due to the presence of a flavour symmetry
[117,118]. Namely, if we first perform a generalised CP transformation, followed by a flavour
symmetry transformation, and subsequently an inverse generalised CP transformation, we
find

ϕ(x)
CP−−→ Xr ϕ

∗(x′)
Gf−→ Xr ρr(g)∗ ϕ∗(x′)

CP−1

−−−→ Xr ρr(g)∗X−1r ϕ(x) . (1.46)

The theory should be invariant under this sequence of transformations, and thus, the result-
ing transformation must correspond to a flavour symmetry transformation (cf. eq. (1.22))
ρr(g

′), with g′ being some element of Gf , i.e., we have

Xr ρr(g)∗X−1r = ρr(g
′) , g , g′ ∈ Gf . (1.47)

This equation defines the consistency condition, which has to be respected for consistent
implementation of a generalised CP symmetry along with a flavour symmetry [117,118].

Several comments on this consistency condition are in order.

• Equation (1.47) has to be satisfied for all irreducible representations r simultaneously,
i.e., the elements g and g′ must be the same for all r.

• The generalised CP transformation Xr maps the group element g onto g′. Further-
more, it preserves the flavour symmetry group structure, i.e.,

Xr ρr(g1g2)
∗X−1r = Xr ρr(g1)

∗X−1r Xr ρr(g2)
∗X−1r = ρr(g

′
1g
′
2) ∀ g1,2 ∈ Gf ,

Xr ρr(1)∗X−1r = ρr(1) ,

where 1 is the identity element of Gf , and therefore Xr realises a homomorphism of
the flavour symmetry group Gf .

• For faithful representations r, i.e., those for which ρr maps each element of Gf to a
distinct matrix, eq. (1.47) defines a unique mapping of Gf to itself. In this case, Xr

realises an automorphism of Gf .

• If Xr is a solution to eq. (1.47), then eiαXr, where α is an arbitrary phase, is also a
solution. Moreover, if Xr is a solution to eq. (1.47), then ρr(h)Xr, where h is an
element of Gf , is also a solution. Indeed, for ρr(h)Xr we have

ρr(h)Xr ρr(g)∗X−1r ρ−1r (h) = ρr(h) ρr(g
′) ρr(h

−1) = ρr(hg
′h−1) ∀h ∈ Gf .

Therefore the generalised CP transformation ρr(h)Xr maps the group element g
to hg′h−1, i.e., to an element from the conjugacy class of g′. Thus, for a given
irreducible representation r, the consistency condition defines Xr up to an overall
phase and a Gf transformation.
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• It follows from eq. (1.47) that the elements g and g′ must be of the same order.

• For a discrete flavour symmetry group Gf , it is sufficient to impose eq. (1.47) to the
group’s generators.

In ref. [117] the unitary matrix Xr has been chosen to be symmetric. In this way, one
has

ϕ(x)
CP−−→ Xr ϕ

∗(x′)
CP−−→ XrX

∗
r ϕ(x) = ϕ(x) , (1.48)

i.e., the generalised CP transformation Xr applied twice to a field gives the field itself.9
With this choice, it has been shown (see Appendix B in [117]) that combining the flavour
symmetry group Gf with the group HCP generated by the generalised CP transformation
leads to a semi-direct product of these two groups, i.e., the full symmetry group GCP =
Gf oHCP.

Analogously to flavour symmetry breaking, the full symmetry group GCP can be broken
in such a way, that MeM

†
e and Mν remain invariant under its subgroups Ge

CP = GeoHe
CP

and Gν
CP = Gν oHν

CP, respectively. As in the previous section, we assume that the three
generations of the LH lepton fields transform in a 3-dimensional irreducible representation
3 of Gf . Invariance of MeM

†
e and Mν under the residual symmetries Ge

CP and Gν
CP imply

that in addition to eqs. (1.25) and (1.28), the following equations hold:

X†3eMeM
†
e X3e =

(
MeM

†
e

)∗
, X3e ∈ He

CP , (1.49)

XT
3νMν X3ν = M∗

ν , X3ν ∈ Hν
CP . (1.50)

Moreover, the consistency condition as that in eq. (1.47) has to be satisfied in each sector,
i.e.,

X3e ρ3(ge)
∗X−13e = ρ3e(g

′
e) , ge , g

′
e ∈ Ge , (1.51)

X3ν ρ3(gν)
∗X−13ν = ρ3ν(g

′
ν) , gν , g

′
ν ∈ Gν . (1.52)

The conditions in eqs. (1.49) and (1.50) restrict further the charged lepton and neutrino
mass matrices, and thus, the form of the PMNS matrix.

It can be shown that the matrix X3ν has to be symmetric in order for all the three neu-
trino masses to be different [117,120], as is required by experimental data. In Appendix A,
we provide an explicit proof of this statement. In this case, eq. (1.50) leads to

U †ν X3ν U
∗
ν = diag(±1,±1,±1) , (1.53)

where the matrix Uν diagonalises Mν as in eq. (1.18) with real eigenvalues mj, j = 1, 2, 3.
Equation (1.53) is clearly not invariant under re-phasing of columns of Uν . Thus, in the
set-up with a residual generalised CP symmetry in the neutrino sector, also the Majorana
phases in the PMNS matrix can be predicted.10

In the recent years, the approach involving both a discrete flavour symmetry and
a generalised CP symmetry was extensively explored in the literature. The list of the
considered flavour symmetry groups includes A4 [118, 121], T ′ [122], S4 [117, 120, 123–127],

9However, the authors of [117] comment that it is possible to generalise the requirement of XrX
∗
r = 1r×r

to XrX
∗
r being a flavour symmetry transformation, as we can appreciate from eq. (1.48).

10As long as there are no unconstrained contributions to them from the charged lepton sector (see
Chapter 4 for such examples).
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A5 [128–131], ∆(27) [132], ∆(48) [133, 134] and ∆(96) [135], as well as series ∆(3n2)
[136,137] and ∆(6n2) [137–139].

In many of the studies listed above the full symmetry group GCP is broken down in the
charged lepton sector to a residual symmetry Ge

CP such that it fixes completely the matrix
Ue, e.g., Ge

CP = Z3, while the residual symmetry of the neutrino sector Gν
CP is chosen to

be Z2 ×Hν
CP, which determines Uν up to right multiplication by a rotation matrix on a

free angle θν (see, e.g., [117]). In this case, all the six mixing parameters (three angles and
three phases) only depend on this single parameter. For example, in the set-up considered
in [117] (see also [120]) and based on GCP = S4 o HCP, in the case of GCP broken to
Ge = ZT

3 and Gν = ZS
2 ×Hν

CP, with Hν
CP being generated by X3ν = ρ3(U),11 the authors

find:

sin2 θ13 =
2

3
sin2 θν , sin2 θ12 =

1

2 + cos 2θν
=

1

3
(
1− sin2 θ13

) , sin2 θ23 =
1

2
, (1.54)

| sin δ| = 1 , sinα21 = sinα31 = 0 . (1.55)

There are several important features, which this example demonstrates. Firstly, as we can
see, the free parameter θν generates a non-zero value of the reactor angle. Secondly, the
exact values of the leptonic CPV phases such as 0 or π, or else π/2 or 3π/2, are quite
typical for the considered one-parameter set-up. Thirdly, the values of some of the mixing
angles are strongly correlated between themselves. This should be expected, since we have
only one free parameter. Fixing sin2 θ13 to its best fit value from Table 1.1, we find from
eq. (1.54) sin2 θ12 = 0.341. Therefore, in this example, both sin2 θ12 and sin2 θ23 are outside
their presently allowed 2σ ranges (see Table 1.1). Moreover, this example cannot account
for possible non-maximal Dirac CP violation. Thus, on the one hand the considered set-up
is very attractive because of its high predictivity, while on the other hand it is difficult to
expect a very good agreement with the data.

Scenarios in which the neutrino mixing angles and the leptonic CPV phases are
functions of two or three parameters have also been considered in the literature (see,
e.g., [122,126,127,131,140]). In these scenarios, the residual symmetry Ge

CP of the charged
lepton mass term is typically assumed to be a Z2 (Z2 × He

CP) symmetry or to be fully
broken. In spite of the larger number of parameters in terms of which the mixing angles
and the CPV phases are expressed, the values of the CPV phases are predicted to be
correlated with the values of the three neutrino mixing angles.

A set-up with Ge
CP = Z2 ×He

CP and Gν
CP = Z2 ×Hν

CP has been recently considered
in [126]. The resulting PMNS matrix in such a scheme depends on two free real parameters —
two angles θν and θe. The authors have obtained several phenomenologically viable neutrino
mixing patterns from GCP = S4 oHCP, broken to all possible residual symmetries of the
type indicated above. Breaking patterns allowing for three free parameters have been
investigated in [122,127,131,140]. In [131] and [127], respectively, GCP = A5 oHCP and
GCP = S4 oHCP broken to Ge

CP = Z2 and Gν
CP = Z2 ×Hν

CP have been considered. In this
case, the matrix Ue depends on an angle θe and a phase δe, while the matrix Uν depends
on an angle θν .

In Chapter 4, we will investigate in detail another breaking pattern, characterised
by GCP completely broken in the charged lepton sector and broken down to Gν

CP =
Z2 × Z2 oHν

CP, which also involves three free parameters (two angles and a phase), but

11S, T and U are the generators of S4 in the basis for its 3-dimensional representation 3 given in
eq. (1.32).
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all of them coming from the charged lepton sector. In particular, in Chapter 4 we will
concentrate on obtaining predictions for the Majorana phases in such a scenario.

The specific correlations between the values of the three neutrino mixing angles, which
characterise the one-parameter set-ups, do not hold in the two- and three-parameter
scenarios. In addition, the Dirac CPV phase in the two- and three-parameter scenarios
is predicted to have non-trivial values which are correlated with the values of the three
neutrino mixing angles and differ from 0, π, π/2 and 3π/2. The indicated differences be-
tween the predictions of the different scenarios, in principle, make it possible to distinguish
between them experimentally by improving the precision on each of the three measured
neutrino mixing angles, and by performing a sufficiently precise measurement of the Dirac
CPV phase.

1.4 Outline of the thesis
The remainder of the present PhD thesis consists of five chapters. Four of them address
certain aspects of the discrete symmetry approach to neutrino mixing and leptonic CP
violation introduced in the preceding sections, while the last chapter contains conclusions
and an outlook. Below we briefly summarise the content of each chapter.

In Chapter 2, assuming that the observed pattern of 3-neutrino mixing is related to the
existence of a lepton flavour symmetry, corresponding to a non-Abelian discrete group Gf ,
and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton
and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the
PMNS matrix U . We systematically consider all types of the residual symmetries for
which correlations between the mixing angles and δ are expected, namely,

(A) Ge = Z2 and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2;

(B) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2;

(C) Ge = Z2 and Gν = Z2;

(D) Ge is fully broken and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2;

(E) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν is fully broken.

For given Ge and Gν , the sum rules for cos δ thus derived are exact, within the approach
employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We
identify the cases when the value of cos δ cannot be determined, or cannot be uniquely
determined, without making additional assumptions on unconstrained parameters. In a
large class of cases considered the value of cos δ can be unambiguously predicted once
the flavour symmetry Gf and the corresponding residual symmetries are specified. We
present predictions for cos δ in these cases for the flavour symmetry groups S4, A4, T ′
and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2 θ12,
sin2 θ13 and sin2 θ23, taking into account their respective 3σ uncertainties, are successfully
reproduced. This chapter is based on ref. [101].

In Chapter 3, driven by the idea that the main contribution to neutrino mixing comes
from the neutrino sector, i.e., from the matrix Uν diagonalising the neutrino mass matrix,
we take a closer look at pattern D in the list above, i.e., the one characterised by Ge being
fully broken and Gν = Zn, n > 2 or Zn×Zm, n,m ≥ 2. In this case, the residual symmetry
Gν determines completely the form of the matrix Uν (up to re-phasing of columns and
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their permutations), while the matrix Ue remains, in general, unconstrained. Assuming Uν
to have one of the symmetry forms introduced in Section 1.2, i.e., BM, TBM, GRA, GRB
or HG, we explore in a systematic way possible charged lepton corrections, i.e., various
forms of the matrix Ue diagonalising MeM

†
e , which can reconstitute compatibility of the

symmetry forms in question with the experimental data. We consider only those forms
of Ue which allow one to express δ as a function of the three neutrino mixing angles
present in the PMNS matrix U and the fixed angles contained in Uν . In a number of
phenomenologically interesting cases, we perform a statistical analysis of the predictions for
the Dirac CPV phase by constructing the likelihood function for cos δ, using (i) the results
of the global analysis of neutrino oscillation data, and (ii) the prospective uncertainties on
the neutrino mixing angles. Our results show that the measurement of the Dirac phase
in the neutrino mixing matrix, together with an improvement of the precision on the
mixing angles, can provide unique information as regards the possible existence of a new
fundamental symmetry in the lepton sector. This chapter is based on ref. [100] and, in
part, on ref. [109].

Chapter 4 extends the discussion of the neutrino mixing patterns considered in Chap-
ter 3, but there our main focus is on predictions for the Majorana phases in the PMNS
matrix U . We show that for most of the mixing schemes explored in Chapter 3 the
Majorana phases α21 and α31 can be expressed in terms of the three neutrino mixing
angles of the standard parametrisation of U and the angles and the two Majorana-like
phases ξ21 and ξ31 present, in general, in Uν . The angles in Uν are fixed by a residual
flavour symmetry Gν . First, we derive predictions for phase differences (α21 − ξ21) and
(α31 − ξ31), which in many cases are completely determined by the values of the mixing
angles. Second, we demonstrate that the requirement of generalised CP invariance of the
neutrino Majorana mass term discussed in Section 1.3 implies ξ21 = 0 or π and ξ31 = 0
or π, and therefore the Majorana phases themselves are predicted in terms of the mixing
angles only. For these values of ξ21 and ξ31 and the best fit values of θ12, θ23 and θ13, we
present predictions for the effective Majorana mass in (ββ)0ν-decay that depends on the
values of the Majorana phases. This chapter is based on ref. [140].

In Chapter 5, we will be concerned with renormalisation group (RG) corrections to the
sum rule predictions for the Dirac CPV phase δ. In Chapters 2–4 as well as often in the
literature, it is assumed that neutrino mixing sum rules are exactly realised at low energies,
where experiments take place. However, as every quantity in quantum field theory, the
mixing parameters get affected by RG running. In Chapter 5, we consider as an example
two particular sum rules from Chapter 3 and assume that they hold at a certain high-energy
scale, which we choose to be the seesaw scale MS ≈ 1013 GeV. The main question we want
to address is how stable the predictions for δ are under the RG corrections. We investigate
the impact of these corrections on the sum rule predictions for δ in the cases of neutrino
Majorana mass term generated by the Weinberg (dimension 5) operator [141] added to
(i) the SM, and (ii) the minimal SUSY extension of the SM (MSSM). Our results show that
in the first scenario the RG effects on the sum rule predictions for the Dirac CPV phase
are negligible, while in the second scenario they increase with increasing absolute neutrino
mass scale, min(mj), j = 1, 2, 3, and tan β, and for min(mj) ∼> 0.01 eV and tan β ∼> 30
have to be taken into account to realistically probe the sum rule predictions. This chapter
is based on ref. [142].

Finally, in Chapter 6, we draw conclusions and present an outlook.



Chapter 2

Leptonic Dirac CP violation from
residual discrete symmetries

In the present chapter, we assume that the observed pattern of 3-neutrino mixing is related
to the existence of a flavour symmetry, which is described by a non-Abelian discrete group
Gf . At certain energy scale this symmetry gets broken down to residual symmetries of the
charged lepton and neutrino mass terms. These residual symmetries correspond to Abelian
subgroups Ge and Gν of the group Gf . We consider different breaking patterns for which
correlations between (i) the values of (some of) the three neutrino mixing angles, θ12, θ13
and θ23, and (ii) the mixing angles and the Dirac CPV phase δ are expected. Namely, we
systematically investigate the following types of residual symmetries:

(A) Ge = Z2 and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2;

(B) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2;

(C) Ge = Z2 and Gν = Z2;

(D) Ge is fully broken and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2;

(E) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν is fully broken.

This chapter is organised as follows. In Section 2.1, we describe the parametrisations
of the PMNS matrix depending on the residual symmetries Ge and Gν given above. In
Sections 2.2, 2.3 and 2.4, we consider breaking patterns A, B, C and derive mixing sum rules,
in particular, for cos δ. At the end of each of these sections we present numerical predictions
for cos δ in the cases of the flavour symmetry groups Gf = A4, T ′, S4 and A5 described in
Appendix B. We choose these groups since they are among the smallest non-Abelian groups
(in terms of the number of elements) possessing 3-dimensional irreducible representations.
In Section 2.5, we provide a summary of the sum rules derived in Sections 2.2–2.4. Further,
in Sections 2.6 and 2.7, we derive mixing sum rules in cases D and E, respectively. In these
cases, as we will see, the value of cos δ cannot be fixed without additional assumptions on
the unconstrained matrix Ue or Uν . In Section 2.8, we present a summary of the numerical
results. Finally, Section 2.9 contains the conclusions of this chapter.

2.1 Preliminary considerations
As we have shown in Section 1.2, the residual symmetries of the charged lepton and
neutrino mass matrices constrain the forms of the diagonalising unitary matrices Ue and Uν
(see eqs. (1.23)–(1.29)), and thus, the form of the PMNS matrix U . Below we demonstrate
how it applies to the different types of residual symmetries.
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If Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2, the matrix Ue is fixed by the matrix ρ3(ge)
(up to multiplication by diagonal phase matrices on the right and permutations of columns,
as can be seen from eq. (1.26)), Ue = U◦e . In the case of a smaller symmetry, i.e., Ge = Z2,
Ue is defined up to a U(2) transformation in the degenerate subspace, because in this case
ρ3(ge) has a degenerate eigenvalue. Therefore,

Ue = U◦e Uij(θ
e
ij, δ

e
ij) Ψk Ψl , (2.1)

where Uij is a complex rotation in the i-j plane and Ψk, Ψl are diagonal phase matrices,

Ψ1 = diag
(
eiψ1 , 1, 1

)
, Ψ2 = diag

(
1, eiψ2 , 1

)
, Ψ3 = diag

(
1, 1, eiψ3

)
. (2.2)

The angle θeij and the phases δeij , ψ1, ψ2 and ψ3 are free parameters. As an example of the
explicit form of Uij(θaij, δaij), we give the expression of the matrix U12(θ

a
12, δ

a
12):

U12(θ
a
12, δ

a
12) =

 cos θa12 sin θa12e
−iδa12 0

− sin θa12e
iδa12 cos θa12 0

0 0 1

 , (2.3)

where a = e, ν, ◦. The indices e, ν indicate the free parameters, while “◦” indicates
the angles and phases which are fixed. The complex rotation matrices U23(θ

a
23, δ

a
23) and

U13(θ
a
13, δ

a
13) are defined in an analogous way. The real rotation matrices Rij(θ

a
ij) can be

obtained from Uij(θ
a
ij, δ

a
ij) setting δaij to zero, i.e., Rij(θ

a
ij) = Uij(θ

a
ij, 0). In the absence of a

residual symmetry no constraints are present for the unitary mixing matrix Ue, which can
be in general expressed in terms of nine real parameters, e.g., three rotation angles and
six phases.

Similar considerations apply to the neutrino sector. If Gν = Zn, n > 2 or Zn × Zm,
n,m ≥ 2 for Dirac neutrinos, or Gν = Z2 × Z2 for Majorana neutrinos, the matrix Uν is
fixed up to permutations of columns and right multiplication by diagonal phase matrices by
the residual symmetry (see eq. (1.29)), i.e., Uν = U◦ν . If the symmetry is smaller, Gν = Z2,
then

Uν = U◦ν Uij(θ
ν
ij, δ

ν
ij) Ψk Ψl . (2.4)

Obviously, in the absence of a residual symmetry, Uν is unconstrained.
In all the cases considered above where Ge and Gν are non-trivial, the matrices ρ3(ge)

and ρ3(gν) are diagonalised by U◦e and U◦ν :

(U◦e )† ρ3(ge)U
◦
e = ρ3(ge)

diag and (U◦ν )† ρ3(gν)U
◦
ν = ρ3(gν)

diag .

In what follows we define U◦ as the matrix fixed by the residual symmetries, which, in
general, gets contributions from both the charged lepton and neutrino sectors, U◦ =
(U◦e )†U◦ν . Since U◦ is a unitary 3× 3 matrix, we will parametrise it in terms of three angles
and six phases. These, however, as we are going to explain, reduce effectively to three
angles and one phase, since the other five phases contribute to the Majorana phases of the
PMNS mixing matrix, unphysical charged lepton phases and/or to a redefinition of the
free parameters contained in Ue and Uν . Furthermore, we will use the notation θeij, θνij,
δeij, δνij for the free angles and phases contained in U , while the parameters marked with a
circle contained in U◦, e.g., θ◦ij, δ◦ij, are fixed by the residual symmetries.

In the case when Ge = Z2 and Gν = Zn, n > 2 or Zn×Zm, n,m ≥ 2 for massive Dirac
neutrinos, or Gν = Z2 × Z2 for Majorana neutrinos, we have:

U = Uij(θ
e
ij, δ

e
ij) Ψ◦j U

◦(θ◦12, θ
◦
13, θ

◦
23, {δ◦kl})Q0



2.1. Preliminary considerations 21

= Ψ◦j Uij(θ
e
ij, δ

e
ij − ψ◦j )U◦(θ◦12, θ◦13, θ◦23, {δ◦kl})Q0 , (2.5)

where (ij) = (12), (13), (23) and {δ◦kl} = {δ◦12, δ◦13, δ◦23}. The unitary matrix U◦ contains
three angles and three phases, since the additional three phases can be absorbed by
redefining the charged lepton fields and the free parameter δeij (see below). Here Ψ◦j is a
diagonal matrix containing a fixed phase in the j-th position. Namely,

Ψ◦1 = diag
(
eiψ
◦
1 , 1, 1

)
, Ψ◦2 = diag

(
1, eiψ

◦
2 , 1
)
, Ψ◦3 = diag

(
1, 1, eiψ

◦
3
)
. (2.6)

The matrix Q0, defined as

Q0 = diag
(

1, ei
ξ21
2 , ei

ξ31
2

)
, (2.7)

is a diagonal matrix containing two free parameters contributing to the Majorana phases.
Since the presence of the phase ψ◦j amounts to a redefinition of the free parameter δeij, we
denote (δeij − ψ◦j ) as δeij. This allows us to employ the following parametrisation for U :

U = Uij(θ
e
ij, δ

e
ij)U

◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl)Q0 , (2.8)

where the unphysical phase matrix Ψ◦j on the left has been removed by charged lepton
re-phasing and the set of three phases {δ◦kl} reduces to only one phase, δ◦kl, since the other
two contribute to redefinitions of Q0, δeij and to unphysical phases. The possible forms of
the matrix U◦, which we are going to employ, are given in Appendix C.

For the breaking patterns Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2, valid
for both Majorana and Dirac neutrinos, we have:

U = U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl) Ψ◦i Ψ◦j Uij(θ

ν
ij, δ

ν
ij)Q0

= U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl)Uij(θ

ν
ij, δ

ν
ij − ψ◦i + ψ◦j ) Ψ◦i Ψ◦j Q0 , (2.9)

where (ij) = (12), (13), (23), and the two free phases, which contribute to the Majorana
phases of the PMNS matrix if the massive neutrinos are Majorana particles, have been
included in the diagonal phase matrix Q0. Notice that if neutrinos are assumed to be Dirac
instead of Majorana, then the matrix Q0 can be removed through re-phasing of the Dirac
neutrino fields. Without loss of generality we can redefine the combination δνij − ψ◦i + ψ◦j
as δνij and the combination Ψ◦i Ψ◦j Q0 as Q0, so that the following parametrisation of U is
obtained:

U = U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl)Uij(θ

ν
ij, δ

ν
ij)Q0 . (2.10)

In the case of Ge = Z2 and Gν = Z2 for both Dirac and Majorana neutrinos, we can
write

U = Uij(θ
e
ij, δ

e
ij) Ψ◦j U

◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl) Ψ◦r Ψ◦s Urs(θ

ν
rs, δ

ν
rs)Q0

= Ψ◦j Uij(θ
e
ij, δ

e
ij − ψ◦j )U◦(θ◦12, θ◦13, θ◦23, δ◦kl)Urs(θνrs, δνrs − ψ◦r + ψ◦s) Ψ◦r Ψ◦s Q0 , (2.11)

with (ij) = (12), (13), (23), (rs) = (12), (13), (23). The phase matrices Ψ◦i are defined as
in eq. (2.6). Similarly to the previous cases, we can redefine the parameters in such a way
that U can be cast in the following form:

U = Uij(θ
e
ij, δ

e
ij)U

◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl)Urs(θ

ν
rs, δ

ν
rs)Q0 , (2.12)
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where Q0 can be phased away if neutrinos are assumed to be Dirac particles.12

If Ge is fully broken and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2 for Dirac neutrinos or
Gν = Z2 × Z2 for Majorana neutrinos, the form of U reads

U = U(θe12, θ
e
13, θ

e
23, δ

e
rs) Ψ2 Ψ3 U

◦(θ◦12, θ
◦
13, θ

◦
23, {δ◦kl})Q0 , (2.13)

where the phase matrices Ψ2 and Ψ3 are defined as in eq. (2.2). Notice that in general
we can effectively parametrise U◦ in terms of three angles and one phase since of the
set of three phases {δ◦kl}, two contribute to a redefinition of the matrices Q0, Ψ2 and Ψ3.
Furthermore, under the additional assumptions on the form of U(θe12, θ

e
13, θ

e
23, δ

e
rs) and also

taking {δ◦kl} = 0, the form of U given in eq. (2.13) leads to the sum rules derived in [99,100]
and studied in detail in Chapter 3. In the numerical analyses performed in [99,100,109],
the angles θ◦ij have been set, in particular, to the values corresponding to the TBM, BM,
GRA, GRB and HG symmetry forms.

Finally, for the breaking patterns Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν fully
broken when considering both Dirac and Majorana neutrino possibilities, the form of U
can be derived from eq. (2.13) by interchanging the fixed and the free parameters. Namely,

U = U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
kl) Ψ2 Ψ3 U(θν12, θ

ν
13, θ

ν
23, δ

ν
rs)Q0 . (2.14)

The cases found in eqs. (2.8), (2.10), (2.12), (2.13) and (2.14) are summarised in Table 2.1.
The reduction of the number of free parameters indicated with arrows corresponds to a
redefinition of the charged lepton fields.

In this chapter, we will use the best fit values and the 3σ allowed ranges of the
parameters sin2 θ12, sin2 θ23 and sin2 θ13 found in ref. [18]. They read:

(sin2 θ12)BF = 0.308 , 0.259 ≤ sin2 θ12 ≤ 0.359 , (2.15)

(sin2 θ23)BF = 0.437 (0.455) , 0.374 (0.380) ≤ sin2 θ23 ≤ 0.626 (0.641) , (2.16)

(sin2 θ13)BF = 0.0234 (0.0240) , 0.0176 (0.0178) ≤ sin2 θ13 ≤ 0.0295 (0.0298) . (2.17)

Here the values (values in brackets) correspond to the NO (IO) neutrino mass spectrum.
We note finally that the titles of the following sections refer to the residual symmetries

of the charged lepton and neutrino mass matrices, while the titles of the subsections reflect
the free complex rotations contained in the corresponding parametrisation of U , eqs. (2.8),
(2.10), (2.12), (2.13) and (2.14).

2.2 Pattern A: Ge = Z2 and Gν = Zn, n > 2 or
Zn × Zm, n,m ≥ 2

In this section, we derive sum rules for cos δ for the cases given in eq. (2.8). Recall that the
matrix Ue is fixed up to a complex rotation in one plane by the residual Ge = Z2 symmetry,
while Uν is completely determined (up to multiplication by diagonal phase matrices on the
right and permutations of columns) by the Gν = Z2 × Z2 residual symmetry in the case
of neutrino Majorana mass term, or by Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2, residual
symmetries if the massive neutrinos are Dirac particles. At the end of this section we

12We will not repeat this statement further, but it should be always understood that if the massive
neutrinos are Dirac fermions, then two phases in the matrix Q0 are unphysical and can be removed from
U by a re-phasing of the Dirac neutrino fields.
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Table 2.1. Number of effective free parameters, degrees of freedom (d.o.f.), contained in U
relevant for the PMNS angles and the Dirac phase (and the Majorana phases) in the cases of the
different breaking patterns of Gf to Ge and Gν . Arrows indicate the reduction of the number of
parameters, which can be absorbed with a redefinition of the charged lepton fields.

Ge ⊂ Gf Gν ⊂ Gf Ue d.o.f. Uν d.o.f. U d.o.f.

fully broken fully broken 9→ 6 9→ 8 12→ 4 (+2)

Z2 fully broken 4→ 2 9→ 8 10→ 4 (+2){
Zn, n > 2

Zn × Zm, n,m ≥ 2
fully broken 0 9→ 8 8→ 4 (+2)

fully broken Z2 9→ 6 4 10→ 4 (+2)

fully broken

{
Zn, n > 2

Zn × Zm, n,m ≥ 2
9→ 6 2 8→ 4 (+2)

Z2 Z2 4→ 2 4 4 (+2)

{
Zn, n > 2

Zn × Zm, n,m ≥ 2
Z2 0 4 2 (+2)

Z2

{
Zn, n > 2

Zn × Zm, n,m ≥ 2
4→ 2 2 2 (+2)

{
Zn, n > 2

Zn × Zm, n,m ≥ 2

{
Zn, n > 2

Zn × Zm, n,m ≥ 2
0 2 0 (+2)

will present results of a study of the possibility of reproducing the observed values of the
lepton mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23 and of obtaining physically viable
predictions for cos δ in the cases when the residual symmetries Ge = Z2 and Gν = Zn,
n > 2 or Zn × Zm, n,m ≥ 2, originate from the breaking of the lepton flavour symmetries
A4, T ′, S4 and A5.

2.2.1 Case A1: U12(θ
e
12, δ

e
12)

Employing the parametrisation of the PMNS matrix U given in eq. (2.8) with (ij) = (12)
and the parametrisation of U◦ given as

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
12) = U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)R13(θ

◦
13) , (2.18)

we get for U (see Appendix C for details):

U = U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)R13(θ

◦
13)Q0 . (2.19)

The results derived in Appendix C and given in eq. (C.6) allow us to cast eq. (2.19) in the
form

U = R12(θ̂12)P1(δ̂12)R23(θ
◦
23)R13(θ

◦
13)Q0 , P1(δ̂12) = diag(eiδ̂12 , 1, 1) , (2.20)



24 Chapter 2. Leptonic Dirac CP violation from residual discrete symmetries

with δ̂12 = α−β, where sin θ̂12, α and β are defined as in eqs. (C.7) and (C.8) after setting
i = 1, j = 2, θa12 = θe12, δa12 = δe12, θb12 = θ◦12 and δb12 = δ◦12. Using eq. (2.20) and the
standard parametrisation of the PMNS matrix U given in eq. (1.3), we find:

sin2 θ13 = |Ue3|2 = cos2 θ̂12 sin2 θ◦13 + cos2 θ◦13 sin2 θ̂12 sin2 θ◦23

+
1

2
sin 2θ̂12 sin 2θ◦13 sin θ◦23 cos δ̂12 , (2.21)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

cos2 θ13

[
sin2 θ◦13 − sin2 θ13 + cos2 θ◦13 sin2 θ◦23

]
, (2.22)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

cos2 θ◦23 sin2 θ̂12
cos2 θ13

. (2.23)

From eqs. (2.21) and (2.22) we get the following correlation between the values of sin2 θ13
and sin2 θ23:

sin2 θ13 + cos2 θ13 sin2 θ23 = sin2 θ◦13 + cos2 θ◦13 sin2 θ◦23 . (2.24)

Notice that eq. (2.23) implies that

sin2 θ̂12 =
cos2 θ13 sin2 θ12

cos2 θ◦23
. (2.25)

In order to obtain a sum rule for cos δ, we compare the expressions for the absolute
value of the element Uτ2 of the PMNS matrix in the standard parametrisation and in the
parametrisation defined in eq. (2.20),

|Uτ2| = | cos θ12 sin θ23 + sin θ13 cos θ23 sin θ12e
iδ| = | sin θ◦23| . (2.26)

From the above equation we get for cos δ:

cos δ =
cos2 θ13(sin

2 θ◦23 − cos2 θ12) + cos2 θ◦13 cos2 θ◦23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| cos θ◦13 cos θ◦23|(cos2 θ13 − cos2 θ◦13 cos2 θ◦23)
1
2

. (2.27)

For the considered specific residual symmetries Ge and Gν , the predicted value of cos δ in
case A1 discussed in this subsection depends on the chosen discrete flavour symmetry Gf

via the values of the angles θ◦13 and θ◦23.
The method of derivation of the sum rule for cos δ of interest employed in the present

subsection and consisting, in particular, of choosing adequate parametrisations of the
PMNS matrix U (in terms of the complex rotations of Ue and of Uν) and of the matrix
U◦ (determined by the symmetries Ge, Gν and Gf), which allows to express the PMNS
matrix U in terms of minimal numbers of angle and phase parameters, will be used also in
all subsequent sections of this chapter. The technical details related to the method are
given in Appendices C and D.

We note finally that in the case of δ◦12 = 0, the symmetry forms TBM, BM, GRA,
GRB and HG, defined in eqs. (1.33), (1.35), (1.36), (1.37) and (1.38), respectively, can
be obtained from U◦ = R12(θ

◦
12)R23(θ

◦
23)R13(θ

◦
13) for specific values of the angles given in

Table 2.2.

2.2.2 Case A2: U13(θ
e
13, δ

e
13)

Using the parametrisation of the PMNS matrix U given in eq. (2.8) with (ij) = (13) and
the following parametrisation of U◦,

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
13) = U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)R12(θ

◦
12) , (2.28)
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Table 2.2. The TBM, BM, GRA, GRB and HG symmetry forms obtained in terms of the three
rotations R12(θ

◦
12)R23(θ

◦
23)R13(θ

◦
13).

Mixing θ◦12 θ◦23 θ◦13

TBM π/4 − sin−1(1/
√

3) π/6

BM sin−1
√

2/3 −π/6 sin−1(1/
√

3)

GRA sin−1
√

(7−
√

5)/11 − sin−1
√

(5 +
√

5)/20 sin−1
√

(7−
√

5)/22

GRB sin−1
√

2(15− 2
√

5)/41 − sin−1
√

(3 +
√

5)/16 sin−1
√

(15− 2
√

5)/41

HG sin−1
√

2/5 − sin−1
√

3/8 sin−1
√

1/5

we get for U (for details see Appendix C):

U = U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)R12(θ

◦
12)Q0 . (2.29)

The results derived in Appendix C and presented in eq. (C.6) allow us to recast eq. (2.29)
in the following form:

U = R13(θ̂13)P1(δ̂13)R23(θ
◦
23)R12(θ

◦
12)Q0 , P1(δ̂13) = diag(eiδ̂13 , 1, 1) . (2.30)

Here δ̂13 = α − β, where sin θ̂13, α and β are defined as in eqs. (C.7) and (C.8) after
setting i = 1, j = 3, θa13 = θe13, δa13 = δe13, θb13 = θ◦13 and δb13 = δ◦13. Using eq. (2.30) and the
standard parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = sin2 θ̂13 cos2 θ◦23 , (2.31)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ◦23
1− sin2 θ13

, (2.32)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θ̂13 sin2 θ◦12 + cos2 θ◦12 sin2 θ̂13 sin2 θ◦23

− 1

2
sin 2θ̂13 sin 2θ◦12 sin θ◦23 cos δ̂13

]
. (2.33)

Thus, in this scheme, as it follows from eq. (2.32), the value of sin2 θ23 is predicted once
the symmetry group Gf is fixed. This prediction, when confronted with the measured
value of sin2 θ23, constitutes an important test of the scheme considered for any given
discrete (lepton flavour) symmetry group Gf , which contains the residual symmetry groups
Ge = Z2 and Gν = Zn, n > 2 and/or Zn × Zm, n,m ≥ 2 as subgroups.

The sum rule for cos δ reads

cos δ = −cos2 θ13(cos2 θ◦12 cos2 θ◦23 − cos2 θ12) + sin2 θ◦23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| sin θ◦23|(cos2 θ13 − sin2 θ◦23)
1
2

.

(2.34)

The dependence of cos δ on Gf in this case is via the values of the angles θ◦12 and θ◦23.

2.2.3 Case A3: U23(θ
e
23, δ

e
23)

In the case with (ij) = (23), as can be shown, cos δ does not satisfy a sum rule, i.e., it
cannot be expressed in terms of the three neutrino mixing angles θ12, θ13 and θ23 and the
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other fixed angle parameters of the scheme. Indeed, employing the parametrisation of U◦
as U◦(θ◦12, θ◦13, θ◦23, δ◦23) = U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)R12(θ

◦
12), we can write the PMNS matrix in

the following form:

U = U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)R12(θ

◦
12)Q0 . (2.35)

Using the results derived in Appendix C and shown in eq. (C.6), we can recast eq. (2.35)
as

U = R23(θ̂23)P2(δ̂23)R13(θ
◦
13)R12(θ

◦
12)Q0 , P2(δ̂23) = diag(1, eiδ̂23 , 1) , (2.36)

with δ̂23 = α − β, where sin θ̂23, α and β are defined as in eqs. (C.7) and (C.8) after
setting i = 2, j = 3, θa23 = θe23, δa23 = δe23, θb23 = θ◦23 and δb23 = δ◦23. Comparing eq. (2.36)
and the standard parametrisation of the PMNS matrix, we find that sin2 θ13 = sin2 θ◦13,
sin2 θ23 = sin2 θ̂23, sin2 θ12 = sin2 θ◦12 and cos δ = ± cos δ̂23.

It follows from the preceding equations, in particular, that since, for any given Gf

compatible with the considered residual symmetries, θ◦13 and θ◦12 have fixed values, the
values of both sin2 θ13 and sin2 θ12 are predicted. The predictions depend on the chosen
symmetry Gf . Due to these predictions the scheme under discussion can be tested for
any given discrete symmetry candidate Gf , compatible, in particular, with the considered
residual symmetries.

We have also seen that δ is related only to an unconstrained phase parameter of the
scheme. In the case of a flavour symmetry Gf which, in particular, allows to reproduce
correctly the observed values of sin2 θ12 and sin2 θ13, it might be possible to obtain physically
viable prediction for cos δ by employing a generalised CP invariance constraint. An example
of the effect that generalised CP invariance has on restricting CPV phases is given in
Appendix E. Investigating the implications of the generalised CP invariance constraint
in the charged lepton or the neutrino sector in all the cases considered by us is, however,
beyond the scope of the present thesis.

2.2.4 Results for Gf = A4 (T ′), S4 and A5

The cases detailed in subsections 2.2.1–2.2.3 can all be obtained from the groups A4 (T ′),13

S4 and A5, when breaking them to Ge = Z2 and Gν = Zn (n ≥ 3) in the case of Dirac
neutrinos, or Gν = Z2 × Z2 in the case of both Dirac and Majorana neutrinos.14 We now
give an explicit example of how these cases can occur in A4.

In the case of the group A4 (see, e.g., [85]), the structure of the breaking patterns
discussed, e.g., in subsection 2.2.1 can be realised when (i) the S generator of A4 is
preserved in the neutrino sector, and when, due to an accidental symmetry, the mixing
matrix is fixed to be tri-bimaximal, U◦ν = UTBM, up to permutations of the columns,
and (ii) a ZT 2ST

2 or ZTST 2

2 is preserved in the charged lepton sector. The group element
generating the Z2 symmetry is diagonalised by the matrix U◦e . Therefore the angles θ◦12, θ◦13
and θ◦23 are obtained from the product U◦ = (U◦e )†U◦ν . The same structure (the structure
discussed in subsection 2.2.2) can be obtained in a similar manner from the flavour groups
S4 and A5 (A4, S4 and A5).

13In what follows we take T ′ in parentheses, because we restrict ourselves to the triplet representation
for the LH charged lepton and neutrino fields, and when working with 3-dimensional and 1-dimensional
representations of T ′, there is no way to distinguish T ′ from A4 [143].

14We only consider Z2 × Z2 when it is an actual subgroup of Gf .
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We have investigated the possibility of reproducing the observed values of the lepton
mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23 as well as obtaining physically viable
predictions for cos δ in the cases of residual symmetries Ge = Z2 and Gν = Zn, n > 2 or
Zn×Zm, n,m ≥ 2 15 (Dirac neutrinos), or Gν = Z2×Z2 (Majorana neutrinos), discussed in
subsections 2.2.1, 2.2.2 and 2.2.3, assuming that these residual symmetries originate from
the breaking of the flavour symmetries A4 (T ′), S4 and A5. The analysis was performed
using the best fit values of the three lepton mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13
from eqs. (2.15)–(2.17). The results we have obtained for the symmetries A4 (T ′), S4 and
A5 are summarised below.

We have found that in the cases under discussion, i.e., in cases A1, A2 and A3, and
flavour symmetries Gf = A4 (T ′), S4 and A5, with the exceptions to be discussed below, it
is impossible either to reproduce at least one of the measured values of sin2 θ12, sin2 θ13 and
sin2 θ23 even taking into account its respective 3σ uncertainty, or to get physically viable
values of cos δ satisfying | cos δ| ≤ 1. In cases A1 and A2 and the flavour groups A4 and
S4, for instance, the values of cos δ are unphysical. Using the group Gf = A5 leads either
to unphysical values of cos δ, or to values of sin2 θ23 which lie outside the corresponding
3σ allowed interval. In case A3, the symmetry A4, e.g., leads to (sin2 θ12, sin

2 θ13) = (0, 0)
or (1,0).

As mentioned earlier, there are three exceptions in which we can still get phenomeno-
logically viable results. In the A1 case (A2 case) and the S4 flavour symmetry, one
obtains bimaximal mixing corrected by a complex rotation in the 1-2 plane16 (1-3 plane).
The PMNS angle θ23 is predicted to have a value corresponding to sin2 θ23 = 0.488
(sin2 θ23 = 0.512). For the best fit values of sin2 θ12 and sin2 θ13 we find that cos δ = − 1.29
(cos δ = + 1.29). However, using the value of sin2 θ12 = 0.348, which lies in the 3σ al-
lowed interval, one gets the same value of sin2 θ23 and cos δ = −0.993 (cos δ = 0.993),
while in the part of the 3σ allowed interval of sin2 θ12, 0.348 ≤ sin2 θ12 ≤ 0.359, we have
−0.993 ≤ cos δ ≤ −0.915 (0.993 ≥ cos δ ≥ 0.915).

Also in the A1 case (A2 case) but with the A5 flavour symmetry and residual symmetry
Gν = Z3, which is only possible if the massive neutrinos are Dirac particles, we get the
predictions sin2 θ23 = 0.553 (sin2 θ23 = 0.447) and cos δ = 0.716 (cos δ = − 0.716). In
the A1 case (A2 case) with the A5 flavour symmetry and residual symmetry Gν = Z5,
which can be realised for neutrino Dirac mass term only, for the best fit values of sin2 θ12
and sin2 θ13 we get the predictions sin2 θ23 = 0.630 (sin2 θ23 = 0.370), which is slightly
outside the 3σ range) and cos δ = − 1.12 (cos δ = 1.12). However, using the value of
sin2 θ12 = 0.321, which lies in the 1σ allowed interval of sin2 θ12, one gets the same value of
sin2 θ23 and cos δ = −0.992 (cos δ = 0.992). In the part of the 3σ allowed interval of sin2 θ12,
0.321 ≤ sin2 θ12 ≤ 0.359, one has −0.992 ≤ cos δ ≤ −0.633 (0.992 ≥ cos δ ≥ 0.633).

15Note that there are no subgroups of the type Zn ×Zm bigger than Z2 ×Z2 in the cases of A4, S4 and
A5.

16For case A1 it can been shown that

diag(−1, 1, 1)U(θ◦12, δ
◦
12)R(θ◦23)R(θ◦13) diag(1,−1, 1) = UBM , (2.37)

if θ◦23 = sin−1(1/2), θ◦13 = sin−1(
√

1/3), θ◦12 = tan−1(
√

3/2 +
√

1/2) and δ◦12 = 0. Therefore, one has BM
mixing corrected from the left by a U(2) transformation in the degenerate subspace in the 1-2 plane. Note
that our results are in agreement with those obtained in [125].
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2.3 Pattern B: Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2

and Gν = Z2

In this section, we derive sum rules for cos δ in the case given in eq. (2.10). We recall
that for Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2 of interest, the matrix Ue
is unambiguously determined (up to multiplication by diagonal phase matrices on the
right and permutations of columns), while the matrix Uν is determined up to a complex
rotation in one plane.

2.3.1 Case B1: U13(θ
ν
13, δ

ν
13)

Combining the parametrisation of the PMNS matrix U given in eq. (2.10) with (ij) = (13)
and the parametrisation of U◦ as

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
13) = R23(θ

◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13) , (2.38)

we get for U (the details are given again in Appendix C):

U = R23(θ
◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 . (2.39)

The results derived in Appendix C and reported in eq. (C.6) allow us to recast eq. (2.39)
in the form

U = R23(θ
◦
23)R12(θ

◦
12)P3(δ̂13)R13(θ̂13)Q0 , P3(δ̂13) = diag(1, 1, eiδ̂13) . (2.40)

Here δ̂13 = −α − β and we have redefined P13(α, β)Q0 as Q0, where P13(α, β) =
diag(eiα, 1, eiβ) and the expressions for sin2 θ̂13, α and β can be obtained from eqs. (C.7)
and (C.8), by setting i = 1, j = 3, θa13 = θ◦13, δa13 = δ◦13, θb13 = θν13 and δb13 = δν13. Using
eq. (2.40) and the standard parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ◦12 sin2 θ̂13 , (2.41)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

cos2 θ13

[
cos2 θ◦23 sin2 θ̂13 sin2 θ◦12 + cos2 θ̂13 sin2 θ◦23

− 1

2
sin 2θ̂13 sin 2θ◦23 sin θ◦12 cos δ̂13

]
, (2.42)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ◦12
cos2 θ13

. (2.43)

It follows from eq. (2.43) that in the case under discussion the values of sin2 θ12 and sin2 θ13
are correlated.

A sum rule for cos δ can be derived by comparing the expressions for the absolute value
of the element Uτ2 of the PMNS matrix in the standard parametrisation and in the one
obtained using eq. (2.40):

|Uτ2| = | cos θ12 sin θ23 + sin θ13 cos θ23 sin θ12e
iδ| = | cos θ◦12 sin θ◦23| . (2.44)

From this equation we get

cos δ = −cos2 θ13(cos2 θ◦12 cos2 θ◦23 − cos2 θ23) + sin2 θ◦12(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| sin θ◦12|(cos2 θ13 − sin2 θ◦12)
1
2

.

(2.45)

The dependence of the predictions for cos δ on Gf is in this case via the values of θ◦12 and
θ◦23.
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2.3.2 Case B2: U23(θ
ν
23, δ

ν
23)

Utilising the parametrisation of the PMNS matrix U given in eq. (2.10) with (ij) = (23)
and the following parametrisation of U◦,

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
23) = R13(θ

◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23) , (2.46)

we obtain for U (Appendix C contains the relevant details):

U = R13(θ
◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 . (2.47)

The results given in eq. (C.6) in Appendix C make it possible to bring eq. (2.47) to the
form

U = R13(θ
◦
13)R12(θ

◦
12)P3(δ̂23)R23(θ̂23)Q0 , P3(δ̂23) = diag(1, 1, eiδ̂23) . (2.48)

Here δ̂23 = −α − β and we have redefined P23(α, β)Q0 as Q0, where P23(α, β) =
diag(1, eiα, eiβ). Using eq. (2.48) and the standard parametrisation of the PMNS matrix
U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ◦13 sin2 θ◦12 sin2 θ̂23 + sin2 θ◦13 cos2 θ̂23

+
1

2
sin 2θ̂23 sin 2θ◦13 sin θ◦12 cos δ̂23 , (2.49)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

cos2 θ◦12 sin2 θ̂23
cos2 θ13

, (2.50)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

cos2 θ13 − cos2 θ◦12 cos2 θ◦13
cos2 θ13

. (2.51)

Equation (2.51) implies that, as in the case investigated in the preceding subsection, the
values of sin2 θ12 and sin2 θ13 are correlated.

The sum rule for cos δ of interest can be obtained by comparing the expressions for the
absolute value of the element Uτ1 of the PMNS matrix in the standard parametrisation
and in the one obtained using eq. (2.48):

|Uτ1| = | sin θ12 sin θ23 − sin θ13 cos θ12 cos θ23e
iδ| = | cos θ◦12 sin θ◦13| . (2.52)

From the above equation we get for cos δ:

cos δ =
cos2 θ13(sin

2 θ◦12 − cos2 θ23) + cos2 θ◦12 cos2 θ◦13(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| cos θ◦12 cos θ◦13|(cos2 θ13 − cos2 θ◦12 cos2 θ◦13)
1
2

. (2.53)

The dependence of cos δ on Gf is realised in this case through the values of θ◦12 and θ◦13.

2.3.3 Case B3: U12(θ
ν
12, δ

ν
12)

In this case, as we show below, cos δ does not satisfy a sum rule, and thus is, in general,
a free parameter. Indeed, using the parametrisation of U◦ as U◦(θ◦12, θ◦13, θ◦23, δ◦12) =
R23(θ

◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12) we get the following expression for U :

U = R23(θ
◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 . (2.54)
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After recasting eq. (2.54) in the form

U = R23(θ
◦
23)R13(θ

◦
13)P2(δ̂12)R12(θ̂12)Q0 , P2(δ̂12) = diag(1, eiδ̂12 , 1) , (2.55)

where δ̂12 = −α− β, we find that sin2 θ13 = sin2 θ◦13, sin2 θ23 = sin2 θ◦23, sin2 θ12 = sin2 θ̂12
and cos δ = ± cos δ̂12.

It follows from the expressions for the neutrino mixing parameters thus derived that,
given a discrete symmetry Gf which can lead to the considered breaking patterns, the values
of sin2 θ13 and sin2 θ23 are predicted. This, in turn, allows to test the phenomenological
viability of the scheme under discussion for any appropriately chosen discrete lepton flavour
symmetry Gf .

In what concerns the phase δ, it is expressed in terms of an unconstrained phase
parameter present in the scheme we are considering. The comment made at the end of
subsection 2.2.3 is valid also in this case. Namely, given a non-Abelian discrete flavour
symmetry Gf which allows one to reproduce correctly the observed values of sin2 θ13 and
sin2 θ23, it might be possible to obtain physically viable prediction for cos δ by employing
a generalised CP invariance constraint in the charged lepton or the neutrino sector.

2.3.4 Results for Gf = A4 (T ′), S4 and A5

The schemes discussed in subsections 2.3.1–2.3.3 are realised when breaking Gf = A4 (T ′),
S4 and A5, to Ge = Zn (n ≥ 3) or Z2 × Z2 and Gν = Z2, for both Dirac and Majorana
neutrinos. As a reminder to the reader, we investigate the case of Z2 × Z2 when it is an
actual subgroup of Gf . As an explicit example of how this breaking can occur, we will
consider the case of Gf = A4 (T ′). The other cases when Gf = S4 or A5 can be obtained
from the breaking of S4 and A5 to the relevant subgroups as given in [125] and [144],
respectively.

In the case of the group A4 (see, e.g., [85]), the structure of the breaking patterns
discussed, e.g., in subsection 2.3.1 can be obtained by breaking A4 (i) in the charged
lepton sector to any of the four Z3 subgroups, namely, ZT

3 , ZST
3 , ZTS

3 , ZSTS
3 , and (ii) to

any of the three Z2 subgroups, namely, ZS
2 , ZT 2ST

2 , ZTST 2

2 , in the neutrino sector. In this
case, the matrix U◦ = UTBM gets corrected by a complex rotation matrix in the 1-3 plane
coming from the neutrino sector.

The results of the study performed by us of the phenomenological viability of the
schemes with residual symmetries Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2,
discussed in subsections 2.3.1, 2.3.2 and 2.3.3, when the residual symmetries result from the
breaking of the flavour symmetries A4 (T ′), S4 and A5, are described below. We present
results only in the cases in which we obtain values of sin2 θ12, sin2 θ13 and sin2 θ23 compatible
with their respective measured values (including the corresponding 3σ uncertainties) and
physically acceptable values of cos δ.

For Gf = A4, we find that only case B1 with Ge = Z3 is phenomenologically viable. In
this case, we have (sin2 θ◦12, sin

2 θ◦23) = (1/3, 1/2), which leads to the predictions sin2 θ12 =
0.341 and cos δ = 0.570. We find precisely the same results in case B1 if Gf = S4 and
Ge = Z3. Phenomenologically viable results are obtained for Gf = S4 and Ge = Z3 in
case B2 as well. In this case, (sin2 θ◦12, sin

2 θ◦13) = (1/6, 1/5), implying the predictions
sin2 θ12 = 0.317 and cos δ = − 0.269. If Ge = Z4 or Z2 × Z2 results from Gf = S4, we get
in case B1 (sin2 θ◦12, sin

2 θ◦23) = (1/4, 1/3) and correspondingly sin2 θ12 = 0.256 (which lies
slightly outside the 3σ allowed range of sin2 θ12) and the unphysical value of cos δ = − 1.19.
These two values are obtained for the best fit values of sin2 θ23 and sin2 θ13. However, for
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sin2 θ23 = 0.419 we find the physical value cos δ = −0.990, while in the part of the 3σ
allowed interval of sin2 θ23, 0.374 ≤ sin2 θ23 ≤ 0.419, we have −0.495 ≥ cos δ ≥ −0.990.

If Gf = A5, we find phenomenologically viable results (i) for Ge = Z3, in case B1,
(ii) for Ge = Z5, in cases B1 and B2, and (iii) for Ge = Z2 × Z2, in case B2. More
specifically, if Ge = Z3, we obtain in case B1 (sin2 θ◦12, sin

2 θ◦23) = (1/3, 1/2) leading to
the predictions sin2 θ12 = 0.341 and cos δ = 0.570. For Ge = Z5 in case B1 (case B2) we
find (sin2 θ◦12, sin

2 θ◦23) = (0.276, 1/2) ((sin2 θ◦12, sin
2 θ◦13) = (0.138, 0.160)), which leads to

the predictions sin2 θ12 = 0.283 and cos δ = 0.655 (sin2 θ12 = 0.259 and cos δ = − 0.229).
Finally, for Ge = Z2 × Z2 in case B2 we have two sets of values for (sin2 θ◦12, sin

2 θ◦13). The
first one, (sin2 θ◦12, sin

2 θ◦13) = (0.096, 0.276), together with the best fit values of sin2 θ13
and sin2 θ23, leads to sin2 θ12 = 0.330 and cos δ = −1.36. However, cos δ takes the physical
value of cos δ = −0.996 for sin2 θ23 = 0.518. In the part of the 3σ allowed interval of values
of sin2 θ23, 0.518 ≤ sin2 θ23 ≤ 0.641, we have −0.996 ≤ cos δ ≤ −0.478. For the second
set of values, (sin2 θ◦12, sin

2 θ◦13) = (1/4, 0.127), we get the predictions sin2 θ12 = 0.330 and
cos δ = 0.805.

2.4 Pattern C: Ge = Z2 and Gν = Z2

In this section, we derive sum rules for cos δ in the case given in eq. (2.12). We recall that
when the residual symmetries are Ge = Z2 and Gν = Z2, each of the matrices Ue and Uν
is determined up to a complex rotation in one plane.

2.4.1 Case C1: U12(θ
e
12, δ

e
12) and U13(θ

ν
13, δ

ν
13)

Similar to the already considered cases we combine the parametrisation of the PMNS
matrix U given in eq. (2.12) with (ij) = (12) and (rs) = (13), with the parametrisation of
U◦ given as

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
12, δ

◦
13) = U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U13(θ

◦
13, δ

◦
13) , (2.56)

and get the following expression for U (as usual, we refer to Appendix C for details):

U = U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 . (2.57)

Utilising the results derived in Appendix C and reported in eq. (C.6), we can recast
eq. (2.57) in the form

U = R12(θ̂
e
12)P1(δ̂)R23(θ

◦
23)R13(θ̂

ν
13)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.58)

Here δ̂ = αe−βe +αν +βν and we have redefined the matrix Q0 by absorbing the diagonal
phase matrix P13(−βν ,−αν) = diag(e−iβ

ν
, 1, e−iα

ν
) in it. Using eq. (2.58) and the standard

parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ̂e12 sin2 θ̂ν13 + cos2 θ̂ν13 sin2 θ̂e12 sin2 θ◦23

+
1

2
sin 2θ̂e12 sin 2θ̂ν13 sin θ◦23 cos δ̂ , (2.59)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ̂ν13 − sin2 θ13 + cos2 θ̂ν13 sin2 θ◦23
1− sin2 θ13

, (2.60)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ̂e12 cos2 θ◦23
1− sin2 θ13

. (2.61)
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The sum rule for cos δ of interest can be derived by comparing the expressions for the
absolute value of the element Uτ2 of the PMNS matrix in the standard parametrisation
and in the one obtained using eq. (2.58):

|Uτ2| = | cos θ12 sin θ23 + sin θ13 cos θ23 sin θ12e
iδ| = | sin θ◦23| . (2.62)

From the above equation we get for cos δ:

cos δ =
sin2 θ◦23 − cos2 θ12 sin2 θ23 − cos2 θ23 sin2 θ12 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
. (2.63)

Given the assumed breaking pattern, cos δ depends on the flavour symmetry Gf via the
value of θ◦23. Using the best fit values of the standard mixing angles for the NO neutrino
mass spectrum and the requirement | cos δ| ≤ 1, we find that sin2 θ◦23 should lie in the
following interval: 0.236 ≤ sin2 θ◦23 ≤ 0.377. Fixing two of the three angles to their best fit
values and varying the third one in its 3σ experimentally allowed range and considering
all the three possible combinations, we get that | cos δ| ≤ 1 if 0.195 ≤ sin2 θ◦23 ≤ 0.504.

2.4.2 Case C2: U13(θ
e
13, δ

e
13) and U12(θ

ν
12, δ

ν
12)

As in the preceding case, we use the parametrisation of the PMNS matrix U given in
eq. (2.12) but this time with (ij) = (13) and (rs) = (12), and the parametrisation of U◦
as

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
12, δ

◦
13) = U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U12(θ

◦
12, δ

◦
12) , (2.64)

to get for U (again the details can be found in Appendix C):

U = U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 . (2.65)

The results derived in Appendix C and reported in eq. (C.6) allow us to rewrite the
expression for U in eq. (2.65) as follows:

U = R13(θ̂
e
13)P1(δ̂)R23(θ

◦
23)R12(θ̂

ν
12)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) , (2.66)

where δ̂ = αe − βe + αν + βν , and also in this case we have redefined the matrix Q0 by
absorbing the phase matrix P12(−βν ,−αν) = diag(e−iβ

ν
, e−iα

ν
, 1) in it. From eq. (2.66)

and the standard parametrisation of the PMNS matrix U we get:

sin2 θ13 = |Ue3|2 = cos2 θ◦23 sin2 θ̂e13 , (2.67)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ◦23
cos2 θ13

, (2.68)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θ̂e13 sin2 θ̂ν12 + cos2 θ̂ν12 sin2 θ̂e13 sin2 θ◦23

− 1

2
sin 2θ̂e13 sin 2θ̂ν12 sin θ◦23 cos δ̂

]
. (2.69)

Given the value of sin2 θ◦23, eq. (2.68) implies the existence of a correlation between the
values of sin2 θ23 and sin2 θ13.

Comparing the expressions for the absolute value of the element Uµ1 of the PMNS
matrix in the standard parametrisation and in the one obtained using eq. (2.66), we have

|Uµ1| = | sin θ12 cos θ23 + sin θ13 sin θ23 cos θ12e
iδ| = | sin θ̂ν12 cos θ◦23| . (2.70)
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Figure 2.1. Dependence of cos δ on cos δ̂ in the case of Gf = S4 with sin2 θ◦23 = 1/2. The mixing
parameters sin2 θ12 and sin2 θ13 have been fixed to their best fit values for the NO neutrino
mass spectrum quoted in eqs. (2.15) and (2.17). The solid (dashed) line is for the case when
sin 2θ̂e13 sin 2θ̂ν12 is positive (negative).

From the above equations we get for cos δ:

cos δ =
cos2 θ13(cos2 θ◦23 sin2 θ̂ν12 − sin2 θ12) + sin2 θ◦23(sin

2 θ12 − cos2 θ12 sin2 θ13)

sin 2θ12 sin θ13| sin θ◦23|(cos2 θ13 − sin2 θ◦23)
1
2

. (2.71)

In this case, cos δ is a function of the known neutrino mixing angles θ12 and θ13, of the
angle θ◦23 fixed by Gf and the assumed symmetry breaking pattern, as well as of the phase
parameter δ̂ of the scheme. Predictions for cos δ can only be obtained when δ̂ is fixed
by additional considerations of, e.g., generalised CP invariance, symmetries, etc. In view
of this we show in Fig. 2.1 cos δ as a function of cos δ̂ for the best fit values of sin2 θ12
and sin2 θ13, and for the value sin2 θ◦23 = 1/2 corresponding to Gf = S4. We do not find
phenomenologically viable cases for A4 (T ′) and A5. Therefore we do not present such a
plot for these groups.

2.4.3 Case C3: U12(θ
e
12, δ

e
12) and U23(θ

ν
23, δ

ν
23)

We get for the PMNS matrix U ,

U = U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R13(θ

◦
13)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 , (2.72)

utilising the parametrisations of U shown in eq. (2.12) with (ij) = (12) and (rs) = (23)
and that of U◦ given below (further details can be found in Appendix C),

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
12, δ

◦
23) = U12(θ

◦
12, δ

◦
12)R13(θ

◦
13)U23(θ

◦
23, δ

◦
23) . (2.73)

With the help of the results derived in Appendix C and especially of eq. (C.6), the
expression in eq. (2.72) for the PMNS matrix U can be brought to the form

U = R12(θ̂
e
12)P2(δ̂)R13(θ

◦
13)R23(θ̂

ν
23)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) , (2.74)
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where δ̂ = βe − αe + αν + βν and, as in the preceding cases, we have redefined the phase
matrix Q0 by absorbing the phase matrix P23(−βν ,−αν) = diag(1, e−iβ

ν
, e−iα

ν
) in it. Using

eq. (2.74) and the standard parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = sin2 θ̂e12 sin2 θ̂ν23 + cos2 θ̂e12 cos2 θ̂ν23 sin2 θ◦13

+
1

2
sin 2θ̂e12 sin 2θ̂ν23 sin θ◦13 cos δ̂ , (2.75)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ̂ν23 − sin2 θ13 + cos2 θ̂ν23 sin2 θ◦13
1− sin2 θ13

, (2.76)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ̂e12 − sin2 θ13 + cos2 θ̂e12 sin2 θ◦13
1− sin2 θ13

. (2.77)

The sum rule for cos δ of interest can be derived, e.g., by comparing the expressions for the
absolute value of the element Uτ1 of the PMNS matrix in the standard parametrisation
and in the one obtained using eq. (2.74):

|Uτ1| = | sin θ12 sin θ23 − sin θ13 cos θ12 cos θ23e
iδ| = | sin θ◦13| . (2.78)

For cos δ we get:

cos δ =
sin2 θ12 sin2 θ23 − sin2 θ◦13 + cos2 θ12 cos2 θ23 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
. (2.79)

In this case, in contrast to that considered in the preceding subsection, cos δ is predicted
once the angle θ◦13, i.e., the flavour symmetry Gf , is fixed. Using the best fit values of
sin2 θ12, sin2 θ13 and sin2 θ23 for the NO neutrino mass spectrum, we find that physical
values of cos δ satisfying | cos δ| ≤ 1 can be obtained only if sin2 θ◦13 lies in the following
interval: 0.074 ≤ sin2 θ◦13 ≤ 0.214. Fixing two of the three neutrino mixing parameters
sin2 θ12, sin2 θ13 and sin2 θ23 to their best fit values and varying the third one in its 3σ
experimentally allowed range and taking into account all the three possible combinations,
we get that | cos δ| ≤ 1 provided 0.056 ≤ sin2 θ◦13 ≤ 0.267.

2.4.4 Case C4: U13(θ
e
13, δ

e
13) and U23(θ

ν
23, δ

ν
23)

The parametrisation of the PMNS matrix U , to be used further,

U = U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 , (2.80)

is found in this case from the parametrisations of the matrix U given in eq. (2.12) with
(ij) = (13) and (rs) = (23) and that of U◦ shown below (see Appendix C for details),

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
13, δ

◦
23) = U13(θ

◦
13, δ

◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23) . (2.81)

The results presented in eq. (C.6) of Appendix C allow us to recast eq. (2.80) in the form

U = R13(θ̂
e
13)P3(δ̂)R12(θ

◦
12)R23(θ̂

ν
23)Q0 , P3(δ̂) = diag(1, 1, eiδ̂) . (2.82)

Here δ̂ = βe − αe − αν − βν and we have absorbed the phase matrix P23(α
ν , βν) =

diag(1, eiα
ν
, eiβ

ν
) in the matrix Q0. Using eq. (2.82) and the standard parametrisation of

the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ̂ν23 sin2 θ̂e13 + cos2 θ̂e13 sin2 θ̂ν23 sin2 θ◦12
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+
1

2
sin 2θ̂e13 sin 2θ̂ν23 sin θ◦12 cos δ̂ , (2.83)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

cos2 θ◦12 sin2 θ̂ν23
1− sin2 θ13

, (2.84)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ̂e13 − sin2 θ13 + cos2 θ̂e13 sin2 θ◦12
1− sin2 θ13

. (2.85)

Comparing the expressions for the absolute value of the element Uµ1 of the PMNS matrix
in the standard parametrisation and in the one obtained using eq. (2.82), we find

|Uµ1| = | sin θ12 cos θ23 + sin θ13 sin θ23 cos θ12e
iδ| = | sin θ◦12| . (2.86)

From the above equation we get for cos δ:

cos δ =
sin2 θ◦12 − cos2 θ23 sin2 θ12 − cos2 θ12 sin2 θ13 sin2 θ23

sin θ13 sin 2θ23 sin θ12 cos θ12
. (2.87)

The predicted value of cos δ depends on the discrete symmetry Gf through the value of
the angle θ◦12. Using the best fit values of the standard mixing angles for the NO neutrino
mass spectrum and the requirement | cos δ| ≤ 1, we find that sin2 θ◦12 should lie in the
following interval: 0.110 ≤ sin2 θ◦12 ≤ 0.251. Fixing two of the three neutrino mixing
angles to their best fit values and varying the third one in its 3σ experimentally allowed
range and accounting for all the three possible combinations, we get that | cos δ| ≤ 1 if
0.057 ≤ sin2 θ◦12 ≤ 0.281.

2.4.5 Case C5: U23(θ
e
23, δ

e
23) and U13(θ

ν
13, δ

ν
13)

The parametrisation of the PMNS matrix U , which is convenient for our further analysis,

U = U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 , (2.88)

can be obtained in this case utilising the parametrisations of the matrix U given in eq. (2.12)
with (ij) = (23) and (rs) = (13) and that of the matrix U◦ given below (for details see
Appendix C),

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
13, δ

◦
23) = U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13) . (2.89)

The expression in eq. (2.88) for U can further be cast in a “minimal” form with the help of
eq. (C.6) in Appendix C:

U = R23(θ̂
e
23)P3(δ̂)R12(θ

◦
12)R13(θ̂

ν
13)Q0 , P3(δ̂) = diag(1, 1, eiδ̂) , (2.90)

where δ̂ = βe−αe−αν−βν and we have absorbed the matrix P13(α
ν , βν) = diag(eiα

ν
, 1, eiβ

ν
)

in the phase matrix Q0. Using eq. (2.90) and the standard parametrisation of the PMNS
matrix U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ◦12 sin2 θ̂ν13 , (2.91)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θ̂ν13 sin2 θ̂e23 + cos2 θ̂e23 sin2 θ̂ν13 sin2 θ◦12

− 1

2
sin 2θ̂e23 sin 2θ̂ν13 sin θ◦12 cos δ̂

]
, (2.92)
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Figure 2.2. Dependence of cos δ on cos δ̂ in the case of Gf = S4 or A5 with sin2 θ◦12 = 1/4.
The mixing parameters sin2 θ23 and sin2 θ13 have been fixed to their best fit values for the NO
neutrino mass spectrum quoted in eqs. (2.16) and (2.17). The solid (dashed) line is for the case
when sin 2θ̂e23 sin 2θ̂ν13 is positive (negative).

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ◦12
1− sin2 θ13

. (2.93)

We note that, given Gf , the values of sin2 θ12 and sin2 θ13 are correlated. This allows one
to perform a critical test of the scheme under study once the discrete symmetry group Gf

has been specified.
The sum rule for cos δ of interest can be derived, e.g., by comparing the expressions for

the absolute value of the element Uτ2 of the PMNS matrix in the standard parametrisation
and in the one obtained using eq. (2.90):

|Uτ2| = | cos θ12 sin θ23 + sin θ13 cos θ23 sin θ12e
iδ| = | cos θ◦12 sin θ̂e23| . (2.94)

This leads to

cos δ =
cos2 θ13(cos2 θ◦12 sin2 θ̂e23 − sin2 θ23) + sin2 θ◦12(sin

2 θ23 − cos2 θ23 sin2 θ13)

sin 2θ23 sin θ13| sin θ◦12|(cos2 θ13 − sin2 θ◦12)
1
2

. (2.95)

Similar to case C2 analysed in subsection 2.4.2, cos δ is a function of the known neutrino
mixing angles θ13 and θ23, of the angle θ◦12 fixed by Gf and the assumed symmetry breaking
pattern, as well as of the phase parameter δ̂ of the scheme. Predictions for cos δ can
be obtained if δ̂ is fixed by additional considerations of, e.g., generalised CP invariance,
symmetries, etc. In view of this we show in Fig. 2.2 cos δ as a function of cos δ̂ for the
best fit values of sin2 θ13 and sin2 θ23, and for the value sin2 θ◦12 = 1/4 corresponding to
Gf = S4 and A5. We do not find phenomenologically viable cases for A4 (T ′). Therefore
we do not present such a plot for these groups.

2.4.6 Case C6: U23(θ
e
23, δ

e
23) and U12(θ

ν
12, δ

ν
12)

We show below that in this case cos δ coincides (up to a sign) with the cosine of an
unconstrained CPV phase parameter of the scheme and therefore cannot be determined
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from the values of the neutrino mixing angles and of the angles determined by the residual
symmetries. Indeed, using the parametrisation of the matrix U given in eq. (2.12) with
(ij) = (23) and (rs) = (12) and the parametrisation of U◦ as follows (see Appendix C for
details),

U◦(θ◦12, θ
◦
13, θ

◦
23, δ

◦
12, δ

◦
23) = U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12) , (2.96)

we get for U :

U = U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 . (2.97)

The results derived in Appendix C in eq. (C.6) make it possible to recast eq. (2.97) in the
form

U = R23(θ̂
e
23)P2(δ̂)R13(θ

◦
13)R12(θ̂

ν
12)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) . (2.98)

Here δ̂ = αe−βe−αν−βν and, as in the preceding cases, we have redefined the phase matrix
Q0 by absorbing the phase matrix P12(α

ν , βν) = diag(eiα
ν
, eiβ

ν
, 1) in it. Using eq. (2.98)

and the standard parametrisation of the PMNS matrix U , we find that sin2 θ13 = sin2 θ◦13,
sin2 θ23 = sin2 θ̂e23 and sin2 θ12 = sin2 θ̂ν12. Comparing the absolute value of the element
Uτ1 allows us to find that cos δ = ± cos δ̂. Thus, for a given flavour symmetry Gf , the
value of sin2 θ13 is predicted. This allows to test the phenomenological viability of the case
under discussion, since the value of sin2 θ13 is known experimentally with a relatively high
precision.

A comment, analogous to those made in similar cases considered in subsections 2.2.3
and 2.3.3, is in order. Namely, for a non-Abelian flavour symmetry Gf which allows to
reproduce correctly the observed values of sin2 θ12, sin2 θ13 and sin2 θ23, it might be possible
to obtain physically viable prediction for cos δ by employing generalised CP invariance in
the charged lepton or the neutrino sector.

2.4.7 Case C7: U12(θ
e
12, δ

e
12) and U12(θ

ν
12, δ

ν
12)

Using the following parametrisation of U◦,

U◦(θ◦12, θ̃
◦
12, θ

◦
23, δ

◦
12, δ̃

◦
12) = U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U12(θ̃

◦
12, δ̃

◦
12) , (2.99)

we have for U :

U = U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U12(θ̃

◦
12, δ̃

◦
12)U12(θ

ν
12, δ

ν
12)Q0 . (2.100)

Utilising the results derived in Appendix C and reported in eq. (C.6), we can recast
eq. (2.100) in the form

U = R12(θ̂
e
12)P1(δ̂)R23(θ

◦
23)R12(θ̂

ν
12)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.101)

Here δ̂ = αe − βe + αν + βν and we have redefined the matrix Q0 by absorbing the
diagonal phase matrix P12(−βν ,−αν) = diag(e−iβ

ν
, e−iα

ν
, 1) in it. Using eq. (2.101) and

the standard parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = sin2 θ◦23 sin2 θ̂e12 , (2.102)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ◦23 cos2 θ̂e12
1− sin2 θ13

, (2.103)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θ◦23 cos2 θ̂ν12 sin2 θ̂e12 + cos2 θ̂e12 sin2 θ̂ν12
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Figure 2.3. Dependence of cos δ on cos δ̂ in the case of Gf = S4 with sin2 θ◦23 = 1/2. The mixing
parameters sin2 θ12 and sin2 θ13 have been fixed to their best fit values for the NO neutrino
mass spectrum quoted in eqs. (2.15) and (2.17). The solid (dashed) line is for the case when
sin 2θ̂e12 sin 2θ̂ν12 is positive (negative).

+
1

2
sin 2θ̂e12 sin 2θ̂ν12 cos θ◦23 cos δ̂

]
. (2.104)

From eqs. (2.102) and (2.103) we see that the angles θ13 and θ23 are correlated:

sin2 θ23 =
sin2 θ◦23 − sin2 θ13

1− sin2 θ13
. (2.105)

Comparing the expressions for the absolute value of the element Uτ1 of the PMNS
matrix in the standard parametrisation and in the one obtained using eq. (2.101), we have

|Uτ1| = | sin θ12 sin θ23 − sin θ13 cos θ23 cos θ12e
iδ| = | sin θ̂ν12 sin θ◦23| . (2.106)

From the above equations we get for cos δ:

cos δ =
sin2 θ13(cos2 θ12 cos2 θ◦23 − sin2 θ12) + sin2 θ◦23(sin

2 θ12 − cos2 θ13 sin2 θ̂ν12)

sin 2θ12 sin θ13| cos θ◦23|(sin2 θ◦23 − sin2 θ13)
1
2

. (2.107)

In this case, cos δ is a function of the known neutrino mixing angles θ12 and θ13, of the
angle θ◦23 fixed by Gf and the assumed symmetry breaking pattern, as well as of the phase
parameter δ̂ of the scheme. Predictions for cos δ can only be obtained when δ̂ is fixed
by additional considerations of, e.g., generalised CP invariance, symmetries, etc. In view
of this we show in Fig. 2.3 cos δ as a function of cos δ̂ for the best fit values of sin2 θ12
and sin2 θ13, and for the value sin2 θ◦23 = 1/2 corresponding to Gf = S4. We do not find
phenomenologically viable cases for Gf = A4 (T ′) and A5.

2.4.8 Case C8: U13(θ
e
13, δ

e
13) and U13(θ

ν
13, δ

ν
13)

Using the following parametrisation of U◦,

U◦(θ◦13, θ̃
◦
13, θ

◦
23, δ

◦
13, δ̃

◦
13) = U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U13(θ̃

◦
13, δ̃

◦
13) , (2.108)
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we have for U :

U = U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U13(θ̃

◦
13, δ̃

◦
13)U13(θ

ν
13, δ

ν
13)Q0 . (2.109)

Utilising the results derived in Appendix C and reported in eq. (C.6), we can recast
eq. (2.109) in the form

U = R13(θ̂
e
13)P1(δ̂)R23(θ

◦
23)R13(θ̂

ν
13)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.110)

Here δ̂ = αe − βe + αν + βν and we have redefined the matrix Q0 by absorbing the
diagonal phase matrix P13(−βν ,−αν) = diag(e−iβ

ν
, 1, e−iα

ν
) in it. Using eq. (2.110) and

the standard parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = cos2 θ◦23 cos2 θ̂ν13 sin2 θ̂e13 + cos2 θ̂e13 sin2 θ̂ν13

+
1

2
sin 2θ̂e13 sin 2θ̂ν13 cos θ◦23 cos δ̂ , (2.111)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ◦23 cos2 θ̂ν13
1− sin2 θ13

, (2.112)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ◦23 sin2 θ̂e13
1− sin2 θ13

. (2.113)

The sum rule for cos δ of interest can be derived by comparing the expressions for the
absolute value of the element Uµ2 of the PMNS matrix in the standard parametrisation
and in the one obtained using eq. (2.110):

|Uµ2| = | cos θ12 cos θ23 − sin θ13 sin θ23 sin θ12e
iδ| = | cos θ◦23| . (2.114)

From the above equation we get for cos δ:

cos δ =
cos2 θ12 cos2 θ23 − cos2 θ◦23 + sin2 θ12 sin2 θ23 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
. (2.115)

Given the assumed breaking pattern, cos δ depends on the flavour symmetry Gf via the
value of θ◦23. Using the best fit values of the standard mixing angles for the NO neutrino
mass spectrum and the requirement | cos δ| ≤ 1, we find that sin2 θ◦23 should lie in the
following interval: 0.537 ≤ sin2 θ◦23 ≤ 0.677. Fixing two of the three angles to their best fit
values and varying the third one in its 3σ experimentally allowed range and considering
all the three possible combinations, we get that | cos δ| ≤ 1 if 0.496 ≤ sin2 θ◦23 ≤ 0.805.

2.4.9 Case C9: U23(θ
e
23, δ

e
23) and U23(θ

ν
23, δ

ν
23)

Using the following parametrisation of U◦,

U◦(θ◦23, θ̃
◦
23, θ

◦
12, δ

◦
23, δ̃

◦
23) = U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U23(θ̃

◦
23, δ̃

◦
23) , (2.116)

we have for U :

U = U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U23(θ̃

◦
23, δ̃

◦
23)U23(θ

ν
23, δ

ν
23)Q0 . (2.117)

Utilising the results derived in Appendix C and reported in eq. (C.6), we can recast
eq. (2.117) in the form

U = R23(θ̂
e
23)P2(δ̂)R12(θ

◦
12)R23(θ̂

ν
23)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) . (2.118)
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Here δ̂ = αe−βe +αν +βν and we have redefined the matrix Q0 by absorbing the diagonal
phase matrix P23(α

ν , βν) = diag(1, eiα
ν
, eiβ

ν
) in it. Using eq. (2.118) and the standard

parametrisation of the PMNS matrix U , we find:

sin2 θ13 = |Ue3|2 = sin2 θ◦12 sin2 θ̂ν23 , (2.119)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θ◦12 cos2 θ̂e23 sin2 θ̂ν23 + cos2 θ̂ν23 sin2 θ̂e23

+
1

2
sin 2θ̂e23 sin 2θ̂ν23 cos θ◦12 cos δ̂

]
, (2.120)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ◦12 cos2 θ̂ν23
1− sin2 θ13

. (2.121)

From eqs. (2.119) and (2.121) we find that the angles θ13 and θ12 are correlated:

sin2 θ12 =
sin2 θ◦12 − sin2 θ13

1− sin2 θ13
. (2.122)

Comparing the expressions for the absolute value of the element Uτ1 of the PMNS
matrix in the standard parametrisation and in the one obtained using eq. (2.118), we have

|Uτ1| = | sin θ12 sin θ23 − sin θ13 cos θ23 cos θ12e
iδ| = | sin θ̂e23 sin θ◦12| . (2.123)

From the above equations we get for cos δ:

cos δ =
sin2 θ13(cos2 θ23 cos2 θ◦12 − sin2 θ23) + sin2 θ◦12(sin

2 θ23 − cos2 θ13 sin2 θ̂e23)

sin 2θ23 sin θ13| cos θ◦12|(sin2 θ◦12 − sin2 θ13)
1
2

. (2.124)

In this case, cos δ is a function of the known neutrino mixing angles θ23 and θ13, of the
angle θ◦12 fixed by Gf and the assumed symmetry breaking pattern, as well as of the phase
parameter δ̂ of the scheme. Predictions for cos δ can only be obtained when δ̂ is fixed by
additional considerations of, e.g., generalised CP invariance, symmetries, etc. In view of
this we show in Fig. 2.4 cos δ as a function of cos δ̂ for the best fit values of sin2 θ23 and
sin2 θ13, and for the value sin2 θ◦12 = (r + 2)/(4r + 4) ≈ 0.345, r = (1 +

√
5)/2 being the

golden ratio, corresponding to Gf = A5. We do not find phenomenologically viable cases
for Gf = A4 (T ′) and S4.

2.4.10 Results for Gf = A4 (T ′), S4 and A5

The schemes considered in Sections 2.4.1–2.4.9 can be applied when considering the
breaking Gf to Ge = Z2 and Gν = Z2, for both Majorana and Dirac neutrinos. As explicit
examples of this, we now consider Gf = A4 (T ′), S4 and A5 broken to Ge = Z2 and
Gν = Z2. As such, we have considered all possible combinations of residual Z2 symmetries
for a given flavour symmetry group, namely, Ge = Z2 and Gν = Z2 for Gf = A4 (T ′), S4,
A5. For instance, in the cases of the schemes described in subsections 2.4.1–2.4.5, and
Gf = S4 broken to Ge = Za

2 and Gν = Zb
2 with (a, b) = (T 2U,U), (T 2U, SU), (T 2U, TU),

(T 2U, STSU), etc. (a total of 24 combinations of order two elements), the value of the
relevant parameter contained in the fixed matrix U◦ yields sin2 θ◦23 = 1/4, sin2 θ◦23 = 1/2,
sin2 θ◦13 = 1/4, sin2 θ◦12 = 1/4, and sin2 θ◦12 = 1/4, respectively. In A5 for cases C1, C3, C4
and C5 we find the sine square of the corresponding fixed angle in the matrix U◦ to be 1/4,
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Figure 2.4. Dependence of cos δ on cos δ̂ in the case of Gf = A5 with sin2 θ◦12 = (r+2)/(4r+4) ≈
0.345. The mixing parameters sin2 θ23 and sin2 θ13 have been fixed to their best fit values for the
NO neutrino mass spectrum quoted in eqs. (2.16) and (2.17). The solid (dashed) line is for the
case when sin 2θ̂e23 sin 2θ̂ν23 is positive (negative).

e.g., for Ge = Za
2 and Gν = Zb

2 with (a, b) = (S, ST 2ST 3S), (S, ST 3ST 2S), (S, T 2ST 3),
(S, T 3ST 2), etc. (in total, for 60 combinations of order two elements).

For the symmetry group A4, we find that none of the combinations of the residual
symmetries Ge = Z2 and Gν = Z2 provide physical values of cos δ and phenomenologically
viable results for the neutrino mixing angles simultaneously.

For Gf = S4, using the best fit values of the mixing angles θ12, θ13 and θ23, we get
cos δ = −0.806, −1.52 and 0.992 in cases C1, C3 and C4, respectively. Physically acceptable
value of cos δ in case C3 can be obtained for sin2 θ23 = 0.562 allowed at 3σ, for which
cos δ = −0.996. In the part of the 3σ allowed range of sin2 θ23, 0.562 ≤ sin2 θ23 ≤ 0.641,
we have −0.996 ≤ cos δ ≤ −0.690. Further, in case C2, in which the relevant parameter
sin2 θ◦23 = 1/2, the value of cos δ is not fixed, while the atmospheric angle is predicted
to have a value corresponding to sin2 θ23 = 0.512. Similarly, in case C5 the value of
cos δ is not fixed, while sin2 θ12 = 0.256 (which is slightly outside the corresponding 3σ
interval). In case C7 we find that cos δ is not fixed and sin2 θ23 = 0.488. Finally, for
C8 with sin2 θ◦23 = 1/2 and 3/4, using the best fit values of the neutrino mixing angles
for the NO spectrum, we have cos δ = −1.53 and 2.04, respectively. The physical values
of cos δ can be obtained, using, e.g., the values of sin2 θ23 = 0.380 and 0.543, for which
cos δ = −0.995 and 0.997, respectively. In the parts of the 3σ allowed range of sin2 θ23,
0.374 ≤ sin2 θ23 ≤ 0.380 and 0.543 ≤ sin2 θ23 ≤ 0.641, we have −0.938 ≥ cos δ ≥ −0.995
and 0.997 ≥ cos δ ≥ 0.045, respectively.

For the A5 symmetry group, cases C1 with sin2 θ◦23 = 1/4, C3 with sin2 θ◦13 = 1/4
and C4 with sin2 θ◦12 = 1/4 lead to the same predictions obtained with Gf = S4, namely,
cos δ = −0.806, −1.52 and 0.992, respectively. Moreover, in case C3 (case C4) the value
of sin2 θ◦13 = 0.096 (sin2 θ◦12 = 0.096) is found, which along with the best fit values of the
mixing angles gives cos δ = 0.688 (cos δ = −1.21). Using the value of sin2 θ23 = 0.487
allowed at 2σ, one gets in case C4 cos δ = −0.997, while in the part of the 3σ allowed range
of sin2 θ23, 0.487 ≤ sin2 θ23 ≤ 0.641, we have −0.997 ≤ cos δ ≤ −0.376. Note also, if sin2 θ23
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is fixed to its best fit value, one can obtain the physical value of cos δ = −0.999 using
sin2 θ12 = 0.277. For the part of the 3σ allowed range of sin2 θ12, 0.259 ≤ sin2 θ12 ≤ 0.277,
one gets −0.871 ≥ cos δ ≥ −0.999. Cases C5 and C8 are the same as for the S4 symmetry
group. Finally, in case C9, the value of cos δ is not fixed, while using the best fit value of
the reactor angle, we get sin2 θ12 = 0.330.

2.5 Summary of the results for patterns A, B and C
The sum rules for cos δ derived in Sections 2.2, 2.3 and 2.4 are summarised in Tables 2.3
and 2.4. The sum rules for sin2 θ12, sin2 θ13 and sin2 θ23, which lead to predictions for
the indicated neutrino mixing parameters once the discrete flavour symmetry Gf is fixed,
are given in Tables 2.5 and 2.6. In the cases in Tables 2.5 and 2.6 in which cos δ is
unconstrained, a relatively precise measurement of sin2 θ12, sin2 θ13 or sin2 θ23 can provide
a critical test of the corresponding schemes due to constraints satisfied by the indicated
neutrino mixing parameters.

A general comment on the results derived in Sections 2.2, 2.3 and 2.4 is in order. Since
we do not have any information on the mass matrices, we have the freedom to permute
the columns of the matrices Ue and Uν , or equivalently, the columns and the rows of the
PMNS matrix U . The results in Tables 2.3 and 2.4 cover all the possibilities because, as
we demonstrate below, the permutations bring one of the considered cases into another
considered case. For example, consider the case of U = U13(θ

e
13, δ

e
13)U

◦ U23(θ
ν
23, δ

ν
23)Q0.

The permutation of the second and third rows of U is given by

π23 U = π23 U13(θ
e
13, δ

e
13)π

T
23 π23 U

◦ U23(θ
ν
23, δ

ν
23)Q0 ,

where we have defined

π23 =

1 0 0
0 0 1
0 1 0

 . (2.125)

Since the combination π23 U13(θ
e
13, δ

e
13) π

T
23 gives a unitary matrix U12(θ

e
13, δ

e
13), the resulting

PMNS matrix U ′ after the redefinition θe13 → θe12, δe13 → δe12 and π23 U◦ → U◦ yields

U ′ = U12(θ
e
12, δ

e
12)U

◦ U23(θ
ν
23, δ

ν
23)Q0 ,

which represents another case present in Table 2.4. It is worth noting that the freedom in
redefining the matrix U◦ follows from the fact that U◦ is a general 3× 3 unitary matrix
and hence can be parametrised as described in Section 2.1 and in Appendix C. All the
other permutations should be treated in the same way and lead to similar results.
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Table 2.3. Summary of the sum rules for cos δ. Cases A1, A2 and A3 correspond to Ge = Z2 and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2, while
cases B1, B2 and B3 correspond to Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2. See text for further details.

Case Parametrisation of the PMNS matrix U Sum rule for cos δ

A1 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)R13(θ

◦
13)Q0

cos2 θ13(sin
2 θ◦23 − cos2 θ12) + cos2 θ◦13 cos2 θ◦23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| cos θ◦13 cos θ◦23|(cos2 θ13 − cos2 θ◦13 cos2 θ◦23)
1
2

A2 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)R12(θ

◦
12)Q0 −cos2 θ13(cos2 θ◦12 cos2 θ◦23 − cos2 θ12) + sin2 θ◦23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| sin θ◦23|(cos2 θ13 − sin2 θ◦23)
1
2

A3 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)R12(θ

◦
12)Q0 ± cos δ̂23

B1 R23(θ
◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 −cos2 θ13(cos2 θ◦12 cos2 θ◦23 − cos2 θ23) + sin2 θ◦12(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| sin θ◦12|(cos2 θ13 − sin2 θ◦12)
1
2

B2 R13(θ
◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0

cos2 θ13(sin
2 θ◦12 − cos2 θ23) + cos2 θ◦12 cos2 θ◦13(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| cos θ◦12 cos θ◦13|(cos2 θ13 − cos2 θ◦12 cos2 θ◦13)
1
2

B3 R23(θ
◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 ± cos δ̂12
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Table 2.4. Summary of the sum rules for cos δ. Cases C1–C9 correspond to Ge = Z2 and Gν = Z2. See text for further details.

Case Parametrisation of the PMNS matrix U Sum rule for cos δ

C1 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0

sin2 θ◦23 − cos2 θ12 sin2 θ23 − cos2 θ23 sin2 θ12 sin2 θ13
sin θ13 sin 2θ23 sin θ12 cos θ12

C2 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0

cos2 θ13(cos2 θ◦23 sin2 θ̂ν12 − sin2 θ12) + sin2 θ◦23(sin
2 θ12 − cos2 θ12 sin2 θ13)

sin 2θ12 sin θ13| sin θ◦23|(cos2 θ13 − sin2 θ◦23)
1
2

C3 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R13(θ

◦
13)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0

sin2 θ12 sin2 θ23 − sin2 θ◦13 + cos2 θ12 cos2 θ23 sin2 θ13
sin θ13 sin 2θ23 sin θ12 cos θ12

C4 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0

sin2 θ◦12 − cos2 θ23 sin2 θ12 − cos2 θ12 sin2 θ13 sin2 θ23
sin θ13 sin 2θ23 sin θ12 cos θ12

C5 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0

cos2 θ13(cos2 θ◦12 sin2 θ̂e23 − sin2 θ23) + sin2 θ◦12(sin
2 θ23 − cos2 θ23 sin2 θ13)

sin 2θ23 sin θ13| sin θ◦12|(cos2 θ13 − sin2 θ◦12)
1
2

C6 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 ± cos δ̂

C7 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U12(θ̃

◦
12, δ̃

◦
12)U12(θ

ν
12, δ

ν
12)Q0

sin2 θ13(cos2 θ12 cos2 θ◦23 − sin2 θ12) + sin2 θ◦23(sin
2 θ12 − cos2 θ13 sin2 θ̂ν12)

sin 2θ12 sin θ13| cos θ◦23|(sin2 θ◦23 − sin2 θ13)
1
2

C8 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U13(θ̃

◦
13, δ̃

◦
13)U13(θ

ν
13, δ

ν
13)Q0

cos2 θ12 cos2 θ23 − cos2 θ◦23 + sin2 θ12 sin2 θ23 sin2 θ13
sin θ13 sin 2θ23 sin θ12 cos θ12

C9 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U23(θ̃

◦
23, δ̃

◦
23)U23(θ

ν
23, δ

ν
23)Q0

sin2 θ13(cos2 θ23 cos2 θ◦12 − sin2 θ23) + sin2 θ◦12(sin
2 θ23 − cos2 θ13 sin2 θ̂e23)

sin 2θ23 sin θ13| cos θ◦12|(sin2 θ◦12 − sin2 θ13)
1
2
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Table 2.5. Summary of the sum rules for sin2 θ12, sin2 θ13 and sin2 θ23. Cases A1, A2 and A3 correspond to Ge = Z2 and Gν = Zn, n > 2 or
Zn × Zm, n,m ≥ 2, while cases B1, B2 and B3 correspond to Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2. See text for further details.

Case Parametrisation of the PMNS matrix U Sum rule for sin2 θ12 and/or sin2 θ13 and/or sin2 θ23

A1 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)R13(θ

◦
13)Q0 sin2 θ23 =

sin2 θ◦13 − sin2 θ13 + cos2 θ◦13 sin2 θ◦23
1− sin2 θ13

A2 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)R12(θ

◦
12)Q0 sin2 θ23 =

sin2 θ◦23
1− sin2 θ13

A3 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)R12(θ

◦
12)Q0 sin2 θ13 = sin2 θ◦13 , sin2 θ12 = sin2 θ◦12

B1 R23(θ
◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 sin2 θ12 =

sin2 θ◦12
1− sin2 θ13

B2 R13(θ
◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 sin2 θ12 =

cos2 θ13 − cos2 θ◦12 cos2 θ◦13
1− sin2 θ13

B3 R23(θ
◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 sin2 θ13 = sin2 θ◦13 , sin2 θ23 = sin2 θ◦23
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Table 2.6. Summary of the sum rules for sin2 θ12, sin2 θ13 and sin2 θ23. Cases C1–C9 correspond to Ge = Z2 and Gν = Z2. See text for further
details.

Case Parametrisation of the PMNS matrix U Sum rule for sin2 θ12 and/or sin2 θ13 and/or sin2 θ23

C1 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 not fixed

C2 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 sin2 θ23 =

sin2 θ◦23
1− sin2 θ13

C3 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R13(θ

◦
13)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 not fixed

C4 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23)U23(θ

ν
23, δ

ν
23)Q0 not fixed

C5 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13)U13(θ

ν
13, δ

ν
13)Q0 sin2 θ12 =

sin2 θ◦12
1− sin2 θ13

C6 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12)U12(θ

ν
12, δ

ν
12)Q0 sin2 θ13 = sin2 θ◦13

C7 U12(θ
e
12, δ

e
12)U12(θ

◦
12, δ

◦
12)R23(θ

◦
23)U12(θ̃

◦
12, δ̃

◦
12)U12(θ

ν
12, δ

ν
12)Q0 sin2 θ23 =

sin2 θ◦23 − sin2 θ13

1− sin2 θ13

C8 U13(θ
e
13, δ

e
13)U13(θ

◦
13, δ

◦
13)R23(θ

◦
23)U13(θ̃

◦
13, δ̃

◦
13)U13(θ

ν
13, δ

ν
13)Q0 not fixed

C9 U23(θ
e
23, δ

e
23)U23(θ

◦
23, δ

◦
23)R12(θ

◦
12)U23(θ̃

◦
23, δ̃

◦
23)U23(θ

ν
23, δ

ν
23)Q0 sin2 θ12 =

sin2 θ◦12 − sin2 θ13

1− sin2 θ13
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2.6 Pattern D: fully broken Ge and Gν = Zn, n > 2

or Zn × Zm, n,m ≥ 2

If the discrete flavour symmetry Gf is fully broken in the charged lepton sector the matrix
Ue is unconstrained and includes, in general, three rotation angle and three CPV phase
parameters. It is impossible to derive predictions for the mixing angles and CPV phases
in the PMNS matrix in this case. Therefore, we will consider in this section forms of
Ue corresponding to one of the rotation angle parameters being equal to zero. Some
of these forms of Ue correspond to a class of models of neutrino mass generation (see,
e.g., [122,145–149]) and lead, in particular, to sum rules for cos δ.

We give in Appendix D the most general parametrisations of U under the assumption
that in the case of fully broken Ge one rotation angle in the matrix Ue vanishes. Cases D3
and D4 in Table D.1 with θ◦13 = 0 have been analysed in [99,100,109], while case D6 has
been investigated in [100]. We will consider them in detail in the next chapter.

2.6.1 Case D1: U23(θ
e
23, δ

e
23)U12(θ

e
12, δ

e
12)

We consider the following parametrisation of the PMNS matrix (see Appendix D):

U = U23(θ
e
23, δ

e
23)R12(θ̂12)P1(δ̂)R23(θ

◦
23)R13(θ

◦
13)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1). (2.126)

We find that:

sin2 θ13 = |Ue3|2 = sin2 θ13(θ̂12, δ̂, θ
◦
13, θ

◦
23) , (2.127)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ23(θ̂12, δ̂, θ

e
23, δ

e
23, θ

◦
13, θ

◦
23) , (2.128)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

cos2 θ◦23 sin2 θ̂12
cos2 θ13

. (2.129)

As it can be seen from the previous equations and the absolute value of the element Uµ2,

|Uµ2| = | cos θe23 cos θ̂12 cos θ◦23 − e−iδ
e
23 sin θe23 sin θ◦23| , (2.130)

a sum rule for cos δ might be derived in the case of fixed δe23. In the general case of free
δe23 we find that cos δ is a function of δe23. Since in this case the analytical expression of
cos δ in terms of δe23 is rather complicated, we do not present this result here. Note that
imposing either θ◦23 = 0 or θ◦13 = 0 is not enough to fix the value of cos δ. As eqs. (2.127)
and (2.128) suggest, in the case of fixed δe23 there exist multiple solutions for the value of
cos δ for any given value of δe23. This is demonstrated in Fig. 2.5, in which we plot cos δ
versus δe23, assuming that the angles θ◦13 and θ◦23 have the values corresponding to the TBM,
GRA, GRB and HG symmetry forms given in Table 2.2. The figure is obtained for θ̂12
belonging to the first quadrant. The solid lines correspond to δ̂ = cos−1(cos δ̂), where cos δ̂
is the solution of eq. (2.127), while the dashed lines correspond to δ̂ = 2π − cos−1(cos δ̂).
Multiple lines reflect the fact that eq. (2.128) for θe23 has several solutions. We note that
Fig. 2.5 remains the same for θ̂12 belonging to the third quadrant, while for θ̂12 lying in the
second or fourth quadrant the solid and dashed lines interchange. For the BM symmetry
form cos δ̂ has an unphysical value, which indicates that the considered scheme with the
BM form of the matrix diagonalising the neutrino mass matrix does not provide a good
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Figure 2.5. Dependence of cos δ on δe23 in the cases of the TBM, GRA, GRB and HG symmetry
forms. The mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13 have been fixed to their best fit
values for the NO neutrino mass spectrum quoted in eqs. (2.15)–(2.17). The angle θ̂12 is assumed
to belong to the first quadrant. The solid lines correspond to δ̂ = cos−1(cos δ̂), where cos δ̂ is the
solution of eq. (2.127), while the dashed lines correspond to δ̂ = 2π − cos−1(cos δ̂). See text for
further details.

description of the current data on the neutrino mixing angles [102].17 Thus, we do not
present such a plot in this case. If δe23 turns out to be fixed (by generalised CP invariance,
symmetries, etc.), then, as can be seen from Fig. 2.5, cos δ is predicted to take a value
from a discrete set. For instance, when δe23 = 0 or π, we have

cos δ = {−0.135, 0.083} for TBM;
cos δ = {−0.317, 0.269} for GRA;
cos δ = {−0.221, 0.170} for GRB;
cos δ = {−0.500, 0.459} for HG.

17Note that the scheme under discussion corresponds to “inverse” ordering of the charged lepton
corrections, i.e., U†e = U23(θe23, δ

e
23)U12(θe12, δ

e
12) (see [102]).
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In the case of δe23 = π/2 or 3π/2, we find

cos δ = {0.418, 0.779} for TBM;
cos δ = {0.498, 0.761} for GRA;
cos δ = {0.346, 0.837} for GRB;
cos δ = {0.394, 0.906} for HG.

2.6.2 Case D2: U13(θ
e
13, δ

e
13)U12(θ

e
12, δ

e
12)

We consider the following parametrisation of the PMNS matrix (see Appendix D):

U = U13(θ
e
13, δ

e
13)R12(θ̂12)P1(δ̂)R23(θ

◦
23)R13(θ

◦
13)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.131)

A sum rule for cos δ is obtained in the cases of either θ◦23 = kπ, k = 0, 1, 2, or θ◦13 = qπ/2,
q = 0, 1, 2, 3, 4. For the general form of U we find for the absolute value of the element
Uµ2:

|Uµ2| = | cos θ̂12 cos θ◦23| , (2.132)

which in each of the two limits indicated above is fixed because | cos θ̂12| can be expressed
in terms of the PMNS neutrino mixing angles. This can be seen from the following relation,
which is obtained using the expressions for |Uµ3|2 in the standard parametrisation of the
PMNS matrix U and in the parametrisation given in eq. (2.131):

cos2 θ13 sin2 θ23 = | − eiδ̂ sin θ̂12 sin θ◦13 + cos θ̂12 cos θ◦13 sin θ◦23|2 . (2.133)

Equating the expression for |Uµ2| given in eq. (2.132) with the one in the standard
parametrisation, we find

cos δ =
cos2 θ23 cos2 θ12 + sin2 θ12 sin2 θ13 sin2 θ23 − cos2 θ̂12 cos2 θ◦23

sin 2θ23 sin θ12 cos θ12 sin θ13
. (2.134)

2.6.3 Case D3: U12(θ
e
12, δ

e
12)U23(θ

e
23, δ

e
23)

We consider the following parametrisation of the PMNS matrix (see Appendix D):

U = U12(θ
e
12, δ

e
12)R23(θ̂23)P2(δ̂)R13(θ

◦
13)R12(θ

◦
12)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) . (2.135)

A sum rule for cos δ can be derived in the cases of either θ◦13 = kπ, k = 0, 1, 2, or
θ◦12 = qπ/2, q = 0, 1, 2, 3, 4. Indeed, the relation cos2 θ13 cos2 θ23 = cos2 θ̂23 cos2 θ◦13 (which
can be obtained from the expressions for the element Uτ3 of the PMNS matrix U in
the standard parametrisation and in the one given in eq. (2.135)) allows us to express
cos2 θ̂23 in terms of the known product cos2 θ13 cos2 θ23 and the parameter cos2 θ◦13 which,
in principle, is fixed by the symmetries Gf and Gν . We have also

|Uτ2| = |eiδ̂ cos θ◦12 sin θ̂23 + cos θ̂23 sin θ◦12 sin θ◦13| . (2.136)

In the limits of either θ◦13 = kπ, k = 0, 1, 2, or θ◦12 = qπ/2, q = 0, 1, 2, 3, 4, |Uτ2| does not
depend on δ̂ and is also fixed. This makes it possible to derive a sum rule for cos δ. In the
general case, cos δ is a function of δ̂:

cos δ =
2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦12

(
cos2 θ◦13 − cos2 θ13 cos2 θ23

)
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− cos2 θ12 sin2 θ23 cos2 θ◦13 + cos2 θ23
(
cos2 θ13 sin2 θ◦12 sin2 θ◦13 − sin2 θ12 sin2 θ13 cos2 θ◦13

)
+ κ cos δ̂ cos θ13 cos θ23 sin 2θ◦12 sin θ◦13

(
cos2 θ◦13 − cos2 θ13 cos2 θ23

) 1
2

]
, (2.137)

where κ = 1 if θ̂23 belongs to the first or third quadrant, and κ = −1 otherwise. For
θ◦13 = 0 the sum rule reduces to the one derived in [99] and discussed in detail in the next
chapter.

2.6.4 Case D4: U13(θ
e
13, δ

e
13)U23(θ

e
23, δ

e
23)

We consider the following parametrisation of the PMNS matrix (see Appendix D):

U = U13(θ
e
13, δ

e
13)R23(θ̂23)P2(δ̂)R13(θ

◦
13)R12(θ

◦
12)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) . (2.138)

In this case a sum rule for cos δ exists provided either θ◦13 = kπ, k = 0, 1, 2, or θ◦12 = qπ/2,
q = 0, 1, 2, 3, 4. This follows from the relation |Uµ3|2 = cos2 θ13 sin2 θ23 = cos2 θ◦13 sin2 θ̂23
and the expression for |Uµ2|:

|Uµ2| = |eiδ̂ cos θ◦12 cos θ̂23 − sin θ̂23 sin θ◦12 sin θ◦13| . (2.139)

The sum rule of interest for cos δ reads

cos δ = − 2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦12

(
cos2 θ◦13 − cos2 θ13 sin2 θ23

)
− cos2 θ12 cos2 θ23 cos2 θ◦13 + sin2 θ23

(
cos2 θ13 sin2 θ◦12 sin2 θ◦13 − sin2 θ12 sin2 θ13 cos2 θ◦13

)
− κ cos δ̂ cos θ13 sin θ23 sin 2θ◦12 sin θ◦13

(
cos2 θ◦13 − cos2 θ13 sin2 θ23

) 1
2

]
, (2.140)

where κ = 1 if θ̂23 belongs to the first or third quadrant, and κ = −1 otherwise. As in the
previous case, cos δ is a function of δ̂. For θ◦13 = 0 the sum rule in eq. (2.140) reduces to
the one derived in [100] and considered in the next chapter.

2.6.5 Case D5: U23(θ
e
23, δ

e
23)U13(θ

e
13, δ

e
13)

In this case, we consider the following parametrisation of the PMNS matrix (see Ap-
pendix D):

U = U23(θ
e
23, δ

e
23)R13(θ̂13)P1(δ̂)R23(θ

◦
23)R12(θ

◦
12)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.141)

We find that:

sin2 θ13 = |Ue3|2 = cos2 θ◦23 sin2 θ̂13 , (2.142)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ23(θ̂13, θ

e
23, δ

e
23, θ

◦
23) , (2.143)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
= sin2 θ12(θ̂13, δ̂, θ

◦
12, θ

◦
23) . (2.144)

Since, as can be shown, |Uµ2| is a function of the parameters θe23, δe23, δ̂, θ̂13, θ◦12 and θ◦23,
and θ̂13, and cos δ̂ can be extracted from eqs. (2.142) and (2.144), respectively, it might
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Figure 2.6. Dependence of cos δ on δe23 in the cases of the TBM, GRA, GRB and HG symmetry
forms. The mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13 have been fixed to their best fit
values for the NO neutrino mass spectrum quoted in eqs. (2.15)–(2.17). The angle θ̂13 is assumed
to belong to the first quadrant. The solid lines correspond to δ̂ = cos−1(cos δ̂), where cos δ̂ is the
solution of eq. (2.144), while the dashed lines correspond to δ̂ = 2π − cos−1(cos δ̂). See text for
further details.

be possible to find a sum rule for cos δ in the case of fixed δe23. Since in this case the
analytical expression of cos δ in terms of δe23 is rather complicated, we do not present
it here. Note that imposing either θ◦12 = 0 or θ◦23 = 0 is not enough to fix the value
of cos δ. Even in the case of fixed δe23 it follows from eqs. (2.143) and (2.144) that for
any given value of δe23, cos δ can take several values. This can be understood, e.g., from
eq. (2.144) which allows to fix cos δ̂, but not sin δ̂. This ambiguity, in particular, leads
to multiple solutions for cos δ. In Fig. 2.6 we show these solutions in the cases of the
TBM, GRA, GRB and HG symmetry forms. We remind that for these forms θ◦23 = −π/4
and θ◦12 = sin−1(1/

√
3) (TBM), θ◦12 = sin−1(1/

√
2 + r) (GRA), r = (1 +

√
5)/2 being the

golden ratio, θ◦12 = π/5 (GRB), and θ◦12 = π/6 (HG). We assume θ̂13 to lie in the first
quadrant. The solid lines correspond to δ̂ = cos−1(cos δ̂), where cos δ̂ is the solution of
eq. (2.144), while the dashed lines correspond to δ̂ = 2π − cos−1(cos δ̂). Multiple lines
reflect the fact that eq. (2.143) for θe23 has several solutions. We note that Fig. 2.6 does not
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change in the case of θ̂13 belonging to the third quadrant, while for θ̂13 lying in the second
or fourth quadrant the solid and dashed lines interchange. For δe23 = 0 or π, we find

cos δ = {−0.114, 0.114} for TBM;
cos δ = {−0.289, 0.289} for GRA;
cos δ = {−0.200, 0.200} for GRB;
cos δ = {−0.476, 0.476} for HG.

It is worth noting that in the scheme under consideration the values of δe23 in a vicinity of
π/2 (3π/2) do not provide physical values of cos δ (see Fig. 2.6).

2.6.6 Case D6: U12(θ
e
12, δ

e
12)U13(θ

e
13, δ

e
13)

It is convenient to consider the following parametrisation of the PMNS matrix U (see
Appendix D):

U = U12(θ
e
12, δ

e
12)R13(θ̂13)P1(δ̂)R23(θ

◦
23)R12(θ

◦
12)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.145)

We find that a sum rule for cos δ can be derived if either θ◦12 = qπ/2, q = 0, 1, 2, 3, 4, or
θ◦23 = kπ, k = 0, 1, 2. Indeed, the relation |Uτ3|2 = cos2 θ13 cos2 θ23 = cos2 θ̂13 cos2 θ◦23 allows
us to determine cos2 θ̂13 in terms of the known quantity cos2 θ13 cos2 θ23 and the parameter
cos2 θ◦23, which is fixed once Gf and Gν are fixed. Further, we have

|Uτ2| = |eiδ̂ sin θ◦12 sin θ̂13 + cos θ̂13 cos θ◦12 sin θ◦23| , (2.146)

where the only unconstrained parameter is the phase δ̂. In the cases indicated above
with either θ◦12 = qπ/2, q = 0, 1, 2, 3, 4, or θ◦23 = kπ, k = 0, 1, 2, the absolute value of the
element Uτ2 does not depend on δ̂, which in turn allows a sum rule for cos δ to be derived.
In general, cos δ is a function of δ̂:

cos δ =
2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦23

[
sin2 θ◦12

(
cos2 θ◦23 − cos2 θ13 cos2 θ23

)
− cos2 θ12 sin2 θ23 cos2 θ◦23 + cos2 θ23

(
cos2 θ13 cos2 θ◦12 sin2 θ◦23 − sin2 θ12 sin2 θ13 cos2 θ◦23

)
+ κ cos δ̂ cos θ13 cos θ23 sin 2θ◦12 sin θ◦23

(
cos2 θ◦23 − cos2 θ13 cos2 θ23

) 1
2

]
, (2.147)

where κ = 1 if θ̂13 belongs to the first or third quadrant, and κ = −1 otherwise. In this
case, the sum rule for cos δ has been derived first in [100] assuming θ◦13 = 0, but as we
can see this result holds also for any fixed value of θ◦13, since the parametrisation given
in eq. (2.145) and the corresponding one in [100] are the same after a redefinition of the
parameters.

The sum rules derived in this section for pattern D are summarised in Table 2.7.
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Table 2.7. Summary of the sum rules for cos δ in the case of fully broken Ge and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2, under the assumption that
the matrix Ue consists of two complex rotation matrices. The parameter κ = 1 if the corresponding hat angle belongs to the first or third quadrant,
and κ = −1 otherwise. See text for further details.

Case Parametrisation of the PMNS matrix U Sum rule for cos δ

D2 U13(θ
e
13, δ

e
13)R12(θ̂12)P1(δ̂)R23(θ

◦
23)R13(θ

◦
13)Q0

cos2 θ23 cos2 θ12 + sin2 θ12 sin2 θ13 sin2 θ23 − cos2 θ̂12 cos2 θ◦23
sin 2θ23 sin θ12 cos θ12 sin θ13

D3 U12(θ
e
12, δ

e
12)R23(θ̂23)P2(δ̂)R13(θ

◦
13)R12(θ

◦
12)Q0

2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦12

(
cos2 θ◦13 − cos2 θ13 cos2 θ23

)
− cos2 θ12 sin2 θ23 cos2 θ◦13 + cos2 θ23

(
cos2 θ13 sin2 θ◦12 sin2 θ◦13 − sin2 θ12 sin2 θ13 cos2 θ◦13

)
+κ cos δ̂ cos θ13 cos θ23 sin 2θ◦12 sin θ◦13

(
cos2 θ◦13 − cos2 θ13 cos2 θ23

) 1
2

]

D4 U13(θ
e
13, δ

e
13)R23(θ̂23)P2(δ̂)R13(θ

◦
13)R12(θ

◦
12)Q0 − 2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦12

(
cos2 θ◦13 − cos2 θ13 sin2 θ23

)
− cos2 θ12 cos2 θ23 cos2 θ◦13 + sin2 θ23

(
cos2 θ13 sin2 θ◦12 sin2 θ◦13 − sin2 θ12 sin2 θ13 cos2 θ◦13

)
−κ cos δ̂ cos θ13 sin θ23 sin 2θ◦12 sin θ◦13

(
cos2 θ◦13 − cos2 θ13 sin2 θ23

) 1
2

]

D6 U12(θ
e
12, δ

e
12)R13(θ̂13)P1(δ̂)R23(θ

◦
23)R12(θ

◦
12)Q0

2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦23

[
sin2 θ◦12

(
cos2 θ◦23 − cos2 θ13 cos2 θ23

)
− cos2 θ12 sin2 θ23 cos2 θ◦23 + cos2 θ23

(
cos2 θ13 cos2 θ◦12 sin2 θ◦23 − sin2 θ12 sin2 θ13 cos2 θ◦23

)
+κ cos δ̂ cos θ13 cos θ23 sin 2θ◦12 sin θ◦23

(
cos2 θ◦23 − cos2 θ13 cos2 θ23

) 1
2

]
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2.7 Pattern E: Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2

and fully broken Gν

When the discrete flavour symmetry Gf is fully broken in the neutrino sector, the matrix
Uν is unconstrained and includes, in general, three complex rotations and three phases,
i.e., three angle and six CPV phase parameters. It is impossible to derive predictions for
the mixing angles and CPV phases in the PMNS matrix in this case. Therefore we will
consider in this section forms of Uν corresponding to one of the rotation angle parameters
being equal to zero. Some of these forms of Uν correspond to a class of models of neutrino
mass generation or phenomenological studies (see, e.g., [150]) and lead, in particular, to
sum rules for cos δ. Since in this case Gf is fully broken in the neutrino sector, the Z2×Z2

symmetry of the Majorana mass term does arise accidentally. Therefore the matrix Uν
is not constrained by the symmetry group Gf . We give in Table D.1 in Appendix D the
most general parametrisations of U under the assumption that for fully broken Gν one
rotation angle vanishes in the matrix Uν .

2.7.1 Case E1: U12(θ
ν
12, δ

ν
12)U13(θ

ν
13, δ

ν
13)

It proves convenient to consider the following parametrisation of the PMNS matrix U in
this case (see Appendix D):

U = R23(θ
◦
23)R13(θ

◦
13)P1(δ̂)R12(θ̂12)U13(θ

ν
13, δ

ν
13)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.148)

Consider first the case of θ◦13 = 0. In this case the phase δ̂ is unphysical. Comparing this
parametrisation of U with the standard parametrisation, we find:

sin2 θ13 = |Ue3|2 = sin2 θν13 cos2 θ̂12 , (2.149)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

cos2 θ13

[
sin2 θ◦23 cos2 θν13 + cos2 θ◦23 sin2 θν13 sin2 θ̂12

− 1

2
sin 2θ◦23 sin 2θν13 sin θ̂12 cos δν13

]
, (2.150)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

sin2 θ̂12
cos2 θ13

. (2.151)

From the ratio ∣∣∣∣Uτ2Uµ2

∣∣∣∣2 = tan2 θ◦23 , (2.152)

we get the following sum rule for cos δ:

cos δ = − tan θ12
sin 2θ23 sin θ13

[
cos 2θ◦23 sin2 θ13 +

(
sin2 θ23 − sin2 θ◦23

) (
cot2 θ12 − sin2 θ13

)]
.

(2.153)
Substituting the best fit values of the neutrino mixing angles for the NO neutrino mass
spectrum and the value of θ◦23 = −π/4, which corresponds to the TBM, BM, GRA, GRB
and HG symmetry forms, we obtain cos δ = 0.616. We note that in the considered scheme
the predictions for cos δ are all the same for the symmetry forms mentioned above, since
these forms are characterised by different values of the angle θ◦12, which has been absorbed
by the free parameter θ̂12. This “degeneracy” can be lifted in specific models in which the
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value of θν12 is fixed. Using the best fit values and the requirement | cos δ| ≤ 1, we find that
the allowed values of sin2 θ◦23 belong to the following interval: 0.338 ≤ sin2 θ◦23 ≤ 0.538.

In order to give the general result for cos δ in the case of θ◦13 6= 0, we use the expression
for sin2 θ12 for non-zero θ◦13:

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

cos2 θ◦13 sin2 θ̂12
cos2 θ13

. (2.154)

Employing this relation in the expression for |Uτ2|2, we get

cos δ = − 2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦23

(
cos2 θ◦13 − sin2 θ12 cos2 θ13

)
− cos2 θ12 cos2 θ23 cos2 θ◦13 + sin2 θ12

(
cos2 θ13 sin2 θ◦13 sin2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦13

)
− κ cos δ̂ sin θ12 cos θ13 sin θ◦13 sin 2θ◦23

(
cos2 θ◦13 − sin2 θ12 cos2 θ13

) 1
2

]
, (2.155)

where κ = 1 if θ̂12 belongs to the first or third quadrant, and κ = −1 otherwise.
Similar to cases C2, C5, C7 and C9 analysed in subsections 2.4.2, 2.4.5, 2.4.7 and 2.4.9,

cos δ is a function of the known neutrino mixing angles θ12, θ13 and θ23, of the angles θ◦13
and θ◦23 fixed by Gf and the assumed symmetry breaking pattern, as well as of the phase
parameter δ̂ of the scheme. Predictions for cos δ can be obtained if δ̂ is fixed by additional
considerations of, e.g., generalised CP invariance, symmetries, etc.

For θ◦13 = kπ, k = 0, 1, 2, and/or θ◦23 = qπ/2, q = 0, 1, 2, 3, 4, cos δ does not depend on
δ̂ and κ. In the first case the expression in eq. (2.155) reduces to the sum rule given in
eq. (2.153).

2.7.2 Case E2: U12(θ
ν
12, δ

ν
12)U23(θ

ν
23, δ

ν
23)

In this case, it is convenient to use another possible parametrisation of the PMNS matrix
given in Appendix D. Namely,

U = R23(θ
◦
23)R13(θ

◦
13)P1(δ̂)R12(θ̂12)U23(θ

ν
23, δ

ν
23)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) . (2.156)

Consider first the possibility of θ◦13 = 0. Under this assumption we find:

sin2 θ13 = |Ue3|2 = sin2 θν23 sin2 θ̂12 , (2.157)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

cos2 θ13

[
sin2 θ◦23 cos2 θν23 + cos2 θ◦23 sin2 θν23 cos2 θ̂12

+
1

2
sin 2θ◦23 sin 2θν23 cos θ̂12 cos δν23

]
, (2.158)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

cos2 θν23 sin2 θ̂12
cos2 θ13

. (2.159)

The sum rule of interest for cos δ can be derived in this case using the ratio∣∣∣∣Uτ1Uµ1

∣∣∣∣2 = tan2 θ◦23 . (2.160)
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We get

cos δ =
cot θ12

sin 2θ23 sin θ13

[
cos 2θ◦23 sin2 θ13 +

(
sin2 θ23 − sin2 θ◦23

) (
tan2 θ12 − sin2 θ13

)]
.

(2.161)
This sum rule can be formally obtained from the r.h.s. of eq. (2.153) by interchanging
tan θ12 and cot θ12 and by multiplying it by −1. Substituting the best fit values of the
neutrino mixing angles for the NO neutrino mass spectrum and the value of θ◦23 = −π/4,
we get cos δ = −0.262. Using the best fit values and the requirement | cos δ| ≤ 1, we find
that the allowed values of sin2 θ◦23 belong to the following interval: 0.227 ≤ sin2 θ◦23 ≤ 0.659.

In order to find a general result for cos δ for arbitrary fixed θ◦13 6= 0, we use the following
relation:

cos2 θ12 cos2 θ13 = cos2 θ̂12 cos2 θ◦13 , (2.162)

which follows from the expressions for |Ue1|2 in the standard parametrisation and in the
parametrisation given in eq. (2.156). With the help of this relation, using |Uµ1|, we get

cos δ =
2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦23

(
cos2 θ◦13 − cos2 θ12 cos2 θ13

)
− sin2 θ12 cos2 θ23 cos2 θ◦13 + cos2 θ12

(
cos2 θ13 sin2 θ◦13 sin2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦13

)
+ κ cos δ̂ cos θ12 cos θ13 sin θ◦13 sin 2θ◦23

(
cos2 θ◦13 − cos2 θ12 cos2 θ13

) 1
2

]
, (2.163)

where κ = 1 if θ̂12 belongs to the first or third quadrant, and κ = −1 otherwise. Also in this
case cos δ is a function of the unconstrained phase parameter δ̂ of the scheme. Predictions
for cos δ can be obtained if δ̂ is fixed by additional considerations (e.g., generalised CP
invariance, symmetries, etc.).

As like in case E1, for θ◦13 = kπ, k = 0, 1, 2, and/or θ◦23 = qπ/2, q = 0, 1, 2, 3, 4, cos δ
does not depend on δ̂ and κ. For θ◦13 = 0, π, 2π, the sum rule in eq. (2.163) coincides with
the sum rule given in eq. (2.161).

2.7.3 Case E3: U23(θ
ν
23, δ

ν
23)U12(θ

ν
12, δ

ν
12)

The convenient parametrisation for U to use in this case is given in Appendix D:

U = R13(θ
◦
13)R12(θ

◦
12)P2(δ̂)R23(θ̂23)U12(θ

ν
12, δ

ν
12)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) .

We find that:

sin2 θ13 = |Ue3|2 = sin2 θ13(θ̂23, δ̂, θ
◦
12, θ

◦
13) , (2.164)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

cos2 θ◦12 sin2 θ̂23
cos2 θ13

, (2.165)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
= sin2 θ12(θ̂23, δ̂, θ

ν
12, δ

ν
12, θ

◦
12, θ

◦
13) . (2.166)

However, a sum rule for cos δ cannot be obtained because cos δ turns out to depend, in
particular, on δν12 which is an unconstrained phase parameter of the scheme considered,
which can be seen from the expression for |Uµ1|:

|Uµ1| = | cos θν12 sin θ◦12 + ei(δ̂+δ
ν
12) cos θ̂23 cos θ◦12 sin θν12| . (2.167)
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The situation here is analogous to the cases analysed in subsections 2.6.1 and 2.6.5. Namely,
considering a certain residual symmetry group Ge, from eq. (2.165) we find that sin2 θ̂23 is
fixed. Then, cos δ̂ is fixed (up to a sign) by eq. (2.164). Hence, θν12 can be expressed in
terms of δν12 by virtue of eq. (2.166). Thus, numerical predictions for cos δ can be obtained
if δν12 is fixed.

2.7.4 Case E4: U23(θ
ν
23, δ

ν
23)U13(θ

ν
13, δ

ν
13)

Employing the parametrisation for U given in Appendix D,

U = R13(θ
◦
13)R12(θ

◦
12)P2(δ̂)R23(θ̂23)U13(θ

ν
13, δ

ν
13)Q0 , P2(δ̂) = diag(1, eiδ̂, 1) ,

we find that cos δ is a function of θ̂23, θ◦12 and the PMNS mixing angles. Therefore, cos δ
can be determined only in those cases when θ̂23 is fixed. Using the result

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

cos2 θ13

[
cos2 θ̂23 cos2 θ◦13 sin2 θ◦12 + sin2 θ̂23 sin2 θ◦13

− 1

2
cos δ̂ sin 2θ̂23 sin 2θ◦13 sin θ◦12

]
, (2.168)

we find these cases to be, for example: (i) θ◦12 = 0, π, leading to the relation sin2 θ12 cos2 θ13 =
sin2 θ̂23 sin2 θ◦13, (ii) θ◦13 = 0, π, implying sin2 θ12 cos2 θ13 = cos2 θ̂23 sin2 θ◦12, (iii) θ◦13 = π/2,
3π/2, giving sin2 θ12 cos2 θ13 = sin2 θ̂23. For this reason we give cos δ as a function of the
angle θ̂23. Namely, the sum rule of interest, which is obtained using |Uµ2| = | cos θ̂23 cos θ◦12|,
reads

cos δ =
cos2 θ12 cos2 θ23 + sin2 θ12 sin2 θ13 sin2 θ23 − cos2 θ̂23 cos2 θ◦12

sin 2θ23 sin θ12 cos θ12 sin θ13
. (2.169)

The dependence of cos δ on Gf is realised via the values of the angles θ◦12 and θ◦13.

2.7.5 Case E5: U13(θ
ν
13, δ

ν
13)U12(θ

ν
12, δ

ν
12)

The parametrisation for the PMNS matrix U employed by us in this subsection is given in
Appendix D:

U = R23(θ
◦
23)R12(θ

◦
12)P1(δ̂)R13(θ̂13)U12(θ

ν
12, δ

ν
12)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) .

We find that:

sin2 θ13 = |Ue3|2 = cos2 θ◦12 sin2 θ̂13 , (2.170)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ23(θ̂13, δ̂, θ

◦
12, θ

◦
23) , (2.171)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
= sin2 θ12(θ̂13, δ̂, θ

ν
12, δ

ν
12, θ

◦
12) . (2.172)

However, a sum rule for cos δ cannot be obtained because cos δ turns out to depend, in
particular, on δν12 which is an unconstrained phase parameter of the scheme considered.
This can be seen, e.g., from the expression for |Uµ1|:

|Uµ1| = | cos θν12(e
iδ̂ sin θ◦12 cos θ◦23 cos θ̂13 + sin θ̂13 sin θ◦23) + eiδ

ν
12 cos θ◦12 cos θ◦23 sin θν12|.

(2.173)
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Similarly to the case analysed in subsection 2.7.3, for a certain residual symmetry group
Ge, from eq. (2.170) we find that sin2 θ̂13 is fixed. Then, cos δ̂ is fixed (up to a sign) by
eq. (2.171), and so the angle θν12 can be expressed in terms of δν12 by virtue of eq. (2.172).
Therefore, numerical predictions for cos δ can be obtained if δν12 is fixed.

2.7.6 Case E6: U13(θ
ν
13, δ

ν
13)U23(θ

ν
23, δ

ν
23)

The parametrisation of the PMNS matrix U utilised by us in the present subsection is
given in Appendix D:

U = R23(θ
◦
23)R12(θ

◦
12)P1(δ̂)R13(θ̂13)U23(θ

ν
23, δ

ν
23)Q0 , P1(δ̂) = diag(eiδ̂, 1, 1) .

A sum rule and predictions for cos δ can be derived in the cases of either θ◦23 = qπ/2,
q = 0, 1, 2, 3, 4, or θ◦12 = kπ, k = 0, 1, 2. Indeed, using the relation

|Ue1|2 = cos2 θ12 cos2 θ13 = cos2 θ̂13 cos2 θ◦12 , (2.174)

we can express cos2 θ̂13 in terms of the product of PMNS neutrino mixing parameters
cos2 θ12 cos2 θ13 and, the fixed by Gf parameter, cos2 θ◦12. The sum rule of interest for cos δ
can be derived, e.g., from the expression for the absolute value of the element Uµ1:

|Uµ1| = |e−iδ̂ cos θ̂13 cos θ◦23 sin θ◦12 + sin θ̂13 sin θ◦23| , (2.175)

since in any of the two limits indicated above, θ◦23 = qπ/2, q = 0, 1, 2, 3, 4, or θ◦12 = kπ,
k = 0, 1, 2, |Uµ1| does not depend on δ̂. In fact, it is given only in terms of the known
PMNS neutrino mixing parameters and an angle (either θ◦23 or θ◦12) which is fixed by the
symmetry Gf . In the general case, cos δ is a function of δ̂. Using eqs. (2.174) and (2.175),
we get

cos δ =
2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦12

[
sin2 θ◦23

(
cos2 θ◦12 − cos2 θ12 cos2 θ13

)
− sin2 θ12 cos2 θ23 cos2 θ◦12 + cos2 θ12

(
cos2 θ13 sin2 θ◦12 cos2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦12

)
+ κ cos δ̂ cos θ12 cos θ13 sin θ◦12 sin 2θ◦23

(
cos2 θ◦12 − cos2 θ12 cos2 θ13

) 1
2

]
, (2.176)

where κ = 1 if θ̂13 lies in the first or third quadrant, and κ = −1 otherwise. For θ◦12 = kπ,
k = 0, 1, 2, and/or θ◦23 = qπ/2, q = 0, 1, 2, 3, 4, cos δ does not depend on δ̂ and κ.

The sum rules derived in this section for pattern E are summarised in Table 2.8.
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Table 2.8. Summary of the sum rules for cos δ in the case of Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and fully broken Gν , under the assumption that
the matrix Uν consists of two complex rotation matrices. The parameter κ = 1 if the corresponding hat angle belongs to the first or third quadrant,
and κ = −1 otherwise. See text for further details.

Case Parametrisation of the PMNS matrix U Sum rule for cos δ

E1 R23(θ
◦
23)R13(θ

◦
13)P1(δ̂)R12(θ̂12)U13(θ

ν
13, δ

ν
13)Q0 − 2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦23

(
cos2 θ◦13 − sin2 θ12 cos2 θ13

)
− cos2 θ12 cos2 θ23 cos2 θ◦13 + sin2 θ12

(
cos2 θ13 sin2 θ◦13 sin2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦13

)
−κ cos δ̂ sin θ12 cos θ13 sin θ◦13 sin 2θ◦23

(
cos2 θ◦13 − sin2 θ12 cos2 θ13

) 1
2

]

E2 R23(θ
◦
23)R13(θ

◦
13)P1(δ̂)R12(θ̂12)U23(θ

ν
23, δ

ν
23)Q0

2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦13

[
cos2 θ◦23

(
cos2 θ◦13 − cos2 θ12 cos2 θ13

)
− sin2 θ12 cos2 θ23 cos2 θ◦13 + cos2 θ12

(
cos2 θ13 sin2 θ◦13 sin2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦13

)
+κ cos δ̂ cos θ12 cos θ13 sin θ◦13 sin 2θ◦23

(
cos2 θ◦13 − cos2 θ12 cos2 θ13

) 1
2

]

E4 R13(θ
◦
13)R12(θ

◦
12)P2(δ̂)R23(θ̂23)U13(θ

ν
13, δ

ν
13)Q0

cos2 θ12 cos2 θ23 + sin2 θ12 sin2 θ13 sin2 θ23 − cos2 θ̂23 cos2 θ◦12
sin 2θ23 sin θ12 cos θ12 sin θ13

E6 R23(θ
◦
23)R12(θ

◦
12)P1(δ̂)R13(θ̂13)U23(θ

ν
23, δ

ν
23)Q0

2

sin 2θ12 sin 2θ23 sin θ13 cos2 θ◦12

[
sin2 θ◦23

(
cos2 θ◦12 − cos2 θ12 cos2 θ13

)
− sin2 θ12 cos2 θ23 cos2 θ◦12 + cos2 θ12

(
cos2 θ13 sin2 θ◦12 cos2 θ◦23 − sin2 θ13 sin2 θ23 cos2 θ◦12

)
+κ cos δ̂ cos θ12 cos θ13 sin θ◦12 sin 2θ◦23

(
cos2 θ◦12 − cos2 θ12 cos2 θ13

) 1
2

]
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Table 2.9. The phenomenologically viable case for the symmetry group A4. The values of cos δ
and sin2 θ12 predicted in case B1 have been obtained using the best fit values of sin2 θ23 and
sin2 θ13 for the NO spectrum quoted in eqs. (2.16) and (2.17).

(Ge, Gν) Case sin2 θ◦ij cos δ sin2 θij

(Z3, Z2) B1 (sin2 θ◦12, sin
2 θ◦23) = (1/3, 1/2) 0.570 sin2 θ12 = 0.341

2.8 Summary of the predictions for Gf = A4 (T ′), S4

and A5

In this section, we summarise the numerical results obtained in the cases of the discrete
flavour symmetry groups A4 (T ′), S4 and A5, which have been already discussed in
subsections 2.2.4, 2.3.4 and 2.4.10. In Tables 2.9–2.11 we give the values of the fixed
parameters sin2 θ◦ij , obtained from the diagonalisation of the corresponding group elements
which lead to physical values of cos δ and phenomenologically viable results for the
“standard” mixing angles θ12, θ13 and θ23. In the cases when the standard mixing angles are
not fixed by the schemes in Tables 2.9–2.11, we use their best fit values for the NO spectrum
quoted in eqs. (2.15)–(2.17). For the cases in the tables marked with an asterisk, physical
values of cos δ, i.e., | cos δ| ≤ 1, cannot be obtained employing the best fit values of the
neutrino mixing angles θ12, θ13 and θ23, but they can be achieved for values of the relevant
mixing parameters allowed at 3σ. Note that unphysical values of cos δ, | cos δ| > 1, occur
when the relations between the parameters of the scheme and the standard parametrisation
mixing angles cannot be fulfilled for given values of sin2 θ12, sin2 θ13 and sin2 θ23. Indeed
the parameter space of sin2 θ12, sin2 θ13 and sin2 θ23 is reduced by these constraints coming
from the schemes.

For the symmetry group A4, we find that the residual symmetries

• (Ge, Gν) = (Z2, Z2) in cases C1–C9;

• (Ge, Gν) = (Z3, Z2) in cases B2 and B3;

• (Ge, Gν) = (Z2 × Z2, Z2) in cases B1, B2 and B3;

• (Ge, Gν) = (Z2, Z3) or (Z2, Z2 × Z2) in cases A1, A2 and A3

do not provide phenomenologically viable results for cos δ and/or the standard mixing
angles. It is worth noticing that the predicted value of sin2 θ12 = 0.341 in Table 2.9 is
within the 2σ allowed range [18]. Varying sin2 θ13, which enters into the expression for
sin2 θ12, within its respective 3σ allowed range for the NO neutrino mass spectrum, we
find 0.339 ≤ sin2 θ12 ≤ 0.343.

For the symmetry group S4, we find that the residual symmetries

• (Ge, Gν) = (Z2, Z2) in cases C6 and C9;

• (Ge, Gν) = (Z3, Z2) in case B3;

• (Ge, Gν) = (Z4, Z2) or (Z2 × Z2, Z2) in cases B2 and B3;

• (Ge, Gν) = (Z2, Z3) in cases A1, A2 and A3;

• (Ge, Gν) = (Z2, Z4) or (Z2, Z2 × Z2) in case A3
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Table 2.10. The phenomenologically viable cases for the symmetry group S4. The predicted
values of cos δ and sin2 θ12 or sin2 θ23 have been obtained using the best fit values for the NO
spectrum of the other two (not fixed) neutrino mixing parameters (sin2 θ13 and sin2 θ23, or sin2 θ12
and sin2 θ13) quoted in eqs. (2.15)–(2.17). In the cases marked with an asterisk, physical values of
cos δ cannot be obtained employing the best fit values of the mixing angles, but are possible for
values of the relevant neutrino mixing parameters lying in their respective 3σ allowed intervals.
See text for further details.

(Ge, Gν) Case sin2 θ◦ij cos δ sin2 θij

(Z2, Z2)

C1 sin2 θ◦23 = 1/4 −0.806 not fixed
C2 sin2 θ◦23 = 1/2 not fixed sin2 θ23 = 0.512

C3 sin2 θ◦13 = 1/4 −1∗ not fixed
C4 sin2 θ◦12 = 1/4 0.992 not fixed
C5 sin2 θ◦12 = 1/4 not fixed sin2 θ12 = 0.256

C7 sin2 θ◦23 = 1/2 not fixed sin2 θ23 = 0.488

C8 sin2 θ◦23 = 1/2, 3/4 −1∗, 1∗ not fixed

(Z3, Z2)
B1 (sin2 θ◦12, sin

2 θ◦23) = (1/3, 1/2) 0.570 sin2 θ12 = 0.341

B2 (sin2 θ◦12, sin
2 θ◦13) = (1/6, 1/5) −0.269 sin2 θ12 = 0.317

(Z4, Z2), (Z2 × Z2, Z2) B1 (sin2 θ◦12, sin
2 θ◦23) = (1/4, 1/3) −1∗ sin2 θ12 = 0.256

(Z2, Z4), (Z2, Z2 × Z2)
A1 (sin2 θ◦13, sin

2 θ◦23) = (1/3, 1/4) −1∗ sin2 θ23 = 0.488

A2 (sin2 θ◦12, sin
2 θ◦23) = (1/2, 1/2) 1∗ sin2 θ23 = 0.512

do not provide phenomenologically viable results for cos δ and/or for the standard mixing
angles.

The cases in Table 2.10 marked with an asterisk are discussed below. Firstly, using the
best fit values of sin2 θ12 and sin2 θ13, we get a physical value of cos δ in case C3 for the
minimal value of sin2 θ23 = 0.562, for which cos δ = −0.996. For C8 with sin2 θ◦23 = 1/2
and 3/4, using the best fit values of the neutrino mixing angles for the NO spectrum, we
have cos δ = −1.53 and 2.04, respectively. The physical values of cos δ can be obtained,
using, e.g., the values of sin2 θ23 = 0.380 and 0.543, for which cos δ = −0.995 and 0.997,
respectively. In the parts of the 3σ allowed range of sin2 θ23, 0.374 ≤ sin2 θ23 ≤ 0.380 and
0.543 ≤ sin2 θ23 ≤ 0.641, we have −0.938 ≥ cos δ ≥ −0.995 and 0.997 ≥ cos δ ≥ 0.045,
respectively. Secondly, in case B1 we obtain cos δ = −0.990 employing the best fit value
of sin2 θ13 and the maximal value of sin2 θ23 = 0.419. Finally, utilising the best fit value
of sin2 θ13, we get physical values of cos δ in cases A1 and A2 for the minimal value of
sin2 θ12 = 0.348, for which cos δ = −0.993 and 0.993, respectively. Note that for the cases
in which sin2 θ23 is fixed, the predicted values are within the corresponding 2σ range, while
in the cases in which sin2 θ12 is fixed, the values of sin2 θ12 = 0.341 and 0.317 are within
2σ and 1σ, respectively. The value of sin2 θ12 = 0.256 lies slightly outside the 3σ allowed
range quoted in eq. (2.15).

For the symmetry group A5, we find that the residual symmetries

• (Ge, Gν) = (Z2, Z2) in cases C2, C6 and C7;

• (Ge, Gν) = (Z3, Z2) in cases B2 and B3;
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Table 2.11. The phenomenologically viable cases for the symmetry group A5. The predicted
values of cos δ and sin2 θ12 or sin2 θ23 have been obtained using the best fit values of the other
standard mixing angles for the NO spectrum quoted in eqs. (2.15)–(2.17). In the cases marked
with an asterisk, physical values of cos δ cannot be obtained employing the best fit values of the
mixing angles, but are possible for values of the relevant neutrino mixing parameters lying in
their respective 3σ allowed intervals. See text for further details.

(Ge, Gν) Case sin2 θ◦ij cos δ sin2 θij

(Z2, Z2)

C1 sin2 θ◦23 = 1/4 −0.806 not fixed
C3 sin2 θ◦13 = 0.0955, 1/4 0.688, −1∗ not fixed
C4 sin2 θ◦12 = 0.0955, 1/4 −1∗, 0.992 not fixed
C5 sin2 θ◦12 = 1/4 not fixed sin2 θ12 = 0.256

C8 sin2 θ◦23 = 3/4 1∗ not fixed
C9 sin2 θ◦12 = 0.3455 not fixed sin2 θ12 = 0.330

(Z3, Z2) B1 (sin2 θ◦12, sin
2 θ◦23) = (1/3, 1/2) 0.570 sin2 θ12 = 0.341

(Z5, Z2)
B1 (sin2 θ◦12, sin

2 θ◦23) = (0.2764, 1/2) 0.655 sin2 θ12 = 0.283

B2 (sin2 θ◦12, sin
2 θ◦13) = (0.1382, 0.1604) −0.229 sin2 θ12 = 0.259

(Z2 × Z2, Z2) B2 (sin2 θ◦12, sin
2 θ◦13) =

{
(0.0955, 0.2764)

(1/4, 0.1273)

−1∗
sin2 θ12 = 0.330

0.805

(Z2, Z3)
A1 (sin2 θ◦13, sin

2 θ◦23) = (0.2259, 0.4363) 0.716 sin2 θ23 = 0.553

A2 (sin2 θ◦12, sin
2 θ◦23) = (0.2259, 0.4363) −0.716 sin2 θ23 = 0.447

(Z2, Z5)
A1 (sin2 θ◦13, sin

2 θ◦23) = (0.4331, 0.3618) −1∗ sin2 θ23 = 0.630

A2 (sin2 θ◦12, sin
2 θ◦23) = (0.4331, 0.3618) 1∗ sin2 θ23 = 0.370

• (Ge, Gν) = (Z5, Z2) in case B3;

• (Ge, Gν) = (Z2 × Z2, Z2) in cases B1 and B3;

• (Ge, Gν) = (Z2, Z3) or (Z2, Z5) in case A3;

• (Ge, Gν) = (Z2, Z2 × Z2) in cases A1, A2 and A3

do not provide phenomenologically viable results for cos δ and/or for the standard mixing
angles θ12, θ13 and θ23.

We will describe next the cases in Table 2.11 marked with an asterisk, apart from
those which have also been found for Gf = S4 and discussed earlier. Using the best fit
values of sin2 θ12 and sin2 θ13, we get a physical value of cos δ in case C4 for the minimal
value of sin2 θ23 = 0.487, for which cos δ = −0.997. Instead using the best fit values of
sin2 θ13 and sin2 θ23 one gets the physical values of cos δ = −1 for the maximal value of
sin2 θ12 = 0.277. Employing the best fit value of sin2 θ13, we find a physical value of cos δ
in case B2 with residual symmetries (Ge, Gν) = (Z2 × Z2, Z2) for the minimal value of
sin2 θ23 = 0.518, for which cos δ = −0.996. Similarly for cases A1 and A2 with residual
symmetries (Ge, Gν) = (Z2, Z5), the values of cos δ = −0.992 and 0.992 are obtained using
the minimal value of sin2 θ12 = 0.321.

The values of sin2 θ◦ij in Table 2.11 used to compute cos δ and sin2 θij are the following
ones: 1/(4r2) ≈ 0.0955, (3 − r)/4 ≈ 0.3455, 1/(2 + r) ≈ 0.2764, 1/(4 + 2r) ≈ 0.1382,
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1/(3 + 2r) ≈ 0.1604, 1/(3 + 3r) ≈ 0.1273, 2/(4r2 − r) ≈ 0.2259, r/(6r − 6) ≈ 0.4363,
(6r − 4)/(10r − 3) ≈ 0.4331, (1− r)/(8− 6r) ≈ 0.3618.

2.9 Conclusions
In this chapter, we have employed the discrete symmetry approach to understanding
the observed pattern of 3-neutrino mixing and, within this approach, have derived sum
rules and predictions for the Dirac phase δ present in the PMNS neutrino mixing matrix
U . The approach is based on the assumption of the existence at some energy scale of a
(lepton) flavour symmetry corresponding to a non-Abelian discrete group Gf . The flavour
symmetry group Gf can be broken, in general, to different residual symmetry subgroups Ge

and Gν of the charged lepton and neutrino mass terms, respectively. Given Gf , typically
there are more than one (but still a finite number of) possible residual symmetries Ge

and Gν . The residual symmetries can constrain the forms of the 3× 3 unitary matrices
Ue and Uν , which diagonalise the charged lepton and neutrino mass matrices, and the
product of which represents the PMNS neutrino mixing matrix U , U = U †e Uν . Thus, by
constraining the form of the matrices Ue and Uν , the residual symmetries constrain also
the form of the PMNS matrix U . This can lead, in particular, to a correlation between the
values of the PMNS neutrino mixing angles θ12, θ13 and θ23, which have been determined
experimentally with a rather good precision, and the value of the cosine of the Dirac CPV
phase δ present in U , i.e., to a sum rule for cos δ. The sum rule for cos δ thus obtained
depends on residual symmetries Ge and Gν and in some cases can involve, in addition to
θ12, θ13 and θ23, parameters which cannot be constrained even when Gf is fixed. For a
given fixed Gf , unambiguous predictions for the value of cos δ can be derived in the cases
when, apart from the parameters determined by Gf (and Ge and Gν), only θ12, θ13 and
θ23 enter into the expression for the respective sum rule.

We have derived sum rules for cos δ considering the following discrete residual symme-
tries:

(A) Ge = Z2 and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2 (Section 2.2);

(B) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν = Z2 (Section 2.3);

(C) Ge = Z2 and Gν = Z2 (Section 2.4);

(D) Ge is fully broken and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2 (Section 2.6);

(E) Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν is fully broken (Section 2.7).

The sum rules are summarised in Tables 2.3, 2.4, 2.7 and 2.8. For given Ge and Gν , the
sum rules for cos δ we have derived are exact, within the approach employed, and are valid,
in particular, for any Gf containing Ge and Gν as subgroups. We have identified the cases
when the value of cos δ cannot be determined, or cannot be uniquely determined, from
the sum rule without making additional assumptions on unconstrained parameters (cases
A3 in Section 2.2 and B3 in Section 2.3 (see also Table 2.3); cases C2, C5, C6, C7 and
C9 in Section 2.4 (see also Table 2.4); the cases discussed in Sections 2.6 and 2.7). In the
majority of the phenomenologically viable cases we have considered, the value of cos δ can
be unambiguously predicted once the flavour symmetry Gf is fixed. In certain cases of
fixed Gf , Ge and Gν , correlations between the values of some of the measured neutrino
mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23, are predicted, and/or the values of some
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of these parameters, typically of sin2 θ12 or sin2 θ23, are fixed. These correlations and
predictions are summarised in Tables 2.5 and 2.6. We have found that a relatively large
number of these cases are not phenomenologically viable, i.e., they lead to results which are
not compatible with the existing data on neutrino mixing. We have derived predictions for
cos δ for the flavour symmetry groups Gf = A4, T ′, S4 and A5 using the best fit values of
sin2 θ12, sin2 θ13 and sin2 θ23, when cos δ is unambiguously determined by the corresponding
sum rule. We have presented the predictions for cos δ only in the phenomenologically
viable cases, i.e., when the measured values of the 3-neutrino mixing parameters sin2 θ12,
sin2 θ13 and sin2 θ23, taking into account their respective 3σ uncertainties, are successfully
reproduced. These predictions, together with the predictions for the value of one of the
mixing parameters sin2 θ12 and sin2 θ23, in the cases when it is fixed by the symmetries,
are summarised in Tables 2.9–2.11.

The results derived in this chapter show, in particular, that with the accumulation of
more precise data on the PMNS neutrino mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23,
and with the measurement of the Dirac phase δ present in the neutrino mixing matrix
U , it will be possible to critically test the predictions of the current phenomenologically
viable theories, models and schemes of neutrino mixing based on different non-Abelian
discrete (lepton) flavour symmetries Gf and sets of their non-trivial subgroups of residual
symmetries Ge and Gν , operative respectively in the charged lepton and neutrino sectors,
and thus, critically test the discrete symmetry approach to understanding the observed
pattern of neutrino mixing.



Chapter 3

Phenomenology of sum rules for the
Dirac phase
In this chapter, we will be driven by the idea that the main contribution to the PMNS
matrix U comes from the neutrino sector, i.e., from the matrix Uν diagonalising the
neutrino mass matrix. In terms of the breaking patterns explored in Chapter 2, we take
a closer look at pattern D, which is characterised by fully broken flavour symmetry in
the charged lepton sector and a residual symmetry Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2
preserved in the neutrino sector. In this case, as we have seen in the preceding chapter, the
residual symmetry Gν determines completely the form of the matrix Uν (up to re-phasing
of columns and their permutations), while the matrix Ue remains, in general, unconstrained.
Assuming Uν to have one of the symmetry forms introduced in Section 1.2, i.e., BM, TBM,
GRA, GRB or HG, we explore in a systematic way possible charged lepton corrections, i.e.,
various forms of the matrix Ue diagonalising MeM

†
e , which can reconstitute compatibility

of the symmetry forms in question with the experimental data. We consider only those
forms of Ue which allow one to express δ as a function of the three neutrino mixing angles
present in the PMNS matrix U and the fixed angles contained in Uν .

3.1 Framework
In what follows we will exploit the fact that in the general case the PMNS mixing matrix
U has the following form [151] (see also Appendix C):

U = U †e Uν = Ũ †e Ψ Ũν Q0 , (3.1)

where Ũe and Ũν are CKM-like 3× 3 unitary matrices, and Ψ and Q0 are diagonal phase
matrices each containing in general two phases:

Ψ = diag
(
1, e−iψ, e−iω

)
, Q0 = diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (3.2)

Note that the matrix Q0 is exactly the same defined in eq. (2.7), and the phases ξ21 and
ξ31 contribute to the Majorana phases in the PMNS matrix. We will further assume that,
up to subleading perturbative corrections (and phase matrices), the PMNS matrix U has
a specific known form Ũν that is dictated by continuous and/or discrete symmetries, or
by arguments related to symmetries. As we have already pointed out in Section 1.2, this
assumption seems very natural in view of the observation that the measured values of the
three neutrino mixing angles differ from certain possible symmetry values by subdominant
corrections.

In particular, we will consider the widely discussed TBM, BM, GRA, GRB and HG
forms of Ũν , defined in eqs. (1.33), (1.35), (1.36), (1.37) and (1.38), respectively. For all
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these forms the matrix Ũν represents a product of two orthogonal matrices describing
rotations in the 1-2 and 2-3 planes on fixed angles θν12 and θν23:

Ũν = R23(θ
ν
23)R12(θ

ν
12) , (3.3)

where

R12 (θν12) =

 cos θν12 sin θν12 0
− sin θν12 cos θν12 0

0 0 1

 , R23 (θν23) =

1 0 0
0 cos θν23 sin θν23
0 − sin θν23 cos θν23

 . (3.4)

Thus, in such a parametrisation, Ũν does not include a rotation in the 1-3 plane, i.e.,
θν13 = 0. Moreover, for all the symmetry forms quoted above one has also θν23 = − π/4.
As we have already seen in subsection 2.6.5, the forms differ by the value of the angle
θν12, and, correspondingly, of sin2 θν12. Namely, sin2 θν12 = 1/3 (TBM), sin2 θν12 = 1/2
(BM), sin2 θν12 = (2 + r)−1 ≈ 0.276 (GRA), r being the golden ratio, r = (1 +

√
5)/2,

sin2 θν12 = (3− r)/4 ≈ 0.345 (GRB), and sin2 θν12 = 1/4 (HG).
As is clear from the preceding discussion, the values of the angles in the matrix Ũν ,

which are fixed by symmetry arguments, typically differ from the values determined
experimentally by relatively small perturbative corrections. In the approach we are
following, the requisite corrections are provided by the angles in the matrix Ũe. The matrix
Ũe in the general case depends on three angles and one phase [151]. However, in a class
of theories of (lepton) flavour and neutrino mass generation, based on a GUT and/or a
discrete symmetry (see, e.g., [122,145–149]), Ũe is an orthogonal matrix which describes
one rotation in the 1-2 plane,

Ũe = R−112 (θe12) , (3.5)

or two rotations in the planes 1-2 and 2-3,

Ũe = R−123 (θe23)R
−1
12 (θe12) , (3.6)

θe12 and θe23 being the corresponding rotation angles. Other possibilities include Ũe being
an orthogonal matrix which describes (i) one rotation in the 1-3 plane,18

Ũe = R−113 (θe13) , (3.7)

or (ii) two rotations in any other two of the three planes, e.g.,19

Ũe = R−123 (θe23)R
−1
13 (θe13) , or (3.8)

Ũe = R−113 (θe13)R
−1
12 (θe12) . (3.9)

The use of the inverse matrices in eqs. (3.5)–(3.9) is a matter of convenience — this allows
us to lighten the notations in expressions which will appear further in the text.

It was shown in [99] (see also [102]) that for Ũν and Ũe given in eqs. (3.3) and (3.6), the
Dirac phase δ present in the PMNS matrix satisfies a sum rule by which it is expressed in

18The case of Ũe representing a rotation in the 2-3 plane is ruled out for the five symmetry forms of Ũν
listed above, since in this case a realistic value of θ13 6= 0 cannot be generated.

19 We consider only “standard” ordering of the two rotations in Ũe (see [102]).
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terms of the three neutrino mixing angles measured in the neutrino oscillation experiments
and the angle θν12. This sum rule reads [99]

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2 θ23 sin2 θ13

)]
. (3.10)

For the specific values of θν12 = π/4 and θν12 = sin−1(1/
√

3), i.e., for the BM (LC) and
TBM forms of Ũν , eq. (3.10) reduces to the expressions for cos δ derived first in [102]. As
we have pointed out in subsection 2.6.3, this sum rule is a particular case of the one in
eq. (2.137). Within the approach employed, the expression for cos δ given in eq. (3.10) is
exact. In [99] the correction to the sum rule in eq. (3.10) due to a non-zero angle θe13 � 1
in Ũe, corresponding to

Ũe = R−123 (θe23)R
−1
13 (θe13)R

−1
12 (θe12) (3.11)

with | sin θe13| � 1, was also derived.
In the present chapter, we derive new sum rules for cos δ using the general approach

employed, in particular, in [99]. We perform a systematic study of the forms of the matrices
Ũe and Ũν , for which it is possible to derive sum rules for cos δ of the type of eq. (3.10),
but for which the sum rules of interest do not exist in the literature. More specifically, we
consider the following forms of Ũe and Ũν :

• Ũν = R23(θ
ν
23)R12(θ

ν
12) with fixed θν23 and θν12, and20

(A1) Ũe = R−112 (θe12),

(A2) Ũe = R−113 (θe13),

(B2) Ũe = R−123 (θe23)R
−1
13 (θe13),

(B3) Ũe = R−113 (θe13)R
−1
12 (θe12);

• Ũν = R23(θ
ν
23)R13(θ

ν
13)R12(θ

ν
12) with fixed θν23, θν13 and θν12, and

(C1) Ũe = R−112 (θe12),

(C2) Ũe = R−113 (θe13).

In each of these cases, we obtain the respective sum rule for cos δ for arbitrary fixed
values of all angles contained in the matrix Ũν . Next we derive predictions for cos δ and
the rephasing invariant JCP defined in eq. (1.6), performing a statistical analysis using
the current (the prospective) uncertainties in the determination of the neutrino mixing
parameters sin2 θ12, sin2 θ13, sin2 θ23 and δ (sin2 θ12, sin2 θ13 and sin2 θ23).

The remainder of the present chapter is organised as follows. In Section 3.2, we consider
cases A1 and A2. In these cases, the PMNS matrix contains one rotation from the charged
lepton sector and two rotations from the neutrino sector and reads

U = Rij(θ
e
ij) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 , (3.12)

with (ij) = (12), (13). In Section 3.3, we analyse cases B2 and B3 in which the PMNS
matrix contains two rotations from the charged lepton sector and two rotations from the
neutrino sector, i.e.,

U = Rij(θ
e
ij)Rkl(θ

e
kl) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 , (3.13)

20Case B1, i.e., that with Ũe = R−123 (θe23)R−112 (θe12), has been studied in detail in refs. [99, 102].
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with (ij) − (kl) = (13) − (23), (12) − (13). Further, in Section 3.4, we generalise the
schemes considered in Section 3.2 by allowing also a third rotation matrix to be present in
Ũν :

U = Rij(θ
e
ij) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 , (3.14)

with (ij) = (12) in case C1, and (ij) = (13) in case C2. In Section 3.5, we provide a
summary of the sum rules derived in Sections 3.2–3.4. Using the sum rules for cos δ, in
Section 3.6, we obtain numerical predictions for cos δ, δ and JCP in each case for certain
values of the angles θνij fixed by (arguments associated with) flavour symmetries. In
Section 3.7, we perform a statistical analysis of these predictions. Section 3.8 contains
summary of the results obtained in the present chapter and conclusions.

3.2 Mixing schemes with Ũ †e = Rij(θ
e
ij) and

Ũν = R23(θ
ν
23)R12(θ

ν
12)

In this section, we derive the sum rules for cos δ of interest in the case when the matrix
Ũν = R23(θ

ν
23)R12(θ

ν
12) with fixed (e.g., symmetry) values of the angles θν23 and θν12, gets

correction only due to one rotation from the charged lepton sector. The neutrino mixing
matrix U has the form given in eq. (3.12). We do not consider the cases of eq. (3.12)
(i) with (ij) = (23), because the reactor angle θ13 does not get corrected and remains
zero, and (ii) with (ij) = (12) and θν23 = −π/4, which has been already analysed in detail
in [99].

3.2.1 Case A1: θe12
For θν23 = −π/4 the sum rule for cos δ in this case was derived in ref. [99] and is given in
eq. (50) therein. Here we consider the case of an arbitrary fixed value of the angle θν23.
Using eq. (3.12) with (ij) = (12), one finds the following expressions for the mixing angles
θ13 and θ23 of the standard parametrisation of the PMNS matrix:

sin2 θ13 = |Ue3|2 = sin2 θe12 sin2 θν23 , (3.15)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θν23 − sin2 θ13
1− sin2 θ13

. (3.16)

Although eq. (3.10) was derived in [99] for θν23 = −π/4 and Ũe = R−123 (θe23)R
−1
12 (θe12), it

is not difficult to convince oneself that it holds also in the case under discussion for an
arbitrary fixed value of θν23. The sum rule for cos δ of interest, expressed in terms of the
angles θ12, θ13, θν12 and θν23, can be obtained from eq. (3.10) by using the expression for
sin2 θ23 given in eq. (3.16). The result reads

cos δ =
(cos 2θ13 − cos 2θν23)

1
2

√
2 sin 2θ12 sin θ13| cos θν23|

[
cos 2θν12

+
(
sin2 θ12 − cos2 θν12

) 2 sin2 θν23 − (3 + cos 2θν23) sin2 θ13
cos 2θ13 − cos 2θν23

]
. (3.17)

Setting θν23 = −π/4 in eq. (3.17), one reproduces the sum rule given in eq. (50) in ref. [99].
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3.2.2 Case A2: θe13
In the present subsection, we consider the parametrisation of the neutrino mixing matrix
given in eq. (3.12) with (ij) = (13). In this set-up, the phase ψ in the matrix Ψ is unphysical
(it can be absorbed in the µ field) and therefore, effectively, Ψ = diag (1, 1, e−iω). Using
eq. (3.12) with (ij) = (13) and θν23 = −π/4 first and the standard parametrisation of U ,
we get:

sin2 θ13 = |Ue3|2 =
1

2
sin2 θe13 , (3.18)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

2 (1− sin2 θ13)
, (3.19)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
1

2
sin2 θe13 cos2 θν12

+ cos2 θe13 sin2 θν12 +
1√
2

sin 2θe13 cosω sin θν12 cos θν12

]
. (3.20)

From eqs. (3.18) and (3.20) we obtain an expression for cosω in terms of the measured
mixing angles θ12, θ13 and the known θν12:21

cosω =
1− sin2 θ13

sin 2θν12 sin θ13(1− 2 sin2 θ13)
1
2

[
sin2 θ12 − sin2 θν12 − cos 2θν12

sin2 θ13
1− sin2 θ13

]
. (3.21)

Further, one can find a relation between sin δ (cos δ) and sinω (cosω) by comparing the
imaginary (real) part of the combination U∗e1U∗µ3Ue3Uµ1, written by using eq. (3.12) with
(ij) = (13) and in the standard parametrisation of U . For the relation between sin δ and
sinω we get

sin δ = −sin 2θν12
sin 2θ12

sinω . (3.22)

The sum rule for cos δ of interest can be derived by substituting cosω from eq. (3.21) in
the relation between cos δ and cosω (which is not difficult to derive and we do not present
it here).22 We obtain

cos δ = −(1− 2 sin2 θ13)
1
2

sin 2θ12 sin θ13

[
cos 2θν12 + (sin2 θ12 − cos2 θν12)

1− 3 sin2 θ13
1− 2 sin2 θ13

]
. (3.23)

We note that the expression for cos δ thus found differs only by an overall minus sign from
the analogous expression for cos δ derived in [99] in case A1 (see eq. (50) in [99]).

In eq. (1.7) we have given the expression for the rephasing invariant JCP in the
standard parametrisation of the PMNS matrix. Below and in the next sections we give for
completeness also the expressions of the JCP factor in terms of the independent parameters
of the set-up considered. In terms of the parameters ω, θe13 and θν12 of the set-up discussed
in the present subsection, JCP is given by

JCP = − 1

8
√

2
sinω sin 2θe13 sin 2θν12 . (3.24)

21We note that the expression for cosω we have obtained coincides with that for cosφ in case A1 found
in [99] (cf. eq. (46) therein).

22We would like to notice that this method of deriving sum rules for cos δ is alternative to the method
employed by us in Chapter 2. The method we use in this subsection has been successfully applied in
ref. [99].
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In the case of an arbitrary fixed value of the angle θν23 the expressions for the mixing
angles θ13 and θ23 take the following form:

sin2 θ13 = |Ue3|2 = sin2 θe13 cos2 θν23 , (3.25)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θν23
1− sin2 θ13

. (3.26)

The sum rule for cos δ in this case can be obtained with a simpler procedure we made use
of in Chapter 2, namely, by equating the expressions for the absolute value of the element
Uµ1 of the PMNS matrix in the two parametrisations employed in the present subsection:

|Uµ1| = | cos θ23 sin θ12 + eiδ cos θ12 sin θ13 sin θ23| = | cos θν23 sin θν12| , (3.27)

From eq. (3.27) we get

cos δ = − (cos 2θ13 + cos 2θν23)
1
2

√
2 sin 2θ12 sin θ13| sin θν23|

[
cos 2θν12

+
(
sin2 θ12 − cos2 θν12

) 2 cos2 θν23 − (3− cos 2θν23) sin2 θ13
cos 2θ13 + cos 2θν23

]
. (3.28)

We will use the sum rules for cos δ derived in the present and the next two sections to
obtain predictions for cos δ, δ and for the JCP factor in Section 3.6.

3.3 Mixing schemes with Ũ †e = Rij(θ
e
ij)Rkl(θ

e
kl) and

Ũν = R23(θ
ν
23)R12(θ

ν
12)

As we have seen in the preceding Section, in the case of one rotation from the charged
lepton sector and for θν23 = −π/4, the mixing angle θ23 cannot deviate significantly from
π/4 due to the smallness of the angle θ13. If the matrix Ũν has one of the symmetry forms
considered in this chapter, the matrix Ũe has to contain at least two rotations in order to be
possible to reproduce the current best fit values of the neutrino mixing parameters, quoted
in eqs. (2.15)–(2.17). This conclusion will remain valid if higher precision measurements of
sin2 θ23 confirm that θ23 deviates significantly from π/4. In what follows we investigate
different combinations of two rotations from the charged lepton sector and derive a sum
rule for cos δ in each set-up. First, we briefly remind the results obtained in case B1 which
has been thoroughly analysed in refs. [99, 102].

3.3.1 Case B1: θe12 and θe23
As we have already noted in subsection 3.2.1, the resulting sum rule for cos δ in this case,
which is given in eq. (3.10), has been derived first in [99] for θν23 = −π/4. However, it
holds for an arbitrary fixed value of θν23.

The JCP factor in the parametrisation of the PMNS matrix corresponding to the case
under consideration has the following form [102]:

JCP = −1

8
sin 2θe12 sin 2θν12 sin 2θ̂23 sin θ̂23 sinφ , (3.29)

where the angle θ̂23 and the phase φ are defined in the next subsection in eqs. (3.32) and
(3.35), respectively.
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3.3.2 Case B2: θe13 and θe23
Following the method used in ref. [102], the PMNS matrix U from eq. (3.13) with
(ij)− (kl) = (13)− (23), can be cast in the form

U = R13(θ
e
13)P1R23(θ̂23)R12(θ

ν
12) Q̂ , (3.30)

where the angle θ̂23 is determined (i) for θν23 = −π/4 by

sin2 θ̂23 =
1

2
(1− sin 2θe23 cos(ω − ψ)) , (3.31)

and (ii) for an arbitrary fixed value of θν23 by

sin2 θ̂23 = sin2 θe23 cos2 θν23 + cos2 θe23 sin2 θν23 +
1

2
sin 2θe23 sin 2θν23 cos(ω − ψ) . (3.32)

The phase matrices P1 and Q̂ have the following form:

P1 = diag(1, 1, e−iα), and Q̂ = Q1Q0 , with Q1 = diag(1, 1, eiβ) , (3.33)

where the phases α and β are given by

α = γ + ψ + ω , with γ = arg
(
e−iψ cos θe23 sin θν23 + e−iω sin θe23 cos θν23

)
, (3.34)

β = γ − φ , where φ = arg
(
e−iψ cos θe23 cos θν23 − e−iω sin θe23 sin θν23

)
. (3.35)

Using eq. (3.30) and the standard parametrisation of U , we find:

sin2 θ13 = |Ue3|2 = sin2 θe13 cos2 θ̂23 , (3.36)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ̂23
1− sin2 θ13

, (3.37)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
cos2 θe13 sin2 θν12

− 1

2
sin θ̂23 sin 2θe13 sin 2θν12 cosα + cos2 θν12 sin2 θe13 sin2 θ̂23

]
. (3.38)

The first two equations allow one to express θe13 and θ̂23 in terms of θ13 and θ23. Equa-
tion (3.38) allows us to find cosα as a function of the PMNS mixing angles θ12, θ13, θ23
and the angle θν12:

cosα = 2
sin2 θν12 cos2 θ23 + cos2 θν12 sin2 θ23 sin2 θ13 − sin2 θ12

(
1− sin2 θ23 cos2 θ13

)
sin 2θν12 sin 2θ23 sin θ13

.

(3.39)
The relation23 between sin δ (cos δ) and sinα (cosα) can be found by comparing the
imaginary (real) part of the quantity U∗e1U∗µ3Ue3Uµ1, written using eq. (3.30) and using the
standard parametrisation of U :

sin δ =
sin 2θν12
sin 2θ12

sinα , (3.40)

23We note that the expression in eq. (3.39) for cosα can be obtained formally from the r.h.s. of eq. (22)
for cosφ in [99] by substituting sin θ23 with cos θ23 and vice versa and by changing its overall sign.
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cos δ =
sin 2θν12
sin 2θ12

cosα− sin θ13
sin 2θ12

tan θ23 (cos 2θ12 + cos 2θν12) . (3.41)

The sum rule expression for cos δ as a function of the mixing angles θ12, θ13, θ23 and θν12,
with θν12 having an arbitrary fixed value, reads

cos δ = − cot θ23
sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− tan2 θ23 sin2 θ13

)]
. (3.42)

This sum rule for cos δ can be obtained formally from the r.h.s. of eq. (3.10) by interchanging
tan θ23 and cot θ23 and by multiplying it by −1. Thus, in the case of θ23 = π/4, the
predictions for cos δ in the case under consideration will differ from those obtained using
eq. (3.10) only by a sign. We would like to emphasise that, as the sum rule in eq. (3.10),
the sum rule in eq. (3.42) is valid for any fixed value of θν23. Finally, we note that the sum
rule in eq. (3.42) is a particular case of that in eq. (2.140) derived in subsection 2.6.4.

The JCP factor has the following form in the parametrisation of the PMNS matrix
employed in the present subsection:

JCP =
1

8
sin 2θe13 sin 2θν12 sin 2θ̂23 cos θ̂23 sinα . (3.43)

3.3.3 Case B3: θe12 and θe13
In this subsection, we consider the parametrisation of the matrix U defined in eq. (3.13)
with (ij)−(kl) = (12)−(13) under the assumption of vanishing ω, i.e., Ψ = diag(1, e−iψ, 1).
In the case of non-fixed ω it is impossible to express cos δ only in terms of the independent
angles of the scheme. We will comment more on this case later.

Using the parametrisation given in eq. (3.13) with θν23 = −π/4 and ω = 0 and the
standard one, we find:

sin2 θ13 = |Ue3|2 =
1

2
sin2 θe12 +

1

2
cos2 θe12 sin2 θe13 −Xψ , (3.44)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

cos2 θ13

[
1

2
cos2 θe12 +

1

2
sin2 θe12 sin2 θe13 +Xψ

]
, (3.45)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=
ζ sin2 θe12 + ξ

1− sin2 θ13
, (3.46)

where

Xψ =
1

2
sin 2θe12 sin θe13 cosψ , (3.47)

ζ = cos2 θe13 cos 2θν12 +
1

4
√

2
sin 2θν12 cot θe13(3 cos 2θe13 − 1) , (3.48)

ξ = cos2 θe13 sin2 θν12 +
1

2
(cos 2θ13 − cos 2θe13) cos2 θν12

+
1

2
√

2
sin 2θν12(3 cos θe13 sin θe13 − 2 cot θe13 sin2 θ13) . (3.49)

The dependence on cosψ in eq. (3.46) has been eliminated by solving eq. (3.44) for Xψ. It
follows from eqs. (3.44) and (3.45) that sin2 θe13 is a function of the known mixing angles
θ13 and θ23:

sin2 θe13 = 1− 2 cos2 θ13 cos2 θ23 . (3.50)
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Inverting the formula for sin2 θ12 allows us to find sin2 θe12, which is given by

sin2 θe12 =

[
4
[
cos 2θν12(cos 2θe13 + sin2 θ13)− cos 2θ12 cos2 θ13

]
tan θe13 +

√
2 sin 2θν12

× (3 cos 2θe13 − 2 cos 2θ13 − 1)

][
4 cos 2θν12 sin 2θe13 +

√
2(3 cos 2θe13 − 1) sin 2θν12

]−1
.

(3.51)

Using eqs. (3.44) and (3.51), we can write cosψ in terms of the standard parametrisation
mixing angles and the known θe13 and θν12:

cosψ =
sin2 θe12 + cos2 θe12 sin2 θe13 − 2 sin2 θ13

sin 2θe12 sin θe13
. (3.52)

We find the relation between sin δ and sinψ by employing again the standard procedure
of comparing the expressions of the JCP factor in the two parametrisations — the standard
one and that defined in eq. (3.13) (with θν23 = −π/4 and ω = 0):

sin δ =
sin 2θe12 sinψ

4 sin 2θ12 sin 2θ13 sin θ23

[
2
√

2 sin 2θe13 cos 2θν12 + (3 cos 2θe13 − 1) sin 2θν12

]
, (3.53)

where sin 2θe12 (sin 2θe13 and cos 2θe13) can be expressed in terms of θ12, θ13, θ23 and θν12 (θ13
and θ23) using eq. (3.51) (eq. (3.50)).

We use a much simpler procedure to find cos δ. Namely, we compare the expressions for
the absolute value of the element Uτ1 of the PMNS matrix in the standard parametrisation
and in the symmetry related one, eq. (3.13) with θν23 = −π/4 and ω = 0, considered in the
present subsection:

|Uτ1| = | sin θ23 sin θ12 − sin θ13 cos θ23 cos θ12e
iδ| = | sin θe13 cos θν12 +

1√
2

cos θe13 sin θν12| .

(3.54)

From the above equation we get for cos δ:

cos δ = − 2

sin 2θ12 sin 2θ23 sin θ13

[
cos2 θ23 sin2 θ12 sin2 θ13 + cos2 θ12 sin2 θ23

−
(√

cos2 θ13 cos2 θ23 cos θν12 − κ
√

1− 2 cos2 θ13 cos2 θ23 sin θν12

)2 ]
, (3.55)

where κ = 1 if θe13 belongs to the first or third quadrant, and κ = −1 if θe13 is in
the second or the fourth one. In the parametrisation under discussion, eq. (3.13) with
(ij)− (kl) = (12)− (13), θν23 = −π/4 and ω = 0, we have

JCP =

√
2

32
cos θe13 sin 2θe12

(
2
√

2 cos 2θν12 sin 2θe13 + (3 cos 2θe13 − 1) sin 2θν12

)
sinψ . (3.56)

In the case of non-vanishing ω, using the same method and eq. (3.50), which also holds for
ω 6= 0, allows us to show that cos δ is a function of cosω as well:

cos δ = − 2 cos2 θ23
sin 2θ12 sin 2θ23 sin θ13

[
(1− 2 cos2 θ13 cos2 θ23)

cos2 θν12
cos2 θ23

− sin2 θ12 tan2 θ23
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+ (cos2 θ13 sin2 θν12 − cos2 θ12 sin2 θ13) + κ
cos θ13
cos θ23

√
1− 2 cos2 θ13 cos2 θ23 cosω sin 2θν12

]
.

(3.57)

Finally, we generalise eq. (3.57) to the case of an arbitrary fixed value of θν23. In this
case

sin2 θe13 =
1− cos2 θ13 cos2 θ23 − sin2 θν23

cos2 θν23
, (3.58)

and eqs. (3.54) and (3.57) read:

|Uτ1| =
∣∣sin θ23 sin θ12 − sin θ13 cos θ23 cos θ12e

iδ
∣∣

=
∣∣cos θν12 sin θe13 − e−iω cos θe13 sin θν12 sin θν23

∣∣ , (3.59)

cos δ =
1

sin 2θ12 sin 2θ23 sin θ13

[
2κ cosω sin 2θν12 sin θν23 cos θ13 cos θ23

cos2 θν23

× (cos2 θν23 − cos2 θ13 cos2 θ23)
1
2

− cos 2θν12

(
1− cos2 θ13 cos2 θ23

cos2 θν23
(sin2 θν23 + 1)

)
+ cos 2θ12

(
cos2 θ23 sin2 θ13 − sin2 θ23

)]
.

(3.60)

This expression for cos δ corresponds to the sum rule in eq. (2.147). See the discussion at
the end of subsection 2.6.6.

It follows from the results for cos δ obtained for cosω 6= 0, eqs. (3.57) and (3.60), that
in the case analysed in the present subsection, one can obtain predictions for cos δ only in
theoretical models in which the value of the phase ω is fixed.

3.4 Mixing schemes with Ũ †e = Rij(θ
e
ij) and

Ũν = R23(θ
ν
23)R13(θ

ν
13)R12(θ

ν
12)

We consider next a generalisation of the cases analysed in Section 3.2 with the presence
of a third rotation matrix in Ũν arising from the neutrino sector, i.e., we employ the
parametrisation of U given in eq. (3.14). Non-zero values of θν13 are inspired by certain
types of flavour symmetries (see, e.g., [152–155]). In the case of θν12 = θν23 = −π/4 and
θν13 = sin−1(1/3), for instance, we have the so-called tri-permuting (TP) pattern, which
was proposed and studied in [153]. To obtain numerical predictions for cos δ, δ and the
JCP factor in Section 3.6, we will consider three representative values of θν13 discussed in
the literature: θν13 = π/20, π/10 and sin−1(1/3).

For the parametrisation of the matrix U given in eq. (3.14) with (ij) = (23), no
constraints on the phase δ can be obtained. Indeed, after we recast U in the form

U = R23(θ̂23)Q1R13(θ
ν
13)R12(θ

ν
12)Q0 , (3.61)

where sin2 θ̂23 and Q1 are given in eqs. (3.32) and (3.33), respectively, we find employing a
similar procedure used in the previous sections:

sin2 θ13 = sin2 θν13 , sin2 θ23 = sin2 θ̂23 , sin2 θ12 = sin2 θν12 , sin δ = sin β . (3.62)

Thus, there is no correlation between the Dirac CPV phase δ and the mixing angles in
this set-up.
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3.4.1 Case C1: θe12
In the parametrisation of the matrix U given in eq. (3.14) with (ij) = (12), the phase ω in
the matrix Ψ is unphysical (it “commutes” with R12(θ

e
12) and can be absorbed by the µ

field). Hence, the matrix Ψ contains only one physical phase φ, Ψ = diag (1, eiφ, 1), and
φ ≡ −ψ. Taking this into account and using eq. (3.14) with (ij) = (12) and θν23 = −π/4,
we get the following expressions for sin2 θ13, sin2 θ23 and sin2 θ12:

sin2 θ13 = |Ue3|2 =
1

2
sin2 θe12 cos2 θν13 + cos2 θe12 sin2 θν13 −X12 sin θν13 , (3.63)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= 1− cos2 θν13

2 (1− sin2 θ13)
, (3.64)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
1

2
sin2 θe12 (cos θν12 + sin θν12 sin θν13)

2

+ cos2 θe12 cos2 θν13 sin2 θν12 +X12 sin θν12 (cos θν12 + sin θν12 sin θν13)

]
, (3.65)

where
X12 =

1√
2

sin 2θe12 cos θν13 cosφ . (3.66)

Solving eq. (3.63) for X12 and inserting the solution in eq. (3.65), we find sin2 θ12 as a
function of θ13, θν12, θν13 and θe12:

sin2 θ12 =
α sin2 θe12 + β

1− sin2 θ13
. (3.67)

Here the parameters α and β are given by:

α =
1

4

[
2 cos 2θν12 + sin 2θν12

cos2 θν13
sin θν13

]
, (3.68)

β = sin θν12

[
cos2 θ13 sin θν12 + cos θν12

(
sin θν13 −

sin2 θ13
sin θν13

)]
. (3.69)

Inverting the formula for sin2 θ12 allows us to express sin2 θe12 in terms of θ12, θ13, θν12, θν13:

sin2 θe12 =
2 cos2 θ13 sin θν13(sin

2 θ12 − sin2 θν12) + sin 2θν12 sin2 θ13 − sin 2θν12 sin2 θν13
cos 2θν12 sin θν13 + cos θν12 sin θν12 cos2 θν13

. (3.70)

In the limit of vanishing θν13 we have sin2 θe12 = 2 sin2 θ13, which corresponds to the case of
negligible θe23 considered in [99].

Using eq. (3.65), one can express cosφ in terms of the “standard” mixing angles θ12,
θ13 and the angles θe12, θν12 and θν13 which are assumed to have known values:

cosφ =

[
2 cos2 θ13(sin θ

e
12)
−2(sin θν12)

−2 sin2 θ12 − 2 cos2 θν13 cot2 θe12 − (cot θν12 + sin θν13)
2

]
×(cos θν13)

−1 tan θe12

[
2
√

2(cot θν12 + sin θν13)

]−1
. (3.71)

We note that from the requirements (0 < sin2 θe12 < 1)∧(−1 < cosφ < 1) one can obtain for
a given θν13, each of the symmetry values of θν12 considered and θν23 = −π/4, lower and upper
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bounds on the value of sin2 θ12. These bounds will be discussed in Section 3.6. Comparing
the expressions for JCP obtained using eq. (3.14) with (ij) = (12) and θν23 = −π/4, and in
the standard parametrisation of U , one gets the relation between sinφ and sin δ:

sin δ = − sin 2θe12
2 sin 2θ12 sin 2θ13 sin θ23

[
cos2 θν13 sin 2θν12 + 2 cos 2θν12 sin θν13

]
sinφ . (3.72)

Similarly to the method employed in the previous section, we use the equality of the
expressions for |Uτ1| in the two parametrisations in order to derive the sum rule for cos δ
of interest:

|Uτ1| = | sin θ23 sin θ12 − sin θ13 cos θ23 cos θ12e
iδ| = 1√

2
| sin θν12 + cos θν12 sin θν13| . (3.73)

From the above equation we find the following sum rule for cos δ:

cos δ =
1

sin 2θ12 sin θ13| cos θν13|(1− 2 sin2 θ13 + sin2 θν13)
1
2

[ (
1− 2 sin2 θ13 + sin2 θν13

)
sin2 θ12

+ cos2 θ12 sin2 θ13 cos2 θν13 − cos2 θ13 (sin θν12 + cos θν12 sin θν13)
2

]
. (3.74)

For θν13 = 0 this sum rule reduces to the sum rule for cos δ given in eq. (50) in [99].
In the parametrisation of the PMNS matrix considered in this subsection, the rephasing

invariant JCP has the form:

JCP = − 1

8
√

2
sinφ cos θν13 sin 2θe12

[
cos2 θν13 sin 2θν12 + 2 sin θν13 cos 2θν12

]
. (3.75)

In the case when θν23 has a fixed value which differs from −π/4, the expression for
sin2 θ23, eq. (3.64), changes as follows:

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= 1− cos2 θν23 cos2 θν13

1− sin2 θ13
. (3.76)

Equations (3.73) and (3.74) are also modified:

|Uτ1| =
∣∣sin θ23 sin θ12 − sin θ13 cos θ23 cos θ12e

iδ
∣∣ = |sin θν12 sin θν23 − cos θν23 cos θν12 sin θν13| ,

(3.77)

and

cos δ =
1

sin 2θ12 sin θ13| cos θν13 cos θν23|(cos2 θ13 − cos2 θν13 cos2 θν23)
1
2

×
[
(cos2 θ13 − cos2 θν13 cos2 θν23) sin2 θ12 + cos2 θ12 sin2 θ13 cos2 θν13 cos2 θν23

− cos2 θ13(cos θν12 sin θν13 cos θν23 − sin θν12 sin θν23)
2

]
. (3.78)

In the case of bi-trimaximal mixing [152], i.e., for θν12 = θν23 = tan−1(
√

3 − 1) and
θν13 = sin−1((3−

√
3)/6), the sum rule we have derived reduces to the sum rule obtained

in [111]. However, this case is statistically disfavoured by the current global neutrino
oscillation data.
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e
ij) and Ũν = R23(θ
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3.4.2 Case C2: θe13
Here we switch to the parametrisation of the matrix U given in eq. (3.14) with (ij) = (13).
Now the phase ψ in the matrix Ψ is unphysical, and Ψ = diag(1, 1, e−iω). Fixing θν23 = −π/4
and using also the standard parametrisation of U , we find:

sin2 θ13 = |Ue3|2 =
1

2
sin2 θe13 cos2 θν13 + cos2 θe13 sin2 θν13 +X13 sin θν13 , (3.79)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

cos2 θν13
2 (1− sin2 θ13)

, (3.80)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

1− sin2 θ13

[
1

2
sin2 θe13 (cos θν12 − sin θν12 sin θν13)

2

+ cos2 θe13 cos2 θν13 sin2 θν12 +X13 sin θν12 (cos θν12 − sin θν12 sin θν13)

]
. (3.81)

Here
X13 =

1√
2

sin 2θe13 cos θν13 cosω . (3.82)

Solving eq. (3.79) for X13 and inserting the solution in eq. (3.81), it is not difficult to find
sin2 θ12 as a function of θ13, θν12, θν13 and θe13:

sin2 θ12 =
ρ sin2 θe13 + η

1− sin2 θ13
, (3.83)

where ρ and η are given by

ρ =
1

4

[
2 cos 2θν12 − sin 2θν12

cos2 θν13
sin θν13

]
, (3.84)

η = sin θν12

[
cos2 θ13 sin θν12 − cos θν12

(
sin θν13 −

sin2 θ13
sin θν13

)]
. (3.85)

Using eq. (3.83) for sin2 θ12 with ρ and η as given above, one can express sin2 θe13 in terms
of θ12, θ13, θν12, θν13:

sin2 θe13 =
2 cos2 θ13 sin θν13(sin

2 θ12 − sin2 θν12)− sin 2θν12 sin2 θ13 + sin 2θν12 sin2 θν13
cos 2θν12 sin θν13 − cos θν12 sin θν12 cos2 θν13

. (3.86)

In the limit of vanishing θν13 we find sin2 θe13 = 2 sin2 θ13, as obtained in subsection 3.2.2.
Further, using eq. (3.81), we can write cosω in terms of the standard parametrisation

mixing angles and the known θe13, θν12 and θν13:

cosω =

[
2 cos2 θ13(sin θ

e
13)
−2(sin θν12)

−2 sin2 θ12 − 2 cos2 θν13 cot2 θe13 − (cot θν12 − sin θν13)
2

]
×(cos θν13)

−1 tan θe13

[
2
√

2(cot θν12 − sin θν13)

]−1
. (3.87)

Analogously to the case considered in the preceding subsection, from the requirements
(0 < sin2 θe13 < 1) ∧ (−1 < cosω < 1) one can obtain for a given θν13, each of the symmetry
values of θν12 considered and θν23 = −π/4 lower and upper bounds on the value of sin2 θ12.
These bounds will be discussed in Section 3.6.
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Comparing again the imaginary parts of U∗e1U∗µ3Ue3Uµ1, obtained using eq. (3.14) with
(ij) = (13) and θν23 = −π/4, and in the standard parametrisation of U , one gets the
following relation between sinω and sin δ for arbitrarily fixed θν12 and θν13:

sin δ = − sin 2θe13
2 sin 2θ12 sin 2θ13 cos θ23

[
cos2 θν13 sin 2θν12 − 2 cos 2θν12 sin θν13

]
sinω . (3.88)

Exploiting the equality of the expressions for |Uµ1| written in the two parametrisations,

|Uµ1| =
∣∣cos θ23 sin θ12 + eiδ cos θ12 sin θ13 sin θ23

∣∣ =
1√
2
|cos θν12 sin θν13 − sin θν12| , (3.89)

we get the following sum rule for cos δ:

cos δ = − 1

sin 2θ12 sin θ13| cos θν13|(1− 2 sin2 θ13 + sin2 θν13)
1
2

[ (
1− 2 sin2 θ13 + sin2 θν13

)
sin2 θ12

+ cos2 θ12 sin2 θ13 cos2 θν13 − cos2 θ13 (sin θν12 − cos θν12 sin θν13)
2

]
. (3.90)

For θν13 = 0 this sum rule reduces to the sum rule for cos δ given in eq. (3.23).
In the parametrisation of the PMNS matrix considered in this subsection, the JCP

factor reads:

JCP = − 1

8
√

2
sinω cos θν13 sin 2θe13

[
cos2 θν13 sin 2θν12 − 2 sin θν13 cos 2θν12

]
. (3.91)

In the case of an arbitrary fixed value of θν23, as it is not difficult to show, we have:

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θν23 cos2 θν13
1− sin2 θ13

, (3.92)

and

|Uµ1| =
∣∣cos θ23 sin θ12 + eiδ cos θ12 sin θ13 sin θ23

∣∣ = |cos θν12 sin θν13 sin θν23 + sin θν12 cos θν23| .
(3.93)

Using eqs. (3.92) and (3.93), we obtain in this case

cos δ = − 1

sin 2θ12 sin θ13| cos θν13 sin θν23|(cos2 θ13 − cos2 θν13 sin2 θν23)
1
2

×
[
(cos2 θ13 − cos2 θν13 sin2 θν23) sin2 θ12 + cos2 θ12 sin2 θ13 cos2 θν13 sin2 θν23

− cos2 θ13(cos θν12 sin θν13 sin θν23 + sin θν12 cos θν23)
2

]
. (3.94)

3.5 Summary of the sum rules
The sum rules derived in Sections 3.2–3.4 and corresponding to arbitrary fixed values of
the angles contained in the matrix Ũν , eqs. (3.10), (3.17), (3.28), (3.42), (3.60), (3.78) and
(3.94), are summarised in Table 3.1. In Table 3.2 we give the corresponding formulae for
sin2 θ23.
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Table 3.1. Summary of the sum rules for cos δ. The parameter κ = 1 if θe13 belongs to the first or third quadrant, and κ = −1 otherwise.

Case Parametrisation of the PMNS matrix U cos δ

A1 R12(θ
e
12) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

(cos 2θ13 − cos 2θν23)
1
2

√
2 sin 2θ12 sin θ13| cos θν23|

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 2 sin2 θν23 − (3 + cos 2θν23) sin2 θ13
cos 2θ13 − cos 2θν23

]

A2 R13(θ
e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 − (cos 2θ13 + cos 2θν23)

1
2

√
2 sin 2θ12 sin θ13| sin θν23|

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 2 cos2 θν23 − (3− cos 2θν23) sin2 θ13
cos 2θ13 + cos 2θν23

]

B1 R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

tan θ23
sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2 θ23 sin2 θ13

)]
B2 R13(θ

e
13)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 − cot θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− tan2 θ23 sin2 θ13

)]
B3 R12(θ

e
12)R13(θ

e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

1

sin 2θ12 sin 2θ23 sin θ13

[
2κ cosω sin 2θν12 sin θν23 cos θ13 cos θ23

cos2 θν23
(cos2 θν23 − cos2 θ13 cos2 θ23)

1
2

− cos 2θν12

(
1− cos2 θ13 cos2 θ23

cos2 θν23
(sin2 θν23 + 1)

)
+ cos 2θ12

(
cos2 θ23 sin2 θ13 − sin2 θ23

)]

C1 R12(θ
e
12) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0

1

sin 2θ12 sin θ13| cos θν13 cos θν23|(cos2 θ13 − cos2 θν13 cos2 θν23)
1
2

[
(cos2 θ13 − cos2 θν13 cos2 θν23) sin2 θ12

+ cos2 θ12 sin2 θ13 cos2 θν13 cos2 θν23 − cos2 θ13(cos θν12 sin θν13 cos θν23 − sin θν12 sin θν23)
2

]

C2 R13(θ
e
13) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 − 1

sin 2θ12 sin θ13| cos θν13 sin θν23|(cos2 θ13 − cos2 θν13 sin2 θν23)
1
2

[
(cos2 θ13 − cos2 θν13 sin2 θν23) sin2 θ12

+ cos2 θ12 sin2 θ13 cos2 θν13 sin2 θν23 − cos2 θ13(cos θν12 sin θν13 sin θν23 + sin θν12 cos θν23)
2

]



80 Chapter 3. Phenomenology of sum rules for the Dirac phase

Table 3.2. Summary of the sum rules for sin2 θ23. The formula for sin2 θ̂23 is given in eq. (3.32).

Case Parametrisation of the PMNS matrix U sin2 θ23

A1 R12(θ
e
12) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

sin2 θν23 − sin2 θ13

1− sin2 θ13

A2 R13(θ
e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

sin2 θν23
1− sin2 θ13

B1 R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

sin2 θ̂23 − sin2 θ13

1− sin2 θ13

B2 R13(θ
e
13)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

sin2 θ̂23

1− sin2 θ13

B3 R12(θ
e
12)R13(θ

e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

sin2 θν23 − sin2 θ13 + sin2 θe13 cos2 θν23
1− sin2 θ13

C1 R12(θ
e
12) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 1− cos2 θν23 cos2 θν13

1− sin2 θ13

C2 R13(θ
e
13) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0

sin2 θν23 cos2 θν13
1− sin2 θ13

3.6 Predictions for the Dirac phase δ and the
rephasing invariant JCP

In this section, using the sum rules from Table 3.1 and the best fit values of the relevant
neutrino mixing parameters quoted in eqs. (2.15)–(2.17), we obtain the predictions for
cos δ, δ and the JCP factor. In cases A1, A2 and B1–B3, we obtain such predictions for
the TBM, BM, GRA, GRB and HG symmetry forms of the matrix Ũν , while in cases C1
and C2 for specific pairs of the values of θν13 and θν12, keeping θν23 fixed to −π/4. We start
with identifying these specific pairs.

In case C1, we find that only for particular values of θν12 and θν13, among those considered
by us, the allowed intervals of values of sin2 θ12 satisfy the requirement that they contain
in addition to the best fit value of sin2 θ12 also the 1.5σ experimentally allowed range of
sin2 θ12. Indeed, combining the conditions 0 < sin2 θe12 < 1 and | cosφ| < 1, where sin2 θe12
and cosφ are given in eqs. (3.70) and (3.71), respectively, and allowing sin2 θ13 to vary in
the 3σ range for the NO spectrum, we get restrictions on the value of sin2 θ12 presented in
Table 3.3. We see from the table that only five out of 18 combinations of the angles θν12 and
θν13 considered by us satisfy the requirement formulated above. In Table 3.3 these cases
are marked with the subscripts I, II, III, IV, V, while the ones marked with an asterisk
contain values of sin2 θ12 allowed at 2σ [18].

Equation (3.64) implies that sin2 θ23 is fixed by the value of θν13, and for the best fit
value of sin2 θ13 and the values of θν13 = 0, π/20, π/10, sin−1(1/3), considered by us, we
get, respectively: sin2 θ23 = 0.488, 0.501, 0.537, 0.545. Therefore a measurement of sin2 θ23
with a sufficiently high precision would rule out at least some of the cases with fixed values
of θν13 considered in the literature.

In case C2, a similar situation takes place. Namely, we find that only particular values
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Table 3.3. Case C1: ranges of sin2 θ12 obtained from the requirements (0 < sin2 θe12 < 1)∧(−1 <
cosφ < 1) allowing sin2 θ13 to vary in the 3σ allowed range for the NO neutrino mass spectrum
quoted in eq. (2.17). The cases for which the best fit value of sin2 θ12 = 0.308 is within the
corresponding allowed ranges are marked with the subscripts I, II, III, IV, V. The cases marked
with an asterisk contain values of sin2 θ12 allowed at 2σ [18].

θν13 π/20 π/10 sin−1(1/3)

θν12

sin−1(1/
√

3) (0.319, 0.654)∗ (0.471, 0.773) (0.495, 0.789)

π/4 (0.484, 0.803) (0.639, 0.897) (0.662, 0.909)

−π/4 (0.197, 0.516)III (0.103, 0.361)I (0.091, 0.338)IV

sin−1(1/
√

2 + r) (0.262, 0.594)II (0.409, 0.719) (0.434, 0.737)

π/5 (0.331, 0.666)∗ (0.484, 0.784) (0.508, 0.800)

π/6 (0.236, 0.564)V (0.380, 0.692) (0.404, 0.710)

Table 3.4. The same as in Table 3.3, but for case C2 and, correspondingly, the requirements
(0 < sin2 θe13 < 1) ∧ (−1 < cosω < 1).

θν13 π/20 π/10 sin−1(1/3)

θν12

sin−1(1/
√

3) (0.081, 0.348)III (0.024, 0.209) (0.019, 0.189)

π/4 (0.197, 0.516)I (0.103, 0.361)IV (0.091, 0.338)II

−π/4 (0.484, 0.803) (0.639, 0.897) (0.662, 0.909)

sin−1(1/
√

2 + r) (0.051, 0.291)∗ (0.009, 0.161) (0.006, 0.143)

π/5 (0.089, 0.361)V (0.028, 0.220) (0.022, 0.200)

π/6 (0.038, 0.264) (0.004, 0.140) (0.002, 0.123)

of θν12 and θν13 allow one to obtain the best fit value of sin2 θ12. Combining the requirements
0 < sin2 θe13 < 1 and | cosω| < 1, where sin2 θe13 and cosω are given in eqs. (3.86) and
(3.87), respectively, and allowing sin2 θ13 to vary in its 3σ allowed range corresponding to
the NO spectrum, we get restrictions on the value of sin2 θ12 presented in Table 3.4. It
follows from the results in Table 3.4 that only for five out of 18 combinations of the angles
θν12 and θν13, the best fit value of sin2 θ12 = 0.308 and the 1.5σ experimentally allowed
interval of values of sin2 θ12 are inside the allowed ranges. In Table 3.4 these cases are
marked with the subscripts I, II, III, IV, V, while in the case marked with an asterisk, the
allowed range contains values of sin2 θ12 allowed at 2σ [18].

The values of sin2 θ23 in case C2 depend on the reactor angle θ13 and θν13 through
eq. (3.80). Using the best fit value of sin2 θ13 for the NO spectrum and eq. (3.80), we
find sin2 θ23 = 0.512, 0.499, 0.463, 0.455 for θν13 = 0, π/20, π/10, sin−1(1/3), respectively.
Thus, in the scheme under discussion sin2 θ23 decreases with the increase of θν13, which
is in contrast to the behaviour of sin2 θ23 in case C1. As we have already remarked, a
measurement of sin2 θ23 with a sufficiently high precision, or at least the determination of
the octant of θ23, would allow one to exclude some of the values of θν13 considered in the
literature. In the further analysis of cases C1 and C2, we will consider the five pairs of
values [θν13, θ

ν
12] found in each of these cases.
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Table 3.5. The predicted values of cos δ using the best fit values of the mixing angles quoted
in eqs. (2.15)–(2.17) and corresponding to neutrino mass spectrum with NO, except for case
B3 with ω = 0 and κ = 1, in which sin2 θ23 = 0.48802 is used. We have defined a = sin−1(1/3),
b = sin−1(1/

√
2 + r) and c = sin−1(1/

√
3). See text for further details.

Ũν TBM GRA GRB HG BM (LC)
Case

A1 −0.114 0.289 −0.200 0.476

A2 0.114 −0.289 0.200 −0.476

B1 −0.091 0.275 −0.169 0.445

B2 0.151 −0.315 0.251 −0.531

B3 −0.122 0.282 −0.208 0.469

[θν13, θ
ν
12] [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20, π/6]

C1 − 0.222 0.760 0.911 −0.775 −0.562

[θν13, θ
ν
12] [π/20, c] [π/20, π/4] [π/10, π/4] [a, π/4] [π/20, π/5]

C2 −0.866 0.222 −0.760 −0.911 −0.791

Table 3.6. The same as in Table 3.5, but for δ given in degrees. See text for further details.

Ũν TBM GRA GRB HG BM (LC)
Case

A1 97 ∨ 263 73 ∨ 287 102 ∨ 258 62 ∨ 298

A2 83 ∨ 277 107 ∨ 253 78 ∨ 282 118 ∨ 242

B1 95 ∨ 265 74 ∨ 286 100 ∨ 260 64 ∨ 296

B2 81 ∨ 279 108 ∨ 252 75 ∨ 285 122 ∨ 238

B3 97 ∨ 263 74 ∨ 286 102 ∨ 258 62 ∨ 298

[θν13, θ
ν
12] [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20, π/6]

C1 103 ∨ 257 41 ∨ 319 24 ∨ 336 141 ∨ 219 124 ∨ 236

[θν13, θ
ν
12] [π/20, c] [π/20, π/4] [π/10, π/4] [a, π/4] [π/20, π/5]

C2 150 ∨ 210 77 ∨ 283 139 ∨ 221 156 ∨ 204 142 ∨ 218

We show in Tables 3.5 and 3.6 the predictions for cos δ and δ for all the cases considered
in the present chapter using the best fit values of the neutrino mixing parameters sin2 θ12,
sin2 θ23 and sin2 θ13 quoted in eqs. (2.15)–(2.17), which enter into the sum rule expressions
for cos δ, unless other values of the indicated mixing parameters are explicitly specified.
We present results only for the NO neutrino mass spectrum, since the results for the IO
spectrum differ insignificantly. Several comments are in order.

We do not present predictions for the BM (LC) symmetry form of Ũν in Tables 3.5
and 3.6, because for the best fit values of sin2 θ12, sin2 θ23, sin2 θ13 the corresponding sum
rules give unphysical values of cos δ (see, however, refs. [99, 109]). Using the best fit value
of sin2 θ13, we get physical values of cos δ for the BM symmetry form for the following
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minimal values of sin2 θ12:

cos δ = −0.993 (δ ≈ π) for sin2 θ12 = 0.348 in case A1,
cos δ = +0.993 (δ ≈ 0) for sin2 θ12 = 0.348 in case A2,
cos δ = −0.996 (δ ≈ π) for sin2 θ12 = 0.332 in case B1,
cos δ = +0.997 (δ ≈ 0) for sin2 θ12 = 0.368 in case B2,
cos δ = −0.994 (δ ≈ π) for sin2 θ12 = 0.349 in case B3,

where in case B3 we fixed sin2 θ23 = 0.48802 (we will comment later on this choice), while
sin2 θ23 was set to its best fit value in cases B1 and B2.

The predictions for cos δ in cases A1 and A2 for each of the symmetry forms of Ũν
considered differ only by sign. Case A1 and case B3 with ω = 0 provide very similar
predictions for cos δ.

In the schemes with three rotations in Ũν we consider, cos δ has values which differ
significantly (being larger in absolute value) from the values predicted by the schemes
with two rotations in Ũν discussed by us, the only exceptions being (i) case C1 (C2)
with θν13 = π/20 and θν12 = −π/4 (π/4), for which | cos δ| = 0.222, and (ii) case C1 with
[θν13, θ

ν
12] = [π/20, π/6] in which cos δ = −0.562.

The predictions for cos δ in cases B1 and B2 differ for each of the symmetry forms of
Ũν considered both by sign and magnitude. If the best fit value of θ23 were π/4, these
predictions would differ only by sign.

In case B3 with ω = 0, the predictions for cos δ are very sensitive to the value
of sin2 θ23. Using the best fit values of sin2 θ12 and sin2 θ13 for the NO neutrino mass
spectrum quoted in eqs. (2.15) and (2.17), we find from the constraints (−1 < cosψ < 1)
and (0 < sin2 θe13 < 1) ∧ (0 < sin2 θe12 < 1), where sin2 θe13, sin2 θe12 and cosψ are given in
eqs. (3.50)–(3.52), that sin2 θ23 should lie in the following intervals:

(0.488, 0.496) ∪ (0.847, 0.909) for TBM;

(0.488, 0.519) ∪ (0.948, 0.971) for BM;

(0.488, 0.497) ∪ (0.807, 0.880) for GRA;

(0.488, 0.498) ∪ (0.856, 0.914) for GRB;

(0.488, 0.500) ∪ (0.787, 0.866) for HG.

Obviously, the quoted intervals with sin2 θ23 ≥ 0.78 are ruled out by the current data. We
observe that a small increase of sin2 θ23 from the value 0.48802 24 produces a relatively
large variation of cos δ. The strong dependence of cos δ on sin2 θ23 takes place for values
of ω satisfying roughly cosω ∼> 0.01. In contrast, for cosω = 0, cos δ exhibits a relatively
weak dependence on sin2 θ23. For the reasons related to the dependence of cos δ on ω we
are not going to present results of the statistical analysis, which we perform in the next
section, in this case. This can be done in specific models of neutrino mixing, in which the
value of the phase ω is fixed.

3.7 Statistical analysis
In the present section, we perform a statistical analysis of the predictions for cos δ and
the rephasing invariant JCP in the cases of the mixing schemes considered in the present

24For sin2 θ23 < 0.48802, cos δ has an unphysical (complex) value.
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chapter. In each case, our goal is to derive the allowed ranges for cos δ and JCP for each of
the symmetry forms of Ũν considered, predicted on the basis of (i) the current data on the
neutrino mixing parameters [18] and (ii) the prospective uncertainties in the determination
of the neutrino mixing angles. To this aim, we construct the χ2 function as described in
Appendix F.

We find that in case A1 the results for χ2 as a function of δ or JCP are rather similar to
those obtained in the next subsection in case B1. The main difference between these two
cases is the predictions for sin2 θ23, which can deviate only by approximately 0.5 sin2 θ13
from 0.5 in the first case and by a significantly larger amount in the second. As a
consequence, the predictions in the first case are somewhat less favoured by the current
data than in the second case, which is reflected in the higher value of χ2 at the minimum,
χ2
min. Similar conclusions hold comparing the results in cases A2 and B2. Therefore, in

what concerns these four cases, in what follows we will present results of the statistical
analysis of the predictions for cos δ and the JCP factor only in cases B1 and B2.

3.7.1 Case B1
In Fig. 3.1 we show the likelihood function L, defined as

L(cos δ) = exp

(
−χ

2(cos δ)

2

)
, (3.95)

versus cos δ for the NO neutrino mass spectrum. The results shown are obtained by
marginalising over sin2 θ13 and sin2 θ23 for a fixed value of δ (see Appendix F for details).
The dependence of the likelihood function on cos δ in the case of IO neutrino mass
spectrum differs little from that shown in Fig. 3.1. Given the global fit results, the
likelihood function represents the most probable value of cos δ for each of the considered
symmetry forms of Ũν . The nσ C.L. region corresponds to the interval of values of cos δ
in which L(cos δ) ≥ L(χ2 = χ2

min) · L(χ2 = n2).
As can be observed from Fig. 3.1, a rather precise measurement of cos δ would allow

one to distinguish between the different symmetry forms of Ũν considered by us. For
the TBM and GRB forms there is a significant overlap of the corresponding likelihood
functions. The same observation is valid for the GRA and HG forms. However, the overlap
of the likelihood functions of these two groups of symmetry forms occurs only at 3σ level
in a very small interval of values of cos δ. This implies that in order to distinguish between
the TBM/GRB, GRA/HG and BM symmetry forms a not very demanding measurement
(in terms of accuracy) of cos δ might be sufficient. The value of the likelihood function at
the maximum in Fig. 3.1 is equal to exp(−χ2

min/2), which allows us to make conclusions
about the compatibility of a given symmetry form of Ũν with the current global neutrino
oscillation data.

In the left panel of Fig. 3.2 we present the likelihood function versus cos δ within
the Gaussian approximation (see Appendix F for details), using the best fit values of
the mixing angles for the NO neutrino mass spectrum from eqs. (2.15)–(2.17) and the
prospective relative 1σ uncertainties in the determination of sin2 θ12 (0.7% from JUNO
[156, 157]), sin2 θ13 (almost 3% derived from an expected error on sin2 2θ13 of 3% from
Daya Bay [158–160]) and sin2 θ23 (5% 25 derived from the potential sensitivity of NOνA
and T2K on sin2 2θ23 of 2% [158]). The BM case is very sensitive to the best fit values
of sin2 θ12 and sin2 θ23 and is disfavoured at more than 2σ for the best fit values quoted

25This sensitivity can be achieved at future neutrino facilities [161].
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Figure 3.1. The likelihood function versus cos δ for the NO neutrino mass spectrum after
marginalising over sin2 θ13 and sin2 θ23 for the TBM, BM (LC), GRA, GRB and HG symmetry
forms of the matrix Ũν in case B1. The results shown are obtained using eq. (3.10) and the
results on the mixing parameters sin2 θ12, sin2 θ13, sin2 θ23 and δ found in the global analysis of
neutrino oscillation data [18].
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Figure 3.2. The same as in Fig. 3.1, but using the prospective 1σ uncertainties in the
determination of the neutrino mixing angles within the Gaussian approximation (see Appendix F).
In the left (right) panel, (sin2 θ12)BF = 0.308 (0.332), while (sin2 θ13)BF and (sin2 θ23)BF are fixed
to their NO best fit values quoted in eqs. (2.17) and (2.16).

in eqs. (2.15)–(2.17). This case might turn out to be compatible with the data for larger
(smaller) measured values of sin2 θ12 (sin2 θ23), as can be seen from the right panel of
Fig. 3.2, which was obtained for sin2 θ12 = 0.332. With the increase of the value of
sin2 θ23 the BM form becomes increasingly disfavoured, while the TBM/GRB (GRA/HG)
predictions for cos δ are shifted somewhat — approximately by 0.1 — to the left (right)
with respect to those shown in the left panel of Fig. 3.2. This shift is illustrated in Fig. 3.3,
which is obtained for sin2 θ23 = 0.579, more precisely, for the best fit values found in [19]
and corresponding to the IO neutrino mass spectrum. The measurement of sin2 θ12, sin2 θ13
and sin2 θ23 with the quoted precision will open up the possibility to distinguish between
the BM, TBM/GRB, GRA and HG forms of Ũν . Distinguishing between the TBM and
GRB forms would require relatively high precision measurement of cos δ.

We have performed also a statistical analysis in order to derive predictions for JCP.
In Fig. 3.4 we present Nσ ≡

√
χ2 as a function of JCP for the NO and IO neutrino mass
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Figure 3.3. The same as in Fig. 3.2, but using the IO best fit values taken from [19].
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Figure 3.4. Nσ ≡
√
χ2 as a function of JCP. The dashed lines represent the results of the

global fit [18], while the solid lines represent the results we obtain for the TBM, BM (LC), GRA,
GRB and HG symmetry forms of the matrix Ũν in case B1. The blue (red) lines are for the NO
(IO) neutrino mass spectrum.
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spectra. We minimise the value of χ2 for a fixed value of JCP by varying sin2 θ13 and sin2 θ23
(or, equivalently, sin2 θe12 and sin2 θ̂23). The best fit values of JCP and the corresponding
3σ ranges for the NO neutrino mass spectrum read:

JCP = −0.034 , −0.038 ≤ JCP ≤ −0.028, 0.031 ≤ JCP ≤ 0.036 for TBM; (3.96)
JCP = −0.005 , −0.026 ≤ JCP ≤ 0.021 for BM (LC); (3.97)
JCP = −0.033 , −0.037 ≤ JCP ≤ −0.027, 0.030 ≤ JCP ≤ 0.035 for GRA; (3.98)
JCP = −0.034 , −0.039 ≤ JCP ≤ −0.026, 0.031 ≤ JCP ≤ 0.036 for GRB; (3.99)
JCP = −0.031 , −0.035 ≤ JCP ≤ −0.020, 0.026 ≤ JCP ≤ 0.034 for HG. (3.100)

As Fig. 3.4 shows, the CP-conserving value of JCP = 0 is excluded in the cases of the TBM,
GRA, GRB and HG neutrino mixing symmetry forms, respectively, at approximately 5σ,
4σ, 4σ and 3σ confidence levels with respect to the C.L. of the corresponding best fit
values.26 These results correspond to the confidence levels at which the CP-conserving
values of δ = 0, π are excluded. In contrast, for the BM (LC) symmetry form, the
CP-conserving value of δ, namely, δ ≈ π, is preferred and therefore the CP-violating effects
in neutrino oscillations are predicted to be suppressed. The allowed range of the JCP factor
in the BM (LC) includes the CP-conserving value JCP = 0 at practically any C.L. As
can be seen from eqs. (3.96)–(3.100), the 3σ allowed intervals of values of JCP are rather
narrow for all the symmetry forms considered, except for the BM (LC) form.

Finally, for completeness, we present in Appendix G also results of a statistical analysis
of the predictions for the values of sin2 θ23 in the cases of TBM, BM (LC), GRA, GRB
and HG symmetry forms. We recall that of the three neutrino mixing parameters, sin2 θ12,
sin2 θ13 and sin2 θ23, sin2 θ23 is determined in the global analyses of the neutrino oscillation
data with the largest uncertainty.

3.7.2 Case B2
In the left panel of Fig. 3.5 we show the likelihood function defined in eq. (3.95) versus cos δ
for the NO neutrino mass spectrum in case B2.27 The maxima of L(cos δ), L(χ2 = χ2

min),
for the different symmetry forms of Ũν considered, correspond to the values of cos δ given
in Table 3.5. The results shown are obtained by marginalising over sin2 θ13 and sin2 θ23 for
a fixed value of δ (for details of the statistical analysis see Appendix F).

As can be observed from the left panel of Fig. 3.5, for the TBM and GRB forms there
is a substantial overlap of the corresponding likelihood functions. The same observation
holds also for the GRA and HG forms. However, the likelihood functions of these two
sets of symmetry forms overlap only at 3σ and in a small interval of values of cos δ. Thus,
the TBM/GRB, GRA/HG and BM (LC) symmetry forms might be distinguished with a
not very demanding (in terms of precision) measurement of cos δ. At the maximum, the
likelihood function equals exp(−χ2

min/2), and this value allows one to judge quantitatively
about the compatibility of a given symmetry form with the global neutrino oscillation
data, as we have pointed out in the preceding subsection.

In the right panel of Fig. 3.5 we present L versus cos δ within the Gaussian approx-
imation (see Appendix F), using the current best fit values of sin2 θ12, sin2 θ23, sin2 θ13

26The confidence levels under discussion differ in the cases of NO and IO neutrino mass spectra, but as
Fig. 3.4 indicates, in the cases considered these differences are rather small and we have not given them.

27The corresponding results for the IO neutrino mass spectrum differ little from those shown in the left
panel of Fig. 3.5.



88 Chapter 3. Phenomenology of sum rules for the Dirac phase

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

cos ∆

L
ik

el
ih

oo
d

@N
O

D

BM HLCL
GRB
TBM
GRA
HG

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

cos ∆

L
ik

el
ih

oo
d

@N
O

D

BM HLCL
GRB
TBM
GRA
HG

Figure 3.5. The likelihood function versus cos δ for the NO neutrino mass spectrum after
marginalising over sin2 θ13 and sin2 θ23 for the TBM, BM (LC), GRA, GRB and HG symmetry
forms of the matrix Ũν in case B2. The results shown are obtained using eq. (3.42) and (i) the
results on the mixing parameters sin2 θ12, sin2 θ13, sin2 θ23 and δ found in the global analysis of
neutrino oscillation data [18] (left panel), and (ii) the prospective 1σ uncertainties on sin2 θ12,
sin2 θ13, sin2 θ23 and the Gaussian approximation for the likelihood function (right panel). See
text and Appendix F for further details.

for the NO spectrum, given in eqs. (2.15)–(2.17), and the prospective 1σ uncertainties
in the measurement of these mixing parameters we have used in subsection 3.7.1. The
BM (LC) case is quite sensitive to the values of sin2 θ12 and sin2 θ23 and for the best fit
values is disfavoured at more than 2σ. The fact that the BM (LC) case is disfavoured by
the current data can be understood, in particular, from the following observation. Using
the best fit values of sin2 θ13 and sin2 θ12 as well as the constraint −1 ≤ cosα ≤ 1, where
cosα is defined in eq. (3.39), one finds that sin2 θ23 should satisfy sin2 θ23 ≥ 0.63, which
practically coincides with the maximal value of sin2 θ23 at 3σ (see eq. (2.16)).

It is interesting to compare the results in cases B1 and B2. The first thing to note
is that for a given symmetry form, cos δ is predicted to have opposite signs in these two
cases. In case B2, one has cos δ > 0 for the TBM, GRB and BM (LC) symmetry forms
of the matrix Ũν , while cos δ < 0 for the GRA and HG forms. As in case B1, there are
significant overlaps between the TBM/GRB and GRA/HG forms of Ũν . The BM (LC)
case is disfavoured at more than 2σ C.L. It is also important to note that due to the fact
that the best fit value of sin2 θ23 < 0.5 (for the NO spectrum), the predictions for cos δ for
each symmetry form obtained in the two set-ups differ not only by sign but also in absolute
value, as has been already pointed out in Section 3.3.2. Thus, a precise measurement of
cos δ would allow one to distinguish not only between the symmetry forms of Ũν , but also
could provide an indication about the structure of the matrix Ũe.

For the rephasing invariant JCP, using the current global neutrino oscillation data for
the NO neutrino mass spectrum, we find the following best fit values and the 3σ ranges:

JCP = −0.033 , −0.039 ≤ JCP ≤ −0.026, 0.030 ≤ JCP ≤ 0.036 for TBM; (3.101)
JCP = −0.004 , −0.026 ≤ JCP ≤ 0.023 for BM (LC) ; (3.102)
JCP = −0.032 , −0.037 ≤ JCP ≤ −0.024, 0.029 ≤ JCP ≤ 0.035 for GRA; (3.103)
JCP = −0.033 , −0.039 ≤ JCP ≤ −0.023, 0.028 ≤ JCP ≤ 0.036 for GRB; (3.104)
JCP = −0.028 , −0.035 ≤ JCP ≤ −0.014, 0.021 ≤ JCP ≤ 0.032 for HG. (3.105)
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Thus, relatively large CP-violating effects in neutrino oscillations are predicted for all
symmetry forms considered, the only exception being the case of the BM symmetry form.

Finally, we note that the predictions for sin2 θ23 are rather similar in cases B1 and B2.
We give, for completeness, Nσ ≡

√
χ2 as a function of sin2 θ23 in case B2 in Appendix G.

3.7.3 Case C1
In this subsection, we perform a statistical analysis of the predictions for cos δ in cases I–V
corresponding to specific forms of Ũν in case C1 (see Section 3.6). The analysis is similar
to that performed for cases B1 and B2. The only difference is that when we consider the
prospective sensitivities on the PMNS mixing angles, we will assume sin2 θ23 to have the
following potential best fit values: sin2 θ23 = 0.488, 0.501, 0.537, 0.545. Note that for the
best fit value of sin2 θ13, sin2 θ23 = 0.488 does not correspond to any of the values of θν13
in the five cases of interest. Thus, sin2 θ23 = 0.488 is not the most probable value in any
of these cases: depending on the case, the most probable value is one of the other three
values of sin2 θ23 listed above. We include results for sin2 θ23 = 0.488 to illustrate how
the likelihood function changes if the experimentally determined best fit value of sin2 θ23
differs from the value of sin2 θ23 predicted in a given case.

In Fig. 3.6 we show the likelihood function versus cos δ for all the cases marked with the
subscripts in Table 3.3. The maxima of the likelihood function in the five cases considered
take place at the corresponding values of cos δ given in Table 3.5. As Fig. 3.6 clearly
indicates, the cases differ not only in the predictions for sin2 θ23, which in the considered
set-up is a function of sin2 θν13 and sin2 θ13, but also in the predictions for cos δ. Given the
values of θ12 and θ13, the positions of the peaks are determined by the values of θν12 and
θν13.

Cases I and IV are disfavoured by the current data because the corresponding values
of sin2 θ23 = 0.537 and 0.545 are disfavoured. Cases II, III and V are less favoured for
the NO neutrino mass spectrum than for the IO spectrum since sin2 θ23 = 0.501 is less
favoured for the first than for the second spectrum.

In Fig. 3.7 we show the predictions for cos δ using the prospective precision in the
measurement of sin2 θ12, sin2 θ13, sin2 θ23, the best fit values for sin2 θ12 and sin2 θ13 as in
eqs. (2.15) and (2.17) and the potential best fit values of sin2 θ23 = 0.488, 0.501, 0.537,
0.545. The values of sin2 θ23 correspond in the scheme discussed to the best fit value of
sin2 θ13 in the cases which are compatible with the current 1.5σ range of allowed values of
sin2 θ12. The position of the peaks, obviously, does not depend explicitly on the assumed
experimentally determined best fit value of sin2 θ23. For the best fit value of sin2 θ13 used,
the corresponding sum rule for cos δ depends on the given fixed value of θν13, and via it, on
the predicted value of sin2 θ23 (see eqs. (3.64) and (3.74)). Therefore, the compatibility
of a given case with the considered hypothetical data on sin2 θ23 clearly depends on the
assumed best fit value of sin2 θ23 determined from the data.

As the results shown in Fig. 3.7 indicate, distinguishing between cases I/IV and the
other three cases would not require exceedingly high precision measurement of cos δ.
Distinguishing between cases II, III and V would be more challenging in terms of the
requisite precision on cos δ. In both cases the precision required will depend, in particular,
on the experimentally determined best fit value of cos δ. As Fig. 3.7 also indicates, one of
the discussed two groups of cases might be strongly disfavoured by the best fit value of
sin2 θ23 determined in the future high precision experiments.

We have performed also a statistical analysis of the predictions for the rephasing
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Figure 3.6. The likelihood function versus cos δ for the NO (IO) neutrino mass spectrum in the
left (right) panel after marginalising over sin2 θ13 in case C1 with [θν13, θ

ν
12] fixed as [π/10,−π/4]

(case I), [π/20, b] (case II), [π/20,−π/4] (case III), [a,−π/4] (case IV), [π/20, π/6] (case V),
where a = sin−1(1/3) and b = sin−1(1/

√
2 + r), r being the golden ratio. The figure is obtained

using the sum rule in eq. (3.74) and the results on sin2 θij and δ of the global fit [18].
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Figure 3.7. The same as in Fig. 3.6, but using the Gaussian approximation with the prospective
uncertainties in the measurement of sin2 θij , the best fit values of sin2 θ12 and sin2 θ13 as in
eqs. (2.15) and (2.17) for the NO spectrum and the potential best fit values of sin2 θ23. Upper left
(right) panel: (sin2 θ23)BF = 0.488 (0.501); lower left (right) panel: (sin2 θ23)BF = 0.537 (0.545).
See text and Appendix F for further details.
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Figure 3.8. Nσ ≡
√
χ2 as a function of JCP in case C1 with [θν13, θ

ν
12] fixed as [π/10,−π/4] (case

I), [π/20, b] (case II), [π/20,−π/4] (case III), [a,−π/4] (case IV), [π/20, π/6] (case V), where
a = sin−1(1/3) and b = sin−1(1/

√
2 + r), r being the golden ratio. The dashed lines represent

the results of the global fit [18], while the solid lines represent the results we obtain in our set-up.
The blue (red) lines are for the NO (IO) neutrino mass spectrum.

invariant JCP, minimising χ2 for fixed values of JCP. We give Nσ ≡
√
χ2 as a function

of JCP in Fig. 3.8. The dashed lines represent the results of the global fit [18], while the
solid lines represent the results we obtain for each of the considered cases, minimising the
value of χ2 in θe12 for a fixed value of JCP using eq. (3.75). The blue lines correspond to
the NO neutrino mass spectrum, while the red ones are for the IO spectrum. The value
of χ2 in the minimum, which corresponds to the best fit value of JCP predicted in the
model, allows one to conclude about compatibility of this model with the global neutrino
oscillation data. As it can be observed from Fig. 3.8, the zero value of JCP in cases III and
V is excluded at more than 3σ with respect to the C.L. of the corresponding minimum.
Although in the other three cases the best fit values of JCP are relatively large, as their
numerical values quoted below show, JCP = 0 is only weakly disfavoured statistically. The
best fit values and the 3σ ranges of the rephasing invariant JCP, obtained using the global
neutrino oscillation data for the NO neutrino mass spectrum, read:

JCP = −0.023 , −0.032 ≤ JCP ≤ 0.029 in case I; (3.106)
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JCP = −0.022 , −0.035 ≤ JCP ≤ 0.031 in case II; (3.107)
JCP = −0.033 , −0.039 ≤ JCP ≤ −0.025, 0.030 ≤ JCP ≤ 0.036 in case III; (3.108)
JCP = −0.016 , −0.028 ≤ JCP ≤ 0.026 in case IV; (3.109)
JCP = −0.028 , −0.037 ≤ JCP ≤ −0.010, 0.018 ≤ JCP ≤ 0.034 in case V. (3.110)

3.7.4 Case C2
The statistical analyses of the predictions for cos δ and JCP performed in the present
subsection are similar to those performed in the previous subsections. In particular, we
show in Fig. 3.9 the dependence of the likelihood function on cos δ using the current
knowledge on the PMNS mixing angles and the Dirac CPV phase from the global fit
results [18]. Due to the very narrow prediction for sin2 θ23 in this set-up, the prospective
sensitivity likelihood curve depends strongly on the assumed best fit value of sin2 θ23.
For this reason we present in Fig. 3.10 the predictions for cos δ using the prospective
sensitivities on the mixing angles, the best fit values for sin2 θ12 and sin2 θ13 as in eqs. (2.15)
and (2.17) for the NO spectrum and the potential best fit values of sin2 θ23 = 0.512, 0.499,
0.463, 0.455. We use the value of sin2 θ23 = 0.512, corresponding to θν13 = 0, for the same
reason we used the value of sin2 θ23 = 0.488 in the analysis in the preceding subsection,
where we gave also a detailed explanation.

As Fig. 3.10 clearly shows, the position of the peaks does not depend on the assumed
best fit value of sin2 θ23. However, the height of the peaks reflects to what degree the
model is disfavoured due to the difference between the assumed best fit value of sin2 θ23
and the value predicted in the corresponding model.

The results shown in Fig. 3.10 clearly indicate that (i) the measurement of cos δ can
allow one to distinguish between case I and the other four cases; (ii) distinguishing between
cases II/III and cases IV/V might be possible, but is very challenging in terms of the
precision on cos δ required to achieve that; and (iii) distinguishing between cases II and
III (cases IV and V) seems practically impossible. Some of, or even all, these cases would
be strongly disfavoured if the best fit value of sin2 θ23 determined with the assumed high
precision in the future experiments were relatively large, say, sin2 θ23 ∼> 0.54.

The results on the predictions for the rephasing invariant JCP are presented in Fig. 3.11,
where we show the dependence of Nσ ≡

√
χ2 on JCP. It follows from the results presented

in Fig. 3.11, in particular, that JCP = 0 is excluded at more than 3σ with respect to the
C.L. of the corresponding minimum only in case I. For the rephasing invariant JCP, using
the global neutrino oscillation data, we find in the case of NO neutrino mass spectrum the
following best fit values and 3σ ranges:

JCP = −0.033 , −0.039 ≤ JCP ≤ −0.025, 0.029 ≤ JCP ≤ 0.037 in case I; (3.111)
JCP = −0.016 , −0.028 ≤ JCP ≤ 0.025 in case II; (3.112)
JCP = −0.018 , −0.029 ≤ JCP ≤ 0.026 in case III; (3.113)
JCP = −0.023 , −0.031 ≤ JCP ≤ 0.029 in case IV; (3.114)
JCP = −0.022 , −0.030 ≤ JCP ≤ 0.028 in case V. (3.115)

3.8 Summary and conclusions
In the present chapter, we have derived predictions for the Dirac phase δ in the PMNS
matrix U = U †e Uν = Ũ †e Ψ Ũν Q0, where Ue (Ũe) and Uν (Ũν) are 3× 3 unitary (CKM-like)
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Figure 3.9. The likelihood function versus cos δ for the NO (IO) neutrino mass spectrum in the
left (right) panel after marginalising over sin2 θ13 in case C2 with [θν13, θ

ν
12] fixed as [π/20, π/4]

(case I), [a, π/4] (case II), [π/20, c] (case III), [π/10, π/4] (case IV), [π/20, π/5] (case V), where
a = sin−1(1/3) and c = sin−1(1/

√
3). The figure is obtained using the sum rule in eq. (3.90) and

the results on sin2 θij and δ of the global fit [18].
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Figure 3.10. The same as in Fig. 3.9, but using the Gaussian approximation with the prospective
uncertainties in the measurement of sin2 θij , the best fit values of sin2 θ12 and sin2 θ13 as in
eqs. (2.15) and (2.17) for the NO spectrum and the potential best fit values of sin2 θ23. Upper left
(right) panel: (sin2 θ23)BF = 0.512 (0.499); lower left (right) panel: (sin2 θ23)BF = 0.463 (0.455).
See text and Appendix F for further details.
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Figure 3.11. Nσ ≡
√
χ2 as a function of JCP in case C2 with [θν13, θ

ν
12] fixed as [π/20, π/4]

(case I), [a, π/4] (case II), [π/20, c] (case III), [π/10, π/4] (case IV), [π/20, π/5] (case V), where
a = sin−1(1/3) and c = sin−1(1/

√
3). The dashed lines represent the results of the global fit [18],

while the solid lines represent the results we obtain in our set-up. The blue (red) lines are for
the NO (IO) neutrino mass spectrum.

matrices which arise from the diagonalisation, respectively, of the charged lepton and the
neutrino mass matrices, and Ψ and Q0 are diagonal phase matrices each containing in the
general case two phases. After performing a systematic search, we have considered forms
of Ũe and Ũν allowing us to express δ as a function of the PMNS mixing angles, θ12, θ13
and θ23, present in U , and the angles contained in Ũν . We have derived such sum rules for
cos δ in the cases of forms for which the sum rules of interest do not exist in the literature.
More specifically, we have derived new sum rules for cos δ in the following cases:

(A1) U = R12(θ
e
12) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(A2) U = R13(θ
e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(B2) U = R13(θ
e
13)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(B3) U = R12(θ
e
12)R13(θ

e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,
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(C1) U = R12(θ
e
12) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 ,

(C2) U = R13(θ
e
13) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 ,

where Rij are real orthogonal matrices describing rotations in the i-j plane, and θeij and
θνij stand for the rotation angles contained in Ũe and Ũν , respectively. Case B1 with

U = R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0

has been extensively studied in [99,102]. In the sum rules, cos δ is expressed, in general,
in terms of the three angles of the PMNS matrix, θ12, θ13 and θ23, measured, e.g., in the
neutrino oscillation experiments, and the angles in Ũν , which are assumed to have fixed
known values. In case B3, cos δ depends in addition on an a priori unknown phase ω,
whose value can only be fixed in a self-consistent model of neutrino mass generation. A
summary of the sum rules derived in the present chapter is given in Table 3.1.

To obtain predictions for cos δ, δ and the JCP factor, which controls the magnitude of
the CP-violating effects in neutrino oscillations, we have considered several forms of Ũν
determined by, or associated with, symmetries, for which the angles in Ũν have specific
values. More concretely, in cases A1, A2 and B1–B3, we have performed analyses for
the TBM, BM (LC), GRA, GRB, and HG forms of Ũν . For all these forms, we have
θν23 = −π/4 and θν13 = 0. The forms differ by the value of the angle θν12 given in Section 3.1.
In cases C1 and C2 with non-zero fixed values of θν13, which are also inspired by certain
types of flavour symmetries, we have considered three representative values of θν13 discussed
in the literature, θν13 = π/20, π/10 and sin−1(1/3), in combination with specific values of
θν12 — altogether five sets of different pairs of values of [θν13, θ

ν
12] in each of the two cases.

They are given in Table 3.5.
We first obtained predictions for cos δ and δ using the best fit values of sin2 θ12, sin2 θ13

and sin2 θ23 given in eqs. (2.15)–(2.17). They are summarised in Tables 3.5 and 3.6. The
quoted values of cos δ and δ in case B3 are for ω = 0. We have not presented predictions
for the BM (LC) symmetry form of Ũν in Tables 3.5 and 3.6, because for the best fit values
of sin2 θ12, sin2 θ23 and sin2 θ13, the corresponding sum rules were found to give unphysical
values of cos δ.

We have performed next a statistical analysis of the predictions (i) for cos δ and JCP

using the results of the global analysis of neutrino oscillation data, and (ii) for cos δ using
prospective sensitivities on the PMNS mixing angles. This was done by constructing the
corresponding likelihood functions.

We have found that in case A1 the results for χ2 as a function of δ or JCP are rather
similar to those obtained in case B1. The main difference between these two cases is the
predictions for sin2 θ23, which can deviate only by approximately 0.5 sin2 θ13 from 0.5 in
the first case, and by a significantly larger amount in the second. Similar conclusions hold
comparing the results in cases A2 and B2. Therefore, in what concerns these four cases,
we have presented results of the statistical analysis of the predictions for cos δ and the
JCP factor only in cases B1 and B2. This was done for the TBM, BM (LC), GRA, GRB
and HG forms of the matrix Ũν . We have found, in particular, that for a given symmetry
form, cos δ is predicted to have opposite sign in cases B1 and B2. Namely, in case B2, one
has cos δ > 0 for the TBM, GRB and BM (LC) forms, and cos δ < 0 for the GRA and
HG forms, while in case B1 the situation is opposite. In both cases, there are significant
overlaps between the predictions for cos δ for the TBM and GRB forms, and for the GRA
and HG forms. The BM (LC) case is disfavoured at more than 2σ C.L. Due to the fact
that the best fit value of sin2 θ23 < 0.5 (for the NO spectrum), the predictions for cos δ
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for each symmetry form, obtained in the discussed two set-ups, differ not only by sign
but also in absolute value. We found also that in both cases relatively large CP-violating
effects in neutrino oscillations are predicted for all symmetry forms considered, the only
exception being the case of the BM symmetry form.

In cases C1 and C2, we have performed statistical analyses of the predictions for cos δ
and the JCP factor for the five sets of values of the angles [θν13, θ

ν
12] listed in Table 3.5. These

sets differ for the two cases. For the values of [θν13, θ
ν
12] given in Tables 3.5, the allowed

intervals of values of sin2 θ12 in cases C1 and C2, in particular, satisfy the requirement
that they contain the best fit value and the 1.5σ experimentally allowed range of sin2 θ12.
In these two cases, the value of sin2 θ23 is determined by the values of θ13, θν13 and θν23 (see
Table 3.2). In the statistical analyses we have performed θν23 was set to −π/4. Setting
sin2 θ13 to its best fit value, in case C1 for θν13 = 0, π/20, π/10 and sin−1(1/3) we found,
respectively, sin2 θ23 = 0.488, 0.501, 0.537 and 0.545. For the same values of sin2 θ13 and
θν13, we obtained in case C2, sin2 θ23 = 0.512, 0.499, 0.463 and 0.455.

Further, the statistical analyses we have performed showed that for each of the two
set-ups, the five cases considered form two groups for which cos δ differs in sign and in
magnitude (Figs. 3.6 and 3.9). This suggests that distinguishing between the two groups
for each of the two set-ups considered could be achieved with a not very demanding (in
terms of precision) measurement of cos δ. In the analyses performed using the prospective
sensitivities on sin2 θ12, sin2 θ13 and sin2 θ23, assuming that the best fit values of sin2 θ12,
sin2 θ13 will not change, we have chosen as potential best fit values of sin2 θ23 those
predicted by the two set-ups in the five cases considered (the values are listed in the
preceding paragraph). These analyses have revealed, in particular, that for each of the two
set-ups, distinguishing between the cases inside the two groups which provide opposite sign
predictions for cos δ would be more challenging in terms of the requisite precision on cos δ.
For certain pairs of cases predicting cos δ < −0.5 in set-up C2, this seems impossible to
achieve in practice. These conclusions are well illustrated by Figs. 3.7 and 3.10. However,
we have found that, depending on the chosen potential best fit value of sin2 θ23, some of
the cases are strongly disfavoured. Thus, a high precision measurement of sin2 θ23 would
certainly rule out some of (if not all) the cases of the two set-ups we have considered.

The analysis performed of the predictions for the JCP factor showed that in set-up
C1, the CP-conserving value of JCP = 0 is excluded at more than 3σ with respect to the
C.L. of the corresponding minimum, in two cases, namely, for [θν13, θ

ν
12] = [π/20,−π/4] and

[π/20, π/6] (denoted in the text as cases III and V). In the other three cases in spite of
the relatively large predicted best fit values of JCP, JCP = 0 is only weakly disfavoured
(Fig. 3.8). In set-up C2, JCP = 0 is excluded at more than 3σ (with respect to the C.L. of
the corresponding minimum), only in one case (denoted as case I in the text), namely, for
[θν13, θ

ν
12] = [π/20, π/4] (Fig. 3.11).

The results obtained in the present chapter show that the measurement of the Dirac
phase in the PMNS mixing matrix, together with an improvement of the precision on the
mixing angles θ12, θ13 and θ23, can provide unique information as regards the possible
existence of symmetry in the lepton sector. These measurements could also provide an
indication about the structure of the matrix Ũe originating from the charged lepton sector,
and thus, about the charged lepton mass matrix.



Chapter 4

The Majorana phases and
neutrinoless double beta decay

In the present chapter, we continue the discussion of the neutrino mixing schemes considered
in Chapter 3 focusing on predictions for the Majorana phases in the PMNS matrix U .
We show that for most of these mixing schemes the Majorana phases α21 and α31 can
be expressed in terms of the three neutrino mixing angles θ12, θ13 and θ23 and the angles
and the two Majorana-like phases ξ21 and ξ31 present, in general, in Uν (see eqs. (3.1) and
(3.2)). The angles in Uν are assumed to be fixed by a flavour symmetry. We demonstrate
that the requirement of generalised CP invariance of the neutrino Majorana mass term
discussed in Section 1.3 implies ξ21 = 0 or π and ξ31 = 0 or π, and therefore, in most of the
cases, the Majorana phases themselves are predicted in terms of the mixing angles only.

Throughout this chapter, we will use the best fit values and 3σ allowed ranges of
sin2 θ12, sin2 θ23 and sin2 θ13 obtained in [162] and summarised below:

(sin2 θ12)BF = 0.297 , 0.250 ≤ sin2 θ12 ≤ 0.354 , (4.1)

(sin2 θ23)BF = 0.437 (0.569) , 0.379 (0.383) ≤ sin2 θ23 ≤ 0.616 (0.637) , (4.2)

(sin2 θ13)BF = 0.0214 (0.0218) , 0.0185 (0.0186) ≤ sin2 θ13 ≤ 0.0246 (0.0248) . (4.3)

The values (values in brackets) correspond to the NO (IO) neutrino mass spectrum.
Since the mixing schemes considered in the present chapter are the same as in the

previous one, the structure of this chapter is analogous to that of Chapter 3. Namely,
in Section 4.1, we obtain sum rules for (α21 − ξ21) and (α31 − ξ31) in cases A1 and A2
containing one rotation from the charged lepton sector, i.e., Ũe = R−112 (θe12) or Ũe = R−113 (θe13),
and two rotations from the neutrino sector, Ũν = R23(θ

ν
23)R12(θ

ν
12). In these cases the

PMNS matrix has the form given in eq. (3.12). We obtain results in the general case of
arbitrary fixed values of θν23 and θν12. In Section 4.2, we analyse cases B1, B2 and B3 with
Ũe = R−123 (θe23)R

−1
12 (θe12), Ũe = R−123 (θe23)R

−1
13 (θe13) and Ũe = R−113 (θe13)R

−1
12 (θe12), respectively,

and the two rotations from the neutrino sector. The corresponding parametrisation of
the PMNS matrix in these cases is given in eq. (3.13). Again we provide results for
arbitrary fixed values of θν23 and θν12. Further, in Section 4.3, we extend the analysis
performed in Section 4.1 to cases C1 and C2, for which Ũν contains three rotations,
Ũν = R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12), and the PMNS matrix is given by eq. (3.14). Section 4.4

contains a brief summary of the sum rules for the Majorana phases α21/2 and α31/2 derived
in Sections 4.1–4.3. Using these sum rules, we present in Section 4.5 predictions for phase
differences (α21/2− ξ21/2), (α31/2− ξ31/2), etc., which are determined only by the values
of the three neutrino mixing angles θ12, θ23 and θ13, and of the fixed angles θνij. In cases
A1, A2 and B1–B3, we give results for values of θν23 (= −π/4) and θν12, corresponding to
the TBM, BM (LC), GRA, GRB and HG symmetry forms of Ũν . In each of cases C1 and
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C2, the reported results are for θν23 = −π/4 and five sets of values of θν13 and θν12 associated
with symmetries, which have been identified in Section 3.6. We then set (ξ21, ξ31) = (0, 0),
(0, π), (π, 0) and (π, π) and use the resulting values of α21 and α31 to derive graphical
predictions for the absolute value of the effective Majorana mass in (ββ)0ν-decay, |〈m〉|,
as a function of the lightest neutrino mass in the schemes of mixing studied. We show in
Section 4.6 that the requirement of generalised CP invariance of the neutrino Majorana
mass term in the cases of A4, T ′, S4 and A5 lepton flavour symmetries leads indeed to
ξ21 = 0 or π, and ξ31 = 0 or π. Section 4.7 contains summary of the results of the present
chapter and conclusions.

4.1 Mixing schemes with Ũ †e = Rij(θ
e
ij) and

Ũν = R23(θ
ν
23)R12(θ

ν
12)

In this section, we derive sum rules for α21 and α31 of interest in the case when the matrix
Ũν = R23(θ

ν
23)R12(θ

ν
12) with fixed (e.g., symmetry) values of the angles θν23 and θν12, gets

correction only due to one rotation from the charged lepton sector. The neutrino mixing
matrix U has the form given in eq. (3.12). We do not consider the case of eq. (3.12) with
(ij) = (23), because in this case the reactor angle θ13 = 0, and thus, the measured value of
θ13 ≈ 0.15 cannot be reproduced.

4.1.1 Case A1: θe12
In the present subsection we consider the parametrisation of the neutrino mixing matrix
given in eq. (3.12) with (ij) = (12). In this parametrisation the PMNS matrix has the
form

U = R12(θ
e
12) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 . (4.4)

The phase ω in the phase matrix Ψ is unphysical.
We are interested in deriving analytic expressions for the Majorana phases α21 and

α31 (i) in terms of the parameters of the parametrisation in eq. (4.4), θe12, ψ, θν23, θν12, ξ21
and ξ31, and possibly (ii) in terms of the angles θ12, θ13, θ23 and the Dirac phase δ of
the standard parametrisation of the PMNS matrix, the fixed angles θν23 and θν12, and the
phases ξ21 and ξ31. The values of the phases α21 and α31 in the latter case, as we will see,
indeed depend on the value of the Dirac phase δ.

The sum rules for α21 and α31 we are aiming to obtain in this subsection turn out to be
a particular case of the sum rules derived in [99]. This becomes clear from a comparison
of eq. (18) in [99], which fixes the parametrisation of U used in [99], and the expression
for U in eq. (4.4). It shows that to get the sum rules for α21 and α31 of interest, one
has formally to set θ̂23 = θν23, φ = −ψ and β = 0 in the sum rules for α21 and α31

derived in eq. (102) in [99] and to take into account the two possible signs of the product
ce12c

ν
23s

ν
23 ≡ cos θe12 cos θν23 sin θν23:

α21

2
= βe2 − βe1 +

ξ21
2
, (4.5)

α31

2
= βe2 + ϕ̃+

ξ31
2
, eiϕ̃ = sgn(ce12c

ν
23s

ν
23) = +1 or − 1 . (4.6)



4.1. Mixing schemes with Ũ †e = Rij(θ
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Thus, ϕ̃ = 0 or π. The results in eqs. (4.5) and (4.6) can be obtained formally from eqs.
(88), (89) and (95) in [99] by setting θ̂23 = θν23, φ = −ψ, Q1 = diag(1, 1, 1) and Q2 =
diag(1, ei(βe2−βe1), sgn(ce12c

ν
23s

ν
23) e

iβe2). We note that in the case considered of arbitrary
fixed signs of ce12, se12 ≡ sin θe12, cν23 and sν23, the Ue3 element of the PMNS matrix in
eq. (95) in [99] must also be replaced by Ue3 sgn(ce12s

e
12c

ν
23). Correspondingly, in terms of

the parametrisation in eq. (4.4) of the PMNS matrix, the phases βe2 and βe1 are given by
eqs. (90) and (91) in [99]:

βe1 = arg(Ue1) = arg
(
ce12c

ν
12 − se12cν23sν12e−iψ

)
, (4.7)

βe2 = arg(Ue2 e
−i ξ21

2 ) = arg
(
ce12s

ν
12 + se12c

ν
23c

ν
12e
−iψ) , (4.8)

where cν12 ≡ cos θν12 and sν12 ≡ sin θν12. For ϕ̃ = 0, eq. (4.6) reduces to the expression for
α31/2 in eq. (102) in [99].

As can be shown employing the formalism developed in [99] and taking into account the
possibility of negative signs of ce12sν12 and ce12cν12, the expressions for the phases βe2 and βe1
in terms of the angles θ12, θ13, θ23 and the Dirac phase δ of the standard parametrisation
of the PMNS matrix have the form:

βe2 = arg (Uτ1sgn(ce12s
ν
12)) = arg

[(
s12s23 − c12c23s13eiδ

)
sgn(ce12s

ν
12)
]
, (4.9)

βe1 = arg
(
Uτ2 e

iπsgn(ce12c
ν
12) e

−iα21
2

)
= arg

[(
c12s23 + s12c23s13e

iδ
)

sgn(ce12c
ν
12)
]
. (4.10)

For sgn(ce12s
ν
12) = 1 and sgn(ce12c

ν
12) = 1, eqs. (4.9) and (4.10) reduce respectively to

eqs. (100) and (101) in ref. [99].
It follows from eqs. (4.9) and (4.10) that the phases βe1 and βe2 are determined by the

values of the standard parametrisation mixing angles θ12, θ13, θ23 and of the Dirac phase δ.
The phase δ is also determined (up to a sign ambiguity of sin δ) by the values of “standard”
angles θ12, θ13, θ23 via the sum rule given in eq. (3.17). Since the relations in eqs. (4.5)
and (4.6) between the Majorana phases α21 and α31 and the phases βe1 and βe2 involve
the phases ξ21 and ξ31 originating from the diagonalisation of the neutrino Majorana mass
term, α21 and α31 will be determined by the values of the “standard” neutrino mixing
angles θ12, θ13, θ23 (up to the mentioned ambiguity related to the undetermined so far
sign of sin δ), provided the values of ξ21 and ξ31 are known. Thus, predictions for the
Majorana phases α21 and α31 can be obtained when the phases ξ21 and ξ31 are fixed by
additional considerations of, e.g., generalised CP invariance, symmetries, etc. In theories
with discrete lepton flavour symmetries the phases ξ21 and ξ31 are often determined by
the employed symmetries of the theory (see, e.g., [122,130,131,145,149] and references
quoted therein). We will show in Section 4.6 how the phases ξ21 and ξ31 are fixed by the
requirement of generalised CP invariance of the neutrino Majorana mass term in the cases
of the non-Abelian discrete flavour symmetries A4, T ′, S4 and A5. In all these cases the
generalised CP invariance constraint fixes the values of ξ21 and ξ31, which allows us to
obtain predictions for the Majorana phases α21 and α31.

The phases βe1, βe2, ψ and δ can be shown to satisfy the relation:

δ = ψ + βe1 + βe2 + ϕ , eiϕ = sgn(ce12s
e
12c

ν
23) = +1 or − 1 . (4.11)

For ϕ = 0 (sgn(ce12s
e
12c

ν
23) = +1), this relation reduces to eq. (94) in ref. [99] by setting

ψ = −φ. From eqs. (4.5), (4.6) and (4.11) we get further

(α31 − ξ31)−
1

2
(α21 − ξ21) = βe1 + βe2 + 2ϕ̃ = δ − ψ − ϕ , ϕ = 0 or π , (4.12)
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where we took into account that 2ϕ̃ = 0 or 2π.
The Dirac phase δ and the phase ψ are related [99]. We will give below only the relation

between sin δ and sinψ. It can be obtained from eq. (28) in [99] by setting28 φ = −ψ
and by taking into account that in the case considered both signs of sin 2θe12 cos θν23 are, in
principle, allowed:29

sin δ = sgn (sin 2θe12 cos θν23)
sin 2θν12
sin 2θ12

sinψ . (4.13)

We note that within the approach employed in our analysis, the results presented in
eqs. (4.5)–(4.13) are exact and are valid for arbitrary fixed values of θν12 and θν23 and for
arbitrary signs of sin θe12 and cos θe12 (| sin θe12| and | cos θe12| can be expressed in terms of
θ13 and θν23 as can be seen from eq. (3.15)).

Although the sum rules derived above allow to determine the values of the Majorana
phases α21 and α31 (up to a two-fold ambiguity related to the ambiguity of sgn(sin δ) or
of sgn(sinψ)) if the phases ξ21 and ξ31 are known, we will present below an alternative
method of determination of α21 and α31, which can be used in the cases when the method
developed in [99] cannot be applied. The alternative method makes use of the rephasing
invariants associated with the two Majorana phases of the PMNS matrix.

In the case of 3-neutrino mixing under discussion there are, in principle, three inde-
pendent CPV rephasing invariants. The first is the JCP factor associated with the Dirac
phase δ defined in eqs. (1.6) and (1.7). The other two, I1 and I2, are related to the two
Majorana CPV phases in the PMNS matrix and can be chosen as [40,163–165]:30

I1 = Im {U∗e1 Ue2} , I2 = Im {U∗e1 Ue3} .

The rephasing invariants associated with the Majorana phases are not uniquely de-
termined. Instead of I1 defined above we could have chosen, e.g., I ′1 = Im {U∗τ1 Uτ2}
or I ′′1 = Im

{
Uµ1U

∗
µ2

}
, while instead of I2 we could have used I ′2 = Im {U∗τ2 Uτ3}, or

I ′′2 = Im
{
Uµ2 U

∗
µ3

}
. However, the three invariants — JCP and any two chosen Majorana

phase invariants — form a complete set in the case of 3-neutrino mixing: any other two
rephasing invariants associated with the Majorana phases can be expressed in terms of
the two chosen Majorana phase invariants and the JCP factor [163,165]. We note also that
CP violation due to the Majorana phase α21 requires that both I1 = Im {U∗e1Ue2} 6= 0 and
Re {U∗e1Ue2} 6= 0 [164]. Similarly, I2 = Im {U∗e1Ue3} 6= 0 would imply violation of the CP
symmetry only if in addition Re {U∗e1Ue3} 6= 0.

In the standard parametrisation of the PMNS matrix U , the rephasing invariants I1
and I2 are given by

I1 = cos θ12 sin θ12 cos2 θ13 sin(α21/2) , (4.14)

I2 = cos θ12 sin θ13 cos θ13 sin(α31/2− δ) . (4.15)

Comparing these expressions with the expressions for I1 and I2 in the parametrisation of
U defined in eq. (4.4), we can obtain sum rules for sin(α21/2) and sin(α31/2− δ) in terms
of θe12, ψ, θν12, θν23, ξ21, ξ31 and the standard parametrisation mixing angles θ12 and θ13.

28The relation between cos δ and cosψ can be deduced from eq. (29) in [99].
29In [99] both sin 2θe12 and cos θν23 could be and were considered to be positive without loss of generality.
30The expressions for the invariants I1,2 we give correspond to Majorana conditions satisfied by the

fields of the light massive Majorana neutrinos, which do not contain phase factors, see, e.g., [40].
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The resulting formulae are quite lengthy and we do not present them here. They can be
found in ref. [140].

In terms of the standard parametrisation mixing angles θ12, θ13, θ23 and the Dirac
phase δ, the angles θν12 and θν23, and the phases ξ21 and ξ31, the expressions for sin(α21/2)
and sin(α31/2) read:

sin(α21/2) =
1

sin2 θν23 sin 2θν12

[
sin 2θ23 sin θ13

(
sin(ξ21/2− δ)− 2 cos2 θ12 cos δ sin(ξ21/2)

)
+ sin(ξ21/2) sin 2θ12

(
sin2 θ23 − cos2 θ23 sin2 θ13

)]
, (4.16)

sin(α31/2) =
sgn(cν23)

sin θν12 sin θν23

[
sin θ12 sin θ23 sin(ξ31/2)− cos θ12 cos θ23 sin θ13 sin(ξ31/2 + δ)

]
,

(4.17)

where, we recall, sin2 θν23 = 1− cos2 θ23 cos2 θ13.
The phases ξ21 and ξ31, as we have already discussed, are supposed to be fixed by

symmetry arguments. Thus, it proves convenient to have analytic expressions which
allow to calculate the phase differences (α21/2− ξ21/2) and (α31/2− ξ31/2). We find for
sin(α21/2− ξ21/2) and sin(α31/2− ξ31/2):

sin(α21/2− ξ21/2) = − sin 2θ23 sin θ13
sin2 θν23 sin 2θν12

sin δ , (4.18)

sin(α31/2− ξ31/2) = − sgn(cos θν23)

sin θν12 sin θν23
sin θ13 cos θ12 cos θ23 sin δ . (4.19)

It follows from eqs. (4.18) and (4.19) that | sin(α21(31)/2− ξ21(31)/2)| ∝ sin θ13. Using the
results given in eqs. (4.5), (4.6), (4.9), (4.10), (3.17), and the best fit values of the neutrino
oscillation parameters quoted in eqs. (4.1)–(4.3), we can obtain predictions for the values
of the phases (α21/2− ξ21/2) and (α31/2− ξ31/2) for the symmetry forms of Ũν (TBM,
BM (LC), GRA, etc.) considered. These predictions as well as predictions for the values
of (α21/2− ξ21/2) and (α31/2− ξ31/2) in the cases investigated in the next subsection and
in Sections 4.2 and 4.3 will be presented in Section 4.5.

4.1.2 Case A2: θe13
In the present subsection, we consider the parametrisation of the neutrino mixing matrix
given in eq. (3.12) with (ij) = (13). In this parametrisation the PMNS matrix has the
form

U = R13(θ
e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 . (4.20)

Now the phase ψ in the phase matrix Ψ is unphysical.
Equating the expressions for the rephasing invariant associated with the Dirac phase

in the PMNS matrix, JCP, obtained in the standard parametrisation and in the parametri-
sation given in eq. (4.20) allows us to get a relation between sin δ and sinω:

sin δ = sgn(sin 2θe13 sin θν23)
sin 2θν12
sin 2θ12

sinω . (4.21)
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As can be shown using the method developed in [99] and employed in the preceding
subsection, the phases δ, α21/2 and α31/2 are related with the phase ω and the phases βe1
and βe2,

βe1 = arg (Ue1) = arg
(
ce13c

ν
12 + se13s

ν
23s

ν
12e
−iω) , (4.22)

βe2 = arg(Ue2 e
−i ξ21

2 ) = arg
(
ce13s

ν
12 − se13sν23cν12e−iω

)
, (4.23)

in the following way:

δ = ω + βe1 + βe2 + arg (se13c
e
13s

ν
23) , (4.24)

α21

2
= βe2 − βe1 +

ξ21
2
, (4.25)

α31

2
= βe2 +

ξ31
2

+ arg (ce13s
ν
23c

ν
23) . (4.26)

From eqs. (4.24) – (4.26) we get a relation analogous to that in eq. (4.12) in the preceding
subsection:

(α31 − ξ31)−
1

2
(α21 − ξ21) = βe1 + βe2 = δ − ω − arg (se13c

e
13s

ν
23) , (4.27)

where we took into account that 2 arg (ce13s
ν
23c

ν
23) = 0 or 2π.

It is not difficult to derive expressions for βe1 and βe2 in terms of the angles θ12, θ13,
θ23 and the phase δ of the standard parametrisation of the PMNS matrix. They read:

βe1 = arg
(
Uµ2 sgn (ce13c

ν
12) e

−iα21
2

)
= arg

[(
c12c23 − s12s23s13eiδ

)
sgn (ce13c

ν
12)
]
, (4.28)

βe2 = arg
(
Uµ1 e

iπsgn (ce13s
ν
12)
)

= arg
[(
s12c23 + c12s23s13e

iδ
)

sgn (ce13s
ν
12)
]
. (4.29)

It proves convenient for the calculation of the Majorana phases to use expressions of
sin(α21/2) and sin(α31/2) in terms of the standard parametrisation mixing angles θ12, θ13,
θ23, the Dirac phase δ, and the angles θν12 and θν23 fixed by symmetries. The expressions of
interest are not difficult to derive and they read:

sin(α21/2) =
1

sin 2θν12 cos2 θν23

[
− sin 2θ23 sin θ13

(
sin(ξ21/2− δ)− 2 cos2 θ12 cos δ sin(ξ21/2)

)
+ sin 2θ12

(
cos2 θ23 − sin2 θ23 sin2 θ13

)
sin(ξ21/2)

]
, (4.30)

sin(α31/2) =
sgn(sν23)

sin θν12 cos θν23

[
sin θ12 cos θ23 sin(ξ31/2) + cos θ12 sin θ23 sin θ13 sin(ξ31/2 + δ)

]
.

(4.31)

We recall that sin2 θν23 = cos2 θ13 sin2 θ23 in this case (see eq. (3.26)).
The expressions for sin(α21/2− ξ21) and sin(α31/2− ξ31) take the simple forms:

sin(α21/2− ξ21/2) =
sin 2θ23 sin θ13
sin 2θν12 cos2 θν23

sin δ , (4.32)

sin(α31/2− ξ31/2) =
sgn(sν23)

sin θν12 cos θν23
cos θ12 sin θ23 sin θ13 sin δ . (4.33)

Equations (4.32) and (4.33) do not allow one to obtain unique predictions for sin(α21/2−
ξ21/2) and sin(α31/2− ξ31/2) because of the ambiguity in determining the sign of sin δ. As
in the case discussed in the preceding subsection, we have | sin(α21/2− ξ21/2)| ∝ sin θ13
and | sin(α31/2− ξ31/2)| ∝ sin θ13.
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4.2 Mixing schemes with Ũ †e = Rij(θ
e
ij)Rkl(θ

e
kl) and

Ũν = R23(θ
ν
23)R12(θ

ν
12)

As it follows from eqs. (3.16) and (3.26), in the cases when the matrix Ũe originating from
the charged lepton sector contains one rotation angle (θe12 or θe13) and θν23 = −π/4, the
mixing angle θ23 cannot deviate significantly from π/4 due to the smallness of the angle
θ13. If the matrix Ũν has one of the symmetry forms considered by us, the matrix Ũe has
to contain at least two rotation angles in order to be possible to reproduce the current best
fit values of the neutrino mixing parameters quoted in eqs. (4.1)–(4.3), or more generally,
in order to be possible to account for deviations of sin2 θ23 from 0.5 which are bigger than
sin2 θ13, i.e., for sin2 θ23 6= 0.5(1∓ sin2 θ13). In this section, we consider the determination
of the Majorana phases α21 and α31 in the cases when the matrix Ũe contains two rotation
angles.

4.2.1 Case B1: θe12 and θe23
The PMNS matrix in this scheme has the form

U = R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 . (4.34)

The scheme has been analysed in detail in [99], where a sum rule for cos δ and analytic
expressions for α21 and α31 were derived for θν23 = −π/4. As we have pointed out in
subsection 3.2.1, the sum rule for cos δ found in [99] holds for an arbitrary fixed value of
θν23. The sum rule under discussion is given in eq. (3.10). However, in contrast to the case
considered in subsection 4.1.1, the PMNS mixing angle θ23 in the scheme under discussion
can differ significantly from θν23 and from π/4.

The PMNS matrix in eq. (4.34) can be recast in the following way [99]:

U = R12(θ
e
12) Φ(φ)R23(θ̂23)R12(θ

ν
12) Q̂ , (4.35)

where Φ = diag(1, eiφ, 1) and the angle θ̂23, the matrix Q̂ and the phases φ and β are
defined in eqs. (3.32), (3.33), (3.34) and (3.35).

The analytic results on the Majorana phases α21 and α31, on the relation between
the Dirac phase δ and the phase φ, etc., derived in [99], do not depend explicitly on the
value of the angle θν23 and are valid in the case under consideration. Thus, generalising
eqs. (88)–(91), (94) and (102) in [99] for arbitrary sings of se12, ce12, sν12 and cν12, we have:

α21

2
= βe2 − βe1 +

ξ21
2
,

α31

2
= βe2 + βµ3 − φ+ β +

ξ31
2
, (4.36)

δ = βe1 + βe2 + βµ3 − βe3 − φ , (4.37)

where

βe1 = arg (Ue1) = arg
(
ce12c

ν
12 − se12ĉ23sν12eiφ

)
, (4.38)

βe2 = arg
(
Ue2 e

−i ξ21
2

)
= arg

(
ce12s

ν
12 + se12ĉ23c

ν
12e

iφ
)
, (4.39)

βe3 = arg
(
Ue3e

−i(β+ ξ31
2 )
)

= arg (se12) + φ , (4.40)
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βµ3 = arg
(
Uµ3e

−i(β+ ξ31
2 )
)

= arg (ce12) + φ , (4.41)

with ĉ23 ≡ cos θ̂23. The preceding results can be obtained by casting U in eq. (4.35)
in the standard parametrisation form. This leads, in particular, to additional contri-
bution to the matrix Q̂ of the Majorana phases, which takes the form Q̂ = Q2Q1Q0,
where the generalisation of the corresponding expression for Q2 in [99] reads: Q2 =
diag

(
1, ei(βe2−βe1), ei(βe2+βµ3−φ)

)
. Note that we got rid of the common unphysical phase

factor e−i(βe2+βµ3−φ) in the matrix Q2.
The expressions for the phases (βe2 + βµ3 − φ) and (βe1 + βµ3 − φ) in terms of the

angles θ12, θ13, θ23 and the Dirac phases δ of the standard parametrisation of the PMNS
matrix have the form (cf. eqs. (100) and (101) in ref. [99]):

βe2 + βµ3 − φ = arg (Uτ1)− βτ1 = arg
(
s12s23 − c12c23s13eiδ

)
− βτ1 , (4.42)

βe1 + βµ3 − φ = arg
(
Uτ2e

−iα21
2

)
− βτ2 = arg

(
−c12s23 − s12c23s13eiδ

)
− βτ2 , (4.43)

where
βτ1 = arg(sν12) , βτ2 = arg(−cν12) . (4.44)

We also have

sin δ = − sgn (sin 2θe12)
sin 2θν12
sin 2θ12

sinφ . (4.45)

A few comments are in order. As like the cosine of the Dirac phase δ, cosφ satisfies a
sum rule by which it is expressed in terms of the three measured neutrino mixing angles
θ12, θ13 and θ23, and is uniquely determined by the values of θ12, θ13 and θ23 [99]. The
values of sin δ and sinφ, however, are fixed up to a sign. Through eq. (4.45) the signs
sin δ and sinφ are correlated. Thus, δ and φ are predicted with an ambiguity related
to the ambiguity of the sign of sin δ (or of sinφ). Together with eqs. (4.42) and (4.43)
this implies that also the phases βe1 and βe2 are determined by the values of θ12, θ13, θ23
and δ with a two-fold ambiguity. The knowledge of the difference (βe2 − βe1) allows to
determine the Majorana phase α21 (up to the discussed two-fold ambiguity) if the value of
the phase ξ21 is known. In contrast, the knowledge of βe2 and ξ31 is not enough to predict
the value of the Majorana phase α31 since it receives a contribution also from the phase β
that cannot be fixed on general phenomenological grounds. It is possible to determine
the phase β in certain specific cases (see [99] for a detailed discussion of the cases when β
can be fixed). It should be noted, however, that the term involving the phase α31 in the
(ββ)0ν-decay effective Majorana mass 〈m〉 gives practically a negligible contribution in
|〈m〉| in the cases of neutrino mass spectrum with IO or of QD type [40,99]. In these cases
we have [166,167] |〈m〉| ∼> 0.014 eV (see also, e.g., [8, 39]). Values of |〈m〉| ∼> 0.014 eV are
in the range of planned sensitivity of the future large scale (ββ)0ν-decay experiments (see,
e.g., [43]).

In terms of the “standard” angles θ12, θ13, θ23 and the phase δ, sin(α21/2) and sin(α31/2)
are given by

sin(α21/2) =
cos(βτ2 − βτ1)

2|Uτ1Uτ2|

[
sin 2θ23 sin θ13

(
sin(δ + ξ21/2)− 2 sin2 θ12 cos δ sin(ξ21/2)

)
− sin 2θ12

(
sin2 θ23 − cos2 θ23 sin2 θ13

)
sin(ξ21/2)

]
, (4.46)
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sin(α31/2) =
cos βτ1
|Uτ1|

[
sin θ12 sin θ23 sin(ξ31/2 + β)

− cos θ12 cos θ23 sin θ13 sin(δ + β + ξ31/2)

]
. (4.47)

The sign factors cos(βτ2 − βτ1) and cos βτ1 are known once the angle θν12 is fixed:

cos(βτ2 − βτ1) = − sgn (sν12c
ν
12) , cos βτ1 = sgn (sν12) . (4.48)

The expressions for sin(α21/2− ξ21/2) and sin(α31/2− ξ31/2− β) have the following
simple forms:

sin(α21/2− ξ21/2) =
cos(βτ2 − βτ1)

2|Uτ1Uτ2|
sin 2θ23 sin θ13 sin δ , (4.49)

sin(α31/2− ξ31/2− β) = −cos βτ1
|Uτ1|

cos θ12 cos θ23 sin θ13 sin δ . (4.50)

It follows from eqs. (4.49) and (4.50) that since sin δ can be expressed in terms of
the “standard” neutrino mixing angles θ12, θ23 and θ13, sin(α21/2− ξ21/2) and sin(α31/2−
ξ31/2− β) are determined (up to an ambiguity related to the sign of sin δ) by the values
of θ12, θ23 and θ13. Equations (4.49) and (4.50) imply that also in the discussed case
| sin(α21/2− ξ21/2)| ∝ sin θ13 and | sin(α31/2− ξ31/2− β)| ∝ sin θ13.

4.2.2 Case B2: θe13 and θe23
In this subsection, we consider the parametrisation of the PMNS matrix as in eq. (3.13)
with (ij)− (kl) = (13)− (23). Analogously to the previous subsection, this parametrisation
can be recast in the form of eq. (3.30). In explicit form this equation reads

U =

 ce13c
ν
12 + se13ŝ23s

ν
12e
−iα ce13s

ν
12 − se13ŝ23cν12e−iα se13ĉ23e

−iα

−ĉ23sν12 ĉ23c
ν
12 ŝ23

−se13cν12 + ce13ŝ23s
ν
12e
−iα −se13sν12 − ce13ŝ23cν12e−iα ce13ĉ23e

−iα

 Q̂ . (4.51)

To bring this matrix to the standard parametrisation form, we first rewrite it as follows:

U =

 |Ue1|e
iβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uµ1|eiβµ1 |Uµ2|eiβµ2 |Uµ3|
|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

 Q̂ , (4.52)

where

βe1 = arg
(
ce13c

ν
12 + se13ŝ23s

ν
12e
−iα) , (4.53)

βe2 = arg
(
ce13s

ν
12 − se13ŝ23cν12e−iα

)
, (4.54)

βe3 = arg (se13)− α , (4.55)

βµ1 = arg (−sν12) , (4.56)

βµ2 = arg (cν12) , (4.57)
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βτ1 = arg
(
−se13cν12 + ce13ŝ23s

ν
12e
−iα) , (4.58)

βτ2 = arg
(
−se13sν12 − ce13ŝ23cν12e−iα

)
, (4.59)

βτ3 = arg (ce13)− α . (4.60)

We recall that the angle θ̂23 belongs to the first quadrant by construction.
Further, comparing the expressions for the JCP invariant in the standard parametrisation

and in the parametrisation given in eq. (3.30), we have31

sin δ = sgn (sin 2θe13)
sin 2θν12
sin 2θ12

sinα . (4.61)

It is not difficult to check that this relation holds if

δ = βe1 + βe2 + βτ3 − βe3 + α , βτ3 − βe3 = 0 or π , (4.62)

which, in turn, suggests what rearrangement of the phases in the PMNS matrix in eq. (4.52)
one has to do to bring it to the standard parametrisation form. Namely, the required
rearrangement should be made in the following way:

U = P2

 |Ue1| |Ue2| |Ue3|e−iδ

|Uµ1|ei(βµ1+βe2+βτ3+α) |Uµ2|ei(βµ2+βe1+βτ3+α) |Uµ3|
|Uτ1|ei(βτ1+βe2+α) |Uτ2|ei(βτ2+βe1+α) |Uτ3|

Q2 Q̂ , (4.63)

where

P2 = diag
(
ei(βe1+βe2+βτ3+α), 1, eiβτ3

)
, (4.64)

Q2 = diag
(
e−i(βe2+βτ3+α), e−i(βe1+βτ3+α), 1

)
= e−i(βe2+βτ3+α) diag

(
1, ei(βe2−βe1), ei(βe2+βτ3+α)

)
. (4.65)

The phases in the matrix P2 are unphysical. The phases (βe2 − βe1) and (βe2 + βτ3 + α)
in the matrix Q2 contribute to the Majorana phases α21 and α31, respectively, while the
common phase (−βe2−βτ3−α) in this matrix is unphysical and we will not keep it further.
Thus, the Majorana phases in the PMNS matrix are determined by the phases in the
product Q2 Q̂:

α21

2
= βe2 − βe1 +

ξ21
2
,

α31

2
= βe2 + βτ3 + α + β +

ξ31
2
, βτ3 + α = 0 or π . (4.66)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac
phase δ the phases (βe1 + βτ3 + α) and (βe2 + βτ3 + α) read:

βe1 + βτ3 + α = arg
(
Uµ2e

−iα21
2

)
− βµ2 = arg

(
c12c23 − s12s23s13eiδ

)
− βµ2 , (4.67)

βe2 + βτ3 + α = arg (Uµ1)− βµ1 = arg
(
−s12c23 − c12s23s13eiδ

)
− βµ1 . (4.68)

In terms of the neutrino mixing angles θ12, θ13, θ23 and the phase δ we have:

sin(α21/2) = −cos(βµ2 − βµ1)
2|Uµ1Uµ2|

[
sin 2θ23 sin θ13

(
sin(δ + ξ21/2)− 2 sin2 θ12 cos δ sin(ξ21/2)

)
31This relation is the generalisation of eq. (3.40) in subsection 3.3.2, where we considered θe13 to be in

the first quadrant.
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+ sin 2θ12
(
cos2 θ23 − sin2 θ23 sin2 θ13

)
sin(ξ21/2)

]
, (4.69)

sin(α31/2) = −cos βµ1
|Uµ1|

[
sin θ12 cos θ23 sin(β + ξ31/2)

+ cos θ12 sin θ23 sin θ13 sin(δ + β + ξ31/2)

]
. (4.70)

Given the angle θν12, the sign factors cos(βµ2 − βµ1) and cos βµ1 are fixed, since

cos(βµ2 − βµ1) = − sgn (sν12c
ν
12) , cos βµ1 = − sgn (sν12) . (4.71)

As in the previous subsections, the expressions for sin(α21/2− ξ21/2) and sin(α31/2−
ξ31/2− β) are somewhat simpler:

sin(α21/2− ξ21/2) = −cos(βµ2 − βµ1)
2|Uµ1Uµ2|

sin 2θ23 sin θ13 sin δ , (4.72)

sin(α31/2− ξ31/2− β) = −cos βµ1
|Uµ1|

cos θ12 sin θ23 sin θ13 sin δ . (4.73)

Also in this case we have | sin(α21/2−ξ21/2)| ∝ sin θ13 and | sin(α31/2−ξ31/2−β)| ∝ sin θ13.
We would like to note finally that formulae in eqs. (4.69) and (4.70) and eqs. (4.72)

and (4.73) can be obtained formally from the corresponding formulae in subsection 4.2.1,
eqs. (4.46) and (4.47) and eqs. (4.49) and (4.50), by making the following substitutions:

θ23 → θ23 −
π

2
and τ → µ . (4.74)

4.2.3 Case B3: θe12 and θe13
In this subsection, we switch to the parametrisation of the PMNS matrix U given in
eq. (3.13) with (ij)− (kl) = (12)− (13), i.e.,

U = R12(θ
e
12)R13(θ

e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 . (4.75)

In explicit form this matrix reads:

U =

 |Ue1|e
iβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uµ1|eiβµ1 |Uµ2|eiβµ2 |Uµ3|eiβµ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

Q0 , (4.76)

where

|Ue1|eiβe1 = ce12c
e
13c

ν
12 − sν12

(
se12c

ν
23e
−iψ − ce12se13sν23e−iω

)
, (4.77)

|Ue2|eiβe2 = ce12c
e
13s

ν
12 + cν12

(
se12c

ν
23e
−iψ − ce12se13sν23e−iω

)
, (4.78)

|Ue3|eiβe3 = se12s
ν
23e
−iψ + ce12s

e
13c

ν
23e
−iω , (4.79)

|Uµ1|eiβµ1 = −se12ce13cν12 − sν12
(
ce12c

ν
23e
−iψ + se12s

e
13s

ν
23e
−iω) , (4.80)

|Uµ2|eiβµ2 = −se12ce13sν12 + cν12
(
ce12c

ν
23e
−iψ + se12s

e
13s

ν
23e
−iω) , (4.81)
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|Uµ3|eiβµ3 = ce12s
ν
23e
−iψ − se12se13cν23e−iω , (4.82)

|Uτ1|eiβτ1 = −se13cν12 + ce13s
ν
12s

ν
23e
−iω , (4.83)

|Uτ2|eiβτ2 = −se13sν12 − ce13cν12sν23e−iω , (4.84)

|Uτ3|eiβτ3 = ce13c
ν
23e
−iω . (4.85)

According to eq. (3.58), the angle θe13 is expressed in terms of the known angles and
can be determined up to a quadrant. The phase ω is a free phase parameter, which enters,
e.g., the sum rule for cos δ (see eq. (3.60)), so its presence is expected as well in the sum
rules for the Majorana phases we are going to derive.

We aim as before to find an appropriate phase rearrangement in order to bring U to
the standard parametrisation form. For that reason we compare first the expressions for
the JCP invariant in the standard parametrisation and in the parametrisation given in
eq. (4.75) and find

sin δ =
8J

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13
, (4.86)

where J is the expression for JCP in the parametrisation of U given in eq. (4.75):

J =
1

8
cos θe13

[
sin 2θe12

{
2 sin 2θν12 cos θν23

[(
cos2 θe13 − cos2 θν23

)
sinψ − sin2 θe13 sin2 θν23 sin(ψ − 2ω)

]
− sin 2θe13 cos 2θν12 sin 2θν23 sin(ψ − ω)

}
+ 2 cos 2θe12 sin θe13 sin 2θν12 sin 2θν23 cos θν23 sinω

]
.

(4.87)

This expression looks cumbersome, but one can verify that the relation in eq. (4.86) holds
if δ is given by

δ = βe1 + βe2 + βµ3 + βτ3 − βe3 + ψ + ω . (4.88)

Now we can cast U in the following form:

U = P2

 |Ue1| |Ue2| |Ue3|e−iδ

|Uµ1|ei(βµ1+βe2+βτ3+ψ+ω) |Uµ2|ei(βµ2+βe1+βτ3+ψ+ω) |Uµ3|
|Uτ1|ei(βτ1+βe2+βµ3+ψ+ω) |Uτ2|ei(βτ2+βe1+βµ3+ψ+ω) |Uτ3|

Q2Q0 , (4.89)

where

P2 = diag
(
ei(βe1+βe2+βµ3+βτ3+ψ+ω), eiβµ3 , eiβτ3

)
, (4.90)

Q2 = diag
(
e−i(βe2+βµ3+βτ3+ψ+ω), e−i(βe1+βµ3+βτ3+ψ+ω), 1

)
= e−i(βe2+βµ3+βτ3+ψ+ω) diag

(
1, ei(βe2−βe1), ei(βe2+βµ3+βτ3+ψ+ω)

)
. (4.91)

The phases in the matrix P2 as well as the overall phase in the matrix Q2 are unphysical.
Thus, for the Majorana phases we get:

α21

2
= βe2 − βe1 +

ξ21
2
,

α31

2
= βe2 + βµ3 + βτ3 + ψ + ω +

ξ31
2
. (4.92)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac
phase δ we have:

βe1 + βµ3 + ψ + ω = arg
(
Uτ2e

−iα21
2

)
− βτ2 = arg

(
−c12s23 − s12c23s13eiδ

)
− βτ2 , (4.93)
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βe2 + βµ3 + ψ + ω = arg (Uτ1)− βτ1 = arg
(
s12s23 − c12c23s13eiδ

)
− βτ1 , (4.94)

where βτ1 and βτ2 are the arguments of the expressions given in eqs. (4.83) and (4.84),
respectively. They are fixed once the angles θν12 and θν23, the quadrant to which θe13 belongs
and the phase ω are known. Finally, we find:

α21

2
= arg

(
Uτ1U

∗
τ2e

i
α21
2

)
+ βτ2 − βτ1 +

ξ21
2
, (4.95)

α31

2
= arg (Uτ1) + βτ3 − βτ1 +

ξ31
2
, (4.96)

where βτ3 is the argument of the expression in eq. (4.85), which is fixed under the conditions
specified above for βτ1 and βτ2.

The phases (α21/2− ξ21/2− (βτ2−βτ1)) and (α31/2− ξ31/2− (βτ3−βτ1)), as it follows
from eqs. (4.95) and (4.96), are completely determined by the values of the standard
parametrisation angles θ12, θ23 and θ13, and of the Dirac phase δ. It should be noted,
however, that in the considered scheme the phase δ also depends on the phase ω, and
thus, the phases (α21/2− ξ21/2− (βτ2 − βτ1)) and (α31/2− ξ31/2− (βτ3 − βτ1)) depend
on ω via δ. In Section 3.6, we have given predictions for δ for ω = 0 and sgn(sin 2θe13) = 1.
Correspondingly, in Section 4.5 we will derive predictions for the values of the phases
(α21/2− ξ21/2) and (α31/2− ξ31/2) for the same values of ω and sgn(sin 2θe13), for which
the predicted value of δ lies in its 2σ allowed interval [162].

We note finally that sin2 θ23 is constrained by the requirements that cosψ, sin2 θe12 and
sin2 θe13 possess physically acceptable values, to lie for both the NO and IO spectra in the
following narrow intervals (see the discussion at the end of Section 3.6):

(0.489, 0.498) for TBM,
(0.489, 0.496) for GRA,
(0.489, 0.499) for GRB,
(0.489, 0.499) for HG,
(0.489, 0.521) for BM.

Thus, we will present results for the phases of interest for the NO (IO) spectrum for
sin2 θ23 = 0.48907 (sin2 θ23 = 0.48886).32

4.3 Mixing schemes with Ũ †e = Rij(θ
e
ij) and

Ũν = R23(θ
ν
23)R13(θ

ν
13)R12(θ

ν
12)

We consider next a generalisation of the cases analysed in Section 4.1 with the presence
of a third rotation matrix in Ũν arising from the neutrino sector, i.e., we employ the
parametrisation of U given in eq. (3.14). Non-zero values of θν13 are inspired by certain
types of flavour symmetries [152–155]. In the numerical analysis of the predictions for α21,
α31 and |〈m〉| we will perform in Section 4.5, we will consider three representative values
of θν13 discussed in the literature: θν13 = π/20, π/10 and sin−1(1/3). We are not going to
consider the case in which the U matrix is parametrised as in eq. (3.14) with (ij) = (23)
for the reasons explained in [100], i.e., the absence of a correlation between the Dirac CPV
phase δ and the mixing angles. It should be noted that for this and other cases for which

32For sin2 θ23 < 0.48907 (sin2 θ23 < 0.48886), cos δ acquires an unphysical (complex) value.
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it is not possible to derive such a correlation, different symmetry forms of Ũν can still be
tested with an improvement of the precision in the measurement of the neutrino mixing
angles. For instance, in the case corresponding to eq. (3.14) with (ij) = (23), one has, as
was shown in [100], sin2 θ13 = sin2 θν13 and sin2 θ12 = sin2 θν12, i.e., the angles θ13 and θ12 are
predicted to have particular values when the angles θν13 and θν23 are fixed by a symmetry.

4.3.1 Case C1: θe12
In this subsection, we consider the parametrisation of the PMNS matrix U given in
eq. (3.14) with (ij) = (12), i.e.,

U = R12(θ
e
12) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 . (4.97)

In this case, the the matrix Ψ contains only one physical phase φ, Ψ = diag (1, eiφ, 1) (we
have denoted φ ≡ −ψ), since the phase ω in Ψ is unphysical and we have dropped it. The
explicit form of the matrix U reads

U =

 |Ue1|e
iβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uµ1|eiβµ1 |Uµ2|eiβµ2 |Uµ3|eiβµ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

Q0 , (4.98)

where

|Ue1|eiβe1 = ce12c
ν
12c

ν
13 − se12 (sν12c

ν
23 + cν12s

ν
23s

ν
13) e

iφ , (4.99)

|Ue2|eiβe2 = ce12s
ν
12c

ν
13 + se12 (cν12c

ν
23 − sν12sν23sν13) eiφ , (4.100)

|Ue3|eiβe3 = ce12s
ν
13 + se12s

ν
23c

ν
13e

iφ , (4.101)

|Uµ1|eiβµ1 = −se12cν12cν13 − ce12 (sν12c
ν
23 + cν12s

ν
23s

ν
13) e

iφ , (4.102)

|Uµ2|eiβµ2 = −se12sν12cν13 + ce12 (cν12c
ν
23 − sν12sν23sν13) eiφ , (4.103)

|Uµ3|eiβµ3 = −se12sν13 + ce12s
ν
23c

ν
13e

iφ , (4.104)

|Uτ1|eiβτ1 = sν12s
ν
23 − cν12cν23sν13 , (4.105)

|Uτ2|eiβτ2 = −cν12sν23 − sν12cν23sν13 , (4.106)

|Uτ3|eiβτ3 = cν23c
ν
13 . (4.107)

Comparing the expressions for the JCP invariant in the standard parametrisation and in
the parametrisation given in eq. (4.97), one finds the following relation between sin δ and
sinφ:33

sin δ =
sin 2θe12 [2 cos 2θν12 sin 2θν23 sin θν13 − (cos2 θν13 + (cos2 θν13 − 2) cos 2θν23) sin 2θν12]

2 sgn(cos θν23 cos θν13) sin 2θ12 sin 2θ13 sin θ23
sinφ ,

(4.108)

where we have used that in this scheme cos2 θ23 cos2 θ13 = cos2 θν23 cos2 θν13. The relation in
eq. (4.108) suggests the required rearrangement of the phases one has to perform to bring

33For θν23 = −π/4 this relation reduces to eq. (3.72).
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U given in eq. (4.98) to the standard parametrisation form. Namely, it can be shown that
eq. (4.108) holds if

δ = βe1 + βe2 + βµ3 − βe3 − φ+ βτ3 , βτ3 = 0 or π , (4.109)

where βτ3 = arg(cν23c
ν
13). The phase βτ3 provides the sign factor sgn(cos θν23 cos θν13) in the

relation between sin δ and sinφ, when one calculates sin δ from eq. (4.109). Now we can
cast U in the following form:

U = P2

 |Ue1| |Ue2| |Ue3|e−iδ

|Uµ1|ei(βµ1+βe2−φ+βτ3) |Uµ2|ei(βµ2+βe1−φ+βτ3) |Uµ3|
|Uτ1|ei(βτ1+βe2+βµ3−φ) |Uτ2|ei(βτ2+βe1+βµ3−φ) |Uτ3|

Q2Q0 , (4.110)

where

P2 = diag
(
ei(βe1+βe2+βµ3−φ), ei(βµ3−βτ3), 1

)
, (4.111)

Q2 = diag
(
e−i(βe2+βµ3−φ), e−i(βe1+βµ3−φ), eiβτ3

)
= e−i(βe2+βµ3−φ) diag

(
1, ei(βe2−βe1), ei(βe2+βµ3−φ+βτ3)

)
. (4.112)

The phases in the matrix P2 are unphysical. The Majorana phases get contribution from
the matrix Q2Q0 and read:

α21

2
= βe2 − βe1 +

ξ21
2
,

α31

2
= βe2 + βµ3 − φ+ βτ3 +

ξ31
2
, βτ3 = 0 or π . (4.113)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac
phase δ we have:

βe1 + βµ3 − φ = arg
(
Uτ2e

−iα21
2

)
− βτ2 = arg

(
−c12s23 − s12c23s13eiδ

)
− βτ2 , (4.114)

βe2 + βµ3 − φ = arg (Uτ1)− βτ1 = arg
(
s12s23 − c12c23s13eiδ

)
− βτ1 , (4.115)

where βτ1 and βτ2 can be 0 or π and are known when the angles θν12, θν23 and θν13 are fixed
(see eqs. (4.105) and (4.106)).

Using eqs. (4.114) and (4.115), we get in terms of the standard parametrisation mixing
angles θ12, θ13, θ23 and the Dirac phase δ:

sin(α21/2) =
cos(βτ2 − βτ1)

2|Uτ1Uτ2|

[
sin 2θ23 sin θ13

(
sin(δ + ξ21/2)− 2 sin2 θ12 cos δ sin(ξ21/2)

)
− sin 2θ12

(
sin2 θ23 − cos2 θ23 sin2 θ13

)
sin(ξ21/2)

]
, (4.116)

sin(α31/2) =
cos(βτ3 − βτ1)
|Uτ1|

[
sin θ12 sin θ23 sin(ξ31/2)

− cos θ12 cos θ23 sin θ13 sin(δ + ξ31/2)

]
, (4.117)

where, according to eq. (3.76), cos2 θ23 cos2 θ13 = cos2 θν23 cos2 θν13. Note that, as it follows
from eqs. (4.105)–(4.107), the sign factors cos(βτ2 − βτ1) and cos(βτ3 − βτ1) are known
when the angles θνij are fixed.
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Finally, we give the expressions for sin(α21/2− ξ21/2) and sin(α31/2− ξ31/2), which
have a simpler form:

sin(α21/2− ξ21/2) =
cos(βτ2 − βτ1)

2|Uτ1Uτ2|
sin 2θ23 sin θ13 sin δ , (4.118)

sin(α31/2− ξ31/2) = −cos(βτ3 − βτ1)
|Uτ1|

cos θ12 cos θ23 sin θ13 sin δ . (4.119)

Equations (4.118) and (4.119) imply, in particular, that | sin(α21(31)/2−ξ21(31)/2)| ∝ sin θ13.

4.3.2 Case C2: θe13
In this subsection, we derive the formulae for the Majorana phases in the case when the
PMNS matrix U is parametrised as in eq. (3.14) with (ij) = (13), i.e.,

U = R13(θ
e
13) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 . (4.120)

In this case the phase ψ in the matrix Ψ is unphysical, and Ψ = diag (1, 1, e−iω). We will
proceed in analogy with the previous subsection. We start by writing the matrix U in
explicit form:

U =

 |Ue1|e
iβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uµ1|eiβµ1 |Uµ2|eiβµ2 |Uµ3|eiβµ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

Q0 , (4.121)

where

|Ue1|eiβe1 = ce13c
ν
12c

ν
13 + se13 (sν12s

ν
23 − cν12cν23sν13) e−iω , (4.122)

|Ue2|eiβe2 = ce13s
ν
12c

ν
13 − se13 (cν12s

ν
23 + sν12c

ν
23s

ν
13) e

−iω , (4.123)

|Ue3|eiβe3 = ce13s
ν
13 + se13c

ν
23c

ν
13e
−iω , (4.124)

|Uµ1|eiβµ1 = −sν12cν23 − cν12sν23sν13 , (4.125)

|Uµ2|eiβµ2 = cν12c
ν
23 − sν12sν23sν13 , (4.126)

|Uµ3|eiβµ3 = sν23c
ν
13 , (4.127)

|Uτ1|eiβτ1 = −se13cν12cν13 + ce13 (sν12s
ν
23 − cν12cν23sν13) e−iω , (4.128)

|Uτ2|eiβτ2 = −se13sν12cν13 − ce13 (cν12s
ν
23 + sν12c

ν
23s

ν
13) e

−iω , (4.129)

|Uτ3|eiβτ3 = −se13sν13 + ce13c
ν
23c

ν
13e
−iω . (4.130)

From the comparison of the expressions for JCP in the standard parametrisation and in
the parametrisation given in eq. (4.120), it follows that34

sin δ =
sin 2θe13 [(cos2 θν13 − (cos2 θν13 − 2) cos 2θν23) sin 2θν12 + 2 cos 2θν12 sin 2θν23 sin θν13]

2 sgn(sin θν23 cos θν13) sin 2θ12 sin 2θ13 cos θ23
sinω ,

(4.131)

34For θν23 = −π/4 this relation reduces to eq. (3.88).
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where we have used the equality sin2 θ23 cos2 θ13 = sin2 θν23 cos2 θν13 valid in this scheme. As
can be shown, the relation between sin δ and sinω in eq. (4.131) takes place if

δ = βe1 + βe2 + βτ3 − βe3 + ω + βµ3 , βµ3 = 0 or π , (4.132)

where βµ3 = arg(sν23c
ν
13). Knowing the expression for δ allows us to rearrange the phases

in eq. (4.121) in such a way as to render U in the standard parametrisation form:

U = P2

 |Ue1| |Ue2| |Ue3|e−iδ

|Uµ1|ei(βµ1+βe2+βτ3+ω) |Uµ2|ei(βµ2+βe1+βτ3+ω) |Uµ3|
|Uτ1|ei(βτ1+βe2+ω+βµ3) |Uτ2|ei(βτ2+βe1+ω+βµ3) |Uτ3|

Q2Q0 , (4.133)

with

P2 = diag
(
ei(βe1+βe2+βτ3+ω), 1, ei(βτ3−βµ3)

)
, (4.134)

Q2 = diag
(
e−i(βe2+βτ3+ω), e−i(βe1+βτ3+ω), eiβµ3

)
= e−i(βe2+βτ3+ω) diag

(
1, ei(βe2−βe1), ei(βe2+βτ3+ω+βµ3)

)
. (4.135)

The matrix P2 contains unphysical phases which can be removed. The Majorana phases
are determined by the phases in the product Q2Q0:

α21

2
= βe2 − βe1 +

ξ21
2
,

α31

2
= βe2 + βτ3 + ω + βµ3 +

ξ31
2
, βµ3 = 0 or π . (4.136)

In terms of the “standard” mixing angles θ12, θ23, θ13 and the Dirac phase δ one has:

βe1 + βτ3 + ω = arg
(
Uµ2e

−iα21
2

)
− βµ2 = arg

(
c12c23 − s12s23s13eiδ

)
− βµ2 , (4.137)

βe2 + βτ3 + ω = arg (Uµ1)− βµ1 = arg
(
−s12c23 − c12s23s13eiδ

)
− βµ1 , (4.138)

where βµ1 = arg(−sν12cν23 − cν12sν23sν13) and βµ2 = arg(cν12c
ν
23 − sν12sν23sν13) can take values of

0 or π and are known when the angles θν12, θν23 and θν13 are fixed.
Using relations in eqs. (4.137) and (4.138) we get in terms of the standard parametri-

sation mixing angles θ12, θ13, θ23 and the Dirac phase δ:

sin(α21/2) = −cos(βµ2 − βµ1)
2|Uµ1Uµ2|

[
sin 2θ23 sin θ13

(
sin(δ + ξ21/2)− 2 sin2 θ12 cos δ sin(ξ21/2)

)
+ sin 2θ12

(
cos2 θ23 − sin2 θ23 sin2 θ13

)
sin(ξ21/2)

]
, (4.139)

sin(α31/2) = −cos(βµ3 − βµ1)
|Uµ1|

[
sin θ12 cos θ23 sin(ξ31/2)

+ cos θ12 sin θ23 sin θ13 sin(δ + ξ31/2)

]
, (4.140)

where, according to eq. (3.92), sin2 θ23 cos2 θ13 = sin2 θν23 cos2 θν13. As it follows from
eqs. (4.125)–(4.127), the sign factors cos(βµ2 − βµ1) and cos(βµ3 − βµ1) are known once
the angles θνij are fixed.
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Finally, we provide the expressions for sin(α21/2− ξ21/2) and sin(α31/2− ξ31/2):

sin(α21/2− ξ21/2) = −cos(βµ2 − βµ1)
2|Uµ1Uµ2|

sin 2θ23 sin θ13 sin δ , (4.141)

sin(α31/2− ξ31/2) = −cos(βµ3 − βµ1)
|Uµ1|

cos θ12 sin θ23 sin θ13 sin δ . (4.142)

As in the cases analysed in the preceding subsections, we have | sin(α21/2−ξ21/2)| ∝ sin θ13
and | sin(α31/2− ξ31/2)| ∝ sin θ13.

4.4 Summary of the sum rules for the Majorana
phases

In the present section, we summarise the sum rules for the Majorana phases obtained in
the previous sections. Throughout this section the neutrino mixing matrix U is assumed
to be in the standard parametrisation.

In schemes A1, B1, B3 and C1 the sum rules for α21/2 and α31/2 can be cast in the
form:

α21

2
= arg

(
Uτ1U

∗
τ2e

i
α21
2

)
+ κ21 +

ξ21
2
, (4.143)

α31

2
= arg (Uτ1) + κ31 +

ξ31
2
, (4.144)

where the expressions for the phases κ21 and κ31, which should be used in these sum rules
in each particular case, are given in Table 4.1. In schemes A1 and C1 the phases κ21 and
κ31 take values 0 or π and are known once the angles θνij are fixed. In scheme B1 (B3),
κ31 (κ21 and κ31) depends (depend) on the free phase parameter β (ω).

In schemes A2, B2 and C2 we similarly have:

α21

2
= arg

(
Uµ1U

∗
µ2e

i
α21
2

)
+ κ21 +

ξ21
2
, (4.145)

α31

2
= arg (Uµ1) + κ31 +

ξ31
2
, (4.146)

where the corresponding expressions for κ21 and κ31 are given again in Table 4.1. In cases
A2 and C2 the phases κ21 and κ31 can take values 0 or π. They are fixed when the angles
θνij are given. The phase β, which is a free parameter as long as it is not fixed by additional
arguments, enters the sum rule for α31/2 in scheme B2.

In all schemes considered the phases (α21/2− ξ21/2− κ21) and (α31/2− ξ31/2− κ31)
are determined by the values of the neutrino mixing angles θ12, θ23 and θ13, and of the
Dirac phase δ. The Dirac phase is determined in each scheme by a corresponding sum
rule. In schemes A1, A2, C1 and C2 there is a correlation between the values of sin2 θ23
and sin2 θ13. The sum rules for cos δ and the relevant expressions for sin2 θ23 in the cases
of interest, which should be used in eqs. (4.143)–(4.146), are given in Tables 3.1 and 3.2.
In the following section, we use the sum rules given in eqs. (4.143)–(4.146) to obtain the
numerical predictions for the Majorana phases in the PMNS matrix.
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Table 4.1. The phases κ21 and κ31 entering the sum rules for the Majorana phases given in
eqs. (4.143)–(4.146) for all the cases considered.

Case κ21 κ31

A1 arg (−sν12cν12) arg (sν12s
ν
23c

ν
23)

A2 arg (−sν12cν12) arg (−sν12sν23cν23)

B1 arg (−sν12cν12) arg (sν12) + β

B2 arg (−sν12cν12) arg (−sν12) + β

B3 arg
[(
se13s

ν
12 + ce13c

ν
12s

ν
23e
−iω) (se13cν12 − ce13sν12sν23eiω)] arg

[
ce13c

ν
23

(
ce13s

ν
12s

ν
23 − se13cν12e−iω

)]
C1 arg [− (cν12s

ν
23 + sν12c

ν
23s

ν
13) (sν12s

ν
23 − cν12cν23sν13)] arg [cν23c

ν
13 (sν12s

ν
23 − cν12cν23sν13)]

C2 arg [− (cν12c
ν
23 − sν12sν23sν13) (sν12c

ν
23 + cν12s

ν
23s

ν
13)] arg [−sν23cν13 (sν12c

ν
23 + cν12s

ν
23s

ν
13)]

4.5 Predictions

4.5.1 Dirac phase
In Table 4.2 we show predictions for the Dirac phase δ, obtained from the sum rules,
derived in Chapter 3 and summarised in Table 3.1. The numerical values are obtained
using the best fit values of the neutrino mixing parameters given in eqs. (4.1)–(4.3) for
both the NO and IO spectra.35 As we have seen in Chapter 3, in the BM (LC) case,
the sum rules for cos δ lead to unphysical values of | cos δ| > 1 if one uses as input the
best fit values of sin2 θ12, sin2 θ23 and sin2 θ13. This is an indication of the fact that the
current data disfavours the BM (LC) form of Ũν . In the case of the B1 scheme and the NO
spectrum, for example, the BM (LC) form is disfavoured at approximately 2σ confidence
level. Physical values of cos δ are found for larger (smaller) values of sin2 θ12 (sin2 θ23). For,
e.g., sin2 θ12 = 0.354, which is the 3σ upper bound of sin2 θ12, and the best fit values of
sin2 θ23 and sin2 θ13, we get | cos δ| ≤ 1 in most of the schemes considered in the present
article, the exceptions being schemes B1 with the IO spectrum, B2 with the NO spectrum
and B3. The values of the Dirac phase corresponding to the BM (LC) form quoted in
Table 4.2 are obtained for sin2 θ12 = 0.354 and the best fit values of sin2 θ23 and sin2 θ13.

In each of cases C1 and C2, we report results for θν23 = − π/4 and five sets of values
of [θν13, θ

ν
12], associated with, or inspired by, models of neutrino mixing (see Section 3.6).

These sets include the three values of θν13 = π/20, π/10 and a ≡ sin−1(1/3) and selected
values of θν12 from the set: ±π/4, b ≡ sin−1(1/

√
2 + r), c ≡ sin−1(1/

√
3) and π/5. The

values in square brackets in Table 4.2 are those of [θν13, θ
ν
12] used. In scheme C1 we

define cases I, II, III, IV and V as the cases with [θν13, θ
ν
12] being equal to [π/20,−π/4],

[π/10,−π/4], [a,−π/4], [π/20, b] and [π/20, π/6], respectively. In scheme C2 cases I, II,
III, IV and V correspond to the following pairs: [π/20, c], [π/20, π/4], [π/10, π/4], [a, π/4]
and [π/20, π/5], respectively.

As can be seen from Table 4.2, the values of δ for the IO spectrum differ insignificantly
from the values obtained for the NO one in all the schemes considered, except for the B1
and B2 ones. The difference between the NO and IO values of δ in the B1 and B2 schemes
is a consequence of the difference between the best fit values of sin2 θ23 corresponding to

35Table 4.2 based on the best fit values of sin2 θij quoted in eqs. (4.1)–(4.3) is an updated version of
Table 3.6.
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Table 4.2. The Dirac phase δ in degrees calculated from the sum rules in Table 3.1 using
the best fit values of the neutrino mixing angles quoted in eqs. (4.1)–(4.3), except for scheme
B3 and the BM (LC) form of Ũν . The results shown for scheme B3 are obtained for ω = 0,
sgn (sin 2θe13) = 1, and for sin2 θ23 = 0.48907 (0.48886) for the NO (IO) spectrum. The numbers
quoted for the BM (LC) form of Ũν are for sin2 θ12 = 0.354, which is the 3σ upper bound. For
each cell the first number corresponds to δ = cos−1(cos δ), while the second number corresponds
to δ = 2π − cos−1(cos δ). In cases C1 and C2, θν23 = −π/4 and the values in square brackets
are those of [θν13, θ

ν
12] used. The letters a, b and c stand for sin−1(1/3), sin−1(1/

√
2 + r) and

sin−1(1/
√

3), respectively. See text for further details.

Ũν TBM GRA GRB HG BM (LC)
Case O

A1
NO 101.9 ∨ 258.1 77.3 ∨ 282.7 107.2 ∨ 252.8 65.3 ∨ 294.7 176.5 ∨ 183.5

IO 101.7 ∨ 258.3 77.3 ∨ 282.7 107.0 ∨ 253.0 65.5 ∨ 294.5 171.1 ∨ 188.9

A2
NO 78.1 ∨ 281.9 102.7 ∨ 257.3 72.8 ∨ 287.2 114.7 ∨ 245.3 3.5 ∨ 356.5

IO 78.3 ∨ 281.7 102.7 ∨ 257.3 73.0 ∨ 287.0 114.6 ∨ 245.4 8.9 ∨ 351.1

B1
NO 99.9 ∨ 260.1 77.7 ∨ 282.3 104.8 ∨ 255.2 66.9 ∨ 293.1 153.4 ∨ 206.6

IO 104.9 ∨ 255.1 76.4 ∨ 283.6 111.3 ∨ 248.7 62.4 ∨ 297.6

B2
NO 75.1 ∨ 284.9 103.6 ∨ 256.4 68.8 ∨ 291.2 117.6 ∨ 242.4

IO 80.5 ∨ 279.5 102.2 ∨ 257.8 75.7 ∨ 284.3 112.8 ∨ 247.2 29.1 ∨ 330.9

B3
NO 103.5 ∨ 256.5 78.8 ∨ 281.2 108.9 ∨ 251.1 66.9 ∨ 293.1

IO 103.1 ∨ 256.9 78.6 ∨ 281.4 108.4 ∨ 251.6 66.8 ∨ 293.2

[θν13, θ
ν
12] [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20, π/6]

C1
NO 108.7 ∨ 251.3 44.8 ∨ 315.2 29.7 ∨ 330.3 154.9 ∨ 205.1 132.8 ∨ 227.2

IO 108.5 ∨ 251.5 45.2 ∨ 314.8 30.5 ∨ 329.5 153.7 ∨ 206.3 132.3 ∨ 227.7

[θν13, θ
ν
12] [π/20, c] [π/20, π/4] [π/10, π/4] [a, π/4] [π/20, π/5]

C2
NO 146.0 ∨ 214.0 71.3 ∨ 288.7 135.2 ∨ 224.8 150.3 ∨ 209.7 138.5 ∨ 221.5

IO 145.3 ∨ 214.7 71.5 ∨ 288.5 134.8 ∨ 225.2 149.5 ∨ 210.5 138.1 ∨ 221.9

the NO and IO spectra.36 We use the values of δ from Table 4.2 to obtain predictions for
the Majorana phases in the next subsection.

4.5.2 Majorana phases
In this subsection, we present results of the numerical analysis of the predictions for the
Majorana phases, performed using the best fit values of the neutrino mixing parameters
given in eqs. (4.1)–(4.3). These predictions are obtained from the sum rules in eqs. (4.143)–
(4.146), in which we have used the proper expressions for sin2 θ23 and cos δ from Tables 3.1
and 3.2. We summarise the predictions for all the cases considered in Tables 4.3 and 4.4,
in which we give, respectively, the values of the phase differences (α21/2 − ξ21/2) and
(α31/2 − ξ31/2) found in schemes A1, A2, B3, C1 and C2. In the cases of schemes B1
and B2 we present in Table 4.4 results for the difference (α31/2 − ξ31/2 − β), since the

36We recall that sin2 θ23 is a free parameter in schemes B1 and B2.
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Table 4.3. The phase difference (α21/2− ξ21/2) in degrees calculated using the best fit values
of the neutrino mixing angles quoted in eqs. (4.1)–(4.3), except for scheme B3 and the BM (LC)
form of Ũν . For scheme B3 the results shown are obtained for ω = 0, sgn (sin 2θe13) = 1 and
sin2 θ23 = 0.48907 (0.48886) in the case of the NO (IO) spectrum. The numbers quoted for the
BM (LC) form of Ũν are for the 3σ upper bound of sin2 θ12 = 0.354. For each cell the first number
corresponds to δ = cos−1(cos δ), while the second number is obtained for δ = 2π − cos−1(cos δ).
In cases C1 and C2, θν23 = −π/4 and the values in square brackets are those of [θν13, θ

ν
12] used.

The letters a, b and c stand for sin−1(1/3), sin−1(1/
√

2 + r) and sin−1(1/
√

3), respectively. See
text for further details.

Ũν TBM GRA GRB HG BM (LC)
Case O

A1
NO 342.3 ∨ 17.7 341.4 ∨ 18.6 342.9 ∨ 17.1 342.1 ∨ 17.9 359.0 ∨ 1.0

IO 342.1 ∨ 17.9 341.2 ∨ 18.8 342.7 ∨ 17.3 341.9 ∨ 18.1 357.4 ∨ 2.6

A2
NO 17.7 ∨ 342.3 18.6 ∨ 341.4 17.1 ∨ 342.9 17.9 ∨ 342.1 1.0 ∨ 359.0

IO 17.9 ∨ 342.1 18.8 ∨ 341.2 17.3 ∨ 342.7 18.1 ∨ 341.9 2.6 ∨ 357.4

B1
NO 340.3 ∨ 19.7 339.3 ∨ 20.7 340.8 ∨ 19.2 339.9 ∨ 20.1 351.7 ∨ 8.3

IO 345.0 ∨ 15.0 344.1 ∨ 15.9 345.7 ∨ 14.3 345.0 ∨ 15.0

B2
NO 15.1 ∨ 344.9 16.0 ∨ 344.0 14.4 ∨ 345.6 15.0 ∨ 345.0

IO 20.2 ∨ 339.8 21.1 ∨ 338.9 19.6 ∨ 340.4 20.6 ∨ 339.4 9.2 ∨ 350.8

B3
NO 342.5 ∨ 17.5 341.4 ∨ 18.6 343.1 ∨ 16.9 342.0 ∨ 18.0

IO 342.3 ∨ 17.7 341.2 ∨ 18.8 342.9 ∨ 17.1 341.8 ∨ 18.2

[θν13, θ
ν
12] [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20, π/6]

C1
NO 163.5 ∨ 196.5 166.9 ∨ 193.1 170.7 ∨ 189.3 353.0 ∨ 7.0 347.6 ∨ 12.4

IO 163.3 ∨ 196.7 166.6 ∨ 193.4 170.3 ∨ 189.7 352.6 ∨ 7.4 347.4 ∨ 12.6

[θν13, θ
ν
12] [π/20, c] [π/20, π/4] [π/10, π/4] [a, π/4] [π/20, π/5]

C2
NO 11.6 ∨ 348.4 16.5 ∨ 343.5 13.1 ∨ 346.9 9.3 ∨ 350.7 13.5 ∨ 346.5

IO 11.9 ∨ 348.1 16.7 ∨ 343.3 13.4 ∨ 346.6 9.7 ∨ 350.3 13.7 ∨ 346.3

phase β, in general, is not fixed, unless some additional arguments are used that fix it. In
the case of the B3 scheme the results are obtained for ω = 0, sgn (sin 2θe13) = 1, and for
sin2 θ23 = 0.48907 (0.48886) for the NO (IO) spectrum (see subsection 4.2.3 for details).

All the quoted phases are determined with a two-fold ambiguity owing to the fact that
the Dirac phase δ, which enters into the expressions for all the phases under discussion,
is determined with a two-fold ambiguity from the sum rules it satisfies in the schemes
of interest. The absolute values of the sines of the phases quoted in Tables 4.3 and 4.4
are all proportional to sin θ13, and thus, are relatively small. The results in cases A1 and
B2 for the TBM, BM (LC), GRA, GRB and HG symmetry forms of Ũν considered were
first obtained in [99] using the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 from (the first
e-archive version of) ref. [18]. Here, in particular, we update the results derived in [99].

As we have already noticed, in the BM (LC) case, the sum rules for cos δ lead to
unphysical values of | cos δ| > 1 if one uses as input the current best fit values of sin2 θ12,
sin2 θ23 and sin2 θ13. Physical values of cos δ are found for larger (smaller) values of sin2 θ12
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Table 4.4. The same as in Table 4.3, but for the phase difference (α31/2 − ξ31/2) given in
degrees. In cases B1 and B2 the presented numbers correspond to (α31/2− ξ31/2− β), where β
is a free phase parameter. See text for further details.

Ũν TBM GRA GRB HG BM (LC)
Case O

A1
NO 167.9 ∨ 192.1 166.7 ∨ 193.3 168.4 ∨ 191.6 167.0 ∨ 193.0 179.4 ∨ 180.6

IO 167.7 ∨ 192.3 166.6 ∨ 193.4 168.3 ∨ 191.7 166.8 ∨ 193.2 178.5 ∨ 181.5

A2
NO 192.1 ∨ 167.9 193.3 ∨ 166.7 191.6 ∨ 168.4 193.0 ∨ 167.0 180.6 ∨ 179.4

IO 192.3 ∨ 167.7 193.4 ∨ 166.6 191.7 ∨ 168.3 193.2 ∨ 166.8 181.5 ∨ 178.5

B1
NO 346.4 ∨ 13.6 345.2 ∨ 14.8 346.9 ∨ 13.1 345.4 ∨ 14.6 355.2 ∨ 4.8

IO 349.7 ∨ 10.3 348.6 ∨ 11.4 350.2 ∨ 9.8 349.1 ∨ 10.9

B2
NO 10.3 ∨ 349.7 11.4 ∨ 348.6 9.8 ∨ 350.2 11.0 ∨ 349.0

IO 13.9 ∨ 346.1 15.1 ∨ 344.9 13.4 ∨ 346.6 15.0 ∨ 345.0 5.3 ∨ 354.7

B3
NO 168.0 ∨ 192.0 166.7 ∨ 193.3 168.6 ∨ 191.4 166.9 ∨ 193.1

IO 167.9 ∨ 192.1 166.6 ∨ 193.4 168.4 ∨ 191.6 166.8 ∨ 193.2

[θν13, θ
ν
12] [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20, π/6]

C1
NO 348.8 ∨ 11.2 350.2 ∨ 9.8 352.9 ∨ 7.1 175.5 ∨ 184.5 171.9 ∨ 188.1

IO 348.7 ∨ 11.3 350.0 ∨ 10.0 352.7 ∨ 7.3 175.2 ∨ 184.8 171.7 ∨ 188.3

[θν13, θ
ν
12] [π/20, c] [π/20, π/4] [π/10, π/4] [a, π/4] [π/20, π/5]

C2
NO 188.8 ∨ 171.2 191.2 ∨ 168.8 189.8 ∨ 170.2 187.1 ∨ 172.9 190.1 ∨ 169.9

IO 189.0 ∨ 171.0 191.3 ∨ 168.7 190.0 ∨ 170.0 187.3 ∨ 172.7 190.3 ∨ 169.7

(sin2 θ23). The values of the phases given in Tables 4.3 and 4.4 and corresponding to the
BM (LC) form are obtained for the 3σ upper bound of sin2 θ12 = 0.354 and the best fit
values of sin2 θ23 and sin2 θ13. For these values of the three mixing parameters | cos δ| has
an unphysical value greater than one only for schemes B1 with the IO spectrum, B2 with
the NO spectrum and B3.

A few comments on the results presented in Tables 4.3 and 4.4 are in order. These
results show that for a given scheme and fixed form of the matrix Ũν , the difference between
the predictions of the phases (α21/2− ξ21/2) and (α31/2− ξ31/2) or (α31/2− ξ31/2− β)
for the NO and IO neutrino mass spectra are relatively small. The largest difference is
approximately of 5◦ between the NO and IO values of (α21/2− ξ21/2) in the B1 and B2
schemes. The same observation is valid for the variation of the phases with the variation of
the form of Ũν within a given scheme, the only exceptions being (i) the BM (LC) form, for
which the phases differ from those for the TBM, GRA, GRB and HG forms of Ũν of schemes
A1, A2, B1 (NO spectrum) and B2 (IO spectrum) by approximately 10◦ to 16◦, and (ii)
the C1 scheme, in which the values of the phases (α21/2− ξ21/2) and (α31/2− ξ31/2) differ
relatively little within the group of the first three cases in Tables 4.3 and 4.4 and within
the group of the last two ones, but change significantly — approximately by π — when
switching from a case of one of the groups to a case in the second group.

For a given symmetry form of Ũν — TBM, GRA, GRB and HG — the phase difference
(α21/2 − ξ21/2) has very similar values for the A1, B1 and B3 schemes, they differ
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Figure 4.1. The phase differences (α21/2− ξ21/2) (solid line) and (α31/2− ξ31/2− β) (dashed
line) as functions of sin2 θij in case B1 and for the TBM symmetry form of the matrix Ũν . The
two other parameters, sin2 θkl and sin2 θmn, ij 6= kl 6= mn, have been fixed to their best fit values
for the NO spectrum. The upper panels correspond to δ = cos−1(cos δ), while the lower panels
correspond to δ = 2π − cos−1(cos δ). The vertical line and the three coloured vertical bands
indicate the best fit value and the 1σ, 2σ and 3σ allowed ranges of sin2 θij .

approximately by at most 2◦, and for the A2 and B2 schemes, for which the difference does
not exceed 3◦. However, the predictions for (α21/2− ξ21/2) for schemes A1, B1, B3 and
A2, B2 differ significantly — the sum of the values of (α21/2− ξ21/2) for any of the A1,
B1, B3 schemes and for any of the A2, B2 schemes being roughly equal to 2π. In contrast,
for a given symmetry form of Ũν — TBM, GRA, GRB and HG — (i) the values of the
phase difference (α31/2 − ξ31/2) ((α31/2 − ξ31/2 − β)) for schemes A1 and A2 (B1 and
B2) differ significantly — by up to 26◦ (337◦), and (ii) the values of (α31/2− ξ31/2) and
(α31/2− ξ31/2−β) are drastically different. At the same time, the values of (α31/2− ξ31/2)
for the A1 and B3 schemes practically coincide.

Further, we show how the predictions for the phase differences presented in Tables 4.3
and 4.4 change when the uncertainties in determination of the neutrino mixing parameters
are taken into account. As an example, we consider cases B1 and B2 with the TBM form
of the matrix Ũν . We fix two of sin2 θij to their best fit values for the NO neutrino mass
spectrum and vary the third one in its 3σ allowed range given in eqs. (4.1)–(4.3). We show
the results for cases B1 and B2 in Figs. 4.1 and 4.2, respectively. As can be seen, the phase
differences of interest depend weakly on sin2 θ12 and sin2 θ13. When these parameters are
varied in their 3σ ranges, the variation of the phase differences is within a few degrees.
The dependence on sin2 θ23 is stronger: the maximal variations of (α21/2 − ξ21/2) and
(α31/2− ξ31/2− β) are approximately of 9◦ and 6◦ in both cases.
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Figure 4.2. The same as in Fig. 4.1, but for case B2.

4.5.3 Neutrinoless double beta decay
If the light neutrinos with definite mass νj are Majorana fermions, their exchange can
trigger processes in which the total lepton charge changes by two units, |∆L| = 2:
K+ → π− + µ+ + µ+, e− + (A,Z) → e+ + (A,Z − 2), etc. The experimental searches
for (ββ)0ν-decay, (A,Z)→ (A,Z + 2) + e− + e−, of even-even nuclei, such as 48Ca, 76Ge,
82Se, 100Mo, 116Cd, 130Te, 136Xe, 150Nd, etc., are unique in reaching the sensitivity that
might allow to observe this process if it is triggered by the exchange of the light neutrinos
νj (see, e.g., refs. [39,41,42]). In (ββ)0ν-decay, two neutrons of the initial nucleus (A,Z)
transform by exchanging virtual ν1,2,3 into two protons of the final state nucleus (A,Z + 2)
and two free electrons. The corresponding (ββ)0ν-decay amplitude has the form (see, e.g.,
refs. [38, 41,42]):

A ((ββ)0ν) = G2
F 〈m〉M(A,Z) , (4.147)

where GF is the Fermi constant, 〈m〉 is the (ββ)0ν-decay effective Majorana mass and
M(A,Z) is the nuclear matrix element of the process. The (ββ)0ν-decay effective Majorana
mass 〈m〉 contains all the dependence of A ((ββ)0ν) on the neutrino mixing parameters.
The current experimental limits on |〈m〉| are in the range of (0.1−0.7) eV. Most importantly,
a large number of experiments of a new generation aim at sensitivity to |〈m〉| ∼ (0.01−
0.05) eV (for a detailed discussion of the current limits on |〈m〉| and of the currently
running and future planned (ββ)0ν-decay experiments and their prospective sensitivities
see, e.g., the recent review article [43]).
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The predictions for |〈m〉|,37

|〈m〉| =

∣∣∣∣∣
3∑
i=1

miU
2
ei

∣∣∣∣∣
=
∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iα21 +m3 sin2 θ13e
i(α31−2δ)

∣∣ , (4.148)

m1,2,3 being the light Majorana neutrino masses, depend on the values of the Majorana
phase α21 and on the Majorana-Dirac phase difference (α31 − 2δ). In what follows we will
derive predictions for |〈m〉| as a function of the lightest neutrino mass mmin ≡ min(mj),
j = 1, 2, 3, for both the NO and IO neutrino mass spectra and for two values of each of the
phases ξ21 and ξ31: ξ21 = 0 or π, ξ31 = 0 or π. The choice of the two values of the phases
ξ21 and ξ31 will be justified in the next section, where we show that the requirement of
generalised CP invariance of the neutrino Majorana mass term in the cases of the A4, T ′,
S4 and A5 lepton flavour symmetries leads to the constraints ξ21 = 0 or π, ξ31 = 0 or π.

We recall that the two heavier neutrino masses are expressed in terms of the lightest
neutrino mass and the two independent neutrino mass squared differences ∆m2

21 and
∆m2

31(23), in the case of NO (IO) spectrum, measured in neutrino oscillation experiments
(see eqs. (1.4) and (1.5)). The best fit values and the 3σ allowed ranges of ∆m2

21 and
∆m2

31(23) obtained in the global analysis of the neutrino oscillation data performed in [162]
we are going to use in our numerical study read:

(∆m2
21)BF = 7.37× 10−5 eV2 , 6.93× 10−5 eV2 ≤ ∆m2

21 ≤ 7.97× 10−5 eV2 , (4.149)

(∆m2
31(23))BF = 2.54 (2.50)× 10−3 eV2 ,

2.40 (2.36)× 10−3 eV2 ≤ ∆m2
31(23) ≤ 2.67 (2.64)× 10−3 eV2 , (4.150)

where the quoted values of ∆m2
31 and ∆m2

23 correspond to the NO and IO spectra,
respectively.

As can be seen from Tables 4.2–4.4, the values of all three phases, δ, α21 and α31, for
scheme B3 with ω = 0 and sgn (sin 2θe13) = 1 are very close to the values for scheme A1.
Thus, the predictions for |〈m〉| in scheme B3 are practically the same as those for scheme
A1 and we present predictions only for the latter.

In Fig. 4.3 we show the absolute value of the effective Majorana mass |〈m〉| versus the
lightest neutrino mass mmin in the cases of schemes A1, A2, B1, B2, C1 and C2 for the NO
(blue lines and bands) and IO (dark-red lines and bands) neutrino mass spectra using the
best fit values of the mixing angles θ12 and θ13 quoted in eqs. (4.1) and (4.3), the best fit
values of the two neutrino mass squared differences ∆m2

21 and ∆m2
31(23) given in eqs. (4.149)

and (4.150), the values of the Dirac phase δ from Table 4.2 and the values of the Majorana
phases α21 and α31 extracted from Tables 4.3 and 4.4 setting (ξ21, ξ31) = (0, 0). In Figs. 4.4,
4.5 and 4.6 the values of (ξ21, ξ31) are fixed to (0, π), (π, 0) and (π, π), respectively.

In cases A1 and A2, the solid blue line corresponds to the TBM symmetry form of the
matrix Ũν , while the medium, small and tiny dashed blue lines are for the GRB, GRA and
HG symmetry forms, respectively. In cases B1 and B2, the predicted values of |〈m〉| for all
the symmetry forms considered are within the blue and dark-red bands obtained varying
the phase β within the interval [0, π]. In case C1 (C2), the solid blue line stands for case I
(II) characterised by [θν13, θ

ν
12] = [π/20,−π/4] ([π/20, π/4]), while the large, medium, small

37For a discussion of the physics implications of a measurement of |〈m〉|, i.e., of the physics potential of
the (ββ)0ν-decay experiments see, e.g., [41, 42,168–171].
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Figure 4.3. The absolute value of the effective Majorana mass |〈m〉| versus the lightest neutrino
mass mmin. The blue (dark-red) lines and bands correspond to |〈m〉| computed using the best
fit values of θ12 and θ13 for the NO (IO) spectrum and the values of δ, α21 and α31 obtained
using the corresponding sum rules and assuming (ξ21, ξ31) = (0, 0). In cases A1 and A2, the solid
blue line corresponds to the TBM symmetry form, while the medium, small and tiny dashed blue
lines are for the GRB, GRA and HG symmetry forms, respectively. In cases B1 and B2, the
predicted values of |〈m〉| for all the symmetry forms considered are within the blue and dark-red
bands obtained varying the phase β in the interval [0, π]. In case C1 (C2), the solid blue line
stands for case I (II), while the large, medium, small and tiny dashed blue lines are for cases V
(III), II (V), IV (I) and III (IV), respectively. The light-blue and light-red areas are obtained
varying the neutrino oscillation parameters θ12, θ13, ∆m2

21 and ∆m2
31(23) in their respective 3σ

ranges quoted in eqs. (4.1), (4.3), (4.149) and (4.150) and the phases α21 and (α31 − 2δ) in the
interval [0, 2π]. The horizontal grey band indicates the upper bound on |〈m〉| of (0.2− 0.4) eV
obtained in [172]. The vertical dashed line represents the prospective upper limit on mmin of
0.2 eV from the KATRIN experiment [61].
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Figure 4.4. The same as in Fig. 4.3, but for (ξ21, ξ31) = (0, π).

and tiny dashed blue lines are for cases V (III), II (V), IV (I) and III (IV), respectively,
where the values of [θν13, θ

ν
12] in each of these cases are given in subsection 4.5.1.

The light-blue and light-red areas are obtained varying the neutrino oscillation param-
eters θ12, θ13, ∆m2

21 and ∆m2
31(23) within their respective 3σ ranges quoted in eqs. (4.1),

(4.3), (4.149) and (4.150), and the phases α21 and (α31 − 2δ) within the interval [0, 2π].38

38The absolute value of the effective Majorana mass as a function of α21 and (α31 − 2δ), |〈m〉| =
f(α21, α31 − 2δ), possesses the following symmetry:

f(α21, α31 − 2δ) = f(2π − α21, 2π − (α31 − 2δ)) .

Thus, it is enough to vary one phase (e.g., α21) in the interval [0, π] and the second phase (e.g., (α31− 2δ))
in the interval [0, 2π].
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Figure 4.5. The same as in Fig. 4.3, but for (ξ21, ξ31) = (π, 0).

The horizontal grey band indicates the upper bound on |〈m〉| of (0.2− 0.4) eV obtained
in [172]. The vertical dashed line represents the prospective upper limit on mmin of 0.2 eV
from the KATRIN experiment [61].

As Figs. 4.3 and 4.4 show, for (ξ21, ξ31) = (0, 0) and (0, π), the absolute value of the
effective Majorana mass |〈m〉| for the IO spectrum has practically the maximal possible
values for all schemes considered. In the case of the NO spectrum and (ξ21, ξ31) = (0, 0),
|〈m〉| is always bigger than (1.5 − 2.0) × 10−3 eV. For (ξ21, ξ31) = (0, π), |〈m〉| has the
maximal possible values in the A1 and A2 schemes as well in case I (II) of the C1 (C2)
scheme; in the other cases of the C1 (C2) scheme, |〈m〉| is always bigger than 2.0×10−3 eV.
In the B1 and B2 schemes and for the NO spectrum, |〈m〉| can have the maximal possible
values for both sets of values of (ξ21, ξ31) = (0, 0) and (0, π).



4.5. Predictions 125

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

A1

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

A2

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

B1

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

B2

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

C1

GERDA + IGEX + HdM

K
A

T
R

IN

10-4 10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

mmin [eV]

|〈
m

〉|
[e

V
]

C2

Figure 4.6. The same as in Fig. 4.3, but for (ξ21, ξ31) = (π, π).

For (ξ21, ξ31) = (π, 0) and (π, π) (Figs. 4.5 and 4.6) and the IO spectrum, a partial
compensation between the three terms in |〈m〉| takes place for all schemes considered.
However, |〈m〉| ∼> 2 × 10−2 eV for all cases analysed by us. The mutual compensation
between the different terms in |〈m〉| can be stronger in the case of the NO spectrum, when
|〈m〉| ∼< 10−3 eV in certain cases in specific intervals of values of m1, typically between
approximately 10−3 eV and 7× 10−3 eV.
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4.6 Implications of a generalised CP symmetry
In the present section, we derive constraints on the phases ξ21 and ξ31 in the matrix Uν ,
which diagonalises the neutrino Majorana mass matrix Mν , within the approach in which
a lepton flavour symmetry Gf is combined with a generalised CP symmetry HCP, which
has been discussed in Section 1.3. We examine successively the cases of Gf = A4 (T ′), S4

and A5 with the three LH charged leptons and three LH flavour neutrinos transforming
in a 3-dimensional representation 3 of Gf . At low energies the flavour symmetry Gf has
necessarily to be broken down to residual symmetries Ge and Gν in the charged lepton and
neutrino sectors, respectively. All the cases considered in the present study fall into the
class of residual symmetries with trivial Ge (Gf being fully broken in the charged lepton
sector) and Gν = Z2 × Z2.39

The residual symmetry Gν alone does not provide any information on the phases ξ21
and ξ31 of interest. Indeed, let Ūν be a unitary matrix which diagonalises the complex
symmetric neutrino Majorana mass matrix:

ŪT
ν Mν Ūν = diag

(
m1e

−iξ1 ,m2e
−iξ2 ,m3e

−iξ3
)
, (4.151)

where mi are non-negative non-degenerate masses40 and ξi are phases contributing to the
Majorana phases in the PMNS matrix. Let us introduce the matrices

Q̄0 = diag
(
ei
ξ1
2 , ei

ξ2
2 , ei

ξ3
2

)
, (4.152)

and Uν ≡ Ūν Q̄0, such that

UT
ν Mν Uν = Mdiag

ν ≡ diag (m1,m2,m3) . (4.153)

Thus,
Uν = Ūν Q̄0 = ei

ξ1
2 Ψν Ũν Q0 , (4.154)

where Ψν is a diagonal phase matrix containing, in general, two phases, ξ1/2 is a common
unphysical phase, and

Q0 = diag
(

1, ei
ξ2−ξ1

2 , ei
ξ3−ξ1

2

)
= diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (4.155)

Clearly, the phases of interest are ξ21 = ξ2−ξ1 and ξ31 = ξ3− ξ1. It is clear from eq. (4.154)
that the common phases of the columns of Uν have been factorised in the matrix Q̄0.

The Gν invariance of the neutrino mass matrix implies that eq. (1.28) holds. Further,
using eq. (4.153), we find(

ρ3(gν)
diag
)T

Mdiag
ν ρ3(gν)

diag = Mdiag
ν , with ρ3(gν)

diag = U †ν ρ3(gν)Uν . (4.156)

For m1 6= m2 6= m3 and min(mj) 6= 0, j = 1, 2, 3, as it is not difficult to show, the matrix
ρ3(gν)

diag can have only the following form:

ρ3(gν)
diag = diag (±1,±1,±1) , (4.157)

39As we have discussed in Section 1.2, there are two possibilities for Gν = Z2 × Z2 to be realised. The
first possibility is Gν = Z2 × Z2 being an actual subgroup of Gf . Other possibility is that only one Z2

subgroup of Gf is preserved, while the second Z2 arises accidentally.
40It follows from the neutrino oscillation data that m1 6= m2 6= m3, and that at least two of the three

neutrino masses, m2,3 (m1,2) in the case of the NO (IO) spectrum, are non-zero. However, even if m1 = 0
(m3 = 0) at tree level and the zero value is not protected by a symmetry, m1 (m3) will get a non-zero
contribution at least at two loop level [173, 174] and in the framework of a self-consistent (renormalisable)
theory of neutrino mass generation this higher contribution will be finite.
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where the signs of the three non-zero entries in ρ3(gν)
diag are not correlated. Finally, from

the preceding two equations we get

ρ3(gν)
diag = Q̄0 ρ3(gν)

diag Q̄∗0 = Ū †ν ρ3(gν) Ūν , (4.158)

i.e., the phases ξi cancel out. Therefore, a lepton flavour symmetry alone does not lead to
any constraints on the phases ξi, i = 1, 2, 3, and thus on the phases ξ21 and ξ31.

Let us consider next the implications of a residual generalised CP symmetryHν
CP ⊂ HCP,

which is preserved in the neutrino sector. In this case, the neutrino Majorana mass matrix
in addition to eq. (1.28) satisfies eq. (1.50). Substituting Mν from eq. (4.153), we find(

Xdiag
3ν

)T
Mdiag

ν Xdiag
3ν = Mdiag

ν , with Xdiag
3ν = U †ν X3ν U

∗
ν . (4.159)

Again, since the three neutrino masses in Mdiag
ν have to be, as it follows from the data,

non-degenerate, we have
Xdiag

3ν = diag(±1,±1,±1) . (4.160)

Finally, using that Uν ≡ Ūν Q̄0, we obtain [175]

diag
(
±eiξ1 ,±eiξ2 ,±eiξ3

)
= Q̄0X

diag
3ν Q̄0 = Ū †ν X3ν Ū

∗
ν . (4.161)

Thus, we come to the conclusion that the phases ξi will be known once (i) the matrix Ūν
is fixed by the residual flavour symmetry Gν , and (ii) the generalised CP transformations
X3ν ∈ Hν

CP, which are consistent with Gν (see eq. (1.52)), are identified.
Now we turn to concrete examples. For Gf = A4, we choose to work in the Altarelli-

Feruglio basis [85]. Preserving the S generator leads to Ūν = UTBM, provided there is an
additional accidental µ – τ symmetry [80]. Then, twelve generalised CP transformations
consistent with the A4 flavour symmetry for the triplet representation in the chosen
basis have been found in [121], solving the consistency condition in eq. (1.47). These
transformations can be summarised in a compact way as follows:

X3 = ρ3(g) , g ∈ A4 , (4.162)

i.e., the generalised CP transformations consistent with the A4 flavour symmetry are of
the same form as the flavour symmetry group transformations [121]. They are given in
Table 1 in [121] together with the elements Ŝ and T̂ to which the generators S and T
of A4 are mapped by the consistency condition in eq. (1.47). Further, since in our case
the residual flavour symmetry Gν = Z2 × Z2, where one Z2 factor corresponds to the
preserved S generator, only those X3 are acceptable, for which Ŝ = S. From Table 1
in [121] it follows that there are four such generalised CP transformations, namely, ρ3(1),
ρ3(S), ρ3(T 2ST ) and ρ3(TST 2), where 1 is the identity element of the group. The last two
transformations are not symmetric in the chosen basis, and, as shown in [117,121], lead to
partially degenerate neutrino mass spectrum with two equal masses (see also Appendix A),
which is ruled out by the neutrino oscillation data. Thus, we are left with two allowed
generalised CP transformations, ρ3(1) and ρ3(S), for which we have:

U †TBM ρ3(1)U∗TBM = ρ3(1) = diag(1, 1, 1) , (4.163)

U †TBM ρ3(S)U∗TBM = diag(−1, 1,−1) . (4.164)

Finally, according to eq. (4.161), this implies that the phases ξi can be either 0 or π. The
same conclusion holds for a T ′ flavour symmetry, because restricting ourselves to the
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Table 4.5. The ten symmetric generalised CP transformations X3 = ρ3(g) consistent with
the S4 flavour symmetry for the triplet representation 3 in the chosen basis [176] determined
by the consistency condition in eq. (1.47). The mapping (T, S) → (T̂ , Ŝ) is realised via the
consistency condition applied to the group generators T and S, i.e., X3 ρ

∗
3(T )X−13 = ρ3(T̂ ) and

X3 ρ
∗
3(S)X−13 = ρ3(Ŝ).

g, X3 = ρ3(g) T̂ Ŝ

(ST 2)2 T S

T 3 T 3 T 3ST

1 T 3 S

T T 3 TST 3

T 2ST 2 STS S

ST 2S T T 2ST 2

S TST S

T 2 T 3 T 2ST 2

STS ST 2 ST 2ST

TST T 2S TST 2S

triplet representation for the LH charged lepton and neutrino fields, there is no way to
distinguish T ′ from A4 [143].

In the case of Gf = S4, we choose to work in the basis given in [176]. The residual
symmetry Gν = Z2 × Z2, where one Z2 factor corresponds to the preserved S generator
in the chosen basis and the second one arises accidentally (a µ – τ symmetry), leads
to Ūν = UBM [176]. As in the previous example, the generalised CP transformations
consistent with the S4 flavour symmetry are of the same form as the flavour symmetry
group transformations [118]. Solving the consistency condition in eq. (1.47), we find ten
symmetric generalised CP transformations consistent with the S4 flavour symmetry for
the triplet representation in the chosen basis. We summarise them in Table 4.5 together
with elements T̂ and Ŝ to which the consistency condition maps the group generators T
and S.

From this table we see that there are four symmetric generalised CP transforma-
tions consistent with the preserved S generator, namely, ρ3(1), ρ3(S), ρ3(T 2ST 2) and
ρ3(ST 2ST 2). Substituting them and Ūν = UBM in eq. (4.161), we find:

U †BM ρ3(1)U∗BM = ρ3(1) = diag(1, 1, 1) , (4.165)

U †BM ρ3(S)U∗BM = diag(1,−1, 1) , (4.166)

U †BM ρ3(T 2ST 2)U∗BM = diag(−1, 1, 1) , (4.167)

U †BM ρ3(ST 2ST 2)U∗BM = diag(−1,−1, 1) . (4.168)

Therefore, also in this case the phases ξi are fixed by a residual generalised CP symmetry
to be either 0 or π.

As a third example, we consider Gf = A5. We employ the basis for the triplet
representation of the generators S and T of this group given in [144]. The residual symmetry
Gν = Z2×Z2 generated by S and T 3ST 2ST 3 leads to GRA mixing, i.e., Ūν = UGRA, as is
shown in [144]. It is stated in [128] that the generalised CP transformations consistent with
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Table 4.6. The 16 symmetric generalised CP transformations X3 = ρ3(g) consistent with
the A5 flavour symmetry for the triplet representation 3 in the chosen basis [144] determined
by the consistency condition in eq. (1.47). The mapping (T, S) → (T̂ , Ŝ) is realised via the
consistency condition applied to the group generators T and S, i.e., X3 ρ

∗
3(T )X−13 = ρ3(T̂ ) and

X3 ρ
∗
3(S)X−13 = ρ3(Ŝ).

g, X3 = ρ3(g) T̂ Ŝ

T 3ST 2ST 3 STS S

S TST S

(ST 2)2S ST 3 (T 2S)2T 4

TST T 2S TST 2S

ST 3S T 2ST ST 3ST 2S

T 3ST 3 T 4ST 3 T 2ST 2ST 3S

T 3ST 2ST 3S T S

T T 4 TST 4

T 2 T 4 T 2ST 3

1 T 4 S

T 3 T 4 T 3ST 2

T 4 T 4 T 4ST

ST 2S TST 2 ST 2ST 3S

T 2ST 2 T 3ST 4 T 4ST 2ST 3S

STS ST 2 ST 2ST

(T 2S)2T 2 T 3S T 4(ST 2)2

A5 are of the same form as the group transformations. Solving the consistency condition
in eq. (1.47), we find 16 symmetric generalised CP transformations consistent with A5 for
the triplet representation in the working basis. We summarise them in Table 4.6, where
we present also the elements T̂ and Ŝ.

It follows from this table that the generalised CP transformations consistent with
Gν = Z2 × Z2 of interest are of the same form of Gν . Namely, they are ρ3(1), ρ3(S),
ρ3(T 3ST 2ST 3) and ρ3(T 3ST 2ST 3S), and we have:

U †GRA ρ3(1)U∗GRA = ρ3(1) = diag(1, 1, 1) , (4.169)

U †GRA ρ3(S)U∗GRA = diag(1,−1,−1) , (4.170)

U †GRA ρ3(T 3ST 2ST 3)U∗GRA = diag(−1, 1,−1) , (4.171)

U †GRA ρ3(T 3ST 2ST 3S)U∗GRA = diag(−1,−1, 1) . (4.172)

Thus, as in the previous cases, the phases ξi are fixed by generalised CP symmetry to be
either 0 or π.

It follows from the results derived in the present section that the two phases ξ21 = ξ2−ξ1
and ξ31 = ξ3 − ξ1, present in the matrix Q0 (see eq. (3.2)) and giving contributions to the
Majorana phases α21 and α31 in the PMNS matrix, are constrained to be either 0 or π for
all examples considered.

Finally, we note that although in the cases of the flavour symmetry groups considered —
A4, T ′, S4 and A5 — we choose to work in specific basis for the generators of each
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symmetry group, the results on the phases ξ1,2,3 we have obtained, as we show below, are
basis-independent. Indeed, let B be a unitary matrix, which realises the change of basis.
Then, the representation matrices of the group elements in the new basis, ρ̃3(g), are given
by

ρ̃3(g) = B ρ3(g)B† , g ∈ Gf . (4.173)
Expressing ρ3(g) from this equation and substituting it in the consistency condition given
in eq. (1.47) leads to

X̃3 ρ̃
∗
3(g) X̃−13 = ρ̃3(g′) , g, g′ ∈ Gf , (4.174)

where
X̃3 = BX3B

T (4.175)
are the generalised CP transformations in the new basis. Now we substitute X3 from this
equation in eq. (4.161) and obtain(

˜̄Uν

)†
X̃3ν

(
˜̄Uν

)∗
= Ū †ν X3ν Ū

∗
ν = diag

(
±eiξ1 ,±eiξ2 ,±eiξ3

)
, (4.176)

where ˜̄Uν = B Ūν is the matrix which diagonalises the neutrino Majorana mass matrix M̃ν ,
M̃ν = B∗Mν B

†, in the new basis, i.e.,
˜̄UT
ν M̃ν

˜̄Uν = ŪT
ν Mν Ūν = diag

(
m1e

−iξ1 ,m2e
−iξ2 ,m3e

−iξ3
)
. (4.177)

What concerns the charged lepton sector, in all cases we consider in the present study a
flavour symmetry Gf is completely broken in the charged lepton sector, i.e., the residual
symmetry group Ge consists only of the identity element 1. The change of basis yields
ρ̃3(1) = B ρ3(1)B†. As can be easily shown, the matrix U ′e = B Ue diagonalises the
hermitian matrix M̃e M̃

†
e , M̃e M̃

†
e = BMeMeB

†, in the new basis, Me being the charged
lepton mass matrix in the initial basis. Namely,

U ′e
†
M̃e M̃

†
e U
′
e = U †e MeM

†
e Ue = diag

(
m2
e,m

2
µ,m

2
τ

)
. (4.178)

Taking into account that U ′ν = B Uν = B Ūν Q̄0, we obtain for the PMNS matrix U :

U = U ′e
†
U ′ν = U †e Uν = U †e Ūν Q̄0 . (4.179)

Thus, as eqs. (4.176) and (4.179) demonstrate, the results for the phases ξi are basis-
independent.

4.7 Summary and conclusions
In the present chapter, we have obtained predictions for the Majorana phases α21 and
α31 of the PMNS matrix U = U †e Uν = Ũ †e Ψ Ũν Q0, Ue (Ũe) and Uν (Ũν) being 3 × 3
unitary (CKM-like) matrices arising from the diagonalisation, respectively, of the charged
lepton and neutrino Majorana mass terms. Each of the diagonal phase matrices Ψ and
Q0 contains, in general, two phases. The phases in the matrix Q0, ξ21 and ξ31, contribute
to the Majorana phases in the PMNS matrix. The study carried out in this chapter is a
natural continuation of the analysis performed in Chapter 3 for the Dirac phase δ. We
have considered forms of Ũe and Ũν permitting to express δ as a function of the mixing
angles θ12, θ13 and θ23 present in U , and the angles contained in Ũν . As we have shown,
for the same forms, the Majorana phases α21 and α31 are determined by the values of θ12,
θ13 and θ23, the angles θνij present in Ũν and the phases ξ21 and ξ31. We have derived such
sum rules for α21 and α31 in the following cases:
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(A1) U = R12(θ
e
12) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(A2) U = R13(θ
e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(B1) U = R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(B2) U = R13(θ
e
13)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(B3) U = R12(θ
e
12)R13(θ

e
13) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,

(C1) U = R12(θ
e
12) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 ,

(C2) U = R13(θ
e
13) ΨR23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 ,

where Rij are real matrices, RT = R−1, and θeij and θνij denote the rotation angles in Ũe
and Ũν , respectively. The obtained sum rules are summarised in Section 4.4. In the sum
rules, α21/2 and α31/2 are expressed, in general, in terms of the three measured angles of
the PMNS matrix, θ12, θ13 and θ23, the phases ξ21/2 and ξ31/2 of the matrix Q0, and the
angles in Ũν , which are supposed to have known values, determined by symmetries. In the
cases of schemes B1 and B2 (scheme B3), α31/2 (δ, α21/2 and α31/2) depends (depend)
on one additional, in general, unknown phase β (ω), whose value can only be fixed in a
self-consistent theory of generation of neutrino masses and mixing.

In order to obtain predictions for the Majorana phases one has to specify, in particular,
the values of the angles in the matrix Ũν . In the present study, we have considered the
TBM, BM, GRA, GRB and HG forms of Ũν . All these forms are characterised by the
same θν23 = −π/4 and θν13 = 0, but differ by the value of the angle θν12. For the forms cited
above and used in the present study, the values of θν12 are given in Section 3.1. In schemes
C1 and C2, we have employed three representative fixed values of θν13 6= 0 considered in
the literature and appearing in models with flavour symmetries, θν13 = π/20, π/10 and
sin−1(1/3), together with certain fixed values of θν12 — in total five different pairs of values
of [θν13, θ

ν
12] in each of the two schemes. These pairs are given in Table 4.2.

Thus, for the specific symmetry forms of Ũν listed above and used in our numerical
analysis, the phase differences (i) (α21/2− ξ21/2) and (α31/2− ξ31/2) in schemes A1, A2,
C1 and C2, (ii) (α21/2 − ξ21/2) and (α31/2 − ξ31/ − β) in schemes B1 and B2, and (iii)
(α21/2− ξ21/2) and (α31/2− ξ31/2) for a fixed ω in scheme B3, are determined completely
by the values of the measured neutrino mixing angles θ12, θ13 and θ23 and the angles in
the matrix Ũν . Using the best fit values of θ12, θ13 and θ23, we have obtained predictions
for the phase differences listed above, which are summarised in Tables 4.3 and 4.4. In
the case of scheme B3, we have set ω = 0. For this value of ω the predicted value of
the Dirac phase δ lies in the 2σ interval of allowed values [162]. The results reported
in Tables 4.3 and 4.4 show that the phase differences of interest involving the Majorana
phases are determined with a two-fold ambiguity by the values of θ12, θ13 and θ23. This is
a consequence of the fact that, as long as the sign of sin δ is not fixed by the data, the
Dirac phase δ, on which the phase differences under discussion depend, is determined by
the values of θ12, θ13 and θ23 in the schemes studied by us with a two-fold ambiguity (see
Chapter 3), as Table 4.2 also shows. The current data appear to favour negative values
of sin δ. The predictions for the BM (LC) symmetry form of Ũν in Tables 4.3 and 4.4
correspond to the 3σ upper bound of allowed values of sin2 θ12 = 0.354 and the best fit
values of sin2 θ23 and sin2 θ13, since using the best fit values of the three neutrino mixing
angles one gets unphysical values of | cos δ| > 1 (see Chapter 3). Physical values of cos δ
are found for larger (smaller) values of sin2 θ12 (sin2 θ23). For sin2 θ12 = 0.354 and the best
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fit values of sin2 θ23 and sin2 θ13, | cos δ| has an unphysical value greater than one only for
schemes B1 with the IO spectrum, B2 with the NO spectrum and B3, and for these cases
we do not present results for the relevant phase differences.

We have investigated also how the predictions for the phase differences (α21/2− ξ21/2)
and (α31/2− ξ31/2) ((α31/2− ξ31/2− β)) presented in Tables 4.3 and 4.4 change when the
uncertainties in determination of the neutrino mixing parameters are taken into account
(see Figs. 4.1 and 4.2 and the related discussion).

Extracting the values of the Majorana phases α21 and α31 from the results presented
in Tables 4.3 and 4.4 for two fixed values of each of the phases ξ21 and ξ31, ξ21 = 0 and π,
ξ31 = 0 and π (altogether four cases), and using also the predicted values of the Dirac phase
δ from Table 4.2 and the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13, we derived (in
graphic form) predictions for the absolute value of the (ββ)0ν-decay effective Majorana mass
|〈m〉| as a function of the lightest neutrino mass mmin ≡ min(mj), j = 1, 2, 3, for both the
NO and IO neutrino mass spectra (Figs. 4.3–4.6). For schemes B1 and B2 the predictions
are obtained by varying the phase β in the interval [0, π]. As a possible justification of the
choice of the two values of the phases ξ21 and ξ31 used for the predictions of |〈m〉|, we show
that the requirement of generalised CP invariance of the neutrino Majorana mass term
in the cases of the A4, T ′, S4 and A5 lepton flavour symmetries leads to the constraints
ξ21 = 0 or π, ξ31 = 0 or π.

The results derived in the present chapter for the Majorana CPV phases in the PMNS
neutrino mixing matrix U complement the results obtained in Chapter 3 on the predictions
for the Dirac phase δ in U in schemes in which the underlying form of U is determined by,
or is associated with, discrete lepton flavour symmetries.



Chapter 5

Renormalisation group corrections
to neutrino mixing sum rules

In this chapter, we will investigate the impact of renormalisation group corrections on the
sum rule predictions for the Dirac CPV phase δ. It is often assumed that neutrino mixing
sum rules are exactly realised at low energies, where experiments take place. However, as
every quantity in quantum field theory, the mixing parameters get affected by RG running.
We consider as an example two particular sum rules from Chapter 3 (cases A1 and B1) and
assume that they hold at a certain high-energy scale, which we choose to be the seesaw
scale MS ≈ 1013 GeV. The main question we want to address is how stable the predictions
for δ are under the RG corrections. We investigate the impact of these corrections on the
sum rule predictions for δ in the cases of neutrino Majorana mass term generated by the
Weinberg (dimension 5) operator [141] added to (i) the SM and (ii) the MSSM.

5.1 Introductory remarks
In the literature RG corrections to certain type of mixing sum rules have been studied before.
The first attempt to study RG corrections to mixing angle sum rules, to our knowledge,
has been made in [177] for the quark-lepton complementarity relations, θ12 + θC ≈ π/4
and θ23 + arcsinVcb ≈ π/4, θC and Vcb being the Cabibbo angle and an element of the
CKM quark mixing matrix. In [178] the RG corrections for the sum rule relating the
element Uτ1 of the PMNS matrix to the element (UTBM)τ1 = − 1/

√
6 of the TBM mixing

matrix (see eq. (1.33)), |Uτ1| = 1/
√

6, and for the leading order in θ13 versions of this sum
rule, have been investigated. In refs. [177] and [178] the BM and TBM mixing schemes,
respectively, were analysed. In [179] the study of RG perturbations has been done for an
approximate (leading order) mixing sum rule and for normal hierarchical neutrino mass
spectrum, m1 � m2 < m3, neglecting terms of order O(m1/m2) and O(m1/m3). The
authors of [179] extended their analysis to incorporate canonical normalisation effects
besides RG corrections. Both type of corrections were assumed to be dominated by the
third family effects. The authors of [111] estimated the size of RG corrections to the sum
rules we will be considering in the present study by taking into account only the RG
correction to θ12.

In the present study, we go beyond these previous works (i) by considering the exact
form of the general mixing sum rules derived in [99], (ii) by taking into account the RG
corrections not only to the angle θ12, but to all three neutrino mixing angles θ12, θ23, θ13
and the CPV phases, (iii) discussing not only the cases of BM or TBM mixing schemes,
but also the cases of GRA, GRB and HG mixing schemes, and (iv) by considering both
the cases of NO and IO neutrino mass spectra. We perform the analysis assuming that the
neutrino Majorana mass matrix is generated by the Weinberg (dimension 5) operator [141].
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The RG corrections to the sum rules of interest are calculated in the SM as well as in the
MSSM.

Our study goes also beyond [180] where only the GRA, BM and TBM mixing schemes
were analysed. We discuss different forms of the charged lepton mixing matrix and present
a significantly larger number of results. In particular, we derive values of the neutrino
mass scale and tan β ≡ vu/vd, vu and vd being the VEVs of neutral components of the two
Higgs doublets Hu and Hd of the MSSM, for which the various mixing schemes are still
viable. We make a thorough numerical analysis from which we derive likelihood functions
for the value of the Dirac CPV phase δ at low energies if the specified mixing sum rule
holds at high energies.

The remainder of this chapter is organised as follows. After a short reminder of sum
rules for the Dirac phase δ in Section 5.2, we present analytical estimates for the allowed
parameter regions for δ taking RG corrections into account in Section 5.3. In Section 5.4,
we present the numerical results for the different mixing schemes. Finally, we summarise
and conclude in Section 5.5.

5.2 Mixing sum rules
In this section, we briefly review the mixing sum rules we will deal with in this chapter
and fix notation and conventions. In the most general case the PMNS matrix U can be
parametrised as in eq. (3.1). As it has been done in Chapter 3, we will consider the cases
when Ũν has the BM, TBM, GRA, GRB and HG forms. For all these forms Ũν can be
expressed as a product of 3× 3 orthogonal matrices R23 and R12 describing rotations in
the 2-3 and 1-2 planes, i.e.,

Ũν = R23(θ
ν
23)R12(θ

ν
12) , (5.1)

with θν23 = −π/4 and different values of θν12 given in Section 3.1. For the matrix Ũe,
following [99], we will consider two different forms both of which correspond to negligible
θe13. They are realised in a class of flavour models based on a GUT and/or a discrete
symmetry (see, e.g., [122,145–148,181,182]). The first form corresponding to case A1 of
Chapter 3 is characterised also by zero θe23, i.e.,

Ũe = R−112 (θe12) . (5.2)

In this case, there is a correlation between the values of sin2 θ23 and sin2 θ13 given by
eq. (3.16), which for all the symmetry forms of Ũν considered leads to

sin2 θ23 =
1− 2 sin2 θ13

2 (1− sin2 θ13)
=

1

2
− 1

2
sin2 θ13 +O(sin4 θ13) . (5.3)

This implies in turn that θ23 cannot deviate significantly from π/4 in case A1. The second
form of Ũe corresponds to non-zero θe12 and θe23 (case B1), i.e.,

Ũe = R−123 (θe23)R
−1
12 (θe12) . (5.4)

This matrix provides the corrections to Ũν necessary to reproduce the best fit values of
all the three neutrino mixing angles θ12, θ13 and θ23 in the PMNS matrix U without any
further contributions like RG or other corrections.
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It has been shown in [99] that for Ũν given in eq. (5.1) and Ũe determined in eqs. (5.2)
or (5.4), the Dirac phase δ present in the PMNS matrix satisfies a sum rule in eq. (3.10),
which we replicate here for convenience:

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2θ23 sin2 θ13

)]
. (5.5)

Additionally, in the case of Ũe given in eq. (5.2), the correlation between θ23 and θ13,
eq. (5.3), has to be respected. The sum rule, eq. (5.5), in this case reduces to [99]

cos δ =
(1− 2 sin2 θ13)

1
2

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 1− 3 sin2 θ13
1− 2 sin2 θ13

]
. (5.6)

In what follows we refer to the case with Ũe given in eq. (5.2) (eq. (5.4)) as to the case
of zero (non-zero) θe23. In this chapter, we study the impact of the RG corrections on the
mixing sum rules in eqs. (5.5) and (5.6), and the angle sum rule in eq. (5.3), which are
assumed to hold at some high-energy scale specified later.

In Chapter 3, other forms of the matrices Ũe and Ũν corresponding to different rotations
and leading to the sum rules for cos δ and sin2 θ23 given in Tables 3.1 and 3.2, respectively,
have been investigated. The RG corrections to their predictions, however, are expected to
be similar to the corrections which take place for the sum rules described above. For this
reason we will not consider them in the present chapter.

5.3 Analytical estimates
Before we present our numerical results in the next section, we give in this section analytical
estimates of the effect of radiative corrections on the mixing sum rules. We discuss how
we obtain constraints on the mass scale and on tan β (in the MSSM) from the requirement
that the mixing sum rule has to be fulfilled at the high scale.

5.3.1 General effects of radiative corrections
The running of the mixing parameters is already known for quite some time, see, e.g., [183].
One might wonder if RG corrections have a large impact on the predicted value for δ
from the sum rule in eq. (5.5). Indeed, we expect large RG corrections for a large Yukawa
coupling (large tan β) and a heavy neutrino mass scale. To be more precise, the β-functions
of the mixing angles, in the leading order in θ13 and neglecting the electron and muon
Yukawa couplings in comparison to the tau one, depend on the tau Yukawa coupling yτ ,
the absolute neutrino mass scale (or min(mj), j = 1, 2, 3), the mixing angles, the type of
spectrum (NO or IO) the neutrino masses obey, the Majorana phases α1 and α2,41 and in
the MSSM, on tan β. In the leading order in θ13 only the β-function for θ13 depends on δ.
The β-functions read up to O(θ13) [183]:

d θ12
d ln(µ/µ0)

= − Cy
2
τ

32π2
sin 2θ12s

2
23

|m1eiα1 +m2eiα2|2

∆m2
21

+O(θ13) , (5.7)

d θ13
d ln(µ/µ0)

=
Cy2τ
32π2

sin 2θ12 sin 2θ23
m3

∆m2
32(1 + ζ)

41The Majorana phases α1 and α2 are related to those of the standard parametrisation of the PMNS
matrix [8], α21 and α31, as follows: α21 = α1 − α2 and α31 = α1.
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× [m1 cos(α1 − δ)− (1 + ζ)m2 cos(α2 − δ)− ζm3 cos δ] +O(θ13) , (5.8)

d θ23
d ln(µ/µ0)

= − Cy
2
τ

32π2
sin 2θ23

1

∆m2
32

[
c212
∣∣m2eiα2 +m3

∣∣2 + s212
|m1eiα1 +m3|

2

1 + ζ

]
+O(θ13) ,

(5.9)

with µ being the renormalisation scale, ζ = ∆m2
21/∆m

2
32 and Cy2τ/(32π2) ≈ 0.3 · 10−6 (1 +

tan2 β) in the MSSM and Cy2τ/(32π2) ≈ −0.5 · 10−6 in the SM. In the SM there is no tan β
enhancement and hence the effects are usually relatively small.

We would like to note at this point that we consider here only minimal scenarios,
namely, the SM and the MSSM augmented with Majorana neutrino masses. In standard
seesaw scenarios it would be correct to integrate out the additional heavy states at their
respective mass scale which would change the β-functions and the running. Nevertheless,
we want to assume the heavy masses all to be roughly of the same order, so that it is
a good approximation to impose the sum rule at the high scale and use the minimal
β-functions for the running. For low scale seesaw mechanisms this would certainly be a
bad approximation, but there the sum rule should be realised at the low scale as well and
running effects can be more generally expected to be small.

To give an idea about the size of the effect of interest we show in Fig. 5.1 results for
cos δ as derived from the sum rule in eq. (5.5) for the GRA mixing scheme. We used the
REAP package [184] to solve the renormalisation group equations (RGEs) for the mixing
parameters between the low-energy scale MZ and the high-energy scale which we have set
equal to the seesaw scale MS ≈ 1013 GeV. We only consider the case with θe12 6= 0, θe23 6= 0
and θe13 = 0. We have set all mass squared differences and angles to their best fit values
given in eqs. (4.1)–(4.3), (4.149) and (4.150), scanned over the lightest neutrino mass and
chose random values for the low energy Majorana phases. For the SM case we see no effect,
while for tan β = 30 and 50, the RG effects are significant. Even for a moderate tan β in
the MSSM and a relatively small mass scale mlightest ≈ 0.04 eV the effect is non-negligible.
Since the running of the angles is stronger for the IO neutrino mass spectrum, the effect
for the prediction of cos δ is larger in this case. It is furthermore in particular remarkable
that the corrections do not go to zero for m3 going to zero in this case. This is due to the
well-known fact, cf. [183], that the β-functions for δ and θ12 are in this limit enhanced by
a factor of ∆m2

23/∆m
2
21. Together with the tan β enhancement this leads to quite sizeable

effects for all relevant neutrino mass scales.

5.3.2 Allowed parameter regions with RG corrections
In this subsection, we derive constraints on tan β (in the case of the MSSM) and the mass
of the lightest neutrino, mlightest, by imposing the mixing sum rule at the high scale and by
requiring that cos δ ∈ [−1, 1] at the high scale. We have chosen the high scale to be equal
to the seesaw scale MS ≈ 1013 GeV. The BM mixing scheme is strongly disfavoured for the
current best fit values of the neutrino mixing angles without taking the RG corrections
into account. Thus, one of the questions we are interested in is whether the corrections
can reconstitute the validity of the BM scheme even for the best fit values of the angles.

We give first analytical estimates of the RG effects on eq. (5.5). At the high scale we
can write, for instance, for the mixing angles

θij(MS) = θij(MZ) + δθij ≡ θij + δθij , (5.10)
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Figure 5.1. Results for the predicted value of cos δ from the sum rule in eq. (5.5) for the GRA
mixing scheme in the case of θe23 6= 0. The black dashed lines represent the tree level result. The
blue points are our scan points. For the angles and the mass squared differences we took the best
fit values quoted in eqs. (4.1)–(4.3), (4.149) and (4.150). We let the parameters run between the
high scale MS ≈ 1013 GeV and the low scale MZ . The Majorana phases are chosen randomly
between 0 and 2π. The plots on the left (right) side correspond to the NO (IO) neutrino mass
spectrum.

where δθij is the RG correction or the difference between the high-scale and low-scale
values of the mixing angle θij. Since the RG corrections are small we can expand the
mixing sum rule at the high scale in the small quantities and find

cos δ(MS) ≈ cos δ(MZ) + δ(cos δ)

=
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2θ23 sin2 θ13

)]
+ f13(θ13, θ12, θ23, θ

ν
12) δθ13
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+ f23(θ13, θ12, θ23, θ
ν
12) δθ23

+ f12(θ13, θ12, θ23, θ
ν
12) δθ12 , (5.11)

where the fij are prefactors from the expansion. For the angles and mass squared differences
at the low scale we use the best fit values. Note that the Dirac phase δ appears in the
β-functions for the mixing angles. Here we use the approximation δ(MZ) ≈ δ(MS) and
evaluate the value from the sum rule neglecting RG corrections. This is formally correct
since their inclusion would be a two-loop correction. The Majorana phases are free
parameters.

For the best fit values of the angles the function f12 is always positive independent
of the value of θν12. Since the sign of δθ12 is always negative to leading order in θ13,
the correction to cos δ(MZ) due to the running of θ12 has a fixed negative sign in this
approximation. The sign of the correction due to the running of θ23 depends on θν12 and
the mass ordering: δθ23 is positive for inverted ordering and negative for normal ordering
and f23 is negative for θν12 ∼> 33◦. The sign of the correction due to the running of θ13
depends on the CPV phases and θν12.

For BM mixing the function f13 dominates in δ(cos δ), in contrast to the other mixing
patterns for which f12 has the largest influence. This means that the contribution in
TBM, GRA, GRB and HG mixings due to the running of θ12, which is larger than the
contributions due to the running of the other angles (except for the case of a parametric
suppression of the β-function which will be discussed later), is additionally enhanced by
the large prefactor f12 making the δθ12 even more important.

Since the running depends also on the unknown Majorana phases we will vary them
and give in the rest of the subsection the results for minimal or maximal corrections. Note
that minimal corrections can also correspond to negative values of δ(cos δ).

The allowed parameter regions in themlightest-tan β plane for the GRA and HG cases are
shown in Fig. 5.2. For minimal corrections the parameter regions get severely constrained,
tan β > 20 is incompatible with cos δ(MS) ∈ [−1, 1] for the IO spectrum; for the NO
spectrum it is incompatible with cos δ(MS) ∈ [−1, 1] for m1 ∼> 0.06 eV. This can be
understood since cos δ(MZ) is positive for GRA mixing and the dominant contribution
to δ(cos δ) comes from the correction due to δθ12, which is negative. A similar argument
holds also for HG mixing.

For TBM and GRB, cos δ(MZ) is negative and the corrections further decrease the
value. The plots for the allowed parameter regions can be found in Fig. 5.3.

For BM mixing, cos δ(MZ) < −1 for the best fit values of the angles, which is ruled out.
As best approximation for the value of δ in the β-functions we use then δ(MZ) = π. The
dominant contribution to the correction is due to δθ13, which is positive for the maximal
correction. Since f13 is also positive in BM mixing, the value of cos δ(MS) increases. Hence,
the RG corrections have shifted cos δ(MS) to allowed values, but for too large values of
tan β the corrections overshoot cos δ(MS) = 1 and the points are excluded. The allowed
banana-shaped parameter regions are displayed in Fig. 5.4.

Note that in this example we have only employed the constraint on δ from eq. (5.5)
at the high-energy scale. This corresponds to the scheme where θe23 6= 0. To fulfil the
sum rule, θ12 is allowed to run weakly. In the case of the SM running, the RG effects are
already small. In the case of the MSSM running, they are relatively small if the Majorana
phases satisfy the relation α2 ≈ α1 + π.
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Figure 5.2. Allowed regions for tanβ and mlightest for the NO and IO spectra in the cases of
minimal (blue) and maximal (pink) corrections for cos δ in the GRA mixing scheme (upper plots)
and the HG mixing scheme (lower plots). We used the best fit values for the mixing angles. The
high-energy scale is set to 1013 GeV.

5.3.3 Implications of α2 − α1 = 0 and π and small tanβ
In this subsection, we show how the specific values of the difference of the Majorana
phases, namely, α2−α1 = 0 and π, contribute to the total likelihood profile obtained after
the RG corrections are taken into account. These values might seem to be very special
at a first glance but in fact many symmetric matrices belong at leading order to one of
the two cases. The CP-violating effects of the requisite corrections from Ũe then might
be controlled using, for instance, spontaneous CP violation with the discrete vacuum
alignment method proposed in [185].

These two cases are also interesting because they correspond to extremal values of
the neutrinoless double beta decay observable — the effective Majorana mass |〈m〉|
(see eq. (4.148)) in the cases of neutrino mass spectrum with IO or of QD type (see,
e.g., [8, 39, 40]). For α2 − α1 = 0, |〈m〉| is maximal in the two cases, while if α2 − α1 = π,
|〈m〉| has a minimal value for both types of spectrum. In the case of IO spectrum and
m3 � m1,2, for example, |〈m〉| ≈

√
∆m2

23 cos2 θ13 ≈ 0.05 eV if α2 − α1 = 0, while for
α2−α1 = π we have |〈m〉| ≈

√
∆m2

23 cos2 θ13 cos 2θ12 ≈ 0.014 eV, where we have used the
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Figure 5.3. The same as in Fig. 5.2, but for the TBM and GRB mixing schemes.
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Figure 5.4. The same as in Fig. 5.2, but for the BM mixing scheme. For the minimal corrections
there is no allowed parameter region which is compatible with | cos δ| ≤ 1.
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3σ allowed ranges of ∆m2
23, sin2 θ13 (for the IO spectrum) and sin2 θ12 given in eqs. (4.150),

(4.3) and (4.1), respectively.
As can be understood from eq. (5.7), in the case of equal Majorana phases, the running

of θ12 is maximal, while for α2 − α1 = π it is maximally suppressed. Since for the TBM,
GRA, GRB and HG symmetry forms the correction to the tree-level value of cos δ is
dominated by the running of θ12 (see subsection 5.3.2), we consider as an example the case
of TBM and θe23 6= 0 with the values of α2 − α1 specified above. The results we obtain in
the GRA, GRB and HG cases are very similar.

It is interesting to see, in particular, what is the quantitative relation between the
corrections obtained in the set-up with relatively large tan β, e.g., tan β = 30, and
suppression of θ12 running due to α2 − α1 = π, and the set-up with relatively small tan β,
e.g., tan β = 5 or 10, but enhancement due to α2 = α1.

To answer this question, we employ a simplified one-step integration procedure (li-
nearised running), in which the high-energy values of the mixing parameters entering the
sum rule are obtained using one-step integration of the exact one-loop beta functions for
the mixing parameters from [183]. We set θ13, θ23, ∆m2

21, ∆m2
31(23) to their best fit values

and impose (i) α2 = α1, and (ii) α2 = α1 + π. For each set of these low-energy values, we
solve the high-energy sum rule for the low-energy value of θ12.

In order to perform a statistical analysis of the low-energy data after RG corrections
we construct the χ2 function as

χ2(~x) =
6∑
i=1

χ2
i (xi) , (5.12)

where ~x = (sin2 θ12, sin
2 θ13, sin

2 θ23, δ,∆m
2
21,∆m

2
31(23)) for the NO (IO) spectrum, and χ2

i

are one-dimensional projections taken from [162]. In order to obtain the one-dimensional
projection χ2(δ) from the constructed χ2(~x) function we need to minimise the latter
with respect to all other parameters (sin2 θij, ∆m2

21 and ∆m2
31(23)), i.e., we need to find a

minimum of χ2(~x) for a fixed value of δ:

χ2(δ) = min
[
χ2(~x)

∣∣
δ=const

]
. (5.13)

The likelihood function L, which represents the most probable values of δ in each of the
considered cases, reads

L(δ) = exp

(
−χ

2(δ)

2

)
. (5.14)

We will present the results in terms of the likelihood functions, considering three values for
the absolute mass scale, mlightest = 0.005, 0.01 and 0.05 eV, and four values of tan β = 5,
10, 30 and 50.

It is worth noting here that, as shown in ref. [183] (see eq. (26) therein), for the running
of the difference α1 − α2 we have up to O(θ13) terms:

d
d ln(µ/µ0)

(α1 − α2) ∝ sin(α1 − α2) . (5.15)

This implies that if the phases are equal (different by π) at some scale to a good approxi-
mation, they remain equal (differ by π) at another scale. Thus, the relation imposed by
us at the low scale holds also at the high scale (up to O(θ13) corrections).

We present graphically the results obtained for the TBM symmetry form in Figs. 5.5
and 5.6 for the NO and IO neutrino mass spectra, respectively. The dotted black line
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Figure 5.5. Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form
of the matrix Ũν and the NO spectrum. The dotted black line stands for likelihood extracted
from the global analysis in [162]. The blue, orange, green and red lines are for the running within
MSSM with tanβ = 5, 10, 30 and 50, respectively. The left panels correspond to α2 = α1, while
the right panels are for α2 = α1 + π.

stands for likelihood extracted from the global analysis [162]. The blue, orange, green and
red lines are for tan β = 5, 10, 30 and 50, respectively. The left panels in each of the two
figures correspond to α2 = α1, while the right panels are for α2 = α1 + π.

Several comments are in order. As expected, the results for α2−α1 = π and small tan β,
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Figure 5.6. The same as in Fig. 5.5, but for the IO spectrum.

tan β = 5 and 10 (blue and orange lines, respectively), are quantitatively very similar to
the result without running (this is why we do not present the latter in the plots) for all
three mass scales considered and both orderings due to the suppression of the running of
θ12 discussed above. However, this is not the case for the large values of tan β = 30 and
50 (green and red lines, respectively) and the NO spectrum with m1 = 0.05 eV, and for all
three values of m3 considered in the case of IO spectrum. Clearly, the enhancement due
to tan β prevails over the suppression due to the Majorana phases in these cases.

The next interesting point to note is that for the IO spectrum, the corrections in
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the case of tan β = 5 and α2 = α1 (blue line) are comparable with the corrections for
tan β = 30 and α2 = α1 + π (green line) for all three mass scales considered. A similar
observation holds also for the NO spectrum if m1 = 0.05 eV: the corrections for tan β = 10
and α2 = α1 (orange line) are similar in magnitude to those for tan β = 30 and α2−α1 = π
(green line).

Further, we note also that the absence of the green and red lines, corresponding
to tan β = 30 and 50 and equal Majorana phases, in all cases, except for NO with
m1 = 0.005 eV and m1 = 0.01 eV, reflects the fact that the RG corrections lead, in
particular, to a low-energy value of θ12, which is outside of the current 3σ range. For the
IO spectrum with m3 = 0.05 eV and α2 = α1, even for tan β = 10 (orange line) the RG
corrections are quite large, such that only a small region of values of δ around π is allowed,
with the likelihood of these values being suppressed.

For the BM symmetry form the results we obtain are quite different. In this case, we
consider values of mlightest = 0.01, 0.05 and 0.1 eV, and tan β = 5, 10, 30 and 50. We
find that the small values of tan β considered, tan β = 5, 10, cannot provide the RG
corrections which allow one to have cos δ ∈ [−1, 1] and low-energy values of the mixing
angles compatible with the current data (except for the small range of values of δ close to
π allowed without running). For the large values of tan β and the NO spectrum, we get
significant RG corrections compatible with all constraints, as can be seen from Fig. 5.7,
(i) for α2−α1 = π (dashed lines), provided m1 ∼> 0.05 eV, and (ii) for α2 = α1 (solid line) if
m1 ≈ 0.10 eV and tan β = 50. For the IO spectrum and m3 ∼> 0.05 eV, the predictions are
compatible with the data for α2 = α1 provided tan β = 50. If m3 = 0.1 eV, α2 − α1 = π
also contributes to the final likelihood profile for tan β = 50, although this contribution is
less favoured.

As has already been discussed above, the running of θ12 is suppressed if the difference
of the Majorana phases is equal to π, otherwise the running of θ12 is always the dominant
correction to cos δ. If the running of θ12 is minimal, the running of θ23 and θ13 is dominant
(for a maximal running of θ13 we need additionally to have δ = α2). Then δθ13 and δθ23
are roughly two orders of magnitude larger then δθ12. This implies that the correction to
cos δ in the HG, GRA, GRB and TBM mixing schemes is not longer determined by the
running of θ12 but by the running of θ23 and θ13. For BM mixing the contribution of δθ13
is still dominant. The sign and size of the correction to cos δ depends on δ because the
size of δθ13 depends on δ and the contributions to δ(cos δ) by the running of θ23 and θ13
are approximately equal.

Finally, we would like to note that the cases studied in the present subsection were
analysed rather qualitatively in [111], considering only the running of θ12. Our analysis
goes beyond the discussion in [111], since we present explicitly in graphic form the impact
of the RG effects on the likelihood functions (Figs. 5.5–5.7). In particular, as was discussed
above, the results depend strongly on the symmetry form considered — the TBM, GRA,
GRB and HG forms on the one hand and the BM form on the other hand — and this
distinction was not discussed in [111]. Furthermore, in our quantitative results we find
a region of parameter space where their conclusions are not fully correct. Although this
region seems somewhat tuned, it is actually motivated, as we mentioned above, in set-ups
with spontaneous CP violation. We find that, e.g., in the case of the TBM symmetry form,
for m3 = 0.01 eV (IO), tan β = 30 and α2 − α1 = π (green line in the corresponding panel
of Fig. 5.6) the RG corrections are noticeable, in contrast to the conclusion in [111] that
the RG corrections can be neglected for tan β ∼< 35 if the spectrum is not quasi-degenerate.
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Figure 5.7. Likelihood function vs. δ in the case of non-zero θe23 for the BM symmetry form of
the matrix Ũν . The dotted black line stands for likelihood extracted from the global analysis
in [162]. The blue, orange, green and red lines are for the running within MSSM with tanβ = 5,
10, 30 and 50, respectively. The solid lines correspond to α2 = α1. The dashed lines correspond
to α2 = α1 + π. Note that the lines for tanβ < 50 are often barely visible.

5.3.4 Remarks on the case of zero θe23
Before we turn to the numerical results we want to make a few more remarks on the case
of θe23 = 0, i.e., imposing also the sum rule from eq. (5.3) at the high scale. This will
help to understand the numerical results in the next section. In eq. (5.6) we can replace
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θ12(MS) by θ12(MZ) plus the small RG correction δθ12 in which we expand. Since θ13 and
δθ13 are small we can neglect the latter (θ13(MS) ≈ θ13(MZ)) and expand the correction
in the first to end up with

cos δ(MS) ≈ cos δ(MZ) +
1− cos 2θ12 cos 2θν12

θ13 sin2 2θ12
δθ12 . (5.16)

In the case of BM mixing cos δ(MZ) is smaller than −1 for the best fit values of the angles
and the correction is always negative since the running of θ12 has a fixed sign. Note, that
the value of cos δ(MZ) could be adjusted by θe23 6= 0 to a value larger than −1, cf. eq. (5.5).
So, from that estimate we expect the BM mixing scheme not to be valid in the case of
θe23 = 0. This is confirmed in our extensive numerical scan, where we employed the exact
sum rules from eqs. (5.3) and (5.6) and the full one-loop β-functions for all parameters
but did not find any physically acceptable points as well. Nevertheless, our estimate is a
bit rough and a numerical scan cannot cover the whole parameter space such that a tiny,
highly tuned region of the parameter space might still be allowed.

Let us now turn to the other mixing cases. There the absolute value of cos δ(MZ) in
our estimate, eq. (5.16), is always smaller than one. For TBM and GRB it is still negative,
and for TBM mixing, for instance, we get

cos δ(MZ) ≈ −0.21 , (5.17)

which allows for a sizeable correction of θ12 up to −6.5◦, so that these two scenarios are
not disfavoured by our estimate. For GRA and HG mixings the first term is even positive
such that we can account for even more sizeable RG corrections in these cases.

5.4 Numerical results
In the present section, we will first describe our numerical approach before we show the
results we obtain for the δ likelihood functions in the TBM, GRA, GRB, HG and BM
mixing schemes in the cases of θe23 6= 0 and θe23 = 0.

5.4.1 Numerical approach
To obtain the low-energy predictions for δ from the high-scale mixing sum rule, eq. (5.5)
in the case of θe23 6= 0 (eq. (5.6) in the case of θe23 = 0), we employ the running of the
parameters using the REAP package [184]. For the running we set the low-energy scale to
be MZ and the high-energy scale to be equal to the seesaw scale MS ≈ 1013 GeV. Since
the dependence on the scales is only logarithmic a mild change of the high-energy or
low-energy scale would not change our results significantly.

In our scans we present the results for the SM and MSSM extended minimally by the
Weinberg operator. We have fixed the scale where we switch from the SM to MSSM RGEs
to 1 TeV. Again the dependence on the scale is only logarithmic and hence weak. The
exact SUSY particle spectrum plays only a minor role since we have neglected the SUSY
threshold corrections [186–189].

In the MSSM we consider as benchmarks tan β = 30 and tan β = 50. In the SM the
running is relatively small and hence the results are very similar to the results without
running. In fact the SM results look like the results obtained in subsection 3.7.1 apart from
relatively small changes due to the different global fit results [18] used therein. For a given
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mass scale and a given model (SM or MSSM with a given tan β), we employ the mixing
sum rules at the high scale to determine δ (and θ23 for θe23 = 0) at the low scale depending
on the other parameters. For a given mass scale and a given model (SM or MSSM with a
given tan β), we determine the low-scale parameters (the angles, mass squared differences
and the Majorana phases) such that the mixing sum rule in eq. (5.5) (eq. (5.6) for θe23 = 0)
at the high scale is fulfilled and their likelihood function is maximal. We choose a “small”
neutrino mass scale, mlightest = 0.01 eV, a “medium” mass scale, mlightest = 0.05 eV, and a
“large” mass scale, mlightest = 0.1 eV. The “large” neutrino mass scale is still compatible
with the cosmological bound on the sum of the neutrino masses [63]∑

j

mj < 0.49 eV. (5.18)

Note that for very small neutrino mass scales, mlightest � 0.01 eV, and sufficiently small
tan β, the RG effects are negligibly small even in the MSSM. We present the results for the
different cases considered in the present study in terms of the likelihood functions defined
in eq. (5.14). For better comparison with results obtained in subsection 3.7.1 without
taking the RG corrections into account, we present in Appendix H the corresponding
likelihood functions for cos δ.

5.4.2 Results in the case of non-zero θe23
We begin our discussion of the numerical results with the case of non-zero θe23. In Figs. 5.8–
5.11 we show the likelihood functions versus δ for the TBM, GRA, GRB and HG symmetry
forms of the matrix Ũν in all set-ups. The blue line in these figures represents the SM
running result, the green and red lines are for the MSSM running with tan β = 30 and
tan β = 50, respectively. The SM line practically coincides with the line corresponding
to the result without running, as expected. For this reason we do not show the latter
in the plots. The dotted black line stands for the likelihood extracted from the global
analysis [162] which corresponds to the likelihood for δ without imposing any sum rule.
We note that the whole procedure is numerically very demanding and hence there are
some tiny wiggles in the likelihoods which do not have any physical meaning. Note also
that the mixing sum rule has two solutions but the solution δ ≈ 90◦ has a small likelihood
and is therefore barely visible in the plots.

As we have already indicated, the SM results are very similar to the results obtained in
subsection 3.7.1 without running. This implies that, as was concluded in Chapter 3, using
the data on neutrino mixing angles and a sufficiently precise measurement of cos δ it will
be possible to distinguish between the three groups of schemes: the TBM and GRB group,
the GRA and HG group, and the BM scheme. Distinguishing between the GRA and
HG schemes is experimentally very demanding, but not impossible, while distinguishing
between the TBM and GRB seems practically extremely difficult (if not impossible) to
achieve (see subsection 3.7.1 for further details).

In the MSSM, the results depend on the value of the lightest neutrino mass, the type
of spectrum — NO or IO — the neutrino masses obey, on the value of tan β as well as
on the uncertainties in the measured values of the neutrino oscillation parameters. As
expected, for increasing tan β and increasing absolute neutrino mass scale, the difference
with the predictions without running increases. The allowed regions for δ start to broaden
and, e.g., for the largest value of tan β = 50 and m1 = 0.05 eV and 0.10 eV (m3 = 0.01
eV, 0.05 eV and 0.10 eV) in the case of NO (IO) spectrum, the likelihood profile in the
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Figure 5.8. Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form
of the matrix Ũν in all the set-ups considered. The dotted line stands for likelihood extracted
from the global analysis in [162]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.

cases of the TBM, GRA, GRB and HG mixing schemes practically coincides with the
likelihood for δ obtained without imposing the sum rule constraint, the difference between
the two profiles being noticeable only for values of δ lying approximately in the interval
δ ∼ (270◦ − 360◦). As already discussed in the previous section, the running of cos δ in
the TBM, GRA, GRB and HG mixing schemes is mainly influenced by the running of
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Figure 5.9. The same as in Fig. 5.8, but for the GRA symmetry form of the matrix Ũν .

θ12 which has a fixed negative sign and hence has a tendency to shift δ to values smaller
than 270◦. For the NO spectrum, m1 ≤ 0.01 eV and tan β = 30, a measured value of
δ ∼< 260◦ would favour the TBM and GRB schemes. For m1 = 0.05 eV (or m1 = 0.01 eV)
and the same value of tan β = 30, a measurement of δ ∼> 290◦ would make the GRA and
HG schemes more probable. For tan β = 50, m1 = 0.05 eV (or m1 = 0.10 eV), and given
the current uncertainties in the measured values of the neutrino oscillation parameters,
the TBM, GRA, GRB and HG schemes lead to very similar predictions for δ.

For the IO spectrum, the RG effects are larger and therefore the broadening happens
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Figure 5.10. The same as in Fig. 5.8, but for the GRB symmetry form of the matrix Ũν .

in the four schemes under discussion — TBM, GRA, GRB and HG — already for the
“small” neutrino mass scale. Since the likelihood profiles are so broad and nearly identical
even for the “small” and “medium” mass scales, except for certain differences in the interval
δ ∼ (270◦ − 360◦), and given the current uncertainties in the measured values of the
neutrino oscillation parameters, it will be difficult in the MSSM with tan β ∼> 30 to
distinguish between any of the four schemes considered using only a determination of δ.

For the BM mixing scheme the results are very different. This scheme is strongly
disfavoured for the currently allowed ranges of the mixing parameters without considering
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Figure 5.11. The same as in Fig. 5.8, but for the HG symmetry form of the matrix Ũν .

RG effects. Therefore, the maximal value of the likelihood in the SM running case is
relatively small. In the MSSM the running increases the value of cos δ to physical values,
as explained in the previous section. In addition both the maximal value of the likelihood
function increases and the position of the likelihood maximum shifts from δ ≈ 180◦ towards
δ = 270◦ (see Fig. 5.12). Again the likelihood profile broadens with increasing of the
absolute neutrino mass scale and tan β and at δ ∼< 270◦ for the NO spectrum tends to
approach the likelihood function for δ obtained without imposing the sum rule. In the
case of IO spectrum, the BM scheme is strongly disfavoured for m3 ∼< 0.05 eV even for
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Figure 5.12. The same as in Fig. 5.8, but for the BM symmetry form of the matrix Ũν .

tan β = 50.

5.4.3 Results in the case of zero θe23
In Figs. 5.13–5.16 we present the results in the case of θe23 = 0. Again, the blue line in
these figures represents the SM running result, the green and red lines are for the MSSM
running with tan β = 30 and tan β = 50, respectively. The dotted black line stands for
the likelihood extracted from the global analysis [162] which corresponds to the likelihood
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Figure 5.13. Likelihood function vs. δ in the case of zero θe23 for the TBM symmetry form of
the matrix Ũν in all the set-ups considered. The dotted line stands for likelihood extracted from
the global analysis in [162]. The blue line is for the SM running, while the green and red lines
are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.

for δ without imposing any sum rule. Similar to the case of non-zero θe23, the SM line
practically coincides with the line corresponding to the result without running, as expected.
Therefore, we do not show the latter in the plots. Note again that the small wiggles in the
likelihoods are of numerical origin and not physical.

For the TBM, GRA, GRB and HG mixing schemes, we observe similar to the case of
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Figure 5.14. The same as in Fig. 5.13, but for the GRA symmetry form of the matrix Ũν .

non-zero θe23 broadening of the likelihood with increasing tan β and increasing absolute
neutrino mass scale. But in contrast to the case of θe23 6= 0, the likelihood does not reach
the likelihood for δ without imposing the sum rule considered. The major difference with
respect to the results obtained in the case of θe23 6= 0 is that due to the constraint on
θ23 from eq. (5.3) at the high scale, the low-scale mixing parameters are more severely
constrained and not necessarily close to their respective best fit values.

As Figs. 5.13–5.16 show, for the values of min(mj) and tan β considered, the NO
spectrum is less favoured (i.e., has a smaller likelihood for any given δ and smaller
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Figure 5.15. The same as in Fig. 5.13, but for the GRB symmetry form of the matrix Ũν .

maximum likelihood) than the IO spectrum. The sum rule, eq. (5.3), restricts θ23 to be
slightly smaller than 45◦ at the high scale. Since the running of this angle has a fixed
negative sign for the NO spectrum, its low-scale value is larger than its high scale value
and pushed outside of the NO 1σ region [162]. On the other hand, for the IO spectrum,
the low-scale value of θ23 is always smaller than 45◦ due to the running and the sum rule.
However, in this case there is a second 1σ region below maximal mixing besides the region
around the best fit value which is larger than 45◦ [162].

In the case of TBM and GRB schemes, the case of min(mj) = 0.10 eV and tan β = 50
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Figure 5.16. The same as in Fig. 5.13, but for the HG symmetry form of the matrix Ũν .

is strongly disfavoured for both NO and IO spectra, while for the GRA and HG schemes
it is less favoured than the min(mj) = 0.10 eV and tan β = 30 case.

As explained in subsection 5.3.4, in order to satisfy the sum rule in eq. (5.6) for zero
θe23, θ12 is not allowed to run strongly. This leads to the relatively small likelihood for
tan β = 50 and mlightest = 0.1 eV seen in Figs. 5.13–5.16. For TBM and GRB mixings, the
constraint on the running of θ12 is even more severe than for GRA and HG mixings, and
the likelihood in these schemes is hence even smaller for tan β = 50 and mlightest = 0.1 eV.

For BM mixing our analytical estimates have indicated that this scheme is not valid
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due to the severe constraint on the running of θ12. In our extensive numerical scans we
did not find any valid, i.e., physically acceptable, parameter points as well.

5.5 Summary and conclusions
We presented a systematic study of the effects of RG corrections on sum rules for the Dirac
CPV phase, eqs. (5.5) and (5.6). These corrections are present in every high-energy model,
when running down to the low scale where experiments take place. We answered the
question how stable the predictions from the sum rules are in the cases of charged lepton
corrections characterised by (i) θe12 6= 0, θe23 6= 0, θe13 = 0 and (ii) θe12 6= 0, θe23 = 0, θe13 = 0
to TBM, GRA, GRB, HG or BM mixing in the neutrino sector.

To this aim we first presented analytical estimates of the allowed parameter space if we
take RG corrections into account. These estimates were subsequently verified numerically.
To obtain the numerical results for the allowed ranges of δ we used as three benchmark
cases the SM running (where the running effects are small) and the MSSM running with
tan β = 30 and tan β = 50 (where the running effects become larger with increasing tan β).
Furthermore, we considered three mass scales: a “small” mass scale (mlightest = 0.01 eV),
a “medium” mass scale (mlightest = 0.05 eV) and a “large” mass scale (mlightest = 0.1 eV),
where the RG effects increase with the mass scale. We presented the results in terms
of the likelihood functions for each case (SM or MSSM with a given tan β, and a given
mass scale). Our numerical results are obtained using the current best fit values and
uncertainties on the neutrino oscillation parameters derived in the global analysis of the
neutrino oscillation data performed in [162].

Our results have shown that the RG effects can change significantly the allowed low-
energy ranges for δ, especially when we employ the MSSM running with the “medium”
and “large” mass scales. In the case of θe23 6= 0, the allowed regions for δ broaden and the
likelihood profiles approach the likelihood for δ extracted from the global analysis (without
imposing the sum rule considered). For the TBM, GRA, GRB and HG symmetry forms
we found the allowed ranges of values of δ to be shifted from values close to (somewhat
larger than) 270◦ to values somewhat smaller than (close to) 270◦. For BM mixing, which
is strongly disfavoured by the current data without taking into account the running of the
neutrino parameters, we found that the RG corrections partially reconstitute compatibility
of this symmetry form with the data. With the increasing of min(mj) and tan β, the
values of δ in this case shift from δ ≈ 180◦ towards 270◦. In the case of θe23 = 0 and for the
TBM, GRA, GRB and HG mixing schemes, the likelihood profiles broaden with increasing
tan β and increasing mass scale, similarly to the case of non-zero θe23. The main difference
is that now they do not reach the likelihood for δ obtained without imposing the sum rule.
The reason for that is the constraint on θ23 from eq. (5.3) at the high scale, due to which
the low-scale mixing parameters are more severely constrained and not necessarily close to
their respective best fit values. Finally, we found that in this case the RG corrections are
not sufficient to restore even partial compatibility of BM mixing with the current data.

In conclusion, our results show that the RG effects on the mixing sum rules in SUSY
models with min(mj) ∼> 0.01 eV and tan β ∼> 30 have to be taken into account to realistically
probe the sum rule predictions in these models. In the case of the SM augmented with
the Weinberg (dimension 5) operator, the RG corrections to the sum rule predictions are
negligible.





Chapter 6

Conclusions and outlook

In the present PhD thesis, we have considered certain phenomenological aspects of the
discrete symmetry approach to neutrino mixing and leptonic CP violation. This approach,
based on the assumption of existence at some high-energy scale of a (lepton) flavour
symmetry described by a non-Abelian finite group, leads to specific correlations between
the neutrino mixing angles and the CPV phases present in the PMNS matrix. These
correlations, usually referred to as neutrino mixing sum rules, can be tested in ongoing
and future neutrino experiments. We have mainly focused on predictions for leptonic CP
violation, the status of which is currently unknown.

In Chapters 2 and 3, we have obtained predictions for the Dirac CPV phase δ responsible
for CP violation in neutrino oscillations. The currently running T2K [25,26] and NOνA [29]
LBL neutrino oscillation experiments are already providing hints for CP violation in the
lepton sector. The future planned T2HK [32] and DUNE [33–36] experiments, which are
going to become operative by 2025–2026, will be able to establish the status of Dirac CP
violation. With the experimental progress and accumulation of new data, the neutrino
mixing angles and the Dirac phase will be measured with higher accuracy, which is crucial
for testing the predictions obtained in the present PhD thesis. More specifically, the
Daya Bay experiment [190, 191] will improve the precision in the determination of the
reactor angle θ13. The medium baseline JUNO experiment [157], which is expected to
start data taking in 2021, will be able to provide a high precision measurement of the
solar mixing angle θ12. The above mentioned LBL neutrino oscillation experiments will
perform better measurements of the atmospheric angle θ23. The complex of these high
precision measurements will rule out some of the cases considered by us in Chapters 2 and
3, and hopefully favour the others. The remaining viable cases, if any, will be considered
as a strong indication of the existence of a new fundamental symmetry — a flavour
symmetry — in the lepton sector.

In Chapter 4, we have demonstrated how the Majorana phases α21 and α31 can be
constrained employing, in particular, a generalised CP symmetry. These phases are
relevant, e.g., for (ββ)0ν-decay. The experiments searching for (ββ)0ν-decay are the
only feasible experiments that can unveil possible Majorana nature of massive neutrinos.
Constraining the Majorana phases allowed us to obtain predictions for the effective
Majorana mass in (ββ)0ν-decay. For the IH and QD types of neutrino mass spectrum, these
predictions will be tested by the current (GERDA [192,193], KamLAND-Zen [194,195]) and
future (CUORE [196], MAJORANA DEMONSTRATOR [197], nEXO [198], SNO+ [199],
AMoRE [200], SuperNEMO [201]) (ββ)0ν-decay experiments aiming to probe the region
of values of |〈m〉| down to 0.01 eV.

Finally, in Chapter 5, we have studied the impact of the RG corrections on the sum
rule predictions for the Dirac phase δ. We have shown that these corrections should be
taken into account in SUSY models of flavour. If, however, the SM turns out to be valid
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up to a very high-energy scale (say, a seesaw scale of approximately 1013 GeV), the RG
corrections to the sum rule predictions will be negligible. This, in turn, will imply that
the sum rules hold at a low-energy scale where experiments take place, and thus, can be
tested directly at low energies.

In conclusion, the years ahead are undoubtedly very exciting for the field of neutrino
physics. The wealth of experimental data to come will allow us to answer some of the long-
standing questions and hopefully shed light on those which will remain. Our predictions,
as well as the whole discrete symmetry approach to (lepton) flavour, will be critically
tested, and we will gain an indication whether Nature follows the flavour symmetry path
or not. We are looking very much forward to the years ahead.



Appendix A

Symmetry of a phenomenologically
viable generalised CP transformation

If the neutrino sector respects a residual generalised CP symmetry X3ν , the neutrino
mass matrix satisfies eq. (1.50). The matrix X3ν must be unitary in order to preserve
generalised CP invariance of the neutrino kinetic term. In what follows, we show that this
matrix is additionally constrained to be symmetric in order for the neutrino masses to be
different.

Expressing Mν from eq. (1.18) and substituting it in eq. (1.50) yields

dν X̃3ν = X̃∗3ν dν , (A.1)

where dν ≡ diag(m1,m2,m3), with mj, j = 1, 2, 3, being the real neutrino masses, and

X̃3ν ≡ U †ν X3ν U
∗
ν (A.2)

is unitary. Being 3 × 3 unitary, X̃3ν can be parametrised as the product of the three
complex rotations Uij defined as in eq. (2.3) and the three diagonal phase matrices Ψi

defined in eq. (2.2) (see Appendix C):

X̃3ν = Ψ1 Ψ2 Ψ3 U23(ϑ23, δ23)U13(ϑ13, δ13)U12(ϑ12, δ12) . (A.3)

Equation (A.1) leads to the following relations:

ei(ψ1−δ13)m1 sinϑ13 = e−i(ψ1−δ13)m3 sinϑ13 , (A.4)

ei(ψ2−δ23)m2 cosϑ13 sinϑ23 = e−i(ψ2−δ23)m3 cosϑ13 sinϑ23 , (A.5)

ei(ψ1−δ12)m1 cosϑ13 sinϑ12 = e−i(ψ1−δ12)m2 cosϑ13 sinϑ12 . (A.6)

From the non-degeneracy of the neutrino mass spectrum it follows that sinϑ13 = sinϑ23 =
sinϑ12 = 0. Thus, X̃3ν is constrained to be diagonal and hence symmetric, X̃T

3ν = X̃3ν .
This finally implies that also XT

3ν = X3ν , i.e., a phenomenologically relevant generalised
CP transformation X3ν must be symmetric.

It also follows from eq. (A.1) that the phases ψi = 0 or π, and thus, the matrix X̃3ν

reads (cf. eq. (1.53))
X̃3ν = diag(±1,±1,±1) . (A.7)





Appendix B

The groups A4, T ′, S4 and A5

A4 is the symmetry group of even permutations of four objects (see, e.g., [81]). It is
isomorphic to the tetrahedral symmetry group, i.e., the group of rotational symmetries
of a regular tetrahedron. As such it can be defined in terms of two generators S and T ,
satisfying S2 = T 3 = (ST )3 = 1. In Chapter 2, we choose to work in the Altarelli-Feruglio
basis [85] for the 3-dimensional representation of the S and T generators, see Table B.1.

The group T ′ is the double covering group of A4 (see, e.g., [81]), which can be defined
in terms of two generators S and T through the algebraic relations R2 = T 3 = (ST )3 = 1,
RT = TR, where R = S2. We use the basis for the 3-dimensional representation of the
generators S and T from [143], summarised in Table B.1. Since we restrict ourselves to
the triplet representation for the LH charged lepton and neutrino fields, there is no way to
distinguish T ′ from A4 [143].42 Note that matrices representing S and T in Table B.1 for
A4, are related with those for T ′ by the following redefinition S → TST 2, T → T 2, where
S and T before (after) the arrows are the matrices presented in Table B.1 for A4 (T ′).

S4 is the group of permutations of four objects, i.e., the rotational symmetry group
of a cube (see, e.g., [81]). It can be defined in terms of three generators S, T and U ,
satisfying [83] S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1. We employ for
the 3-dimensional representation of the S, T and U generators the basis given in [125] and
summarised in Table B.1. As it was also shown in [125], this basis is equivalent to the
basis widely used in the literature [176].

A5 is the group of even permutations of five objects (see, e.g., [81]), i.e., the rotational
symmetry group of an icosahedron, which can be defined in terms of two generators S and
T , satisfying S2 = T 5 = (ST )3 = 1. We employ the basis defined in [144], which for the
3-dimensional representation of the generators S and T is summarised in Table B.1.

We conclude this appendix by noting that lists of the Abelian subgroups of A4, T ′, S4

and A5 can be found in [121], [122], [125] and [144], respectively.

42It is worth noting that A4 is not a subgroup of T ′.



164 Appendix B. The groups A4, T ′, S4 and A5

Table B.1. The 3-dimensional representation matrices ρ3(g) for the generators g = S, T (and
U) of A4, T ′, (S4) and A5. We have defined ω = e2πi/3, r = (1 +

√
5)/2 and ρ = e2πi/5.

Group ρ3(S) ρ3(T ) ρ3(U)

A4
1

3

−1 2 2
2 −1 2
2 2 −1

 1 0 0
0 ω2 0
0 0 ω



T ′
1

3

−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1

 1 0 0
0 ω 0
0 0 ω2



S4

−1 0 0
0 1 0
0 0 −1

 1

2

 i −
√

2i −i√
2 0

√
2

i
√

2i −i

  0 0 i
0 −1 0
−i 0 0



A5
1√
5

 1 −
√

2 −
√

2

−
√

2 −r 1/r

−
√

2 1/r −r

 1 0 0
0 ρ 0
0 0 ρ4





Appendix C

Parametrisations of a 3× 3 unitary
matrix

Parametrisations of a 3× 3 unitary matrix W (see, e.g., [202–204]) can be obtained, e.g.,
from one of the six permutations of a product of three complex rotations and diagonal
phase matrices, e.g., as follows:

W = Ψ1 Ψ2 Ψ3W = Ψ1 Ψ2 Ψ3 Uij Ukl Urs , (C.1)

where we have assumed ij 6= kl 6= rs. It is worth noticing that sometimes it is convenient
to use the parametrisations of W of the following form:

W = Uij Ukl Ũij . (C.2)

As shown in [202], the number of distinctive parametrisations of a CKM-like matrix is
nine. We have defined the phase matrices Ψi in eq. (2.2) and the complex rotation matrix
in the i-j plane Uij ≡ Uij(θij, δij) in eq. (2.3). The latter can be always parametrised as a
product of diagonal phase matrices and the rotation matrix Rij ≡ Rij(θij) = Uij(θij, 0),
i.e.,

Uij = Pi(δ)
∗Rij Pi(δ) = Pj(−δ)∗Rij Pj(−δ) , (C.3)

where Pi(δ) are diagonal matrices defined as follows:

P1(δ) = diag(eiδ, 1, 1) , P2(δ) = diag(1, eiδ, 1) , P3(δ) = diag(1, 1, eiδ) . (C.4)

Defining Pij(α, β) as a product Pij(α, β) ≡ Pi(α)Pj(β), the following relation holds:

Uij(θij, δij)Pij(α, β) = Pij(α, β)Uij(θij, δ
′
ij) , (C.5)

with δ′ij = δij + α− β.
Starting from the general parametrisation ofW in eq. (C.1) and the relation in eq. (C.5),

we find convenient parametrisations for W . They are summarised in Table C.1. The
parametrisations of the matrix U◦(θ◦12, θ

◦
13, θ

◦
23, {δ◦kl}) defined in Section 2.1 have been

obtained from Table C.1 after a redefinition of the phases {δ◦kl}. For example, in the first
case when U◦(θ◦12, θ◦13, θ◦23, {δ◦kl}) is represented by the product

U12(θ
◦
12, δ

◦
12)U23(θ

◦
23, δ

◦
23)U13(θ

◦
13, δ

◦
13)

the following redefinition is used: δ◦12 − δ◦13 + δ◦23 → δ◦12.
The product of two complex rotations in the i-j plane can always be written as

Uij(θ
a
ij, δ

a
ij)Uij(θ

b
ij, δ

b
ij) = Pij(β,−α)Rij(θ̂ij)Pi(α− β)
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Table C.1. Equivalent parametrisations of W obtained using the result in eq. (C.5), which
allows us to find the convenient form of the matrix U◦(θ◦12, θ

◦
13, θ

◦
23, {δ◦kl}) defined in Section 2.1.

Case Initial form of W Final parametrisation of W

A1 U12 U23 U13 P ∗12(δ13, δ23)U12(θ12, δ12 − δ13 + δ23)R23R13 P12(δ13, δ23)

A2 U13 U23 U12 P ∗13(δ12,−δ23)U13(θ13, δ13 − δ12 − δ23)R23R12 P13(δ12,−δ23)

A3 U23 U13 U12 P23(δ12, δ13)U23(θ23, δ23 + δ12 − δ13)R13R12 P
∗
23(δ12, δ13)

B1 U23 U12 U13 P ∗13(δ12,−δ23)R23R12 U13(θ13, δ13 − δ12 − δ23)P13(δ12,−δ23)

B2 U13 U12 U23 P23(δ12, δ13)R13R12 U23(θ23, δ23 + δ12 − δ13)P ∗23(δ12, δ13)

B3 U23 U13 U12 P ∗12(δ13, δ23)R23R13 U12(θ12, δ12 − δ13 + δ23)P12(δ13, δ23)

C1 U12 U23 U13 P3(δ23)U12(θ12, δ12)R23 U13(θ13, δ13 − δ23)P ∗3 (δ23)

C2 U13 U23 U12 P3(δ23)U13(θ13, δ13 − δ23)R23 U12(θ12, δ12)P
∗
3 (δ23)

C3 U12 U13 U23 P3(δ13)U12(θ12, δ12)R13 U23(θ23, δ23 − δ13)P ∗3 (δ13)

C4 U13 U12 U23 P2(δ12)U13(θ13, δ13)R12 U23(θ23, δ23 + δ12)P
∗
2 (δ12)

C5 U23 U12 U13 P2(δ12)U23(θ23, δ23 + δ12)R12 U13(θ13, δ13)P
∗
2 (δ12)

C6 U23 U13 U12 P3(δ13)U23(θ23, δ23 − δ13)R13 U12(θ12, δ12)P
∗
3 (δ13)

C7 U12 U23 Ũ12 P3(δ23)U12(θ12, δ12)R23 U12(θ̃12, δ̃12)P
∗
3 (δ23)

C8 U13 U23 Ũ13 P ∗2 (δ23)U13(θ13, δ13)R23 U13(θ̃13, δ̃13)P2(δ23)

C9 U23 U12 Ũ23 P ∗1 (δ12)U23(θ23, δ23)R12 U23(θ̃23, δ̃23)P1(δ12)

= Pj(−α− β)Rij(θ̂ij)Pij(α, β)

= Pij(α,−β)Rij(θ̂ij)Pj(β − α)

= Pi(α + β)Rij(θ̂ij)Pij(−β,−α) , (C.6)

where we have defined the angle θ̂ij as

sin θ̂ij =
∣∣∣saij cbij e−iδaij + caij s

b
ij e
−iδbij

∣∣∣ , (C.7)

and the phases α, β as

α = arg
[
caij c

b
ij − saij sbij ei(δ

b
ij−δaij)

]
, β = arg

[
saij c

b
ij e
−iδaij + caij s

b
ij e
−iδbij

]
, (C.8)

with sa(b)ij ≡ sin θ
a(b)
ij and ca(b)ij ≡ cos θ

a(b)
ij .



Appendix D

Parametrisations of the PMNS
matrix for fully broken Ge or Gν
In the case when the group Ge is fully broken and Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2,
there are cases in which one can express cos δ as a function of θ12, θ13, θ23 and θ◦12, θ◦13, θ◦23.
In the cases

(i) U †e = U23(13)(θ
e
23(13), δ

e
23(13))U12(θ

e
12, δ

e
12) ,

(ii) U †e = U12(13)(θ
e
12(13), δ

e
12(13))U23(θ

e
23, δ

e
23) ,

(iii) U †e = U23(12)(θ
e
23(12), δ

e
23(12))U13(θ

e
13, δ

e
13) ,

which correspond, respectively, to cases D1 (D2), D3 (D4) and D5 (D6) of Section 2.6, we
choose for convenience:

(i) U◦(θ◦12, θ◦13, θ◦23, δ◦12) = U12(θ
◦
12, δ

◦
12)R23(θ

◦
23)R13(θ

◦
13) ,

(ii) U◦(θ◦12, θ◦13, θ◦23, δ◦23) = U23(θ
◦
23, δ

◦
23)R13(θ

◦
13)R12(θ

◦
12) ,

(iii) U◦(θ◦12, θ◦13, θ◦23, δ◦13) = U13(θ
◦
13, δ

◦
13)R23(θ

◦
23)R12(θ

◦
12) .

The possible parametrisations of U presented in Table D.1 can be obtained from (i), (ii)
and (iii) using eqs. (C.6)–(C.8). The angles θeij , θ̂ij and the phases δeij , δ̂ are free parameters.
It can be seen from Table D.1 that if one of the fixed angles turns out to be zero, the
number of free parameters reduces from four to three. The same situation happens if one
of the two free phases is fixed. Thus, in some of these cases a sum rule for cos δ can be
derived.

In the case when the group Ge = Zn, n > 2 or Zn × Zm, n,m ≥ 2 and Gν is fully
broken, we consider the following forms of the matrix Uν ,

(iv) Uν = U12(θ
ν
12, δ

ν
12)U13(23)(θ

ν
13(23), δ

ν
13(23))Q0 ,

(v) Uν = U23(θ
ν
23, δ

ν
23)U12(13)(θ

ν
12(13), δ

ν
12(13))Q0 ,

(vi) Uν = U13(θ
ν
13, δ

ν
13)U12(23)(θ

ν
12(23), δ

ν
12(23))Q0 ,

which correspond, respectively, to cases E1 (E2), E3 (E4) and E5 (E6) of Section 2.7. For
these forms, we choose for convenience:

(iv) U◦(θ◦12, θ◦13, θ◦23, δ◦12) = R23(θ
◦
23)R13(θ

◦
13)U12(θ

◦
12, δ

◦
12) ,

(v) U◦(θ◦12, θ◦13, θ◦23, δ◦23) = R13(θ
◦
13)R12(θ

◦
12)U23(θ

◦
23, δ

◦
23) ,



168 Appendix D. Parametrisations of the PMNS matrix for fully broken Ge or Gν

Table D.1. Parametrisations of the PMNS matrix U in the case of fully broken Ge (Gν) and
Gν = Zn, n > 2 or Zn ×Zm, n,m ≥ 2 (Ge = Zn, n > 2 or Zn ×Zm, n,m ≥ 2), when the matrix
Ue (Uν) has particular forms.

Case Parametrisation of the PMNS matrix U

D1 (D2) U23(13)(θ
e
23(13), δ

e
23(13))R12(θ̂12)P1(δ̂)R23(θ

◦
23)R13(θ

◦
13)Q0

D3 (D4) U12(13)(θ
e
12(13), δ

e
12(13))R23(θ̂23)P2(δ̂)R13(θ

◦
13)R12(θ

◦
12)Q0

D5 (D6) U23(12)(θ
e
23(12), δ

e
23(12))R13(θ̂13)P1(δ̂)R23(θ

◦
23)R12(θ

◦
12)Q0

E1 (E2) R23(θ
◦
23)R13(θ

◦
13)P1(δ̂)R12(θ̂12)U13(23)(θ

ν
13(23), δ

ν
13(23))Q0

E3 (E4) R13(θ
◦
13)R12(θ

◦
12)P2(δ̂)R23(θ̂23)U12(13)(θ

ν
12(13), δ

ν
12(13))Q0

E5 (E6) R23(θ
◦
23)R12(θ

◦
12)P1(δ̂)R13(θ̂13)U12(23)(θ

ν
12(23), δ

ν
12(23))Q0

(vi) U◦(θ◦12, θ◦13, θ◦23, δ◦13) = R23(θ
◦
23)R12(θ

◦
12)U13(θ

◦
13, δ

◦
13) .

The parametrisations of U in (iv), (v) and (vi) presented in Table D.1 have been obtained
making use of eqs. (C.6)–(C.8). The angles θνij , θ̂ij and the phases δνij , δ̂ are free parameters.
It can be seen from Table D.1 that if one of the fixed angles turns out to be zero, the
number of free parameters reduces from four to three. The same situation happens if one
of the two free phases is fixed. Thus, in some of these cases a sum rule for cos δ can be
derived.



Appendix E

Results for Gf = A5 and generalised
CP symmetry

Models with A5 and generalised CP symmetry have been recently developed by several
authors [128–130]. We show that our results for the symmetry group A5 under the same
assumptions of [130] and the same breaking patterns reduce to the one derived in [130]. The
results in eqs. (10), (11), (12) and (14) in [130] lead to the following phenomenologically
viable cases:

(I) U = diag(1, i,−i)R23(θ
◦
23)R12(θ

◦
12) diag(1,−i, i)R13(θ

ν
13) for (Ge, Gν) = (Z3, Z2) ,

(II) U = diag(1, i,−i)R23(θ
◦
23)R12(θ

◦
12) diag(1,−i, i)R13(θ

ν
13) for (Ge, Gν) = (Z5, Z2) ,

(III) U = diag(1, 1,−1)R23(θ
◦
23)R12(θ

◦
12) diag(1, 1,−1)R13(θ

ν
13) for (Ge, Gν) = (Z5, Z2) ,

(IV) U = R13(θ
◦
13)R12(θ

◦
12)R23(θ

◦
23) diag(1, 1,−1)R23(θ

ν
23) for (Ge, Gν) = (Z2 × Z2, Z2) ,

where we have in

(I) θ◦12 = sin−1(1/
√

3) and θ◦23 = −π/4 ,

(II) θ◦12 = sin−1(1/
√

2 + r) and θ◦23 = −π/4 ,

(III) θ◦12 = sin−1(1/
√

2 + r) and θ◦23 = −π/4 ,

(IV) θ◦12 = sin−1(1/(2r)), θ◦13 = sin−1(1/
√

2 + r) and θ◦23 = sin−1(r/
√

2 + r) .

Using (sin2 θ◦12, sin
2 θ◦13, sin

2 θ◦23) = (1/3, 0, 1/2) in case I, the results in eqs. (2.41)–(2.43),
after defining θ̂13 = θν13 = θ and setting δ̂13 = δν13 = π/2, reduce to

sin2 θ13 =
2

3
sin2 θ , sin2 θ12 =

1

3− 2 sin2 θ
, sin2 θ23 =

1

2
and cos δ = 0 .

Denoting θ̂13 = θν13 = θ and setting δ̂13 = δν13 = π/2 in case II, the results in eqs. (2.41)–
(2.43) reduce to

sin2 θ13 =
sin2 θ

1 + (1− r)2
, sin2 θ12 =

1

1 + r2 cos2 θ
, sin2 θ23 =

1

2
and cos δ = 0 .

The difference between case III and case II consists only in the phase δ̂13 which now is
equal to π, δ̂13 = δν13 = π. Therefore, while sin2 θ13 and sin2 θ12 remain unchanged, we find

sin2 θ23 =
1

2

(sin θ −
√

1 + r2 cos θ)2

1 + r2 cos2 θ
and | cos δ| = 1 .
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Finally, in case IV, from eqs. (2.49)–(2.51), defining θ̂23 = θ◦23 − θν23 = θ◦23 − θ and δ̂23 = 0,
we get:

sin2 θ13 =
1 + (1− r)f(θ)

4
, sin2 θ23 =

1 + r(cos2 θ − sin 2θ)

3− (1− r)f(θ)
,

sin2 θ12 =
1 + (1− r)(cos2 θ + sin 2θ)

3− (1− r)f(θ)
and | cos δ| = 1 ,

where f(θ) = (sin2 θ − sin 2θ). Therefore, the general results derived in subsections 2.3.1
and 2.3.2 with the choices as in (I), (II), (III) and (IV) and the additional restriction of
the parameters due to the presence of a generalised CP symmetry allow one to find the
formulae derived in [130].



Appendix F

Statistical details

In order to perform a statistical analysis of the considered cases, we construct the χ2

function in the following way:

χ2(sin2 θ12, sin
2 θ13, sin

2 θ23, δ) = χ2
1(sin

2 θ12) + χ2
2(sin

2 θ13) + χ2
3(sin

2 θ23) + χ2
4(δ) , (F.1)

in which we have neglected the correlations among the oscillation parameters, since the
functions χ2

i are the one-dimensional projections taken from [18]. In order to quantify the
accuracy of our approximation, we show in Fig. F.1 the confidence regions at 1σ, 2σ and
3σ for one degree of freedom in the planes (sin2 θ23, δ), (sin2 θ13, δ) and (sin2 θ23, sin

2 θ13)
in blue (dashed lines), purple (solid lines) and light-purple (dash-dotted lines) for the NO
(IO) neutrino mass spectrum, respectively, obtained using eq. (F.1). The parameters not
shown in the plot have been marginalised. It should be noted that what is also used in
the literature is the Gaussian approximation, in which χ2 can be simplified using the best
fit values and the 1σ uncertainties as follows:

χ2
G =

4∑
i=1

(xi − xi)2

σ2
xi

. (F.2)

Here ~x = (sin2 θ12, sin
2 θ13, sin

2 θ23, δ), xi and σxi being the best fit values and the 1σ
uncertainties43 taken from [18]. We present in Fig. F.2 the results of a similar two-
dimensional analysis for the C.L. regions in the planes shown in Fig. F.1, but using the
approximation for χ2 given in eq. (F.2). It follows from these figures that the Gaussian
approximation does not allow to reproduce the confidence regions given in ref. [18] with
sufficiently good accuracy. For this reason in our analysis we use the more accurate
procedure defined through eq. (F.1). In both figures the best fit points are indicated with
a cross and an asterisk for the NO and IO spectra, respectively.

Each symmetry form considered in our analysis, which we label with an index m,
depends on a set of parameters ymj , which are related to the standard oscillation parameters
through expressions of the form xi = xmi (ymj ). In order to produce the one-dimensional
figures we minimise

χ2
({
xmi (ymj )

})
=

4∑
i=1

χ2
i

(
xmi (ymj )

)
(F.3)

for a fixed value of the corresponding observable α, i.e.,

χ2(α) = min
[
χ2
({
xmi (ymj )

}) ∣∣
α=const

]
, (F.4)

with α = {δ, JCP, sin
2 θ23}.

43In the case of asymmetric errors we take the mean value of the two errors.



172 Appendix F. Statistical details

++
**

0.3 0.4 0.5 0.6 0.7
0

Π

2

Π

3 Π

2

2 Π

sin2Θ23

∆

++
**

0 0.01 0.02 0.03 0.04 0.05 0.06
0

Π

2

Π

3 Π

2

2 Π

sin2Θ13
∆

++ **

0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

0.06

sin2Θ23

si
n2 Θ 1

3

Figure F.1. Confidence regions at 1σ, 2σ and 3σ for one degree of freedom in the planes
(sin2 θ23, δ), (sin2 θ13, δ) and (sin2 θ23, sin

2 θ13) in blue (dashed lines), purple (solid lines) and
light-purple (dash-dotted lines) for the NO (IO) neutrino mass spectrum, respectively, obtained
using eq. (F.1). The best fit points are indicated with a cross and an asterisk for the NO and IO
spectra, respectively.
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Figure F.2. The same as in Fig. F.1, but using the Gaussian approximation given in eq. (F.2).

The likelihood function for cos δ is computed as follows:

L(cos δ) = exp

(
−χ

2(cos δ)

2

)
. (F.5)

We use this procedure to produce the likelihood functions for the different symmetry
forms in the case of the analysis based on the current knowledge of the neutrino mixing
parameters.

In the case of the analysis with the prospective uncertainties in the determination of
the neutrino mixing angles, we make use of the Gaussian approximation. Namely, in this
case, we construct the χ2 function as

χ2
G,future =

3∑
i=1

(zi − zi)2

σ2
zi

, (F.6)

where ~z = (sin2 θ12, sin
2 θ13, sin

2 θ23), zi are the potential best fit values of the indicated
mixing parameters and σzi are the prospective 1σ uncertainties in the determination
of these mixing parameters. We use the following prospective relative 1σ uncertainties:
(i) 0.7% on sin2 θ12 from the JUNO experiment [156, 157]), (ii) 3% on sin2 θ13 derived
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from an expected error on sin2 2θ13 of 3% from the Daya Bay experiment [158–160]) and
(iii) 5% on sin2 θ23 expected to be reached in the NOνA and T2K experiments [158]. The
corresponding likelihood function is constructed as in eq. (F.5), where instead of χ2(cos δ)
the χ2

G,future function minimised for a given value of cos δ is used.





Appendix G

Results for the atmospheric angle

For completeness, in Figs. G.1 and G.2 we give Nσ ≡
√
χ2 as a function of sin2 θ23 in cases

B1 and B2 of Chapter 3. We recall that these cases are characterised by the following
parametrisations of the PMNS natrix U :

(B1) U = R12(θ
e
12)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 ,
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Figure G.1. Nσ ≡
√
χ2 as a function of sin2 θ23. The dashed lines represent the results of the

global fit [18], while the solid lines represent the results we obtain for the TBM, BM (LC), GRA,
GRB and HG symmetry forms of the matrix Ũν in case B1. The blue (red) lines are for the NO
(IO) neutrino mass spectrum.
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Figure G.2. The same as in Fig. G.1, but for case B2.

(B2) U = R13(θ
e
13)R23(θ

e
23) ΨR23(θ

ν
23)R12(θ

ν
12)Q0 .

For a given symmetry form of the matrix Ũν = R23(θ
ν
23)R12(θ

ν
12), i.e., the TBM, BM

(LC), GRA, GRB or HG form, we minimise the χ2 function for a fixed value of sin2 θ23 as
explained in Appendix F.



Appendix H

Likelihood functions for cos δ

In subsection 3.7.1, results for the TBM, GRA, GRB, HG and BM mixing schemes were
presented without taking the RG corrections into account. However, therein the likelihood
functions for cos δ and not for δ have been presented (see Fig. 3.1). For better comparison
with these results we include in the present appendix Figs. H.1–H.5 (Figs. H.6–H.9) with
the likelihood functions for cos δ in the case of non-zero (zero) θe23.
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Figure H.1. Likelihood function vs. cos δ in the case of non-zero θe23 for the TBM symmetry
form of the matrix Ũν in all the set-ups considered. The dotted line stands for likelihood extracted
from the global analysis in [162]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure H.2. The same as in Fig. H.1, but for the GRA symmetry form of the matrix Ũν .
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Figure H.3. The same as in Fig. H.1, but for the GRB symmetry form of the matrix Ũν .
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Figure H.4. The same as in Fig. H.1, but for the HG symmetry form of the matrix Ũν .
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Figure H.5. The same as in Fig. H.1, but for the BM symmetry form of the matrix Ũν .
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Figure H.6. Likelihood function vs. cos δ in the case of zero θe23 for the TBM symmetry form
of the matrix Ũν in all the set-ups considered. The dotted line stands for likelihood extracted
from the global analysis in [162]. The blue line is for the SM running, while the green and red
lines are for the running within MSSM with tanβ = 30 and tanβ = 50, respectively.
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Figure H.7. The same as in Fig. H.6, but for the GRA symmetry form of the matrix Ũν .
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Figure H.8. The same as in Fig. H.6, but for the GRB symmetry form of the matrix Ũν .
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Figure H.9. The same as in Fig. H.6, but for the HG symmetry form of the matrix Ũν .
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