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Critical asymptotic behavior for the
Korteweg–de Vries equation
and in random matrix theory

TOM CLAEYS AND TAMARA GRAVA

We discuss universality in random matrix theory and in the study of Hamilton-
ian partial differential equations. We focus on universality of critical behavior
and we compare results in unitary random matrix ensembles with their coun-
terparts for the Korteweg–de Vries equation, emphasizing the similarities
between both subjects.

1. Introduction

It has been observed and conjectured that the critical behavior of solutions to
Hamiltonian perturbations of hyperbolic and elliptic systems of partial differential
equations near points of gradient catastrophe is asymptotically independent of
the chosen initial data and independent of the chosen equation [Dubrovin 2006;
Dubrovin et al. 2009]. A classical example of a Hamiltonian perturbation of a
hyperbolic equation which exhibits such universal behavior, is the Korteweg–de
Vries (KdV) equation

ut + 6uux + ε
2uxxx = 0, ε > 0. (1-1)

If one is interested in the behavior of KdV solutions in the small dispersion
limit ε→ 0, it is natural to study first the inviscid Burgers’ or Hopf equation
ut + 6uux = 0. Given smooth initial data u(x, 0) = u0(x) decaying at ±∞,
the solution of this equation is, for t sufficiently small, given by the method
of characteristics: we have u(x, t) = u(ξ(x, t)), where ξ(x, t) is given as the
solution to the equation

x = 6tu0(ξ)+ ξ. (1-2)

It is easily derived from this implicit form of the solution that the x-derivative of
u(x, t) blows up at time

tc =
1

maxξ∈R(−6u′0(ξ))
,

71



72 TOM CLAEYS AND TAMARA GRAVA

which is called the time of gradient catastrophe. After this time, the Hopf solution
u(x, t) ceases to exist in the classical sense. For t slightly smaller than the critical
time tc the KdV solution starts to oscillate as shown numerically in [Grava and
Klein 2007]. For t > tc the KdV solution develops a train of rapid oscillations
of wavelength of order ε. In general, the asymptotics for the KdV solution as
ε→ 0 can be described in terms of an equilibrium problem, discovered by Lax
and Levermore [1983a; 1983b; 1983c; Lax et al. 1993].

The support of the solution of the equilibrium problem, which depends on x
and t , consists of a finite or infinite union of intervals [Grava 2004; Deift et al.
1998b], and the endpoints evolve according to the Whitham equations [Whitham
1974; Flaschka et al. 1980]. For t < tc, the support of the equilibrium problem
consists of one interval and the KdV solution as ε→ 0 is approximated by the
Hopf solution. For t > tc the support of the equilibrium problem may consists of
several intervals and the KdV solution is approximated as ε→ 0 by Riemann
θ-functions [Gurevich and Pitaevskii 1973; Lax and Levermore 1983a; 1983b;
1983c; Deift et al. 1997; Venakides 1990].

The (x, t)-plane can thus be divided into different regions labeled by the num-
ber of intervals in the support of the Lax–Levermore minimization problem. Such
regions are independent of ε and depend only on the initial data. Those regions
are separated by a collection of breaking curves where the number of intervals
in the support changes. We will review recently obtained results concerning
the asymptotic behavior of KdV solutions near curves separating a one-interval
region from a two-interval region. The two interval region corresponds to the
solution of KdV being approximated as ε→ 0 by the Jacobi elliptic function,
the one interval region corresponds to the solution of KdV being approximated
by the Hopf solution (1-2).

On the space of n× n Hermitian matrices, one can define unitary invariant
probability measures of the form

1

Z̃n
exp(−N Tr V (M)) d M, d M =

n∏
i=1

d Mi i

∏
i< j

dRe Mi j dIm Mi j , (1-3)

where Z̃n = Z̃n(N ) is a normalization constant which depends on the integer N
and V is a real polynomial of even degree with positive leading coefficient. The
eigenvalues of random matrices in such a unitary ensemble follow a determinantal
point process defined by

1
Zn

∏
i< j

(λi − λ j )
2

n∏
i=1

e−N V (λi ) dλi , (1-4)

with correlation kernel
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Kn(u, v)=
e−

N
2 V (u)e−

N
2 V (v)

u− v
κn−1

κn

(
pn(u)pn−1(v)− pn(v)pn−1(u)

)
, (1-5)

where pk is the degree k orthonormal polynomial with respect to the weight
e−NV defined by ∫

R

p j (s)pk(s)e−NV (s) ds = δ jk, j, k ∈ R,

and κk > 0 is the leading coefficient of pk . The average counting measure of
the eigenvalues has a limit as n = N →∞. We will denote this limiting mean
eigenvalue distribution by µV . For a general polynomial external field V of
degree 2m, the support of µV consists of a finite union of at most m intervals
[Deift et al. 1998a]. If V depends on one or more parameters, the measure µV

will in general also vary with those parameters. Critical phenomena occur when
the number of intervals in the support of µV changes. A decrease in the number
of intervals can be caused essentially by three different events:

(i) shrinking of an interval, which disappears ultimately;

(ii) merging of two intervals to a single interval;

(iii) simultaneous merging of two intervals and shrinking of one of them.

Near such transitions, double scaling limits of the correlation kernel are different
from the usual sine or Airy kernel. At a type (i) transition, the limiting kernel
is built out of Hermite polynomials [Eynard 2006; Claeys 2008; Mo 2008;
Bertola and Lee 2009], at a type (ii) transition the limiting kernel is built out of
functions related to the Painlevé II equation [Bleher and Its 2003; Claeys et al.
2008], and at a type (iii) transition the limiting kernel is related to the Painlevé
I hierarchy [Brézin et al. 1990; Claeys and Vanlessen 2007b]. Higher order
transitions, such as the simultaneous merging and/or shrinking of more than
two intervals, can also take place but will not be considered here. Rather than
on the limiting kernels, we will concentrate on the asymptotic behavior of the
recurrence coefficients of the orthogonal polynomials, defined by the three-term
recurrence relation

spn(s)= γn+1 pn+1(s)+βn pn(s)+ γn pn−1(s). (1-6)

The recurrence coefficients contain information about the orthogonal poly-
nomials and about the partition function Zn of the determinantal point pro-
cess (1-4) [Bessis et al. 1980; Bleher and Its 2005; Ercolani and McLaughlin
2003]. The large n, N asymptotics for the recurrence coefficients show remark-
able similarities with the asymptotic behavior for KdV solution u(x, t, ε) as
ε→ 0.
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2. Phase diagram for the KdV equation

We assume throughout this section that the (ε-independent) initial data u0(x) for
the KdV equation are real analytic in a neighborhood of the real line, negative,
have a single local minimum xM for which u0(xM)=−1, and that they decay
sufficiently rapidly as x→∞ in a complex neighborhood of the real line. The
neighborhood of the real line where u0 is analytic and where the decay holds
should contain a sector {|arg x |<δ}∪{|arg(−x)|<δ}. In addition certain generic
conditions have to be valid; we refer to [Claeys and Grava 2009] for details about
those. A simple example of admissible initial data is given by u0(x)=− sech2 x .

2.1. Regular asymptotics for the KdV solution. Before the time of gradient
catastrophe

tc =
1

maxξ∈R(−6u′0(ξ))
,

the asymptotics for the KdV solution u(x, t, ε) as ε→ 0 are given by

u(x, t, ε)= u(x, t)+O(ε2),

where u(x, t) is the solution to the Hopf equation with initial data u0(x), that is,
the implicit solution u0(ξ(x, t)) defined by (1-2). The leading term of the above
asymptotic expansion was obtained in [Lax and Levermore 1983a; 1983b; 1983c]
while the error term was obtained only recently for a larger class of equations and
initial data in [Masoero and Raimondo 2013]. Such an expansion still holds true
after the time of gradient catastrophe as long as x is outside the interval where
the KdV solution develops oscillations. In the oscillatory region, the oscillations
for some time t > tc can be approximated as ε→ 0, by the elliptic function

u(x, t, ε)= β1+β2+β3+ 2α

+ 2ε2 ∂
2

∂x2 logϑ
(√

β1−β3

2εK (s)
[x − 2t (β1+β2+β3)− q]; τ

)
+O(ε). (2-1)

Here

α =−β1+ (β1−β3)
E(s)
K (s)

, τ = i
K ′(s)
K (s)

, s2
=
β2−β3

β1−β3
, (2-2)

where K (s) and E(s) are the complete elliptic integrals of the first and second
kind, K ′(s)= K (

√
1− s2), and ϑ(z; τ) is the Jacobi elliptic theta function. In

the formula (2-1) the term β1+ β2+ β3+ 2α is the weak limit of the solution
u(x, t, ε) of KdV as ε→ 0 and it was derived in the seminal papers [Lax and
Levermore 1983a; 1983b; 1983c]. The asymptotic description of the oscillations
by theta-function was obtained in [Venakides 1990]. A heuristic derivation of
formula (2-1) without the phase, was first obtained in [Gurevich and Pitaevskii
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1973]. The phase q in the argument of the Jacobi elliptic theta function (2-1)
was derived in [Deift et al. 1997]. It depends on β1, β2, β3 and on the initial
data and it was observed in [Grava and Klein 2007] that q satisfies a linear
over-determined system of Euler–Poisson–Darboux type derived in [Tian 1994b;
Gurevich et al. 1992]. The negative numbers β1 > β2 > β3 depend on x and t
and solve the genus one Whitham equations [Whitham 1974]. The complete
solution of the Whitham equation for the class of initial data considered, was
derived in [Tian 1994a].

At later times, the KdV solution can, depending on the initial data, develop
multiphase oscillations which can be described in terms of higher genus Whitham
equations [Flaschka et al. 1980] and in terms of Riemann θ functions [Venakides
1990; Lax and Levermore 1983a; 1983b; 1983c; Deift et al. 1997].

The parameters β1, β2, β3 can be interpreted in terms of the endpoints of
the support [0,

√
β3+ 1] ∪ [

√
β2+ 1,

√
β1+ 1] of the minimizer of the Lax–

Levermore energy functional [Lax and Levermore 1983a; 1983b; 1983c; 1993;
1997].

A transition from the elliptic asymptotic region to the Hopf region can happen
in three different ways:

(i) β1 approaches β2 (shrinking of an interval),

(ii) β2 approaches β3 (merging of two intervals),

(iii) β1, β2, and β3 approach each other (simultaneous shrinking and merging of
intervals).

The transitions (i), (ii) and (iii) will lead to an asymptotic description of the KdV
solution which is similar to the asymptotic description for the recurrence coeffi-
cients of orthogonal polynomials when the number of intervals in the support
of the limiting mean eigenvalue density of random matrix ensembles changes.
A transition of type (iii) takes place at the point of gradient catastrophe. In the
(x, t) plane after the time of gradient catastrophe, the oscillations asymptotically
develop in a V -shape region that does not depend on ε; see Figure 1. At the
left boundary (the leading edge), a transition of type (ii) takes place, and at
the right boundary (the trailing edge) we have a type (i) transition. Given t
sufficiently short after the time of gradient catastrophe tc, the leading edge x−(t)
is characterized by the system of equations

x−(t)= 6tu(t)+ fL(u(t)), (2-3)

6t + θ(v(t); u(t))= 0, (2-4)

∂vθ(v(t); u(t))= 0, (2-5)
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q
s

x

t

-

6

Hopf Hopf

elliptic
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(iii)

Figure 1. Sketch of the phase diagram for the equilibrium problem
associated to the KdV equation. Outside the cusp-shaped region, the
support of the Lax–Levermore minimizer consists of one interval; inside
of two intervals. At the cusp point, we have a type (iii) transition, at
the left breaking curve one of type (ii), and at the right breaking curve,
one of type (i).

where u(t) > v(t), fL(u) is the inverse of the decreasing part of u0(x), and θ is
given by

θ(λ; u)=
1

2
√

2

∫ 1

−1

f ′L
( 1+m

2 λ+ 1−m
2 u

)
dm

√
1−m

. (2-6)

This corresponds to the confluent case where the elliptic solution (2-1) degener-
ates formally to linear oscillations, namely β2 = β3 = v and β1 = u. The trailing
edge on the other hand is characterized by

x+(t)= 6tu(t)+ fL(u(t)), (2-7)

6t + θ(v(t); u(t))= 0, (2-8)∫ v(t)

u(t)
(6t + θ(λ; u(t)))

√
λ− u(t) dλ= 0, (2-9)

with u(t) < v(t), and θ(λ; u) defined in (2-6). In this case we have β1 = β2 = v

and β3 = u. In this case the solution (2-1) degenerates formally to a soliton.

2.2. Critical asymptotics for the KdV solution.

2.2.1. Point of gradient catastrophe. Near the first break-up time, the KdV
solution starts developing oscillations for small ε. These oscillations are modeled
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by a Painlevé transcendent U (X, T ), defined as the unique real smooth solution
to the fourth order ODE

X = T U −
[ 1

6U 3
+

1
24(U

2
X + 2U UX X )+

1
240UX X X X

]
, (2-10)

with asymptotic behavior given by

U (X, T )=∓(6|X |)1/3∓ 1
3 62/3T |X |−1/3

+O(|X |−1), as X→±∞, (2-11)

for each fixed T ∈ R. The existence of a pole free solution of (2-10) with
asymptotic conditions (2-11) was conjectured in [Dubrovin 2006]) and proved
in [Claeys and Vanlessen 2007a]. Let us denote tc for the time of gradient
catastrophe, xc for the point where the x-derivative of the Hopf solution blows
up, and uc = u(xc, tc). We take a double scaling limit where we let ε→ 0 and at
the same time we let x→ xc and t→ tc in such a way that, for fixed X, T ∈ R,

lim
x − xc− 6uc(t − tc)

(8kε6)1/7
= X, lim

6(t − tc)
(4k3ε4)1/7

= T, (2-12)

where
k =− f ′′′L (uc).

In this double scaling limit the solution u(x, t, ε) of the KdV Equation (1-1) has
the expansion

u(x, t, ε)= uc+

(
2ε2

k2

)1/7

U
(

x − xc− 6uc(t − tc)
(8kε6)1/7

,
6(t − tc)
(4k3ε4)1/7

)
+ O(ε4/7).

(2-13)
The idea that the solution of KdV near the point of gradient catastrophe can be
approximated by the solution of (2-10) appeared first in [Suleı̆manov 1994; 1993]
and in a more general setting in [Dubrovin 2006], and was confirmed rigorously
in [Claeys and Grava 2009]. In [Claeys and Grava 2012] the correction term of
order ε4/7 was determined.

2.2.2. Leading edge. Near the leading edge, the onset of the oscillations is
described by the Hastings–McLeod solution to the Painlevé II equation

q ′′(s)= sq + 2q3(s). (2-14)

The Hastings–McLeod solution is characterized by the asymptotics

q(s)=
√
−s/2(1+ o(1)), as s→−∞, (2-15)

q(s)= Ai(s)(1+ o(1)), as s→+∞, (2-16)

where Ai(s) is the Airy function. The leading edge x−(t) is, for t sufficiently
short after tc, determined by the system of equations (2-3)–(2-5). Let us consider
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a double scaling limit where we let ε→ 0 and at the same time we let x→ x−(t)
in such a way that

lim
x − x−(t)
ε2/3 = X ∈ R, (2-17)

for t > tc fixed. In this double scaling limit, the solution u(x, t, ε) of the KdV
equation with initial data u0 has the asymptotic expansion

u(x, t, ε)= u−
4ε1/3

c1/3 q[s(x, t, ε)] cos
2(x, t)
ε
+ O(ε2/3), (2-18)

where

2(x, t)= 2
√

u− v(x − x−)+ 2
∫ u

v

( f ′L(ξ)+ 6t)
√
ξ − v dξ, (2-19)

and

c =−
√

u− v
∂2

∂v2 θ(v; u) > 0, s(x, t, ε)=−
x − x−

c1/3
√

u− v ε2/3
, (2-20)

with θ defined by (2-6), and q is the Hastings–McLeod solution to the Painlevé
II equation. Here x− and v < u (each of them depending on t) solve the system
(2-3)-(2-5). The above result was proved in [Claeys and Grava 2010a], confirming
numerical results in [Grava and Klein 2007]. In [Claeys and Grava 2010a], an
explicit formula for the correction term of order ε2/3 was obtained as well. We
remark that a connection between leading edge asymptotics and the Painlevé II
equation also appeared in [Kudashev and Suleı̆manov 1999].

2.2.3. Trailing edge. The trailing edge x+(t) of the oscillatory interval (i.e., the
right edge of the cusp-shaped region in Figure 2) is determined by the equations
(2-7)–(2-9). As ε→ 0, we have, for fixed y and t ,

u
(

x++
ε ln ε

2
√
v− u

y, t, ε
)
= u+ 2(v− u)

∞∑
k=0

sech2 Xk +O(ε ln2 ε), (2-21)

where

Xk =
1
2

( 1
2 − y+ k

)
ln ε− ln

(√
2πhk

)
−
(
k+ 1

2

)
ln γ,

hk =
2k/2

π1/4
√

k!
, γ = 4(v− u)5/4

√
−∂vθ(v; u), (2-22)

and θ is given by (2-6) [Claeys and Grava 2010b]. It should be noted in this con-
text that the KdV equation admits soliton solutions of the form a sech2(bx − ct).
This means that the last oscillations of the KdV solution resemble, at the local
scale, solitons.
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3. Phase diagram for unitary random matrix ensembles

3.1. Equilibrium problem. In unitary random matrix ensembles of the form
(1-3), the limiting mean eigenvalue density is characterized as the equilibrium
measure minimizing the logarithmic energy

IV (µ)=

∫∫
log

1
|s− y|

dµ(s) dµ(y)+
∫

V (s) dµ(s), (3-1)

among all probability measures on R. For a polynomial external field of degree
2m, the equilibrium measure is supported on a union SV of at most m disjoint
intervals. Its density can be written in the form [Deift et al. 1998a]

ψV (s)=
k∏

j=1

√
(b j − s)(s− a j ) h(s), s ∈

k⋃
j=1

[a j , b j ], k ≤ m, (3-2)

where h is a polynomial of degree at most 2(m− k). The equilibrium measure is
characterized by the variational conditions

2
∫

log |s− y| dµ(y)− V (s)= `V , s ∈
k⋃

j=1

[a j , b j ], (3-3)

2
∫

log |s− y| dµ(y)− V (s)≤ `V , s ∈ R. (3-4)

The external field V is called k-cut regular if h(s) in (3-2) is strictly positive on⋃k
j=1[a j , b j ] and if (3-4) is strict for s ∈ R \

⋃k
j=1[a j , b j ]. In other words, it is

singular if

(i) equality in (3-4) holds at a point s∗ ∈ R \
⋃k

j=1[a j , b j ],

(ii) h(s∗)= 0 with s∗ ∈
⋃k

j=1(a j , b j ),

(iii) h(s∗)= 0 with s∗ = a j or s∗ = b j .

3.2. Example: quartic external field. Let us now study a two-parameter family
of quartic external fields

Vx,t(s)= ex
[
(1− t)

s2

2
+ t
(

s4

20
−

4s3

15
+

s2

5
+

8
5

s
)]
. (3-5)

For t = 0, we have Vx,0(s) = ex s2/2, which means that the random matrix
ensemble is a rescaled Gaussian Unitary Ensemble. The equilibrium measure
µx,0 is then given by

dµx,0(s)=
ex

2π

√
4e−x − s2 ds, s ∈ [−2e−x/2, 2e−x/2

]. (3-6)
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It can indeed be verified directly that this measure satisfies the variational condi-
tions (3-3)–(3-4). For x = 0 and 0< t ≤ 1, one can verify that

dµ0,t (s)=
1

2π(5+ γ 2)

√
s2− 4((s−2)2+γ 2) ds, s ∈ [−2, 2], γ =

√
5
t
− 5. (3-7)

This shows that V0,1 has a singular point of type (iii) at s = 2. On the line
t = 9, Vx,9(s) is symmetric around s∗ = 4

3 . The external field is one-cut regular
for x < x∗ =: − log 245

9 , and presumably two-cut for x > x∗. For x ≤ x∗, the
equilibrium measure is given by

dµx,9(s)=
8

πb2(b2+4C)

√(
s− 4

3+b
)( 4

3+b−s
)((

s− 4
3

)2
+C

)
ds, s∈[s∗−b, s∗+b],

(3-8)
where

b =
√

140
27 +

4
27

√
5e−x

√
27ex + 245e2x , C =

e−x

36b2 (80− 9b4ex). (3-9)

At x = x∗, the equilibrium measure is given by

dµx∗,9(s)=
8
πb4

√(
s− 4

3 + b
)( 4

3 + b− s
)(

s− 4
3

)2 ds, s ∈
[ 4

3−b, 4
3+b

]
, b= 2

3

√
35,

which means that there is a type (ii) singular point at s∗ = 4
3 .

For t fixed and x sufficiently large and positive, it follows from results in
[Kuijlaars and McLaughlin 2000] that the number of intervals is equal to the
number of global minima of Vx,t , which is one for t < 9 and two for t = 9.
For t fixed and x sufficiently large negative, one can show that the equilibrium
measure is supported on a single interval. Also, for any t , when x decreases,
the support of the equilibrium measure increases. This suggests that there are,
as shown in Figure 2, two curves in the (x, t)-plane where Vx,t is singular: one
connecting (0, 1) with (x∗, 9) where a singular point of type (ii) is present, and
one connecting (0, 1) with (+∞, 9) where a singular point of type (i) occurs.

Remark. In [Bertola and Tovbis 2011], orthogonal polynomials with respect to
complex weights of the form e−nV (x) were considered, with V quartic symmetric
with complex-valued leading coefficient. This lead to a phase diagram which
shows certain similarities with ours, but also with breaking curves of a different
nature.

3.3. Regular asymptotics. If V is a one-cut regular external field, the leading
term of the asymptotics for the recurrence coefficients depends in a very simple
way on the endpoints a and b: we have [Deift et al. 1999]

γn =
b− a

4
+O(n−2) as n→∞ (3-10)
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qs x

t

-

6
t = 9q(x∗, 9)

1-cut 1-cut

2-cut(ii) (i)

(iii)

Figure 2. Sketch of the phase diagram for the equilibrium measure
in external field Vx,t . The one-cut region and the two-cut region are
separated by two curves, at the left curve a type (ii) singular point is
present, at the right curve a type (i) singular point, and at the intersection
point (0, 1) there is a type (iii) singular point.

and

βn =
b+ a

2
+O(n−2) as n→∞. (3-11)

If V is a two-cut regular external field, the leading order term in the asymptotic
expansion for the recurrence coefficients is still determined by the endpoints
a1, b1, a2, b2, but the dependence is somewhat more complicated, and the leading
term is oscillating with n. An explicit formula for the leading order asymptotics
was given and proved in [Deift et al. 1999] for k-cut regular external fields V ,
with k arbitrary. We will not give details about those asymptotics, but we note
that the expansion is of a similar nature as (2-1) in the two-cut case.

3.4. Critical asymptotics. We will now describe the critical asymptotics for the
recurrence coefficients γn(x, t) and βn(x, t) of the orthogonal polynomials with
respect to the weight e−nVx,t . It should be noted that critical asymptotics near
type (ii) and type (iii) singular points are known for more general deformations
of external fields Vx,t than only the one defined by (3-5).

3.4.1. Singular interior points. Assume that Vx∗,t∗(s) is a singular external field
with a singular point s∗ of type (ii) (a singular interior point), and with support
[a, b] of the equilibrium measure. Asymptotics for the recurrence coefficients
were obtained in [Bleher and Its 2003] for quartic symmetric V and in [Claeys
et al. 2008] for real analytic V . Let us specialize the results to our example
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where Vx,t is given by (3-5). Since Vx∗,t∗ is quartic, this implies that ψx∗,t∗ has
the form

ψx∗,t∗(s)= C
√
(s− a)(b− s)(s− s∗)2. (3-12)

Then as n→∞ simultaneously with x→ x∗ such that x − x∗ = O(n−2/3), we
have the asymptotic expansions [Claeys et al. 2008]

γn(x, t∗)=
b− a

4
−

1
2c

q(sx,n) cos(2πnω(x))n−1/3
+O(n−2/3), (3-13)

βn(x, t∗)=
b+ a

2
+

1
c

q(sx,n) sin(2πnω(x)+ θ)n−1/3
+O(n−2/3), (3-14)

where
sx,n = n2/3(ex∗−x

− 1)
1

c
√
(s∗− a)(b− s∗)

,

and where c, θ , and ω are given by

c =
(
πC
√
(s∗− a)(b− s∗)

4

)1/3

, θ = arcsin
b+ a
b− a

,

ω(x)=
∫ b

0
ψx∗,t∗(s) ds+O(n−2/3) as n→∞.

An exact formula for ω can be given in terms of a modified equilibrium problem.
When x approaches x∗, we observe that the recurrence coefficients develop
oscillations. The envelope of the oscillations is described by the Hastings–
McLeod solution q. One should compare formulas (3-13)–(3-14) with (2-13)
and note that the scalings correspond after identifying ε with 1/n.

3.4.2. Singular edge points. Asymptotics for the recurrence coefficients for
general one-cut external fields V with a singular endpoint were obtained in
[Claeys and Vanlessen 2007b]. Let V0 be an external field such that the equilib-
rium measure is supported on [a, b] and such that the density ψ0 behaves like
ψ0(s)∼ c(b− s)5/2 as s→ b, c 6= 0. Double scaling asymptotics were obtained
for external fields of the form V0+ SV1+ T V2 with real S, T → 0, where V1 is
arbitrary and V2 satisfies the condition∫ b

a

√
s− a
b− s

V ′2(s) ds = 0.

We can write Vx,t in the form

Vx,t(s)= V0,1(s)+ (ex
− 1)V0,1(s)+ ex(t − 1)(V0,1(s)− V0,0(s)). (3-15)

Since ∫ 2

−2

√
s+ 2
2− s

(V ′0,1(s)− V ′0,0(s)) ds = 0,
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we can apply the results of [Claeys and Vanlessen 2007b]. In the double scaling
limit where n → ∞ and simultaneously x → 0, t → 1 in such a way that
lim n6/7(ex

− 1) and lim n4/7ex(t − 1) exist, we have

γn(x, t)= 1+
1
2c

U
(
c1n6/7(ex

−1), c2n4/7ex(t−1)
)
n−2/7

+O(n−4/7), (3-16)

βn(x, t)=
1
c

U
(
c1n6/7(ex

−1), c2n4/7ex(t−1)
)
n−2/7

+O(n−4/7). (3-17)

The constants c, c1, c2 are given by

c = 62/7 > 0, c1 =
1

2πc1/2

∫ 2

−2

√
u− 2
2− u

V ′0,1(u) du = 6−1/7,

c2 =
1

4π ic3/2

∫
γ

√
2+ u
(2− u)3

(V ′0,1(u)− V ′0,0(u)) du = 2 · 6−3/7,

where γ is a counterclockwise oriented contour encircling [−2, 2].

Remark. Applying the results from [Claeys and Vanlessen 2007b] directly,
one has an error term O(n−3/7) in (3-16) and (3-17), but going through the
calculations, it can be verified that the error term is actually O(n−4/7). The
analogy between (3-16)–(3-17) and (2-13) is obvious.

3.4.3. Singular exterior points. Asymptotics for the recurrence coefficients in
the vicinity of a singular exterior point have not appeared in the literature to the
best of our knowledge. Asymptotics for orthogonal polynomials associated to
an external field V with a singular exterior point and for the correlation kernel
(1-5) have been studied in [Claeys 2008; Bertola and Lee 2009; Mo 2008] using
the Riemann–Hilbert approach. We are convinced that the same analysis can
be used, with some additional effort, to compute asymptotics for the recurrence
coefficients. If Vx∗,t∗ is an external field with a singular exterior point, the analogy
with the KdV asymptotics suggests asymptotic expansions of the form

γn

(
x∗− y

ln n
c0 n

, t
)
=

b(x∗, t)− a(x∗, t)
4

+ c1

∞∑
k=0

sech2 Xk +O(n−1 ln2 n)

(3-18)

βn

(
x∗− y

ln n
c0 n

, t
)
=

b(x∗, t)+ a(x∗, t)
2

+ c1

∞∑
k=0

sech2 Xk +O(n−1 ln2 n),

(3-19)

as n→∞, where

Xk =−c2(y, k) ln n+ c3(k).
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4. The problem of matching

Asymptotic expansions for KdV solutions are known in the regular regions and
in critical regions, but we do not have uniform asymptotics for u(x, t, ε) in x
and t . Indeed, the critical asymptotics are only valid in shrinking neighborhoods
of the breaking curves: a neighborhood of size O(ε2/3) near the leading edge,
a neighborhood of size O(ε ln ε) near the trailing edge, and a neighborhood of
size O(ε4/7) at the point of gradient catastrophe. On the other hand, the regular
asymptotics are only proved to hold uniformly for x and t at a fixed distance
away from the breaking curves. However one can see easily that (2-13) and
(2-21) match formally with the regular asymptotics for x close to the breaking
curves but outside the cusp-shaped region. Indeed for (2-13) this follows from
the decay of the Hastings–McLeod solution q at+∞. When x is close to the
boundary but inside the cusp-shaped region, the situation is more complicated.
One can hope that the regular asymptotics can be improved in such a way that
they hold also when x, t approach a breaking curve sufficiently slowly when ε
tends to 0, and that the critical asymptotics can be improved to hold in a slightly
bigger neighborhood of the breaking curves. It would be of interest to see if such
an approach could provide uniform asymptotics for the KdV solution as ε→ 0.

The problem of obtaining uniform asymptotics in x and t for the recurrence
coefficients γn(x, t) and βn(x, t) may seem an artificial one at first sight, since
one is often interested in a random matrix with a fixed external field V instead of
letting V vary. However, it becomes more relevant when studying the partition
function

Zn =

∫
Rn

∏
i< j

(λi − λ j )
2

n∏
i=1

e−nV (λi ) dλi .

It is well-known that

Zn = n!
n−1∏
j=1

κ−2
j ,

where κ j is the leading coefficient of the normalized orthogonal polynomial p j

with respect to the weight e−nV . A consequence of this formula is that, if one lets
V vary with a parameter τ in a convenient way, it is possible to derive various
identities for τ -derivatives of ln Zn in terms of the recurrence coefficients γk(τ )

and βk(τ ) for k large [Bleher and Its 2005; Ercolani and McLaughlin 2003]. A
possible strategy to obtain asymptotics for the partition function, is to let the τ -
dependence be such that V interpolates between the Gaussian V (z; τ0)=

z2

2 and
V (z; τ1)= V (z). Integrating the differential identity then requires asymptotics
for the Gaussian partition function (which are known) and uniform asymptotics
for the recurrence coefficients γn(τ ) and βn(τ ) over the whole range [τ0, τ1].
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Depending on the chosen deformation, this could require uniform asymptotics for
the recurrence coefficients near a singular point of type (i), (ii), or (iii). The results
presented in the previous section do not provide sufficiently detailed asymptotics
for the recurrence coefficients: they are not uniform near the breaking curves.
For example near a critical point of type (ii), formulas (3-13)–(3-14) are only
valid for x − x∗ = O(n−2/3) as n→∞, whereas the asymptotic formula in the
two-cut region is valid only at a fixed distance away from a critical point.

5. The Toda lattice and KdV

It is well-known that recurrence coefficients for orthogonal polynomials follow
the time flows of the Toda hierarchy. In this section, following [Dubrovin 2009;
Dubrovin et al. 2013] we will formally derive the KdV equation as a scaling
limit of the continuum limit of the Toda lattice. This gives a heuristic argument
why asymptotics for KdV and the recurrence coefficients show similarities.

The Toda lattice is a Hamiltonian system described by the equations

dun

dt
= vn − vn−1,

dvn

dt
= eun+1 − eun , n ∈ Z. (5-1)

The Toda lattice is a prototypical example of a completely integrable system
[Flaschka 1974]. Let

V (ξ)= V0(ξ)+

2d∑
j=1

t jξ
j , t2d > 0, (5-2)

where V0(ξ) is a fixed polynomial of even degree with positive leading coefficient,
and let p j be the orthogonal polynomials defined by∫

∞

−∞

pn(ξ)pm(ξ)e−
1
ε

V (ξ) dξ = δnm , (5-3)

where ε= 1
N is a small positive parameter. As mentioned before, the polynomials

pn(ξ) satisfy a three term recurrence relation of the form (1-6).
The recurrence coefficients γn and βn in (1-6) evolve with respect to the times

tk defined in (5-2) according to the equations [Eynard 2001; Douglas and Shenker
1990; Fokas et al. 1992; Bertola et al. 2003]

ε
∂γn

∂tk
=
γn

2

(
[Qk
]n−1,n−1− [Qk

]nn
)
, (5-4)

ε
∂βn

∂tk
= γn[Qk

]n,n−1− γn+1[Qk
]n+1,n, (5-5)
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where [Qk
]n,m denotes the n,m-th element of the matrix Qk and Q is the

tridiagonal matrix

Q =



β0 γ1 0 0 0 . . .

γ1 β1 γ2 0 0 . . .

0 γ2 β2 γ3 0 . . .

0 0 γ3 β3 γ4 . . .

0 0 0 γ4 β4 . . .
...

...
...

...
...
. . .


. (5-6)

The equations (5-4)–(5-5) are the Toda lattice hierarchy in the Flaschka variables
[Flaschka 1974]. In particular the first flow of the hierarchy takes the form

ε
∂γn

∂t1
=
γn

2
(βn−1−βn),

ε
∂βn

∂t1
= γ 2

n − γ
2
n+1.

(5-7)

These equations correspond to the Toda lattice (5-1) by identifying t1 = t ,
βn =−vn and

un = log γ 2
n . (5-8)

In addition to the Toda equations, the recurrence coefficients for the orthogonal
polynomials satisfy a constraint that is given by the discrete string equation
which takes the form [Fokas et al. 1992]

γn[V ′(Q)]n,n−1 = nε, [V ′(Q)]n,n = 0. (5-9)

For example, choosing V0(ξ)=
1
2ξ

2 one obtains

βn(t = 0)= 0, γ 2
n (t = 0)= nε, t = (t1, t2, . . . , t2d). (5-10)

To obtain the continuum limit of the Toda lattice, let us assume that u(x) and
v(x) are smooth functions that interpolate the sequences un, vn in the following
way: u(εn)= un and v(εn)= vn for some small ε > 0, n > 0, x = εn. Then the
Toda lattice (5-1) reduces to an evolutionary PDE of the form [Eguchi and Yang
1994; Deift and McLaughlin 1998]

ut =
1
ε
[v(x)− v(x − ε)] = vx −

1
2εvxx + O(ε2),

vt =
1
ε
[eu(x+ε)

− eu(x)
] = euux +

1
2ε(e

u)xx + O(ε2).

(5-11)
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In order to write the continuum limit of the Toda lattice in a canonical Hamil-
tonian form, following [Dubrovin and Zhang 2001], we introduce w(x) by

w(x)= ε∂x [1− e−ε∂x ]
−1u(x)= u+

ε

2
ux +

ε2

12
uxx + · · · (5-12)

In the coordinates v,w the continuum limit of the Toda lattice equations takes
the form

wt = vx ,

vt = ew
(
wx +

ε2

24
(2wxxx + 4wxwxx +w

3
x)

)
+ O(ε4),

(5-13)

with the corresponding Hamiltonian given by

H =
∫ (

v2

2
+ ew −

ε2

24
eww2

x + · · ·

)
dx

and Poisson bracket {v(x), w(y)} = δ′(x− y) where δ(x) is the Dirac δ function.
We remark that in these coordinates the continuum limit of the Toda equation
contains only even terms in ε. For ε = 0, (5-13) reduces to

wt = vx , vt = ewwx . (5-14)

The solution of equations (5-14) can be obtained by the method of characteristics.
The initial data relevant to us should satisfy the continuum limit of the string
equation (5-9) for t = 0. The Riemann invariants of (5-14) are

r± = v± 2ew/2,

so that (5-14) takes the form

∂

∂t
r±+ λ±

∂

∂x
r± = 0, λ± =∓ew/2 =∓

r+− r−
4

.

The generic solution of (5-14) can be written in the form [Tsarëv 1990; Whitham
1974]

x = λ±t + f±(r+, r−), (5-15)

where f±(r+, r−) are two functions that satisfy the equations [Tsarëv 1990]

∂

∂r−
f+ =

∂λ+

∂r−

f+− f−
λ+− λ−

=−
f+− f−

2(r+− r−)
=

∂

∂r+
f−. (5-16)

From (5-16) one can conclude that there exists a function f = f (r+, r−) such
that

f± =
∂ f
∂r±

.
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The explicit dependence of f for a certain class of initial data can be found in
[Deift and McLaughlin 1998]. To obtain f in the random matrix case we impose
that the equations (5-15) are consistent with the continuum limit of the discrete
string equation (5-9) for t1 = t ≥ 0 and t j = 0 for j > 1. At the leading order in
ε the string equation (5-9) in the Riemann invariants r± =−β ± 2γ gives after
straightforward but long calculations, the following expression for the function
f (r+, r−):

f (r+, r−)=−Resξ=∞
[
V ′0(ξ)

√
(ξ − r+)(ξ − r−) dξ

]
. (5-17)

Remark. The equations (5-15) with f given in (5-17), coincide with the equa-
tions that define the support of the equilibrium measure for the variational
problem

inf∫
R

dν(ξ)=1

[∫
R

∫
R

log
1

|ξ − η|
dν(ξ)dν(η)+

1
x

∫
R

V (ξ)dν(ξ)
]

in the case where the equilibrium measure is supported on one interval. The
Riemann invariants r+ and r− can thus be interpreted as the end-points of the
support of the equilibrium measure.

In what follows, we are going to show that the solution of the Equation (5-13)
in the vicinity of a singular point of type (iii) reduces to the KdV equation, in
agreement with [Dubrovin 2009]. First we consider the solution of the hodograph
Equation (5-15) near a singular point of type (iii); namely, let (xc, tc) be a point
of gradient catastrophe for the Riemann invariant r+, which means that ∂xr+
goes to infinity at the critical point (xc, tc). We define r±(xc, tc) = r c

±
. Such a

critical point is characterized by the conditions

λc
+,+tc+ f c

+,+ = 0, λc
+,++tc+ f c

+,++ = 0,

and the critical point is generic if

λc
+,+++tc+ f c

+,+++ 6= 0, λc
−,−tc+ f c

−,− 6= 0,

where we have used the notation λc
−,− =

∂

∂r−
λ−(r+ = r c

+
, r− = r c

−
) and consis-

tently for the other terms.
Expanding in power series (5-15) near (xc, tc) and using (5-16) after the

rescalings

x− = k−2/3(x − xc− λ
c
−
(t − tc)), x+ = k−1(x − xc− λ

c
+
(t − tc))

r̄− = k−2/3(r−− r c
−
), r̄+ = k−1/3(r+− r c

+
),

(5-18)
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one obtains, letting k→ 0,

x− = c1r̄−, x+ = c2x−r̄++ c3r̄3
+
, (5-19)

where

c1 = ( f c
−,−+λ

c
−,−tc), c2 =

λc
+,+

λc
+− λ

c
−

, c3 =
1
6(λ

c
+,+++tc+ f c

+,+++). (5-20)

We observe that (5-19) describes a Withney singularity in the neighborhood of
(0, 0) [Dubrovin 2009]. Performing the same rescalings (5-18) to the equations
(5-14) and letting k→ 0 one obtains

∂ r̄−
∂x+
= 0,

∂ r̄+
∂x−
+ c2r̄+

∂ r̄+
∂x+
= 0,

with c2 as in (5-20). Clearly (5-19) represents a solution of the above equations
with singularity in (x+ = 0, x− = 0) and at r̄± = 0. The next step is to perform
the rescaling (5-18) to (5-13) and letting ε→ k7/6ε. One obtains, in the limit
k→ 0,

r̄− =
x−
c1
+ c4ε

2 ∂
2

∂x2
+

r̄+, c4 =
r c
+
− r c
−

192(λc
−− λ

c
+)
=

1
96 ,

∂ r̄+
∂x−
+ c2r̄+

∂ r̄+
∂x+
+ c4ε

2 ∂
3

∂x3
+

r̄+ = 0. (5-21)

The first of the above equations has been obtained after integration with respect
to x+ using (5-19). The second one is the KdV equation for r+ with time variable
x− and space variable x+. Such derivation has been obtained in a more general
setting in [Dubrovin et al. 2013]. On the formal level, the above calculations
explain why the asymptotic behavior of the solution of the continuum limit
of Toda lattice and in particular of the recurrence coefficients of orthogonal
polynomials near the point of gradient catastrophe is of a similar nature as the
KdV case. However, a rigorous proof of the generic behavior of the solution of
the continuum limit of Toda lattice near the point of gradient catastrophe cannot
be derived from the KdV case but a separate proof is needed.
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