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Chapter 1

Introduction and Outline

String theory is a leading candidate for a consistent theory of quantum gravity. It in-

cludes consistent interactions between gauge and gravitational forces and has given us a

rather deep insight on various interconnections between them. The discovery of D-branes

in 1995 [5], eventually led to the celebrated AdS/CFT correspondence [6], or more generally

the gauge/gravity duality. This correspondence is a conjectured equivalence between two

seemingly different theories: a quantum field theory living in d dimensional space and its

‘dual’ theory of quantum gravity living in (d+1) dimensions. By now, there are several well

studied examples that give rather strong evidence in favour of this duality. In this chapter,

we give a quick tour of some key features of AdS/CFT correspondence supplementing it

with well studied examples.

Quantitatively, the AdS/CFT correspondence is a statement about the generating func-

tional of a quantum field theory and its dual theory of quantum gravity. The complete

knowledge of the generating functional allows us to know all that there is to know about a

given theory. In its strongest form, the AdS/CFT correspondence states that

ZQFT = ZGrav . (1.1)

In general, it is very hard to evaluate the generating functional of a given theory in full

detail. However, there might be regions in parameter space where it is possible to explicitly

evaluate the generating functional using certain approximations. In what follows we give

two concrete examples of the AdS/CFT correspondence and in each case identify a regime

where the partition function on either side of (1.1) can be explicitly evaluated.

1.1 N = 4 SYM / AdS5 × S5 duality

One the most thoroughly studied examples of the AdS/CFT duality is that of the maximally

superconformalN = 4 super Yang-Mills (SYM) in 4 dimensions with gauge group U(N) and

Type IIB string theory on AdS5 × S5 with N units of five-form flux threading through the
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S5 [6]. By now this duality has become the canonical example of AdS/CFT correspondence.

At the heart of this conjecture lies the dual nature of D-branes, which itself is related to

the open/close string duality. In the context of perturbative open string theory, a D-brane

can be pictured as a hyperplane on which open strings end. The massless excitations of

the open strings ending on the brane defines a gauge theory whose dynamics takes place on

the brane world-volume. In another description, D-branes are non-perturbative states of

the closed string spectrum. Their tension scales as 1/gs where gs is the string coupling and

at low energy they are described by soliton-like solutions of the corresponding supergravity

equations of motion. The N = 4, SYM / AdS5×S5 conjecture is motivated by the following

line of reasoning (see [6] for the original argument and [7] and [8] for reviews). Consider

Type IIB string theory in R1,9 in presence of N parallel D3 branes. Taking the limit α′ → 0

(where
√
α′ is the characteristic string length) and keeping fixed the string coupling gs

and N along with all physical scales, the open string description of D3-branes give rise

to two decoupled systems: the N = 4, U(N) super Yang-Mills in R1,3 and free Type IIB

supergravity in R1,9. In the same limit, the closed string description also gives rise to two

decoupled systems: the full Type IIB superstring theory on AdS5 × S5 and free Type IIB

supergravity in R1,9. Since the free Type IIB supergravity appears in both the descriptions

it is natural to identity N = 4 U(N) super Yang-Mills in 3 + 1 dimensions with Type IIB

superstring theory on AdS5 × S5. The aforementioned limit is known as the Maldacena

limit or more commonly the decoupling limit.

One of the key features of this correspondence is that the group of symmetries on both

the sides of the duality match. Global symmetries of the field theory are translated into

large gauge transformations in the bulk theory that leave the background invariant. In the

N = 4 SYM / AdS5 × S5 duality, the group of symmetries is the maximal superconformal

group in four dimensions PSU(2, 2|4). All operators/states on either side of the duality lie

in some unitary representation of this group. One of the statements of AdS/CFT is that

there is a one-to-one correspondence between gauge invariant operators in N = 4 SYM

and the spectrum of Type IIB superstring theory on AdS5×S5. This statement is nothing

but an isomorphism between representations; indeed one can think of AdS/CFT as a map

between representations of the group of symmetries.

The N = 4 theory contains the following fundamental fields: a gauge field Aµ, 6 real

scalars Φi, and 4 Weyl fermions λa, each in the adjoint representation of the gauge group

U(N). The theory also has an SU(4) R-symmetry that acts as an automorphism on the

supercharges. The 4 fermions transform in the fundamental representation of SU(4) whereas

the scalars transform as a 6. There are two dimensionless parameters in the gauge theory:

the Yang-Mill’s coupling gYM and the rank of the gauge group N . On the gravity side,

we have (in the bosonic sector) the metric gµν , the axio-dilaton τ = C0 + ie−φ, the NSNS

two-form B2 and the RR forms C2 and C4. The theory is characterized by the dimensionless

string coupling gs and two dimensionful parameters: the string scale α′ and the length scale
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L of AdS (which is given by L4 = 4πgsN(α′)2 and is the same as the radius of S5). The

SU(2, 2) ≈ SO(2, 4) conformal symmetry of the CFT is realized as isometry group of AdS5

whereas the global SU(4) R-symmetry is realized as the group of isometries of S5. The string

scale and the AdS length scale can be combined into a dimensionless quantity, the string

tension T = L2/(2πα′). The AdS/CFT dictionary is then governed by two fundamental

relations

g2
YM = 4πgs , T =

1

2π

√
λ , (1.2)

where λ is the ’t Hooft coupling, λ = g2
YMN .

In the perturbative regime gYM → 0, the N = 4 theory admits a perturbative expansion

that can be written as a sum over 2D surfaces of different topologies, weighted by a factor

of N2−2g, where g is the genus of a surface which is defined by the possibility of drawing

a vacuum diagram on it without self-intersections. Consequently, the leading contribution

comes from planar diagrams only, and surface of higher genus contribute only at subleading

order in 1/N . On the other side, the closed string path-integral also admits a similar genus

expansion where the expansion parameter is the string coupling gs. However, type IIB

string theory on AdS5 × S5 and RR background is quantitatively intractable for arbitrary

values of the string coupling and tension. Therefore, we take the classical limit where gs → 0

(hence, no genus expansion) with T held fixed. In this regime, string theory becomes non-

interacting. Since we are keeping T fixed, we have to send N → ∞. In this regime, the

gauge theory partition function gets contribution only from planar diagrams. However,

contrary to flat space, it is difficult to study even classical string theory on AdS5 × S5.

So we further take the low energy limit in which we send T → ∞ (or effectively small α′

with respect to the AdS length squared L2). This brings us to the so-called supergravity

approximation. In this limit, the characteristic length scale of the space is very large. So

we can replace all the complications arising because of the stringy nature (α′ effects) with a

point particle. On the field theory side this corresponds to λ→∞ and brings N = 4 SYM

at strong t’Hooft coupling.

In the supergravity approximation, we get the weaker form of the AdS/CFT correspon-

dence which states:〈
exp

(∫
d4x J(x)O(x)

)〉
QFT

= exp (−SSUGRA[φ(z, x)|z→0 ∼ J(x)]) , (1.3)

where the x’s are the four coordinates on which the QFT lives and z is the fifth radial

dimension which foliates the AdS5 into 4D Poincaré slices. We have choosen a coordinate

system where z = 0 marks the conformal boundary of AdS5. In the left side of (1.3) we

have a local operator O belonging to the spectrum of gauge invariant operators in N = 4

SYM along with a non-zero source J(x) turned on. In the right side of (1.3) we have

(as a consequence of saddle-point approximation) SSUGRA, the on-shell action of type IIB

supergravity written as a functional of the asymptotic value of the supergravity field φ(z, x).
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The asymptotic (small z) value of φ is identified with the source J of the operator O and

we say that O and φ are dual to each other. We identify what field is dual to what gauge

invariant operator by looking at their quantum numbers under the group of symmetries.

As already mentioned, there is an isomorphism between the set of all gauge invariant

operators in the N = 4 SYM and states in type IIB theory on AdS5 × S5. We now

shed some more light on this isomorphism. Since all fundamental fields are in the adjoint

representation of SU(N) (the U(1) part of the full U(N) gauge group can be disregarded

in the large N limit), gauge invariant operators can be constructed by taking trace over

the SU(N) indices of (finite) product of fundamental fields. Hence, local gauge invariant

operators in the N = 4 theory organize into single-trace and multi-trace operators:

tr [Φ1 . . .Φn] , tr [Φ1 . . .Φn]tr [Φ1 . . .Φm] , . . . (1.4)

In the large N limit, with the ’t Hooft coupling λ kept finite, correlation functions of single

trace operators factorize into products of two-point functions. The limit can therefore be

interpreted as a classical one albeit different from the usual free field theory limit gYM → 0.

Moreover, insertions of multiple-trace operators in the correlation functions are suppressed

in this limit. The set of protected single-trace and multi-trace operators are respectively dual

to single- and multi-particle states in AdS5. There also exists unprotected operators (e.g.

Konishi operator tr ΦiΦi) which are dual to massive string modes of type IIB. Correlation

functions between local operators at strong ’t Hooft coupling can be calculated in terms of

the supergravity data from the AdS/CFT prescription specified in (1.3).

Apart from local operators, there are also non-local gauge invariant operators in the

spectrum of N = 4 SYM. These are line operators (like the Wilson loop, ’t Hooft loop or

the dyonic Wilson-’t Hooft loop) surface operators (characterized by singular field config-

urations of SYM fields) and three dimensional defects (which are characterized by varying

spatial profile for the gauge coupling). The set of non-local operators can be holographically

captured by strings and D-branes or supergravity solutions of the Janus type.

Finally, the N = 4 theory admits an SL(2,Z) Montonen-Olive duality symmetry which

acts on the complexified gauge coupling τ as a modular transformation. The Wilson loop

is dual to the ’t Hooft loop under SL(2,Z) duality. On the gravity side this maps to the

S-duality symmetry which acts on the axio-dilaton in exactly the same way, transforms

the NSNS field B2 and RR field C2 together but leaves the metric and the five-form flux

invariant.

Other extensions

The AdS/CFT correspondence, stemming from the N = 4 SYM / AdS5 × S5 duality has

been extended to cases with lesser supersymmetries. A class of well studied holographic

duality is obtained when considering D-branes at toric Calabi-Yau singularities. These are
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real cones over five-dimensional Sasaki-Einstein manifolds X5 admitting at least a U(1)3

isometry. In the decoupling limit, one gets a duality between type IIB string theory on

AdS5 ×X5 and a quiver gauge theory, a gauge theory involving several gauge groups and

charged matter fields in diverse representations.

The simplest of such examples are orbifolds of R6, first considered by Kachru and Sil-

verstein in [9]. In this case, the duality is between the gauge theory obtained by orbifolding

the N = 4 SYM by a discrete subgroup Γ of the SU(4) R-symmetry and type IIB theory

on AdS5×S5/Γ. This was later generalized to more general singularities, giving a plethora

of new AdS/CFT dual pairs. A prototypical example is the N = 1 conifold theory, for

which X5 = (SU(2)× SU(2)) /U(1), originally proposed by Klebanov and Witten in [10].

We defer to references [11–13] for reviews.

Whenever the Calabi-Yau cone differs from the maximally symmetric case, i.e. X5 =

S5, the conical singularity is a true metric singularity, and this implies that there exist

topologically non-trivial two- and three-cycles collapsing at the tip of the cone. This, in turn,

implies the existence of fractional (as opposed to regular) D-branes in the string spectrum,

open string theories whose low energy effective dynamics is a non-conformal gauge theory.

Considering combinations of regular and fractional branes at the tip of Calabi-Yau cones,

the AdS/CFT duality has then also been extended to non-conformal settings, some of which

we will consider in the present thesis.

AdS/CFT dual pairs have also been obtained in different dimensions. Two well studied

examples are that of conformal field theories describing low energy dynamics of stacks of

M2 and M5 branes and M-theory on AdS4 × S7 and AdS7 × S4, respectively. Again, also

in these cases, the possibility of obtaining dual pairs with less supersymmetry and with

broken conformal invariance has also been investigated.

1.2 Vector model / Higher spin duality

We now discuss a completely separate class of examples of AdS/CFT that do not necessarily

have a stringy origin. In the theories discussed in the previous section, the fundamental

degrees of freedom in the CFT were matrices. There are another class of theories where

the fundamental degrees of freedom are vectors, instead. The simplest example of this class

is the O(N) vector model which consists of N scalars transforming in the fundamental

representation of O(N). The simplest such O(N) invariant theory is the free theory

S =
1

2

∫
d3x

N∑
a=1

(∂µφ
a)2 . (1.5)

It was first conjectured in [14] that the singlet sector of the O(N) model in three dimensions

is dual to the theory of bosonic higher-spin gravity in AdS4 provided we identify the coupling

constant in the higher spin theory as G ∼ 1/N (this is because the dynamical fields in the
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dual CFT are N -component vector fields rather than N × N matrices). Being free, this

theory contains a tower of higher-spin O(N) singlet conserved currents

J(µ1···µs) = φa∂(µ1
· · · ∂µs)φ

a + . . . . (1.6)

The singlet condition picks those conserved currents which have even spins only1. For s = 0

we have an O(N) singlet scalar operator of dimension 1. For other even values of s we get

O(N) singlet conserved currents of dimension s+ 1. Since we are truncating the spectrum

of O(N) vector model to the singlet sector, it is meaningful to distinguish between “single-

trace” and “multi-trace” operators. In the context of vector-like theories, “single-trace”

means there is single sum over the O(N) indices. These are the analogue of single-trace

operators in matrix field theories. O(N) invariant operators containing more than two

scalar fields are the analogue of the multi-trace operators. For example an operator of the

form (φa∂s1φa)(φb∂s2φb) should be viewed as a double-trace operator.

In this non-supersymmetric AdS/CFT duality, the spectrum of O(N) singlet single-trace

operators (1.6) is expected to be in one-to-one correspondence with the spectrum of single

particle states in AdS4. These are massless higher-spin gauge fields (with even spins) in

AdS4 and a scalar of mass squared m2 = −2. The scalar2 is dual to the singlet J = φaφa

and the higher spin gauge field is dual to the higher spin conserved currents. The mass

of the scalar happens to fall in the double quantization range −9/2 ≤ m2 < −5/2 where

both the leading and the sub-leading mode are normalizable and we can choose to set either

one of them to zero thereby resulting in regular/irregular quantization. As we will see in

section 1.3.2, for a scalar of m2 = −2 in AdS4, regular quantization leads to an operator

of dimension two whereas irregular quantization leads to an operator of dimension one.

Hence, for the free O(N) vector model, the dual gravitational theory must contain a scalar

of m2 = −2 and be quantized with irregular boundary condition. The massless higher-spin

gauge fields and the scalar (of the above mass) matches the spectrum of minimal bosonic

Vasiliev higher spin theory in AdS4. The correlation functions of the singlet operators

can be obtained from the bulk action in AdS4 via the usual AdS/CFT prescription where

we identify the boundary value of the fields with source of the dual operators [15]. This

duality has also been tested at the one-loop level by calculating and comparing the one-loop

sphere-partition function on the two sides [16–19].

The duality between free vector model and HS gauge theory can be generalized to the

case of interacting large-N vector models [14]. The free O(N) theory when deformed by a

double-trace operator (φaφa)2, which is relevant in 3 dimensions, flows to a non-trivial IR

fixed point known as the critical O(N) vector model. At this fixed point, the dimension

1Conserved currents with odd value of the spin transforms in the anti-symmetric representation of O(N).
The spin-1 current which corresponds to the global O(N) symmetry is in the adjoint representation and will
form the centre of discussion in appendix D of this thesis.

2A scalar of squared mass m2 = −2 in AdS4 corresponds to a conformally coupled scalar and can therefore
be viewed as a massless field in AdS4.
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of the operator φaφa changes from one to two plus O (1/N) corrections. This can be seen

by studying the two-point function of φaφa in the deep IR (the analysis is given in detail

in section 4.1.1 of chapter 4). The gravity dual of the double-trace deformation is well

known [20–22]. The dual of the O(N) singlet φaφa is a scalar field of same mass as before

but with regular boundary condition (instead of irregular boundary condition as in the free

O(N) model). The critical O(N) vector model is dual to the same Vasiliev theory, but with

a different choice of boundary condition on the bulk scalar field. The higher spin currents

(apart from s = 2 that corresponds to the energy-momentum tensor) are still present in

the spectrum but they are no longer conserved. They are weakly broken ∂ · Js ∝ 1√
N

.

Consequently the anomalous dimensions start at order 1/N , which means that the dual HS

fields remain massless at the tree level, and receive masses through loop corrections. It is

somewhat remarkable to note that the same Lagrangian of HS fields give the holographic

description of two different fixed points; one free, while the other interacting, the only

difference being in the boundary condition of the scalar field.

Another example of a vector-like theory is the free U(N) vector model of complex N -

component scalars. The U(N) singlet spectrum now contains HS currents of all integer spins.

This precisely matches the spectrum of the complete bosonic Vasiliev theory commonly

referred to as Type A Vasiliev theory. Other examples include the theory of N free massless

Dirac fermions (transforming under a global U(N) symmetry) whose U(N) singlet sector is

conjectured to be dual to Type B Vasiliev theory and the theory of N free complex p-form

gauge fields in d = 2p + 2 (having a U(N) global symmetry) whose U(N) singlet sector is

conjectured to be dual to “Type C” Vasiliev theory.

1.3 CFTs on flat space vs. QFTs in AdS Space

In this section, we provide some essential details of CFTs and free QFTs in AdS space,

formulating the AdS/CFT dictionary along the way.

1.3.1 Conformal Field Theories

Conformal Field theories are special class of Quantum field theories that has conformal

symmetry. The Conformal group of R1,d−1 consists of the usual Poincaré transformations,

xµ → Λµνxν+aµ, accompanied by scaling, xµ → λxµ and special conformal transformations,

xµ → xµ + bµx2

1 + 2b · x+ b2x2
. (1.7)

which can be thought of as an inversion, xµ → xµ/x2, followed by a translation by bµ

followed by another inversion. Here, Λµν is the general Lorentz transformation matrix,

containing d(d − 1)/2 generators, aµ are the independent translations along the d coordi-

nates, λ is scaling parameter, and bµ is a fixed d-vector. In total there are (d+ 1)(d+ 2)/2
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generators3 that constitute the SO(d, 2) algebra. We denote these generators by Mµν for

Lorentz transformations, Pµ for translations, D for dilations and Kµ for special conformal

transformations. These generators obey the following algebra

[D,Pµ] = −iPµ
[D,Kµ] = −i(−Kµ)

[Mµν , Pρ] = −i (ηνρPµ − ηµρPν)

[Mµν ,Kρ] = −i (ηνρKµ − ηµρKν)

[Pµ,Kν ] = −i (2ηµνD + 2Mµν)

[Mµν ,Mρσ] = −i (ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) (1.8)

with the remaining commutators being zero. The first two commutation relations imply that

the generators Pµ and Kµ have eigenvalues +1 and −1 respectively, under dilatations. Mµν

has eigenvalue zero. The third and the fourth relations imply that both Pµ andKµ transform

as a vector under Lorentz transformations. The last relations is the usual commutator of

Lorentz generators. This algebra is isomorphic to the algebra of SO(d, 2), and can be

recast in the standard form of the SO(d, 2) algebra (with signature (−,−,+, ...,+)) with

generators Sab, (a, b = −1, 0, 1, ..., d) by defining

Sµν = Mµν , Sµd =
1

2
(Pµ −Kµ) , Sµ,−1 =

1

2
(Pµ +Kµ) , S−1,d = D . (1.9)

where µ, ν = 0, 1, ..., d − 1. All operators in a CFT lie in some unitary representation of

the conformal group. Since we are interested in unitary representations, we take all the

generators of the conformal algebra to be Hermitian (note that this is compatible with the

commutation relations). Representations of the conformal group are labelled by representa-

tions under the maximal compact subgroup SO(d)×SO(2). Therefore, states are classified

by

[D,O(0)] = −i∆O(0) , (1.10)

and representations under SO(d) generated by Mµν which are labelled by
[
d
2

]
eigenvalues of

the Cartan generators of SO(d). Translations Pµ raise ∆ by one unit and special conformal

transformations Kµ lower ∆ by one unit. Unitary representations are obtained by studying

bounds on the eigenvalues ∆ of operators under dilatations D. Every unitary representation

has an operator of minimal conformal dimension ∆. Therefore, each representation of

the conformal group must have some operator of lowest dimension, which must then be

annihilated by Kµ. Such operators are called primary operators. Starting from primary

operators one can act with Pµ in all possible ways and construct a tower of descendants

of increasing dimension and varying spins. For scalar primaries O, the general structure of

3 d = 2 is a special case where the conformal group is larger, and is in fact infinite dimensional.
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the corresponding descendants take the following form

∂µ1 ...∂µl2
nO . (1.11)

Such a descendant has spin l and conformal dimension

∆O + l + 2n .

A primary operator O along with all its descendants forms a representation of SO(d, 2) and

is called a conformal family or a conformal multiplet.

In passing, we remark that it is often useful to study CFTs in Euclidean space Rd. In

this case the conformal group is SO(d+1, 1). The generators of SO(d+1, 1) can be obtained

from the generators of SO(d, 2) by the following relations [23]

M ′pq = Spq , D′ = iS−1,0 , P ′p = Sp,−1 + iSp,0 , K ′p = Sp,−1 − iSp,0 , (1.12)

where p, q = 1, 2, ..., d. The commutation relations of these operators are those of the

generators of the Euclidean conformal group SO(d+ 1, 1) (with signature (−,+,+, ...,+)).

However, unlike the Lorentzian case, these operators are not Hermitian

M
′†
pq = M ′pq , D

′† = −D′ , P
′†
p = K ′p , K

′†
p = P ′p . (1.13)

An equivalent way to study unitary representation of SO(d, 2) is to study the Wick rotated

Euclideanized theory that has symmetry group SO(d+ 1, 1) implemented in a non-unitary

fashion (1.13).

Unitarity restricts the conformal dimensions of primary operators from below. For

scalars the unitarity bound is (d − 2)/2 and is saturated by a free field satisfying the

Klein-Gordon equation 2O = 0. For operators that are spinors the bound is (d − 1)/2

and is saturated by operators satisfying the free Dirac equation γµ∂µO = 0. For spin-

one operators the bound it d − 1. This bound is not saturated by free gauge fields. The

point is that a gauge field by itself is not a gauge invariant operator and so it does not act

on positively normed Hilbert space. The operator that saturates this bound is instead a

conserved current Jµ : ∂µJµ = 0 and indeed this can be seen by noticing that the conserved

charge Q =
∫
dd−1x J0 is dimensionless which implies the dimension of Jµ is d− 1.

Conformal symmetry puts strong constraints on correlation functions of primary oper-

ators. For scalars operators the form is

〈O∆1(x)O∆2(0)〉 =
δ∆1∆2

|x|∆1+∆2
(1.14)

which implies that if ∆1 6= ∆2 the two-point function vanishes. Note that from scale invari-

ance the two-point function would have been 1
|x|∆1+∆2

. It is because of the full conformal
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symmetry that we have a Kronecker delta in (1.14). Three-point functions are also fixed

upto an overall constant

〈O∆1(x)O∆2(y)O∆3(z)〉 =
C∆1∆2∆3

|x− y|∆1+∆2−∆3 |y − z|∆2+∆3−∆1 |z − x|∆1+∆3−∆2
. (1.15)

The constant C∆1∆2∆3 is an operator product expansion (OPE) coefficient. It appears as the

coefficient of O∆i in the OPE of O∆j and O∆k
(i, j, k = 1, 2, 3 but all distinct). Four-point

functions are determined upto a function of the conformally invariant cross-ratios built out

of the four insertion points. A CFT can be specified by a set of operators labelled by their

SO(d, 2) quantum numbers (conformal dimension and spins) and the OPE coefficients. This

constitutes what is often called the CFT data.

1.3.2 Quantum Field Theories in AdS

We now look at QFTs in Anti-de Sitter (AdS) space. AdS is one of the maximally sym-

metric space4 which have a Riemann tensor proportional to the metric, i.e. Rµνρσ =

− 1
L2 (gµρgνσ − gµσgνρ). The AdS space is a solution of Einstein’s field equations with a

negative cosmological constant term in Einstein’s theory of General Relativity, described

by the Einstein-Hilbert action,

SEH =
1

2κ2
d+1

∫
dd+1x

√
|g| (R− 2Λ) , (1.16)

where g = det gµν is the determinant of the metric, R is the Ricci scalar, κd+1 is related

to the (d+ 1)-dimensional Newton’s gravitational constant G as κ2
d+1 = 8πG, and Λ is the

cosmological constant. The field equations that follow from (1.16) are

Rµν −
1

2
gµνR+ Λgµν = 0 . (1.17)

A solution to these equations is the (d+ 1)-dimensional Lorentzian AdS space, which may

be defined as the following hyperboloid embedded in Rd,2

−X2
−1 −X2

0 +X2
1 + ...+X2

d = −L2 . (1.18)

On this space

Rµν = − d

L2
gµν , R = gµνRµν = −d(d+ 1)

L2
, Λ = −d(d− 1)

2L2
, (1.19)

where L is the radius of curvature of AdSd+1. The isometries of AdSd+1 are given by

transformations in the embedding space that leave (1.18) invariant. The group of transfor-

4Maximally symmetric spaces of dimension d are defined as spaces that have maximal number d(d+ 1)/2
of Killing vector fields which generates the symmetry algebra of the space.
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mations that preserves the quadratic form (1.18) is SO(d, 2). Global coordinates on AdSd+1

are defined by making the SO(d) × R part manifest, which corresponds to rotations and

time translations in AdS space. Hence, we set

X2
1 + ...+X2

d = r2 , X2
−1 +X2

0 = L2 + r2 . (1.20)

The first of (1.20) can be solved by

Xi = rΩi , with i = 1, ..., d and
d∑
i=1

Ω2
i = 1 , (1.21)

while the second equation in (1.20) can solved by taking

X−1 =
√
L2 + r2 cos(τ/L) , X0 =

√
L2 + r2 sin(τ/L) . (1.22)

The coordinates (τ, r,Ωi) are called global coordinates and the metric in these coordinates

is given by

ds2 = −
(

1 +
r2

L2

)
dτ2 +

1(
1 + r2

L2

)dr2 + r2dΩd−1 . (1.23)

The range of r is [0,∞) and τ by construction is a periodic coordinate with period 2πL.

However, we can discard the perodicity (since there are propagating fields in AdS that do

not respect this periodicity) and unroll the τ coordinate to take values in R. The metric

(1.23) with τ ∈ R is called the universal covering of AdSd+1. ∂τ is a time-like Killing vector

and corresponds to the generator S0,−1 = 1
2 (P0 +K0).

Another way to parametrize AdS space is through Poincaré coordinates. Here we make

SO(d− 1, 1) symmetry manifest. Therefore, we set

X−1 =
z

2

(
1 +

1

z2

(
L2 + ~x2 − t2

))
,

X0 =
Lt

z
,

Xi =
Lxi

z
, with i = 1, 2, ..., d− 1 ,

Xd =
z

2

(
1 +

1

z2

(
−L2 + ~x2 − t2

))
, (1.24)

where z > 0, ~x ∈ Rd−1 and the boundary is located at z = 0. Unlike global coordinates, the

coordinates (z, t, xi) cover only half of AdS space as can be seen from X−1−Xd = L2/z > 0.

These coordinates are referred to as Poincaré coordinates or Poincaré patch. The metric in

this coordinate system reads

ds2 =
L2

z2

(
dz2 − dt2 + d~x2

)
. (1.25)
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where now the SO(d− 1, 1)× SO(1, 1) symmetry is manifest.

It is useful to also mention the properties of Euclidean AdSd+1 space (also simply known

as hyperbolic space Hd+1). It is given by the hyperboloid

−X2
−1 +X2

0 +X2
1 + ...+X2

d = −L2 , (1.26)

embedded in Rd+1,1. The isometry group of Euclidean AdSd+1 is SO(d+1, 1) as is manifest

from the above quadratic form. We solve this constraint by setting

X2
1 + ...+X2

d = r2 , X2
−1 −X2

0 = L2 + r2 , (1.27)

which can be solved by

Xi = rΩi , with i = 1, ..., d and

d∑
i=1

Ω2
i = 1 ,

X−1 =
√
L2 + r2 cosh(τ/L) , X0 =

√
L2 + r2 sinh(τ/L) . (1.28)

The metric in global coordinates becomes

ds2 =

(
1 +

r2

L2

)
dτ2 +

1(
1 + r2

L2

)dr2 + r2dΩd−1 , (1.29)

which has a Killing vector field ∂τ that corresponds to the generator S0,−1 = iD′. Similarly

the metric in the Poincaré coordinates (now Euclidean coordinates) becomes

ds2 =
L2

z2

(
dz2 + dt2 + d~x2

)
. (1.30)

The Lorentzian τ and t coordinates become the Wick rotated Euclidean time coordinates.

To study the global structure of AdS space we use global coordinates. AdS is a space

of infinite volume. The r = ∞ point is at infinite proper distance from any point in the

interior since the integral
∫∞
r0

dr√
1+r2/L2

diverges. However, radially outgoing light rays can

reach r =∞ in finite global time τ since

ds2 = 0⇒
(

1 +
r2

L2

)
dτ2 =

1(
1 + r2

L2

)dr2 ⇒
∫
dτ =

∫ ∞ dr

1 + r2/L2
= finite . (1.31)

Therefore, it is appropriate to say that r =∞ is an asymptotic boundary in the sense that

we need to specify boundary conditions at r =∞ in order to have well defined τ evolution.

It is often convenient to think of AdS space as a box, in which energy levels (eigenvalues

of the Hamiltonian conjugate to the global time τ) have a discrete spacing. In the next
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section, we demonstrate this by proving the discreteness in the frequency spectrum for the

case of a free scalar in AdS.

The ensuing sections also clarify some basic aspects of the AdS/CFT dictionary.

Free scalar in AdSd+1

Consider a free scalar field φ of squared mass m2 = −d2/4 + ν2, (ν > 0) propagating in

AdSd+1 of unit radius (1.23). It satisfies the Klein-Gordon equation

(
2−m2

)
φ = 0 . (1.32)

We look for solutions of the form φ(τ, r,Ωi) = e−iωτYl(Ω)f(r) where Yl is a spherical har-

monic on Sd−1 satisfying ∆Ωd−1
Yl = −l(l+ d− 2)Yl, with ∆Ωd−1

being the scalar Laplacian

on a (d− 1)-dimensional sphere. Near the boundary (large r) the KG equation (1.32) gets

leading contribution from the following term

1

rd−1
∂r

(
rd+1∂rφ

)
−m2φ = 0 , (1.33)

Assuming φ behaves like φ ∼ rλ near the AdS boundary one gets

λ(λ+ d)−m2 = 0 , ⇒ λ± = −d
2
± 1

2

√
d2 + 4m2 . (1.34)

For stable solutions λ± should be real. This imposes a lower bound on the mass of the

scalar m2 > −d2

4 which is famously known in the literature as the Breitenlohner-Freedman

stability bound. From (1.34) we see that a general solution behaves as φ ∼ rλ+ near the

boundary. However, in general this behaviour is not normalizable. To see this let us expand

the notion of normalizability. The quantization of the scalar field proceeds by expanding

out the field operator in a complete set of normalizable solutions of the wave equation

φ̂(x) =
∑

n

(
φn(x)ân + φ∗n(x)â†n

)
. Given a spacelike surface Σ and a unit normal vector nµ

to Σ, the modes φn satisfy the Klein-Gordon norm∫
Σ
ddx
√
h nµ (φ∗n∂µφm − φm∂µφ∗n) = δm,n . (1.35)

Then, by imposing [an, a
†
m] = δm,n, we satisfy the equal time canonical commutation relation

[φ̂(~x, t),
˙̂
φ(~y, t)] = δ(d)(~x− ~y). For AdSd+1 in global coordinates we have

√
h =

rd√
1 + r2

√
gΩd−1

∼ rd−2 , nt =
1
√
gtt
∼ 1

r
. (1.36)

Therefore, the integrand in (1.35) behaves as rd−3r2λ. Hence, normalizability requires that

d − 3 + 2λ < −1 or ±
√
d2 + 4m2 < 2. From this we see that λ− is always a normalizable
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mode. However, we find that λ+ is normalizable only in the range

−d
2

4
≤ m2 < 1− d2

4
. (1.37)

This range is often referred to as the double quantization window where both the leading

and sub-leading modes are normalizable.

To proceed with obtaining the frequency spectrum we first make a coordinate change

r = tan ρ. This brings the metric into the following form

ds2 = sec2 ρ
(
−dt2 + dz2

)
+ tan2 ρ dΩd−1 . (1.38)

The boundary is then located at ρ = π/2 and the origin at ρ = 0. Changing further the

radial coordinate u = cos ρ, such that the boundary is at u = 0 and the origin is at u = 1,

we get that for generic frequency ω the solution at small u will behave as

φ ∼ ud/2+νφ(+)(ω, l) + ud/2−νφ(−)(ω, l) . (1.39)

The solution of (1.32) which is regular at the origin is given by

f = ud/2−ν
(
1− u2

)l/2
2F1

(
c− ω

2
, c+

ω

2
;
d

2
+ l; 1− u2

)
. (1.40)

Here c = (d + 2l − 2ν)/4. The solutions which are irregular at the origin u = 1 can

be obtained from (1.40) by the replacement l → 2 − d − l. From (1.40) we find that

φ(±)(ω, l) = e−iωτYl (Ω) f±, where

f± = ∓
π csc(πν)Γ

(
d
2 + l

)
Γ(1± ν)Γ

(
1
4(d+ 2l ∓ 2ν − 2ω)

)
Γ
(

1
4(d+ 2l ∓ 2ν + 2ω)

) . (1.41)

Outside the double quantization window, normalizability requires that we set φ(−)(ω, l) = 0

or f− = 0. Since Γ-function has poles at negative integers −n including 0 we get that

f− = 0 implies the following condition on ω

ω = ∆ + l + 2n , (1.42)

provided we identify

∆ =
d

2
+ ν , or conversely m2 = ∆(∆− d) . (1.43)

The formula (1.42) tells us that when we quantize a scalar field we obtain single particle

states of energy ωn,l = ∆ + l + 2n which matches the spectrum of descendents of a scalar

primary operator of conformal dimension ∆. Hence, provided we identify d
2 + ν as the

conformal dimension of the primary operator O, we learn that a quantized scalar field in
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global AdS space along with all its excited states is dual to the conformal multiplet of O.

In particular, descendants are dual to excited states of scalar fields in global AdS.

Figure 1.1 is a plot of the mass/dimension relation (1.43), that gives a pictorial summary

of the relation between various quantizations of the bulk scalar and operator dimensions.

Double Quantization Window 

Standard Quantization only

Below unitarity

BF Bound

U
n
itarity b

o
u
n
d

I II

1 2 3 4
Δ

-4

-3

-2

-1

1

2

m
2
L
2

Figure 1.1: Scalar mass/dimension relation in d = 4. The double quantization window is
the range −4 ≤ m2L2 < −3. Operators in region I have dimension ∆− = 2 − ν (where
ν > 0) and dual scalars are always quantized with alternative quantization. Operators
in region II have dimension ∆+ = 2 + ν and the dual scalars are always quantized with
standard quantization.

For calculation of correlation functions it is often convenient to make use of the Poincaré

coordinate system. Consider the Euclidean AdS in the Poincaré coordinates (1.30). To solve

the KG equation on this metric it is convenient to Fourier transform the scalar field in x

coordinates

φ(z, x) =

∫
ddk

(2π)d
eikxφ(z, k) . (1.44)

After Fourier transforming, the Klein-Gordon equation becomes

z2d
2χ(z, k)

dz2
+ z

dχ(z, k)

dz
−
(
k2z2 + ∆(∆− d) +

d2

4

)
χ(z, k) = 0, (1.45)

where we have defined φ(z, k) = zd/2χ(z, k). This is nothing but the modified Bessel’s

equation which has the general solution

φ(z, k) = zd/2 (Kν(kz)C1(k) + Iν(kz)C2(k)) , ν = ∆− d

2
. (1.46)

15



In the interior of AdS, Iν(kz) blows up so we pick-up only the regular part and set C2 = 0.

The near boundary expansion of this solution is

φ(z, k) ∼
z→0

(φ−(k)z
d
2
−ν + φ+(k)z

d
2

+ν)(1 +O(z2)) , (1.47)

where the leading mode φ− and the subleading mode φ+ are related as

φ+(k) =
Γ(−ν)

Γ(ν)

(
k

2

)2ν

φ−(k) . (1.48)

This is an important relation in calculating correlation functions of dual operators. The

mode φ− is identified as the source for the dual operator. The action of the scalar when

evaluated on the solution takes the form

S =
1

2

∫
dz ddx

(
gµν∂µφ∂νφ+ ∆(∆− d)φ2

)
,

= −1

2

∫
ddx
√
ggzzφ∂zφ|z=ε . (1.49)

Plugging (1.47) in the Fourier transform of the above equation we get following non-zero

terms

S = −1

2

∫
ddk

(2π)d

[
1

ε2ν

(
d

2
− ν
)
φ−(k)φ−(−k) + d φ+(k)φ−(−k)

]
, (1.50)

where the first term is divergent in the limit z → 0. Two-point correlation functions can

now be computed through the AdS/CFT prescription (1.3). We simply differentiate this

action twice with respect to φ−. Since the divergent part is local in the source φ− it will

not contribute to the correlation function at separated points. The non-local information is

contained only in the finite term. The two-point function in momentum space then reads

〈O(k)O(−k)〉 = d
δφ+(k)

δφ−(k)
,

= d
Γ(−ν)

Γ(ν)

(
k

2

)2ν

δd(0) . (1.51)

Upon Fourier transformation, the position space two-point function becomes

〈O(x)O(0)〉 =
d

πd/2
Γ(d2 + ν)

Γ(ν)

1

|x|d+2ν
. (1.52)

This result is almost correct. The normalization factor is slightly inconsistent with Ward

identities due to global symmetries (if any) [24]. This inconsistency can be cured by doing a

proper holographic renormalization [25–27] which also systematically removes the divergent

piece in (1.50) instead of brutally ignoring it. There exists a local covariant counterterm that

cancels the divergence in (1.50) and gives rise to correctly normalized two-point functions.
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The counterterm action is

Sct =
1

2

∫
ddx
√
|γ|
(
(d−∆)φ2 + ...

)
. (1.53)

Consequently, the correctly normalized two-point function is obtained to be

〈O(x)O(0)〉 =
2ν

πd/2
Γ(d2 + ν)

Γ(ν)

1

|x|d+2ν
. (1.54)

Free spin-1/2 field in AdSd+1

A free spin-1/2 field obeys the Dirac equation in any spacetime

(
/∇− |m|

)
Ψ(z, x) = 0 . (1.55)

The information about the metric is in the spin connection inside the covariant derivative.

On the Poincaré patch of AdS, the Dirac operator /∇ takes the following form

/∇ = γd+1z∂z − iz/k −
d

2
γd+1 (1.56)

where we have performed Fourier transformation along the x directions and the vector kµ

is the Fourier transform of i∂µ. γd+1 is the gamma matrix with component along the radial

direction z. We can use γd+1 to project the Dirac equation (1.55) into the following two

coupled equations: (
z∂z − |m| −

d

2

)
Ψ+ − i/kzΨ− = 0 (1.57)(

z∂z + |m| − d

2

)
Ψ− + i/kzΨ+ = 0, (1.58)

where Ψ = Ψ+ + Ψ− with the property that γd+1Ψ+ = Ψ+ and γd+1Ψ− = −Ψ−. This

coupled set of equations can be solved exactly and the solution is:

Ψ+(z, k) = −i/kz(d+1)/2Kν−1(kz)C(k) (1.59)

Ψ−(z, k) = kz(d+1)/2Kν(kz)C(k), (1.60)

where C(k) is an arbitrary smooth spinor that satisfies γd+1C = −C. The full exact solution

is therefore

Ψ(z, k) = z(d+1)/2

(
kKν(kz)− i/kKν−1(kz)

)
C(k) , ν = |m|+ 1

2
, (1.61)

and is regular in the interior of AdS. Since Kν(z) ∼ z−ν for small z, we see that the leading

mode behaves as z
d+1

2
−ν and that Ψ− corresponds to the source of the dual operator O+
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which satisfies γd+1O+ = O+. The scaling behaviour of the leading mode indicates that

Ψ− at the boundary corresponds to a spinor of conformal dimension d+1
2 − ν which in turn

implies that the conformal dimension of O+ is d − d+1
2 + ν. Hence, the mass/dimension

relation of spin 1/2 representations read

∆ =
d− 1

2
+ ν . (1.62)

If the mass term in (1.55) flips, sign then Ψ+ → Ψ− and Ψ− → −Ψ+. In this case

Ψ+ is the leading mode and becomes the source of the dual operator O− which satisfies

γd+1O− = −O−. Therefore, the sign of the mass term in (1.55) is important because it

differentiates two spin-1/2 operators of the same conformal dimension by its γd+1 eigenvalue.

For d = 4, γd+1 is the usual chirality matrix.

Free vector field in AdSd+1

A free vector field of mass m satisfies the following equation

1√
−g

∂ν
(√
−gF νµ

)
−m2Aµ = 0 , (1.63)

which (after gauge fixing Az = 0) can be rewritten as follows

zd+1∂z

(
z−d+3∂zAj

)
+ z4∂i (∂iAj − ∂jAi)−m2z2Aj = 0 . (1.64)

Decompose the gauge field into transverse and longitudinal parts Ai = Ati +∂iA
l, ∂iA

t
i = 0

and construct the following projectors

Al =
∂i
2
Ai, Ati =

(
δij −

∂i∂j
2

)
Aj . (1.65)

Projecting onto the longitudinal and the transverse part we get

zd+1∂z

(
z−d+3∂zA

l
)
−m2z2Al = 0 , (1.66)

zd+1∂z

(
z−d+3∂zA

t
j

)
− z4k2Atj −m2z2Atj = 0 , (1.67)

where we have performed Fourier transformation over the i coordinates. These equations

admit the following exact solution:

Al(z, k) = z
1
2

(d−2−δ)C1(k) + z
1
2

(d−2+δ)C2(k) , (1.68)

Ati(z, k) = z
d
2
−1 (Kν(kz)C3i(k) + Iν(kz)C4i(k)) , ν =

δ

2
. (1.69)
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where C1,2,3,4 are four integration constants that in general depend on k and

δ =
√

(d− 2)2 + 4m2 . (1.70)

Imposing regularity in the interior of AdS sets C2,4 = 0. The asymptotic behaviour of the

transverse part is:

Ati(z, k) ∼ z
1
2

(d−2−δ)C̃3i(k) + z
1
2

(d−2+δ)C̃4i(k) , (1.71)

which is the same as that of the longitudinal part. The leading mode behaves as z
1
2

(d−2−δ).

This indicates that Aµ at the boundary corresponds to a 1-form of conformal dimension

1 + 1
2(d − 2 − δ) = d−δ

2 and couples to an operator of conformal dimension d − d−δ
2 . Thus

the mass/dimension relation for spin-1 representations read

∆ =
1

2

(
d+

√
(d− 2)2 + 4m2

)
. (1.72)

For m = 0 we have ∆ = d− 1 which is the conformal dimension of a conserved current.

Hence, a massless gauge field in the bulk corresponds to a conserved current in the boundary

CFT. If m 6= 0 then we see that the current operator gets an anomalous dimension which

is proportional to the mass of the dual gauge field

∆ = (d− 1) +
m2

d− 2
+O(m4) , ⇒ γJ =

m2

d− 2
+O(m4) . (1.73)

Therefore, in holographic CFTs, anomalous dimensions of spin-1 operators can be equiva-

lently calculated from the mass of the dual gauge field. Anomalous global symmetries in

the boundary CFTs correspond to Higgsing of the corresponding gauge symmetry in the

gravity dual.

1.4 An invitation to the thesis

In this chapter, we have portrayed some universal features of AdS/CFT to show how this

correspondence captures the equivalence between a quantum field theory and its dual theory

of quantum gravity. We have described very few selected topics in this subject that will be

relevant for the rest of the thesis. It is often the case that there exists regions in parameter

space where AdS/CFT correspondence takes the form of a strong / weak duality. In these

cases AdS/CFT turns out to be quite useful because it gives access to strongly coupled

regimes of field theories which otherwise cannot be accessed by usual tools of perturbation

theory.

The rest of the thesis is devoted to studying deformations of the AdS/CFT correspon-

dence in various set-up. In chapter 2, we construct the gravity dual of a strongly coupled

N = 1 superconformal field theory (SCFT) perturbed by a supersymmetric relevant defor-

19



mation. The theory can then either be in a supersymmetry preserving or a supersymmetry

breaking vacuum. If it is in the supersymmetry breaking vacuum, then we expect a Gold-

stino in the spectrum which can be identified by the presence of a massless pole in the

two-point function of the supercurrent. This massless pole manifests as contact terms in

supersymmetry Ward identities. In chapter 2, we derive such Ward identities holographi-

cally and present the fingerprints of the Goldstino.

In chapter 3, we will study supersymmetry breaking aspects of a particularly well known

example where the strong / weak nature of AdS/CFT duality is realized to the extreme. The

field theory model is a non-conformal extension of the well known N = 1 superconformal

Klebanov-Witten (KW) theory [10]. This theory has SU(N) × SU(N) gauge group and

SU(2)× SU(2)× U(1)R global symmetry with bi-fundamental matter carrying non-trivial

representations of the global symmetry. The theory also has an SU(2) × SU(2) invariant

quartic superpotential. The presence of the quartic superpotential is an indication of the

fact that the KW CFT is inherently strongly coupled (since the bi-fundamental matter fields

appearing in the superpotential have acquired order one anomalous dimension). There is

no region in the space of the three couplings (the two gauge coupling and the superpotential

coupling) where the KW CFT admits a perturbative description. The conformal vacuum of

this theory has a gravitational description in terms of type IIB string theory on AdS5×T 1,1,

where T 1,1 is a Sasaki-Einstein manifold with topology S2 × S3.

The non-conformal extension that we previously alluded to is an N = 1 gauge theory

with gauge group SU(N)×SU(N +M), known as the Klebanov-Strassler (KS) theory [28].

This theory has a huge moduli space of supersymmetric vacua [29]. For N = kM , the

moduli space consists of both mesonic and baryonic branches. Instead, for N = kM + p,

with p < M , the baryonic branch is lifted and it was conjectured, by Kachru, Pearson and

Verlinde (KPV) in [30], that for p � M there exists a metastable vacuum on the would-

be baryonic branch. Since the meta-stable state breaks supersymmetry spontaneously, a

Goldstino is expected in the spectrum. As the KS theory is always at strong coupling,

a quantitative investigation for the presence of the Goldstino can be made only through

AdS/CFT or more generally gauge/gravity techniques. In chapter 3, we use the techniques

developed in chapter 2 and prove the existence of the Goldstino in the KPV vacuum by

deriving supersymmetry Ward identities holographically.

In chapter 4, we shift gears and address multi-trace deformations in the context of

AdS/CFT correspondence particularly focusing on the double-trace case. We consider rel-

evant deformations of a CFT by double-trace operators and study the IR fixed point of

the resulting RG flow both from the point of view of field theory and holography. Later

in the chapter, we use double-trace deformations to address the phenomenon of multiplet

recombination where two distinct conformal multiplets in the undeformed CFT merge and

become a single conformal multiplet in the deformed CFT. It is well known that for Higher

Spin operators (s ≥ 1) that undergo multiplet recombination, the holographic counterpart
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of this phenomenon is a generalized Higgs mechanism in AdS. In chapter 4, using double

trace deformations of large-N CFT, we will demonstrate the holographic counterpart of the

s = 0 case, i.e., multiplet recombination for scalar operators. We show that also in this case

a Higgs-like mechanism is at work, albeit of unconventional type, which exists only in AdS

(as it should, if AdS/CFT correspondence were correct).

In the final chapter, we study exactly marginal deformations of a large class of N = 1

SCFTs. In particular, we focus on exactly marginal deformations that break some of the

global symmetries of the SCFT, more specifically on deformations that break the global

symmetry group G down to its Cartan subgroup H. Such deformations are dubbed β-

deformations, and exist for a large class of SCFTs, including N = 4 SYM as well as the

KW theory. The gravity dual of β-deformed theories corresponds to a warped product of

AdS5 and a particular H-preserving deformation of corresponding compact spaces (i.e., S5

in the case of N = 4 SYM and T 1,1 in the case of KW theory). An interesting question

to ask is: What are the conformal dimensions of the spin-one flavour currents which are

no longer conserved in the deformed CFT? One could make an attempt to obtain directly

the masses of the dual gauge fields in AdS5. However, computing the mass spectrum of

the corresponding supergravity theories on such warp product spaces is highly non-trivial.

We will provide a quantitative answer to the above question in a rather simple manner by

using AdS/CFT and constraints from conformal symmetry.

Five appendices contain necessary material to reproduce the main formulae and results

presented in the main text.
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Chapter 2

Spontaneous SUSY breaking in

AdS/CFT

In this chapter, we present a concise treatment of supersymmetry breaking in AdS/CFT

correspondence by means of a concrete bottom-up toy example. For this purpose we take

the model of [31] and rederive their main results from a slightly different route. This will

serve as a warmup for the ensuing chapter where we consider in detail the KPV vacuum

that appears in 4d, N = 1 cascading Klebanov-Strassler gauge theory.

2.1 Field theory description

Let us consider a strongly coupled 4-dimensional N = 1 supersymmetric quantum field

theory described by an RG flow from a UV fixed point deformed by a relevant operator.

Schematically, the action can be written as

S = SSCFT + λ

∫
d4x d2θ O + h.c. , (2.1)

where SSCFT is an N = 1 superconformal field theory and O is chiral operator of dimension

in the range 1 ≤ ∆O < 3. Its operator components are specified as O = OS +
√

2 θOψ +

θ2OF . Strictly speaking, deforming an SCFT with just one operator might not be consistent.

This is because at the quantum level there could be mixing with other relevant operators.

We make the simplifying assumption that there is no such mixing and consider a consistent

deformation with just one relevant operator.

In any supersymmetric quantum field theory there always exists the supercurrent mul-

tiplet which contains the energy-momentum tensor Tµν and the supersymmetry current

Sµα. For non-conformal theories, this multiplet is described by two superfields (Jµ, X) that

satisfy the following on-shell relation

−2D̄α̇σµαα̇Jµ = DαX , (2.2)
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with Jµ a real superfield and X some chiral superfield. On solving the constraint (2.2) we

get

Jµ = jµ + θα
(
Sµα +

1

3
(σµσ̄

ρSρ)α

)
+ θ̄α̇

(
S̄α̇µ +

1

3
εα̇β̇(S̄ρσ̄

ρσµ)β̇

)
+ (θσν θ̄)

(
2Tνµ −

2

3
ηνµT −

1

4
ενµρσ∂

[ρjσ]

)
+
i

2
θ2∂µx̄−

i

2
θ̄2∂µx+ · · ·

∂µTµν = ∂µSµα = 0 , Tµν = Tνµ . (2.3)

The ellipses denote terms with more θs. In the last line we have the conservation law for the

energy-momentum tensor and the supercurrent plus the fact that the energy momentum

tensor is symmetric. In terms of these fields the chiral superfield X is given by

X = x(y) +
√

2θψ(y) + θ2F (y) ,

ψα =

√
2

3
σµαα̇S̄

α̇
µ , F =

2

3
T + i∂µj

µ , (2.4)

In eq. (2.4) we see that X contains the trace of the energy-momentum tensor and the σ-

trace of the supercurrent. Therefore, in a superconformal field theory X vanishes identically.

In a non-conformal theory as in (2.1), the superfield X is non-zero and is sourced by the

operator O as

X =
4

3
(3−∆O)λO . (2.5)

For definiteness we take ∆O = 2 and hence, X = 4
3 λO. For the discussion that follows,

this choice is not particularly important.

The theory can be in a phase where supersymmetry is either preserved or broken, de-

pending on whether or not the operator O acquires a non-vanishing VEV for its F-term

component. This can be seen from the structure of the one- and two-point functions of op-

erators belonging to the FZ multiplet. Indeed, regardless of the vacua, the supersymmetry

algebra implies the following Ward identities

〈∂µSµα(x) S̄νβ̇(0)〉 = −δ4(x)〈δαS̄νβ̇〉 = −2σµ
αβ̇
〈Tµν〉 δ4(x) (2.6a)

〈∂µSµα(x)Oψβ(0)〉 = −δ4(x)〈δαOψβ〉 =
√

2 〈OF 〉 εαβ δ4(x) , (2.6b)

The two Ward identities above imply the presence of the following structures in the two-

point functions of the supercurrent with itself and with the fermionic operator Oψ

〈Sµα(x) S̄νβ̇(0)〉 = − i

4π2
〈T 〉 (σµσ̄ρσν)αβ̇

xρ
x4

+ . . . (2.7a)

〈Sµα(x)Oψβ(0)〉 = − i

2π2

√
2 〈OF 〉 εαβ

xµ
x4

+ . . . , (2.7b)
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where 〈T 〉 = ηµν〈Tµν〉. On Fourier transformation, the expressions above give rise to the

massless pole associated to the goldstino, which is the lowest energy excitation in both Sµ

and Oψ. Indeed, in the deep IR, one can write Sµ = σµḠ, where G is the goldstino field.

Plugging this relation in (2.7a), one recovers, up to an overall normalization, the goldstino

propagator.

Furthermore from Eq. (2.5) we have the following identities for the traces

〈σµαα̇ S̄
α̇
µ 〉 = 2

√
2λ 〈Oψα〉 , (2.8a)

ηµν〈Tµν〉 = 2λ Re 〈OF 〉 , (2.8b)

where the angular brackets indicate that these equalities are supposed to hold inside corre-

lation functions. The one-point functions of the fermionic operators are to be seen as being

computed at generic non-vanishing sources.

In the next section we will demonstrate how to reproduce these identities from the dual

holographic description.

2.2 Holographic description

To capture the essential features of the field theory model (2.1) holographically, we consider

the theory of 5-dimensional N = 2 gauged supergravity coupled to one hypermultiplet. The

operator O in (2.1) is dual to a hypermultiplet. Turning on a relevant deformation in the

quantum field theory corresponds to a non-trivial profile for the corresponding scalar in the

hypermultiplet. The backreaction of the scalar deforms the AdS space to a domain-wall

geometry which is the holographic dual of the RG flow in the QFT. Correlation functions in

the QFT can then be obtained by studying linearized perturbations of supergravity fields

on the domain-wall geometry. Since the gravity theory we will use to describe holographic

SUSY breaking is 5-dimensional N = 2 gauged supergravity, we now briefly review the

aspects of the this theory that we will need and defer the detailed account to the literature

[32,33].

2.2.1 N = 2, 5-dimensional gauged supergravity model

Let us first state the field content of various 5D N = 2 supermultiplets. The field content

is determined by irreducible representations of the Poincaré superalgebra [34]. Besides

the translations Pa and Lorentz transformations Mab, the Poincaré superalgebra consists

of the supercharges Qαi, the generators of the automorphism group TA and the central

elements Zij . The automorphism group and the form of anticommutators {Q,Q} depend

on the spinor type of Qi. In five dimensions the supercharges are symplectic Majorana

spinors Qi (i = 1, 2, ...,N ) where the number N is even. These spinors satisfy the relation

Qi = Ωij(Qj)c, where (Qj)c is the charge conjugated spinor and Ωij is an anti-symmetric
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matrix. The 2N symplectic Majorana spinors are equivalent to N Dirac spinors. Since the

minimal spinor in 5 dimensions is a Dirac spinor we have that the smallest value of N is 2.

In this case the automorphism group is USp(2) = SU(2) and the anti-commutator of the

supercharges reads

{Qi, QjT } = γaCPaΩ
ij + CZij , (2.9)

where C is a charge conjugation matrix. Supergravity fields belong to irreducible repre-

sentation of this super Poincaré algebra. The representations of interest for constructing

a theory of supergravity theory will contain the metric, gauge fields, scalars and their

fermionic partners. These representations (also called multiplets) are

gravity multiplet:
(
eaµ, ψ

i
µα, Aµ

)
vector multiplet:

(
Aµ, λ

i, φ
)

hyper multiplet:
(
ζA, qX

)
The gravity multiplet consists of the graviton (with 5 on-shell real degrees of freedom), two

SU(2)R symplectic Majorana gravitino (with 8 on-shell real degrees of freedom) and one

vector (called the graviphoton having 3 on-shell real degrees of freedom). Here, a is a flat

spacetime index, i = 1, 2 is an SU(2)R fundamental index and α is a spinor index. Each

vector multiplet consists of vector field, a doublet of SU(2)R spin 1/2 symplectic Majorana

fermion, called the gaugino (having 4 on-shell real degrees of freedom) and one real scalar

field. Each hypermultiplet contains an SU(2) symplectic Majorana fermion, called the

hyperino (with A = 1, 2 being an SU(2) index) and four real scalars (X = 1, ..., 4). It is

worth mentioning that the SU(2) used to implement the symplectic Majorana condition in

this case is different from the SU(2)R and is inherent to the hypermultiplet representation.

If there are n copies of hypermultiplets, then the SU(2)n can get enhanced upto USp(2n).

In the following we consider 5-dimensional N = 2 gauged supergravity (studied in [33])

coupled to one hypermultiplet and no vector multiplets. To simplify notations we write

the gravitino and the hyperino as one Dirac fermion instead of two symplectic Majorana

fermions. The scalars of the hypermultiplet (which can be thought of two complex scalars

ρ and φ) parametrize the homogenous spaceM = SU(2, 1)/(U(1)×SU(2)). The gravipho-

ton gauges a proper U(1) subgroup of the isometry group of M. In a theory of gauged

supergravity a choice of the gauging is dictated by the choice for the dimension of the dual

operator O.

Since O is a dimension 2 superfield, the bottom component of O is a scalar operator of

dimension ∆(OS) = 2 and the F-term component is a operator of dimension ∆(OF ) = 3.

From the mass/dimension relation m2 = ∆(∆ − 4) this translates to masses of the scalar

fields m2
ρ = −4 , m2

φ = −3, where ρ and φ are scalar fields dual to the operators OS and

OF respectively. A source for ρ corresponds to a non-supersymmetric deformation in the

dual quantum field theory (since supersymmetric deformations are either F-term or D-term
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deformations and OS is neither). Therefore, we consider the case where the source of ρ is

switched off. A-priory one can allow a vev for ρ because it is susy preserving. However,

without affecting the main aspects of the holographic model we will switch off the vev of ρ

and hence, the scalar ρ completely.

A convenient metric on the coset M is

dqXdqX = 2
(
dφ2 + dρ2

)
+ 2 sinh2(ρ)

(
dφ2 + dα2

)
+

1

2

(
e−2φ cosh2(ρ)dσ + 2 sinh2(ρ)dα

)2
.

The full isometry group of the metric above is SU(2,1) of which we choose to gauge a

U(1) subgroup [33]. The gauging procedure, besides promoting the partial derivatives to

their gauge-covariant counterparts, introduces a potential for the scalar fields as well as

interaction terms for the fermions. Since we are interested in a single scalar background we

will consistently truncate (ρ, σ, α) = 0. The action of the truncated gauged supergravity

(ignoring terms containing the graviphoton and four-fermion interactions) is completely

fixed by supersymmetry and is shown below

S5D =

∫
d5x
√
−G
(

1

2
R− ∂Mφ∂Mφ− V(φ)− Ψ̄MΓMNPDNΨP − 2 ζ̄ΓMDMζ

+ 4ζ̄ΓMF−ΨM + 4Ψ̄MF+ΓMζ +m(φ) Ψ̄MΓMNΨN − 2M(φ) ζ̄ζ

)
, (2.10)

where the scalar potential is given by

V(φ) =
1

12
(10− cosh(2φ))2 − 51

4
, (2.11)

and can be obtained from a superpotential

W (φ) =
1

6
(5 + cosh(2φ)) (2.12)

by the equation

V =
9

4
∂φW∂φW − 6W 2 . (2.13)

The other quantities which appear in (2.10) are given by

m(φ) =
3

2
W (φ) =

1

4
(5 + cosh(2φ)) , (2.14a)

M(φ) =
9

2
W (φ)− 5 = −1

4
(5− 3 cosh(2φ)) , (2.14b)

F±(φ) = −1

4

(
2N ∓ i/∂φ

)
, (2.14c)

where,

N (φ) = −3

4
i∂φW (φ) = − i

4
sinh(2φ) . (2.15)
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The supersymmetry transformation of the fermions are

δεΨM = DM ε+
1

3
m(φ)ΓM ε , (2.16a)

δεζ = 2F−(φ)ε , (2.16b)

while those of the bosons are

δεe
A
M =

1

2
ε̄ΓAΨM + h.c., (2.16c)

δεφ = − i
2
ε̄ζ + h.c. (2.16d)

2.2.2 Supersymmetric and non-supersymmetric solutions

We look for both supersymmetric and non-supersymmetric flat domain-wall solutions of the

model (2.10). We take the following ansatz for the domain-wall geometry supported by a

non-trivial profile for the scalar

ds2 =
1

z2

(
dz2 + F (z)dx2

)
, (2.17a)

φ ≡ φ(z) . (2.17b)

with the condition that near the timelike boundary, the limit z → 0, which corresponds

to the UV limit in the dual field theory, the warp factor F → 1 and the scalar φ → 0 or

at most a constant and the geometry becomes that of pure AdS5. Such bulk geometries

which are only asymptotically AdS5 near the timelike boundary are dual to either relevant

deformations of the CFT or to non-conformal vacua.

The equation of motion for φ is

z2φ′′ −
(

3− 2
zF ′

F

)
zφ′ =

1

2
∂φV(φ) , (2.18)

whereas the Einstein’s equations give

6

(
1− zF ′

2F

)2

= z2φ′2 − V(φ) ,

(
1− zF ′

2F

)′
=

2

3
zφ′2 . (2.19)

The prime denotes differentiation with respect to the z coordinate. The two Einstein’s equa-

tions are redundant and can shown to be equivalent to a single first-order non-linear differ-

ential equation in F (z). A generic solution to these equations will be non-supersymmetric.

To find supersymmetric solutions we should analyze the following BPS system of first order
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differential equations which results from the SUSY variation of the fermions (2.16a, 2.16b)

1− zF ′

2F
= W (φ) , (2.20a)

zφ′ =
3

2
∂φW (φ) . (2.20b)

Pure AdS5 where F = 1 and φ = 0 is a solution to these first order equations. Hence, this

solution is supersymmetric and corresponds to the conformal vacuum of SSCFT appearing

in (2.1). Around this solution the mass of the scalar φ is

m2
φ =

1

2
∂2
φV(0) = −3 , (2.21)

By mass/dimension relation φ is dual to a scalar operator of dimension 3. Therefore, φ

is the correct dual of OF . Another supersymmetric solution is the domain-wall geometry

which can be analytically obtained

φ(z) =
1

2
log

(
1 + az

1− az

)
, F (z) =

(
1− a2z2

)1/3
, (2.22)

where a is an integration constant which is identified as the source for the dual operator.

Pure AdS5 solution is recovered for a = 0. This solution corresponds to the relevant

deformation in (2.1).

Next we turn to the second order equations of motion. The system of equations cannot

be solved analytically but can be integrated numerically. The general solution has two

integration constants and its expression for small z is given by the expansions

φ(z) = a z + b z3 +O(z5) , F (z) = 1− a2

3
z2 +

a4 − 9ab

18
z4 +O(z6) . (2.23)

This solution reduces to the supersymmetric case for b = a3/3. For different value of b the

solution is non-supersymmetric. Therefore, we define the offset S = a3

3 − b as the super-

symmetry breaking order parameter which we use to discriminate between supersymmetric

solutions (S = 0) and non-supersymmetric ones (S 6= 0). We expect this solution to cor-

respond to a supersymmetry breaking vacua of (2.1). In section 2.3.3 we will demonstrate

that this is indeed the case by calculating the vacuum expectation value of OF and showing

it to be proportional to S.

Both the supersymmetric and non-supersymmetric solutions presented here suffer from

an IR singularity. These solutions are presented merely as an existence proof, and in the

following we will not need to discuss their properties in any detail. The nature of the IR

singularity (either good or bad [35]) does not affect our analysis of the Ward identities.

To conclude this subsection, we see that the model presented here is in fact a concrete

holographic candidate dual to the QFT (2.1). The scalar φ is dual to a relevant operator
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of dimension 3 which triggers a supersymmetric RG-flow out of some given UV fixed point.

The general solution (2.22) is the holographic dual of this RG-flow. The dual QFT can

find itself in a supersymmetric vacuum, 〈OF 〉 = 0, or a non-supersymmetric one 〈OF 〉 6= 0.

Correspondingly, the background solution can preserve bulk supersymmetry, S = 0, or

break it, S 6= 0. One is then led to identify S with the VEV of the QFT operator OF .

2.3 Holographic Ward Identities

Since the theory in (2.1) is an N = 1 QFT, supersymmetric Ward identities, like (3.2),

should hold in any of its vacua. In this section we provide a holographic derivation of these

and few other identities (related to traces of the stress-tensor and the supercurrent).

Fields in the bulk are dual to gauge invariant operators in the QFT. In the bosonic

sector we have a scalar and a metric. The scalar field is dual to a dimension 3 operator

OF and the metric is dual to the stress-tensor. In the fermionic sector we have a spin 1/2

fermion, the hyperino and a spin 3/2 fermion, the gravitino. The hyperino is dual to a

dimension 5/2 fermionic operator Oψ, the superpartner of OF , whereas gravitino is dual

to dimension 7/2 supercurrent operator, the superpartner of the stress-tensor. The mass

spectrum and the mass-dimension relations are summarized in the table 2.1

N = 2 multiplet field fluctuations mass ∆ dual operators

gravity
ΨM

gMN

m = 3
2

m2 = 0

7
2

4

Sµα

Tµν

hypermultiplet
ζ

φ

m = −1
2

m2 = −3

5
2

3

Oψ
OF

Table 2.1: Mass spectrum of the N = 2 gauged supergravity model.

As a first step towards the derivation of the Ward identities, we have to define holo-

graphically the renormalized one-point functions in the presence of sources. The one-point

functions of various operators are computed by functionally differentiating the renormalized

on-shell action with respect to the source

〈Tµν〉 =
2√
−γ

∂Sren

∂γµν

∣∣∣∣
φ,Ψ+,ζ−

, 〈S−µ〉 =
−2i√
−γ

∂Sren

∂Ψ+
µ

∣∣∣∣
γ,φ,ζ−

,

〈OF 〉 =
1

2
√
−γ

∂Sren

∂φ

∣∣∣∣
γ,,Ψ+,ζ−

, 〈O+
ψ 〉 =

1√
−γ

i√
2

∂Sren

∂ζ−

∣∣∣∣
γ,φ,Ψ+

. (2.24)

The subscripts indicate the variables that are held fixed while performing the differentiation.

Sren denotes the renormalized on-shell action Sren = Sreg +Sct where the regularized action
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Sreg stands for the bulk on-shell action plus the Gibbons-Hawking term (together with its

supersymmetric completion), and the covariant boundary counterterms Sct contain both

bosonic and fermionic terms. The counterterms, by construction, ensure that Sren admits

a smooth limit as the radial cut-off is removed. From the asymptotic behavior of the fields

(see (A.8)) this implies that the renormalized one-point functions with the cut-off removed

correspond to the limits

〈Tµν 〉QFT = lim
z→0

z−4〈Tµν 〉 , 〈S−µ〉QFT = lim
z→0

z−9/2〈S−µ〉 ,

〈Oφ〉QFT = lim
z→0

z−3〈Oφ〉 , 〈O+
ψ 〉QFT = lim

z→0
z−5/2〈O+

ψ 〉 . (2.25)

Although the explicit expression for the local counterterms was constructed in [31], they

are not required for the holographic derivation of the Ward identities. It is sufficient to

assume that there exist local and covariant counterterms that render the on-shell action

finite, while preserving the symmetries of the dual QFT, particularly, supersymmetry. Of

course, explicit knowledge of the counterterms is necessary in order to evaluate the one-point

functions (2.25). In the next section we will present the boundary counterterms required

to evaluate the bosonic VEVs in domain wall background.

Given the holographic identification of the sources with the one-point functions, the

derivation of the Ward identities proceeds exactly as in standard QFT textbooks. We

turn on sources for all gauge invariant operators. Using the transformation of all the

sources under the local (gauged) symmetries together with the invariance of the generating

functional, leads to the Ward identities at the level of one-point functions in the presence

of arbitrary sources.

To proceed with the holographic derivation of the Ward identities we need the trans-

formation of the sources under the local symmetries. These are presented in Eqns. (A.11),

(A.21), (A.22) of Appendix A.

In the bulk these symmetries correspond to infinitesimal local supersymmetry transfor-

mations and bulk diffeomorphisms generated respectively by a 4-component Dirac spinor

ε and a 5-vector ξM , preserving the gauge-fixing conditions (A.3) and (A.7). The spinor

ε has 8 real components which correspond to the 8 real supercharges of the N = 2, 5d

supergravity. This can be written as ε = ε+ + ε−. Since ε+ and ε− are linearly independent

supersymmetry transformation parameters, the renormalized on-shell action is not only in-

variant under ε but also under ε+ and ε− independently. The spinor ε+ generates (local)

boundary supersymmetry transformations, while ε− generates superWeyl transformations.

Invariance under ε+ and ε− leads respectively to the supersymmetry Ward identities and the

operator identity involving the gamma-trace of the supercurrent. Similarly, the infinitesimal

bulk diffeomorphisms ξM preserving the gauge-fixing conditions (A.3) are parameterized by

two independent parameters, a scalar σ(x) generating boundary Weyl transformations and

an infinitesimal boundary diffeomorphism ξµo (x). Invariance under these leads respectively
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to the trace Ward identity and the Ward identity involving the divergence of the stress

tensor.

2.3.1 Supersymmetry Ward identities

The supersymmetry Ward identities are obtained by requiring the invariance of the renor-

malized action under the local spinor ε+, δε+Sren = 0. However, to calculate δε+Sren, we

need the transformation properties of the covariant sources under ε+, which are given in ap-

pendix A, eq. (A.21) . Using the one-point functions (2.24) the variation of the renormalized

action under ε+ gives

δε+Sren =

∫
d4x
√
−γ
(
i

2
〈S−µ〉δε+Ψ+

µ +
1

2
〈Tµν〉δε+γµν + 2〈OF 〉δε+φ

)
=

∫
d4x
√
−γ
(
− i

2
∂µ〈S

−µ〉 − 1

2
〈Tµν〉Ψ+

µΓν + i〈OF 〉ζ̄−
)
ε+ = 0 . (2.26)

which implies the following identity between one-point functions at non-zero sources

i

2
∂µ〈S

−µ〉 = −1

2
〈Tµν〉Ψ+

µΓν + i〈OF 〉ζ̄− . (2.27)

where Γµ = eaµγa. The two-point functions 〈∂µS
−µ
S−ν〉 and alike, can be obtained from

the one-point functions as

〈∂µS
−µ
S−ν〉 = − −2i√

−γ
δ

iδΨ
+
ν

〈∂µS
−µ〉. (2.28)

The extra factor of i in the denominator is because of the Lorentzian signature of the

spacetime and the overall minus sign is because the functional derivative is with respect to

a Grassmann variable. Using this, we can now differentiate this identity with respect to the

various fermionic sources, and then put all sources to zero to obtain

〈∂µS
−µ

(x)S−ν (0)〉 = 2iΓµ〈Tµν 〉 δ4(x, 0) , (2.29a)

〈∂µS
−µ

(x)O+
ζφ

(0)〉 = −
√

2 〈Oφ〉 δ4(x, 0) , (2.29b)

where δ4(x, y) = δ4(x − y)/
√
−γ is the covariant 4d Dirac delta function. The last step is

to take the cut-off all the way to infinity, which can be done using the limits (2.25). All

these limits can be easily evaluated using the asymptotic expansions of the fields given in

appendix A. Notice that all fermionic operators here are in the Dirac representation. In

order to match with the field theory expressions, it is better to convert them into Weyl

notation. The conversion rules are

ψ+ = ψα, ψ− = ψ
α̇
, ψ

+
= ψα̇, ψ

−
= ψα , (γµ)αβ̇ = i (σµ)αβ̇ . (2.30)
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Adopting the above dictionary and upon sending the cut-off to infinity, we eventually get

〈∂µSµα(x) S̄νβ̇(0)〉QFT = −2σµ
αβ̇
〈Tµν〉QFT δ4(x) , (2.31a)

〈∂µSαµ (x) Oζφα(0)〉QFT = −
√

2 〈OF 〉QFT δ4(x) . (2.31b)

The identity (2.31a) reproduces the supercurrent Ward identity (2.6a). The identity (2.31b)

reproduces (2.6b), the supersymmetry Ward identity involving the operator OF .

2.3.2 Trace identities

In this section we derive the operator relation between the trace of the energy-momentum

tensor and OF which is the consequence of Weyl invariance. We also derive the opera-

tor identities between the trace of the energy-momentum tensor and the σ-trace of the

supercurrent which is a consequence of superWeyl invariance.

Let us consider the latter first. SuperWeyl transformation is generated by ε−. From the

ε− supersymmetry transformations in (A.22), we get the following variation in Sren

δε−Sren =

∫
d4x
√
−γ
(
i

2
〈S−µΓµ〉+

√
2φ 〈O+

ψ 〉
)
ε− = 0 , (2.32)

which yields the following identity between the one-point functions of the gamma-trace of

the supercurrent and of the operator Oψ at non-vanishing sources at the cut-off surface

i

2
〈S−µΓµ〉 = −

√
2φ 〈O+

ψ 〉 . (2.33)

Again, from this identity one can compute relations between various correlation functions

by further differentiating. Using the limits (2.25), we can remove the cut-off to obtain the

relation

〈σµ
αβ̇
S̄β̇µ〉QFT = 2

√
2φ0 〈Oψ α〉QFT , (2.34)

where φ0 is the coefficient of leading term in the asymptotic expansion of φ. Since, by

AdS/CFT, the coefficient φ0 is a source for the boundary operator OF [26], we identify it

with the coupling λ. This reproduces the first of (2.8).

Next, let us derive the Ward identity following from local shifts in the radial coordinate,

which correspond to local Weyl transformations on the boundary. Using the transformation

of the covariant sources given in eq. (A.11), we get

δσSren =

∫
d4x
√
−γ
(

1

2
δσγµν〈Tµν〉+ 2δσφ 〈OF 〉+

i

2
〈S−µ〉δσΨ+

µ −
√

2i〈O+
ψ 〉δσζ−

)
=

∫
d4x
√
−γ
(
γµν〈Tµν〉 − 2φ0 〈OF 〉+

i

4
〈S−µ〉Ψ+

(0)µ +
3√
2
i〈O+

ψ 〉ζ−0
)
σ (2.35)
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This leads to the following identity between various one-point functions at the cut-off

〈Tµµ 〉 − 2φ0 〈OF 〉+
i

4
〈S−µ〉Ψ+

(0)µ +
3√
2
i〈O+

ψ 〉ζ−0 = 0 (2.36)

Removing the cut-off (and setting the fermionic sources to zero), we finally obtain

〈Tµµ 〉QFT = 2φ0 〈OF 〉QFT (2.37)

This is the bosonic partner of the fermionic trace identity (2.34) and the two are in perfect

agreement, numerical coefficients included. This concludes the holographic derivation of

the field theory identities (2.8).

2.3.3 Bosonic one-point functions and the holographic Goldstino

The Ward identities derived in the previous section are satisfied in any vacua of the theory

(2.1). In supersymmetric vacua they are satisfied trivially whereas they are satisfied non-

trivially in supersymmetry breaking vacua. The vacuum expectation value of the energy-

momentum tensor that appears in the r.h.s of (2.31a) is associated to the residue of the

goldstino pole as discussed towards the end of section 2.1. Therefore, a non-vanishing

vev for the energy-momentum tensor would imply the existence of a goldstino in the IR

spectrum and therefore, spontaneous breaking of supersymmetry. This non-zero vev for the

stress-tensor is supplied by a vev for OF and we should find that for consistency (2.37) is

obeyed. We now calculate these one-point functions.

In order to evaluate the bosonic one-point functions in (2.25) explicitly, we compute

separately the contributions coming respectively from the regularized action and the coun-

terterms in Sren = Sreg + Sct. The contribution coming from Sreg is the radial canonical

momentum associated with the corresponding field at a radial cut-off. Using the expressions

for the radial canonical momenta corresponding to the fields γµν and φ in the coordinate

system(A.3) (see e.g. [36]), the bosonic VEVs in (2.25) become

〈Tµν〉 =

(
− (Kγµν −Kµν) +

2√
−γ

δSct

δγµν

)
, (2.38)

〈OF 〉 = −φ̇+
1

2
√
−γ

δSct

δφ
, (2.39)

where the dot represents derivatives with respect to the radial coordinate r, which is defined

in eq. (A.3), while Kµν is the extrinsic curvature of the radial slices which, for the metric

(A.3), takes the form

Kµν =
1

2
γ̇µν = −1

2
z∂z

(
F

z2

)
ηµν , (2.40)
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which gives

Kγµν −Kµν = 3

(
1− zF ′(z)

2F (z)

)
. (2.41)

The contribution to the bosonic VEVs from Sct requires to know the explicit form of the

(bosonic part of the) boundary counterterms. For backgrounds enjoying 4D Poincaré in-

variance it turns out that the bosonic counterterms in a supersymmetric scheme [27] are

simply given by the superpotential (2.12), namely

Sct = −
∫
d4x
√
−γ 3W . (2.42)

Evaluating the limits in (2.25) using the asymptotic behavior of the fields we finally get

〈Tµν 〉QFT = −φ0S δµν , (2.43)

〈Oφ〉QFT = −2S , (2.44)

in agreement with the corresponding expressions in [31]. Note that the value of these

expectation values satisfy the identity (2.37). Since the vacuum energy is positive, the sign

of S is fixed from (2.43).

Few comments are in order. On the supersymmetric solution S = 0, these VEVs vanish;

i.e., the vacuum energy is zero and there is no non-trivial VEV for OF . The supersymmetry

Ward identities are trivially satisfied, and there is no massless pole in the supercurrent two-

point function (2.7a). This is perfectly consistent with supersymmetry being preserved.

On the supersymmetry breaking solution S 6= 0 and there is non-vanishing vacuum energy,

which is supplied by a non-zero VEV for OF . From the supercurrent Ward identities

(2.31), which hold non-trivially in this vacuum, we see that a goldstino mode is present

in the supercurrent two-point function (2.7a). From the operator identity (2.34) it follows

that the goldstino eigenstate is

G ∼ 〈OF 〉σµS̄µ ∼ 〈OF 〉φ0Oψ (2.45)

All these properties are consistent with a vacuum where supersymmetry is spontaneously

broken.
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Chapter 3

AdS/CFT on the Conifold and

SUSY breaking

In this chapter we apply the techniques developed in chapter 2 in a more interesting setup.

We study a five-dimensional consistent truncation of type IIB supergravity dimensionally re-

duced on T 1,1. The consistent truncation we study contains the supersymmetric Klebanov-

Strassler [28] solution and its non-supersymmetric deformations. The non-supersymmetric

solutions are parametrized by two integration constants ϕ and S. The solution parametrized

by ϕ is associated to the usual independent fluctuation of the dilaton and as we will show,

corresponds to explicit breaking of supersymmetry. The solution parametrized by S is re-

lated to anti D-branes at the tip of the conifold and correspond the to dual field theory

vacua where a goldstino mode is present. These findings do not depend on the IR singular-

ity of the solution, nor on its resolution. As such, they constitute an independent check for

the existence of supersymmetry breaking vacua in the conifold cascading gauge theory. The

analysis presented in this chapter relies on the holographic derivation of the Ward identities

introduced in chapter 2. It is somewhat remarkable (modulo few caveats) that an identical

derivation goes through irrespective of the fact that the Klebanov-Strassler gauge theory

has no UV fixed point.

3.1 Introduction

Since the early days of the AdS/CFT correspondence [6, 37, 38], the new tools that have

become available to understand field theory dynamics in the strong coupling regime have

opened-up new promising avenues to study supersymmetric theories where supersymmetry

is broken dynamically.

There is by now rather strong evidence that a large class of supersymmetric field the-

ories admitting supersymmetry-breaking vacua can be constructed in string theory. We

are thinking in particular of quiver gauge theories obtained by placing stacks of D-branes
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at Calabi-Yau singularities. This can be interesting in view of phenomenological appli-

cations within string compactification scenarios, but can also be instrumental within the

gauge/gravity duality. Indeed, in the decoupling limit, one can have a way to describe, at

least in principle, strongly coupled supersymmetry breaking vacua by means of dual gravi-

tational backgrounds. This is promising, but in general more work is needed to have precise

control on these vacua, understand their stability properties, dynamics and spectrum.

A concrete proposal to construct supersymmetry-breaking vacua in string theory was

put forward time ago in [30] (from now on KPV) for theN = 1 theory obtained by placing N

regular and M fractional D3-branes at a conifold singularity. This is a quiver gauge theory

with SU(N+M)×SU(N) gauge group, four bi-fundamental fields Ai, Bj (i, j = 1, 2) and a

quartic superpotential W = λ εijεkl Tr (AiBkAjBl) [28, 39, 40] (henceforth KS model). The

proposal, based on the idea of adding anti D-branes at the tip of the deformed conifold,

suggests that besides supersymmetric vacua, like the one described by the KS solution [28],

the dual field theory admits also supersymmetry-breaking, metastable vacua. If correct,

this is likely not to be a specific phenomenon of the KS model, but rather a generic fact in

D-brane/string constructions, see for instance [41,42]. As a consequence, an understanding

of the non-supersymmetric dynamics of the conifold theory has a more general relevance

and it is not just interesting per se.

In the gauge/gravity duality framework, a vacuum of the QFT is described by a (four-

dimensional Poincaré invariant) five-dimensional solution of the dual gravitational system.

Solutions sharing the same asymptotics correspond, in general, to different vacua of the same

QFT. A supergravity solution describing, asymptotically, the KPV vacuum was obtained

in [43]. This solution, as well as the original one found in [28], asymptotes to the Klebanov-

Tseytlin (KT) solution [40] near the boundary. The latter, in fact, furnishes a UV-regulator

for any gravitational background describing a vacuum of the KS theory.

In a QFT, whenever a global symmetry is spontaneously broken, a massless particle

appears in the spectrum. In the case of supersymmetry, this is a fermionic mode, the

goldstino. Hence, a natural question to try to answer is whether the supergravity mode

dual to the goldstino field is present in the non-supersymmetric background of [43].

When one deals with a supergravity solution which breaks supersymmetry, two obvious

questions arise:

1. Is the solution (meta)stable, gravitationally?

2. Is the supergravity mode dual to the goldstino present?

A positive answer to the first question guarantees that the solution is describing holograph-

ically an actual QFT vacuum. The second ensures that in such a vacuum supersymmetry

is broken spontaneously.

From a QFT perspective, it is obvious that these two questions can be answered in-

dependently. As we mentioned in the previous chapter, the goldstino is the lowest energy
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excitation in the supercurrent operator Sµα, and as such it appears as a massless pole in

the two-point function

〈Sµα S̄νβ̇〉 . (3.1)

This correlator has in general a very complicated structure, which depends on the vacuum

that one is considering. However, in order to display the goldstino pole, one does not

need to compute (3.1) fully. The information is encoded just in the term implied by the

supersymmetry Ward identity

〈∂µSµα(x) S̄νβ̇(0)〉 = −2σµ
αβ̇
〈Tµν〉 δ4(x) , (3.2)

which is a (quasi-local) contact term. (Upon integration, this identity relates the vacuum

energy E ∼ ηµνTµν to the residue of the goldstino pole in the two-point function (3.1) [44].)

Ward identities hold in any vacuum of a QFT, and depend on UV data only. On the

contrary, vacuum stability is an IR property.

For theories with a gravity dual, this disentanglement should emerge from a holographic

analysis, too. In [31] a rather general class of holographic supersymmetric RG-flows was

considered, Ward identities as (3.2) were derived holographically, and it was shown that,

indeed, they hold regardless of the detailed structure of the bulk solution in the deep

interior, the presence of IR singularities and their possible resolution mechanism. Similar

results were obtained for bosonic global symmetries in [45].

Whenever one has sufficient control on the QFT, this result can be seen (just) as a

consistency check of the AdS/CFT correspondence. But it may become instrumental when

one has to deal with field theories for which a satisfactory understanding of the dynamics

and vacuum structure is lacking. The KS theory falls in this class, at least as far as

supersymmetry-breaking vacua are concerned. There has been a lively discussion in the last

few years, initiated in [46], regarding the stability properties of the dual supersymmetry-

breaking backgrounds and the mechanism to resolve the IR singularity.1 In this work we do

not offer any new insight on this issue. What we do, instead, will be to apply the analysis

of [31] to the KS model, and try to give a definite answer to the second question. The

answer will be affirmative. In particular, we derive via holography the supercurrent Ward

identities (3.2) for the KS cascading theory, and, by computing explicitly eq. (3.2) both in

supersymmetric and supersymmetry-breaking vacua, we find the goldstino pole whenever

expected. Our results confirm the possibility that spontaneous supersymmetry-breaking

vacua may exist in the KS model, specifically that a goldstino mode is indeed present

in the asymptotic solution of [43]. As an interesting outcome of our analysis, we show

that some recently-found non-supersymmetric supergravity solutions [50], which have an

1See the citation list for [46] for a complete account of the many contributions since then. Suggestive
results in favor of (meta)stability of the KPV vacuum were recently obtained in [47] working within an
effective field theory approach. For a discussion regarding the possibility to cloak the singularity beyond an
event horizon, instead, which according to the criterion of [35] would make it acceptable, see [48,49].
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asymptotic compatible with the KS theory, do not accommodate a goldstino mode. Hence

they correspond to explicit, rather than spontaneous, supersymmetry breaking.

Holographic renormalization for cascading theories is known to be trickier than for

asymptotically AdS (AAdS) backgrounds, and we will clarify a couple of issues which are

instrumental to holographically renormalize the theory in these cases. In particular, we

will argue that to treat the log-divergent structure of cascading backgrounds properly, it

is appropriate to define the renormalized action in terms of induced fields instead of the

sources, define the renormalized correlators as functions of induced fields at the cut-off [51],

and take the cut-off to infinity only at the very end of the calculation [24].

We start in section 3.2 by presenting the relevant five-dimensional supergravity La-

grangian, and derive supersymmetric and non-supersymmetric solutions with correct KS

asymptotics. The latter are a two-parameter family. Although these are known results,

we re-derive them from a consistently truncated 5d supergravity, as a preliminary step for

the subsequent analysis. In section 3.3, which contains the main results of this chapter,

we derive holographically all the supersymmetry Ward identities that we need, showing

that they hold independently of the vacuum one considers. The derivation, which relies on

the existence of local covariant counterterms that renormalize the on-shell action, as well

as on a renormalization scheme respecting boundary diffeomorphisms and supersymmetry

transformations, is general enough to account for any Ward and operator identities one

expects to hold.2 Finally, in section 3.4 we evaluate explicitly the supersymmetry Ward

identities for those vacua described by the solutions derived in section 3.2. The requirement

of non-vanishing vacuum energy selects only a one-dimensional subspace within the space of

supersymmetry-breaking solutions, in agreement with the analysis of [43], where evidence

was also given that this corresponds to the set of (asymptotic) solutions generated by antiD-

branes at the tip of the conifold. The field/operator map will offer a simple explanation

of these results from the dual field theory perspective, including the absence of a goldstino

mode for the complementary set of solutions. In section 3.5 we present our conclusions and

outlook. Several appendices contain a number of technical details that we omitted from the

chapter.

3.2 Cascading gauge theories from N = 2, 5D gauged super-

gravity

The 5d N = 2 supergravity that we need is obtained by reducing 10d type IIB supergravity

on T 1,1, the conifold basis. The supergravity theory (presented in appendix B) that one

should consider in order to analyze the full KS cascading theory (namely, to describe its

2The renormalization scheme, though, will generically break Weyl and superWeyl invariance, leading to
a trace and a supertrace anomaly, respectively.
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complete set of vacua) is rather complicated; almost intractable, in fact. However, there

are a number of simplifications that our analysis allows.

First, we will focus on an SU(2)×SU(2)-invariant truncation (the dimensional reduction

was performed in [52] and [53]; we use the notations of [52]). This truncation cannot capture

all possible vacua of the KS theory, but it is general enough to admit the original KS solution

as one of its supersymmetric solutions. This solution describes the most symmetric point in

the baryonic branch of the SU(N+M)×SU(N) KS model, with N = kM and k an integer

number. The same bulk Lagrangian admits also supersymmetry-breaking solutions, some

of which should describe, according to the KPV construction, a metastable vacuum of the

SU(N+M)×SU(N) cascading theory with vacuum energy E ∼ p, where now N = kM−p,
and p�M (in the KPV vacuum p corresponds to the number of antiD-branes; from a ten-

dimensional viewpoint, keeping the SU(2) × SU(2) symmetry amounts to smearing the

antiD-branes over the compact space). In fact, we will work with a simplified ansatz, which

preserves an extra U(1) symmetry [54] and which can just accommodate KT-like solutions.

This simplification further reduces the number of active fields and, in particular, it excludes

the mode related to the conifold deformation parameter.

A second simplification occurs at the level of the solutions themselves. As already

stressed, in order to prove the presence of the goldstino, one does not need to consider the

full solution but just its asymptotic expansion up to the order where the supersymmetry-

breaking deformation appears. This simplifies the analysis considerably, and allows one to

consider the backgrounds only to order z4, z being the holographic coordinate. This may

sound inconsistent, at first sight. Indeed, as noticed in [43, 55], the KS and KT solutions,

which are one and the same to leading order in a near-boundary expansion, differ already

at order z3 by terms proportional to ε, the conifold deformation parameter, which is zero in

the KT solution. These effects are dominant against z4, the order at which supersymmetry-

breaking effects enter. However, being a supersymmetric deformation, it is possible to

see that ε does not affect the supersymmetry-breaking dynamics in any dramatic manner,

modifying, at most, the numerical values of some quantities, but not the possible existence

of supersymmetry-breaking vacua and of the associated massless fermionic mode.

Table 3.1 contains all the fields entering the truncation and the multiplet structure,

including, for future reference, the AdS masses obtained in the conformal limit [10], M = 0.

We refer to appendix C.1 for more details on the simplified five-dimensional σ-model.

To search for domain wall solutions, we can truncate the Lagrangian to its scalar field

content only (plus the graviton). Moreover, the extra U(1) symmetry reduces the number

of active scalar fields to just four, which, without loss of generality, we can take to be real.

The end result is

S =

∫
d5x
√
−g5

(
R− 8

15
dU2 − 4

5
dV 2 − e−

4
5

(U+V )−φ (dbΦ)2 − 1

2
dφ2 − V

)
, (3.3)
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N = 2 multiplet field fluctuations AdS mass spin ∆

gravity

VA

ΨA

gAB

m2 = 0

m = 3
2

m2 = 0

1
3
2

2

3
7
2

4

universal hyper

bΩ − i cΩ

ζφ

τ = C0 + ie−φ

m2 = −3

m = −3
2

m2 = 0

0
1
2

1

3
7
2

4

Betti hyper

t eiθ

ζb

bΦ, cΦ

m2 = −3

m = −3
2

m2 = 0

0
1
2

1

3
7
2

4

massive vector

V

ζV

V 1
A

bΩ + i cΩ

ζU

U

m2 = 12

m = 9
2

m2 = 24

m2 = 21

m = −11
2

m2 = 32

0
1
2

1

0
1
2

0

6
13
2

7

7
15
2

8

Table 3.1: Spectrum of bosons and fermions in the N = 2 truncation of [52] (5d indices are
dubbed A,B).

where we have set the five-dimensional Newton constant G5 = 1/16π and R is the Ricci

scalar. The scalar potential V is given by

V =
1

2
(27πN−9M bΦ)2e−

8
3
U+

81

4
M2e−

4
15

(7U−3V )+φ−24e−
2
15

(8U+3V )+4e−
4
15

(4U+9V ) . (3.4)

The parameters N and M are continuous quantities in supergravity, but should be thought

of as integers, since they correspond to type IIB higher-form fluxes integrated over the non-

trivial cycles of T 1,1 and are thus quantized. Upon uplifting, they are related respectively

to the number of regular and fractional D3-branes at the conifold singularity.

3.2.1 Supersymmetric and non-supersymmetric solutions

The solutions we are after should correspond to vacua of the KS dual field theory and, as

such, they should satisfy given boundary conditions. First, due to four-dimensional Poincaré

invariance, we should focus on domain wall solutions, where all scalars depend on the radial

coordinate only and where the ansatz for the metric reads

ds2 =
1

z2

(
e2Y (z)ηµνdx

µdxν + e2X(z)dz2
)
, (3.5)
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with µ, ν = 0, . . . 3. The function X(z) can be eliminated by a redefinition of the radial co-

ordinate, while the function Y (z) is the only dynamical variable parameterizing the domain

wall metric. We have written the metric ansatz in this form for later convenience. From

now on we split the 5d indices as A = (z, µ). The AdS metric is recovered for X = Y = 0,

the conformal boundary being at z = 0. Another requirement is that for M = 0 we should

recover the Klebanov-Witten (KW) AdS solution [10].

The solutions we derive below were already obtained working in a ten-dimensional set-

ting in [43] (see also [56] whose normalization for the metric is the same as ours). In this

section we re-obtain the same solutions within the truncated five-dimensional model (3.3).

Imposing that the fields satisfy the BPS equations (see appendix C.1) one finds the

supersymmetric solution

e2Y = h
1
3 (z) , e2X = h

4
3 (z) , e2U = h

5
2 (z) ,

bΦ(z) = −9

2
gsM log (z/z0) ,

φ(z) = log gs , V = 0 , (3.6)

where the warp factor h(z) is

h(z) =
27π

4gs

(
gsN +

1

4
a(gsM)2 − a(gsM)2 log (z/z0)

)
, (3.7)

with a = 3/2π, and z0 is a scale introduced to make the arguments of the log’s dimensionless

(in the dual QFT, z0 corresponds to a renormalization scale). The parameter gs, which in 5d

supergravity is an integration constant, has been dubbed as the 10d string coupling, to which

it actually gets matched upon uplifting. The characteristic features of this solution are a

constant dilaton φ and a vanishing V field. This solution is nothing but the five-dimensional

formulation of the KT-solution [40]. The KW pure AdS solution [10] is recovered upon

setting M = 0.

We now look for solutions of the second order equations of motion descending from the

action (3.3) (see again appendix C.1). We should require that the solutions reduce to the

supersymmetric solution (3.6)-(3.7) in the far UV, that is as z → 0. Up to the order z4,

which is our focus here, the general solution depends on two additional parameters only
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which, adapting to the notation of [43], we denote with S and ϕ. The result is

e2Y = h
1
3 (z)h

1
2
2 (z)h

1
2
3 (z) , e2X = h

4
3 (z)h

1
2
2 (z) ,

e2U = h
5
2 (z)h

3
2
2 (z) , e2V = h

− 3
2

2 (z) ,

bΦ(z) = −9

2
gsM log (z/z0)

+ z4

[(
9πN

4M
+

99

32
gsM −

27

4
gsM log (z/z0)

)
S − 9

8
gsMϕ

]
+O(z8) ,

φ(z) = log gs + z4 (3S log (z/z0) + ϕ) +O(z8) , (3.8)

where

h(z) =
27π

4gs

(
gsN +

1

4
a(gsM)2 − a(gsM)2 log (z/z0)

)
(3.9)

+
z4

gs

[(
54πgsN

64
+

81

4

13

64
(gsM)2 − 81

16
(gsM)2 log (z/z0)

)
S − 81

64
(gsM)2 ϕ

]
+O(z8) ,

h2(z) = 1 +
2

3
Sz4 +O(z8) , h3(z) = 1 +O(z8) . (3.10)

This two-parameter family breaks supersymmetry, in general, but reduces to the su-

persymmetric KT solution of (3.6)-(3.7) for S = ϕ = 0. Furthermore, as anticipated,

supersymmetry-breaking effects enter at order z4 relative to the KT solution, so for z → 0

the generic solution within the two-parameter family asymptotes to KT. Note, moreover,

that the dilaton now runs. In [43] evidence was given that the branch ϕ = 0 describes (the

large distance asymptotics of) the solution generated by p antiD3-branes at the tip of the

conifold, S being proportional to p. On the contrary, the branch S = 0, which in the AdS

limit M = 0 corresponds to the usual independent fluctuation of the dilaton [57, 58], was

recently extended to all orders in z and a full (still singular) solution was found [50].3 As

we will see later, this branch describes a vacuum where supersymmetry is explicitly broken

in the dual field theory and hence does not correspond to a vacuum of the KS field theory.

Let us finally notice, in passing, that an ansatz with constant h3(z) is inconsistent with the

equations of motion. Although h3(z) does not affect the solution at order z4, one can check

that it is necessary to have h3(z) non-trivial at order z8 in order to extend the solution

deeper in the bulk.

3.3 Holographic Ward identities

The KS theory is an N = 1 QFT and supersymmetry Ward identities like (3.2) should hold

in any of its vacua. In this section we provide a holographic derivation of these identities.

3The matching between the branch S = 0 and the solution of [50] can be seen upon the following relation
between the parameters ϕ = −

√
10 r4

s , while the holographic coordinates are inverse to one another, z = 1/r.
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In the next section, we will test them against the supersymmetric and non-supersymmetric

solutions that we have found in section 3.2.1.

Fields in the bulk are dual to QFT gauge invariant operators. In the present case,

the bosonic bulk sector consists of four real scalars and the metric. In particular, the

fields e−φ and b̃Φ = e−φ bΦ are dual to dimension 4 operators, Oφ and O
b̃

(see e.g. [39]),

which are respectively related to the sum and the difference of the inverse of the two gauge

couplings squared.4 In the conformal limit they are exact moduli. The scalars V and

Ũ = (4qbΦ − 4k + q2eφ)e−
4
5
U/8 are dual to dimension 6 and 8 operators, respectively. The

constants k and q are defined in (C.7). As explained in appendix C.3, the composite field

Ũ is the unique combination of bosonic fields that is sourced solely by the dimension 8

operator. Moreover, although not necessary, it is natural to define the covariant source of

the energy-momentum tensor as the field that couples only to metric fluctuations, namely

γ̃µν = e−4U/15γµν , where γµν is the four-dimensional induced metric at the radial cut-off.

The fermionic sector contains four spin 1/2 fermions and the spin 3/2 gravitino. The field

Ψ̃+
µ = e−

2
15
U
(
Ψ+
µ − 2i

15Γµζ
−
U

)
is dual to the supercurrent, the supersymmetric partner of

the energy-momentum tensor, while the fields ζφ and ζ̃b = e−φ
(
ζb − bΦζφ

)
, are dual to

dimension 7/2 operators, the supersymmetric partners of Oφ and O
b̃
, respectively. Finally,

ζV and ζ̃U = −4
5 ŨζU + 1

8e
− 4

5
U
(
4qζb + q2eφζφ

)
are dual to irrelevant operators as their

supersymmetric partners V and Ũ . More details on the identification of the bulk fields dual

to gauge-invariant operators can be found in appendix C.3. In what follows, we will switch

off the sources of bulk fields that are dual to irrelevant operators. Moreover, the asymptotic

supersymmetry breaking solution we presented in section 3.2.1 is given just to order z4, and

this is sufficient for calculating VEVs of relevant or marginal operators only.5

The procedure for deriving the Ward Identities is identical to the one presented in the

previous chapter. As a first step, we have to define holographically the renormalized one-

point functions in the presence of sources. The former are defined as derivatives of the

renormalized on-shell action at a radial cut-off with respect to the induced fields at the

cut-off and read (care is required here since, as we have already noticed, the supergravity

4In fact, the precise correspondence involves also the quartic superpotential coupling [10,28].
5We could turn on a (perturbative) source for the irrelevant operators and calculate their VEVs once we

obtain an asymptotic solution to order z8.
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field basis is not diagonal with respect to the basis of the field theory operators)

〈Tµν〉 =
2√
−γ̃

∂Sren

∂γ̃µν

∣∣∣∣
φ,̃bΦ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

, 〈S−µ〉 =
−2i√
−γ̃

∂Sren

∂Ψ̃+
µ

∣∣∣∣∣
γ̃,φ,̃bΦ,Ũ ,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

,

〈Oφ〉 =
1

2
√
−γ̃

∂Sren

∂φ

∣∣∣∣
γ̃,̃bΦ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

, 〈O+
ζφ
〉 =

1√
−γ̃

i√
2

∂Sren

∂ζ−φ

∣∣∣∣∣
γ̃,φ,̃bΦ,Ũ ,Ψ̃+,ζ̃−b ,ζ̃

−
U

,

〈O
b̃
〉 =

1

2
√
−γ̃

∂Sren

∂b̃Φ

∣∣∣∣
γ̃,φ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

, 〈O+

ζ̃b
〉 =

1√
−γ̃

i√
2

∂Sren

∂ζ̃−b

∣∣∣∣∣
γ̃,φ,̃bΦ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
U

,

(3.11)

where the subscripts in the partial functional derivatives indicate the variables held fixed,

which is crucial for evaluating correctly these one-point functions. The resulting expressions

in terms of derivatives with respect to the supergravity fields are given in appendix C.3.

The quantity γ̃ is the determinant of γ̃µν , while the normalization of the one-point functions

has been chosen in accordance with the conventions for organizing these operators in N = 1

superfields.

Several comments are in order here. Firstly, Sren denotes the renormalized on-shell

action

Sren = Sreg + Sct , (3.12)

where the regularized action Sreg stands for the bulk on-shell action plus the Gibbons-

Hawking term (together with its supersymmetric completion [31]), and the covariant bound-

ary counterterms Sct contain both bosonic and fermionic terms. The counterterms, by con-

struction, ensure that Sren admits a smooth limit as the radial cut-off is removed. Given

the asymptotic behavior of the induced fields given in appendix C.2, this implies that the

renormalized one-point functions with the cut-off removed correspond to the limits

〈Tµν 〉QFT = lim
z→0

z−4〈Tµν 〉 , 〈S−µ〉QFT = lim
z→0

z−9/2e−X(z)/8〈S−µ〉 ,

〈Oφ〉QFT = lim
z→0

z−4〈Oφ〉 , 〈O+
ζφ
〉QFT = lim

z→0
z−7/2e−X(z)/8〈O+

ζφ
〉 ,

〈O
b̃
〉QFT = lim

z→0
z−4〈O

b̃
〉 , 〈O+

ζ̃b
〉QFT = lim

z→0
z−7/2e−X(z)/8〈O+

ζ̃b
〉 . (3.13)

Note that one of the indices of the stress tensor has been lowered with the field theory

metric γ̃µν , and not γµν . The explicit expression for the local boundary counterterms is

not required in order to derive the Ward identities holographically. It suffices that there

exist local and covariant boundary counterterms that render the on-shell action finite, while

preserving the symmetries of the dual QFT –most importantly for us, supersymmetry– up

to possible anomalies. Of course, explicit knowledge of the counterterms is necessary in

order to evaluate the one-point functions (3.13) for any given solution. In the next section
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we will present the boundary counterterms required to evaluate the bosonic VEVs in domain

wall backgrounds of the form (3.8).

Another point worth mentioning is that the one-point functions of the bosonic operators

are given by the derivative of the renormalized action with respect to the corresponding

induced field on the radial cut-off, which is therefore identified with the covariant source.

However, the covariant sources for the fermionic operators are given by the corresponding

induced field –which is a four-dimensional spinor– projected onto a definite chirality. As a

consequence, the dual operators have definite (and opposite) chirality.6 The chirality that

corresponds to the covariant fermionic source is determined by the leading asymptotics

which in turn are fixed by the sign of the their masses (see Table 3.1 and appendix C.2 for

details).

Given the holographic identification of the covariant sources and one-point functions at

the radial cut-off, the derivation of the Ward identities proceeds exactly as in chapter 2.

Namely, global symmetries are gauged, giving rise to generic sources for all global symmetry

currents. In addition, sources are manually turned on for all other operators, such as scalar

and fermion operators. Using the transformation of all the sources under the local (gauged)

symmetries together with the invariance (up to anomalies) of the generating functional, leads

to the Ward identities at the level of one-point functions in the presence of arbitrary sources.

In the bulk description all symmetries are already gauged and all sources are turned on, so

the only other ingredient we need in order to derive holographically the Ward identities is

the transformation of the covariant sources under the local symmetries. These are given

explicitly in appendix C.4. In the bulk these symmetries correspond to infinitesimal local

supersymmetry transformations and bulk diffeomorphisms generated respectively by a 4-

component Dirac spinor ε and a 5-vector ξA, preserving the gauge-fixing conditions (C.25).

The spinor ε has 8 real components which correspond to the 8 real supercharges of theN = 2

5d supergravity. This can be written as ε = ε++ε−. Since ε+ and ε− are linearly independent

supersymmetry transformation parameters, the renormalized on-shell action is not only

invariant under ε but also under ε+ and ε− independently. The spinor ε+ generates (local)

boundary supersymmetry transformations, while ε− generates superWeyl transformations.

Invariance under ε+ and ε− leads respectively to the supersymmetry Ward identities and the

operator identity involving the gamma-trace of the supercurrent. Similarly, the infinitesimal

bulk diffeomorphisms ξA preserving the gauge-fixing conditions (C.25) are parameterized by

two independent parameters, a scalar σ(x) generating boundary Weyl transformations7 and

an infinitesimal boundary diffeomorphism ξµo (x). Invariance under these leads respectively

to the trace Ward identity and the Ward identity involving the divergence of the stress

6This difference reflects the structure of the radial Hamiltonian phase space for bosonic and fermionic
fields. The holographic one-point functions (3.11) are in either case the renormalized radial canonical
momenta [51].

7The corresponding bulk diffeomorphisms are known as Penrose-Brown-Henneaux (PBH) diffeomor-
phisms and are discussed in detail in [59].
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tensor. If the theory has a trace anomaly, then supersymmetry implies that there will also

be an anomaly in the operator identity involving the gamma-trace of the supercurrent.

3.3.1 Supersymmetry Ward identities

The supersymmetry Ward identities are obtained by requiring the invariance of the renor-

malized action under the local spinor ε+, δε+Sren = 0. However, to calculate δε+Sren, we

need the transformation properties of the covariant sources under ε+, which are given in

appendix C.4, eq. (C.41) . Using the one-point functions (3.11) the variation of the renor-

malized action under ε+ gives8

δε+Sren =

∫
d4x
√
−γ̃
(
i

2
〈S−µ〉δε+Ψ̃+

µ +
1

2
〈Tµν〉δε+ γ̃µν + 2〈Oφ〉δε+φ+ 2〈O

b̃
〉δε+ b̃Φ

)
=

∫
d4x
√
−γ̃
(
− i

2
e−

2
15
U 〈∂µS

−µ〉 − 1

2
〈Tµν〉Ψ̃

+

µ Γ̃ν + i〈Oφ〉ζ
−
φ + i〈O

b̃
〉ζ̃
−
b

)
ε+ = 0 ,

(3.14)

which implies the following identity between one-point functions at non-zero sources

i

2
e−

2
15
U 〈∂µS

−µ〉 = −1

2
〈Tµν〉Ψ̃

+

µ Γ̃ν + i〈Oφ〉ζ
−
φ + i〈O

b̃
〉ζ̃
−
b , (3.15)

where Γ̃µ = ẽaµγa = e−
2
15
Ueaµγa. We can now differentiate this identity with respect to the

various fermionic fields, i.e. the covariant sources, and then put all sources to zero to obtain
9

e−
2
15
U 〈∂µS

−µ
(x)S−ν (0)〉 = 2i Γ̃µ〈Tµν 〉 δ4(x, 0) , (3.16)

e−
2
15
U 〈∂µS

−µ
(x)O+

ζφ
(0)〉 = −

√
2 〈Oφ〉 δ4(x, 0) , (3.17)

e−
2
15
U 〈∂µS

−µ
(x)O+

ζ̃b
(0)〉 = −

√
2 〈O

b̃
〉 δ4(x, 0) , (3.18)

where δ4(x, y) = δ4(x−y)/
√
−γ̃ is the covariant 4d Dirac delta function. The last step is to

take the cut-off all the way to infinity, which can be done using the limits (3.13). All these

limits can be easily evaluated using the asymptotic expansions of the induced fields given

in appendix C.2. Notice that all fermionic operators here are in the Dirac representation.

In order to match with the field theory expressions, it is better to convert them into Weyl

8Note that there are no contributions to the Ward identities from the irrelevant operators dual to V and
Ũ , as well as their fermionic superpartners, because their sources can be consistently set to zero.

9Notice that the two-point functions in (3.16) (and the ensuing equations) are defined in terms of the

one-point functions as: 〈∂µS
−µ
S−ν〉 = − −2i√

−γ̃
δ

iδΨ̃
+

ν

〈∂µS
−µ〉. The extra factor of i in the denominator is

because of the Lorentzian signature and the overall minus sign is because the functional derivative is with
respect to a Grassmann variable.
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notation. This can be done easily using the following conversion rules

ψ+ = ψα, ψ− = ψ
α̇
, ψ

+
= ψα̇, ψ

−
= ψα , (γµ)αβ̇ = i (σµ)αβ̇ . (3.19)

Adopting the above dictionary and upon sending the cut-off to infinity, we eventually get

〈∂µSµα(x) S̄νβ̇(0)〉QFT = −2σµ
αβ̇
〈Tµν〉QFT δ4(x) , (3.20)

〈∂µSαµ (x) Oζφα(0)〉QFT = −
√

2 〈Oφ〉QFT δ4(x) , (3.21)

〈∂µSαµ (x) O
ζ̃bα

(0)〉QFT = −
√

2 〈O
b̃
〉QFT δ4(x) . (3.22)

The identity (3.20) reproduces exactly the supercurrent Ward identity (3.2). Eqs. (3.21)

and (3.22) are analogous Ward identities for the supermultiplets where the operators Oφ
and O

b̃
sit. Since Oφ and O

b̃
are higher-component operators, a non-vanishing r.h.s. in eqs.

(3.21) and (3.22) signals that supersymmetry is broken in the corresponding vacuum. The

supersymmetric partner of these identities is the Ward identity involving the divergence of

the stress tensor. This can be easily derived holographically by considering the invariance

of the renormalized action under boundary diffeomorphisms, but we will not discuss it here.

3.3.2 Trace identities

In this section we derive the trace operator identities associated respectively with the energy-

momentum tensor and the supercurrent. Let us consider the latter first. From the ε−

supersymmetry transformations (C.42), and using (C.7), for the variation of Sren we get10

δε−Sren =

∫
d4x
√
−γ̃
(
i

2
〈S−µΓ̃µ〉 −

9M√
2
〈O+

ζ̃b
〉
)
e−

8
15
U ε− = 0 , (3.23)

which yields the following identity between the one-point functions of the gamma-trace of

the supercurrent and of the operator O
ζ̃b

at non-zero sources and at the cut-off

i

2
〈S−µΓ̃µ〉 =

9M√
2
〈O+

ζ̃b
〉 . (3.24)

Again, from this identity one can compute relations between various correlation functions

by further differentiating. Using the limits (3.13), we can remove the cut-off to obtain the

relation

〈σµ
αβ̇
S̄β̇µ〉QFT = −9

√
2M 〈O

ζ̃b α
〉QFT . (3.25)

10As we pointed out already, there is a potential anomaly on the r.h.s. of this equation, as well as on
the r.h.s. of (3.26). To compute these anomalies an explicit computation of the local counterterms Sct is
required. However, the anomalies only contribute ultralocal contact terms in the Ward identities, which are
not relevant for the present discussion.
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Next, let us derive the Ward identity following from local shifts in the radial coordinate,

which correspond to local Weyl transformations on the boundary. Using the transformation

of the covariant sources given in eq. (C.30), we get

δσSren =

∫
d4x
√
−γ̃
(

1

2
δσγ̃µν〈Tµν〉+ 2δσφ 〈Oφ〉+ 2δσ b̃

Φ〈O
b̃
〉

+

[
i

2
〈S−µ〉δσΨ̃+

µ −
√

2i〈O+
ζφ〉δσζ−φ −

√
2i〈O+

ζ̃b〉δσ ζ̃
−
b + h.c.

])
=

∫
d4x
√
−γ̃
(
〈Tµµ 〉+ 9M〈O

b̃
〉 (3.26)

+

[
i

4
〈S−µ〉Ψ̃+

µ +
i√
2
〈O+

ζφ〉ζ−φ +
i√
2
〈O+

ζ̃b〉ζ̃
−
b + h.c.

])
e−

8
15
Uσ .

This leads to the following identity between bosonic one-point functions at the cut-off

〈Tµµ 〉+ 9M〈O
b̃
〉+

[
i

4
〈S−µ〉Ψ̃+

µ +
i√
2
〈O+

ζφ〉ζ−φ +
i√
2
〈O+

ζ̃b〉ζ̃
−
b + h.c.

]
= 0 . (3.27)

Removing the cut-off (and setting all sources to zero), we finally obtain

〈Tµµ 〉QFT = −9M〈O
b̃
〉QFT . (3.28)

This is the bosonic partner of the fermionic trace identity (3.25) and the two are in perfect

agreement, numerical coefficients included.

Notice that only the VEV of O
b̃

and not that of Oφ enters eq. (3.28). From the general

formula Tµµ = −1
2

∑
i βiOi this suggests that in the KS theory the operator Oφ remains

marginal, at least in the supergravity regime, while O
b̃

has non-trivial β-function. This is

indeed the case, as shown in [28], in perfect agreement with the field theory answer in the

large-N limit. We will further comment on this point later.

3.4 Bosonic one-point functions and the Goldstino

Our goal here is to see how the supersymmetry Ward identities (3.20)-(3.22) are realized

differently in the backgrounds (3.6) and (3.8). Given the derivation of subsection 3.3.1, it

suffices to evaluate the bosonic one-point functions of Tµν ,Oφ and O
b̃
.

The calculation of the bosonic VEVs in the background (3.8) was already performed

in [56]. The authors of that paper took the most general compactification of the normaliz-

able deformations of the 10d KT solution. In particular, their solution contains transverse

dependence and is obtained from an ansatz which is gauge-redundant because of radial

diffeomorphisms. This makes the calculation of the VEVs technically involved. However, if

we focus just on flat domain wall solutions and fix radial diffeomorphisms, we can obtain

the one-point functions in a simpler manner. With this simplification in mind, we provide
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below an independent derivation of the VEVs of Tµν ,Oφ and O
b̃
, and find agreement with

the results of [43,56].

In order to evaluate the bosonic one-point functions in (3.11) explicitly, we compute

separately the contributions coming respectively from the regularized action and the coun-

terterms in (3.12). The contribution coming from Sreg is the radial canonical momentum

associated with the corresponding induced field, as follows from Hamilton-Jacobi theory.11

Using the expressions for the radial canonical momenta corresponding to the fields γ̃µν , φ,

and b̃Φ in the coordinate system (C.25) (see e.g. [36]) and using the identities (C.24), the

bosonic VEVs in (3.11) become

〈Tµν〉 = e
4
15
UeX

(
−2 (Kγµν −Kµν) +

2√
−γ

δSct

δγµν

)
, (3.29)

〈Oφ〉 = −eX
(
Gφφφ̇+ bΦGbΦbΦ ḃΦ +

(
1 +

k

2
e−

4
5
U

)(
5

4
GUU U̇ −

1

2
K

))
+

1

2
√
−γ

eX
(
δSct

δφ
+ bΦ

δSct

δbΦ
+

(
1 +

k

2
e−

4
5
U

)(
5

4

δSct

δU
+

1

3
γµν

δSct

δγµν

))
, (3.30)

〈O
b̃
〉 = eφeX

(
−GbΦbΦ ḃΦ −

q

2
e−

4
5
U

(
5

4
GUU U̇ −

1

2
K

)
+

1

2
√
−γ

(
δSct

δbΦ
+
q

2
e−

4
5
U

(
5

4

δSct

δU
+

1

3
γµν

δSct

δγµν

)))
, (3.31)

where the dot represents derivatives with respect to the radial coordinate r, which is defined

in eq. (C.25), while Kµν is the extrinsic curvature of the radial slices which, for the metric

(C.25), takes the form

Kµν =
1

2
γ̇µν = −1

2
ze−X∂z

(
e2Y

z2

)
ηµν . (3.32)

The contribution to the bosonic VEVs from Sct requires to know the explicit form of the

(bosonic part of the) boundary counterterms, at least for the case of Poincaré domain wall

solutions. Both the bosonic and fermionic counterterms can be derived systematically for

general cascading solutions. For backgrounds enjoying 4D Poincaré invariance it turns out

that the bosonic counterterms in a supersymmetric scheme [27] are simply given by the

superpotential (C.8), namely

Sct = −
∫
d4x
√
−γ 2W . (3.33)

11As an elementary example consider the canonical momentum of a point particle described by the La-
grangian L = 1

2
ẋ2, given by p = ∂L/∂ẋ = ẋ. Invoking the equations of motion it follows that this canonical

momentum can also be expressed as p = ∂Sreg/∂x, where the on-shell action is identified with Hamilton’s
principal function.
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Putting the two contributions together, the VEVs (3.29)-(3.31) at the radial cut-off take

the form

〈Tµν 〉 = −2

[
3z∂z log

(
eY

z

)
+ eXW

]
δµν ,

〈Oφ〉 =
1

2
z∂zφ+ e−φbΦ

(
e−

4
5

(U+V )z∂zb
Φ − eφeX∂bΦW

)
+

(
1 +

k

2
e−

4
5
U

)[
5

4

(
8

15
z∂zU − eX∂UW

)
− 2z∂z log

(
eY

z

)
− 2

3
eXW

]
,

〈O
b̃
〉 = e−

4
5

(U+V )z∂zb
Φ − eφeX∂bΦW

+
q

2
e−

4
5
U+φ

[
5

4

(
8

15
z∂zU − eX∂UW

)
− 2z∂z log

(
eY

z

)
− 2

3
eXW

]
. (3.34)

Evaluating the limits in (3.13) using the asymptotic behavior of the induced fields we finally

get

〈Tµµ 〉QFT = −12S , (3.35)

〈Oφ〉QFT =
(3S + 4ϕ)

2
, (3.36)

〈O
b̃
〉QFT =

4

3M
S , (3.37)

in agreement with the corresponding expressions in [43, 56] (note that the sign of S is

univocally fixed from (3.35), by unitarity).

Let us elaborate on the above result, utilizing the Ward identities (3.20)-(3.22), which

we derived holographically. On the supersymmetric solution (3.6), for which S = ϕ = 0,

all the above VEVs vanish, i.e. the vacuum energy is zero and there are no non-trivial

VEVs for higher component operators. The supersymmetry Ward identities are trivially

satisfied, and there is no massless pole in the supercurrent two-point function (3.1). This

is all consistent with supersymmetry being preserved.

More interestingly, let us now look at non-supersymmetric branches, and start with the

branch S = 0, ϕ 6= 0. Here supersymmetry is broken in the dual field theory, since a

higher-component operator, Oφ, has a non-vanishing VEV. Since 〈Tµµ 〉 = 0, however, the

vacuum energy vanishes and the goldstino mode is absent in (3.1). This is an indication of

explicit supersymmetry breaking, meaning that this branch does not describe vacua of the

KS model. This agrees with the fact that the β-function of the sum of the inverse gauge

coupling squared, the coupling dual to Oφ, actually vanishes [28] and hence Oφ remains

exactly marginal. As such, it cannot trigger spontaneous supersymmetry breaking (the

dynamics along this branch is basically the same as in the case of the dilaton background

of [57,58], though in a non-conformal theory).

Finally, let us consider the branch ϕ = 0, S 6= 0. This was suggested in [43] to

correspond to the (asymptotic description of the) metastable state obtained by placing
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p ∼ S antiD3-branes at the tip of the deformed conifold. Along this branch we see that

the vacuum energy (3.35) is non-vanishing, this being triggered by the VEV of the operator

O
b̃
, eq. (3.37). Indeed, these two quantities exactly satisfy the relation Tµµ = −1

2βb̃ΦOb̃ (the

difference with respect to the normalization of [28] is just due to a different normalization

of the operator O
b̃
). From the supercurrent Ward identities (3.20) and (3.22), which hold

non-trivially in this vacuum, we see that a goldstino mode is present in the supercurrent

two-point function (3.1). From the operator identity (3.25) it follows that the goldstino

eigenstate is

G ∼ 〈O
b̃
〉σµS̄µ ∼ 〈Ob̃〉Oζ̃b . (3.38)

All these properties are consistent with a vacuum where supersymmetry is spontaneously

broken and suggest that (if it exists, cf. the discussion in the Introduction of this chapter)

the KPV vacuum is in fact a vacuum of the KS theory. Before concluding this section,

there is one remark worth mentioning. From field theory viewpoint, there are no obvious

symmetries protecting the dimension of Oφ. Hence, one would expect its dimension to

get corrections, at least beyond the supergravity regime. Evidence for this was given in

[60], where α′3-corrections were computed suggesting that the otherwise marginal operator

gets contributions to its anomalous dimension at order ∼ (MN )4(gsN)−1/2 (recall that the

supergravity limit is gsN →∞). So, given that in this branch 〈Oφ〉QFT 6= 0, the goldstino

eigenstate could get a (very much suppressed) contribution from Oζφ , too, in the KPV

vacuum.

3.5 Conclusions

In this chapter, we have focused on deriving holographically the supersymmetry Ward

identities of the conifold cascading gauge theory, and to evaluate them explicitly in su-

persymmetric and supersymmetry-breaking dual backgrounds. Within the consistent trun-

cation we have considered, a two-parameter family of supersymmetry-breaking solutions

exists with the correct asymptotics. We have shown that only a one-dimensional branch

respects the supersymmetry Ward identities and displays the expected goldstino mode.

This branch was conjectured in [43] to describe, asymptotically, the state constructed by

placing antiD-branes at the tip of the deformed conifold, which is a metastable state in the

probe approximation [30]. In this sense, our results provide evidence that the KS cascading

theory can admit vacua where supersymmetry is broken at strong coupling, and also that

antiD-brane states, if they exist beyond the probe approximation, are valuable candidates

for such vacua.12

12It would be interesting to repeat our computation for the solution of [55], which includes also the conifold
deformation parameter. The computation is more involved, since the truncation one should consider includes
more fields. However, as already argued, we do not expect any qualitative changes in the end result.
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The derivation of the supersymmetry Ward identities we performed is quite general

and does not rely very much on the specific structure of the conifold theory, nor on the

explicit form of the solutions. This suggests that supersymmetry breaking vacua might be

generic in quiver gauge theories with running couplings driven by fractional branes, the KS

model being just a prototype example (superconformal theories cannot break supersymme-

try spontaneously, hence fractional branes are a necessary ingredient in the construction).

Considering this larger class of theories, in terms of more general 5d sigma-models than the

one presented in appendix C.1, could be instructive.13

Our results are consistent with previous findings [56, 64, 65], where it was suggested

that cascading theories, although being rather unconventional from the field theory point

of view, are in fact renormalizable holographically (see also [66–68]). There are however

several remaining open questions. The derivation of the counterterms we pursued is all one

needs to renormalize bosonic one-point functions, but this is not the full story. In fact, the

approach we used, where correlators are defined in terms of induced fields at a finite cut-off

rather than in terms of sources, seems robust and general enough to let one compute the

full counterterm action, including all bosonic and fermionic counter-terms. This could make

the analysis initiated in [56,65] more rigorous and possibly far reaching.

Working in terms of induced fields looks also as an efficient approach to try and answer

the question on how to derive, from first principles, counterterms respecting supersymmetry

in generic setups. In fact, this could also provide a technically and conceptually promising

way to attack the problem of holographically renormalize supersymmetric theories on curved

manifolds.

13In the probe approximation, where the goldstino is a massless excitation on the antiD3-brane world-
volume, this was shown to be the case in generalizations of the KPV construction on conifold-like geometries
with orientifolds [61], see also [62,63].
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Chapter 4

Multi-trace deformations in

AdS/CFT

In this chapter, we study some aspects of renormalization group flows triggered in a large-N

conformal field theory by multi-trace deformation in the context of AdS/CFT correspon-

dence, focusing concretely on the double-trace case. We consider a d-dimensional conformal

field theory perturbed by a relevant double-trace deformation of the form fO2, where O is

a single trace operator of dimension ∆− < d/2. The CFT flows to a non-trivial conformal

fixed point in the IR. In the large-N limit, the IR theory is related to the UV theory by a

Legendre transformation with respect to the source for the operator O. In particular, the

scaling dimension of O flips from ∆− in the UV to ∆+ = d − ∆− in the IR. As briefly

noted in chapter 1, in the context of O(N) vector model, double-trace deformations are

implemented in AdS by a change of boundary conditions on the scalar field φ dual to O.

The boundary conditions preserve symmetries of AdS space only at the fixed points of the

flow, where they correspond to the two roots ∆± in the usual AdS/CFT mass/dimension

relation ∆(∆− d) = m2. This feature is quite generic and is independent of the spacetime

dimension.

Later in the chapter we use double-trace deformations to study holographic aspects of

CFT phenomenon called multiplet recombination for the case when O is a scalar primary.

We will consider the coupling of a free scalar to a single-trace operator of a large N CFT

in d dimensions. This is equivalent to a double-trace deformation coupling two primary

operators of the CFT, in the limit when one of the two saturates the unitarity bound.

At leading order, the RG-flow has a non-trivial fixed point where multiplets recombine.

We show this phenomenon in field theory, and provide the holographic dual description.

Free scalars correspond to singleton representations of the AdS algebra. The double-trace

interaction is mapped to a boundary condition mixing the singleton with the bulk field dual

to the single-trace operator. In the IR, the singleton and the bulk scalar merge, providing

just one long representation of the AdS algebra.
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4.1 Double-trace deformation in AdS/CFT

In this section we present some details of double-trace deformations in a large-N CFT and its

AdS dual. This will serve as a warmup for the following sections. We proceed by studying,

both in field theory and holography, two examples. The first example is that of a relevant

deformation of the type fO2 where ∆O = ∆−, O being a single-trace primary. The second

example is that of a classically marginal deformation of the type fO1O2 where ∆O1 = ∆−

and ∆O1 = ∆+ where both O1 and O2 are single-trace primary operators. This model was

first studied in [20].

4.1.1 CFT analysis

Let us consider a deformation of a large-N CFT by a relevant double trace operator O2. The

partition function of the theory in the presence of a source J for the single trace operator

O is given by

Zf [J ] =

〈
e−

f
2

∫
O2+

∫
JO
〉

0

, (4.1)

where the subscript 0 means that the expectation value is evaluated in the undeformed

CFT. In the large-N limit this partition function can be simplified by performing a Hubbard-

Stratonovich transformation to decouple the interaction term by introducing an auxiliary

field σ. We get

Zf [J ] =

√
det

(
− 1

f
1

)∫
Dσ
〈
e

1
2f

∫
σ2+

∫
σO+

∫
JO
〉

0

,

'

√
det

(
− 1

f
1

)∫
Dσ e

1
2f

∫
σ2

e
1
2

〈
(
∫

(J+σ)O)
2
〉

0 ,

=

√
det

(
− 1

f
1

)∫
Dσ e

1
2f

∫
σ2

e
1
2

∫
(σĜσ+2σĜJ+JĜJ) ,

=

√
det

(
− 1

f
1

)∫
Dσ e

1
2

∫
σ
(
Ĝ+ 1

f

)
σ+
∫
σĜJ+ 1

2

∫
JĜJ

,

=
1√

det K̂
e−

1
2

∫
JĜ f

K̂
ĜJ+ 1

2

∫
JĜJ ,

=
1√

det K̂
exp

(
1

2

∫
J

Ĝ

1 + fĜ
J

)
. (4.2)

where we have introduced the following shorthand notations

(Ĝσ)(x) =

∫
ddy 〈O(x)O(y)〉0 σ(y) , and K̂ = 1 + fĜ . (4.3)
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In the above manipulation we have used the identities∫
Dϕ e−

1
2

∫
ϕAϕ+

∫
ρϕ =

1√
detA

e
1
2

∫
ρA−1ρ , (4.4)

and 〈
e
∫
σO+

∫
JO
〉

0

' e
1
2

〈
(
∫

(J+σ)O)
2
〉

0 . (4.5)

The last identity is a result of large N factorization of correlation functions. It can be

proved as follows. In the large-N limit, all odd-point functions vanish whereas all even-

point functions decomposes into products of two-point functions. This implies that〈(∫
O
)2n〉

= (2n− 1)!!

〈(∫
O
)2〉n

+O(1/N) , (4.6)

where (2n− 1)!! is the number of ways of partitioning 2n objects into n pairs. Then, using

the identity (2n)! = 2n n! (2n− 1)!!, one can easily derive (4.5).

From the last line in (4.2) we obtain the generating functional (defined as Wf [J ] =

logZf [J ]). From this we can compute the two-point function in the presence of the double-

trace perturbation

〈O(x)O(0)〉f =
δ2Wf [J ]

δJ(x)J(0)
. (4.7)

It is easier to calculate this by expressing the kernel Ĝ in momentum space

G(k) =

∫
ddx

eik·x

xd/2−ν
= 22νπd/2

Γ(ν)

Γ
(
d
2 − ν

) 1

k2ν
≡ Aν
k2ν

. (4.8)

using which we can obtain the two-point function in momentum space

〈O(k)O(−k)〉f =
G(k)

1 + fG(k)
δd(0) =

Aν
k2ν + fAν

δd(0) . (4.9)

Now we can explore the UV (k →∞) and IR (k → 0) limits. In the UV limit we have

〈O(k)O(−k)〉f=0 =
Aν
k2ν

δd(0) , (4.10)

which corresponds to an operator of scaling dimension ∆− = d/2− ν, as expected. In the

IR limit, we expand (4.9), and pick the leading non-local term in the momentum

〈O(k)O(−k)〉f=∞ =
1

f

(
1− k2ν

fAν
+ ...

)
δd(0). (4.11)

From the leading non-local contribution we read that this two-point function corresponds to

an operator of scaling dimension ∆+ = d/2 + ν. Although the sign of the leading non-local

term is negative in momentum space, it is indeed positive in position space for D− = d/2−ν,
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0 ≤ ν ≤ 1. Few remarks are in order. First of all, the power law behaviour is the prime

evidence for the existence of a non-trivial IR fixed point. Second, we see that the dimension

of the operator O has changed from ∆− to ∆+ = d −∆−. Moreover, 〈O(k)O(−k)〉f=0 in

the UV and 〈O(k)O(−k)〉f=∞ in the IR are related by a Legendre transformation. This can

be seen by making use of the Hubbard-Stratonovich auxiliary field σ. From the first line in

(4.2) we see that the double-trace perturbation can be written in terms of σ as follows

1

2f

∫
ddx σ2 +

∫
ddx σO . (4.12)

From the equation of motion of σ one sees that it is related to the operator O by: σ = fO.

Next, by performing the path integral in the undeformed CFT, we can derive an effective

action for σ. At large N we have〈
e
∫
σO
〉

0
≈ exp

(
1

2

∫
ddx ddy σ(x)σ(y)〈O(x)O(y)〉0 +O(σ3)

)
, (4.13)

so the quadratic term in the effective action for σ is

S[σ] = − 1

2f

∫
ddx

(
σ2 − 1

2

∫
ddx ddy σ(x)σ(y)〈O(x)O(y)〉0

)
,

= −1

2

∫
ddk

(2π)d
σ(k)σ(−k)

(
1

f
+G(k)

)
. (4.14)

From this effective action one can study the two-point function of σ in the small k limit

and conclude that the Hubbard-Stratonovich auxiliary field σ is an operator of dimension

∆+. We can view the field σ as an IR image of the UV operator under the RG evolution

and S[σ] as the effective action of IR correlators. Next, define a field σ̃ = σ/f , rewrite S[σ]

in terms of σ̃ and consider the Legendre transform of S w.r.t. σ̃

S′[σ̃] = S[σ̃] +

∫
ddk

(2π)d
J(p)σ̃(−p) , J(p) = −δS[σ̃]

δσ̃
. (4.15)

To proceed we write S′ in terms of the sources J (by introducing the source term and

integrating out σ) and add a term 1
2f J

2 which contributes only a contact term that doesn’t

affect correlators at separated points. The resulting expression is identical to the exponent

in last line of (4.2) where J was the source of the UV operator O. Hence, we can view S′[σ̃]

as the effective action of UV correlators. Then from (4.15) one can make the statement

that the effective action of the UV correlators is a Legendre transform of the IR one.

Next we consider the second example of double-trace deformations by an operator of

the type fO1O2. At the quantum level, deformation by this operator alone may not be

consistent because it may generate g1O1 and g2O2. Therefore, we consider the most general
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double-trace deformation that one can write down with two single-trace operators,

f

∫
ddx O1O2 +

g1

2

∫
ddx O2

1 +
g2

2

∫
ddx O2

2, (4.16)

The path integral of the deformed CFT under the presence of the sources reads:

Zf [J1, J2] =

〈
e−f

∫
O1O2− g12

∫
O2

1−
g2
2

∫
O2

2+
∫
J1O1+

∫
J2O2

〉
0

. (4.17)

We perform a Hubbard-Stratonovich transformation on this expression to decouple the

interaction terms by introducing again auxiliary fields. First we write the interacting term

as follows:

fO1O2 ≡ f1f2O1O2 =
1

2

(
(f1O1 + f2O2)2 − f2

1O2
1 − f2

2O2
2

)
, (4.18)

where f1 and f2 are such that

[f1] =
d

2
−∆1 , [f2] =

d

2
−∆2. (4.19)

So the path integral becomes:

Zf [J1, J2] =

〈
e−

1
2

∫
((f1O1+f2O2)2−(f2

1−g1)O2
1−(f2

2−g2)O2
2)+

∫
J1O1+

∫
J2O2

〉
0

. (4.20)

Now we decouple the quadratic interactions by introducing three auxiliary fields σ1, σ2 and

σ3 in the following manner:

Zf [J1, J2] =

√
det

(
− 1

h1h2
1

)∫
Dσ1Dσ2Dσ3

〈
exp

(
1

2

∫ (
σ2

3 −
σ2

1

h1
− σ2

2

h2

)
+

∫
σ3(f1O1 + f2O2) +

∫
σ1O1 +

∫
σ2O2 +

∫
J1O1 +

∫
J2O2

)〉
0

,

'

√
det

(
− 1

h1h2
1

)∫
Dσ1Dσ2Dσ3 exp

(
1

2

∫ (
σ2

3 −
σ2

1

h1
− σ2

2

h2

))
×

exp

[
1

2

〈(∫
(σ3f1 + σ1 + J1)O1

)2〉
0

+
1

2

〈(∫
(σ3f2 + σ2 + J2)O2

)2〉
0

]
,

(4.21)

where hi = f2
i − gi. The result of the path integral over σ1, σ2, σ3 is

Zf [J1, J2] =
1√

detK1K2K3
exp

(
1

2

∫
J1P1J1 +

1

2

∫
J2P2J2 −

∫
J1P3J2

)
, (4.22)
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where we have defined the following kernels (below i = 1, 2 and Gi is defined as in (4.8))

Ki = 1− hiGi , K3 = 1 + f2
1Q1 + f2

2Q2 , Qi =
Gi

1− hiGi
, (4.23)

and

P1 =
Q1 + f2

2Q1Q2

K3
=

G1 + g2G1G2

1 + g1G1 + g2G2 + (g1g2 − f2)G1G2
, (4.24)

P2 =
Q2 + f2

1Q1Q2

K3
=

G2 + g1G1G2

1 + g1G1 + g2G2 + (g1g2 − f2)G1G2
, (4.25)

P3 =
fQ1Q2

K3
=

fG1G2

1 + g1G1 + g2G2 + (g1g2 − f2)G1G2
. (4.26)

The product appearing in the determinant of (4.22) is

K1K2K3 = 1 + g1G1 + g2G2 +
(
g1g2 − f2

)
G1G2. (4.27)

We consider the special case of classically marginal deformation where g1 = g2 = 0 and

∆O1 = d
2 − ν and ∆O2 = d

2 + ν. In this case the product G1G2 = AνA−ν (see (4.8) for the

definition of Aν). The denominator in the kernels Q1,Q2,Q3 simplifes to 1 − f2G1G2 =

1−AνA−νf2. Define κ2 = −AνA−ν (since the product AνA−ν is negative). Then, in terms

of the quantity f̃ = κf , the generating functional becomes

W [J1, J2] =
1

2

1

1 + f̃2

∫
ddk

(2π)2

(
J1(k)J1(−k)G1(k) + J2(k)J2(−k)G2(k)

+ 2f̃κJ1(k)J2(−k)

)
, (4.28)

which allows us to obtain correlation functions for generic f . The last term, being a contact

term, can be ignored. The pre-factor 1

1+f̃2
is a smoking gun of the non-perturbative duality

under f̃ → 1/f̃ pointed out in [20], provided we rescale the sources by f . The physics

at f = 0 and f = ∞ are identical. As a further evidence of this duality, we note that

the partition function (4.22) (at vanishing sources), which depends upon f̃ through the

following function

− logZ[0, 0] =
1

2
tr log

(
− κf̃

1 + f̃2
I

)
, (4.29)

is invariant under f̃ → 1/f̃ .

Before we conclude this subsection it is worth mentioning that the generation function

(4.22) can be studied for non-zero g1 and g2 and other operator dimension. Interesting

RG flows and non-trivial IR fixed points can then be investigated for various choices of

∆1,∆2, g1, g1, f .
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In the next subsection we turn to the holographic aspects of the two examples discussed

so far.

4.1.2 Holographic analysis

Let us first recall Witten’s prescription for incorporating multi-trace deformations in

AdS/CFT. Consider a scalar field φ of mass squared m2 = −d2/4 + ν propagating in the

Poincaré patch of AdSd+1 with z being the radial coordinate. Near the boundary (z = 0),

the scalar field behaves as (1.47)

φ(z, k) ∼
z→0

(φ−(k)z
d
2
−ν + φ+(k)z

d
2

+ν)(1 +O(z2)) .

In AdS/CFT we relate the mode φ+ to the expectation value of the dual operator O of

dimension ∆+ = d
2 + ν. In the presence of sources the precise relation can be written down

as

〈O〉 = (d− 2∆)φ+ ≡ π+ , (4.30)

where we have taken the contribution of the counterterm into the expectation value of O.

On the other hand, the mode φ− is related to the source for O. For later convenience we

reiterate the relation between π+ and φ− (c.f. Eq. (1.48))

π+ =
Γ(1− ν)

Γ(ν)

(
1

2

)2ν−1

κ2νφ− ≡ aνk2νφ− ≡ G(k)φ− . (4.31)

In large-N CFTs, where O is a single-trace operator, the computation of the expectation

value of exp
(
−
∫
ddxJ(x)O(x)

)
proceeds by specifying the following boundary condition on

φ

φ−(x) = J(x) . (4.32)

φ− and π+ are canonically conjugate variables. Computing the expectation value of

exp
(
−
∫
ddxJ(x)O(x)

)
is the same as computing the partition functional of the boundary

CFT in the presence of the coupling W =
∫
ddxJ(x)O(x). Since the mode φ+ is related,

by the AdS/CFT correspondence, to the expectation value of O, we can symbolically write

the boundary coupling as W (π) =
∫
ddx Jπ+. Then it follows that the boundary condition

(4.33) can be written as

φ− =
δW

δπ+
. (4.33)

Multi-trace interactions arise if we take W (O) to be a local but nonlinear functional of O
and its derivatives. Witten’s prescription for incorporating multi-trace interactions in the

AdS/CFT correspondence is the following: replace O with π+ in the non-linear function

W and impliment the boundary condition (4.33). For instance, if we have double-trace

deformation (4.1), where W = f
2

∫
ddxO2(x), we obtain the following boundary condition
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from (4.33)

φ− = fπ+ . (4.34)

If we add a source term for O (as in (4.1)), W = f
2

∫
ddxO2(x) +

∫
ddxJ(x)O(x), we obtain

the following boundary condition from (4.33)

φ− = fπ+ + J . (4.35)

We recall that if 0 ≤ ν < 1, then it is possible to relate the mode π+ to the source of the

dual operator O of dimension ∆− = d
2 − ν as

−π+(x) = J(x) , for ∆ = ∆− , (4.36)

and φ− as its vacuum expectation value. The prescription for incorporating multi-trace

deformations by such an operator is the same as (4.33) with φ− → −π+ and π+ → φ−. For

instance, if we consider the double-trace deformation (4.1), where W = f
2

∫
ddxO2(x), we

obtain the following boundary condition from (4.33)

−π+ = fφ− , (4.37)

and if we add a source term for O (as in (4.1)), W = f
2

∫
ddxO2(x) +

∫
ddxJ(x)O(x), we

obtain the following boundary condition from (4.33)

−π+ = fφ− + J . (4.38)

The renormalized on-shell action with Dirichlet boundary condition (4.32) on φ reads (c.f.

(1.50, 1.53))

SD[J = φ−] =
1

2

∫
ddx π+φ− . (4.39)

For a scalar with Neuman boundary condition (4.36) we have to add an additional boundary

term to ensure that the bulk action is stationary. This gives

SN [J = −π+] = −1

2

∫
ddx π+φ− . (4.40)

The two-point function that one obtains from SN is

〈O(k)O(−k)〉 =
δφ−

δπ+
=

Γ(ν)

Γ(1− ν)

22ν−1

k2ν
δd(0) ,

⇒ 〈O(x)O(0)〉 =
1

2π
d
2

Γ
(
d
2 − ν

)
Γ(1− ν)

1

xd−2ν
. (4.41)

Hence, we see that the choice of the boundary condition (4.36) gives rise to a correlation

function of an operator of scaling dimension d
2 − ν. Next we consider adding a double-
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trace deformation 1
2fO

2to this CFT. This gets implemented in (4.40) by the following

modification

SfN [J ] = −1

2

∫
ddx

(
π+φ− + f

(
φ−
)2)

. (4.42)

Making use of (4.38) we can recast this action into the following simple form

SfN [J ] =
1

2

∫
ddx φ−(x)J(x) , (4.43)

which gives rise to the two-point function 〈O(k)O(−k)〉 = − δφ−

δJ . To evaluate this we need

to know φ− in terms of J . This relation can be obtained from (4.38) and is found to be

−J =

(
f +

Γ(1− ν)

Γ(ν)

(
1

2

)2ν−1

k2ν

)
φ− , (4.44)

and we finally obtain the generating functional

SfN [J ] = −1

2

∫
ddx J(x)

(
f +

Γ(1− ν)

Γ(ν)

(
1

2

)2ν−1

k2ν

)−1

J(x) , (4.45)

which reproduces the same non-local behaviour in k as the one obtained from CFT analysis

(c.f. last line of (4.2)).

Next we consider the holographic dual of the second example, where we deform the

CFT by an operator to the type W =
∫
fO1O2. Since ∆O1 = d

2 − ν and ∆O2 = d
2 + ν and

ν > 0, we impose Dirichlet boundary conditions on the scalar φ2 dual to O2 and Neumann

boundary condition on the scalar φ1 dual to O1. From Witten’s prescription, we get the

following boundary conditions (in the presence of sources)

φ−2 = fφ−1 + J2 , − π+
1 = fπ+

2 + J1 . (4.46)

On the other hand, the renormalized on-shell action is

Sf [J1, J2] =
1

2

∫
ddx

(
π+

2 φ
−
2 − π

+
1 φ
−
1 − 2fφ−1 π

+
2

)
=

1

2

∫
ddx

(
π+

2 J2 + φ−1 J1

)
, (4.47)

To proceed we need to know π+
2 and φ−1 in terms of the sources J1 and J2. Again this can

be obtained from Eqs. (4.46) and (4.31). The expressions are

π+
2 = −fJ1G2 −G1G2J2

G1 + f2G2
, φ−1 = −J1 − fG2J2

G1 + f2G2
, (4.48)
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where G1(k) = G2(k) = aνk
2ν ≡ G(k). The final expression for the generating functional

is

Sf [J1, J2] = −1

2

1

1 + f2

∫
ddk

(2π)d

(
−J2(k)G(k)J2(−k) + J1(k)

1

G(k)
J1(−k) + 2fJ1(k)J2(−k)

)
.

(4.49)

This on-shell action is structurally almost the same as the generating functional derived

from the field theory analysis (4.28). In particular, the f dependence is exactly the same.

Moreover, for vanishing f this generating functional reproduce the two-point functions

(1.54, 4.41). The boundary condition (4.46) is invariant under f → 1/f and φ−2 ↔ π+
2 , φ

−
1 ↔

−π+
1 . The latter is not a symmetry of the bulk theory because it is not a symmetry in the

asymptotic expansion (1.47). Let us suppose that the bulk theory has a symmetry that

exchanges φ1 and φ2. This symmetry was then broken by the boundary conditions (4.46).

However, when accompanied with f ↔ 1/f , φ1 ↔ φ2 is indeed a symmetry, that scales the

sources by f : J2 → −fJ2, J1 → fJ1. Also notice that with this rescaling of the sources,

the on-shell action is invariant under f → 1/f . Hence, the physics at f → 0 and f → ∞
are identical except for the exchange φ1 ↔ φ2. In the f →∞ limit, the scalar φ1 acquires

Dirichilet boundary condition and φ2 acquires Neumann boundary condition. Hence, φ1

has the quantization condition for it to be dual to operator O2 of dimension d
2 + ν and φ2

has the quantization condition for it to be dual to operator O1 of dimension d
2 − ν. This

flip is possible because f is order 1 and the fact that the two operators are mixed by the

deformation fO1O2.

4.2 Multiplet recombination in the context of AdS/CFT

Renormalization Group (RG) flow in Quantum Field Theory usually falls outside the regime

of validity of perturbation theory. However, if an expansion parameter is available, like in

the small-ε or the large-N expansion, it may become possible to follow operators from the

UV to the IR fixed point, and have direct access to interesting phenomena induced by the

RG-flow. One such example is multiplet recombination: a primary operator that saturates

the unitarity bound at the UV fixed point recombines with another primary operator, i.e.

the latter flows to a descendant of the first at the IR fixed point, and the two distinct

conformal families get mapped into a single one.

Recently, multiplet recombination was used to reproduce, via simple CFT arguments,

perturbative calculations of anomalous dimensions in the ε-expansion. This was first done

for O(N) scalar models in 4 − ε dimensions [69], and later extended to the Gross-Neveu

model in 2 + ε dimensions [70,71]. In these examples, the short operator is a boson/fermion

saturating the unitarity bound, which becomes long at the interacting fixed point due to

its equations of motion.
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We will consider multiplet recombination in large-N theories having a gravity dual de-

scription. Intuitively, holography should map multiplet recombination to a Higgs mechanism

in the bulk. Indeed, when the protected operator is a conserved current that recombines due

to a deformation that breaks the symmetry, the dual bulk gauge field is Higgsed and gets a

mass. Here, we will discuss the case in which the protected operator is a free scalar φ, and

couple it to a single-trace operator O of the large-N CFT via the interaction
∫
ddxφO. We

will see that also in this case there is a Higgs-like mechanism at work, albeit of a different

kind, which exists only in AdS.

In order to study this problem, we find it useful to start considering two CFT single-

trace operators (O1, O2) of dimension (∆1,∆2) with ∆1 + ∆2 < d, and thereafter take the

decoupling limit ∆1 → d
2 − 1. The relevant double-trace deformation∫

ddx f O1O2 , (4.50)

leads to an IR fixed point where (O1, O2) are replaced by two operators (Õ1, Õ2) of dimension

(d−∆1, d−∆2), respectively. In the limit ∆1 → d
2 − 1, many terms in the low energy limit

of the correlators become analytical in the momentum, and can be removed by appropriate

counterterms. Focusing on the physical part of the correlators, we will find that in this case

multiplets recombine. In particular, Õ1 ∝ �Õ2, the IR dimensions being related as

∆IR
1 = ∆IR

2 + 2 , (4.51)

with ∆IR
2 = d−∆2.

In the bulk the interaction (4.50) gets mapped into a non scale-invariant boundary

condition for the scalar fields (Φ1,Φ2) dual to (O1, O2) [20, 72] (see also [21, 22, 73–75]).

These bulk scalars are free at leading order in 1/N expansion. The presence of the coupling

f implies that the boundary modes of Φ1 and Φ2 get mixed. For O1 and O2 above the

unitarity bound, the holographic analysis is standard, and the results agree with the field

theory analysis. The limit ∆1 → d
2 − 1 should instead be treated with some care. One

needs to rescale the field Φ1, otherwise the normalization of the two-point correlator of O1

would vanish. Doing so, one sees that the on-shell action for Φ1 reduces to the action of a

free scalar field living on the boundary of AdS, i.e. a singleton [76–80]. In the IR limit of

the holographic RG-flow triggered by (4.50), the singleton gets identified with a boundary

mode of Φ2 corresponding to the VEV of the dual operator, i.e. the singleton becomes a

long multiplet by eating-up the degrees of freedom of the bulk scalar.

The rest of the chapter is organized as follows. In section 4.3 we perform the large-N

field theory analysis, and show that recombination takes place in the limit ∆1 → d
2 − 1.

In section 4.4 we review the singleton limit in the bulk, and derive the holographic dual

of the multiplet recombination flow. Section 4.5 contains a calculation of the variation of

the quantity F̃ [81] induced by the flow (4.50), which shows that δF̃ = F̃UV − F̃IR > 0, in
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agreement with the generalized F-theorem advocated in [81,82]. In section 4.6, we give our

conclusions and make a few more comments related to previous works.

4.3 Large-N Multiplet Recombination: Field Theory

Consider a free scalar φ coupled to a large-N CFT through the interaction∫
ddxfφO , (4.52)

where O is a single-trace primary operator of dimension ∆ < d
2 +1, so that the deformation

(4.52) is relevant and triggers an RG-flow.

At leading order in the large-N expansion, one can integrate out the CFT sector and

get the following non-local kinetic term for the scalar φ∫
ddx f2φ(−�)∆− d

2φ . (4.53)

This term is dominant in the IR, indicating that φ flows to an operator of dimension

∆IR
φ = d−∆. In fact, the equation of motion for φ tells that in the IR O = f−1�φ becomes

a descendant of φ with dimension ∆IR
O = d − ∆ + 2. Therefore, in the IR O disappears

from the spectrum of primary operators, multiplets recombine, and the short multiplet of

φ becomes long.

As we will see, in order to understand the holographic dual phenomenon, it is useful to

consider this flow as the limit of a double-trace flow induced by fO1O2 when the dimension

of O1 saturates the unitarity bound. In the following subsections we review this double-trace

flow and show that multiplet recombination emerges in the limit.

4.3.1 Double-trace flow

Let us consider a large-N CFT deformed by the double-trace interaction∫
ddx f O1O2 , (4.54)

where (O1, O2) are single-trace primary operators of dimensions (∆1,∆2), with d
2 − 1 <

∆1,2 < d
2 . Without loss of generality we will take ∆1 < ∆2 in what follows. One can

conveniently analyze the perturbed CFT

S = SCFT +

∫
ddx f O1O2 , (4.55)
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by introducing two Hubbard-Stratonovich auxiliary fields σ1 and σ2, and rewrite S as

S = SCFT +

∫
ddx

(
−f−1 σ1σ2 + σ1O1 + σ2O2

)
. (4.56)

Integrating σ1 and σ2 out gives the following relations

σ1 = fO2 , σ2 = fO1 , (4.57)

which, once substituted back into (4.56), give the original action (4.55).

By performing the path integral in the CFT, one can derive an effective action for σ1

and σ2. To leading order at large N all correlators of O1 and O2 factorize in a product of

two-point functions. The resulting non-local effective action for the auxiliary fields is

S[σ1, σ2] = (4.58)

−
∫
ddx

(
f−1 σ1(x)σ2(x) +

1

2
σ1(x)

∫
ddy

(x− y)2∆1
σ1(y) +

1

2
σ2(x)

∫
ddy

(x− y)2∆2
σ2(y)

)
.

Given that ∆1 and ∆2 are smaller than d
2 , the latter two terms dominate over the first, in the

infrared. When only these terms are retained, σ1 and σ2 have IR correlators corresponding

to operators with scaling dimension d−∆1 and d−∆2, respectively.

Substituting (4.57), we hence obtain the following operators at the IR fixed point

Õ1 = fO2, ∆IR
1 = d−∆1 , (4.59a)

Õ2 = fO1, ∆IR
2 = d−∆2 . (4.59b)

The above result shows that the IR fixed point is the same as the one reached via the

double-trace deformation g1O
2
1 + g2O

2
2 [20]. This will be confirmed by the computation of

the quantity F̃ [81] we do in section 4.5, where we show that the difference between the

UV and IR values of F̃ induced by the flow (4.54) coincides with the one induced by the

double-trace deformation g1O
2
1 + g2O

2
2.

4.3.2 Multiplet recombination

We now take ∆1 = d
2 − 1, which means that O1 decouples and becomes a free scalar, and

consider again the perturbation (4.54) and the corresponding effective action (4.58). The

kernel of the non-local quadratic action for σ1 is now 1
(x−y)d−2 , which is the inverse of the

Laplace operator. By the local change of variable

σ′1 = σ1 − f−1�σ2 , σ′2 = σ2 , (4.60)
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one can cancel the mixing term in the action (4.58), getting for the two-point function of

σ′1 just the contact term �δd(x− y). Therefore, the following operator equation holds

σ′1 = 0⇒ σ1 = f−1�σ2 . (4.61)

Using (4.57), (4.59a) and (4.59b), we obtain the following operator relation at the IR fixed

point

Õ1 = f−1�Õ2 , (4.62)

signaling that multiplets recombine, i.e. Õ1 becomes a descendant of Õ2. Recall from

eq. (4.59b) that Õ2 = fO1 has dimension d − ∆2 and, by (4.62), Õ1 = fO2 has now

dimension d−∆2 + 2.

4.3.3 A more general flow

One might like to consider a more general double-trace deformation constructed out of O1

and O2, namely ∫
ddx

(
f O1O2 +

g1

2
O2

1 +
g2

2
O2

2

)
, (4.63)

and analyze the corresponding RG-flow.1 Introducing again Hubbard-Stratonovich auxiliary

fields one can recast the above action as

S = SCFT +

∫
ddx

[
− 1

2(f2 − g1g2)

(
2fσ1σ2 − g2σ

2
1 − g1σ

2
2

)
+ σ1O1 + σ2O2

]
. (4.64)

Following the same steps as those of section 4.3.1, one ends-up with the following primary

operators in the IR

Õ1 = g1O1 + fO2, ∆IR
1 = d−∆1 , (4.65a)

Õ2 = g2O2 + fO1, ∆IR
2 = d−∆2 . (4.65b)

This shows that the IR fixed point is the same one reaches via the simpler deformation

(4.54), just the UV/IR operator dictionary is modified. So nothing qualitatively changes

with respect to the previous analysis.

Here again, one can safely take the decoupling limit ∆1 → d
2 − 1, getting a relation

similar to (4.62), the proportionality coefficient being now a function of f, g1 and g2

Õ1 =
f

(f2 − g1g2)
2Õ2 . (4.66)

So multiplets recombine also for this more general deformation. Notice that here the free

operator is a massive one, its mass being proportional to g1. Not suprisingly, for f = 0

1A similar quadratic interaction involving several single-trace operators was studied recently in the context
of large-N field theory in presence of disorder [83].
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the deformation (4.63) does not trigger any multiplet recombination, as it is also clear from

eq. (4.66). The (massive) free operator simply gets integrated out, while O2 flows to an

operator of dimension d−∆2.

Let us note that had we chosen d
2 < ∆2 < d, O2

2 would have been an irrelevant defor-

mation. This would not change much the story. Since one can always connect a CFT with

∆2 >
d
2 to one with ∆2 <

d
2 via an RG-flow with only g2 turned on, there is no loss of

generality in taking g2 to be a relevant coupling, as we did from the outset.

As it is clear from eq.(4.64), the hypersurface in the parameter space described by the

equation f2 − g1g2 = 0 needs a separate treatment. It is not difficult to see that in this

case only one linear combination of the operators renormalizes, the IR dimensions of Õ1

and Õ2 being d−∆1 and ∆2, respectively (the symmetry in the exchange g1 ↔ g2 is broken

by the fact that we have chosen ∆1 < ∆2). This is a different IR fixed point with respect

to previous cases. Actually, the same fixed point one reaches by deforming the CFT by g1

only. Also in this special case one can take the decoupling limit, ∆1 → d
2 − 1. Proceeding

the same way as before, one can see that the dimensions of Õ1 and Õ2 are now ∆2 + 2 and

∆2, respectively, indicating that multiplet recombination again holds. The IR fixed point

is the same one reaches with a g1 deformation only, which makes the free field disappearing

from the IR spectrum, leaving only one primary of dimension ∆2.

4.4 Large-N Multiplet Recombination: Holography

In this section we will analyze the large-N flows considered in the previous section from

a dual holographic perspective. As already noticed, free operators of the QFT are dual

to singleton representations of the AdS isometry group [76, 77] and some care is needed in

dealing with them in the context of AdS/CFT. In particular, singletons do not enjoy any

dynamics in the bulk. They correspond to propagating degrees of freedom only at the AdS

boundary, and therefore the usual field/operator map should be properly interpreted. In

what follows, we will first review how singletons can actually arise as a specific limit of

ordinary bulk fields and how QFT correlators involving operators saturating the unitarity

bound can then be consistently computed holographically using ordinary AdS/CFT tech-

niques. This will enable us to provide a holographic realization of QFT RG-flows enjoying

multiplet recombination at large N .

4.4.1 Singleton Limit

Consider a scalar Φ in AdSd+1 with mass m2 = ∆(∆− d), and ∆ = d
2 − 1 + η. Eventually,

we will be interested in the limit η → 0. To leading order at large N the scalar is free, and

solving the Klein-Gordon equation we have the leading modes at the boundary

Φ(z, x) ∼
z→0

(Φ−(x)z∆ + Φ+(x)zd−∆)(1 +O(z2)) , (4.67)
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where z is the radial coordinate that vanishes at the boundary and x ∈ Rd. Since ∆ < d
2 ,

the correct boundary condition is that (d − 2∆)Φ+(x) is fixed to coincide with the source

of the operator of the boundary theory: J(x) ≡ −(d − 2∆)Φ+(x). This implies, in turn,

that one needs to include an additional boundary term to ensure that the bulk action is

stationary [84]. After this is done, the renormalized on-shell action consists of the following

boundary term in momentum space

Sren
on-shell = −1

2

∫
z=0

ddk

(2π)d
Φ−[J(k)]J(−k) . (4.68)

The solution to the Klein-Gordon equation with the prescribed boundary condition and

regular for z →∞ is

Φ(k, z)on-shell =
1

Γ(1− d
2 + ∆)

(
k

2

)∆− d
2

J(k)z
d
2K d

2
−∆(kz) (4.69)

∼
η→0

2η k−1J(k)z
d
2K1(kz) ,

where K d
2
−∆(kz) is the modified Bessel’s function of the second kind. From the form of the

solution we see that

Φ−[J(k)] =
1

2

Γ(d2 −∆)

Γ(1− d
2 + ∆)

(
k

2

)2∆−d
J(k) (4.70)

∼
η→0

η

2

(
k

2

)−2

J(k) .

Recalling that the two-point function is minus the second derivative of the effective action

with respect to the source, we find that

〈O(k)O(−k)〉 =
1

2

Γ(d2 −∆)

Γ(1− d
2 + ∆)

(
k

2

)2∆−d
∼
η→0

2η

k2
. (4.71)

This shows that in order to get a finite result in the limit η → 0 we need to rescale the

source J(x) of the operator as J(x) = 1√
2η
Ĵ(x), with Ĵ(x) finite in the limit. In terms of

the bulk scalar field, this amounts to rescaling Φ(x, z) =
√

2η Φ̂(x, z) with Φ̂ kept fixed. In

this limit, the solution (4.69) goes to zero everywhere in the bulk, while the boundary term

stays finite and becomes

Sren
on-shell →

η→0
−1

2

∫
z=0

ddk

(2π)d
Ĵ(k)

1

k2
Ĵ(−k) . (4.72)

This is the generating functional of a free scalar operator living on the boundary. Note

that for η → 0 we get Φ̂− = k−2Ĵ(k). We can identify the free scalar operator φ on the
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boundary as φ ≡ Φ̂−. In fact, if we Legendre-transform back from Ĵ to φ the boundary

term becomes 1
2

∫
z=0

ddk
(2π)d

φ(k)k2φ(−k), i.e. the action of a free scalar.

4.4.2 Holographic Recombination Flow

We have now all ingredients to provide the holographic description of the large-N flows

discussed in section 4.3. We start considering two primary operators of the CFT with

dimensions ∆1,2 <
d
2 . The CFT operators are dual to two scalar bulk fields Φ1,Φ2 having

the following near boundary expansions

Φ1(z, x) ∼
z→0

(Φ−1 (x)z∆1 + Φ+
1 (x)zd−∆1)(1 +O(z2)) , (4.73a)

Φ2(z, x) ∼
z→0

(Φ−2 (x)z∆2 + Φ+
2 (x)zd−∆2)(1 +O(z2)) . (4.73b)

The deformation (4.54) is implemented by imposing the boundary condition [20]

J1 ≡ (d− 2∆1)Φ+
1 + fΦ−2 , (4.74a)

J2 ≡ (d− 2∆2)Φ+
2 + fΦ−1 , (4.74b)

where J1 and J2 are the sources for the field theory operators O1 and O2, respectively.

The solutions which are regular in the interior and have subleading boundary modes

Φ+
1,2 are

Φ1(k, z)on-shell = −N∆1k
∆1− d2 (d− 2∆1)Φ+

1 z
d
2K d

2
−∆1

(kz) , (4.75a)

Φ2(k, z)on-shell = −N∆2k
∆2− d2 (d− 2∆2)Φ+

2 z
d
2K d

2
−∆2

(kz) , (4.75b)

where

N∆ =
2
d
2
−∆

Γ(1− d
2 + ∆)

. (4.76)

From the explicit expressions (4.75), we can read-off the coefficients Φ−1,2, and obtain a linear

relation between Φ+
1,2 and Φ−1,2. We can plug this in (4.74) and solve for (Φ−1 ,Φ

−
2 ) as linear

functions of (J1, J2). The solution is

Φ−1 [J1, J2] =
J1 − fJ2G2

1− f2G1G2
G1, Φ−2 [J1, J2] =

J2 − fJ1G1

1− f2G1G2
G2, (4.77)

where

Gi(k) = −1

2

Γ(d2 −∆i)

Γ(1− d
2 + ∆i)

(
k

2

)2∆i−d
. (4.78)
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Using standard techniques, one gets the following renormalized on-shell boundary action

consistent with boundary conditions (4.74)

Sren
on-shell =

1

2

∫
ddk

(2π)d
(
(d− 2∆1)Φ+

1 Φ−1 + (d− 2∆2)Φ+
2 Φ−2 + 2fΦ−1 Φ−2

)
. (4.79)

Using (4.77) this can be rewritten in terms of the sources as follows

Sren
on-shell[J1, J2] =

1

2

∫
ddk

(2π)d

(
J1(k)

G1

1− f2G1G2
J1(−k) + J2(k)

G2

1− f2G1G2
J2(−k)

−2J1(k)
fG1G2

1− f2G1G2
J2(−k)

)
. (4.80)

This expression is equivalent to the the field theory result (4.58). In order to see this, one

needs to add the following local term to the above generating functional

Slocal = −
∫

ddk

(2π)d
J1(k)

1

f
J2(−k) , (4.81)

and Legendre-transform. Identifying the Legendre-transformed fields with ( 1
f σ2,

1
f σ1) one

gets precisely the Fourier transform of (4.58), provided we identify the field theory coupling

defined in section 4.3 and the holographic coupling in the following manner

f2
hol = 4πd

Γ(1− d
2 + ∆1)Γ(1− d

2 + ∆2)

Γ(∆1)Γ(∆2)
f2

ft , (4.82)

and pick the negative root for fhol (it is generic in AdS/CFT that field theory couplings

differ from holographic ones by such overall normalizations). After these identifications,

one can repeat the analysis of section 4.3.1 and obtain eqs. (4.59).

In order to describe the phenomenon of multiplet recombination holographically, one

has just to repeat the above analysis taking the singleton limit on the field Φ1, first. One

should hence set ∆1 = d
2 − 1 + η, rescale the source of O1 as J1 = 1√

2η
Ĵ1, rescale also the

coupling as f = 1√
2η
f̂ , and eventually take the limit η → 0, with the hatted quantities

kept fixed. Doing so, and repeating previous steps one gets, eventually, equation (4.62).

Below, we find it instructive to adopt yet another (but equivalent) point of view. Instead

of working with the effective action for (σ1, σ2) we will work with the generating functional

(4.80) itself. After the singleton limit the on-shell action, analogous to (4.80), reads

Sren
on-shell = −1

2

∫
ddk

(2π)d

(
Ĵ1(k)

−k−2

1 + f̂2k−2G2

Ĵ1(−k) + J2(k)
G2

1 + f̂2k−2G2

J2(−k)

+2Ĵ1(k)
f̂k−2G2

1 + f̂2k−2G2

J2(−k)

)
. (4.83)
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This action can be recast in the following way

Sren
on-shell =

1

2

∫
ddk

(2π)d
(
(Ĵ1(k) +

k2

f̂
J2(k)

) k−2

1 + f̂2k−2G2

(
Ĵ1(−k) +

k2

f̂
J2(−k)

)
, (4.84)

where certain contact terms have been dropped. We see that we are left with just one

effective source Jeff (x) = Ĵ1(x)− 1
f̂
2J2(x). Equivalently, the VEVs are related as

k2 δS
ren
on-shell

δĴ1

= f̂
δSren

on-shell

δJ2
. (4.85)

This equation shows that, as a result of the interaction f , the VEV mode of the bulk

scalar gets identified with the singleton Φ̂−1 , and its original VEV mode is now obtained

by applying � to Φ̂−1 . This is the hallmark signature of multiplet recombination. Notice,

finally, that in the IR the behavior of the two-point function of the leftover primary operator

is 〈Õ2Õ2〉 ∝ kd−2∆2 , implying that at the IR fixed point we have a primary of dimension

∆IR = d−∆2, in agreement with field theory analysis.

Summarizing, when f = 0 there are two independent modes, i.e. the singleton Φ̂−1 ,

which is just a boundary degree of freedom, and an ordinary bulk scalar, Φ2. They are

associated to two independent sources, Ĵ1(k) and J2(k). In contrast, at the IR AdS point,

there exists only one independent source, Ĵ1(k)− 1
f̂
2J2(k) and in turn only one scalar. Φ2

and the singleton merge into one bulk scalar whose VEV mode is Φ̂−1 .

4.5 Calculation of δF̃ for the double-trace flow fO1O2

In this section, we investigate the physicality of the RG flow resulting from the double-trace

deformation (4.55)2. It is well known that if an RG connects a unitary UV Conformal Field

Theory (CFT) to a unitary IR CFT, then a certain positive quantity defined on the space of

CFTs, decreases monotonically. This is the well known c- , F - and a-theorem in d = 2, 3, 4

respectively [86–90].

Motivated by the similarity of such monotonicity theorems in even and odd dimensions

(both of them can be formulated in terms of sphere free energy) it was conjectured in [81]

that these theorems are special cases of a more general one, valid in continuous range of

dimension for which

F̃UV(d) > F̃IR(d) , (4.86)

where F̃ (d) = − sin(πd/2)F (d) and F (d) is the sphere free energy which is defined as

F (d) = − logZSd . The quantity F̃ which turns out to be a smooth function of d, interpolates

between the a-anomaly coefficient in even dimensions and the sphere free energy in odd

dimensions. Thus, the inequality (4.86) (dubbed as the “Generalized F -theorem” in [82])

2See also [85] for related discussion.
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smoothly interpolates between the corresponding inequalities in even and odd dimensions.

In [81] several examples were provided for which F̃ decreases towards the IR, suggesting

a generalization of the a- and F-theorems to continuous dimensions. In particular, it was

proven that the generalized F-theorem holds for double-trace deformations.

We want to compute the leading large-N variation of F̃ induced by the flow (4.50). We

follow the methods of [74,81,91]. At leading order at large-N the sphere partition function

depends on the deformation fO1O2 as

ZSd
f = ZSd

0 ×
1√

det(1Sd − f2GSd
1 ? GSd

2 )
. (4.87)

This can be derived from the equivalent of action (4.58) for the theory on Sd, by performing

the path integral over σ1 and σ2. GSd
i is the two-point function of Oi on the sphere of radius

R

GSd
i (x, y) =

1

(Rs(x, y))2∆i
, (4.88)

where s is the distance between the two points x, y induced by the round metric g on the

sphere of radius 1. Moreover 1S
d

x,y = 1

Rd
√
g(x)

δd(x− y) and ? is the product

(GSd
1 ? GSd

2 )(x, y) =

∫
Sd
ddzRd

√
g(z)GSd

1 (x, z)GSd
2 (z, y) . (4.89)

Taking the logarithm of (4.87) we have

F̃f − F̃0 = − sin

(
πd

2

)
1

2
log det(1− (fRd−∆1−∆2)2s−2∆1 ? s−2∆2) . (4.90)

We want to compute the difference between the values in the deep UV and in the deep IR.

Those are obtained by taking fRd−∆1−∆2 to be 0 or ∞, respectively. We obtain

δf F̃ = F̃UVf − F̃ IRf = sin

(
πd

2

)
1

2
log det(s−2∆1 ? s−2∆2)

= sin

(
πd

2

)
1

2

(
log det(s−2∆1) + log det(s−2∆2)

)
(4.91)

≡ δF̃∆1 + δF̃∆2 .

Comparing (4.91) with eq. (3.4) in [81], we see that this coincides with the variation of F̃

induced by the deformation g1O
2
1 + g2O

2
2. This agrees with the fact that the deformations

fO1O2 and g1O
2
1 +g2O

2
2 connect the same UV and IR fixed points. In [81,91] the logarithm

of the functional determinant was evaluated via an appropriate regularization of the infinite

sum, and the end result shown to be positive whenever d
2 − 1 < ∆i <

d
2 . We refer to these

papers for an explicit expression (see also [82]).
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In the limit ∆1 → d
2 − 1, the part of δf F̃ that depends on ∆1 equals the value of F̃ for

the CFT of a free scalar, and we have

δf F̃ = F̃scalar + δF̃∆2 , (4.92)

which is again a positive quantity if d
2 − 1 < ∆2 <

d
2 , since F̃scalar > 0 [81]. This equation

reflects the fact that along the flow the free scalar and the primary single-trace operator of

dimension ∆2 recombine, giving in the IR one primary single-trace operator of dimension

d−∆2.

The upshot is then that the generalized F-theorem holds for the double-trace deforma-

tion (4.55), and it does so also when multiplets recombine, which is further support of the

physicality of the RG flow that leads to multiplet recombination.

4.6 Comments

So far we have described multiplet recombination involving scalar primaries induced by

coupling a large-N CFT in d dimensions to a free sector. Working at leading order in

1/N , we have described this phenomenon in field theory, and provided the holographic dual

description. Let us comment on the relation with previous work on multiplet recombination

in holography.

In the context of AdS5/CFT4, multiplet recombination involving spin-one primaries was

studied in [92–95]. In that case the recombination is not due to an RG-flow, rather it occurs

as one moves away from the free point gYM = 0 of N = 4 SYM on the line of the marginal

coupling, and the higher-spin currents of the free theory get broken. Another instance

of higher-spin multiplet recombination is the case of O(N) vector models in AdS4/CFT3

[14,96,97]. The holographic dual description consists of a Higgs mechanism for the higher-

spin gauge fields dual to the higher-spin currents of the free theory. The Higgs mechanism

happens at tree-level in the example of N = 4 SYM, while it is a 1/N effect for the O(N)

vector models.

The crucial difference between these examples and our setting is that in these examples

one starts with N � 1 free fields with a singlet condition, while we are considering only

one free field. For this reason, in our setting there are no higher-spin gauge fields in the

bulk. We only have higher spin currents associated to the singleton and supported on the

boundary, and those are broken by the boundary condition.

A natural follow-up of our work would be to consider fermionic operators, along the

lines of [98,99], and study the analogous singleton limit and recombination in the bulk due

to the boundary condition.

The idea of multiplet recombination has been applied extensively in the literature in

various contexts, to compute anomalous dimensions [69–71,100–104], to constrain the form

of three-point functions [105], or to find exactly marginal deformations [106]. In these
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examples one works perturbatively in a small parameter that controls the breaking of the

shortening condition. In the case we consider, instead, the recombination happens at leading

order in 1/N , so we cannot apply these methods to obtain more information about the IR

fixed point. It would be interesting to consider a set-up in which the shortening is violated

by a multi-trace operator with a suppressed coupling at large N , as would follow for instance

from an interaction
∫
ddxφO2, and see if similar techniques could instead be used in that

case. Another open problem is to try to use multiplet recombination to compute anomalous

dimensions in the IR fixed point of QED in d = 4− 2ε [107,108].

In appendix D we give some applications of multiplet recombination to calculate anoma-

lous dimensions in φ4 theory and symmetry-breaking deformations of theO(N) vector model

in d = 4− ε dimensions. In the next chapter instead we study multiplet recombination in-

volving spin-one single-trace conformal primary operators and use it to calculate anomalous

dimensions of broken currents.
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Chapter 5

On Conformal deformations in

AdS/CFT

Consider a d-dimensional conformal field theory (CFT) denoted by P0. Suppose that the

theory contains a non-empty set of exactly marginal operators Oi. By exactly marginal we

mean that if we deform P0 by ∫
ddx giOi , (5.1)

then there are no β-functions whatsoever for the couplings gi. The theory obtained after

the deformation is a new CFT P1 different from P0. The family of CFTs obtained in this

way is referred to as the conformal manifold. It is a true manifold in the sense that it can be

endowed with a topology. The maximal dimension of this topological space is equal to the

total number of exactly marginal operators present in the spectrum of primary operators

at the point P0.

Let us endow the CFT at the point P0 with a global symmetry group G. Then among

the set of primary operators there exists spin-one conserved currents Jaµ that lie in the

adjoint representation of G and constitute a short multiplet1 of the conformal group with

the shortening condition being the conservation law

∂µJaµ = 0 , (5.2)

From this equation it follows that Jaµ is at the unitarity bound, its dimension being ∆J =

d− 1.

If there are exactly marginal operators that carry non-trivial representations of G then

there exists regions of the conformal manifold where G is broken explicitly. In this region

the spin-one operators Jaµ are no longer conserved and constitute a long multiplet of the

conformal group. The dimension of Jaµ is lifted along with the marginally irrelevant operator

1By short multiplet of the conformal group we mean that some of the descendants (here ∂µJaµ) are absent
in the conformal family of Jam
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T aijg
iOj which becomes a descendant of Jaµ in the P1 CFT. This is evident from the operator

relation

∂µJaµ = T aijg
iOj . (5.3)

Contrast this with the situation in the P0 CFT where both T aijg
iOj and Jaµ are primary

operators and therefore sit in different representations of the conformal group. This is an

instance of the phenomenon of multiplet recombination discussed in the previous chapter,

applied to the case of spin-one operator.

As already mentioned in section 4.6, this phenomenon can be used to determine prop-

erties of the P1 CFT in terms of the data at P0. For small deformations, one can calculate

the leading order corrections to the anomalous dimension of Jaµ from the knowledge of cor-

relators in the P0 CFT [100]. From eq. (5.3) it follows that the scaling dimension of the

current in the deformed CFT is ∆J > d− 1, meaning that some anomalous dimension has

been generated by the exactly marginal deformation:

∆J = d− 1 + γ , (5.4)

where γ is positive by unitarity. If the P0 CFT is a free theory then the leading order

anomalous dimension can be computed using just Wick contractions. An example of this

sort is the N = 4 SYM where the free point is a part of the conformal manifold. However,

for interacting, possibly strongly coupled CFTs, field theory methods do not suffice. This is

where AdS/CFT techniques find their virtue. This will allow us to compute the anomalous

dimension of broken currents in a class of N = 1 superconformal field theories (SCFT)

arising from D-branes at toric Calabi-Yau singularities which admit symmetry breaking

exactly marginal deformations known as β-deformations [109,110].

In the next section we explain the method used to calculate the leading order anomalous

dimension. We will be quite general in our exposition and include both marginal and rele-

vant deformation in the discussion. In section 5.2, we will review some basic facts regarding

the nature of exactly marginal deformations and global symmetries in 4-dimensional N = 1

SCFTs. We also comment upon its holographic dual. In section 5.3 we present a simple toy

example to demonstrate the methods developed in section 5.1. We then discuss β-deformed

N = 1 SCFTs in section 5.4. We conclude in section 5.5 with a list more examples of

current multiplet recombination.

5.1 Methods - Field theory and holography

Computing exact anomalous dimensions of an arbitrary operator is, in principle, very dif-

ficult. However, for operators (in a CFT) that undergo multiplet recombination, the con-

straints imposed by conformal symmetry can be exploited.
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Let us first suppose that the global symmetry is broken weakly (either by exactly

marginal or relevant deformation). By weak breaking we mean that the CFT with bro-

ken symmetries can be made parametrically near to the symmetry-preserving one. Let us

rewrite eq. (5.3) (ignoring the global symmetry indices) as

∂µJµ = g O . (5.5)

For the case of exactly marginal deformations, we can make g as small as we like (because

g does not run). For the case of relevant deformations g should be understood as g∗, the

value of the coupling at the IR fixed point.

In such a situation the anomalous dimension of J can be determined, to leading order in

g, by computing the two-point functions of O and Jµ in the unperturbed CFT. This idea is

quite old [100, 101] but has been used and studied in relatively recent works [69, 102–104].

The basic idea goes as follows.

In a CFT, the structure of two-point functions of primary operators is fixed, up to

an overall normalization, by conformal invariance. In particular, we have for a spin-one

operator

〈Jµ(x)Jν(y)〉 = CJ
Iµν

(2π)d (x− y)2∆J
, Iµν = δµν − 2

(x− y)µ (x− y)ν

(x− y)2 . (5.6)

This relation is a consequence of conformal symmetry and holds for any spin-one operator

in a CFT. The operator dimension ∆J as well as CJ will be different in the undeformed

and the deformed CFT, the difference being proportional to g.

Differentiating twice the correlator (5.6) one gets

〈∂µJµ(x)∂νJν(y)〉 = CJ
2(2∆J + 2− d)(∆J + 1− d)

(2π)d(x− y)2∆J+2
. (5.7)

By the operator identity (5.5) the same two-point function is given by

〈∂µJµ(x)∂νJν(y)〉 = g2〈O(x)O(y)〉 . (5.8)

By taking the ratio with (5.6), using (5.4), one gets

g (x− y)2Iµν
〈O(x)O(y)〉
〈Jµ(x)Jν(y)〉

= 2γ (d+ 2γ) . (5.9)

The above equation shows that in computing current anomalous dimension one needs to

know the correlators to one order less in perturbation theory in g. In particular, to get γ to

leading order in g one needs the value of the two-point functions of Jµ and of O at zeroth

order, namely in the undeformed theory where O is not a descendant of Jµ but is a primary
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operator and its two-point function has the usual structure

〈O(x)O(y)〉 =
CO

(2π)d (x− y)2∆O
, (5.10)

where CO is some normalization. Plugging this expression into eq. (5.9) and using (5.6)

one gets, upon expanding in powers of the coupling g (note that eq. (5.5) implies that

∆O = ∆J + 1)

γ =
1

2d
g2 CO
CJ

+O(g4) , (5.11)

with CJ and CO evaluated in the undeformed theory, namely at g = 0.

This method is powerful because it allows to get information on the deformed CFT

by just doing computations in the undeformed one. In practice, however, there are two

limitations. First, as already emphasized, the perturbative expansion (5.11) makes sense

only if the symmetry is weakly broken. If this is not the case, the above strategy cannot

be applied and one should resort to some other method. Second, computing the two-

point functions of O and Jµ, and hence the exact proportionality coefficient in eq. (5.11),

is straightforward only if the undeformed CFT is a weakly coupled theory. In such a

case one has to deal with correlators at tree-level and there are no issues of regularization

and renormalization. A different story is if the original CFT is an interacting, possibly

strongly coupled theory, e.g. emerging from some non-trivial gauge theory dynamics. In

this situation AdS/CFT techniques can be employed (for field theories with a holographic

dual).

In AdS/CFT, global currents in the boundary CFT are dual to gauge fields in AdS and

the corresponding mass/dimension relation, in units of the AdS radius is

m2 = d− 1 + ∆J(∆J − d) . (5.12)

From Eq. (5.12) it follows that massless gauge fields are dual to conserved currents, and mas-

sive ones to non-conserved currents. Therefore, when two CFTs are related by a symmetry-

breaking deformation the gauge field dual to the (broken) current is massless in the vacuum

dual to the undeformed CFT, and massive in that dual to the deformed CFT. Indeed, as

known since the early days of the AdS/CFT correspondence, the breaking of a field theory

global symmetry (be it explicit, like in the present case, or spontaneous) corresponds to

a Higgs mechanism in the bulk, by which a massless vector eats-up a scalar and becomes

massive. This is the bulk counterpart of the dynamics which governs current multiplet

recombination 2. Therefore, to compute current anomalous dimensions holographically, one

has to calculate the mass of the dual gauge field and plug the result into eq. (5.12). Note

2See [2] for a holographic description of scalar multiplet recombination, and [14,92–97] for that of higher
spin currents. These are both described by a Higgs-like mechanism in the bulk, though of a different nature
in the two cases.
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that this provides the anomalous dimension at face value so it also applies to long RG flows,

i.e. when g∗ cannot be tuned to zero. In section D.3 of Appendix D, we will discuss an

instance of this kind in the context of 5-dimensional N = 2 gauged supergravity. Another

situation in which AdS/CFT techniques can be useful is when the breaking is weak but the

undeformed CFT is itself at strong coupling, and therefore computing at g = 0 is itself non-

trivial. In this case, one can evaluate the two-point functions 〈Jµ(x)Jν(y)〉 and 〈O(x)O(y)〉
entering eq. (5.9) holographically. The β-deformed SCFTs we will discuss later are one such

examples.

5.2 On exactly marginal deformations and global symmetries

The existence of exactly marginal deformations is difficult to establish, and for a generic

CFT they do not exist, in general. However, as shown originally by Leigh and Strassler [109],

and further elaborated by e.g. [106, 110–112], four-dimensional N = 1 SCFTs often enjoy

non-trivial conformal manifolds.

Suppose we have a SCFT with some global symmetry group G and a bunch of marginal

chiral operatorsOi carrying some non-trivial representation of G. Deforming the theory by a

G-breaking marginal superpotentialW =
∑

i g
iOi, an RG flow is induced since, generically,

the operators Oi acquire an anomalous dimension.3 In fact, marginal operators may either

remain marginal or become marginally irrelevant, but never marginally relevant [106]. A

space of exactly marginal operators exists, in general, and near the origin, namely around

gi = 0, it is described by the quotient

Mc = {gi|Da = 0}/G with Da = giT aij ḡ
j . (5.13)

Equivalently, Mc = {gi}/GC, where GC is the complexified broken symmetry group. To

summarize, the conformal manifold is parametrized by all uncharged operators (which triv-

ially satisfy the constraint Da = 0 and are hence exactly marginal by themselves) plus all

G-inequivalent linear combinations of charged, classically marginal operators Oi satisfying

the constraint (5.13).

There can exist submanifolds ofMc where only a subgroup H ⊂ G of the global symme-

tries is preserved. Along such submanifolds, current multiplets belonging to the complement

of H in G recombine. These are the submanifolds we will be interested in.

The holographic dual ofMc is the moduli space of AdS vacua parametrized by constant

scalars [113–116]. To see this we we recall that exactly marginal operators are dual to

massless scalar fields in the bulk (which is evident from the mass/dimension relation m2 =

∆(∆ − d)). The near-boundary expansion of a massless scalar in Poincaré coordinates is

φ(z, x) ∼ φ0(x) + φ2(x)z2 + O
(
z4
)
. The non-normalizable mode φ0 of the scalar field is

3In a SCFT there do not exist marginal Kähler deformations [106]. Therefore, marginal deformations are
described by superpotential deformations.
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the source for the marginal operator, and corresponds to a deformation (5.1) in the dual

field theory. In other words φ0 is mapped to g under the AdS/CFT duality. The conformal

manifold Mc is hence mapped into the moduli space M of AdS vacua which are AdS

solutions of bulk equations of motion parametrized by massless, constant scalar fields.

5.3 Abelian toy model

As discussed above, the existence of exactly marginal deformation, and in turn of a confor-

mal manifold, is a generic property of supersymmetric field theories. Hence we consider a

four-dimensional N = 1 SCFT admitting a U(1) global symmetry, and assume there exists

n chiral primary (classically) marginal operators Oi with charge qi under U(1). A generic

symmetry breaking deformation can be described by the following action

S = SSCFT +
∑
i

∫
d4x giOi + h.c. , (5.14)

where Oi are the F-components of the chiral superfields Oi and gi are complex couplings.

The submanifold of Mc along which the U(1) symmetry is broken is described by the

D-term-like equation
n∑
i,=1

qi giḡi = 0 , (5.15)

modulo U(1) transformations. There exist n−1 non-trivial solutions of the above equation,

in general. Let us dub O a linear combination of operators Oi which solves eq. (5.15)

O = g1O1 + g2O2 + · · ·+ gnOn . (5.16)

This is an exactly marginal deformation. Hence, if perturbing the original SCFT with

W = gO, one describes yet another SCFT, which is parametrically near to the original one

as g → 0. In the deformed SCFT the U(1) symmetry is broken and the U(1) current is not

conserved

SCFT0 : ∂µJ
µ = 0 , SCFTg : ∂µJ

µ 6= 0 . (5.17)

The minimal number of marginal operators which can provide non-trivial solutions of

eq. (5.15) is two. In the following, we will then consider, for definiteness, i = 1, 2. In this

case there exists a one-dimensional subspace in the space of couplings which corresponds

to an exactly marginal deformation, described by the equation

q1 |g1|2 + q2 |g2|2 = 0 , (5.18)
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modulo U(1) transformations. The general solution is g1 =
√
−q2/q1e

iφg2 ≡ g, with φ an

arbitrary phase.4 Within this set we can choose a convenient representative. Upon a U(1)

rotation

O1 → eiq1αO1 , O2 → eiq2αO2 . (5.19)

Choosing α = φ/(q2 − q1), and fixing for definiteness q1 = −q2 ≡ q we get for the represen-

tative

O+ ≡ O1 +O2 , (5.20)

and the symmetry breaking SCFT is described by the action

S′SCFT = SSCFT +

∫
d4x gO+ + h.c. . (5.21)

Note that once this parametrization is chosen, any combinations of O1 and O2 not propor-

tional to O+ itself, will be marginally irrelevant (in particular the operator O− ≡ O1−O2).

By Noether method one can compute the current (non) conservation equation which

reads

∂µJ
µ = iq g O− + h.c. . (5.22)

The fact that O− is (marginally) irrelevant nicely agrees with ∆J being bigger than 3

whenever g 6= 0.

To leading order in g the anomalous dimension of the current Jµ can be computed

following the approach reviewed in section 5.1. The result is

γ =
1

4
q2|g|2

CO−
CJ

+O(g4) , (5.23)

where CO− is the normalization of the two point function 〈O−O†−〉.5 Here CO− and CJ are

to be evaluated at g = 0, so are data of the undeformed SCFT.

For interacting CFTs it may happen that the coupling λ governing their dynamics is

itself exactly marginal and the free limit, λ = 0, is part of the conformal manifold (this

is the case for N = 4 SYM, which we will consider later). If a holographic description is

available, one could then compute eq. (5.23) for small and large values of λ, and compare.

In general, one should expect different answers for γ at small and large λ. A simplification

is that the coefficients entering eq. (5.23) are to be evaluated at g = 0. At any λ, the

symmetry is preserved for g = 0 and, for a conserved current, the coefficient CJ of the

two-point function does not renormalize.6 On the contrary, nothing like this is expected

4Note that from eq. (5.18) it follows that q1 and q2 should have opposite sign.
5The discrepancy in the numerical coefficient with eq. (5.11) is because the deformation considered here

is complex, compare eq. (5.22) with eq. (5.5).
6This is because in a SCFT the coefficient CJ of the two-point function of a conserved non-R current is

nothing but the cubic ’t Hooft anomaly between the superconformal R-current and the current Tr (TRTJTJ)
itself [117,118]. As such, it does not depend on λ.
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to hold for the operator O− and so for CO− , in principle. In fact, supersymmetry can also

protect CO− , sometime, as we will see later.

5.4 β-deformed superconformal field theories

D3-branes at conical Calabi-Yau (CY) singularities, that is real cones over Sasaki-Einstein

manifolds X5, provide a large class of N = 1 SCFT with holographic duals, the dual

geometry being AdS5 × X5. The most studied examples are toric CY, which are CY for

which X5 admits at least a U(1)3 isometry group. Of these three abelian factors, one (that

associated to the Reeb vector) corresponds to the superconformal R-symmetry. The other

two are flavor symmetries of the dual field theory.

For any toric CY singularity there always exists a supersymmetric, exactly marginal

deformation preserving the U(1)3 symmetry [110]. This is known as β-deformation. It may

happen that X5 has an enlarged isometry group H ⊃ U(1)3. In this case, the β-deformation

triggers current multiplet recombination since by β-deforming the theory the flavor group

H is broken to U(1)R×U(1)2 and several currents are not conserved anymore.7 This is the

class of models of interest to our present analysis.

In what follows we will discuss three such examples: the β-deformed N = 4 SYM,

the β-deformed conifold theory and the β-deformed Y p,q theories. In the first case H =

U(1)R × SU(3).8 For the conifold theory H = U(1)R × SU(2) × SU(2), while for Y p,q

singularities H = U(1)R × SU(2)× U(1).

These models share many similarities, but there is one sharp difference: for N = 4

the free theory is part of the conformal manifold. For the conifold and Y p,q theories, it is

not [13]. Therefore, in the latter cases the only available tool to compute current anomalous

dimension is AdS/CFT. In the β-deformed N = 4 theory, instead, one can compute current

anomalous dimensions both at weak and strong coupling.

In preparation for what we do next, let us recall some basic results about the structure

of the conformal manifold for these theories.

On conformal manifolds of toric Calabi-Yau singularities

The space of exactly marginal deformations of N = 4 SYM is three-dimensional [109].

Besides the one associated to the complex gauge coupling, which preserves all flavor sym-

metries, there exist two N = 1 preserving deformations: the β-deformation, which preserves

a U(1)2 of the flavor symmetry group, and the so-called cubic deformation, which breaks the

flavor symmetry group fully. We will be interested in the β-deformation, which is generated

7Note that exactly marginal deformations do not break conformal symmetry and therefore always preserve
the superconformal R-current.

8From aN = 1 perspective the SU(4) R-symmetry group ofN = 4 SYM should be seen as U(1)R×SU(3),
with the abelian factor being the N = 1 R-symmetry and SU(3) a flavor symmetry.

82



by the superpotential

Wβ = λβ Tr (Φ1Φ2Φ3 + Φ1Φ3Φ2) , (5.24)

where Φi are the three adjoint chiral superfields of the N = 4 vector multiplet and transform

in the 3 of SU(3).

The SCFT describing the dynamics of D3-branes at the tip of the conifold (a CY with

X5 = T 1,1 whose topology is S3 × S2) [10] is a four-dimensional N = 1 superconformal

gauge theory with gauge group SU(N)×SU(N), a flavor symmetry group SU(2)×SU(2),

bi-fundamental matter and a quartic superpotential

W = λKW εαβεα̇β̇Tr
(
AαBα̇AβBβ̇

)
, (5.25)

where α and α̇ are flavor indices, corresponding to the two SU(2) factors, respectively. The

fields Aα transform in the (1
2 , 0) of the flavor symmetry group SU(2) × SU(2). The Bα̇

transform instead in the (0, 1
2).

The conformal manifold of the conifold theory is a five-dimensional space [110]. Two

exactly marginal deformations, parametrized by suitable functions of the superpotential

coupling λKW and the sum and difference of the inverse gauge coupling squared [10], are

invariant under SU(2) × SU(2). The other three break the flavor symmetry group. As

already emphasized, an important difference with respect to N = 4 SYM is that the free

theory, g1 = g2 = 0, is not part of the conformal manifold [13]. This means that in

computing eq. (5.11), there is no regime where a field theory, perturbative analysis applies.

Holographically, each exactly marginal deformation is associated to a massless excitation

in the bulk. The dilaton and the B2-flux over S2 are dual to the flavor-singlet deformations.

The flavor-breaking deformations are instead associated to excitations of KK modes. Of

these, the β-deformation, which preserves a U(1)2 flavor symmetry, corresponds to the

following superpotential coupling

Wβ = λβ Tr (A1B1̇A2B2̇ +A1B2̇A2B1̇) . (5.26)

The conifold theory is in fact part of an infinite class of N = 1 SCFT which arises

by considering D3-branes at CY singularities whose bases are the so-called Y p,q manifolds

[119,120]. These are Sasaki-Einstein manifolds with the same topology of the conifold (the

conifold is nothing but a real cone over Y 1,0), but with different properties for generic

p, q, e.g. the R-charges are irrationals [121, 122]. The flavor symmetry group is SU(2) ×
U(1), there are 2p SU(N) gauge groups and 4p+ 2q bi-fundamental fields of four different

types, Uα, V α, Y and Z, with α an SU(2) flavor index. The properties of these fields are

summarized in appendix E.1. Finally, there is a superpotential with cubic and quartic
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couplings

W =

q∑
i=1

εαβ Tr
(
Uαi V

β
i Y2i−1 + V α

i U
β
i+1Y2i

)
+

p∑
j=q+1

εαβ Tr
(
ZjU

α
j+1Y2j−1U

β
j

)
. (5.27)

The conformal manifold is three-dimensional [110]. Two exactly marginal deformations are

flavor singlets and correspond to the dilaton and the B2-flux, as for the conifold. The third

breaks the flavor group to U(1)2 and is described by the superpotential coupling

Wβ = λβ Tr

 q∑
i=1

σ β
3α (Uαi ViβY2i+2 + V α

i Ui+1βY2i+3) +

p∑
j=q+1

σ β
3α ZjU

α
j+1Y2j+3Ujβ

 ,

(5.28)

where σ3 is a Pauli matrix. As for the conifold theory, the free theory is not part of the

conformal manifold.

By performing a β-deformation in the N = 4, conifold and Y p,q theories, several global

currents acquire an anomalous dimension. Our aim will be to compute the leading correction

to γ, eq. (5.11), where g here is λβ and O are chiral primaries obtained acting with a

flavor symmetry transformation on the operators (5.24), (5.26) and (5.28) respectively, at

λβ = 0. To this aim, we need to compute the two-point functions of these scalar operators

(actually of their F-components) and of the corresponding broken currents at λβ = 0. For

the conifold and the Y p,q series this is a computation inherently at strong coupling, hence

the only available tool is AdS/CFT. For N = 4 instead, one could evaluate the current

anomalous dimension both at weak and strong coupling, since the free theory belongs to

the conformal manifold in this case. However, for N = 4 well-known non-renormalization

theorems ensure that, as far as eq. (5.11) is concerned, the weak and strong coupling results

are the same: the two-point function one has to compute involves 1/2 BPS operators, and

this is known not to renormalize [123](recall we have to evaluate at λβ = 0). Therefore, in

what follows we will treat all three cases holographically.

The gravity dual of β-deformed N = 4 SYM and more general toric singularities, in-

cluding the conifold and the Y p,q series, was found in [124] (see also [125]). This will allow

us to treat the three different cases somewhat together.

Broken currents anomalous dimensions

In an N = 1 SCFT with chiral superfields Φi the coefficient CJ appearing in (5.6), can be

computed using the R-charges and flavor quantum numbers of fermions in the theory via

the following t’Hooft anomaly [117]

CJ = 36
∑
i

(dimRi) (1− ri)Tr i

(
T aT b

)
. (5.29)
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Here ri are the R-charges of the chiral superfields and Ri the representation they trans-

form under gauge symmetry transformations (R-charges of chiral superfields are reported

in appendix E.1). The values of CJ for the various theories is presented in table 5.1. The

non-abelian flavor symmetry generators are in the fundamental representation and are nor-

malized as Tr
(
T aT b

)
= 1

2δ
ab. Note that, consistently, the result for Y p,q theories is positive

definite, hence satisfying unitarity, for p ≥ q ≥ 0, which is the range for which Y p,q manifolds

are defined.

Theory Flavor group Current central charge: CJ

N = 4 SYM SU(3) 6(N2 − 1)

Conifold theory SU(2)× SU(2) 9N2

Y p,q theories
SU(2) 6N2

(
5pq2 − 4p3 +

(
2p2 − q2

)√
4p2 − 3q2

)
/q2

U(1) 48N2p2
(

2p−
√

4p2 − 3q2
)
/q2

Table 5.1: Central charges for the non-anomalous global currents

Next we turn to the calculation of CO. Since O and Wβ lie in the same representation

of the flavor group, up to a group theory factor (which for all cases we consider turns out

to be 1) they have the same normalization. Therefore, the value of CO is the same as the

value of the corresponding CWβ
(which is nothing but the component of the Zamolodchikov

metric along the corresponding modulus).9 The two-point function for Wβ can be extracted

from the bulk effective action for the dual massless scalars β which is known to be [124]

S = − N2

16π2R3
E

∫
d5x
√
g

[
C
∂µβ ∂

µβ

Im τ

]
, β = γ − τσ , (5.30)

where τ is the axio-dilaton, RE is the radius of AdS and the normalization C depends on

the geometry of the compact manifold X5 and reads

C = 〈g0,E〉
Vol(S5)

Vol(X5)
. (5.31)

In the above expression 〈g0,E〉 is the average value of the determinant of the metric on

the internal 2-torus that geometrically realizes the U(1)× U(1) symmetry in the dual field

theory. The values of 〈g0,E〉 in the three cases is presented in appendix E.2. The two-point

function for the marginal operator Wβ that one derives from (5.30) is

〈Wβ(x)W †β(0)〉 =
N2

(2π)4

C

Im τ

4!

|x|8
, (5.32)

9Here Wβ is the F-component of the superpotential Wβ .
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assuming a bulk/boundary coupling with unit normalization,
∫
d4x βWβ + h.c..10 This

gives the value of CWβ
and in turn CO

CO = 24gsN
2C . (5.33)

In Table 5.2 we list the value of CO for various theories under consideration.

Theory CO

N = 4 SYM 24πgsN
3

Conifold theory 45πgsN
3/2

Y p,q theories 24πgsN
3p
(

7pq2 − 8p3 +
(
4p2 − 2q2

)√
4p2 − 3q2

)
/q4

Table 5.2: Normalization of two-point functions of the marginally irrelevant operators.

Plugging the value of CO and CJ in eq. (5.11) (and remembering that these deformations

are complex) we obtain the values of γ. Table 5.3 contains our results (to express these

anomalous dimensions in terms of the field theory parameter λβ, one should take into

account that, following the conventions of [124], there is a (gs)
1/2 difference between λβ and

β; therefore, the resulting anomalous dimensions scale just with N).

Theory Broken Flavor group Current anomalous dimension: γ

N = 4 SYM SU(3) πgsN |β|2

Conifold theory SU(2)× SU(2) 5πgsN |β|2/8

Y p,q theories SU(2) πgsN |β|2 p
q2

(
2q4−4p4+p2q2+

√
4p2−3q2(2p3−pq2)

q4−4p4+3p2q2

)

Table 5.3: Anomalous dimensions for the broken currents belonging to the non-Cartan
elements of the flavor group.

The gs and N dependence of current anomalous dimensions can be equivalently obtained

from the mass of the dual bulk gauge field. To see this, it is sufficient to look at the µ− α
component of the Einstein’s equation. Schematically, we have

Rµα ⊃ −
1

48

|G3|2

Im τ
gµα , (5.34)

10This is suggested by the fact that both parameters are periodic with the same period [124].
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where the holomorphic three-form flux in the β−deformed geometry takes the form [124]

G3 = − (γ − τσ)R4
E d (12ω1 ∧ dψ + iGω2) , (5.35)

where R4
E = 4πN with α′ = 1. The 2-forms ω1 ∧ dψ, ω2 and the function G are different

for different cases but the form (5.35) for G3 is the same for S5, T 1,1 and Y p,q. This implies

that |G3|2 ∝ |γ − τσ|2R8
ER
−6
E = |γ − τσ|2R2

E . The extra R−6
E comes from the metric used

for contracting the indices in |G3|2. The Maxwell operator is normalized with an additional

factor of R−2
E . Therefore, after canonically normalizing the Maxwell operator we see that

the mass term is proportional to

m2 ∝
|γ − τσ|2R4

E

Im τ
= |γ − τσ|24πNgs ≡ 4πgsN |β|2 . (5.36)

It would be interesting to reproduce the exact coefficient by analyzing the fluctuation equa-

tions for the gauge fields in detail and see whether the result matches with those in table

5.3. In the undeformed background the (massless) gauge fields dual to conserved currents

are degenerate and lie in adjoint representation of the isometry group of X5. When the

β-deformation is turned on the degeneracy is partially lifted, making some of the gauge

fields (those that belong to the non-cartan elements) massive. The β-deformation turns on

modes that have dependence on the X5 coordinates. If the explicit form of vector spher-

ical harmonics on X5 were known, it would become possible to perform degenerate state

perturbation theory and obtain the mass splitting to leading order in the deformation. In

this sense, our results for the anomalous dimensions in Table 5.3 give a prediction for bulk

gauge field masses in the deformed background, to leading order in β.

5.5 Other examples

Current multiplet recombination put severe constraints on CFT data. For example, we have

seen that for marginal deformations anomalous dimensions of weakly broken currents are

fixed, to leading order, by the Zamolodchikov metric on the conformal manifold and by a

global current central charge in the undeformed CFT.

In this chapter, we have considered deformations triggered by marginal deformations

and shown that in all cases one can compute the anomalous dimension of broken currents.

The techniques we have used can be applied to several other examples. Besides the β-

deformation, the conformal manifold of N = 4 SYM admits another symmetry breaking

deformation, which breaks the flavor symmetry group fully, and which can be investigated

field theoretically using perturbation theory. Note, also, that at generic points of the con-

formal manifold of N = 4 SYM supersymmetry is broken from N = 4 to N = 1. The

corresponding supersymmetry current operators acquire anomalous dimensions which one
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could also compute. Also the conifold theory, besides the β-deformation, admits two other

exactly marginal deformations with different symmetry-breaking patterns.

We focused our attention on four-dimensional theories but there exist marginal defor-

mations for SCFTs in three dimensions. An example is the β-deformation of the N = 6

ABJM theory [126] which breaks the SU(2)× SU(2) flavor symmetry down to U(1)2 [127]

(and here, too, supersymmetry is partially broken).
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Chapter 6

Summary

In this thesis, we have explored deformations of AdS/CFT in various concrete setups. We

have studied various aspects of conformal vs non-conformal, SUSY preserving vs SUSY

breaking, single-trace and double-trace deformations of conformal field theories that admit

a holographic description. The original work of this thesis are documented in chapters 2-5.

We highlight the major contributions below.

• In chapter 2, we used holography to study spontaneous breaking of supersymmetry

in a strongly coupled N = 1 theory. We presented a simpler derivation of supersym-

metry Ward identities (originally derived in [31]) involving the supercurrent which

encode the presence of the Goldstino, the massless mode associated to the breaking

of supersymmetry.

• In chapter 3, we used holography to study non-supersymmetric vacua of the Klebanov-

Strassler gauge theory which does not have a UV fixed point and therefore does not

admit an asymptotically AdS gravity dual. We took the consistent truncation of the

ten dimensional Type IIB supergravity on T 1,1 and restricted to a subsector involving

only the metric and four scalar fields (along with their fermionic partners) that suffices

for capturing the asymptotics in the gravity dual. One of the main results of this

chapter is the holographic renormalisation of this subsector which required sorting

out subtleties associated to the sources for dual operators. In particular, we calculate

the renormalized one-point functions, which allows to derive Ward identities for both

supercurrent and trace of the energy-momentum tensor. To derive such identities in

this particular setup, it is imperative that we work at finite radial cut-off and identify

sources for the dual operators with induced fields at cut-off surface. The fact that we

were able to successfully use usual tools of AdS/CFT correspondence in this particular

case, where the QFT does not admit a UV fixed point, is somewhat remarkable.

• In chapter 4, we used double trace deformation of a generic large-N CFT to study

the phenomenon of multiplet recombination for scalar operators. We considered this
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phenomenon from the bulk perspective, by showing that a singleton in the UV theory

can merge with a bulk scalar in the IR theory under double trace perturbations, in

accordance with field theory expectations. This setting involves a very special limit of

AdS/CFT correspondence, namely, where one of the operators saturate the unitarity

bound. The computation is first done for a generic double-trace deformation (where

both operators are above the unitarity bound), with the singleton limit taken at the

end with appropriate rescalings. Multiplet recombination, in the context of hologra-

phy, has mostly been discussed in the context of breaking of higher-spin currents. Our

finding sheds light on the spin zero case as well.

• In the final chapter 5, we used the multiplet recombination technique to calculate

leading order anomalous dimensions of broken currents due to symmetry breaking

exactly marginal deformations in a wide variety of strongly coupled superconformal

field theories that admit a holographic dual. Some original findings, in the context

of symmetry breaking deformations of O(N) vector models, are also presented in

appendix D and has later been further studied in [128].
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Appendix A

Details of Chapter 2

A.1 Equations of motion and leading asymptotics

In this section we give the equations of motion of both the bosonic and the fermionic

fields that follow from the action (2.10) as well as the leading form of the their asymptotic

solutions subjected to the boundary conditions of the background presented in the main

text.

Bosonic sector

Equations of motion

2φ =
1

12
(sinh(4φ)− 20 sinh(2φ)) , (A.1)

Rµν = 2∂µφ∂νφ+
2

3
gµνV . (A.2)

Asymptotic solutions

In order to obtain the asymptotic solutions of the equations of motion it is necessary to

pick a specific gauge for the metric. In the following gauge

ds2
5 = dr2 + γµν(r, x)dxµdxν , (A.3)

where the canonical radial coordinate r is related to the coordinate z in (2.17) through

dr = −dz/z. The leading asymptotics of the bosonic fields for any solution that asymptotes

to the background (2.23) take the form

φ(z, x) ∼ φ0(x)z ,

γµν(z, x) ∼ 1

z2

(
ηµν + γ(0)µν(x)

)
. (A.4a)
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Fermionic sector

Equations of motion

ΓMDMζ − 2ΓMF−ψM +Mζ = 0 , (A.5)

ΓMNPDNΨP − 4F+ΓMζ −m(φ)ΓMNΨN = 0 . (A.6)

Asymptotic solutions

In the gauge

Ψr = 0 , (A.7)

the leading asymptotics of the fermions, for any bosonic solution that asymptotes to the

background (2.23), take the form

ζ−(z, x) ∼ z3/2ζ−0 (x) ,

Ψ+
µ (z, x) ∼ z−1/2Ψ+

(0)µ(x) . (A.8a)

Identification of the sources with dual operators

From the asymptotic solution we can read off the sources of the dual operators.

φ0 ↔ OF , γ(0)µν ↔ Tµν , (A.9)

ζ−0 ↔ Oψ , Ψ+
(0)µ ↔ S−µ . (A.10)

A.2 Local symmetries and transformation of the sources

The gauge-fixing conditions (A.3),(A.7) are preserved by Weyl rescalings and supersym-

metry transformations. The transformation of the covariant sources under these gauge-

preserving local transformations gives rise to the holographic Ward identities.

Weyl transformations

The transformation of the sources under Weyl transformations is

δσγ(0)µν = 2σγ(0)µν , δσΨ+
(0)µ =

1

2
σΨ+

(0)µ ,

δσφ0 = −σφ0 , δσζ
−
0 = −3

2
σζ−0 , (A.11)
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Local supersymmetry transformations

The gauge fixing condition (A.7) on the gravitino leads to a differential equation for the

supersymmetry parameter ε via eq. (2.16a), namely(
Dr +

1

3
m(φ)Γr

)
ε = 0 , (A.12)

In the gauged fixed metric (A.3) and projecting out the two chiralities, we have

ε̇± ∓ 1

3
m(φ)ε± = 0 . (A.13)

The asymptotic solutions to these equations are

ε+(z, x) ∼ z−1/2ε+0 (x) ,

ε−(z, x) ∼ z1/2ε−0 (x) , (A.14)

where the arbitrary spinors ε±0 (x) parameterize respectively supersymmetry and superWeyl

transformations on the boundary. The transformation of the covariant sources under these

transformations is as follows.

Gravitino:

The transformation of the induced gravitino Ψµ under supersymmetry is

δεΨµ =

(
∇µ +

1

3
m(φ)Γµ

)
ε . (A.15)

Projecting this equation on the positive chirality, which is the leading one asymptoti-

cally as follows from eq. (A.8) and which corresponds to the source of the supercurrent,

we get

δεΨ
+
µ = ∂µε

+ +
2

3
m(φ)Γµε

− , (A.16)

where we have used (2.20) in order to drop a term proportional to the VEV of the

stress tensor (which is subleading asymptotically).

Metric:

The supersymmetry transformation of the vielbein eaµ is given by

δεe
a
µ =

1

2
ε γa Ψµ + h.c. . (A.17)

From this it follows that the corresponding variation of the induced metric is

δεγµν = ε+Γ(µΨ+
ν) + ε−Γ(µΨ−ν) + h.c. , (A.18)
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where the symmetrization is done with a factor of 1/2. From the leading terms, we

obtain

δεγµν = ε+Γ(µΨ+
ν) + h.c. . (A.19)

Hypermultiplet sector:

The transformation of the fields in the hypermultiplet is

δεφ = − i
2
ε+ζ− + h.c. , δεζ

− =
i

2

(
zφ′ +

1

2
sinh(2φ)

)
ε− ∼ iφε− . (A.20)

Combining these results, we deduce that the covariant sources transform under ε+ as

δε+γµν = ε+Γ(µΨ+
ν) + h.c. , δε+Ψ+

µ = ∂µε
+ ,

δε+φ = − i
2
ε+ζ− + h.c. , δε+ζ

− = 0 , (A.21)

and under ε− as

δε−γµν = 0 , δε−Ψ+
µ = Γµε

− ,

δε−φ = 0 , δε−ζ
− = iφε− . (A.22)
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Appendix B

Consistent Truncation of Type IIB

supergravity on T 1,1

In this appendix we give a brief summary of the consistent truncation of Type IIB su-

pergravity on the conifold and the resulting 5-dimensional N = 2 gauged supergravity

theory. The theory we consider was obtained in [52, 53, 129, 130]. We then present the

full 10-dimensional Klebanov-Strassler solution in terms of the 5D supergravity fields. We

conclude by identifying the modes which are turned on in the solution and its interpretation

in the dual field theory.

B.1 Consistent truncation

The N = 2, type IIB supergravity contains the following bosonic degrees of freedom prop-

agating in ten dimensional spacetime

NS-NS sector

Gµν , Bµν , φ

R-R Sector

C0, C2, C4

(B.1)

Each of these fields are functions of the ten dimensions coordinates. Consistent truncation

proceed by expanding these field onto in a set of differential forms characterizing the geo-

metric structure of T 1,1 = SU(2)×SU(2)
U(1) coset space whose geometric properties is described

in the next section. We adopt an ansatz for these 10D fields which retains all and only those

modes of type IIB supergravity that are invariant under the action of SU(2)×SU(2). This

automatically guarantees a consistent truncation because the truncated modes close under

the action of the isometry group. In what follows, we present a basis of globally defined left-

invariant differential forms on T 1,1 on which the Type IIB supergravity fields are expanded.

We write down explicitly the truncation ansatz for the type IIB fields. Non-trivial cycles of

the internal manifold can allow for additional terms in the expansion for the fluxes.

95



B.1.1 Geometry of the Conifold

The conifold Y6 is a Ricci-flat Calabi-Yau space which can be viewed as a complex 3-

dimensional surface embedded in C4 with the embedding given by:

4∑
i

z2
i = 0 . (B.2)

It can can also be visualized as a cone over T 1,1 which is a homogenous space and is defined

as the following coset

T 1,1 =
SU(2)× SU(2)

U(1)
, (B.3)

where the U(1) is embedded diagonally in the two SU(2)’s; i.e; if σ3
1 and σ3

2 are the third

generators of the two SU(2) respectively then the U(1) in (B.3) is generated by
σ3

1+Σ3
2

2 .

Topologically this space is S2 × S3 and can also be seen as a U(1) fibration over S2 × S2.

This space admits an Einstein metric:

ds2
T 1,1 = a

(
dψ +

2∑
i=1

cos θidφi

)2

+ b

2∑
i=1

(
dθ2
i + sin2 θidφ

2
i

)
(B.4)

that satisfies Rαβ = 3gαβ for a = 1
9 and b = 1

6 . Here (θi, φi) parametrise the two 2-sphere

as usual and ψ parametrizes the U(1) fiber and ranges from (0, 4π). In the following we

provide the set of left-invariant differential forms on this space. These will be the building

blocks of our truncation ansatz, presented in the next subsection.

We begin by defining the following one-forms on T 1,1

e1 = − sin θ1dφ1,

e2 = dθ1,

e3 = − sinψdθ2 + cosψ sin θ2dφ2

e4 = cosψdθ2 + sinψ sin θ2dφ2

e5 = dψ + cos θ1dφ1 + cos θ2dφ2 (B.5)

There is another useful basis obtained by an orthogonal transformation of (B.5):

g1

g2

g3

g4

g5


=

1√
2



1 0 −1 0 0

0 1 0 −1 0

1 0 1 0 0

0 1 0 1 0

0 0 0 0
√

2





e1

e2

e3

e4

e5


. (B.6)

96



In these basis, the metric takes a particularly simple form:

ds2
T 1,1 =

1

9

(
g5
)2

+
1

6

4∑
i=1

(
gi
)2

=
1

9

(
e5
)2

+
1

6

4∑
i=1

(
ei
)2

(B.7)

The volume enclosed by (a unit) T 1,1 is given by:∫
e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 =

16π3

27
. (B.8)

The left-invariant forms on the T 1,1 coset are spanned by the 1-form e5 and the four

2-forms e12, e34, e13 + e24, e14 − e23, together with all their possible wedgings (here we use

the short-hand notation eij for ei ∧ ej). We combine them into the following equivalent

basis:

η = −1

3
g5 = −1

3
e5 , Φ =

1

6

(
e12 + e34

)
=

1

6

(
g12 + g34

)
,

J =
1

6

(
e12 − e34

)
=

1

6

(
g14 − g23

)
, Ω =

1

6

(
e13 + e24 − i

(
e14 − e23

))
=

1

6

(
g13 + g24 + i

(
g12 − g34

))
. (B.9)

These satisfy the algebraic conditions

ηµJ
µν = ηµΦµν = ηµΩµν = 0 ,

dη = 2J, d J = 0 , dΩ = 3iη ∧ Ω , dΦ = 0 ,

Ω ∧ Ω = Ω ∧ J = Ω ∧ Φ = J ∧ Φ = 0 , 2J ∧ J = Ω ∧ Ω = −2Φ ∧ Φ . (B.10)

It is useful to note some relations that these forms satisfy

ω2 =
1

2

(
g1 ∧ g2 + g3 ∧ g4

)
=

1

2
(sin θ1dθ1dφ1 − sin θ2dθ2dφ2) ,

ω3 = g5 ∧ ω2 , vol(T 1,1) =
1

108
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

ω2 ∧ ω3 = 54 vol(T 1,1) ,

∫
S2

ω2 = 4π ,

∫
S3

ω3 = 8π2 ,

d(g1 ∧ g3 + g2 ∧ g4) = g5 ∧
(
g1 ∧ g2 − g3 ∧ g4

)
,

d(g1 ∧ g2 − g3 ∧ g4) = −g5 ∧
(
g1 ∧ g3 + g2 ∧ g4

)
,

dg5 ∧ dg5 = −2g1 ∧ g2 ∧ g3 ∧ g4 , ω2 = 3Φ , ω3 = −9 η ∧ Φ ,

e1234 = g1234 = −18 J ∧ J , e12345 = g12345 = 54 η ∧ J ∧ J . (B.11a)
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B.1.2 Reduction ansatz of Type IIB fields

We take the 10-dimensional spacetime to be a direct product space M × T 1,1, where M is

a 5-dimensional spacetime. The ansatz for the 10-dimensional metric (in Einstein frame) is

ds2 = e−
2
3

(4u+v)gµνdx
µdxν +

1

6
e2u cosh t

[
e2w(e1e1 + e2e2) + e−2w(e3e3 + e4e4)

]
+ e2v(η +A)2 +

1

3
e2u sinh t

[
cos θ(e1e3 + e2e4) + sin θ(e1e4 − e2e3)

]
(B.12)

where xµ are coordinates on the non-compact manifold M , whose metric is gµν(x). The

dilaton and the RR axion are assumed independent of the internal coordinates: φ = φ(x),

C0 = C0(x), and F1 = dC0. For the NSNS antisymmetric tensor B2 and H3 = dB2 we have

B2 = b2 + b1 ∧ (η +A) + bJJ + Re(bΩ Ω) + bΦΦ , (B.13)

and for the corresponding field strength is

H3 = h3 + h2 ∧ (η +A) + hJ1 ∧ J + Re
[
hΩ

1 ∧ Ω + hΩ
0 Ω ∧ (η +A)

]
+hΦ

1 ∧ Φ + pΦ ∧ (η +A) , (B.14)

where we have defined

h3 = db2 − b1 ∧ dA , hΩ
1 = dbΩ − 3iA bΩ ≡ DbΩ ,

h2 = db1 , hΩ
0 = 3ibΩ ,

hJ1 = dbJ − 2b1 ≡ DbJ , hΦ
1 = dbΦ − pA ≡ DbΦ .

(B.15)

The last term in (B.17) is due to the non-trivial three-cycle dual to ω3. Similarly for the

RR antisymmetric two-form C2 and its gauge invariant field strength F3 = dC2−C0H3, we

have:

C2 = c2 + c1 ∧ (η +A) + cJJ + Re(cΩ Ω) + cΦΦ , (B.16)

and for the corresponding field strength

F3 = g3 + g2 ∧ (η +A) + gJ1 ∧ J + Re
[
gΩ

1 ∧ Ω + gΩ
0 Ω ∧ (η +A)

]
+ gΦ

1 ∧ Φ + qΦ ∧ (η +A) , (B.17)

where

g3 = dc2 − c1 ∧ dA− C0(db2 − b1 ∧ dA) , gΩ
1 = DcΩ − C0Db

Ω ,

g2 = dc1 − C0db1 , gΩ
0 = 3i

(
cΩ − C0b

Ω
)
,

gJ1 = DcJ − C0Db
J , gΦ

1 = DcΦ − C0Db
Φ .

(B.18)
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Finally for the self dual 5-form field strength we have

F5 = f5 + f4 ∧ (η +A) + fJ3 ∧ J + fJ2 ∧ J ∧ (η +A) + Re
[
fΩ

3 ∧ Ω + fΩ
2 ∧ Ω ∧ (η +A)

]
+ fΦ

3 ∧ Φ + fΦ
2 ∧ Φ ∧ (η +A) + f1 ∧ J ∧ J + f0 J ∧ J ∧ (η +A) , (B.19)

This ansatz contains redundant fields because the self duality of F5 relates f5, f4, f
J
3 , f

Ω
3 , f

Φ
3

to the lower forms f0, f1, f
J
2 , f

Ω
2 , f

Φ
2 . These lower forms contain the independent degrees

of freedom carried by the five form flux:

f0 = 3 Im(bΩcΩ) + p cΦ − q bΦ + k

f1 = Da+
1

2

(
q bΦ − p cΦ

)
A+

1

2

[
bJ DcJ − bΦDcΦ + Re(bΩDcΩ)− b ↔ c

]
fJ2 = daJ1 +

1

2

[
bJdc1 − b1 ∧DcJ − b↔ c

]
,

fΩ
2 = DaΩ

1 + 3iaΩ
2 +

1

2

[
bΩdc1 − b1 ∧DcΩ + 3icΩb2 − b↔ c

]
,

fΦ
2 = daΦ

1 +
1

2
(q b1 − p c1) ∧A+ q b2 − p c2 +

1

2

[
bΦ dc1 − b1 ∧DcΦ − b ↔ c

]
(B.20)

B.1.3 The five-dimensional model

The 5-dimensional model resulting from the dimensional reduction of Type IIB supergravity

on T 1,1 coset space gives rise to an N = 4 gauged supergravity. By consistently turning off

some of the N = 4 multiplets, one finds a further truncation to an N = 2 gauged super-

gravity which contains the Klebanov-Strassler solution. The resulting truncation contains

apart from the gravity multiplet, a vector multiplet and three hyper multiplets. In total

there are 13 scalar, 2 gauge fields and the metric in the bosonic part of the truncation. The

action for the N = 2, D = 5 gauged supergravity model takes the following form:

S = SKin + SPot + STop ,

where the SKin part reads

SKin =
1

2κ2
5

∫
M

√
−g5

(
R− 28

3
du2 − 4

3
dv2 − 8

3
duydv − dt2 − sh2t (dθ − 3A)2

− e−4u−φ
[
ch 2t

(
hΦ

1

)2
+ ch2t |hΩ

1 |2 − sh2t Re
(
e−2iθ

(
hΩ

1

)2)
+ 2sh 2t hΦ

1 yRe
(
ie−iθhΩ

1

)]
− e−4u+φ

[
ch 2t

(
gΦ

1

)2
+ ch2t |gΩ

1 |2 − sh2t Re
(
e−2iθ

(
gΩ

1

)2)
+ 2sh 2t gΦ

1 yRe
(
ie−iθgΩ

1

)]
− 1

2
dφ2 − 1

2
e2φdC2

0 − 2e−8uf2
1 −

1

2
e

8
3

(u+v)(dA)2 − e−
4
3

(u+v)(daJ1 )2

)
. (B.21)
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For clarity we mention that

du2 = ∂µu∂
µu , duy dv = ∂µu∂

µv ,

|hΩ
1 |2 = hΩ

µ

(
hΩ
)µ
,

(
hΩ

1

)2
= hΩ

µ

(
hΩ
)µ

. (B.22)

The scalar manifold M describing the dynamics of the 13 scalars is

M = SO(1, 1)× SO(3, 4)

SO(3)× SO(4)
. (B.23)

The potential terms that gives rise to masses and the cosmological constant reads

SPot =
1

2κ2
5

∫
M

(−2V) ? 1,

=
1

2κ2
5

∫
M

√
−g5

(
− 4e−

20
3
u+ 4

3
v + 24 ch t e−

14
3
u− 2

3
v − 9e−

8
3

(u+v)sh2t− 2e−
8
3

(4u+v)f2
0

− e−
20
3
u− 8

3
v−φ

[
Re
(
−e−2iθ sh2t

(
hΩ

0

)2)
+ 2i pe−iθsh(2t)hΩ

0 + ch2t |hΩ
0 |2 + p2

(
1 + 2sh2t

)]
− e−

20
3
u− 8

3
v+φ [h→ g , p→ (q − pC0)]

)
. (B.24)

The potential gives rise to a masses for various 5D fields and is shown in Table 3.1 in chapter

3. Finally we have the topological interaction term is given by STop = 1
2κ2

5

∫
MA∧daJ1 ∧daJ1 .

B.2 The deformed conifold and the 5D Klebanov-Strassler

solution

B.2.1 The deformed conifold

The deformed conifold is a 3-dimensional complex space which is given by the following

embedding in C4

4∑
i

z2
i = ε2 , (B.25)

Here ε is the deformation parameter that prevents the three-cycle from shrinking to zero

size at the tip of Y6. This removes the conical singularity if the singular conifold presented

in section B.1.1 and makes the geometry smooth. The metric of the deformed conifold is

diagonal in the basis {g1, g2, g3, g4, g5} and is given by [28]:

ds2
6 =

1

2
ε4/3K(τ)(

1

3K3(τ)
(dτ2 + (g5)2) + cosh2

(τ
2

) (
(g3)2 + (g4)2

)
+ sinh2

(τ
2

) (
(g1)2 + (g2)2

))
,

(B.26)
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where K(τ) is given by

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ
→
τ→0

(
2

3

)1/3

∼
τ→∞

21/3e−τ/3. (B.27)

For large τ we can introduce another radial coordinate

r2 =
3

25/3
ε4/3e2τ/3, (B.28)

where the numerical factor in front is important to recover the metric of the singular conifold

(eq. B.7) in the large τ limit. Later on it will be useful to have a 1⊕ 5 split of this metric:

ds2
6 =

ε4/3

6K2
dτ2 + ds2

5 (B.29)

where ds2
5 in the basis (B.5) is:

ds2
5 =

1

2
ε4/3K

[
1

3K3

(
e5
)2

+
1

2
cosh τ

((
e1
)2

+
(
e2
)2

+
(
e3
)2

+
(
e4
)2)

+
(
e1e3 + e2e4

)]
.

(B.30)

B.2.2 The 5D Klebanov-Strassler solution

We present the ansatz for finding the KS solution as written down in [28]. In the following

F, f, k, l are function of the radial coordinate τ .

B2 = gsM(f g12 + k g34) (B.31a)

H3 = dB2 = gsM

(
df ∧ g12 + dk ∧ g34 +

1

2
(k − f)

(
g513 + g524

))
(B.31b)

F3 = dC2 − C0H3 = M
(
(1− F )g345 + F g125 + dF ∧

(
g13 + g24

))
(B.31c)

F5 = dC4 +B2 ∧ F3 =
(
N + gsM

2l
)
g12345 (B.31d)

ds2
10 = h−1/2(τ)dxµdx

µ + h1/2(τ)ds2
6. (B.31e)

In the above, l(τ) is related to F (τ), k(τ), and f(τ) by l = f(1− F ) + kF . On this ansatz

H3µνρF
µνρ
3 = 0 holds identically. This inturn implies that the RR scalar C0 is zero on this

ansatz (this is because H3 and dC2 thread dual cycles thereby implying H3 y dC2 = 0).

Moreover we require G3 ≡ F3 + i
gs
H3 to satisfy the imaginary self-dual (ISD) relation

?6G3 = i G3 which is required by supersymmetry. It then follows from the 10D equation of

motion of the dilaton that φ is a constant.
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Using the formulae in (B.11a) we new rewrite the above ansatz in terms of the differential

forms presented in(B.9)

B2 = 3gsM ((f + k)Φ + (f − k)ImΩ) (B.32a)

H3 = 3gsM (d(f + k) ∧ Φ + d(f − k) ∧ ImΩ + 3(f − k)η ∧ ReΩ) (B.32b)

F3 = −9M

(
η ∧ Φ + (2F − 1) η ∧ ImΩ− 2

3
dF ∧ ReΩ

)
(B.32c)

F5 =
(
N + 54gsM

2l(τ)
)
η ∧ J ∧ J. (B.32d)

From this form it is straightforward to read off the relation between the 5D scalars of

N = 2 supergravity model and the functions F (τ), k(τ), f(τ) and l(τ) appearing in the

Klebanov-Strassler ansatz (B.31).

• From the form of B2 and H3 we find that the non-zero fields are

bΦ = 3gsM(f + k) , bΩ = −3igsM(f − k) , (B.33)

hΩ
0 = 9gsM(f − k) , hΩ

1 = −3igsM d(f − k) , hΦ
1 = 3gsM d(f + k) . (B.34)

• From F3 we get:

gΩ
0 = 18iM

(
F − 1

2

)
, gΩ

1 = 6M dF , q = −9M . (B.35)

which gives

cΩ = 6M

(
F − 1

2

)
(B.36)

We can see that one can recover (B.35) from (B.36) by using equation (3.15) of [52]

keeping in mind that C0 = 0 on the KS ansatz.

• From F5 we get that all the expansion coefficients are zero except for:

f0 = N + 54gsM
2l(τ) (B.37)

which is indeed consistent with the first equation in (3.18) of [52] with the parameter

k being identified with N (the D3 brane charge)1.

• For the metric sector we make a convenient gauge choice in (B.12) for the non-compact

five dimensional part where we separate the radial direction (that we will call τ) from

the four spacetime dimensions (which we will denote by xi) where the gauge theory

1Caution: the symbol k is used here in two different context. It appears as a function k(τ) of τ in the
10D KS ansatz (B.31) and as parameter in the expansion ansatz of F5 (B.20). We should be alert to mark
the difference.

102



lives

ds2
M = e2Xdτ2 + e2YGij(x, τ)dxidxj (B.38)

The comparison of this metric ansatz with with (B.12) gives the following relations

e2u =
3

2
h1/2ε4/3K sinh τ , e2v =

3

2

h1/2ε4/3

K2
, e2w = 1 ,

e2X =
1

4
h4/3ε32/9

(
3

2

)2/3

K−4/3 sinh4/3 τ ,

e2Y = h1/3ε20/9

(
3

2

)5/3

K2/3 sinh4/3 τ ,

Gij(x, τ) = ηij , tanh t = sech τ , θ = 0 . (B.39)

Finally let us write down the solution for the functions F (τ), k(τ), f(τ) and l(τ) appearing

in the KS ansatz.

f(τ) =
τcothτ − 1

2 sinh τ
(cosh τ − 1) , k(τ) =

τcothτ − 1

2 sinh τ
(cosh τ + 1) ,

l(τ) =
τcothτ − 1

4 sinh2 τ
(sinh 2τ − 2τ) , F (τ) =

sinh τ − τ
2 sinh τ

,

h′(τ) = −αf(1− F ) + kF

K2(τ) sinh2 τ
. (B.40)

where α = 4(gsMα′)2ε−8/3. We have explicitly checked that this solution satisfies the

equations of motion resulting from the 5D supergravity model.

B.3 Gauge / Gravity map

Before closing off this appendix we comment on the 5D fields that are turned on the KS

solution and their dual field theory interpretation. The transverse-traceless part of the

metric gµν as usual is dual to the energy momentum tensor. The graviphoton A − 2aJ1 is

dual to the U(1) R-symmetry current which is anomalous in the KS gauge theory. Indeed on

the KS background, the gauge field A− 2aJ1 acquires a mass which is 2
3gsq

2. The massless

dilaton e−φ is dual to the sum of the inverse of the two gauge coupling squared (where

the two gauge couplings g1 and g2 are associated to the two gauge groups in the dual

field theory). On the KS solution the dilaton takes a constant value which translates into

vanishing β-function for 1
g2
1

+ 1
g2
2
. The scalar fields bΦ is instead dual to the difference of the

complexified gauge couplings [10]. Its asymptotic behavior on KS solution (B.33, B.40) is

bΦ ∼ τ ∼ 3 log(r) which translates into the running of the difference of the gauge coupling

squared. The RR scalar C0 is dual to the sum of the two theta angles and is vanishing

in the solution. On the other hand, the massless scalar cΦ is dual to the difference of the

two gauge theory theta angles which (through Higgs mechanism in the bulk) becomes the
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longitudinal mode of the massive graviphoton A − 2aJ1 . This spontaneous breakdown of

U(1) gauge symmetry in the bulk captures holographically the chiral anomaly associated to

the U(1) R-symmetry [131]. The scalars (4u+ v), (u− v) are dual to irrelevant operators of

dimension 8 and 6 respectively. These scalars respectively parametrise the breathing and

squashing mode of T 1,1. It is easy to see this if we look at the reduction ansatz for the metric

(B.12). The breathing mode controls the volume of the internal manifold which is given by

the determinant of the internal metric while the squashing mode controls the relative size

of the U(1) fiber with respect to the Kahler-Einstein base of the deformed conifold. Around

the KS ansatz we easily see that the determinant is proportional to e4u+v and the ratio of

the relative size is given by eu−v. The scalar t of mass m2 = −3 controls the deformation of

the conifold and is associated to dimension 3 gaugino condensate operator in the dual field

theory.
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Appendix C

Details of chapter 3

C.1 The 5d supergravity action

In this appendix we present a further sub-truncation of the N = 2 5D-dimensional gauge

supergravity model discussed in appendix B. We also explicitly write down the fermionic

section of this truncation which will be relevant for proving the supersymmetric Ward

identities. As explained in the main text, this sub-truncation preserves an additional U(1)

symmetry [54].

The bosonic action, restricted to the fields relevant for our analysis in chapter 3, namely

the metric gµν and the four scalars U, V, bΦ and φ, can be written as a σ-model and reads

Sb =
1

2κ2

∫
d5x
√
−g
(
R− GIJ(ϕ)∂Aϕ

I∂AϕJ − V(ϕ)

)
. (C.1)

The fermionic action containing the gravitino ΨM and the four spinor fields ζU , ζV , ζbΦ and

ζφ can also be expressed in terms of sigma model language and, up to quadratic terms in

the fermions takes the form

Sf = − 1
2κ2

∫
d5x
√
−g
[

1
2

(
ΨAΓABCDBΨC + iGIJζ

I
ΓA
(
/∂ϕJ − GJK∂KW

)
ΨA + h.c.

)
+1

2

(
GIJζ

I (
δJK /∇+ ΓJKL[G]/∂ϕL

)
ζK + h.c.

)
+MIJ(ϕ)ζ

I
ζJ
]
. (C.2)

Here, κ2 = 8πG5 and the indices A,B, ... are 5d space-time indices, while I, J, ... are indices

on the scalar manifold. In particular,

ϕI =


U

V

bΦ

φ

 , ζI =


ζU

ζV

ζb

ζφ

 , GIJ(ϕ) =


8
15 0 0 0

0 4
5 0 0

0 0 e−
4
5

(U+V )−φ 0

0 0 0 1
2

 . (C.3)
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The only non-zero components of the Christoffel symbol ΓKIJ [G] of the metric (C.3) on the

scalar manifold are

ΓUbΦbΦ [G] =
3

4
e−

4
5

(U+V )−φ, ΓVbΦbΦ [G] =
1

2
e−

4
5

(U+V )−φ, Γφ
bΦbΦ

[G] = e−
4
5

(U+V )−φ,

Γb
Φ

bΦU [G] = −2

5
, Γb

Φ

bΦV [G] = −2

5
, Γb

Φ

bΦφ[G] = −1

2
. (C.4)

The covariant derivative ∇A and the supercovariant derivative DA are defined as follows

∇A = ∂A +
1

4
(ωA)ab γab , (C.5a)

DA = ∇A +
1

6
ΓAW , (C.5b)

where a, b, ... are indices on the tangent space and (ωA)ab is the spin connection of the 5d

metric. The scalar potential takes the following form

V(ϕ) = 2e−
8
3
U (bΦq − k)2 + e−

4
15

(7U−3V )+φq2 − 24e−
2
15

(8U+3V ) + 4e−
4
15

(4U+9V ) , (C.6)

where we used the following relations to connect to the notations adopted in the main text

q =
9

2
M , k = −27πN

2
, (C.7)

with N and M being the number of regular and fractional D3 branes respectively. Both the

scalar potential and the mass matrixMIJ can be expressed in terms of the Papadopoulos-

Tseytlin superpotential [132]

W(ϕ) = (k − qbΦ)e−
4
3
U + 3e−

4
15

(2U−3V ) + 2e−
2
15

(4U+9V ) , (C.8)

through the relations

V(ϕ) =GIJ∂IW(ϕ)∂JW(ϕ)− 4

3
W(ϕ)2 , (C.9a)

MIJ(ϕ) = ∂I∂JW − ΓKIJ [G]∂KW −
1

2
GIJW . (C.9b)

The supersymmetry transformations to linear oder in ε are

δεζ
I = − i

2

(
/∂ϕI − GIJ∂JW

)
ε , (C.10a)

δεΨA =

(
∇A +

1

6
WΓA

)
ε , (C.10b)

δεϕ
I =

i

2
ε̄ζI + h.c. , (C.10c)

δεe
a
A =

1

2
ε̄ΓaΨA + h.c. . (C.10d)
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It follows that the BPS equations for Poincaré domain wall solutions of the form (3.5) are

e−X(z)z∂zϕ
I − GIJ∂JW = 0 , e−X(z)z∂z log

(
eY

z

)
+

1

3
W = 0 . (C.11)

C.2 Equations of motion and leading asymptotics

In this appendix we give the bosonic and fermionic equations of motion following from the

action (C.1)+(C.2), as well as the leading form of the their asymptotic solutions, subject

to KT boundary conditions.

C.2.1 Bosonic sector

In the bosonic sector the equations of motion are

1√
−g5

∂A
(√
−g5 g

AB ∂Bφ
)

= e−
4
15

(7U−3V )+φq2 − e−
4
5

(U+V )−φ (dbΦ)2 , (C.12a)

1√
−g5

∂A

(√
−g5 e

− 4
5

(U+V )−φ gAB ∂Bb
Φ
)

= 2q e−
8
3
U
(
bΦq − k

)
, (C.12b)

16

15

1√
−g5

∂A
(√
−g5 g

AB ∂BU
)

+
4

5
e−

4
5

(U+V )−φ (dbΦ)2 +
16

3
e−

8
3
U (bΦq − k)2

+
28

15
e−

4
15

(7U−3V )+φq2 +
64

15
e−

4
15

(4U+9V ) − 128

5
e−

2
15

(8U+3V ) = 0 , (C.12c)

8

5

1√
−g5

∂A
(√
−g5 g

AB ∂BV
)

+
4

5

(
e−

4
5

(U+V )−φ (dbΦ)2 − q2e−
4
15

(7U−3V )+φ

)
+

48

5

(
e−

4
15

(4U+9V ) − e−
2
15

(8U+3V )

)
= 0 , (C.12d)

RAB =
8

15
∂AU∂BU +

4

5
∂AV ∂BV + e−

4
5

(U+V )−φ∂Ab
Φ∂Bb

Φ +
1

2
∂Aφ∂Bφ

+
1

3
gAB

(
2e−

8
3
U (bΦq − k)2 + e−

4
15

(7U−3V )+φq2 − 24e−
2
15

(8U+3V ) + 4e−
4
15

(4U+9V )

)
.

(C.12e)

Asymptotic solutions

In order to obtain the asymptotic solutions of the equations of motion it is necessary to

pick a specific gauge. In the gauge (C.25), the leading asymptotics of the bosonic fields for
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any solution that asymptotes to the KT solution take the form

γµν(z, x) ∼ h1/3(z)

z2

((
1 +

1

24
gsq

2h−1(z)(1− 4 log z)c(x) +
1

6
qh−1(z) b(x)

)
ηµν + hµν(x)

)
,

φ(z, x) ∼ log gs + c(x) ,

bΦ(z, x) ∼ b(x)− (1 + c(x)) gsq log z ,

U(z, x) ∼ 5

4
log

(
h(z) +

1

8
gsq

2(1− 4 log z)c(x) +
1

2
q b(x)

)
,

V (z, x) = O(z4) , (C.13)

where the warp factor is given by

h(z) =
1

8

(
−4k + gsq

2 − 4gsq
2 log z

)
+O(z4), (C.14)

and hµν(x), c(x) and b(x) are infinitesimal sources.

C.2.2 Fermionic sector

The fermionic equations of motion take the form

/∇ζφ +
i

2
ΓM /∂φΨM −mφζφ + F−G1/2

bΦbΦ
ζb = 0 , (C.15a)

/∇
(
G1/2

bΦbΦ
ζb

)
+
i

2
ΓMF+ΨM +mbG

1/2

bΦbΦ
ζb −

1

2
F+ζφ + ∂UF−ζU + ∂V F−ζV = 0 , (C.15b)

/∇ζU +
i

2
ΓMBU+ΨM +mUζU +

12

5

(
e−

2
15

(4U+9V ) − e−
4
15

(2U−3V )
)
ζV −

15

8
∂UF+G1/2

bΦbΦ
ζb = 0 ,

(C.15c)

/∇ζV +
i

2
ΓMBV+ΨM +mV ζV +

8

5

(
e−

2
15

(4U+9V ) − e−
4
15

(2U−3V )
)
ζU −

5

4
∂V F+G1/2

bΦbΦ
ζb = 0 ,

(C.15d)

ΓABCDBΨC −
i

2

(
1

2
/∂φΓAζφ + F−ΓAG1/2

bΦbΦ
ζb +

8

15
BU−ΓAζU +

4

5
BV−ΓAζV

)
= 0 , (C.15e)
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where we have defined the following quantities

F± = G1/2

bΦbΦ

(
/∂bΦ ± e−

4
15

(2U−3V )+φq
)
, (C.16a)

BU± = /∂U ± 1

2

(
5(k − bΦq)e−

4
3
U + 6e−

4
15

(2U−3V ) + 4e−
2
15

(4U+9V )
)
, (C.16b)

BV± = /∂V ± 3
(
e−

2
15

(4U+9V ) − e−
4
15

(2U−3V )
)

(C.16c)

mφ(ϕ) =
1

2
W , (C.16d)

mb(ϕ) =
1

2
W − 3e−

4
15

(2U−3V ) , (C.16e)

mU (ϕ) =
1

30

(
W + 84

(
k − bΦq

)
e−

4
3
U
)
, (C.16f)

mV (ϕ) =
3

10
W − 4

5
(k − bΦq)e−

4
3
U + 2e−

2
15

(4U+9V ) . (C.16g)

The fermion masses mφ(ϕ), mb(ϕ), mU (ϕ), mV (ϕ) reproduce the masses shown in Table

3.1 in the AdS limit (q → 0) with unit AdS radius (k = −2).

Asymptotic solutions

In the gauge (C.25) the leading asymptotics of the fermions, for any bosonic solution that

asymptotes to the KT solution, take the form

Ψ+
µ (z, x) ∼ z−1/2h(z)1/12Ψ+

(0)µ(x)

+ iz−1/2h(z)1/6γµ

(
− 4

5gsq2
h(z)11/12ψ−1 (x) +

h(z)−7/4

12gsq

(
gsq

2 + 12h(z)
)
ψ−2 (x)

)
,

ζ−φ (z, x) ∼ z1/2h(z)−1/12ψ−1 (x) ,

ζ−b (z, x) ∼ z1/2h(z)−1/12

20q

(
24h(z)− 5gsq

2
)
ψ−1 (x) + z1/2h(z)−3/4ψ−2 (x) ,

ζ−U (z, x) ∼ 3

4
z1/2h(z)−1/12ψ−1 (x) +

5

8
q z1/2h(z)−7/4ψ−2 (x) ,

ζ+
V (z, x) = O(z3/2) , (C.17)

where h(z) is given in (C.14) and Ψ+
(0)µ(x), ψ−1 (x), ψ−2 (x) are spinor sources of the indicated

chirality. Notice that the limit q → 0, corresponding to KW asymptotics, is a singular limit

in these asymptotic solutions. In particular, the parameter q corresponds to a singular

perturbation of the fermionic equations of motion (C.15).

C.3 Covariant sources for gauge-invariant operators

As was mentioned in section 3.3, the covariant sources of certain operators in the KS theory

are composite in terms of bulk fields. In particular, the covariant source of the difference of
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the inverse gauge couplings square corresponds to the composite field b̃Φ = e−φbΦ. Inserting

the asymptotic expansions (C.13) we find that b̃Φ asymptotes to

b̃Φ ∼ g−1
s b(x)− q log z , (C.18)

and it is therefore sourced only by the b(x) mode. Similarly, the composite field

Ũ =
1

8

(
4qbΦ − 4k + q2eφ

)
e−

4
5
U , (C.19)

has the property that the modes b(x) and c(x) drop out of its asymptotic expansion so

that Ũ = 1, up to normalizable modes. Moreover, the BPS equations (C.11) imply that

Ũ is a constant, up to a mode that has the right scaling to be identified with the source

of a dimension 8 operator, which therefore corresponds to a supersymmetric irrelevant

deformation [57,133]. These two properties allow us to identify Ũ with the covariant source

of the dimension 8 operator, which can therefore be consistently switched off by setting

Ũ = 1. Finally, although this is not necessary, it is natural to define the stress tensor as

the operator that couples only to the fluctuation hµν in (C.13), which can be achieved by

defining the covariant source of the stress tensor as

γ̃µν = e−
4
15
Uγµν . (C.20)

The covariant sources for the fermionic partners of these operators follow by supersym-

metry and are given respectively by1

ζ̃−b = e−φ
(
ζ−b − b

Φζ−φ

)
,

ζ̃−U = −4

5
Ũζ−U +

1

8
e−

4
5
U
(

4qζ−b + q2eφζ−φ

)
,

Ψ̃+
µ = e−

2
15
U

(
Ψ+
µ −

2i

15
Γµζ

−
U

)
. (C.21)

The leading asymptotic behavior of these fields, following from (C.13) and (C.17), is

ζ̃−b ∼ −
1

5gsq
z1/2h(z)−1/12 (4h(z) + 5k)ψ−1 (x) + g−1

s z1/2h(z)−3/4ψ−2 (x) ,

ζ̃−U ∼ 0 , (C.22)

Ψ̃+
µ ∼ z−1/2

(
h(z)−1/12

(
Ψ+

(0)µ −
i

10
γµψ

−
1

)
− 4i

5gsq2
h(z)11/12γµψ

−
1 +

i

gsq
h(z)−3/4γµψ

−
2

)
,

1In fact, the fully covariant with respect to γ̃µν fermionic sources contain an additional factor of eU/15 =
eX/8, which comes from the covariantization of the spinor ε+ with respect to γ̃µν . This extra factor would
remove the factors of e−X/8 from the definition of the fermionic one-point functions in (3.13), as well as an
overall factor of h−1/12 from the expansions (C.22). However, since we are working to linear order in the
sources this factor does not play a crucial role and we have chosen not to include it in the definition of the
fermion sources.
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where ζ̃−U is only sourced by a mode corresponding to an irrelevant operator of dimension

15/2, which can therefore be put to zero consistently.

The fact that the covariant sources γ̃µν , b̃Φ and Ũ , as well as their supersymmetric

partners, are composite in terms of supergravity fields implies that some care is required

when evaluating the partial derivatives in the definition of the one-point functions (3.11),

where composite fields are held constant. In particular, expressing the supergravity fields

in terms of the composite fields,

bΦ = eφb̃Φ ,

e
4
5
U =

1

8
Ũ−1eφ

(
4qb̃Φ − 4ke−φ + q2

)
,

γµν =
1

2
Ũ−1/3eφ/3

(
4qb̃Φ − 4ke−φ + q2

)1/3
γ̃µν ,

ζ−b = eφ
(
ζ̃−b + b̃Φζ−φ

)
,

ζ−U = −5

4
Ũ−1

(
ζ̃−U − Ũ

(
4qb̃Φ − 4ke−φ + q2

)−1 (
4qζ̃−b + (4qb̃Φ + q2)ζ−φ

))
,

Ψ+
µ =

1√
2
Ũ−1/6eφ/6

(
4qb̃Φ − 4ke−φ + q2

)1/6
(

Ψ̃+
µ +

2i

15
Γ̃µζ

−
U

)
, (C.23)

one obtains the following expressions for the partial derivatives of a generic function F with

respect to the covariant bosonic sources

∂F

∂γ̃µν

∣∣∣∣
φ,̃bΦ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

= e
4
15
U ∂F

∂γµν
,

∂F

∂φ

∣∣∣∣
γ̃,̃bΦ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

=
∂F

∂φ
+ bΦ

∂F

∂bΦ
+

(
1 +

k

2
e−

4
5
U

)(
5

4

∂F

∂U
+

1

3
γµν

∂F

∂γµν

)
+ fermions ,

∂F

∂b̃Φ

∣∣∣∣
γ̃,φ,Ũ ,Ψ̃+,ζ−φ ,ζ̃

−
b ,ζ̃
−
U

= eφ
∂F

∂bΦ
+
q

2
e−

4
5
U+φ

(
5

4

∂F

∂U
+

1

3
γµν

∂F

∂γµν

)
+ fermions . (C.24)

These expressions are required in order to correctly evaluate the one-point functions (3.11).

C.4 Local symmetries and transformation of the sources

The bulk equations of motion dictate that certain components of the metric and of the grav-

itino are non-dynamical. In particular, the radial-radial and radial-transverse components

of the metric (or, more precisely, the shift and lapse functions of the metric with respect to

the radial coordinate), as well a the radial component of the gravitino, are non-dynamical

and can be gauge-fixed to a convenient choice. We choose the gauge

ds2
5 = dr2 + γµν(r, x)dxµdxν , Ψr = 0 , (C.25)
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where the canonical radial coordinate r is related to the coordinate z in (3.5) through

dr = −eX(z)dz/z. Moreover, for the domain wall ansatz in (3.5) we have

γµν =
e2Y

z2
ηµν . (C.26)

The gauge-fixing conditions (C.25) are preserved by a subset of bulk diffeomorphisms and

supersymmetry transformations. The transformation of the covariant sources under these

gauge-preserving local transformations gives rise to the holographic Ward identities.2

C.4.1 Bulk diffeomorphisms

Infinitesimal bulk diffeomorphisms that preserve the gauge (C.25) are parameterized by a

vector field satisfying the differential equations

ξ̇r = 0, ξ̇µ + γµν∂νξ
r = 0 . (C.27)

The general solution of these equations is

ξr = σ(x) , (C.28)

ξµ = ξµo (x)−
∫ r

dr′γµν(r′, x)∂νσ(x) , (C.29)

where the arbitrary functions σ(x) parameterizes Weyl transformations on the boundary

[59], while ξµo (x) corresponds to boundary diffeomorphisms. The transformation of the

supergravity fields under Weyl transformations (C.28) is

δσγµν = σγ̇µν ∼ 2e−
8
15
Uσγµν , δσΨ+

µ = σΨ̇+
µ ∼

1

2
e−

8
15
UΨ+

µ σ ,

δσφ = σφ̇ ∼ 0 , δσζ
−
φ = σζ̇−φ ∼ −

1

2
e−

8
15
Uζ−φ σ , (C.30)

δσb
Φ = σḃΦ ∼ qe−

8
15
U+φσ , δσζ

−
b = σζ̇−b ∼ −e

− 8
15
U

(
1

2
ζ−b − qe

φ

(
ζ−φ +

8

15
ζ−U

))
σ ,

δσU = σU̇ ∼ 5

8
q2e−

4
3
U+φσ , δσζ

−
U = σζ̇−U ∼ −

3q

16
e−

4
3
U

(
ζ−b −

7q

4
eφζ−φ

)
σ .

2In fact, gauge-preserving bulk diffeomorphisms and local supersymmetry transformations cannot be
considered separately since they mix. However, this mixing occurs only at asymptotically subleading orders
and involves transverse derivatives on the transformation parameters. This implies that the mixing between
gauge-preserving bulk diffeomorphisms and local supersymmetry transformations does not affect our results
here, and so for simplicity we will treat them separately.
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These imply that the covariant sources transform as

δσγ̃µν ∼ 2e−
8
15
Uσγ̃µν , δσΨ̃+

µ ∼
1

2
e−

8
15
U Ψ̃+

µ σ ,

δσφ ∼ 0 , δσζ
−
φ ∼ −

1

2
e−

8
15
Uζ−φ σ ,

δσ b̃
Φ ∼ qe−

8
15
Uσ , δσ ζ̃

−
b ∼ −

1

2
e−

8
15
U

(
ζ̃−b −

16

15
qeφζ−U

)
σ ,

δσŨ ∼ 0 , δσ ζ̃
−
U ∼ 0 . (C.31)

C.4.2 Local supersymmetry transformations

The gauge fixing condition (C.25) on the gravitino leads to a differential equation for the

supersymmetry parameter ε via eq. (C.10b), namely(
∇r +

1

6
WΓr

)
ε = 0 , (C.32)

or, in gauge-fixed form and projecting out the two chiralities,

ε̇± ∓ 1

6
Wε± = 0 . (C.33)

The asymptotic solutions to these equations are

ε+(z, x) = z−1/2h(z)1/12ε+0 (x) +O(z4) ,

ε−(z, x) = z1/2h(z)−1/12ε−0 (x) +O(z4) , (C.34)

where the arbitrary spinors ε±0 (x) parameterize respectively supersymmetry and superWeyl

transformations on the boundary. The transformation of the covariant sources under these

transformations is as follows.

Gravitino:

The transformation of the induced gravitino Ψµ under supersymmetry is

δεΨµ =

(
∇µ +

1

6
WΓµ

)
ε . (C.35)

Projecting this equation on the positive chirality, which is the leading one asymptot-

ically as follows from eq. (C.17) and which corresponds to the covariant source of the

supercurrent, we get

δεΨ
+
µ = ∂µε

+ +
1

3
ΓµW ε− , (C.36)

where we have used (C.11) in order to drop a term proportional to the VEV of the

stress tensor (which is subleading asymptotically).
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Metric:

The supersymmetry transformation of the vielbein eaµ is given by

δεe
a
µ =

1

2
ε γa Ψµ + h.c. . (C.37)

From this it follows that the corresponding variation of the induced metric is

δεγµν = ε+Γ(µΨ+
ν) + ε−Γ(µΨ−ν) + h.c. , (C.38)

where the symmetrization is done with a factor of 1/2. Dropping the term propor-

tional to Ψ−µ that is related to the one-point function of the supercurrent and is

asymptotically subleading, we obtain

δεγµν = ε+Γ(µΨ+
ν) + h.c. . (C.39)

Hypermultiplet sector:

The transformation of the fields in the hypermultiplet is

δεφ =
i

2
ε+ζ−φ + h.c. , δεζ

−
φ = − i

2
Γz∂zφ ε

− ∼ 0 , (C.40)

δεb
Φ =

i

2
ε+ζ−b + h.c. , δεζ

−
b = − i

2

(
Γz∂zb

Φ + e−
4
15

(2U−3V )+φq
)
ε− ∼ −iqe−

8
15
U+φε− ,

δεU =
i

2
ε+ζ−U + h.c. , δεζ

−
U = − i

2
(Γz∂zU − ∂UW) ε− ∼ i∂UWε− ∼ −iq

2

3
e−

4
3
U+φε− .

Combining these results, we deduce that the covariant sources transform under ε± as

δε+ γ̃µν ∼ ε+Γ̃(µΨ̃+
ν) + h.c. , δε+Ψ̃+

µ ∼ e−
2
15
U∂µε

+ ,

δε+φ ∼
i

2
ε+ζ−φ + h.c. , δε+ζ

−
φ ∼ 0 ,

δε+ b̃
Φ ∼ i

2
ε+ζ̃−b + h.c. , δε+ ζ̃

−
b ∼ 0 ,

δε+Ũ ∼
i

2
ε+ζ̃−U + h.c. , δε+ ζ̃

−
U ∼ 0 . (C.41)

where Γ̃µ = ẽaµγa = e−
2
15
Ueaµγa, and

δε− γ̃µν ∼ 0 , δε−Ψ̃+
µ ∼ e−

8
15
U Γ̃µε

− ,

δε−φ ∼ 0 , δε−ζ
−
φ ∼ 0 ,

δε− b̃
Φ ∼ 0 , δε− ζ̃

−
b ∼ −iqe

− 8
15
U ε− ,

δε−Ũ ∼ 0 , δε− ζ̃
−
U ∼ −i

7

30
q2e−

4
3
U+φε− . (C.42)
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Appendix D

Recombination along RG flows and

anomalous dimensions

In chapter 5 we gave examples of multiplet recombination triggered by exactly marginal

deformations. In this appendix we would like to consider the phenomenon of multiplet re-

combination triggered by relevant deformations. In section D.1 we demonstrate how one can

make use multiplet recombination to calculate leading anomalous dimensions. We consider

two examples. The first one is the free scalar field theory deformed by λφ4 interaction and

the second one is the free O(N) vector model deformed by a symmetry-breaking interaction

term that breaks the O(N) symmetry in various ways. We consider these models in d = 4−ε
dimensions where the deformation is relevant. In section D.3, we consider holographic RG

flows that give rise to order one anomalous dimensions. In such situations it is difficult

to map conformal families of the two CFTs and obtain concrete realization of multiplet

recombination. Still, it remains true that in the deformed theory there is (at least) a spin-1

short operator less, and a spin-1 long operator more (with all its descendants)1. Therefore,

one can prescribe the term ‘current multiplet recombination’ even for these more intricate

situations.

D.1 λφ4 theory

Consider a scalar field theory with quartic coupling

S =

∫
ddx

(
1

2
∂φ · ∂φ+

1

4!
λφ4

)
, (D.1)

In d = 4− ε the β-function of the coupling λ has a non-trivial zero

λ∗ =
16π2

3
ε . (D.2)

1This is true as long as there are no emergent symmetries in the IR. The latter, however, would not affect
the multiplet recombination we are discussing, and hence we do not consider such a possibility.
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known as the Wilson-Fisher fixed point. At this fixed point, the theory is a weakly inter-

acting conformal field theory. The interaction induces small anomalous dimensions for all

local operators O∆ in the theory: ∆ → ∆ + γ. In particular, the field φ acquires a small

anomalous dimension γφ. We want to calculate γφ to the leading order in the interaction.

The traditional method to calculate the leading order correction to γφ involves a two loop

Feynman diagram Fig. D.1. This is problem 13.2 in Peskin & Schroeder. However, we can

Figure D.1: Leading order contribution to γφ comes from this two-loop diagram.

completely avoid the computation of this diagram by making use of multiplet recombination.

At the UV point, φ is a primary operator that satisfies the shortening condition 2φ = 0

which means that the scalar descendant 2φ is absent. However, at the Wilson-Fisher fixed

point (D.1), the following operator relation holds (it essentially follows from the equations

of motion)

2φ =
λ∗
3!
φ3 , (D.3)

This relation implies that the operator φ3, which was a primary operator in the free CFT,

becomes a descendant of φ at λ = λ∗ Since this is an operator relation, it follows that

〈2φ(x)2φ(0)〉 =

(
λ∗
3!

)2

〈φ3(x)φ3(0)〉 . (D.4)

The left hand side is equal to

〈2φ(x)2φ(0)〉 =
h

(2π)d/2|x|2∆+4
, (D.5)

where h = 16∆(∆ + 1)(∆− d−2
2 )
(
∆− d−4

2

)
, and the right hand side is equal to

(
λ∗
3!

)2

〈φ3(x)φ3(0)〉 =

(
λ∗
3!

)2 3!

(2π)3d/2|x|2∆+4
, (D.6)

Equating them and solving for ∆, gives

∆ = 1− ε

2
+

ε2

108
+O

(
ε3
)
, (D.7)
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from which we see that, to leading order γφ = 1
108ε

2.

D.2 The O(N) model

The action of the free O(N) model in d dimensions is

S =
1

2

N∑
i=1

∫
ddx (∂φi)

2 , (D.8)

where φi are N real scalar fields. This theory possesses a global O(N) symmetry, and the

set of corresponding currents reads

Jaµ = −∂µφi(T a)ijφj , a = 1, ..,
N(N − 1)

2
, (D.9)

where T a are generators of O(N) (normalized here as Tr
(
T aT b

)
= −2δab). Using the scalar

two-point function

〈φi(x)φj(0)〉 =
δij

(2π)d/2|x|d−2
, (D.10)

we get the following two-point function for the currents

〈Jaµ(x)Jbν(0)〉 = 2(d− 2)δab
Iµν

(2π)d|x|2d−2
, (D.11)

where Iµν is defined in eq. (5.6). In d = 4 − ε dimensions we see that CJ = 4 − 2ε. We

would like to deform this theory by a relevant deformation such that the resulting theory

has a fixed point with (partially) broken global symmetry. To this end, let us consider the

following deformation which breaks O(N) to O(N − 1)

Sdef =

∫
ddx

g1

4!
φ4

1 +
g2

4
φ2

1

N∑
j=2

φ2
j +

g3

4!

 N∑
j=2

φ2
j

2 . (D.12)

Let us first choose g2 = 0. In this case, we have two decoupled sectors, a φ4 theory

and an interacting O(N − 1) model (which implies that g2 will not be generated quantum

mechanically either).

The RG flow resulting from this deformation ends up in a weakly interacting IR fixed

point of the Wilson-Fisher type where the values of the couplings (g1∗, g3∗) are

g1∗ =
16π2

3
ε+O(ε2), g3∗ =

48π2

N + 7
ε+O(ε2) , (D.13)
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and are obtained as the zeros of the following beta-function

βg1 = −g1ε+
3

16π2
g2

1 , βg3 = −g3ε+
1

48π2
g2

3(N + 7) . (D.14)

The deformation gives rise to the following anomalous currents which were otherwise con-

served

∂µJaµ = −g1∗
3!

(T a)1jφjφ
3
1 +

g3∗
3!

(T a)1j
N∑
k=2

φ1φjφkφk . (D.15)

In total there are N − 1 broken currents. Computing the two-point functions of operators

on the right-hand side, which provides the values of CO, one finally gets from eq. (5.11)

γJ =

(
1

108
+

N + 1

4(N + 7)2

)
ε2 +O(ε3) . (D.16)

This is nothing but the sum of the anomalous dimensions of constituent fields, φ1 and φj

(j 6= 1). This is expected because for g2 = 0 the broken currents are composed of fields

belonging to decoupled sectors.

The symmetry-breaking pattern we discussed here is an instance of the more general

one O(N) → O(N −M) × O(M), which is a straightforward generalization of the action

(D.12)

∫
ddx

[
g1

4!

(
M∑
i=1

φ2
i

)2

+
g2

4

M∑
i=1

φ2
i

N∑
j=M+1

φ2
j +

g3

4!

 N∑
j=M+1

φ2
j

2 ]
. (D.17)

Assuming (g1, g2, g3) correspond to the fixed-point values, one can use the trick of multi-

plet recombination to calculate a general formula for the anomalous dimension of broken

currents:

γJ =
1

(4π)4

(
(M + 2)

(g1

3!
− g2

2

)2
+ (N −M + 2)

(g3

3!
− g2

2

)2
)
, (D.18)

and of elementary fields:

γφi =
1

(4π)4

(
(M + 2)

(g1

3!

)2
+ (N −M)

(g2

2

)2
)
, i = 1, ..., M (D.19)

γφi =
1

(4π)4

(
(N −M + 2)

(g3

3!

)2
+M

(g2

2

)2
)
, i = M + 1, ..., N . (D.20)

In agreement with general expectations, from above equations and eq. (D.9), it follows that

whenever g2 = 0 the anomalous dimension of broken currents equals the sum of anomalous

dimensions of constituents elementary fields, but it does not otherwise.
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To obtain the fixed-points we need the β-function of the couplings gi. The one-loop β

functions of the couplings gi in d = 4− ε dimensions read

βg1 = −g1ε+
1

16π2

(
g2

1

3
(M + 8) + 3g2

2(N −M)

)
,

βg2 = −g2ε+
g2

48π2
(g1(M + 2) + g3(N −M + 2) + 12g2) , (D.21)

βg3 = −g3ε+
1

16π2

(
g2

3

3
(N −M + 8) + 3g2

2M

)
.

One can calculate the matrix of first derivatives of the β functions at its zeros and

analyse the stability of these fixed points. It turns out that some of them are unstable,

meaning that they could be reached only by fine-tuning of the UV couplings.

Besides the decoupled theory, g2 = 0, for specific values of M and N there exist fixed

points also when g2 6= 0. Here, we present few of the many possible fixed points and specify

their nature, i.e., whether they are stable or unstable.

1. M = 1: This case was discussed in (D.12) with the coupling g2 switched off. For

certain values of N one can also find fixed points with g2 6= 0, and with broken O(N)

symmetry. For example, this kind of (unstable in this case) fixed point exists for

N = 3, but does not exist for N = 4.

2. N = 2M: In this case, for any M there exist the following zeros of the β function

equations (apart from the fixed points with two decoupled sectors, when g2 = 0):

g1∗ =
24π2ε

M + 4
, g2∗ =

8π2ε

M + 4
, g3∗ =

24π2ε

M + 4
(Stable for M < 2)

(D.22)

g1∗ =
24π2Mε

M2 + 8
, g2∗ =

8π2(4−M)ε

M2 + 8
, g3∗ =

24π2εM

M2 + 8
(Stable for M = 3)

(D.23)

Note, however, that, regardless of their nature, current multiplet recombination occurs

at any of those fixed points where the O(N) symmetry is broken. In the case of N = 2M ,

the first fixed point corresponds to a preserved O(N) symmetry. Therefore there is no

multiplet recombination here. In the second case, which preserves only the O(M)×O(M)

subgroup, the current multiplet recombination occurs and anomalous dimension (computed

through the techniques of section 5.1) reads

γJ =
ε2(M + 2)(M − 2)2

2(M2 + 8)2
∼

M→∞

ε2

2M
. (D.24)
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D.3 AdS-to-AdS domain walls

We would like now to consider symmetry-breaking relevant deformations connecting N = 1

SCFT at strong coupling. This is outside the realm of (perturbative) QFT, and hence

we will rely on holography. Flows of this kind are described by BPS solutions of five-

dimensional N = 2 supergravity with an AdS-to-AdS domain-wall metric and one or more

scalars having non-trivial profiles.

Note that in five-dimensional N = 2 supergravity scalars belong either to hypermulti-

plets or to vector multiplets. The former are dual to chiral operators, the latter to real linear

multiplets (which contain the spin-one currents). Therefore, flows triggered by superpoten-

tial deformations imply that hypermultiplet scalars in general run. If the chiral operators

are charged under a given symmetry, the corresponding bulk gauge fields undergo a Higgs

mechanism and so, by supersymmetry, also the vector multiplet scalars are expected to run.

As an illustrative example, we consider below one such scenario. This corresponds to a

SCFT with U(1)R̃ × U(1) symmetry (the always-present superconformal R symmetry and

an abelian flavor symmetry) perturbed by a charged, relevant deformation O triggering a

RG flow towards an IR fixed point. If there are no emergent symmetries in the IR, at such a

fixed point only a U(1)R superconformal R-symmetry is preserved.2 The current associated

to the U(1) symmetry recombines and acquires an anomalous dimension.

A two-parameter family of N = 2 supergravity theories describing flows of this kind

was derived long ago [33]. This is N = 2 supergravity coupled to a vector multiplet and a

hypermultiplet, with scalar manifold

M = O(1, 1)× SU(2, 1)

SU(2)× U(1)
. (D.25)

The first factor is parametrized by the vector multiplet real scalar ρ, while the second factor

by the four scalars belonging to the hypermultiplet, qX = (V, σ, θ, τ). The two gauge fields,

the graviphoton AM and the one sitting in the vector multiplet, BM , gauge a U(1)× U(1)

subgroup of the isometry group of the hyperscalar manifold. The graviphoton is dual to

the R symmetry, and the gauge field BM to the U(1) flavor symmetry.

This theory admits different classes of solutions, depending on the gauging. For instance,

there exist (a) domain-wall solutions which provide a holographic version [134] of the so-

called τU conjecture, originally proposed in Ref. [135], (b) non-supersymmetric solutions

which have been used to construct models of (holographic) gauge mediation [136]. We will

focus, instead, on supersymmetric AdS-to-AdS solutions.

This model has been widely studied and we refer to Ref. [33] for any technical detail.

In what follows we just summarize the results we need for our analysis.

2The IR R symmetry is different from the UV one; i.e., it is a combination of the original R symmetry
and the (broken) flavor symmetry. Indeed, a relevant deformation breaks explicitly conformal invariance
and in turn the superconformal UV R symmetry U(1)R̃.
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What we are interested in are supersymmetric solutions admitting a critical point (i.e. an

AdS stationary point of the gravity superpotential) which preserves a U(1)×U(1) symmetry,

and a second critical point preserving a U(1) symmetry. As discussed in Ref. [33] (see also

Ref. [134]), the existence of such fixed points selects a subclass of gaugings, parametrized

by two real parameters, β and γ, subject to the condition

(β − 1)(1− 2ζ) > 0 ∩ ζ > 0 where ζ =
1− β
2γ − 1

. (D.26)

The UV and IR fixed points sit at

PUV : qX = (1, 0, 0, 0) , ρ = 1 (D.27)

PIR : qX = (1− ξ2, 0, ξ cosϕ, ξ sinϕ) , ρ = (2ζ)1/6 , (D.28)

in field space, with

ξ =

√
2− 4ζ

3β − 1− 4ζ
, ϕ ∈ [0, 2π] . (D.29)

Note that PIR is in fact a circle of stationary points, parametrized by ϕ. This is an exactly

marginal deformation of the IR SCFT, which does not play any role for what we want to

do next.

For any value of β and γ satisfying the constraint (D.26), there exists a smooth domain-

wall (numerical) solution interpolating between PUV and PIR [33,134]. Since PUV and PIR

preserve different symmetries, these domain walls describe, holographically, RG flows along

which current multiplets recombine. Note that, as advertised, both the hyperscalars and

the real scalar ρ run (they have different values at PUV and PIR).

To read the gauge field masses, the relevant part of the N = 2 Lagrangian is

−1

4
aIJF

I
µνF

Jµν − 1

2

(
g2gXYK

X
I K

Y
J

)
AIµA

µI , (D.30)

where aIJ is a function of the vector scalar multiplet ρ, g controls the value of the cosmo-

logical constant and gXY is the metric on the hyperscalar manifold. The Killing vectors are

functions of the scalar fields, hence the gauge symmetry can be Higgsed or exactly realized

depending on the scalar profiles. All flows interpolating between PUV and PIR admit a

vanishing Killing vector [33], hence a massless gauge field and, correspondingly, a preserved

U(1) symmetry (which can be shown to be an R symmetry [33,134]). This reduces to the su-

perconformal R symmetry U(1)R̃ in the UV and to the superconformal R-symmetry U(1)R

in the IR. The second Killing vector, associated to the gauge field BM , instead, vanishes at

PUV , only. This implies that BM is massless at the UV fixed point, and massive elsewhere.

Evaluating (D.30) on the IR endpoint of the flow, one finds, in units of the IR AdS radius
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LIR = (gWIR)−1 (where WIR is the value of the supergravity superpotential at PIR)

m2
A = 0 , m2

B =
3

4

(
(2β + 2γ − 3)(6βγ + β − 2γ − 3)

(2γ − 1)4/3 (1− β)2/3

)
. (D.31)

Plugging the above formula into the mass/dimension relation (5.12) one gets the holographic

prediction for the U(1) flavor current anomalous dimension.

As a consistency check, one can evaluate (D.31) for β = −1, γ = 3
2 , which, as shown in

Ref. [33], corresponds to the FGPW flow [137]. This is known to describe, holographically,

the N = 1∗ mass deformation of N = 4 theory. One gets m2
B = 6 and in turn ∆ = 2 +

√
7,

in agreement with expectations [33,137].

The supergravity model we have considered is a prototype of more general ones. It is

amusing to see how holography lets one have control on how multiplets recombine even in RG

flows which might be extremely intricate from a field theory perspective, and how it makes

so the description of in principle very complicated UV/IR operator maps so transparent.
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Appendix E

β-deformed SCFTs and the dual

geometry

E.1 β-deformations: matter fields quantum numbers

In this section we report the quantum numbers of matter fields of the N = 4 SYM, conifold

theory and Y p,q theories.

1. N = 4 SYM: When written in the N = 1 language, N = 4 SYM theory contains 3

chiral superfields Φi that transform in the fundamental representation of SU(3). The

R-charges of each of these is 2/3 as is evident from the N = 4 superpotential.

2. Conifold theory: The theory contains two kind of bifundamental matter fields Aα, Bα̇.

They share the same R-charge R = 1/2, and, correspondingly, the same scaling di-

mension ∆ = 3/4. The fields Aα transform in the (1
2 , 0) of the flavor symmetry group

SU(2)× SU(2). The Bα̇ transform instead in the (0, 1
2).

3. N = 1 Y p,q theories: The theory contains four different kinds of bifundamental matter

fields which are either singlets or doublets under the SU(2) flavor symmetry. There

are p doublets labelled Uα, q doublets labelled Vα, p− q singlets labelled Z and p+ q

singlets labelled Y . Under the U(1) flavor (non-R) symmetry these fields have charges

0, 1,−1, 1 respectively whereas under the U(1) R symmetry they have the following

charges

rU =
2

3
pq−2

(
2p−

√
4p2 − 3q2

)
,

rV =
1

3
q−1

(
3q − 2p+

√
4p2 − 3q2

)
,

rZ =
1

3
q−2

(
−4p2 + 3q2 + 2pq + (2p− q)

√
4p2 − 3q2

)
,

rY =
1

3
q−2

(
−4p2 + 3q2 − 2pq + (2p− q)

√
4p2 − 3q2

)
. (E.1)
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E.2 Volumes of X5 and the 2-torus

In this section we give the expressions for Vol(S5)/Vol(X5) and 〈g0,E〉 which were needed

to derive CO in section 5.4. The ratio of the volumes defined in eq. (5.31), are (see [124]

and references therein for details)

Vol(S5)

Vol(T 1,1)
=

27

16
,

Vol(S5)

Vol(Y p,q)
=

3p2
(

3q2 − 2p2 + p
√

4p2 − 3q2
)

q2
(

2p+
√

4p2 − 3q2
) . (E.2)

The average value of the determinant of the internal two-torus 〈g0,E〉 can be computed from

the corresponding metrics given in [124]. We summarize them below.

1. S5: The 2-torus in (3.12) of [124] is parametrized by the coordinates (ϕ1, ϕ2). The

average volume is 〈g0,E〉 = πN

2. T1,1: This case is slightly subtle. The 2-torus in this case is parametrized by the

coordinates ϕ1,2 = φ1±φ2

2 , where φ1,2 are the coordinates appearing in the standard

line element ((A.18) [124]) of T 1,1. Taking this into account one finds1 〈g0,E〉 = 5π
9 N .

3. Yp,q: Here the two-torus in eq (A.24) of [124] is parametrized by (α, φ). We have

〈g0,E〉 = 〈g0〉R4
E , where the determinant g0 and RE have been defined in appendix

A.2 of [124]. Upon computing the average we find

〈g0,E〉 =
7p2 − 6q2 − p

√
4p2 − 3q2

9p(p2 − q2)
πN . (E.3)

In computing 〈g0〉 we have used the following relation for a

a =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2 , (E.4)

and the integration over the y coordinate is in the range (y1, y2)

y1 =
1

4p

(
2p− 3q −

√
4p2 − 3q2

)
, y2 =

1

4p

(
2p+ 3q −

√
4p2 − 3q2

)
. (E.5)

1The last equality of (4.6) in [124] has a typo. We thank O. Lunin for a discussion on this point.
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