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1. Introduction

In the last years many efforts have been devoted to studying the possibility of defining UV complete QFTs which may describe gravita-
tional interactions, possibly in the presence of other matter fields. Such a program is defined within the paradigm of Asymptotic Safety [1]
and can be seen as a bottom-up approach which seeks a consistent extension to UV of results of low energy effective field theories. It 
is related to the construction of the non-perturbative RG flow of the effective action, which should show a UV interacting fixed point (in 
theory space) with a finite number of relevant directions.

In a recent paper [2] two of us discussed fixed-functional solutions in a scalar–tensor theory with action containing a potential V (φ)

and a generic non-minimal interaction −F (φ)R . These functions were subjected to a renormalization group flow depending on a cutoff k. 
It was found that in generic dimension d the flow equations for the dimensionless functions v(ϕ) = k−d V (φ) and f (ϕ) = k2−d F (φ) of 
the dimensionless field ϕ = k1−d/2φ admit some simple exact solutions where v = v0 is constant and f = f0 + f2ϕ

2. These solutions can 
have interesting applications to cosmology in d = 4 [3]. Unfortunately it seems that one of these solutions, with f0 and f2 both nonzero, 
does not survive, at least in the same form, when one applies the “renormalization group improvement”, while another, which remains 
unchanged by the “renormalization group improvement”, has f0 = 0 but f2 < 0, making its physical relevance questionable.

In this paper we consider the case when there are N scalar fields, with an O (N)-invariant action of the general form∫
ddx

√
g

(
V (φ) + 1

2

∑
a

(∇φa)2 − F (φ)R

)
. (1.1)

Here V and F are functions of the radial degree of freedom and we use the notation φ = √∑
a φaφa and for the dimensionless rescaled 

field ϕ = √∑
a ϕaϕa . (In section 4 it will be proved more convenient to think of v and f as functions of the variable ρ = ϕ2/2.) The 

remaining N − 1 angular degrees of freedom will be referred to as the Goldstone bosons. One of the main results of this note shows that 
in the case when N > 1 there exists also another solution with f0 = 0 and f2 > 0.

The other main result is the confirmation, on employing a standard cutoff of “type-I” (in the terminology of [4]), of the existence of 
an upper bound on the number of scalars in order to obtain an FP with positive f . Such bounds have been discussed earlier but only for 
minimally coupled fields. We will see that the existence of the potential and of the nonminimal interactions does not substantially change 
the picture.
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In the same scheme for d = 3 we also discuss the existence of a nontrivial gravitationally dressed fixed point and give a specific 
solution for N = 2. Finally we will employ an alternative coarse-graining scheme in order to test the scheme-dependence of the analytical 
scaling solutions.

2. Flow equations

For the construction of the flow equations we follow the same steps as in [2], which we briefly recall. The calculation is based on 
the background field method, but instead of the usual linear classical-background-plus-quantum-fluctuation split we use an exponential 
parametrization for the metric of the form gμν = ḡμρ(eh)ρν . This has some concrete practical advantages that will be mentioned later, but 
the original theoretical motivation is that it respects the non-linear nature of the metric. The fluctuation field is further decomposed into 
its irreducible spin-two, spin-one and spin-zero components hT T

μν , ξμ , σ and h. Then one calculates the second variation of the action with 
respect to the fields, which appears as a central ingredient in the flow equation. In order to have a diagonal Hessian we define new scalar 
fields that involve a mixture of σ and φ. We then choose a very simple “unimodular physical gauge” which amounts simply to suppressing 
the fields ξ and h. We describe briefly these steps in the Appendix. Finally we introduce a “type I” cutoff, which amounts to replacing all 
occurrences of −∇̄2 by −∇̄2 + Rk(−∇̄2) [4]. In particular we will use the cutoff profile function Rk(z) = (

k2 − z
)
θ

(
k2 − z

)
[5]. Note that 

this cutoff is “spectrally adjusted”, in the sense that it depends on some running couplings, and also depends explicitly on the background 
scalar field, in addition to the background metric. Later we shall consider also other types of cutoff.

In general dimension d and for any number of scalars, denoting by a dot the derivative with respect to RG time t = log k, the full flow 
equations are

v̇ = −dv + 1

2
(d − 2)ϕ v ′ + cd

(d − 1)
(
d2 − d − 3

)
d + 2

+ cd

(d − 2)(d + 1)
(

2 ḟ − (d − 2)ϕ f ′
)

4 (d + 2) f

+ cd

2
(
d2 − 4

)
f + (d − 2)

(
1 + v ′′)(

2 ḟ − 6 f − (d − 2)ϕ f ′
)

+ 4(d − 1) f ′
(

2 ḟ ′ + (d − 1) f ′ − (d − 2)ϕ f ′′
)

2(d + 2)
(

2(d − 1) ( f ′)2 + (d − 2) f (1 + v ′′)
)

+ cd
(N − 1)ϕ

ϕ + v ′(ϕ)
(2.1)

ḟ = (2 − d) f + 1

2
(d − 2)φ f ′ − cd

d6 − 2d5 − 15d4 − 46d3 + 38d2 + 96d − 24

12 (d + 2) (d − 1)d
(2.2)

− cd

(
d5 − 17d3 − 60d2 + 4d + 48

)(
2 ḟ − (d − 2)ϕ f ′

)
48(d − 1)d(d + 2) f

− cd

(
(d − 2) f f ′′ + 2 f ′2) ×

×
(d − 2)(d + 2) f 2 + (d − 1) f ′2

(
(d − 2)φ f ′ − 2 ḟ

)
+ 2(d − 1) f f ′

(
(2 − d)ϕ f ′′ + (d + 2) f ′ + 2 ḟ ′

)
(d + 2) f

(
2(d − 1) ( f ′)2 + (d − 2) f (v ′′ + 1)

)2

+ cd

f ′
(
(d − 2)ϕ

(
4(d − 1) f ′′ + (d − 2)

(
v ′′ + 1

)) − 8(d − 1) ḟ ′
)

+ 2(d − 2)
(

d f v ′′ − ḟ
(

v ′′ + 1
))

24
(

2(d − 1) ( f ′)2 + (d − 2) f (v ′′ + 1)
)

− cd
d(N − 1)ϕ

12(ϕ + v ′(ϕ))
− cd

(N − 1)ϕ f ′(ϕ)

(ϕ + v ′(ϕ))2
(2.3)

where c−1
d = (4π)d/2
(d/2 + 1). The only difference between the case N = 1 discussed in [2] and the case of general N is the addition 

to the beta functionals of v and f of the contribution of the Goldstone modes, which can be easily identified by the factor N − 1. The 
“RG-unimproved” or “one-loop” flow equations can be obtained by replacing in the r.h.s.

ḟ → −(d − 2) f + d − 2

2
ϕ f ′ ; ḟ ′ → −d − 2

2
f ′ + d − 2

2
ϕ f ′′ , (2.4)

which is equivalent to setting Ḟ and Ḟ ′ to zero in the equation for the dimensionful functions V and F .

3. Scaling solutions

We list here some simple analytic solutions that exist in any dimension. Making the ansatz that v and f are both constant leads to a 
fixed point FP1. Using the simple, unimproved equations, it has the following coordinates:

v∗ = cd

[
(d − 1)(d − 2)

2d
+ N − 1

d

]
, (3.1)

f∗ = −cd
d5 − 4d4 − 7d3 − 50d2 + 60d + 24 − cd

(N − 1)d
. (3.2)
24d(d − 1)(d − 2) 12(d − 2)
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We note that the first fraction in f∗ is positive for d < 6.17. Thus for N = 1 this is an upper bound on the dimension dictated by positivity 
of Newton’s constant. Having additional scalars lowers this bound. The bound becomes lower than four between N = 11 and N = 12. Thus, 
the fixed point has negative Newton’s constant when there are more than 11 scalars, a result that is in rough agreement with previous 
calculations [6] that also used a similar cutoff.

If we include the RG improvement the coordinates of FP1 change to:

v∗ = cd

[
(d2 − 1)(d − 2)

d(d + 2)
+ N − 1

d

]
, (3.3)

f∗ = −cd
d6 − 2d5 − 15d4 − 46d3 + 38d2 + 96d − 24

12d(d − 1)(d2 − 4)
− cd

(N − 1)d

12(d − 2)
. (3.4)

Now, for N = 1 positivity of Newton’s constant requires d < 5.73, and the bound becomes lower than four between N = 14 and N = 15. 
Thus, the fixed point has negative Newton’s constant when there are more than 14 scalars.

If we make the ansatz that v is constant and f is of the form f0 + f2ϕ
2, there is a solution FP2 for the unimproved fixed point 

equations

v∗ = cd

[
(d − 1)(d − 2)

2d
+ N − 1

d

]
, (3.5)

f∗(ϕ) = cd

[
d5 − 4d4 − 7d3 − 50d2 + 84d + 24

24d(d − 1)(d − 2)
− (N − 1)(d2 − d + 12)

12(d − 1)(d − 2)

]
+ ϕ2

2(d − 1)
. (3.6)

We observe that while f2 is always positive, f0 becomes negative when either d or N become too large. For example for fixed N = 2 this 
happens at d ≈ 5.8 and for fixed d = 4 this happens for N ≈ 5.6. The solution is probably unphysical in these cases.

The same ansatz does not yield a solution for the improved equations. We suspect that there may be a solution with very similar 
properties but different functional form. The search of such generalization is beyond the scope of this paper.

If we make the ansatz that v is constant and f is proportional to ϕ2 (i.e. that f0 = 0), the fixed point equation is quadratic and admits 
two real solutions FP3 and FP4. They are the same for the improved and unimproved flow equations. The expressions for arbitrary d are 
quite long, so we only give here the formulae for d = 3

v∗ = N

18π2
, f∗ = −9N − 80 ± √

9N2 − 264N + 5296

96(N − 1)
ϕ2 (3.7)

and for d = 4

v∗ = 2 + N

128π2
, f∗ = −6N − 41 ± √

4N2 − 100N + 1321

48(N − 1)
ϕ2 , (3.8)

where the upper sign corresponds to FP3 and the lower sign corresponds to FP4. We note that FP3 has a finite N → 1 limit, while in the 
case of FP4 there is a divergence. In fact for N = 1 the fixed point FP3 had already been seen in [2], but FP4 does not exist in that case. 
Imposing that f > 0 we find that FP3 is always unphysical while FP4 is acceptable for 0 < N < 15.33 in d = 3 and 1 < N < 11.25 in d = 4.

4. Large-N limit

All the solutions described in the previous section have the property that the function f∗ is not positive if the number of scalars 
exceeds a certain limit. In order to confirm that this behavior persists we consider here the large-N limit of the flow. It is very convenient 
to change variable and use ρ = ϕ2/2 as the argument of the functions v and f . It is easy to see that in the large-N limit both the 
potentials v and f as well as ρ scale linearly in N . In particular in such a limit the flow equations, in terms of all the quantities already 
rescaled by N , read simply

v̇ = −dv + (d − 2)ρ v ′ + cd

1 + v ′

ḟ = −(d − 2) f +
(

(d − 2)ρ − cd

(1 + v ′)2

)
f ′ − d

12

cd

1 + v ′ (4.1)

The fixed point equation for the scalar potential v is the same as in flat space. There is a solution with a constant potential v and one 
with a nontrivial one which is known analytically [7]. In the first case the solution to Eqs. (4.1) is given by

v = cd

d
, f = −

(
d

12(d − 2)
cd + 2a

)
+ 2a

d − 2

cd
ρ , (4.2)

where a is a constant of integration. For such a line of fixed points it is clear that, for d > 2 and for any value of a, the function f is 
unphysical since either the constant part or the coefficient of ρ are negative.

In order to deal with the second case with the nontrivial solution for v , its equation is best written, for d not an even integer, in terms 
of w(ρ) = v ′(ρ) in the implicit form

ρ = cd
d

2 F1

(
2,1 − d ;2 − d ;−w

)
(4.3)
4 2 2
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Therefore the scalar sector presents the Wilson–Fisher type global scaling solution for 2 < d < 4. Also the fixed point equation for f can 
be further simplified in terms of w and defining a new function g(w) = f (ρ) one has

0 = −(d − 2)g + 2wg′ − d

12

cd

1 + w
(4.4)

which can be solved analytically and gives the implicit solution:

f (ρ) = g(w) = − d cd

12(d − 2)
2 F1

(
1,1 − d

2
;2 − d

2
;−w

)
(4.5)

which is always negative for d > 2 and therefore such a fixed point for 2 < d < 4 appears in the large N limit to lead to negative 
gravitational interactions in the current formulation. We also note that in the asymptotic region ρ → ∞ one has f (ρ) = − 2

3d(d−2)
ρ .

5. Stability analysis

We discuss here the linearization of the flow in d = 4 around the fixed point FP1. We begin with the simpler “RG-unimproved” case, 
which yields the following linearized equations:

0 = −(λ + 4)δv +
(
ϕ − N − 1

32π2ϕ

)
δv ′ − 1

32π2
δv ′′ (5.1)

0 = −(λ + 2)δ f +
(
ϕ − N − 1

32π2ϕ

)
δ f ′ + N − 1

96π2ϕ
δv ′ + 1

96π2
δv ′′ − 1

32π2
δ f ′ (5.2)

In this case the critical exponents are equal to their classical values:

θ1 = 4, wt
1 = (δu, δ f )1 = (1,0)

θ3 = 2, wt
3 = (δu, δ f )3 = (0,1)

θ5 = 0, wt
5 = (δu, δ f )5 =

(
0,− N

32π2
+ ϕ2

)
(5.3)

The solution FP1 for the full fixed point equations in d = 4 has coordinates 
(

v∗ = N+4
128π2 , f ∗ = 169−12N

2304π2

)
. Linearizing the full flow 

equations around this solution we get the eigenvalue equations for the eigenperturbations:

0 = −(λ + 4)δv + 72λ

169 − 12N
δ f +

(
ϕ − N − 1

32π2ϕ

)
δv ′ + 72ϕ

12N − 169
δ f ′ − 1

32π2
δv ′′

0 =
(

3λ(45 − 4N)

12N − 169
− 2

)
δ f +

(
3(4N − 45)ϕ

12N − 169
− N − 1

32π2ϕ

)
δ f ′ + N − 1

96π2ϕ
δv ′ + 1

96π2
δv ′′ − 1

32π2
δ f ′′ (5.4)

We can study the spectrum of the leading eigenvalues analytically. We find four relevant and one marginal direction for N < 45
4 , while 

for 45
4 < N < 169

12 there are only two relevant and one marginal directions, since θ2 and θ4 become negative. In particular

θ1 = 4, (δv, δ f )1 = (1,0)

θ2 = 2 + 68

3(45 − 4N)
, (δv, δ f )2 =

(
72

12N − 101
,1

)

θ3 = 2, (δv, δ f )3 =
(

− 29N

544π2
+ ϕ2,

N(169 − 12N)

3264π2

)

θ4 = 68

3(45 − 4N)
, (δv, δ f )4 =

(
− 3N(48N(3N − 76) + 22475)

16π2(4N − 45)(6N − 59)(12N − 101)
+ 72

12N − 101
ϕ2,

− N(12N − 169)(12N − 125)

96π2(4N − 45)(12N − 101)
+ ϕ2

)

θ5 = 0, (δv, δ f )5 =
(

29N(N + 2)

17408π4
− 29(N + 2)

272π2
ϕ2 + ϕ4,

N(N + 2)(12N − 227)

52224π4
− (N + 2)(12N − 169)

1632π2
ϕ2

)
(5.5)

We note that the eigenvalues come in groups within which they are shifted by two. This behavior had already been observed and explained 
in [8].
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Fig. 1. The maximal value of the field reached in the numerical evolution before encountering a singularity, as a function of the initial conditions v ′′(ϕ = 0) and f ′′(ϕ = 0), 
for the case d = 3 and N = 1 (left panel) and N = 2 (right panel). A clear spike can be seen in the center of each figure.

6. The gravitationally dressed Wilson–Fisher fixed point

In [2] we looked for scaling solutions in d = 3 with a potential resembling that of the Wilson–Fisher fixed point. We concentrated on 
the unimproved equations, and found a solution for sufficiently small ϕ whose potential is almost indistinguishable from the Wilson–
Fisher potential, and with a function f that starts out positive at φ = 0 but has negative second derivative, such that it crosses zero 
at some critical value ϕ ≈ 0.92. The analysis of the solution beyond this critical value proved hard and we were unable to establish its 
global existence. Perhaps more important, the Hessian becomes ill-defined at the critical point, so that the equations themselves become 
unreliable. A little later, using more powerful numerical techniques, a global solution was found for the improved RG equation [9]. The 
fixed point potential for this solution is again very similar to the Wilson–Fisher potential, but the function f now has positive second 
derivative and is positive everywhere, avoiding the issues mentioned above. With hindsight this solution can be seen also with the simpler 
techniques used in [2], such as Taylor expansion and the shooting method. Near the origin it has the expansion

v = 0.00935540 − 0.0292660ϕ2 + 0.00359119ϕ4 + 1.14530ϕ6 + · · ·
f = 0.0686040 + 0.172245ϕ2 − 0.132631ϕ4 + 0.390317ϕ6 + · · ·

We have looked for generalizations of this solution for N > 1. Treating N as a continuous variable, candidate scaling solutions can be 
found with the shooting method. In Fig. 1 we show, as an example, the cases N = 1 and N = 2. A spiraling structure appears close to the 
fixed point which is characterized by a very sharp relative peak.

For N = 2 the solution can be approximated near the origin by

v = 0.0146691 − 0.00148208ϕ2 − 0.438516ϕ4 + 4.35302ϕ6 + · · ·
f = 0.053294 + 0.26337ϕ2 − 0.570919ϕ4 + 1.43572ϕ6 + · · ·

The shape of the potential v shows that the scaling solution is characterized by a broken phase.
The asymptotic behavior of the solution for large ϕ is

uas(ϕ) = Aϕ6 + 23

1440π4 Bϕ2
+ 240π4 B2(16B + 5N − 4) − 1357A

216000π6 AB2ϕ4
+ · · ·

fas(ϕ) = Bϕ2 + 23

36π2
+ 1219

25920π4 Bϕ2
− 71921A + 2160π4 B2(16B + 5N − 4)

4665600π6 AB2ϕ4
+ · · · (6.1)

For the case N = 2 there is a very good match between the numerical solution found with the shooting method around the origin and 
the asymptotic behavior given above for A 	 5.149 and B 	 0.273 around ϕ 	 0.65. Therefore we consider this as a good candidate for a 
global scaling solution for the gravitationally dressed O(2) scalar model.

The critical exponents associated to this fixed point (N = 2) have not been determined with sufficient precision using polynomial 
methods. We can only report that they are not too far from the values obtained for the N = 1 case. More sophisticated numerical methods 
must be used.

7. Scalar-free cutoff

So far we have considered a type-I cutoff which in the gravitational sector has the general form F (φ̄)Rk(−∇̄2). The presence of the 
prefactor F is useful because the effect of adding the cutoff results simply in the replacement of −∇̄2 by Pk(∇̄2) = −∇̄2 + Rk(−∇̄2) in the 
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Hessians. However, this advantage comes at a price: the cutoff depends on running couplings and there is an explicit breaking of the scalar 
split symmetry φ̄a → φ̄a + εa , δφa → δφa − εa . As discussed in [10], already in pure scalar theory the presence of the scalar background 
field in the cutoff action can lead to unphysical results. This argument casts doubts on the use of these cutoffs, and it is important to 
explore also cutoffs that do not have a prefactor F . In the Einstein–Hilbert truncation, where F = 1/(16πG), such cutoffs were called 
“pure” [11]. Here we shall call them “scalar-free”. It is important to keep in mind that any cutoff still depends on the background metric, 
and that this dependence will have to be dealt with by other means, see e.g. [12,13]. Here we only get rid of the φ̄-dependence and have 
the scalar split Ward identity automatically fulfilled. In particular we shall add in the diagonal entries for hT T

μν and σ ′′ of the Hessian 
given in Eq. (A.8) a cutoff γ kd−2(k2 − z)θ(k2 − z), with the same sign of the Laplacian term, to implement the coarse-graining procedure. 
For all the other terms we shall use the more common (k2 − z)θ(k2 − z).

We do not report here the form of the flow equations in any dimension, which contains hypergeometric functions. For d = 4 the 
equations read:

v̇ = −4v + ϕv ′ − 1

8π2
−

f
(

f (v ′′ + 1) log
(

3 f ′ 2

f (v ′′+1)
+ 1

)
− 3 f ′ 2

)
144π2 f ′ 4

+
3γ

(
−γ 2 + 4γ f − 2γ (γ − 2 f ) log

(
f
γ

)
− 3 f 2

)
16π2(γ − f )3

+ (N − 1)ϕ

32π2 (v ′ + ϕ)
(7.1)

ḟ = −2 f + ϕ f ′ + 19

384π2
+

f

(
6 f ′ 2(

f f ′′+ f ′ 2)
3 f ′ 2+ f (v ′′+1)

− (
2 f f ′′ + 3 f ′ 2

)
log

(
3 f ′ 2

f (v ′′+1)
+ 1

))
288π2 f ′ 4

+
10γ (γ − 2 f )(γ − f ) − 5γ

(
γ 2 − 3γ f + 4 f 2

)
log

(
f
γ

)
96π2(γ − f )3

+
γ

(
−γ + (γ − 2 f ) log

(
f
γ

)
+ f

)
96π2(γ − f )2

− (N − 1)ϕ
(
3 f ′ + v ′(ϕ) + ϕ

)
96π2 (v ′ + ϕ)2

(7.2)

Unlike (2.1), (2.2), these are transcendental equations and cannot be solved analytically. For a comparison we discuss only the scaling 
solution FP1 which is defined by v(ϕ) = v0 and f (ϕ) = f0. With this ansatz the fixed point conditions reduce to the following algebraic 
equations

v0 = 1

128π2(γ − f0)2

[
(N − 10)γ 2 − 2(N − 13)γ f0 + (N − 4) f 2

0 − 12γ 2 γ − 2 f0

γ − f0
log

(
f0

γ

)]

0 = −2 f0 − 4N − 55

384π2
− f0(γ + 9 f0)

96π2(γ − f0)2
−

γ
(
2γ 2 − 6γ f0 + 9 f 2

0

)
log

(
f0
γ

)
48π2(γ − f0)3

(7.3)

These can be solved numerically. The linearization of the flow equation around FP1 yields the following equations:

0 = −(λ + 4)δv +
(
ϕ − N − 1

32π2ϕ

)
δv ′

−
(

3γ
(
3 f 2

0 + 5γ f0 − 2γ 2
)

16π2 f0( f0 − γ )3
+ 3γ 2(γ − 4 f0)

8π2( f0 − γ )4
log

(
f0

γ

))
δ f − 1

32π2
δv ′′ (7.4)

0 = −(λ + 2)δ f +
(

γ
(
37 f 2

0 − 11γ f0 + 4γ 2
)

96π2 f0( f0 − γ )3
− γ f0(2γ + 3 f0)

16π2( f0 − γ )4
log

(
f0

γ

))
δ f +

(
ϕ − N − 1

32π2ϕ

)
δ f ′

+ N − 1

96π2ϕ
δv ′ + 1

96π2
δv ′′ − 1

32π2
δ f ′′ (7.5)

For N = 1 and γ = 1 we have v0∗ = 0.03314, f0∗ = 0.01552. The relevant eigenperturbations around this solution can be found 
numerically and the corresponding eigenvalues are −4, −2.272, −2, −0.272, 0. There are therefore four relevant and one marginal 
couplings. For γ = 0.006 we have v0∗ = 0.00353, f0∗ = 0.00670, which are very close to the values found with the other cutoff in [2]. The 
relevant eigenperturbations around this solution have eigenvalues −4, −2.542, −2, −0.542, 0, which are also closer to the other cutoff.

For N = 4 and γ = 1 the fixed point is at v0∗ = 0.03635, f0∗ = 0.01413. The linear perturbation analysis around the fixed point gives 
the following eigenvalues: −4, −2.299, −2, −0.299, 0. If instead we choose γ = 0.006, we have v0∗ = 0.00669, f0∗ = 0.00549, and the 
eigenvalues are −4, −2.682, −2, −0.682, 0.

In this scalar-free cutoff scheme it is interesting to investigate the solutions of Eqs. (7.3) for FP1 in the large N limit. It is easy to see 
that in this limit they become

v0 ≈ 16N − 205

512π2
, f0 ≈ γ exp

55 − 4N

16
. (7.6)

We see that this behavior is very different from the one obtained previously: in particular f0 becomes exponentially small but never 
changes sign. Thus there is apparently no upper bound in N from the requirement of having a positive f0. This behavior is induced by 
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the interplay between the log singularity in f0 and the linear dependence in N in the equations. This result is probably not physically 
correct for the following reason: in the ERGE one should use the Hessian defined as the second derivative of the Effective Average Action 
(EAA) with respect to the quantum field. Instead in order to close the flow equation, we are using the second derivative of the EAA with 
respect to the background field. Even though the function F does not appear in the cutoff, it does appear in the denominator, where the 
coefficient of −∇2 is F − γ kd−2. This term is absent with the type-I cutoff and it is its presence with the scalar-free cutoff that gives rise 
to the logarithmic terms in the flow equation. In a proper bi-metric calculation the coefficient of −∇2 in the denominator of the ERGE 
would be Zh − γ kd−2, where Zh is the graviton wave function renormalization constant. The argument of the logarithmic term would 
then be Zh/γ and the beta function of f would probably be regular for f = 0.

8. Discussion

This paper extends earlier investigations of scalar–tensor gravity, where we used the exponential parametrization of the metric. The 
a priori motivation of this parametrization is that it respects the nonlinear structure of the space of Riemannian metrics. It appears a 
posteriori that it leads to better behaved flows: there are no infrared singularities [2,14] and the equations can be made gauge-independent 
even off-shell [14]. Quite generally, the use of the exponential parametrization in conjunction with the physical gauge ξ ′

μ = ∇μh = 0 leads 
to simpler equations. In the theory considered here, they are sufficiently simple that analytic scaling solutions can be found. We have 
given here the form of such solutions in any dimension and for any number of scalar fields. Relative to our earlier work, the advantage of 
having more than one scalar field is that there exists a global solution (FP4) with f ≥ 0 everywhere.

One interesting by-product of this analysis is the confirmation of upper bounds on the number of scalars, for compatibility with a 
fixed point with positive f . This result is not confirmed when one uses a scalar-free cutoff but we have argued that this is probably not 
physically correct.

As is often the case when taking the large N limit we have been able to construct the exact analytical solutions and show that they 
are unphysical in the type-I cutoff scheme.

We have also investigated in d = 3 the existence of the gravitationally dressed Wilson–Fisher scaling solution for various finite N . In 
particular we have shown that physically acceptable solution do exist for small N and given details for the case N = 2.

We hope that these tools will prove useful also in the search of global solutions for f (R) truncations, where several results have 
been obtained recently [15], but a clear picture is still missing. Another important direction of investigation is the inclusion of other 
matter fields, in particular fermions [16–18]. If the picture we have found up to now will be confirmed also in more sophisticated 
truncations, the possibility to define a consistent QFT of matter–gravity interactions will be a guidance in the understanding of several 
aspects of fundamental/effective physics. We find already interesting to start to investigate possible implications at phenomenological level 
for example in cosmology.
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Appendix A. Hessian

The Hessian for gravity coupled to a single scalar has been given in [2]. Here we discuss the changes introduced by having a scalar 
multiplet for the model of Eq. (1.1). The scalar field is decomposed into a background and fluctuation part φa = φ̄a + δφa . The part of 
the Hessian which contains a dependence on the scalar fluctuation δφa is a sum of two pieces. The first is quadratic in the scalar field 
fluctuations and reads:∫

ddx
√

ḡ
1

2
δφa

[(
−∇̄2 + V̄ ′′ − F̄ ′′ R̄

)
P R

ab +
(

−∇̄2 + 1

φ̄
(V̄ ′ − F̄ ′ R̄)

)
P⊥

ab

]
δφb (A.1)

where we have introduced the projectors P ab
R = φ̄aφ̄b/φ̄2 and P ab⊥ = δab − P ab

R . The second mixes scalar field fluctuations with metric scalar 
fluctuations:∫

ddx
√

ḡ δφa P R
abφ̄

b 1

φ̄

[
1

2
h(V̄ ′ − F̄ ′ R̄) − F̄ ′(∇̄μ∇̄μhμν − ∇̄2h − R̄μνhμν)

]
(A.2)

Without loss of generality we can separate the radial field component from the Goldstone bosons by fixing the background to be φ̄a = 0, 
a = 1, . . . , N − 1, φ̄N = ϕ̄ and define δφN = δϕ . After the York decomposition

hμν = hT T
μν + ∇̄μξν + ∇̄νξμ + ∇̄μ∇̄νσ − 1

d
ḡμν∇̄2σ + 1

d
ḡμνh (A.3)

and the redefinition

ξ ′
μ =

√
−∇̄2 − R̄

d
ξμ ; σ ′ =

√
−∇̄2

√
−∇̄2 − R̄

d − 1
σ , (A.4)

the second piece can be rewritten

∫
ddx

√
ḡ

(d − 1)

d
F̄ ′δϕ

[
−

√
−∇̄2

(
−∇̄2 − R̄

d − 1

)
σ ′ +

(
−∇̄2 − (d − 2)R̄

2(d − 1)
+ d V̄ ′

2(d − 1) F̄ ′

)
h

]
(A.5)
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Fixing the gauge h = const, ξ = 0 and also neglecting the residual constant mode of h, the full Hessian becomes



(2)

k =
∫

ddx
√

ḡ

{
1

4
F̄ hT T

μν

(
−∇̄2 + 2R̄

d(d − 1)

)
hT T μν − (d − 2)(d − 1)

4 d2
F̄σ ′(−∇2)σ ′

+ 1

2
δϕ(−∇̄2 + V̄ ′′ − F̄ ′′ R̄)δϕ + 1

2

N−1∑
a=1

δφa
(

−∇̄2 + 1

φ̄
(V̄ ′ − F̄ ′ R̄)

)
δφa

− (d − 1)

d
F̄ ′δϕ

√
−∇̄2

(
−∇̄2 − R̄

d − 1

)
σ ′

}
. (A.6)

The Hessian can then be diagonalized by the transformation

σ ′′ = σ ′ − 2d

d − 2

F̄ ′

F̄

√
−∇̄2 − R̄

d−1

−∇̄2
δϕ , (A.7)

and the diagonal Hessian reads



(2)

k =
∫

ddx
√

ḡ

{
1

4
F̄ hT T

μν

(
−∇̄2 + 2R̄

d(d − 1)

)
hT T μν − (d − 2)(d − 1)

4 d2
F̄σ ′′(−∇2)σ ′′

+ 1

2
δϕ

[
− ∇̄2 + V̄ ′′ − F̄ ′′ R̄ + 2

d − 1

d − 2

F̄ ′2

F̄

(
−∇̄2 − R̄

d − 1

)]
δϕ + 1

2

N−1∑
a=1

δφa
(

−∇̄2 + 1

φ̄
(V̄ ′ − F̄ ′ R̄)

)
δφa

}
. (A.8)

The ghost terms induced by the gauge fixing are given by:

S gh:h =
∫

ddx
√

ḡ c(−∇̄2)c , S gh:ξ =
∫

ddx
√

ḡ cμ ḡμν

(
−∇̄2 − R̄

d

)
cν . (A.9)
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