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1 INTRODUCTION

ABSTRACT

We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO)
using single-dish 21 cm intensity mapping observations in the post-reionization era. We show
that the telescope beam smears out the isotropic BAO signature and, in the case of the Square
Kilometre Array (SKA) instrument, makes it undetectable at redshifts z = 1. We however
demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and
describe a method to make this type of measurements. By means of numerical simulations,
containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-
Galactic foregrounds and basic instrumental effect, we quantify the precision with which the
radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate
the signal to noise and the precision of the recovered BAO signal as a function of cosmic
variance, instrumental noise, angular resolution and foreground contamination. We find that
the expected noise levels of SKA would degrade the final BAO errors by ~5 per cent with
respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to
~65 per cent at z ~ 2-3. Furthermore, we find that the radial BAO signature is robust against
foreground systematics, and that the main effect is an increase of ~20 percent in the final
uncertainty on the standard ruler caused by the contribution of foreground residuals as well as
the reduction in sky area needed to avoid high-foreground regions. We also find that it should
be possible to detect the radial BAO signature with high significance in the full redshift range.
We conclude that a 21 cm experiment carried out by the SKA should be able to make direct
measurements of the expansion rate H(z) with measure the expansion with competitive per
cent level precision on redshifts z < 2.5.

Key words: methods: numerical — galaxies: clusters: general —cosmology: miscellaneous.

in the post-reionization epoch. The idea is not to detect individ-
ual galaxies through their 21 cm emission, but rather to measure

The spatial distribution of matter in the Universe is sensitive to the
value of the cosmological parameters. Constraints on those can thus
be placed by comparing the statistical properties of the density field
against predictions from theoretical models. Unfortunately, the true
matter density is not directly observable, and therefore one must
resort to using proxies of it, such as the number density of galaxies
or line emission intensity of cosmic neutral hydrogen (Hr).

A promising and new way of tracing the large-scale structure of
the Universe is to carry out low angular resolution radio observa-
tions to detect the 21 cm radiation from cosmic neutral hydrogen

* E-mail: villaescusa@oats.inaf.it (FVN); david.alonso@physics.ox.ac.uk
(DA)

the combined flux in wide patches of the sky containing many
galaxies. This technique is called intensity mapping (Bharadwaj,
Nath & Sethi 2001; Bharadwaj & Sethi 2001; Battye, Davies &
Weller 2004; McQuinn et al. 2006; Chang et al. 2008; Loeb &
Wyithe 2008; Villaescusa-Navarro et al. 2014; Bull et al. 2015b).
Under the assumption that the measured 21 cm flux traces the per-
turbations in the matter density on large scales, we can use the
clustering properties of the cosmic Hi, as observed from 21 cm
intensity mapping surveys, to put constraints on the value of the
cosmological parameters (Bull et al. 2015b; Carucci et al. 2015;
Villaescusa-Navarro, Bull & Viel 2015).

Baryonic acoustic oscillations (BAO), originated in the early Uni-
verse by the competition between the gravitational interaction and
the radiation pressure of photons tightly coupled to baryons, leave

© 2016 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society


mailto:villaescusa@oats.inaf.it
mailto:david.alonso@physics.ox.ac.uk

BAO from 21 cm intensity mapping with the SKA 2737

an imprint in the late-time matter density in the form of a statistically
preferred separation between density peaks of r; ~ 1102~ Mpc,
corresponding to the size of the sound horizon at the time of the
baryon—photon decoupling. This translates into a distinct peak in
the matter/galaxy two-point correlation function, or as a set of wig-
gles in the matter/galaxy power spectrum on scales k ~ [0.05—
0.3]hMpc~! with frequency r,. The BAO signature thus consti-
tutes a cosmological standard ruler, whose size depends on well
understood physics of the early Universe. By measuring them in the
temperature anisotropies of the cosmic microwave background and
in the clustering pattern of matter tracers, it is possible to measure
the value of the Hubble rate and the angular diameter distance as a
function of redshift.

The main advantage of the BAO signal resides in its robustness
against systematic effects: it is difficult for non-cosmological effects
to mimic or shift the position of the BAO feature in the correlation
function or power spectrum. Furthermore, given the large-scale
nature of the BAO signal, the effects induced by the non-linear
gravitational evolution are well captured by perturbation theory
(e.g. Crocce & Scoccimarro 2008; Padmanabhan & White 2009;
Baldauf et al. 2015; Peloso et al. 2015).

The BAO scale has been measured in the 2pt/3pt statistics of
galaxy surveys (see e.g. Cole et al. 2005; Eisenstein et al. 2005;
Anderson et al. 2014; Alam et al. 2016; Gil-Marin et al. 2016;
Slepian et al. 2016; Beutler et al. 2017), in the Ly« -forest (Delubac
et al. 2015), in the distribution of galaxy clusters (Veropalumbo
et al. 2016) and in the spatial distribution of voids (Kitaura
et al. 2016). Upcoming and future radio experiments such as the
Canadian Hydrogen Intensity Mapping Experiment (CHIME),! the
Ooty Radio Telescope (ORT),” BINGO Battye et al. (2012) and the
Square Kilometre Array (SKA)?® will survey large areas of the sky
using the intensity mapping technique in the post-reionization era.
In this paper, we investigate the prospects of detecting the BAO from
21 cm intensity mapping observations, focusing on the SKA1-MID
instrument.

An ideal intensity mapping experiment would cover the largest
possible field of view with as large angular resolution as possi-
ble. Since the angular scales probed by a radio interferometer are
A/bmax S 0 < A/bmin, Where by /min are the largest/smallest sepa-
ration between two antenna elements, these two requirements can
only be simultaneously met by building large interferometric ar-
rays of tightly packed receivers. An alternative strategy would be
to cover the desired sky footprint with single-dish observations, in
which case the angular resolution has a lower bound 6 2 A/Dyn
determined by the dish diameter (see Bull et al. 2015b, for a de-
tailed discussion). In this paper, we will focus on the latter case, the
likely strategy of choice for the SKA1-MID instrument, described
in Braun et al. (2015).

We demonstrate that the poor angular resolution inherent to
single-dish 21 cm observations smears out the BAO peak in the
isotropic correlation function or power spectrum, and that in this
case cosmological constraints would be driven by the overall shape
of the 21 cm power spectrum, which is more sensitive to systematic
effects. We will however show that the BAO wiggles can be detected
in the radial 21 cm power spectrum, and thus can be used to make a
direct measurement of the expansion rate H(z). In our analysis, we
will focus on the impact of instrumental effects, such as the system

!http://chime.phas.ubc.ca/
2 http://rac.ncra.tifr.res.in/
3 https://www.skatelescope.org/

noise, and the presence of Galactic and extra-Galactic foregrounds
on our results.

This paper is organized as follows. In Section 2, we study the
impact of the instrumental beam on the detectability of the isotropic
BAO peak in single-dish experiments. In Section 3, we describe
the simulations and analysis methods used in this work. The results
obtained from this analysis and their interpretation are presented
in Section 4, where we systematically investigate the impact of
each complication (system noise and foregrounds) on the final un-
certainties. Finally, we discuss main conclusions of this paper in
Section 5.

2 BAO AND BEAM SIZE

In this section, we investigate the impact of the radio-telescope
beam, when observations are carried out using the single-dish tech-
nique, on the shape and position of the 21 cm intensity mapping
BAO. We first analyse the possibility of detecting the isotropic BAO
and then we discuss the prospect of using the radial power spectrum
to measure the BAO signal.

2.1 Isotropic BAO

At linear order the 21 cm power spectrum in real-space can be
expressed as

Py cm(k, 2) = b3 o (2) Pu(k, 2), (1)

where by em(z) = Ty(2)bu1(z) is the bias of the 21 cm signal and
P, (k) is the linear matter power spectrum. by1(z) and T (2) are the
H1 bias and mean brightness temperature at redshift z, the latter
given by

Hy(1 +z)?
H(z)

The telescope beam, which for simplicity we will model as being
Gaussian, induces a smoothing in the transverse direction

Ty(z) = 190 Qui(z)h mK. 2)

821 cm,obs (KL, ki 2) = et Rz/zazl em(k L, Ky, 2), 3)

with 82 cm.obs> 021cm being the observed and cosmological 21 cm
modes. The beam angular resolution &gwpn is related to the trans-
verse smoothing scale as R = r(z) Opwum/(2+/21n2), where r(z)
is the comoving angular diameter distance to redshift z. Note that
given the frequency dependence of the angular beam size, Orwnm
is implicitly also a function of z.

The observed 21 cm power spectrum in real-space can thus be
written as

Pa1em,obs(k, 4, 2) = eHY(ZRZ(lﬂj'Z)PN em(k, 2), “4)
and the monopole can be obtained by averaging over all modes

sharing the value of k = {/k3 + kﬁ:

LY o,
Pa1cmobs(ks 2) = Parem(k, Z)E / e#‘ R2Q Mz)dﬂ )]
—1
D(kR)
= kR Pyiem(k, 2), (6)

where D(x) is the Dawson function. In configuration space the
observed 21 cm correlation function is given by

& no(F, 7) = b%lﬂ /°° 2P, (k. 2) sin(kr) D(kR)dk )
21 cm,obs\/ 5 27_[2 o m\fy k}" kR .
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Figure 1. Impact of the telescope beam size on the isotropic BAO shape in configuration (left) and Fourier space (right) at z = 1. The solid black line shows
the results for infinite angular resolution, while the blue, green and red lines represent the observed correlation functions and power spectra for comoving
smoothing scales R = 5, 10 and 25 ~~! Mpc, respectively. The dashed black line displays the effect of non-linearities, computed using REGPT at 2-loops for

infinite angular resolution.

Note that so far we have neglected the effect of redshift-space dis-
tortions. This is irrelevant for the main conclusions of this section,
however their effect was fully taken into account in the simulations
and theoretical models used in Sections 3 and 4.

The left-hand panel of Fig. 1 shows the observed 21 c¢cm corre-
lation function at z = 1 for the fiducial cosmological model con-
sidered in this work (see Section 3.1) for different values of the
angular smoothing scale R. Following our reference H1 model (de-
scribed in Appendix A), we take by cn = 0.231 mK at z = 1. As
can be seen in the figure, in the idealized case of radio-telescopes
having infinite resolution, the BAO peak can easily be detected
from single-dish IM observations. On the other hand, as the angu-
lar resolution of the telescope decreases (either by going to higher
redshift or by decreasing the antenna diameter), the isotropic BAO
peak is smeared out by the telescope beam. For angular smooth-
ing scales larger than ~20/4~! Mpc the BAO peak is simply not
visible. The figure also shows, with a dashed black line, the ef-
fect of non-linearities on the BAO peak at z = 1 when the 21 cm
maps have infinite angular resolution. The effect of non-linearities
on the matter power spectrum in real-space was computed using
REGPT at 2-loops.* As can be seen, even a relatively small angu-
lar smoothing like 5 #~' Mpc has a larger impact on the BAO
signature than effects induced by non-linear gravitational evolu-
tion. The right-hand panel of Fig. 1 shows the analogous results in
Fourier space.

It is useful to quantify the single-dish angular resolution that
SKA1-MID will achieve as a function of redshift. MID will consist
of an array of 15 m antennas, corresponding to angular resolutions
of Orpwum = A/D = 0.8(1 + z) deg. The corresponding comov-
ing smoothing scale will thus be given by R = {11.7, 27.2, 63.8,
104.1} A~ Mpc at redshifts z = {0.5, 1.0, 2.0, 3.0}, respectively.
Thus, for redshifts z 2 1 the poor angular resolution of SKA1-
MID will prevent the detection the isotropic BAO feature, and

4We have used the REGPT public code http://www?2.yukawa. kyoto-u.ac.jp/
~atsushi.taruya/regpt_code.html.
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cosmological constraints will be driven by the broad-band shape
of the 21 cm power spectrum, which can be significantly affected
by systematic effects.

2.2 Radial BAO
In what follows we will define the 1D power spectrum Pp(k;) as
(S1p(ky, r )8k}, 1)) = 87 (k) — k) Pip(ky), (®)

where 87 is the Dirac §-function and § ip(ky, 1) is the 1D Fourier
transform along the radial direction of the overdensity field for
the transverse coordinate r | . It is straightforward to show that the
relation between the 1D and 3D power spectra is given by

dk
Pip(ky,2) = / ﬁf’m(kns ki, 2). )

In the limit of poor angular resolution (i.e. large R), it can be shown
that

R? 2 p2
lim (?e*h’* ) =5P(ky) (10)

R—o0

and therefore we obtain

. 1
Rh—>n;o P21cm,obs4,lD(kHa Z) = mpﬂcm(k\\’ Z)- (11)

Thus, on the one hand the amplitude of the observed radial 21 cm
power spectrum scales inversely proportional to the square of the
angular smoothing scale. This is simply a consequence of the sup-
pression of the contribution from perturbations on small trans-
verse scales caused by the large beam. On the other hand, for
sufficiently large angular smoothing scales, the shape of the ob-
served 1D 21 cm power spectrum will be the same as that of the
3D power spectrum in the absence of instrumental beam.’ The

3 Note that in general the range of scales where this is a valid approximation
will depend on the smoothing scale. For R = 50 h~' Mpc both shapes match
very well up to k ~ 0.01 »Mpc~!, but differ on larger scales.
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Figure 2. Impact of the telescope beam size on the BAO wiggles of the observed radial power spectrum. The -hand panel shows the radial power spectra at
z =1 at linear order for different angular smoothing scales. In the right-hand panel, we show the results normalized by the radial 21 cm power spectrum for a

model with no BAO wiggles.

consequence of this is that the BAO wiggles can be easily identi-
fied in the observed radial 21 cm power spectrum for large angular
smoothing scales.

These two effects can be seen in Fig. 2, where we show, in
the left-hand panel, the observed radial 21 cm power spectrum
for different angular smoothing scales. As expected, the overall
amplitude of the radial power spectrum decreases with increasing
angular smoothing scale. On the other hand, the BAO wiggles are
more clearly visible when the angular smoothing scale is larger. It
is worth noting that the BAO wiggles are not visible in the case
where the telescope has a very large angular resolution. The reason
for this is that the radial power spectrum at a given wavenumber
k) receives contributions from all transverse scales larger than the
smoothing scale. In the limit of zero angular smoothing, the large
power on small scales significantly enhances the amplitude the ra-
dial power spectrum, effectively decreasing the relative amplitude
of the BAO. The right-hand panel of Fig. 2 shows the ratio of the
1D power spectrum to the no-BAO power spectrum computed us-
ing the Eisenstein and Hu fitting formula (Eisenstein & Hu 1998)
for different angular smoothing scales. As can be seen, the BAO
wiggles are present in all cases, but they are more pronounced for
large angular smoothing scales. We however emphasize that this
effect saturates once the limit of equation (11) is achieved. By com-
paring the red and cyan lines one can see that the relative amplitude
of the BAO wiggles barely increases after doubling the angular
smoothing scale.

We finish by noting that a purely 1D approach is applicable in the
case of SKA because, as described above, little or no information is
lost from neglecting angular clustering due to the large angular beam
(roughly of the order of magnitude of the angular BAO scale). This
is, however, not the case for experiments targeting smaller transverse
modes. In this case, the 1D method described here would be highly
sub-optimal, given the additional sample variance brought about
by the angular modes integrated over in equation (9), and optimal
constraints would only be achievable through a full exploration of
the ky—k, plane.

3 METHODS

In this section, we describe the sky simulations, foreground-cleaning
algorithm, radial power spectrum estimation method and the theo-
retical model we use to evaluate the detectability of the radial BAO
scale.

3.1 Simulations

We used the public code described in Alonso, Ferreira & Santos
(2014) to generate a suite of 100 simulations of the 21 cm intensity
mapping signal, as well as the main sources of foreground contam-
ination. We describe here the most important components of these
simulations, and refer the reader to Alonso et al. (2014) for further
details.

(i) Cosmological signal. The code uses a simplified lognormal
model to relate the cosmological H1 intensity to the underlying
dark matter density. The method involves generating a Gaussian
realization of the linear density and velocity fields in a Cartesian
grid at redshift z = 0 assuming a given model for the matter power
spectrum. Lightcone evolution is then implemented by placing the
observer at the centre of the simulation box and assuming linear
growth and a purely redshift-dependent clustering bias by;. The
density field is then subjected to a local lognormal transformation
and put in redshift space using the Gaussian velocity field. Finally,
the Cartesian H1 overdensity field is interpolated on to a set of sky
maps at different frequencies. These are defined using the HEALPix
pixelization scheme Gorski et al. (2005), and the total H1 tempera-
ture in each pixel is computed assuming a model for the background
H1density Qyj.

Our simulations were generated using a box of 88504~ Gpc on
a side with 30723 grid cells, enough to produce temperature maps in
the range of frequencies v = [350, 1050] MHz. The sky maps were
generated using a HEALPix resolution parameter Ngq. = 256, cor-
responding to a resolution of 6,;x ~ 14 arcmin, significantly better
than the angular resolution achievable with a single-dish intensity
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mapping experiment carried out with SKA1-MID. The density and
velocity fields were generated for a matter power spectrum corre-
sponding to the best-fitting flat A cold dark matter cosmological
parameters found by Planck Collaboration XVI (2014): (2ym, b,
h, ng, og) = (0.315, 0.049, 0.67, 0.96, 0.83). The H1 temperature
anisotropies were generated assuming the models described in Ap-
pendix A:

Qi) = Quio (1 +2)% b =buro+b' (1 +27,  (12)

where Q1o =4 x 107*, a = 0.6, by = 0.904, b’ = 0.135 and
B =1.70.

(i1) Foregrounds. The foreground simulations are based on the
models of Santos, Cooray & Knox (2005). The angular fluctua-
tions for each foreground component as a function of frequency are
simulated as Gaussian random realizations of an angular-frequency
power spectrum parametrized as:

L\ 02\ log®
Cz(Vl,Vz)ZA(Tl) <%) eXp{_ogéglz/VZ)]v (13)

where & corresponds to the correlation length in frequency space.
Thus, in the limit £ — O the foregrounds are perfectly correlated
[Ce(vi, v2)/+/Ce(vy, v1)C (v, v2) = 1], which corresponds to the
simplest case in terms of foreground removal.

We simulate four foreground components: Galactic synchrotron,
extragalactic point sources, Galactic and extra-Galactic free—free
emission. The values of the parameters A, 8, and £ are given in
table 1 of Alonso et al. (2014). In the case of Galactic synchrotron we
also simulate the large-scale Galactic emission by extrapolating the
Haslam map (Haslam et al. 1982) at 408 MHz to other frequencies.
Fluctuations on scales smaller than those probed by the Haslam
map (~1°), as well as frequency decorrelation, are added using the
model above.

(iii) Instrument. As our baseline intensity mapping experiment
we use the first phase of the SKA1-MID array, consisting of
Naish =~ 200, Dgishn = 15 m dishes with an instrument temperature
Tinst = 25 K. The instrumental noise was simulated as white, Gaus-
sian noise, with a variance per steradian given by

47 f k
2 2 sky
or (V) =T2 (V)——, 14
N( ) sys( )Ndish Tiot Av ( )
where the system temperature is Ty = Tinqw +

(60K)(v/300 MHz)"23, and we assumed a total observation
time of t,,, = 10000 h.

Finally, the instrumental beam was simulated as being Gaussian,
with a width Opwuy = A/Dygish- This assumes single-dish obser-
vations, which corresponds to the most optimal use of SKA1 as
an intensity mapping experiment for cosmological purposes (Bull
et al. 2015b; Santos et al. 2015).

(iv) Mask. SKA1-MID will be physically located in South
Africa. Therefore, it cannot make full-sky observations. We de-
fined the expected field of view for SKA assuming the maximum
observable area, corresponding to a range in declination dec €
(—75°, 28°). In what follows we will label the mask correspond-
ing to this field of view the cosmological mask, and we will use
it to study simulations in the absence of foregrounds. Besides this
cut in declination we also defined a Galactic mask by removing
all pixels with synchrotron emission above 40 K at 408 MHz. This
removes approximately 20 per cent of the observable sky, and was
found to be an optimal compromise between sky coverage and fore-
ground residuals by Alonso et al. (2015). We will label the mask
resulting from the combination of the declination and synchrotron
cuts the foregrounds mask, and we will employ it when studying
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simulations with foregrounds. The sky fractions of the cosmological
and foregrounds mask are fi, = 0.72 and 0.58, respectively.

For each simulation we generated 691 sky maps, each covering
a frequency band corresponding to a constant comoving radial sep-
aration Ay = Av(l + z)>/H(z) = 5h~' Mpc. We produced three
different types of maps: (1) maps containing only the cosmological
signal, (2) maps containing the cosmological signal and instrument
noise, (3) maps containing the cosmological signal, system noise
and Galactic and extra-Galactic foregrounds. In all maps we take
into account the instrument beam as described above. Fig. 3 illus-
trates the different components included in the simulations, as well
as the sky masks used in the analysis.

3.2 Foreground removal

In simulations containing foregrounds, we applied a blind fore-
ground cleaning algorithm to every simulation. For this we used the
public code described in Alonso et al. (2015), in particular apply-
ing a principal component analysis method (PCA). This algorithm
follows three steps:

(i) We estimate the frequency—frequency inverse-variance
weighed covariance matrix by averaging over all available N, pix-
els:

X T(vr, By) T(v;, )
Cij =Np;x'27;’_ e (15)

o
n=1 ! J

Here, o; is the standard deviation of the frequency-decorrelated
components in the ith frequency channel, which ideally should re-
ceive contributions from both the instrumental noise and the inten-
sity mapping signal.

(ii) The covariance matrix is diagonalized:

0'¢0= diag(Ai, - .., Aeo1), (16)

and the eigenvalues arranged in descending order (A; > ;4 ).

(iii) The first Ny, largest eigenvalues are then identified as en-
coding the main foreground contribution, and the foreground-clean
maps are generated by subtracting all modes corresponding to the
eigenvectors of these eigenvalues. The number of foreground modes
to subtract, Ny, was determined as a compromise between fore-
ground contamination and signal loss. This will be described in
more detail in Section 4.4.

3.3 The 1D power spectrum

The method proposed in this work to measure the radial BAO scale
is based on measuring the 1D radial 21 cm power spectrum. Let
us start by considering the H1 temperature fluctuations Fourier-
transformed along one particular line of sight f:

AT(kH”‘L)E/%AT(rH,rL)eikufu, a7

where we have made use of the flat-sky approximation, relating the
observable quantities, frequency v and angular coordinates fi, with
Cartesian coordinates r| and r through:

rp = x(), rio=x(h, (18)

where yx is the radial comoving distance to redshift z = v /v, — 1.
It is then easy to prove that the two-point function of this observable
is given by

(AT (ky, r DAT*(kj, r')) = 8(ky — k) Pyky, e =7 D), (19)
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Figure 3. Maps at v = 541 MHz (z = 1.62) in equatorial coordinates containing the cosmological H1 signal and noise only (upper row) and including the
contribution from Galactic and extra-Galactic foregrounds, (bottom row). The masks we use in our analysis are shown in the right column. The mask used for
simulations without foregrounds is shown in the upper-right panel (the cosmological mask) is defined by a simple cut in declination compatible with SKA the
observing site. The bottom-right panel displays the mask we employ for maps containing foregrounds (the foregrounds mask): beyond the declination cuts, we

remove regions of high foreground emission.

where

© dk, k) )
Pk, o) =/0 = Jok o)W, (k) Prky, ko). (20
Here, Jy(x) is the Oth order cylindrical Bessel function, W, is the
pixel window function and Pz(ky, k) is the 3D power spectrum
of the H1 temperature fluctuations. Finally, we define the 1D radial
power spectrum as the two-point function above for zero angular
separation:

P]D(k”) = P”(k“, o = 0) (21)

Following this logic, we estimate the 1D power spectrum from
the simulations through the following process:

(i) We start by dividing the full frequency range of our simu-
lations into a number of wide frequency bins. The width of these
bins should be chosen such that the radial BAO scale can be suffi-
ciently well sampled. We thus chose to use the four frequency bins
described in Table 1, corresponding to roughly equivalent comov-
ing radial separations. Note that, given the frequency-dependent
beam size, we reduced the pixel resolution of the intensity maps
to Ngige = 64 in the first three bins, and N4 = 32 in the lower
frequency bin.

(i) Within each bin, we compute the Fast Fourier Transform
(FFT) of each pixel individually, and then compute the radial power
spectrum for each pixel as the modulus of this FFT.

Table 1. Characteristics of the four redshift bins used in our analysis. The
first and second columns show the frequency and redshift range, while
the third column displays the mean redshift of the bin. The fourth column
shows the comoving volume covered by each redshift bin, with the numbers
displayed in grey, red and blue corresponding to simulations using no mask,
using the cosmological mask and using the foregrounds mask, respectively.
The fifth column shows the HEALPix resolution parameter Ngjqe us in the
analysis of each bin. The radial widths and radial resolutions of all bins are
constant and correspond to 0.9 A~! Gpc and 54~ Mpc respectively.

v (MHz) z (2) Vol. (h~! Gpe)? Nside
[812-1044] [0.36-0.75] 0.6 (22, 16, 13) 64
[627-812] [0.75-1.26] 1.0 (56, 40, 32) 64
[476-627) [1.26-1.98] 1.6 (107,77, 62) 64
[350-476] [1.98-3.05] 25 (172, 123, 99) 32

(iii) Finally, we average this power spectrum over all pixels in
the observed sky region.

Note that this estimation of the power spectrum assumes that
many effects remain constant inside the frequency bin, such as the
growth of perturbations, the background H 1 temperature or the co-
moving scale corresponding to the instrumental beam. The smooth
frequency/redshift dependence of these effects, however, should in-
troduce broad-band modifications in the estimated 1D power spec-
trum, which must be accounted for when measuring the BAO scale.
We will study these effect further in Section 3.4.
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3.4 Fitting

In order to derive constraints on the value of the cosmological and
astrophysical parameters we need a theoretical model to explain
the observed or simulated data. The theoretical template we use to
model the shape and amplitude of the radial 21 cm power spectrum
is

_2%2
Progei(ky, 21©) = [Pin (K /ot, 2) — Poip(ky /et 2)] €117
+ Puw,in(ky, 2) + Alk)), (22)

with © a set of parameters to be defined below and where Py, 1p (k)
and Py, 1p(k) represent the 1D linear power spectra with and without
BAO wiggles, respectively (Eisenstein & Hu 1998), computed from
their 3D counterparts as

P (k)—/dzklp (kys k1) (23)
i, ID(K)) = 22 i,3D(K|, K1).

Here, we shall model the 3D power spectrum as

Porem(ky, k1) = b2, (1+ Bu)” e 07 pyh), (24)

which contains the effect of linear redshift-space distortions as in
Kaiser (1987), with u = k/k and B = f(z)/bui(z), where f(z) is
the linear growth rate. The exponential term models the smoothing
in the transverse direction induced by the beam of the instrument.
Since we measure the 1D power spectrum along maps at different
frequencies, and therefore with different angular smoothing, we in-
troduce the parameter R to model the effective transverse smoothing
scale in the power spectrum measurement. R represents thus a nui-
sance parameter® whose value we marginalize over when deriving
constraints on the cosmological and astrophysical parameters.

The parameter ¥ in the equations above controls the damping
and broadening of the BAO peak induced by non-linear effects.
Since our simulations are not able to fully capture the non-linear
gravitational effects, and since the amplitude of this parameter is
expected to be small at high redshifts, we fix ¥ = 0 when fitting
the results of the simulations using the theoretical template.

The shape of the power spectrum can be modified by effects such
as foreground-removal biases, the frequency-dependent beam, evo-
lution effects within the redshift bin, scale- and redshift-dependent
bias or non-linearities; we can therefore anticipate differences be-
tween the simplified model described so far for the power spectrum
and the actual measurements. All of these effects, however, should
only give a broad-band contribution to the observed power spectrum,
and therefore we attempt to account for them using the polynomial
A(k) = pok + p1 + p2/k, where the coefficients are treated as free
parameters in the fit and are marginalized out.

In summary, our model for the radial 21 cm power spectrum
contains six free parameters

O = {a, bs, R, po, p1, p2}- (25)

The cosmological information is encoded in the value of o, which
can be related to the expansion rate as H(z) = Hga(z)/ct, where Hg
is the expansion rate in the fiducial cosmology chosen to analyse
the data. Thus, under the assumption that the fiducial cosmology

©We have also carried out our analysis setting R to its expected value,
and therefore only fitting for @ = {«, b, po, p1, p2}. We find that the
constraints on the value of the cosmological and astrophysical parameters
barely decrease with respect to those obtained from our fiducial pipeline,
while the average value of the x2 increases by a ~50 per cent. Thus, we
decided to keep R as a nuisance parameter that controls the shape and
amplitude of the radial 21 cm power spectrum.
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is close enough to the real one, the measurements of « should be
compatible with 1. Note that we have included the overall amplitude
of the power spectrum, encoded in the effective bias by, as a free
parameter of the model. R and the polynomial coefficients, po, pi,
D2, are nuisance parameters that model the instrument beam and the
broad-band shape of the power spectrum, respectively.

Given measurements of the 1D power spectrum in a number of
bins in the wavenumbers k| at redshift z, that we refer to as the data
D, we can place constraints on the model parameters by exploring
their posterior distribution, given by the data likelihood via Bayes
theorem. Assuming that the measurements of the power spectrum
are Gaussianly distributed, we can write

—210g [P(®|D)] = (P — Proae) € (P — Prnoael), (26)

where € is the covariance matrix and P and P 4ol are the mea-
surements and model of the 1D power spectrum. We estimated the
covariance matrix from our 100 simulations and we found it to be
effectively diagonal (see Appendix C), as expected on linear and
mildly non-linear scales. Thus, in our analysis we will assume a
diagonal covariance matrix, which is a valid approximation on the
scales relevant for this paper.

The best fit, confidence levels and correlations between parame-
ters were obtained by exploring the parameter space with a Monte
Carlo Markov Chain (MCMC) method using the publicly available
code EMcCEE (Foreman-Mackey et al. 2013). The quality of the fit
was quantified through the value of x> = —2log P(©|D).

4 RESULTS

In this section, we present the results of our analysis in terms of
constraints on the value of the BAO scaling parameter «. In order to
isolate and understand the effects of different processes affecting the
measured signal, we carry out our analysis over three different types
of 21 cm maps: (1) maps containing only the cosmological signal,
(2) maps with the cosmological signal plus instrument noise and (3)
maps with the cosmological signal, noise from the instrument and
residual temperature fluctuations arising by the imperfect cleaning
of the foregrounds. Finally, we quantify the significance of the BAO
features on the data.

4.1 Redshift binning and S/N ratio

As discussed above, each simulation consists of 691 maps equally
spaced in radial comoving distance from z = 0.35to z =3.05. As a
compromise between comoving volume, sampling rate of the BAO
scale and the need to capture the redshift evolution of the expansion
rate, we split our maps into the four redshift bins summarized in
Table 1. We chose these redshifts bins to have equal radial comoving
width, rather than equal volume, so that the same number of radial
modes would be sampled in all of them.

In Fig. 4, we show the signal-to-noise (S/N) ratio of the radial
21 cm power spectrum in the four redshift bins as a function of
wavenumber. The curves shown in this figure were computed us-
ing the theoretical prediction for the 1D power spectrum and its
uncertainty assuming Gaussian statistics, which we have shown to
be good approximations to the simulated data (see Appendix C).
We considered separately the cases with and without instrumen-
tal noise, and in both cases we estimated the errors assuming the
volume available for the cosmological mask.

Focusing on the results involving the cosmological signal alone,
it can be seen that the S/N decreases towards higher redshifts. This
is a priori surprising, since the volume of the redshift bins increases
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Figure 4. S/N ratio of the radial 21 cm power spectrum in our fiducial
redshift bins for maps containing only the cosmological signal (solid lines)
and the cosmological signal plus system noise (dashed lines) using the cos-
mological mask. The S/N ratio is defined as the ratio between the amplitude
and the error of the radial power spectrum.

with its mean redshift. We can understand this by writing the S/N
ratio at linear order (see Appendices B and C for the derivation)

5= 5% Patem,3p.obs (Ko k1 L dk

\/(VAk)_' 157 [Potem.ap.obs(ky, ki) + PN}Z kydky
27

S/N(k) =

where v is the survey volume and Ak is the width of the k-bin over
which the power spectrum is estimated. Py is the amplitude of the
white-noise arising from the instrument temperature and is given in
equation (B4).

Should all 21 cm maps have the same angular resolution and no
system noise, the S/N ratio would simply scale inversely with the
square root of the survey volume. However, the beam size grows
at larger wavelengths, and the corresponding damping exponential
factor exp(—k? R?) reduces both the amplitude and the errors of
the 1D power spectrum (see Figs. 7 and C1) with increasing R
(and therefore redshift). The effect on both quantities is, however,
different, and the amplitude of the power spectrum is reduced more
efficiently than its errors. That decrease is not compensated by the
increase in the survey volume, and the net effect is a reduction in
S/N at higher redshifts.

Turning now to maps containing instrumental noise, we can see
that, while at low redshift the effects of the noise are almost neg-
ligible, in the two highest redshift bins the uncertainties in the
power spectrum become dominated by it. This, for instance, pro-
duces a dramatic drop in S/N in the (z) = 2.5 redshift bin. This
has a direct impact in the final BAO constraints, as we shall see
in Section 4.3.

It is worth pointing out that the S/N ratio varies very mildly
with wavenumber for the 1D power spectrum in the noiseless case.
This is easy to understand: unlike in the case of the isotropic
3D power spectrum, where each k-mode is sampled by all ks
inside a spherical shell of radius k, in the 1D case only a sin-
gle mode per pixel contributes to the estimate of the power
spectrum at a given ky, and therefore all modes are sampled
roughly equally.

4.2 Cosmological signal

For simulations containing only the cosmological signal we fit the
measured radial 21 cm power spectrum of each redshift bin of
each simulation using the template of equation (22). An exam-
ple of the measurements together with the best fit is shown in the
upper-right corner of Fig. 5. From each fit we obtain the value
of the BAO parameter @ as well as the nuisance parameters to-
gether with the corresponding 2. Fig. 6 shows, with blue lines,
the distribution of «, bg, and reduced x2, and the fourth column
in Table 2 shows the average value and standard deviation of «
obtained from the 100 lognormal realizations. The values obtained
for the full sky are displayed in grey, while those corresponding to
the cosmological mask are shown in red. We will focus on the latter
from now on.

By inspecting the distribution of the best-fitting values of « as
well as the corresponding reduced x? we first verified that our
theoretical template is a good model for the data, and that we obtain
an unbiased estimate of the true BAO scale. The relative constraints
on the Hubble rate are given directly by the error on «. In the three
high-redshift bins we find o, = 1.2-1.6 per cent, while the lowest
redshift bin shows a significantly larger error (o, = 2.0 per cent).
The constraints on « improve by ~20 per cent when using the full
sky, in agreement with the corresponding increase in sky area and
therefore survey volume.

The magnitude of the errors on « and its redshift dependence
can be understood taking the two effects discussed in Sections 2.2
and 4.5: the S/N ratio of the signal and the significance of the
BAO wiggles. While the S/N decreases with redshift (see Fig. 4),
the significance of the BAO increases with it (see Fig. 2). The
BAO wiggles are less significant on the radial power spectrum at
low redshift, which increases the uncertainties on «, and therefore
we expect these uncertainties to increase towards lower redshifts.
On the other hand, the significance of the BAO signal saturates
at high redshift, while the S/N ratio continues to decrease with
redshift, and thus we would expect the error on « to grow at higher
redshifts as well. This agrees with the trend observed in the data. The
most precise determination of « is obtained in the two intermediate
redshift bins.

Before moving on to more realistic simulations, it is worth not-
ing that, while the parameter bg can in principle be interpreted as
the bias of the 21 cm signal (bg o by12p1), it is not clear that
the method used in this paper would yield an unbiased estimate
of this quantity. The main reason for this is the strong degenera-
cies existing between this parameter and the nuisance parameters
R and p; (see Fig. 5), all of which affect the overall normaliza-
tion and broad-band shape of the power spectrum. Furthermore,
unlike the case of the BAO signature, nothing would prevent us
from using the full 3D clustering information to constrain this pa-
rameter, and therefore using the 1D power spectrum to measure
by 1 would be, in any case, sub-optimal. Nevertheless, the his-
tograms shown in the central panels of Fig. 6 show that the re-
covered values of by .y are, on average, in good agreement with
the input model.

4.3 System noise

‘We now study the impact of the instrument temperature on our re-
sults. As shown in Appendix B, the noise contribution to the total
power spectrum increases with redshift, and in fact, eventually dom-
inates the cosmological signal at low frequencies. We can therefore
expect a non-negligible effect on the detectability and uncertainties
of the BAO signal.
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Figure 5. MCMC constraints on the six parameters used in the fits to the measured 1D power spectrum for one of the simulations. The results of the simulation
(at (z) = 1.0) together with the best fit is shown in the upper-left corner, where the dashed area represents the k-range where we perform the fit (residuals shown
in the bottom panel). While the BAO parameter « shows no significant correlations with the other parameters, a result of the robustness of the BAO signal, the
remaining five parameters show strong degeneracies among themselves. This is due to the fact that all of them affect the amplitude and broad-band shape of
the power spectrum in a similar way. Note that, given the number of degrees of freedom in this case (19), the quoted value of x2/dof for the best fit is within
the expected range (PTE( Xz) 2~ 0.61). We notice that the tension we observe between our results and the expected values in the planes with the polynomial

coefficients arise because the values of those do not need to be 0.

In order to avoid a noise bias in the computation of the 1D power
spectrum, for each sky simulation we generate two realizations of
the instrumental noise, add them to the simulation and compute the
1D power spectrum as the cross-correlation of the two resulting sets
of maps. This simulates the way in which power spectra would be
estimated in a realistic setting, by combining cross-correlations of
Ngpiie different data splits, in order to recover the optimal S/N in
the limit Ny, — oo. In order to simulate this through the cross-
correlation of only two noise realizations, we generated these with
a total noise rms a factor of 2!/4 larger than the expected rms for the
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total observation time. Note this is not the noise rms corresponding
to observations taking place over half of the total time. Instead, this
factor is chosen to recover the optimal S/N ratio in the final power
spectrum corresponding to the Ny — oo limit mentioned above
using only two maps.

Fig. 7 shows the 1D power spectra computed in the four redshift
bins of one of our simulations. The solid lines show the power spec-
trum computed for a simulation containing only the cosmological
signal, while the dashed lines include the effects of instrumen-
tal noise, which can be observed as a random scatter around the
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Figure 6. Distribution of the best-fitting values of « (left column), bg (central column) and the corresponding reduced x2 (right column) for each redshift bin
and simulation. Results are shown for the bins with mean redshifts (z) = 0.6 (top), (z) = 1.0 (middle top), (z) = 1.6 (middle bottom) and (z) = 2.5 (bottom).
The different line colours correspond to the results for simulations containing only the cosmological signal (blue), cosmological signal plus instrument noise

(green) and cosmological signal, instrument noise and foreground residuals (red).

noiseless lines with a relative variance that grows towards smaller
scales. The dotted lines in Fig. 7 illustrate the noise bias induced
when autocorrelating maps with the same noise realization, and ex-
plicitly shows the growing contribution of the instrumental noise
towards higher redshifts. This was also illustrated in Fig. 4.

For each simulation and redshift bin we have fit the radial 21 cm
power spectrum measured employing the above procedure to the
theoretical template of equation (22). From each fit we measure
the value of o and x? and in Fig. 6 we show their distribution
in green lines from the 100 realizations for the four different red-
shift bins. Table 2 summarizes, in the fifth column, the mean and
standard deviation of the distribution. We find that the instrumen-
tal noise increases the uncertainty on the BAO parameter by 5, 8,
23 and 64 per cent in the bins with mean redshift 0.6, 1.0, 1.6 and 2.5,
respectively. The large degradation in the BAO signal in the higher
redshift bin is, as explained above, a consequence of the larger

instrumental noise present in that bin. It is worth noting that the
uncertainties on the overall scaling of the power spectrum, given
by the effective bias by experience a much milder variation after
introducing instrumental noise. This is due to the fact that most of
the constraining power for this parameter comes from the largest
scales, where cosmic variance dominates in all bins.

Table 2 also shows, in grey, the mean values and standard devia-
tions for full-sky observations. We should clarify that, in this case,
we fixed the observing time per pixel, thus assuming that the total al-
located observation time would scale with f,. The improvement in
the constraints is thus solely due to the increase in surveyed volume.

4.4 Foregrounds

We now study the impact of the presence of Galactic and extra-
Galactic foregrounds on our results. We added simulations of the
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Table 2. For each simulation we fit the measured radial power spectrum on
4 the redshift bins specified in the first column using the theoretical template
of equation (22). Columns 4—6 show the mean and standard deviation of the
BAO parameter «. Constraints are shown for maps containing only the
cosmological signal (column 4), the cosmological signal plus instrumental
noise (column 5) and the cosmological signal, noise and foreground residuals
(column 6). The radial power spectra are measured using all pixels of the
maps (grey numbers) or using a mask: the cosmological mask (fsky = 0.72)
and the the foregrounds mask (fgy = 0.58).

zrange (z) Mask Oy

©) (C+N) (C+N+FG)

[0.36-0.75] 0.6 No 1.008+0.016 1.008 £0.016 1.007 £ 0.016
Yes 1.006 £0.020 1.006 40.021 1.006 £ 0.024
[0.75-1.26] 1.0 No 0.996 £0.010 0.997 +0.011 0.996 & 0.011
Yes 0.997 £0.012 0.997 +£0.013 0.998 £ 0.015
[1.26-1.98] 1.6 No 1.001+0.011 1.004£0.014 1.003 £0.014
Yes 1.000 £0.013 1.003 +0.016 1.004 £0.019
[1.98-3.05] 2.5 No 1.00440.013 1.003 £0.021 1.000 =+ 0.021
Yes 1.004 £0.016 1.002 4 0.026 1.002 & 0.031
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Figure 7. Impact of system noise on the measured radial 21 cm power
spectrum. The solid lines show the power spectrum measured in one simu-
lation containing only the cosmological signal. The dotted lines display the
results obtained by measuring the power spectrum in maps that contain both
the cosmological signal and the system noise. The dashed lines present the
results obtained by computing the cross-power spectrum from two different
noise realizations with the same cosmological signal. The power spectra are
measured in four different redshift bins: (z) = 0.6 (purple), (z) = 1.0 (blue),
(z) = 1.6 (green), (z) = 2.5 (red). The bottom panels show the ratio between
dashed and solid lines and shaded regions represent a 2 per cent difference.
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Figure 8. Radial 21 c¢cm power spectrum after foreground cleaning for
one particular simulation in the third redshift bin (z) = 1.6. The green,
blue, orange and magenta lines correspond to the result of applying a PCA
algorithm removing Nyg = 6, 7, 8 and 40 principal components. The red solid
line shows the result for simulations containing only cosmological signal
and instrumental noise. The bottom panel shows the ratio of the foreground-
cleaned power spectra to the result of the foreground-free simulation.

most relevant radio foreground sources to each sky realization as
described in Section 3.1 before applying the instrumental beam and
noise. As can be seen in Fig. 3, the amplitude of the foregrounds
is several orders of magnitude higher than the one from the cosmo-
logical signal. We then applied a PCA blind cleaning algorithm to
each simulation as described in Section 3.2 (this was done indepen-
dently for the two noise realizations per simulation described in the
previous section).

Fig. 8 shows the performance of the foreground cleaning method.
The method is based on subtracting a number Ny, of principal com-
ponents from the maps, with the hope that the remaining intensity is
dominated by the cosmological signal. The figure shows the radial
power spectrum in the third redshift bin ((z) = 1.6) for one par-
ticular sky simulation after having applied a PCA algorithm with
different values of Ny, (N, = 6 in green, 7 in blue, 8 in orange
and 40 in magenta). For comparison the figure also contains, in red,
the power spectrum of the foregrounds-free simulation. It is worth
noting that, as described in Bigot-Sazy et al. (2015), the effects of
correlated instrumental noise, of particular relevance for single-dish
experiments such as SKA1-MID (Harper et al. 2016), would also
be partially removed by the foreground-cleaning algorithm. As the
figure shows, the procedure works remarkably well due to the very
different spectral characteristics of signal and foregrounds. We find
that the presence of foreground residuals can be minimized after
subtracting Ny, = 8 principal components. Note that, inevitably,
this method removes part of the cosmological signal, particularly
on the largest radial scales dominated by foregrounds. This causes
a bias in the radial power spectrum that, however small, could
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Figure 9. Significance of the BAO wiggles in each redshift bin for maps containing only the cosmological signal (blue), the cosmological signal plus system
noise (green) and the cosmological signal, noise and foregrounds (red). The histograms show the distribution of the square root of the increment in x> between
our fiducial model for the radial power spectrum (equation 22) and a no-BAO template. Thus, the x-axis can be read as the ‘number of sigmas’ with which the
BAO have been detected. The vertical dashed lines show the 3o threshold, and we provide, in each case, the number of simulations with a significance above

this threshold.

potentially affect the recovery of the BAO scale. This scale-
dependent bias is evident in the lower panel of Fig. 8, which
shows the ratio of the recovered power spectra with respect to the
foreground-less case.

Using the above procedure we calculated the radial 21 cm power
spectrum in each redshift and simulation and we fit the results using
the template of equation (22). We note that in this case we applied
the optimal Galactic mask described in Section 3.1, corresponding
to sky fraction fy, = 0.58. Fig. 6 shows, in red, the distribution
of the fit parameters « and by, as well as the values of the re-
duced x? for our 100 simulations. The corresponding mean value
and standard deviation of « for simulations containing foregrounds
are reported in the sixth column of Table 2. As expected, we find
that the errors on « increase with respect to the results found in
the foreground-free simulations. The error enhancement is roughly
~20 per cent, and is mainly caused by the smaller sky area allowed
by the Galactic mask. More importantly, we find that as expected,
the small foreground bias on large scales mentioned above does not
bias the recovered values of the BAO scaling parameter. Note that,
as pointed out in Alonso et al. (2015), the power spectrum uncer-
tainties are also expected to receive a contribution from foreground

residuals, however, this effect is sub-dominant. We thus conclude
that, for well-behaved foregrounds, SKA1-MID should be able to
measure the radial BAO scale with good accuracy up to redshifts
z~3.

4.5 BAO significance

Besides placing constraints on the scale of the BAO, it is also
important to determine the significance with which the signature
has been detected in the power spectrum. We have done so through
the following procedure. For each simulation and redshift bin we
measure the radial 21 cm power spectrum and then fit the results
using a no-BAO template for the power spectrum:

Prodet (K, 21©®) = Poy 1in(ky, 2) + poky + p1 + p2/ky. (28)

We then compared the x 2 value of the fits with and without the BAO
contribution, and quantified the significance of the BAO detection
in terms of the increment between both cases, A 2. Fig. 9 shows
the histograms for the values of 1/ A x2 from each redshift bin and
simulation, for maps containing just the cosmological signal (blue
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Figure 10. The red points represent measurements of the radial power spec-
trum in different redshift bins from one particular simulation. The error bars
of the red points represent the error on the measurements. The blue/green
lines display the best-fitting model from a theoretical template with/without
BAO wiggles. Both the measurements and the best-fitting models are nor-
malized by a model without BAO wiggles with fixed parameters.

lines), the cosmological signal plus system noise (green lines) and
the cosmological signal, noise and foreground residuals (red lines).

We find that, although in the higher redshift bin a relatively large
fraction (~27 percent) of the simulations yield BAO detections
below the 30 threshold, it is generally likely, in all cases, to make
a reliable measurement (>30) of the radial BAO signature. As
explained above, the main reason for the lower significance of the
BAO measurements in the highest redshift bin is the larger system
noise at low frequencies. It is also worth noting that the first redshift
bin generally yields lower significance detections than the next two.
As discussed in Section 2.2, this is caused by the larger contribution
from small angular scales in the lower redshift bin, which reduce
the relative contribution from the BAO wiggles to the radial power
spectrum. This can be visualized explicitly in Fig. 10, which shows
the best-fitting power spectra with and without BAO in the four
different redshift bins for one particular simulation in the absence
of noise or foreground contamination.
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5 CONCLUSIONS

The BAO scale is one of the most robust cosmological observables,
due to the distinctive nature of their signature, a single peak on the
2pt correlation function or a set of wiggles on the power spectrum.
This observable can be used to measure the Hubble function and the
angular diameter distance as a function of redshift, and therefore
represents a unique and robust probe to study the nature of dark
energy.

The purpose of this paper has been to investigate the accu-
racy with which the BAO scale can be determined through single-
dish 21 cm intensity mapping observations in the post-reionization
epoch. We quote results for a possible intensity mapping experiment
carried out with the SKA1-MID array covering more than half of
the sky in the redshift range z ~ [0.3-3]. We however emphasize
that our methodology is fully general and can be easily applied to
other instruments.

We have shown that the smearing caused by the beam size of
the radio-telescopes will prevent a competitive measurement of the
isotropic BAO scale in both the 21 cm correlation function or power
spectrum (see Fig. 1). However, we have shown that, given the good
frequency resolution of radio-telescopes, it should still be possible to
measure the radial BAO signal down to high redshifts, thus placing
competitive constraints on the expansion rate H(z).

In this paper, we have proposed a method to recover the radial
BAO scale in intensity mapping observations and implemented it in
practice making use of a suite of 100 full-sky lightcone simulations
in order to systematically study the effects of the instrumental noise
and the robustness of the signal to foreground-related systematic
effects. Our procedure follows three steps:

(i) A simulated sky is generated containing a realization of the
full-sky H1 cosmological signal as well as the most relevant Galac-
tic and extra-Galactic foregrounds in the frequency range v € [350,
1050] MHz. The simulated maps are smoothed to the angular reso-
lution corresponding to the specifications of SKA1-MID, and white
instrumental noise is added accordingly.

(ii) We remove the foregrounds using a PCA algorithm, sub-
tracting the first 8 principal components, which we have shown are
dominated by foregrounds.

(iii) We compute the radial power spectrum of the resulting maps
by stacking the 1D Fourier transform of every pixel in the field of
view along the frequency direction (further details about the method
are given in Section 3.3).

(iv) For each estimated power spectrum, we determine the ra-
dial BAO scaling parameter o by fitting the template given in
equation (22) to the data. The mean value and uncertainty on «
is then estimated by averaging over 100 simulations.

All our simulations take into account the sky area limitations of
the SKA both in terms of accessible sky and Galactic foregrounds.

Our results concerning the measurement of the BAO scale are
summarized in Table 2. We find that the BAO uncertainties become
larger at both high and low redshifts, even in the absence of instru-
mental noise. We have shown that this is due to the low relative
amplitude of the BAO signature in the radial power spectrum at
low redshifts and to the lower S/N ratio of the total H1 power spec-
trum at high redshifts caused by the larger size of the telescope
beam, which overcomes the o 1/+/V improvement factor due to
the larger volume coverage. More importantly, we find that, while
the effects of instrumental noise are irrelevant at low redshift, they
come to dominate the error budget at redshifts z 2> 2, increasing
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the final BAO uncertainties by a factor of ~2 with respect to the
sample-variance limited result.

Concerning the effect of radio foregrounds, we have shown that
the large-scale bias induced by foreground removal on the radial
power spectrum (as reported by e.g. Alonso et al. 2015) does not
cause a bias in the recovered BAO scale. This is thanks to the robust-
ness of the BAO signal against broad-band variations in the shape
of the power spectrum, as well as to the spectral separation between
foregrounds and cosmological signal in the frequency direction. We
have also shown that the contribution of foreground residuals to the
final uncertainties is negligible, and that, therefore, the main effect
of foregrounds is a reduction in the available sky area needed in
order to avoid the regions of higher Galactic emission. Although
we have not explicitly introduced this effect, it should be possible
to mitigate the impact of correlated instrumental noise, of partic-
ular relevance to single-dish observations, using similar methods
(Bigot-Sazy et al. 2015).

We must emphasize, however, that a more careful treatment of
instrumental systematics is needed in order to refine these forecasts.
In particular, systematic effects in the calibration of the instrumental
response, such as beam defects, can adversely impact foreground
removal in several ways. First, mis-calibration of the beam asym-
metries can lead to the leakage of polarized foregrounds into the
signal. The non-trivial frequency structure of polarized synchrotron
could then strongly bias the recovered power spectrum and prevent
a reliable BAO measurement. Similarly, it is well known that the
presence of frequency-dependent beam sidelobes can lead to fore-
ground contamination with a complicated spectral signature, which
would have a similar effect. A more thorough analysis of these
effects is left for future work.

Finally, we have studied the significance of the BAO signal. We
have shown that, although the large variance of the instrumental
noise at low frequencies reduces the S/N ratio of the BAO signature
at high redshifts, we obtain significant detections (>30) of it in a
large majority of our simulations in all redshift bins.

Overall, we conclude that a single-dish 21 cm intensity mapping
experiment carried out by SKA1-MID over ~50 per cent of the sky
with an allocated observing time of 10 000 h should be able to place
direct constrains the value of the Hubble function H(z) with a rela-
tive uncertainty of 2.4, 1.5, 1.9, 3.1 per cent at redshifts (z) = (0.6,
1.0, 1.6, 2.5) by measuring the BAO scale in the radial 21 cm power
spectrum. This would correspond to a precision comparable with
next-generation spectroscopic surveys such as DESI (Font-Ribera
etal. 2014). Moreover, our results agree qualitatively with previous
Fisher-matrix-based forecasts for intensity mapping experiments
(e.g. Bull et al. 2015a,b), although the realistic approach adopted
here leads to quantitatively more conservative constraints after ac-
counting for the different frequency bin widths.
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APPENDIX A: H1 MODEL

It has been shown in Villaescusa-Navarro et al. (2014) that the
abundance of H1 outside dark matter haloes is negligible and that
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its contribution to the amplitude of the 21 m power spectrum can
be safely neglected. Under those conditions, it is possible to model
the clustering properties of H1 using the halo model framework.
A key element in that formalism is the function My(M, z), that
outputs the average H1 mass that a dark matter halo of mass M has
at redshift z. If this function is known, it is possible to compute the
two basic elements needed to estimate the shape and amplitude of
the 21 cm power spectrum at linear order, Qy(z) and byy:

1 oo
Qui(z) = F/ n(M, 2)Mu1(M, 2)dM,
¢ Jo

l o
bui(z) = 07/ b(M, )n(M, )Mu1(M, z)dM,  (Al)
PIQu1(2) Jo

where p! is the critical density of the Universe today and n(M, z)
and b(M, z) are the halo mass function and halo bias at redshift z.

Villaescusa-Navarro et al. (2016) used zoom-in hydrodynamical
simulations to show that the high-mass end of the My (M, z) can
be modelled by a simple power law: My(M, z) oc M3/*. In the
low-mass end Villaescusa-Navarro et al. (2015) found a similar
behaviour for many different cosmological models. We therefore
model the My (M, z) function as

Myi(M, z) = &9 M exp(—(Myyin(2)/ M)?), (A2)

where e’ represents an overall normalization and the exponential
cut-off at the characteristic halo mass M,,;,(z) is introduced to model
the fact that it is expected that low-mass haloes should not host a
significant amount of H1 (Pontzen et al. 2008; Bagla, Khandai &
Datta 2010; Marin et al. 2010; Villaescusa-Navarro et al. 2014;
Padmanabhan, Choudhury & Refregier 2016). For simplicity we
consider that the characteristic cut-off scale M ;,(z) does not depend
on redshift.

Our model has two free parameters: My, and y(z). The value
of y(z) is fixed by requiring that our model reproduce the re-
lation Qp1(z) = 4 x 107*(1 + 2)*¢ inferred from observations in
Crighton et al. (2015). The value of Muin = 1.7 x 10"°h™'Mg
is chosen such as our model reproduces the value of Qyiby; =
(0.627933) x 1073 at  ~ 0.8 derived from 21 cm intensity mapping
observations in Switzer et al. (2013).

The H1 bias that we obtain with the above model can be well
described in the redshift range z € [0, 3] by the following relation:

bu1(z) = 0.904 + 0.135(1 + z)"¢%. (A3)

We notice that our model reproduces, by construction, the Qy(z)
relation, while at z = 0.8 it predicts a value of Qyby; = 7.2 X
107, in perfect agreement with the constraints from Switzer et al.
(2013). Besides, at z = 2.3 it predicts a H1 bias equal to by = 1.93,
compatible with the measured DLAs bias by Font-Ribera et al.
(2012), bpras(z = 2.3) = 2.17 £+ 0.2, assuming that bias of the
DLA:s is a good proxy for the H1 bias.”

APPENDIX B: NOISE POWER SPECTRUM

The aim of this appendix is to compute the theoretical noise con-
tribution to the total power spectrum. We start by noting that an
uncorrelated Gaussian random field n has a white power spectrum
given by

(3u8;) = 57 (k — ) vy, @b

7 This may not be true in many situations, e.g. Castorina et al. (in prepara-
tion).
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where 02, is the variance of the field in cells of volume v .
On the other hand, the instrumental noise variance per pixel is
given by
2
% = 2AvtTS-ysN- ’ B2
pix 4Vdish
where Ty is the system temperature, Av is the frequency inter-
val, t,ix is the observation time per pixel and Ny, is the num-
ber of antennas. f,x can be related to the pixel solid angle as
tpix = pix tiot/ (47 fay), Where ti, is the total observation time.
Moreover, the frequency interval Av and the pixel solid angle €2,
can be related to the comoving volume covered by each pixel as

H 1231
r2 (1 + z)?
where r and H are the comoving distance and the expansion rate.

Thus, combining equations (B2) and (B3), we obtain the noise
power spectrum

AT fu (1 +2)r]?
Py =12, A PO
2 tiotv21 Naisn H

Av Q= Upi. (B3)

(B4

APPENDIX C: COVARIANCE MATRIX

In order to validate the uncertainties on the radial power spectrum
used in the analysis of this work we have compared the results from
three different methods: (1) the expected Gaussian errors, (2) the
rms. from our 100 simulations and (3) the errors estimated using
the Jackknife method.

We begin by describing the computation of the expected Gaus-
sian errors. Throughout this section we will make use of the flat-sky
approximation. The basic observable in our analysis is the H1 over-
density field Fourier-transformed along the line of sight (labelled
by || here):

st r )= | S s r et Cl
(ky,r1) Ner (ry,r1) (ChH

As we described above, the 1D power spectrum is estimated by
averaging the radial power spectrum across all lines of sight inde-
pendently. Thus, our estimator is:

R 2n [ d%r
Piptky) = / Tﬂsucu,n)ﬁ (C2)

where L and A are the comoving depth and area of the region covered
by the intensity mapping experiment, and the factor 27t/ L accounts
for the Dirac’s delta normalization of the power spectrum in a region
of finite size.

Now, assuming that the H1 overdensity is Gaussianly distributed,
we can use Wick’s theorem to show that the covariance of this
estimator is given by

C(ky. k) = {(Pip(ky) — Pio(kp)) (Pin(k)) — Pin(k))))
(SD(k” — k‘/‘) i 2
_ i —k) / dky ko P2k, ko), ©3)
14 Jo
where v = LA, and 87 is the Dirac delta function. Since we mea-
sure the 1D power spectrum in finite intervals of k; of width Ak,
we can substitute 87 (ky — k|) — 8" (ky, k|)/ Ak, where §* is the
Kronecker delta. Thus, we find that, in the Gaussian approximation,
the uncertainties on the 1D power spectrum are purely diagonal and
given by
[o¢]

Var [Pip(k))] = dk ki P2 (ky, k). (C4)

V Ak Jo
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Figure C1. 1o uncertainties on the radial 21 cm power spectrum estimated
from the theoretical Gaussian prediction (solid lines), as the standard devia-
tion of the 100 lognormal realizations (dashed lines) and using the Jackknife
technique over one single realization (dot—dashed lines). Results are shown
for the four fiducial redshift bins we use in our analysis.

We conclude by noting that, in the presence of noise, P3p above
must be understood to contain contributions from both the cosmo-
logical signal and the instrumental noise. Taking into account the
pixel window function this then reads:

P (ki k) = Wy (k )UP(ky, k) + Py, (C5)

where the noise power spectrum Py is given in equation (B4).

Fig. C1 shows this theoretical prediction compared with the stan-
dard deviation of the 100 lognormal realizations and the error es-
timation from one single realization using the Jackknife method.
We show the results for the four fiducial frequency bins used in the
BAO analysis. We conclude that the error estimations from the three
different methods are in very good agreement among themselves.
We notice however that there are non-negligible deviations in the
highest frequency bin (lowest redshifts) on small scales (large k),
which can be ascribed to the effect of the non-linearities induced by
the lognormal transformation. We also find that errors computed us-
ing the Jackknife method tend to be systematically lower than those
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Figure C2. Absolute value of the correlation coefficient matrix of the radial
power spectrum in the (z) = 0.6 redshift bin estimated from 100 lognormal
realizations.

obtained from the other two methods. Fig. C2 shows the absolute
value of the correlation matrix,

Clky, k2)
VCki, k)Cky, ko)’

measured on the most non-linear redshift bin: z € [0.36-0.75] from
the 100 lognormal realizations. As can be seen, the non-diagonal
elements of the covariance matrix are negligible, which justifies our
use of purely diagonal errors.

We therefore conclude that the covariance matrix of the radial
21 cm power spectrum, in the redshifts and k-range relevant for
this paper, can be accurately approximated by a diagonal matrix,
whose elements can be found by employing the theoretical Gaus-
sian prediction, the standard deviation of different realizations or
internal methods such as Jackknife. The results presented in this pa-
pers were obtained using errors computed from the 100 lognormal
realizations.

riky, ky) = (Co)
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