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Correlations and diagonal entropy after quantum quenches in XXZ chains
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We study quantum quenches in the XXZ spin-1/2 Heisenberg chain from families of ferromagnetic and
antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the
complete generalized Gibbs ensemble (GGE), which takes into account all local and quasilocal conservation
laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for
the diagonal ensemble, finding excellent agreement and thus providing a very accurate test for the validity of the
complete GGE. Furthermore, we use exact diagonalization to compute the diagonal entropy in the postquench
steady state. We show that the Yang-Yang entropy for the complete GGE is consistent with twice the value of the
diagonal entropy in the largest chains or the extrapolated result in the thermodynamic limit. Finally, the complete
GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The
predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such
initial states are better suited than others considered in the literature to experimentally test the validity of the
complete GGE and contrast it to the failure of the local GGE.
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I. INTRODUCTION

Understanding the long-time behavior of an isolated many-
body quantum system after it is brought out of equilibrium
represents a fundamental physical problem. Arguably, the
simplest paradigm is that of a quantum quench [1], where
a well-defined initial state is evolved unitarily under a time-
independent Hamiltonian.

In the past decade, tremendous theoretical efforts have
been devoted to the study of quantum quenches, an important
motivation being recent experimental progress in ultracold
atomic physics [2–4]. Many beautiful experiments have now
shown that nearly isolated quantum systems can be taken far
from equilibrium using quantum quenches and their dynamics
have been studied in great detail [5–15]. Such experiments
have made clear the need for a theoretical understanding of
quantum dynamics in isolated systems, which may have been
considered to be a purely academic problem before.

Among others, one question has emerged as especially im-
portant: Is it possible to predict the properties of a postquench
steady state based on simple physical principles? This question
is particularly relevant when compared to the prohibitive
complexity of computing the full postquench time evolution
of a many-body quantum system, and has inspired much
theoretical research. As a result, it has been concluded that a
fundamental difference exists between generic and integrable
systems. In the former, it was proposed that the postquench
steady state can be described by a thermal Gibbs ensemble,
where the effective temperature is fixed by the initial state
[16–20]. On the other hand, in integrable models a key role is
played by the presence of an extensive number of conservation
laws and such systems retain much more information on the
initial state [21,22]. Accordingly, in order to characterize the
postquench steady state a generalized Gibbs ensemble (GGE)
was proposed, which is constructed by taking into account
conservation laws emerging from integrability [23–25].

Much subsequent work has addressed the subtle question
of which conserved operators (or charges) have to be taken

into account in the GGE. In integrable models mappable
to noninteracting ones, either the occupation of the single-
particle eigenstates of the noninteracting problem or all
local conserved charges have been shown to produce correct
physical predictions following quantum quenches [23–48].
However, recent investigations in models that cannot be
mapped onto noninteracting ones (referred to as interacting
integrable models in what follows) have revealed the need for
considering more generally all quasilocal conservation laws
[49–59].

The existence of quasilocal conserved charges in interacting
integrable lattice models was discovered in the context of
thermal spin transport [60], where a number of works have
been devoted to analyze their physical consequences [61–65].
Note that additional nonlocal conservation laws and their
importance on relaxation processes have also been recently
discussed in XY spin chains [66–70] and integrable quantum
field theories [71–75]. The ensemble obtained by considering
only local conserved operators is now called the local (or
ultralocal) GGE, while the correct construction which includes
all quasilocal charges is usually referred to as the complete
GGE. For a pedagogical introduction to these topics, see the
recent reviews [76–81].

An important role in the more recent developments has
been played by the introduction of the so-called quench action
approach [82,83]. The latter is an analytical method that allows
one to compute physical quantities on the postquench steady
state based on Bethe ansatz techniques. At the moment, its
applicability is limited to those initial states for which the
overlaps with the eigenstates of the Hamiltonian after the
quench are known analytically [84–91]. Nevertheless, it has
already been successfully employed in the study of several
quantum quenches [52,53,86,92–96] and was an essential
theoretical tool for establishing the failure of the local GGE in
interacting systems [52,53].

Most of the progress related to interacting integrable models
has occurred remarkably rapidly. It is then imperative to
substantiate the body of evidence in favor of the complete
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GGE conjecture, which at the moment has been tested to
high precision for a relatively small number of initial states
[52,53,97]. Furthermore, in the majority of the cases, the local
GGE has been found to provide accurate predictions for local
observables. An important question related to experiments
is whether one can always expect the local GGE to give
predictions that are sufficiently accurate for all practical
purposes.

The systematic investigation of these issues provides the
first motivation for our work. In particular, we focus on the
prototypical XXZ spin-1/2 Heisenberg chain and consider
families of initial states given by antiferromagnets and tilted
ferromagnets for several values of the tilting angle. Complete
GGE results for some tilting angles and local correlators
involving those families of initial states have been presented in
Ref. [97]. Here, we systematically compare the complete GGE
against calculations for the diagonal ensemble using exact
diagonalization (ED) and numerical-linked cluster expansions
(NLCEs) [98–100]. We find excellent agreement in most cases,
and, in those in which the results do not agree, we find that
the exact diagonalization and NLCE calculations approach
the complete GGE results with increasing chain and cluster
sizes, respectively. Thus, our study provides the most accurate
benchmark to date of the complete GGE. Furthermore, we
show that for tilted ferromagnets the predictions of the local
and complete GGEs are significantly different, with only the
latter being in agreement with ED and NLCE calculations.
This observation highlights that the failure of the local GGE
is not purely academic. It is something that can be tested
experimentally.

We also characterize the postquench steady states beyond
short-distance correlators. In the Bethe ansatz language, any
statistical ensemble (and hence any GGE) can be characterized
in terms of quasiparticle rapidity distribution functions, which
generalize the concept of particle momentum distribution from
noninteracting systems. In fact, one of the simplest quantities
in this context is provided by the corresponding entropy, the
so-called Yang-Yang entropy [101]. While it is an established
result that for thermal states the latter coincides with the
thermal entropy [102], its meaning for nonequilibrium steady
states has yet to be clarified. We note that the Yang-Yang
entropy has recently been used as one of the key ingredients in
the computation of entanglement dynamics in Heisenberg spin
chains [103], and has thus already proven to be of great interest
in the study of quantum quenches. A detailed investigation of
this quantity provides the second motivation of our work.

In particular, we study the relation between the Yang-
Yang entropy and the so-called diagonal entropy, whose
thermodynamic meaning has been discussed in Refs. [104–
106] (see Ref. [18] for a recent review). For all the initial
states considered, we show that the Yang-Yang entropy for
the complete GGE is consistent with twice the value of the
diagonal entropy in the largest chains or the extrapolated result
in the thermodynamic limit. This is similar to the results
obtained for several quantum quenches in translationally
invariant systems that are either noninteracting or that can be
mapped onto noninteracting ones [38,107,108] (see Ref. [79]
for a recent review). Our findings are also in agreement with
the analysis of Ref. [103] and corroborate the picture of
pair quasiparticle production after a quantum quench even in

fully interacting integrable models such as the XXZ spin-1/2
Heisenberg chain.

The presentation is organized as follows. In Sec. II, we
introduce the XXZ spin-1/2 Heisenberg Hamiltonian and
the quantum quenches considered in this work, while in
Sec. III we briefly introduce the Bethe ansatz language used
to describe the complete GGE. In Sec. IV, we compare the
Bethe ansatz predictions with the results from ED and NLCEs
for the diagonal ensemble. Section V is devoted to the analysis
of diagonal and Yang-Yang entropies. Our conclusions are
reported in Sec. VI. Technical details from our calculations
are reported in the appendixes.

II. HAMILTONIAN AND QUANTUM QUENCHES

The XXZ spin-1/2 Heisenberg Hamiltonian can be written
as

H = 1

4

L∑
j=1

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �
(
σ z

j σ z
j+1 − 1

)]
, (1)

where σα
j , α = x,y,z, are the Pauli matrices and � is the

anisotropy parameter. Later, we will use σ± = (σx ± iσ y)/2.
We restrict our study to the regime � � 1.

We consider quantum quenches from two different initial
states, namely, the Néel state

|N〉 = |↑↓〉 ⊗ · · · ⊗ |↑↓〉 = |↑↓〉⊗L/2 (2)

and the tilted ferromagnet

|�; ↗〉 =
[

cos

(
�

2

)
|↑〉 + i sin

(
�

2

)
|↓〉

]⊗L

. (3)

These states are ground states of simple Hamiltonians. The
Néel state is the ground state of Hamiltonian (1) for � → ∞
(the antiferromagnetic Ising model) or of H = ∑L

j=1(−1)j σ z
j ,

while the tilted ferromagnet is the ground state of Hamiltonian
(1) in the presence of a very strong magnetic field pointing
in the tilting direction. Quantum quenches from the Néel
state were previously considered in Refs. [52,53], where
the quench action approach was employed to obtain an
explicit characterization of the postquench steady state. In
Ref. [56], it was shown that the latter coincides with the
complete GGE constructed using all local and quasilocal
charges. For the tilted ferromagnet, in contrast, the overlaps
needed to implement the quench action are not known and the
construction of the complete GGE provides for the moment
the only available analytical approach to obtain predictions
on the postquench steady state. In the next section, we review
the Bethe ansatz description of the complete GGE in terms of
rapidity distribution functions.

On the other hand, in our numerical calculations using ED
and NLCEs (see Appendix A), correlators after the quench are
computed in the so-called diagonal ensemble [17], for which
the density matrix reads

ρDE ≡ lim
t ′→∞

1

t ′

∫ t ′

0
dt ρ(t) =

∑
α

Wα |α〉〈α|, (4)

where ρ(t) is the time-evolving density matrix after the quench,
|α〉 are the eigenstates of the final Hamiltonian, and Wα are
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the weights of the initial state in the eigenstates of the final
Hamiltonian. In Refs. [52,99], NLCEs were used to compute
correlators in the diagonal ensemble after quenches from the
Néel state. The results obtained were in excellent agreement
with those from the quench action approach.

III. COMPLETE GGE FROM BETHE ANSATZ

The Hamiltonian (1) is integrable and can be diagonalized
by means of the Bethe ansatz [102,109]. A general eigenstate
has a well-defined number M of down spins and can be written
as ∣∣{λj }Mj=1

〉 =
∑

x1<···<xM

∑
Q∈SM

AQ

({λj }Mj=1

)

×
M∏

j=1

e
−ixj p(λQj

)
σ−

xj
|↑ · · · ↑〉 , (5)

where

p(λ) = −i ln

[
sin(λ + iη/2)

sin(λ − iη/2)

]
, (6)

AQ({λj }) =
M∏

k<j

sin
(
λQj

− λQk
− iη

)
sin

(
λQj

− λQk

) , (7)

where η = arccosh(�). The second sum in Eq. (5) is over all
permutations of M elements.

The complex parameters {λj }Mj=1, usually called rapidities,
are obtained as the solution of so-called Bethe equations[

sin(λj + iη/2)

sin(λj − iη/2)

]L

= −
M∏

k=1

sin(λj − λk + iη)

sin(λj − λk − iη)
. (8)

The energy of an eigenstate corresponding to the set {λ}Mj=1 is
then given by

e
[{λj }Mj=1

] = −
M∑

j=1

sinh2 η

cosh(η) − cos(2λj )
. (9)

The solutions of Eqs. (8) arrange themselves into patterns in
the complex plane called strings. A solution {λj }Mj=1 consists of
Mn strings of length n in which the rapidities are parametrized
as

λn,a
α = λn

α + i
η

2
(n + 1 − 2a) + iδn,a

α , (10)

with a = 1, . . . ,n. Here, the real numbers λn
α are called string

centers and satisfy λn
α ∈ [−π/2,π/2], while δn,a

α are exponen-
tially small deviations that are ignored in the thermodynamic
limit, within the so-called string hypothesis [102].

From the wave function (5), magnonic excitations (down
spins) can be interpreted as quasiparticles, while n strings can
be interpreted as bound states of n quasiparticles. This picture
provides the basis for the thermodynamic description of the
model.

In the thermodynamic limit, the macrostates of the system
are described by the quasiparticle and bound-state rapidity
distribution functions. In particular, n-string centers become
dense in the interval [−π/2,π/2] according to a set of
distribution functions ρn(λ), which completely characterize a

macrostate. Together with these, one has distribution functions
ρh

n (λ) for the so-called n-string holes, which generalize
the concept of holes from a noninteracting Fermi gas. In
the interacting model considered here, the functions ρh

n (λ)
are nontrivially related to ρn(λ) through the thermodynamic
version of the Bethe equations (8)

ρn(λ) + ρh
n (λ) = an(λ) −

∞∑
m=1

(anm ∗ ρm)(λ) , (11)

where

anm(λ) = (1 − δnm)a|n−m|(λ) + 2a|n−m|(λ)

+ · · · + 2an+m−2(λ) + an+m(λ) (12)

and

an(λ) = 1

π

sinh (nη)

cosh(nη) − cos(2λ)
. (13)

In Eq. (11), the convolution between two functions is defined
as

(f ∗ g)(λ) =
∫ π/2

−π/2
dμf (λ − μ)g(μ) . (14)

As already mentioned, this thermodynamic formalism can be
employed to describe the statistical ensembles provided by the
local and complete GGE. In particular, a recent success has
been the determination of the rapidity distribution functions
corresponding to the complete GGE for the Néel and tilted
ferromagnetic states considered here [52,53,58,97]. These
are briefly reviewed in Appendix B, where we also discuss
how the rapidity distribution functions for the local GGE are
determined.

In principle, the rapidity distribution functions of a
macrostate allow one to compute all local correlators. More
precisely, such correlators can be obtained after the numerical
solution of sets of nonlinear integral equations, which depend
on the rapidity distribution functions. Further details are
reported in Appendix C, while we refer the reader to the
literature for a more complete treatment [52,53,110,111].

IV. SHORT-RANGE CORRELATORS

In this section, we compare the Bethe ansatz predictions
with ED and NLCE calculations in the diagonal ensemble.
In what follows, we first revisit the Néel state, which was
previously studied in Refs. [52,53,99]. Our analysis goes
beyond those works in that we consider transverse correlators
(σ+

i σ−
i+k). Second, we study the tilted ferromagnet for a large

number of tilting angles.

A. Néel state

Here, we compare the Bethe ansatz predictions for the
complete GGE for longitudinal and transverse correlators to
the results obtained for the diagonal ensemble from ED in
chains with up to 24 lattice sites (with periodic boundary
conditions) and NLCEs in clusters with up to 19 sites. Our
findings are reported in Fig. 1.

In Fig. 1, the results reported from the ED calculations are
the average between those obtained in chains with L = 22 and
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FIG. 1. Short-range correlators for the quench from the Néel state
as functions of the anisotropy parameter �. The complete GGE
(cGGE) and local GGE (lGGE) predictions are compared to the
results from ED and NLCE. The ED and NLCE results reported are
the average over the two largest chains (with 22 and 24 sites) and the
two highest orders of the expansion (18 and 19 orders), respectively.
The values at the extremes of the error bars depict the results that
entered the averages. For 〈σ z

i σ z
i+3〉, inset in panel (a), and 〈σ+

i σ−
i+3〉,

inset in panel (c), we only report results for cGGE, lGGE, and ED.

L = 24 sites. The actual ED results for the chains with L = 22
and L = 24 sites are shown as the extremes of the error bars.
This allows one to see how rapidly the ED results are changing
with increasing the chain size. Results are only reported for
chains with an even number of sites as those are the only ones
that accommodate the Néel state (see Appendix A). From
the NLCE calculations, the results reported are the average
between those obtained in the expansions with up to 18 and
19 site clusters. The actual NLCE results for up to 18 and 19
site clusters are shown as the extremes of the error bars. This
allows one to gauge convergence in the NLCE calculations.

Figure 1 shows that, for all the short-range correlators and
values of the anisotropy parameter � that we have considered,
there is an excellent agreement between the complete GGE
and the ED [except for 〈σ+

i σ−
i+2〉 in Fig. 1(d) and 〈σ+

i σ−
i+3〉

in the inset in Fig. 1(c), because of finite-size effects] and
NLCE results. We note that finite-size errors in ED and
convergence errors in NLCE increase with decreasing �, and
with increasing the support of the correlators. However, in all
cases, the complete GGE results are within the results for the
last two orders of the NLCE expansion, and, in most cases,
coincide with their average. The NLCE results fluctuate about
the Bethe ansatz prediction and, as shown in Ref. [99], the
magnitude of the fluctuations decrease with increasing the
cluster sizes.

In Fig. 2, we show ED results for four values of � as a
function of the chain size and compare them to the complete
GGE predictions (horizontal dashed lines). The comparison
makes apparent that the ED results approach the complete
GGE ones with increasing chain size. Also, as mentioned
in the context of Fig. 1, Fig. 2 shows that finite-size errors

8 12 16 20 24
L

0

0.2

0.4

0.6

0.8

1

<
σz i σz i+

2>

8 12 16 20 24
L

0

0.02

0.04

0.06

0.08

<
σ+ i σ− i+

2>

-1

-0.9
-0.8
-0.7
-0.6
-0.5

-0.4
-0.3

<
σz i σz i+

1>

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

<
σ+ i σ− i+

1>

Δ=1
Δ=2
Δ=4
Δ=8

(a)

(b)

(c)

(d)

FIG. 2. Short-range correlators for the quench from the Néel
state for anisotropy parameters � = 1, 2, 4, and 8. The ED results
(symbols) are shown as functions of the chain size L in systems with
periodic boundary conditions. The complete GGE results are shown
as horizontal dashed lines. For all correlators and values of �, one
can see that the ED results approach the Bethe ansatz predictions as
L increases.

increase when decreasing the anisotropy parameter, they are
most severe at � = 1, and with increasing the support of the
correlators.

A detailed analysis of finite-size effects for 〈σ+
j σ−

j+2〉
[corresponding to the results reported in Fig. 2(d)] is un-
dertaken in Fig. 3. Due to even-odd effects, it is necessary
to deal with chains of length L = 4n and L = 4n + 2, with
n integer, separately. The main panel in Fig. 3 shows fits
(a + b/L + c/L2) to the difference between the ED results in
chains of length L = 4n and the complete GGE predictions.
Our results are consistent with a vanishing value of a (the
largest error is obtained for � = 1). In the inset, we compare
fits in chains with L = 4n and L = 4n + 2 for � = 2. They
can be seen to predict the same results as L → ∞.
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FIG. 3. Finite-size scaling analysis for 〈σ+
j σ−

j+2〉 [see also
Fig. 2(d)]. Main panel: Differences between ED results in chains
with L = 4n (n integer) and the complete GGE predictions vs 1/L

(symbols), and their fits to a + b/L + c/L2 (lines). Inset: Comparison
between the difference in the main panel for � = 2 in chains with
L = 4n and L = 4n + 2. The fits yield identical results as L → ∞.
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FIG. 4. Short-range correlators for quenches from initial tilted
ferromagnetic states as functions of the squared magnetization for
� = 2 and � = 4. In the main panels (c) and (d), we only report
results for � = 4. The squared magnetization is 〈σ z

i 〉2 = cos2 �,
where � is the tilting angle. The complete GGE (cGGE) and local
GGE (lGGE) predictions are compared to the results from ED and
NLCE. The ED and NLCE results reported are the average over the
two largest chains (with 23 and 24 sites) and the two highest orders
of the expansion (18 and 19 orders), respectively. The values at the
extremes of the error bars depict the results that entered the average.
For 〈σ z

i σ z
i+3〉c, inset in panel (a), and 〈σ+

i σ−
i+3〉, inset in panel (c), we

only report results for cGGE, lGGE, and ED.

In Fig. 1, we also report the results obtained for the
local GGE. They are almost indistinguishable from those
obtained for the complete GGE. This was first observed in
Ref. [52], where a detailed analysis for longitudinal correlators
was provided. In particular, it was shown that the large-�
expansions for the short-range correlators of the local GGE
and the complete GGE coincide up to the fourth order and do
not differ significantly in general [52]. On the other hand, our
results for the transverse correlators show that 〈σ+

i σ−
i+2〉 and

〈σ+
i σ−

i+3〉 are visibly different when comparing the complete
GGE and the local GGE as � → 1. Still, those differences are
small so in experiments it might be difficult to identify which
GGE is providing the correct prediction.

B. Tilted ferromagnetic state

The analysis of short-range correlators in the postquench
steady state when the initial state is the tilted ferromagnet (3)
reveals more interesting results. Analogously to the Néel state,
we compute the Bethe ansatz predictions for the complete GGE
and the local GGE for longitudinal and transverse correlators
and compare them to ED and NLCE calculations. We consider
the tilting angles:

� = π/m, (15)

with m = 2,3, . . . ,10. Our results are reported in Fig. 4.
Some remarks are in order as to how the plots and

calculations for the tilted ferromagnet differ from those for
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FIG. 5. Short-range correlators for quenches from initial tilted
ferromagnetic states with tilting angles � = π/2, π/3, π/4, and π/6
for � = 2. The ED results (empty symbols) are shown as functions
of the chain size L in systems with periodic boundary conditions,
while the NLCE results (filled symbols) are shown as functions of
the order l of the expansion. The complete GGE results are shown as
horizontal dashed lines. For 〈σ z

i σ z
i+3〉c (c) and 〈σ+

i σ−
i+3〉 (f), we only

report ED and complete GGE results. For all correlators and values
of � shown, one can see that the ED and NLCE results approach the
Bethe ansatz predictions as L and l increase, respectively.

the Néel state. In the former (i) the longitudinal correlators
reported are the connected ones〈

σ z
i σ z

i+k

〉
c
= 〈

σ z
i σ z

i+k

〉 − 〈
σ z

i

〉2
, (16)

where the squared magnetization is simply related to � in
Eq. (15) by the expression 〈σ z

i 〉2 = cos2 �, and (ii) the ED
results reported in the plots are obtained using the average
between those obtained in chains with L = 23 and L = 24
sites. The results for L = 23 and L = 24 sites are shown as
the extremes of the error bars.

In Fig. 4 one can see that, in most cases, there is an
excellent agreement between the Bethe ansatz predictions and
the results from ED and NLCE calculations. In the cases
in which the results do not agree, we find that the exact
diagonalization and NLCE calculations approach the complete
GGE results with increasing the chain and the cluster sizes,
respectively. In Fig. 5, we show how the ED and NLCE results
converge toward the complete GGE predictions as the chain
and cluster size increase, respectively. (For next-next-nearest
neighbor correlators, we only show results from ED.) For this
quench, we find that the ED results exhibit a faster convergence
toward the complete GGE predictions than the NLCE ones. In
addition, for both ED and NLCEs, the convergence worsens
as the tilting angle approaches � = π/2 and as the support of
the correlators increases.

A detailed analysis of finite-size effects for 〈σ z
j σ z

j+3〉c
[corresponding to the results reported in Fig. 5(c) for � =
π/3, π/4, and π/6] is undertaken in Fig. 6. We first note that
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FIG. 6. Finite-size scaling analysis for 〈σ z
j σ z

j+3〉c [see also
Fig. 5(c)]. Difference between ED results and the complete GGE
predictions vs 1/L (symbols), and fits of the differences in the largest
chains to a + b/L (lines).

the differences between the ED and complete GGE results
are much smaller in Fig. 6 than in Fig. 3. In Fig. 6, we also
report results of fits of those differences to a + b/L. They are
consistent with a vanishing value of a. (We do not show results
for � = π/2 because finite-size effects are very strong and we
are not able to find a stable fitting procedure for that tilting
angle.)

It is interesting to note that the results in Fig. 4 show that
there is a strong dependence of the (connected) short-range
correlators on the tilting angle. Furthermore, we find that
the dependence on the anisotropy � increases as the tilting
angle increases (and 〈σ z

i 〉2 decreases). For small tilting angles,
the results for the correlators can be seen to become nearly
independent of the value of �.

The predictions of the local GGE are also shown in Fig. 4.
Remarkably, they can be seen to differ significantly from those
of the complete GGE. As a matter of fact, for 〈σ z

i σ z
i+2〉c and

〈σ z
i σ z

i+3〉c, one can see that the local GGE even predicts the
wrong sign for the correlators in the steady state. These results
are in stark contrast to those starting from the Néel state,
for which the local GGE yielded relatively accurate results.
They make apparent that there is no reason for one to expect
the local GGE to generically provide accurate predictions for
short-range correlators after quenches in interacting integrable
systems. Also, our findings for 〈σ z

i σ z
i+2〉c and 〈σ z

i σ z
i+3〉c

indicate that those correlators could be used in experiments
with quenches from initial tilted ferromagnetic states to
confirm the correctness of the complete GGE and the failure
of the local GGE.

V. DIAGONAL ENTROPIES

In the previous section, we focused on short-range correla-
tors. While they help characterize the equilibrated state after
the quench and can be probed experimentally, there are other
quantities, such as the entropy, that provide complementary
information about the steady state.

The notion of entropy is a fundamental cornerstone in
statistical physics. In thermal equilibrium, the von Neumann
entropy

SvN[ρ] = −tr(ρ log ρ) (17)

provides the correct microscopic definition for the thermody-
namic entropy (using the thermal Gibbs density matrix for ρ).
From the Bethe ansatz point of view, it is an established result
that the thermal entropy computed using Eq. (17) is equal to
the so-called Yang-Yang entropy

SYY
[{ρn}∞n=1

] =
∞∑

n=1

∫ π/2

−π/2
dλ

{
ρn(λ) log [1 + ηn(λ)]

+ ρh
n (λ) log

[
1 + η−1

n (λ)
]}

, (18)

where ηn(λ) = ρh
n (λ)/ρn(λ), while ρn(λ), ρh

n (λ) are the rapid-
ity and hole distribution functions corresponding to the thermal
Gibbs ensemble; cf. Sec. III.

When entering the realm of nonequilibrium physics, provid-
ing a good definition of entropy is less immediate [18]. In this
work, we focus on the entropy of the postquench steady state.
A natural candidate is provided by the infinite-time limit of the
von Neumann entropy of a finite subsystem A, with reduced
density matrix ρA(t), of an infinite system. This entropy is also
known as the entanglement entropy and is extensive; namely,
it grows linearly with the length � of the subsystem A [112].

It is almost automatic to identify the von Neumann entropy
of the reduced density matrix in the long-time limit with the
entropy of the complete GGE. Indeed, assuming its validity, the
latter gives the reduced density matrix for any finite subsystem
A in the infinite-time limit, provided that the infinite system
size limit is taken first. The entropy of the complete GGE is
computed by means of Eq. (18); namely, it is given by the
Yang-Yang entropy of the corresponding rapidity distribution
functions ρn(λ) and ρh

n (λ).
In Refs. [104–106], and more recently in Ref. [18], it

was discussed that the von Neumann entropy of the diagonal
ensemble [see Eq. (4)], also known as the diagonal entropy,

SDE = −tr(ρDE log ρDE), (19)

provides the correct microscopic definition of the thermody-
namic entropy for the steady state of isolated quantum systems
after a quench. In particular, it was argued in Ref. [105] that
the diagonal entropy has the correct extensivity properties and
an interpretation in terms of the logarithm of the number of
microstates can be given.

The relation between the diagonal entropy and the Yang-
Yang entropy associated with the GGE has been studied
in several works in the literature [21,22,38,79,106–108].
However, all those studies focused on systems that were either
noninteracting or for which a mapping onto noninteracting
ones was available. In the cases in which the systems were
translationally invariant [38,79,107,108], a simple relation
between the two entropies was found, namely

SDE = 1
2SYY . (20)

A heuristic explanation for the factor 1/2 was provided
for the transverse-field Ising chain [38]. After the quench,
free fermionic excitations are created in pairs of opposite
momentum. This represents a set of nontrivial correlations
on the quasiparticle content of the system, which constrains
the entropy. However, such correlations are absent for the
(complete) GGE, as it is most easily visualized for the
reduced density matrix of a finite subsystem A. Indeed, if
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FIG. 7. Diagonal, grand canonical ensemble, and Yang-Yang
entropies for the quench from the Néel state as functions of the
anisotropy parameter �. The diagonal entropy (2SED

DE , notice the factor
2) computed using ED is compared to the grand canonical ensemble
entropy (SNLCE

GE ) computed using NLCEs, and to the Yang-Yang
entropy for the complete GGE (ScGGE) and for the local GGE (SlGGE)
computed using Bethe ansatz. The SED

DE results reported are the average
over the two largest chains (with 22 and 24 sites) considered, the
extremes of the error bars depict the results that entered the averages,
while the SNLCE

GE results are for clusters with up to 18 sites and
are converged to the thermodynamic limit result [113]. The inset
shows SED

DE and ScGGE/2, notice the factor 2, for anisotropy parameters
� = 1, 2, 4, and 8. The ED results (symbols) are shown as functions
of the chain size in systems with periodic boundary conditions. The
complete GGE results are shown as horizontal dashed lines. For all
values of � shown, one can see that the ED results approach the
Bethe ansatz predictions as L increases.

a quasiparticle with a given momentum is in A, the associated
quasiparticle of opposite momentum will be found outside of
A at sufficiently long times [38].

It is natural to question whether Eq. (20) remains valid
for fully interacting systems or if additional effects due to
interactions arise. In order to answer this question for quenches
to the XXZ spin-1/2 Heisenberg chain, we have computed
the Yang-Yang entropy [Eq. (18)] and the diagonal entropy
[Eq. (19)] for the Néel state and the tilted ferromagnet. The
Yang-Yang entropy is obtained directly using the Bethe ansatz
rapidity distribution functions associated with the complete
GGE, while the diagonal entropy is computed numerically
using ED for chains with up to L = 24 sites (the ED results
converge faster with increasing chain sizes than the NLCE ones
with increasing cluster sizes so only the former are reported).
For comparison, we also computed the Yang-Yang entropy
for the local GGE using Bethe ansatz and the entropy of the
grand canonical ensemble using NLCEs (the NLCE results for
this quantity converge faster with increasing cluster sizes than
the ED ones with increasing chains sizes [113] so only the
former are reported.) All entropies reported in this section are
entropies per site.

Our results for the Néel state are reported in Fig. 7. First, we
note that the diagonal entropy for the Néel state, as computed
using ED, is clearly smaller than the thermal (grand canonical
ensemble) entropy, as obtained using NLCEs. This is expected
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FIG. 8. Diagonal and Yang-Yang entropies for quenches from
initial tilted ferromagnetic states as functions of the squared magne-
tization for � = 2 and � = 4. The diagonal entropy (2SED

DE , notice
the factor 2) computed using ED is compared to the Yang-Yang
entropy for the complete GGE (ScGGE) and for the local GGE (SlGGE)
computed using Bethe ansatz. We also report NLCE results for the
grand canonical ensemble entropy (SNLCE

GE ) for tilting angle � = π/2
(zero magnetization). The results for 2SED

DE reported are obtained after
an extrapolation to the thermodynamic limit, cf. Appendix D, while
the SNLCE

GE results are for clusters with up to 18 sites and are converged
to the thermodynamic limit result [113].

as the thermal ensemble contains less information about the
system than the diagonal ensemble. Analogously, the local
GGE displays an entropy that is smaller than the thermal
entropy but larger than the complete GGE entropy.

More importantly, we find that the entropy of the complete
GGE is consistent with twice that of the diagonal ensemble.
This is better seen in the inset in Fig. 7, where the ED results
for the diagonal entropy are shown to approach one half of the
complete GGE ones as the sizes of the chains increase. That
inset also shows that finite-size effects in ED increase as the
anisotropy parameter approaches the Heisenberg point � = 1.
We emphasize that Eq. (20) holds for the complete GGE and
not for the local GGE, as made clear by our results in Fig. 7.
The latter ensemble does not contain the information required
to construct the reduced density matrix for a finite subsystem
A of an infinite system in the infinite-time limit.

Our results for the tilted ferromagnet are displayed in Fig. 8.
For this quench, we have found that finite-size effects in the ED
calculations are severe and, unlike for the Néel state, a direct
comparison between the ED results for the largest chains and
the complete GGE results is not meaningful. Instead, careful
finite-size scaling analyses of the ED results are required. The
fitting procedure followed is explained in Appendix D. Here,
we focus on discussing the results obtained with it.

Figure 8 shows that, like for the Néel state, the result for
the Yang-Yang entropy in the complete GGE is consistent with
twice the extrapolated ED result of the entropy in the diagonal
ensemble. We find that finite-size effects in the ED calculations
increase significantly as the tilting angle approaches � = π/2,
and the fitting procedure becomes unstable. Accordingly, we
observe a discrepancy for � = π/2 between the Bethe ansatz
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and extrapolated ED result. The discrepancy is larger for � =
4 than for � = 2. Those discrepancies are most likely a result
of our fitting procedure failing to predict the diagonal entropy
per site in the thermodynamic limit.

Finally, Fig. 8 also shows that the Yang-Yang entropy of
the local GGE is much larger than the one of the complete
GGE. For � = π/2 and � = 2, SlGGE is about two times
larger than ScGGE, and SlGGE is closer to the entropy of
the grand canonical ensemble SNLCE

GE than to ScGGE. This
unambiguously demonstrates that, in contrast to the Néel
state, for the tilted ferromagnet the local GGE contains much
less information than the complete GGE. For this state,
neglecting the contribution of the quasilocal charges results in
an ensemble that is significantly different from the one needed
to describe the steady state following a quantum quench. This
offers further support to the conclusions of our analysis of
short-range correlators in Sec. IV.

VI. CONCLUSIONS

We studied quantum quenches to the XXZ spin-1/2
Heisenberg chain from the Néel and tilted ferromagnetic states.
We focused on the postquench steady state, and presented a
detailed comparison between the Bethe ansatz predictions for
the complete and local GGE and numerical calculations for
the diagonal ensemble by means of ED and NLCEs.

Our analysis of short-range correlators provides one of
the most accurate benchmarks to date of the validity of
the complete GGE. Furthermore, we have shown that the
local GGE predictions differ significantly from those of
the complete GGE in the case of tilted ferromagnets. This
discrepancy can be clearly and without ambiguity resolved by
ED and NLCE calculations, and could potentially be tested
in experiments as the equilibration times for the correlators
discussed here appear to be below 20h̄/J [51,97], where J

is the σx
j σ x

j+1 and σ
y

j σ
y

j+1 coupling strength (set to 1 in this
work).

Furthermore, we calculated the diagonal entropy for the
complete GGE in the XXZ spin-1/2 Heisenberg chain after
quantum quenches from different initial states. Using careful
finite-size scaling analyzes, we found that the diagonal entropy
is consistent with one half the Yang-Yang entropy for both
the Néel and the tilted ferromagnet state. We argued that our
findings are consistent with the picture of pair quasiparticle
production after a quench, recovering the results obtained
in several translationally invariant systems that are either
noninteracting or that can be mapped onto noninteracting ones
[38,79,107,108].
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APPENDIX A: EXACT DIAGONALIZATION AND
NUMERICAL LINKED CLUSTER EXPANSIONS

The ED calculations are performed in chains with periodic
boundary conditions and with up to L = 24 sites.

To take full advantage of translational symmetry, we do not
deal directly with the Néel state in Eq. (2) but rather with its
translational invariant version:

|N〉′ = 1√
2

(|↑↓〉⊗L/2 + |↓↑〉⊗L/2). (A1)

This state can only be accommodated in chains with an
even number of sites and belongs to the zero magnetization
sector [the total magnetization commutes with the XXZ
spin-1/2 Hamiltonian (1)]. In addition, this state belongs to
the zero momentum sector and it is parity even. All our
calculations for the diagonal ensemble are performed in this
subsector of the Hilbert space. The largest matrices that need
to be fully diagonalized for L = 24 have linear dimension
D = 56,822.

The tilted ferromagnetic state in Eq. (3) is already transla-
tionally invariant and belongs to the zero momentum—parity
even—sector. However, in contrast to the Néel state, the tilted
ferromagnet is a superposition of states that belong to all
magnetization sectors. As a result, while the largest matrices
that need to be diagonalized for each chain of size L are the
same size as those for the Néel state, one also has to diagonalize
many other smaller ones for all nonzero magnetization sectors.
In addition, this state can also be accommodated in chains with
an odd number of sites, so we have done calculations for chains
with even and odd number of sites.

The NLCE calculations for the diagonal ensemble, on the
other hand, allow one to compute the expectation value of
extensive observables (per lattice site, O) after a quench in
translationally invariant lattice systems in the thermodynamic
limit [98]. This is done by summing over the contributions
from connected clusters c that can be embedded on the lattice

O =
∑

c

M(c) × WO(c). (A2)

In the expression above, M(c) is the multiplicity of cluster
c (the number of ways per site in it can be embedded on
the lattice) and WO(c) is the weight of the observable of
interest O in cluster c. The weight WO(c) is computed using
the inclusion-exclusion principle,

WO(c) = ODE(c) −
∑
s⊂c

WO(s), (A3)

where the sum runs over all connected sub-clusters of cluster
c and

ODE(c) = Tr
[
O ρc

DE

]
/Tr

[
ρc

DE

]
(A4)

is the expectation value of O in the diagonal ensemble
calculated for the finite cluster c. ρc

DE is the many-body
density matrix of the diagonal ensemble in cluster c. ODE(c)
is computed using full exact diagonalization.

NLCEs were originally introduced to study observables for
lattice systems in thermal equilibrium in the thermodynamic
limit [114]. For a pedagogical introduction to NLCEs, see
Ref. [115]. This is the approach we used to compute the grand
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canonical ensemble results for the entropy (SNLCE
GE ) shown in

Figs. 7 and 8. The temperature and the longitudinal magnetic
field are chosen such that the energy and the magnetization
per site in the grand canonical ensemble match the values set
by the initial state.

In this work, NLCEs for the diagonal ensemble are carried
out in clusters with up to 19 lattice sites. This means that
the sum in Eq. (A2) only contains results for clusters with at
most 19 sites. To gain an understanding of how the results
converge to the thermodynamic limit ones as the cluster sizes
are increased, we denote by Ol the sum in Eq. (A2) when all
clusters with up l sites are included. l is usually referred to
as the order of the expansion and is reported in the plots
in Fig. 5. The fact that the clusters in NLCEs have open
boundary conditions, namely, they lack translational symmetry
and hence are more costly to fully diagonalize, explains why
we are limited to smaller cluster sizes in NLCEs than chain
sizes in ED.

NLCEs for the Néel state were previously carried out in
Refs. [52,99] for clusters with up to 18 lattice sites. Details
about the NLCE calculations can be found in Ref. [99]. Here
we have extended these calculations by one order (to clusters
with up to 19 lattice sites) and also computed transverse
correlators.

The NLCE calculations for the tilted ferromagnet are
carried out in a similar fashion. For each cluster in the
expansion, we use the fact that the tilted ferromagnet is parity
even and consider all magnetization sectors (in contrast to the
Néel state [99]). This makes the NLCE calculations for the
tilted ferromagnet more costly than those for the Néel state.
Also, for the tilted ferromagnet, the connected nearest neighbor
longitudinal correlators are computed after the subcluster
subtraction [Eq. (A3)] is performed for the nonconnected
correlators. On the other hand, for next-nearest-neighbor
sites, the connected longitudinal correlators are computed at
the cluster level and the subcluster subtraction is performed
afterwards. This accelerates the convergence of the NLCE
results. The largest matrices that need to be fully diagonalized
for both initial states in clusters with L = 19 have linear
dimension D = 46 252.

APPENDIX B: RAPIDITY DISTRIBUTION FUNCTIONS
FOR THE LOCAL AND COMPLETE GGE

In this Appendix, we review results regarding the rapidity
distribution functions corresponding to the complete and local
GGE both for the Néel and tilted ferromagnet state.

In the case of the complete GGE, the rapidity distribution
functions can be determined analytically. In particular, for the
Néel state they read [52]

η1(λ) = sin2(2λ)[cosh(η) + 2 cosh(3η) − 3 cos(2λ)]

2 sin
(
λ − i

η

2

)
sin

(
λ + i

η

2

)
× [sin(2λ − 2iη) sin(2λ + 2iη)]−1 , (B1)

ρh
1 (λ) = a1(λ)

(
1 − cosh2(η)

π2a2
1(λ) sin2(2λ) + cosh2(η)

)
, (B2)

where a1(λ) is given in Eq. (13). Higher string distribution
functions are obtained as

ηn(λ) = ηn−1(λ + iη/2)ηn−1(λ − iη/2)

ηn−2(λ) + 1
− 1 , (B3)

ρh
n (λ) = ρh

n−1(λ + iη/2)
[
1 + η−1

n−1(λ + iη/2)
]

+ ρh
n−1(λ − iη/2)

[
1 + η−1

n−1(λ − iη/2)
]

− ρh
n−2(λ) , (B4)

where we set η0(λ) ≡ 0, ρh
0 (λ) ≡ 0.

In the case of the tilted ferromagnet, the rapidity distribution
functions corresponding to the complete GGE instead are [97]

η1(λ) = −1 + T1
(
λ + i

η

2

)
φ
(
λ + i

η

2

) T1
(
λ − i

η

2

)
φ̄
(
λ − i

η

2

) , (B5)

ρh
1 (λ) = sinh η

π

[
1

cosh(η) − cos(2λ)
− P (λ)

Q(λ)

]
, (B6)

where

P (λ) = 2 sin2(�)(2 sin2(�)

+ cosh(η){[cos(2�) + 3] cos(2λ) + 4}) , (B7)

Q(λ) = sinh2(η)[cos(2�) + 3]2 sin2(2λ) + (2 sin2(�)

+ cosh(η){[cos(2�) + 3] cos(2λ) + 4})2, (B8)

T1(λ) = cos(λ)[4 cosh(η) − 2 cos(2�) sin2 λ + 3 cos(2λ) + 1],

(B9)

φ(λ) = 2 sin2 � sin λ cos
(
λ + i

η

2

)
sin

(
λ − i

η

2

)
, (B10)

φ̄(λ) = 2 sin2 � sin λ cos
(
λ − i

η

2

)
sin

(
λ + i

η

2

)
. (B11)

Once again, higher string distribution functions are immedi-
ately given by Eqs. (B3) and (B4).

As opposed to the complete GGE, the rapidity distribution
functions for the local GGE can only be obtained numerically.
In the case of the Néel state, these were explicitly obtained
in Ref. [52], where a numerical scheme was developed to this
end (see also Ref. [54]). This method requires an initial guess
for the first rapidity distribution function ρ1(λ) and reaches
the correct distribution functions by subsequent iterations
[52]. This scheme was used here to obtain the local GGE
predictions corresponding to the Néel and tilted ferromagnet
states, as displayed in Figs. 1 and 4 for local correlations,
and in Figs. 7 and 8 for the Yang-Yang entropies. Note that
in the case of tilted ferromagnetic states one has to account
for a nonvanishing magnetization, as opposed to the cases
considered in Ref. [52,54]. Accordingly, one has to introduce a
Lagrange multiplier h in order to fix the correct magnetization.
In turn, this determines the asymptotic behavior of ηn(λ) for
large n, which has to be used to truncate the infinite system
of partially decoupled equations for ηn, in complete analogy
with the thermal case [102].

In all the cases considered here, we explicitly checked that
the values of the short-range correlators obtained for the local
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GGE were in agreement with those of Ref. [51], where a
different quantum transfer matrix approach was employed.

APPENDIX C: SHORT-RANGE CORRELATORS FROM
BETHE ANSATZ

Here, we briefly review the formulas used in this work
to compute short-range correlations by means of the Bethe
ansatz. These were recently derived in Ref. [110], to which we
refer the reader for further details (see also Refs. [52,53,111]).

First, we introduce the set of auxiliary functions
{ρ(a)

n (λ)}∞n=1, {σ (a)
n (λ)}∞n=1 as the solution of the following

system of integral equations:

ρ(a)
n (λ) = −s(a)

n (λ) −
∞∑

m=1

(
ϕnm ∗ ρ(a)

m

1 + ηm

)
(λ) , (C1)

σ (a)
n (λ) = s̃(a)

n (λ) +
∞∑

m=1

(
ϕ̃nm ∗ ρ(a)

m

1 + ηm

)
(λ)

−
∞∑

m=1

(
ϕnm ∗ σ (a)

m

1 + ηm

)
(λ) , (C2)

where we use the notation in Eq. (14) for the convolution of
two functions as well as

s(a)
n (λ) =

(
∂

∂λ

)a

s(0)
n (λ) , (C3)

s̃(a)
n (λ) =

(
∂

∂λ

)a

s̃(0)
n (λ) , (C4)

s(0)
n (λ) = 2 sinh(nη)

cos(2λ) − cosh(nη)
, (C5)

s̃(0)
n (λ) = − n sin(2λ)

cos(2λ) − cosh(nη)
, (C6)

and

ϕjk(λ) = −[
(1 − δjk)s(0)

|j−k|(λ) + 2s
(0)
|j−k|+2(λ)

+ · · · + 2s
(0)
j+k−2(λ) + s

(0)
j+k(λ)

]
, (C7)

ϕ̃jk(λ) = −[
(1 − δjk)s̃(0)

|j−k|(λ) + 2s̃
(0)
|j−k|+2(λ)

+ · · · + 2s̃
(0)
j+k−2(λ) + s̃

(0)
j+k(λ)

]
. (C8)

The short-range correlators are then given in terms of algebraic
expressions of the form〈

σ z
1 σ z

2

〉 = coth(η)ω00 + W10 , (C9)

〈
σx

1 σx
2

〉 = − ω00

2 sinh(η)
− cosh(η)

2
W10 , (C10)

where the parameters ωab and Wab are defined by

ωab = −(−1)(a+b)/2�ab

− (−1)b
1

2

(
∂

∂λ

)a+b

K(λ)

∣∣∣∣
λ=0

, (C11)

Wab = −(−1)(a+b−1)/2�ab

+ (−1)b
1

2

(
∂

∂λ

)a+b

K̃(λ)

∣∣∣∣
λ=0

. (C12)

Here

�ab = −2
∞∑

n=1

s(b)
n · ρ(a)

n

1 + ηn

, (C13)

�ab = 2

( ∞∑
n=1

s̃(b)
n · ρ(a)

n

1 + ηn

+
∞∑

n=1

s(b)
n · σ (a)

n

1 + ηn

)
, (C14)

and we introduced the notation

f · g =
∫ π/2

−π/2
dμf (μ)g(μ) (C15)

and

K(λ) = sinh(2η)

sinh(λ + η) sinh(λ − η)
, (C16)

K̃(λ) = sinh(2λ)

sinh(λ + η) sinh(λ − η)
. (C17)

Increasing the range of the correlators, the algebraic expres-
sions analogous to Eqs. (C9) and (C10) become increasingly
long and are not reported here. See Ref. [110] for details.

Note that for transverse correlators, we compute 〈σ+
j σ−

j+k〉
as displayed in Figs. 1 and 4. These can be easily related to
the correlators 〈σx

j σ x
j+k〉. Indeed, we have

σ+
j σ−

j+k = 1
4

[
σx

j σ x
j+k + σ

y

j σ
y

j+k − i
(
σx

j σ
y

j+k − σ
y

j σ x
j+k

)]
.

(C18)

Next, we note that〈
σx

j σ
y

j+k − σ
y

j σ x
j+k

〉 = 0 , (C19)

when computed on an ensemble invariant under spin inversion,
as are the local and complete GGE. Exploiting rotational
invariance along the z axis, we then have

〈σ+
j σ−

j+k〉 = 1
2

〈
σx

j σ x
j+k

〉
. (C20)

Equations (C1) and (C2) can also be cast in partially decoupled
form [102,110]. However, for the tilted ferromagnetic state for
small values of the tilting angle �, the rapidity distribution
functions of the complete GGE are peaked around ±π/2
[97]. Accordingly, we found it more convenient to solve
the coupled form Eqs. (C1) and (C2) using the Gaussian
quadrature method, which reduced the numerical error due
to discretization. Conversely, for the local GGE for the tilted
ferromagnet, and for the local and complete GGE for the Néel
state, the decoupled form of these equations was used.

APPENDIX D: FINITE-SIZE ANALYSIS OF THE
DIAGONAL ENTROPIES

In this Appendix, we briefly discuss the strategy followed
to extrapolate the ED results for the diagonal entropy of the
tilted ferromagnetic state to the thermodynamic limit, which
is illustrated in Fig. 9. It is based on the idea of replacing the
sequence of finite-size results SDE(L) with auxiliary sequences
that exhibit faster convergence. This is analogous, in spirit, to
the approach developed in Ref. [116] (see also Ref. [117]).

From the sequence of finite-size results SDE(L) for the
diagonal entropy (SED

DE in Fig. 9), we construct a second
sequence Fit(L,L + 1) obtained by interpolating the results
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ED

FIG. 9. Diagonal entropy as obtained using exact diagonalization
and the extrapolations explained in the text for � = 2 and � = π/6.
One half of the Yang-Yang entropy for the corresponding complete
GGE (1/2 ScGGE) is depicted as a horizontal line. Notice that the
two extrapolations of the improved sequences are almost identical to
1/2 ScGGE.

for SDE(L) and SDE(L + 1) with a linear fit in L−1 and
extrapolating to L → ∞. Namely,

Fit(L,L + 1) = (L + 1)SDE(L + 1) − LSDE(L) . (D1)

The choice of a linear fit in L−1 is justified a posteriori by
the fact that the sequence of numbers Fit(L,L + 1) shows an
almost linear dependence in 1/L for L not too small. The new
sequence, Fit(L,L + 1), is then extrapolated to L → ∞ using
a linear fit for the largest values of L (L � 8 in Fig. 9). The
result of that extrapolation is what we report for the diagonal
entropy in Fig. 8.

We have found this fitting procedure to be stable under
small modifications. For instance, we verified that changing
the intermediate sequence of two-point fits to a sequence built
out of three point fits does not significantly change the final
result (see Fig. 9). In contrast, direct polynomial fits of SDE(L)
in powers of L−1 were found to be highly sensible to the degree
of the polynomial, as well as to the number of data points, used.
However, for tilting angle � = π/2, finite-size effects appear
to be too strong and our fitting procedure does not provide
a reliable extrapolation to the thermodynamic limit. Larger
system sizes need to be calculated to obtain a good estimate
of the diagonal entropy for � = π/2 in the thermodynamic
limit.
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