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Focus and motivation

The capability to perform fast simulations is becoming increasingly relevant for sev-
eral applications in engineering sciences, related for instance to naval and aeronautical
engineering, as well as biomedicine. To this end, reduced basis methods [1,2], proper
orthogonal decomposition [3-5], proper generalized decomposition [6,7], hierarchical
model reduction [8—10], or more in general reduced order modelling (ROM) techniques
[11], have received considerable attention in the last decades. ROMs do not replace, but
rather build upon as an add-on, high-fidelity methods such as finite element, finite volume
or discontinuous Galerkin methods. Indeed, the choice of the high-fidelity solver can be
made depending on the particular problem at hand and on pre-existing expertise and
software availability. Current literature has explored a broad variety of options, including
reduced order models based on a finite element high-fidelity discretization (e.g. [2,12-15]),
finite volume (e.g. [16—19]) and finite difference methods (e.g. [20—22]). More recently,
investigations towards the coupling with discontinuous Galerkin methods for multiscale
problems [23] or domain-decomposition approaches [24—26], spectral element methods
[27,28], and extended finite element methods [29,30] have been carried out.
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The aim of this work is to embed isogeometric analysis (IGA) [31,32] as a high-fidelity
discretization option in a ROM setting, for the simulation of incompressible linear viscous
flows [33-36] and to propose a complete workflow (pipeline) integrated with free from
deformation (FFD) as efficient geometrical parametrisation. The latter is enhanced into
an IGA context ready to be used within reduced order method (POD). A considerable
advantage of IGA with respect to classical finite element analysis is the possibility to avoid
any geometrical approximation error and to perform direct design-to-analysis simulations
by replacing classical mesh generation, and employing the same class of functions used
for geometry parameterization in CAD packages during the analysis process. Even though
most modern CAD tools are based on boundary representation (B-Rep) objects, it is
still possible to use them in three-dimensional isogeometric analysis, by extending the
computational domain inside (or outside) the enclosing (or enclosed) CAD surface (see, for
example, [37]). A robust and reliable solution for such passage is still lacking, making this
step an open question. However, the superior approximation properties of IGA methods
make their adoption appealing also in biomedical and bioengineering applications [38],
notwithstanding the fact that in this case the geometry is normally obtained through an
approximate NURBS reconstruction of medical images.

Once the three-dimensional tensor product representation of the geometry is available,
there is no distinction in computational cost or implementation complexity, with respect
to simulations done on elementary geometries.

Preliminary related IGA-ROM:s have been applied to steady potential flows [39,40], par-
abolic problems [41] or shell structural models [42]. In this work offline—online IGA-ROM
is applied for the development of stable computational reduction strategies for viscous
flows problems in parametrized shapes by FFD means. We investigate IGA-ROMs in a
different context with respect to earlier works [39,40]. In [40] the authors neglect viscous
terms and formulate the high-fidelity discretization in terms of boundary integral equa-
tions and boundary element methods (BEM) to study external flows. The main novelty
of the present work, besides the investigation of the other side of the spectrum of incom-
pressible regimes (that is, when the Reynolds number tends to zero), is the coupling of
FED techniques applied to IGA geometries, for internal flows, and using finite element
based IGA, in view of studies dealing with nonlinear viscous flows, for which BEM is not
suited.

We would like to remark here that, although the background idea is the same as the
one presented in [40], several technical issues are fundamentally different. One of the
most obvious one is that the discrete systems obtained through boundary integral for-
mulations are in general full, which implies that higher order and higher continuity finite
element spaces do not influence the bandwidth of the resulting matrix. In finite element
formulations of IGA methods, however, this is an important issue, and it may result in
reduced performances also of the final reduced order model. In this work we show how
the increased bandwidth of the high fidelity solver does not influence negatively on the
combination IGA-ROM, provided that stable approximations are used for the high fidelity
solver.

The proposed integrated approach is composed of the following numerical techniques:
(i) isogeometric analysis, that integrates the geometrical representation of the domain and
the finite dimensional approximation of the fluid dynamics problem [32], (ii) free-form
deformation to efficiently deform the computational domain by means of few geometrical
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parameters [43], and (iii) proper orthogonal decomposition-based reduced order modelling
to generate a stable reduced basis to be queried to cut down the computational cost of
numerical simulations [44]. This integration has been introduced in a preliminary version
in [45].

The approach we present is completely integrated and automatic from CAD to sim-
ulation, taking advantage of IGA and FFD perspectives for the accurate and efficient
management of parametrized domains and shapes. The split between offline and online
computational steps is crucial and it allows the versatility of bringing this proposed com-
putational approach on very different devices, scenarios and situations in design and
optimization, for instance.

The structure of the work is as follows. The parametrized formulation and the IGA
method are introduced in “Problem formulation and isogeometric analysis-based high-
fidelity approximation” section; necessary assumptions related to the offline—online
decomposition are also summarized. “Shape parametrization by free-form deformation”
section summarizes the free-form deformation map which is employed to prescribe geo-
metrical variations. The proposed stable POD—Galerkin ROM is introduced in “A POD-
Galerkin ROM for parametrized Stokes equations” section, and 2D and 3D numerical tests
are performed in “Numerical results” section into an optimisation framework. Finally,
conclusions and perspectives follow in “Conclusions and future work” section.

Problem formulation and isogeometric analysis-based high-fidelity
approximation

Parametrized formulation

The problem of interest throughout this work is a parametrized incompressible steady
Stokes problem, obtained as a simplification of Navier—Stokes equations when inertial
forces can be neglected, compared to viscous forces. Parameters of interest, denoted by
€ D C RY, are related to the geometrical representation of the domain Q = Q(n) C
R?. The parametrized Stokes problem reads: find (z(), p(pt)) such that

—vAu(p) + Vp(p) = f(r), in Q(n),

1)
V-u(p) =0, in Q(p),
with boundary conditions
u(p) =g, onI'p # 0,
u(p) =0, on Ty (w), (2)

vWu(p) - n—pun=h, only #0,

representing essential and natural boundary conditions for Stokes equations, respectively.
Here v is a constant kinematic viscosity, while f (i), g and & are prescribed forcing terms,
boundary velocity profiles, and boundary tractions, respectively. For simplicity we assume
that the sections I'p and I'y do not depend on the geometrical parameters, while the
remaining part of the boundary 'y (n) = 9Q(x) \ (I'p U I'y) may depend on u.
Isogeometric formulations of Stokes flows have been extensively studied in the literature.
We refer to [46] for a comprehensive analysis of stable choices of isogeometric finite
element spaces, and to [47] for an alternative formulation based on boundary integral

equations.
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Isogeometric description of the parametrized domain
A CAD representation of the domain is usually obtained through a set of control points
{Pi}f\:[gl, where in general P; € R? is a d-dimensional IGA control point,' whose position
depends on the geometrical parameters .

A d-dimensional geometrical representation is obtained by tensor product of d one-
dimensional B-spline basis functions, denoted by [Eid(s)}j\/dl, Sid :[0,1] — R, and defined
recursively as

d

0° -
d +hk+1
gl)k(s)_ 9d Gdslk 1()+0dl 9d sl_l,_lk 1(5) k:11"'1pd1 (3)
i+k i+k+1 i+1
where
d
Ed()z 1, 9 <S<0l+1’
50 0, otherwise.
and Sd(s) = éd (s) Here 64 = {9{1, 951, .. n+p+1}T 9 € R, is the d-th knot vector, a

non- decreasmg set of coordinates in the s parameter space, whereas p,; is the polynomial
order of the basis functions along the direction 4.

Multivariate B-spline basis functions in R? (see for example Fig. 1) can then be defined
by tensor product as

d
Bi(s)=§i11(s1)...§$(sd), ik=1~~~-/\/:g,k: l=1N = HN,](
k=1

For simplicity of exposition we work on single patch geometries, where the reference
domain is [0, 1]%, and we refer to [32,48] and the references therein for possible general-
izations to multipatch geometries.

The reference domain = [0, 1]% can be deformed into the computational (parame-
trized) domain Q(u), by introducing a parametrized map c(-; ) : Q@ — R4:

Ne
=D Bi9Pi(w), Q) =c(@n), (4)

that depends on the parameter vector g through the set of Ny IGA control points {Pz}, 15
where the subscript g indicates geometry. Different parameter values will produce different
IGA control points and, thus, different computational domains. We will characterize in
“Shape parametrization by free-form deformation” section how to efficiently prescribe the
dependence of P; on p to obtain a broad range of admissible shapes. This parametrization
is crucial to embed IGA in a ROM setting dealing with parametric shapes.

Weak formulation on the reference domain and discrete problem

In order to derive a discrete approximation of the parametrized Stokes problem (1)—(2),
we introduce a weak formulation on the reference domain €. For simplicity of exposition,
we will use the same notation we used in Eq. (1) for the velocity and pressure fields, even
though here the domain is different. Denote by V = [H 1(Q)]% and Q = L%() the velocity
and pressure spaces. Multiplying (1) by test functions v o ¢ and g o ¢ (for the velocity and

In the next section we will introduce another set of control points, related to the free-form deformation, which will
be denoted FFD control points.
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Fig. 1 Anexample of 1-D and 2-D B-splines basis functions. The two dimensional basis functions are
obtained by tensor product of the one dimensional ones

pressure field, respectively), integrating by parts and pulling back to the reference domain,
we obtain the following problem: given g € D, find u € V and p € Q such that
alw,v;u)+bp,v;u) = F(v;u), VYvevy,
b(gu; p) =0, Vg € Q,

where the bilinear forms appearing in (5) are:

(5)

a(u, v; p) == /§V” T Y T(n) detJ(p)) : Vvds, Vu,veV,

bp,vip) := —/ﬁp tr(J "1 (n) det(J(n))Vv) ds, YwveV,peQ

Here, J(n) is the Jacobian of the mapping c(s; ). The linear form F(v; ) encodes forcing
terms, essential boundary conditions (by divergence-free lifting) and natural boundary
conditions.

Isogeometric approximations of Stokes flows (see, for example [46]) violate somehow
the isogeometric paradigm, in the sense that we require two different B-spline spaces for
the velocity and pressure fields in order to satisfy the inf-sup condition, and only one of
the two is usually taken to be the same as the geometrical B-spline space. We introduce
VN c vV and QV C Q, of dimensions AV}, and N, respectively. To differentiate w.r.t.
to the geometric basis functions (which are always taken to be scalar, since we encode
the dimensional information in the control points), we use the following, more general,
notation

Ny Np
u(s) ~ uMN(s) = pis)ui,  pls) ~p"(s) =D eils)ps (©)
i=1 i=1

to indicate objects of vN c Vand QN c Q, where
VN =span{¢,i=1,...,N,} and QY = span{@ii=1,...,N,}, (7)

respectively. An alternative notation, that allows one to distinguish between the properties
of the different isogeometric spaces (see, for example, [36,46]) is given by the following:

Ny N,
VN = Shvbd = span{giiy, QN = ShUEe = spanfg;) Y, (8)
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where p; and «; represent respectively the degree and the maximal regularity in the ith
direction.

If one chooses to use the same basis functions for the geometry and the velocity (for
example), then ¢; are vector versions of B;, and NV, = d./\/:g, where /\/g is the number of the
geometry basis functions. For an extensive discussion on the choices of stable pairs of iso-
geometric finite element approximations of Stokes flows, we refer the reader to [46] and the
references therein. In this work we used a Taylor-Hood approximation (as presented, for
example, in [36]), in which the pressure space is taken to be one degree less of the velocity

space, maintaining the same knot vectors of the geometry and velocity spaces, i.e., we con-

p—1L,..,p—1
8p—2,.‘.,p—2

and represent a good balance between attainable accuracy and computational efficiency.

sider pairs of spaces given by (81‘1:_ 1:::;;_1 — ) which satisfy the inf-sup condition

The isogeometric Galerkin formulation of the problem becomes: given u € D, find
uN € VN and pV € QV such that

a@N, vV ) + bV vV ) = FoVsp) vV e vV ©)
bV, uN;pn) =0 VgV e QY
where uV = N (n) € VV and pN = pN (n) € QV denote the high-fidelity velocity and
pressure solutions, respectively. Equation (9) can be written in matrix form as

Kp) BT | |uw| _ @ (10)
Bp) 0 ||pw o

where
K;(n) = al@, dism),  By(w) =blos ¢jsn),  £;(n) = Fgi; ), (11)

and we indicate with u(p) and p(p) the RN« and RV? vector of coefficients of the discrete,
high-fidelity, velocity and pressure fields respectively.

Affine parametric dependence assumption

In this work we seek for an offline—online decomposition of the computational stages,
as required in the reduced order modelling context for an efficient evaluation of the
ROM [1]. During the offline stage, which we will summarize in “Reduced basis con-
struction through proper orthogonal decomposition” section, we carry out all expensive
computations (related to the IGA high-fidelity model); in contrast, we look for an online
phase (related to the ROM) which is extremely fast (see “Reduced order approximation
through Galerkin projection on the reduced spaces” section). In order to achieve this, we
require that matrices and vectors in (11) fullfil the following affine parametric dependence

assumption:
Qx Qs Qr
Kw)=> 0XwK?, Bu)=> 0B,  f(u)= Oh(wfe. (12)

We employ the empirical interpolation method (EIM) [49] to approximate this assumption
up to a desired tolerance. See also [50-53] for the application of EIM to viscous flows in

parametrized domains.

Shape parametrization by free-form deformation
In this section we show how to relate geometrical parameters u to the IGA control points
position P;(p). Unfortunately, choosing the IGA control points position as geometrical
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parameters (i.e. G = d/N; and [P;(n)]; = Ri—1ydjpi=1.. o Ngj=1,...,d) results in
an extremely high parameter space dimension G > 1 which, in turn, may lead to poor
performance of the reduced order model [e.g. due to an intractable number of terms in the
affine expansions (12)]. The aim of this section is to introduce an efficient representation
of the deformation of parametrized domains described by the IGA transformation (4).

Free-form deformation map

Free-form deformation (FFD) techniques, introduced in [43] in the late 80s, are a powerful
tool for the deformation of a computational domain by means of a small number of
displacements. FFD maps have been employed in the reduced order modelling framework
for the first time in [54], as well as applied to shape optimization problems in [55], in
both cases considering an underlying finite element high-fidelity discretization. FFD has
been exploited in [54,55] to handle the deformation of & into Q2(u) as the result of the
application of the FFD map to each node of the finite element mesh. In contrast, in this
work, we apply FFD to IGA control points to obtain their deformed position {Pi(u)}?fl,
and then rely on the map c(s; -) in (4) to describe the deformed domain Q(u). To further
highlight the sequential nature between the high-fidelity IGA spatial description and the
application of FFD map to its control points we will follow the original derivation in [43],
that uses a different set of basis functions (Bernstein polynomials) than the more general
ones employed in “Problem formulation and isogeometric analysis-based high-fidelity
approximation” section. In any case, further extensions to B-splines or NURBS can also
be pursued [56].

Denote by D C R? a box that contains all IGA control points {P,‘(O)}L/.\:[g1 obtained (e.g.)
for p = 0. Moreover, in order to apply Bernstein polynomials defined on the reference
hypercube? D = [0,1]%, let ¥(p) be the affine function that maps D to D. A (second) set
of equispaced control points {Q; }j ., namely the FFD control points is introduced, where
Ny := szl Ng being Ny the number of FFD control points in the coordinate direction
k. The deformed position of the j-th control point is then obtained as Q; + p;. Since
it is possible for some FFD control points to be fixed or to be allowed to move only in
some prescribed coordinate direction, the parameter vector g € RS will contain only the
non-zero displacement components, so that G < dN,. Effective computational reduction
is obtained if Ny < MNg; numerical tests will show that only a small number of FFD control
points will be necessary to obtain a large range of admissible shapes.

The Free-Form Deformation map T(; ) : D — R? is defined as the composition

T(p;n) =¥ (TWPp)p),
where T(; 1) : D — R% is
Ng

TE;m) =D bi@)[Q + m. (13)

j=1
and b;(p) is the tensor product of one-dimensional Bernstein polynomials

N, .
b®) = b)) b, B by B = (jkk)(l Nk

2Even though actually D = @, we use different symbols to stress the fact that the two reference domains can be, in
principle, different depending on the choice of IGA and FFD basis functions.
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Finally, the parametrized position of each IGA control point is obtained applying the
FED as follows:

Pi(u) = T(P;(0); ).

More practical geometrical parameters in channel configurations

One of the drawbacks of FFD from practical point of view is the lack of immediate inter-
pretation of its parameters. Indeed, FFD is not interpolatory, so the magnitude of the
displacement of a control point is not exactly equal to the actual deformation obtained at
that spatial location. Recent works have improved the versatility (from the user point of
view) of complex shape parametrization techniques thanks to the automatic prescription
of control points position based on more intuitive geometrical parameters [57,58]. In
particular, for the test cases of “High-fidelity IGA solver validation” and “Reduced order
approximation of Poiseuille-like ows with meanline FFD” sections, we take advantage of
similiar ideas to propose a meanline FFD based on two (and four) intuitive geometrical
parameters related to two (and four) admissible rotations of the meanline of a channel con-
figuration. For the case of two rotations, a summary of the meanline FFD is shown in Fig. 2.
For the four rotation case, the extension is straightforward. Starting from a reference mesh
Q and associated IGA control points {Pi(O)}?\:/g1 (Fig. 2a), a bounding box D and a lattice of
FFD control points {Q; }].Aigl are introduced (Fig. 2b). The reference meanline of D is divided
in four intervals (Fig. 2c). In particular, in view of obtaining different channel configura-
tions, we employ two intuitive geometrical parameters 01 and 0, related to the rotation of
the second and third interval (Fig. 2d). FFD geometrical parameters {u; }jligl are then auto-
matically updated, being zero for all FFD control points in the first and last section, and
rotated by 6; (62, respectively) in the second (third, respectively) section, as shown in Fig.
2e. Finally, the position of IGA control points {P,-(/L)}f\:/g1 is updated and (4) is applied to
get the deformed domain ©(p) (see Fig. 2f). Since the relation between (61, 62) and the FFD
parameters {/i; }j\[:gl can be automatically obtained in “High-fidelity IGA solver validation”
and “Reduced order approximation of Poiseuille-like ows with meanline FFD” sections we
will refer to the former as geometrical parameters. Nevertheless, for the sake of exposition
in the next section we still maintain the more general notation g to denote them.

In a similar way, FFD can also be employed to perform local variations to the section
area. In particular, FFD is applied in Fig. 3 to enlarge the outlet section of 3D channel
with rectangular section. This requires one geometrical parameter in 2D (related to the
height of the outlet section) and two geometrical parameters in 3D (related to the width
and height of the outlet section).

A POD-Galerkin ROM for parametrized Stokes equations

In this section we summarize a reduced order model (ROM) for parametrized Stokes
equations based on a POD method and a Galerkin projection (see [59] for a deeper insight
in the subject).

Reduced basis construction through Proper Orthogonal Decomposition

In the offline stage, denote by Erin = {#}, ..., pNwin} € D a (usually large) training set
of Nirain points. For each sample point p’ the high-fidelity IGA solver is queried to obtain
truth velocity and pressure solution. The following snapshot matrices are then considered
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A Reference mesh obtained by (4) f Deformed mesh obtained by (4) with IGA
with IGA control points {Pi(O)}?igl control points {Pi(u)}?;gl

T

@ O
)
b FFD bounding box and € Deformed FFD control lattice {4~ 1(Q;+
i N
reference ];:fFD control lattice H'j)}j ‘o,

1@}

€ Reference meanline d Deformed meanline

Fig.2 Pipeline of the meanline free-form deformation for the 2 parameter case

Fig.3 Change of the outflow section for problem 4: reference geometry (red), morphed geometry (blue)
and free form control points movement (dashed line)
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§u = [E(ILI) | . |E(’LNtmin)] c RNuthrain)
S, =[p() | ... | p(uNiwin)] € RNp*Niwsin,

A POD basis for the velocity and pressure reduced spaces are then obtained by a thin
singular value decomposition (SVD) of the snapshot matrices, i.e.

T T
Xlll/zgu = guguwlp X}l/zgp = gpgpwp

where

e X, € RNuxNa X, € RN»*Np, respectively) is the matrix representing the velocity
(pressure, respectively) inner product;

« U, € RNuxNtrain (Qp € RNp*Nuain respectively) contains the velocity (pressure,
respectively) left singular vectors of S, (S, respectively);

o W, € RNuainXNuain W, € RNwainxNwain | respectively) is an orthogonal matrices of the
velocity (pressure, respectively) right singular vectors of S, (S, respectively);

¢ 6, € RNuain*Nuain 6, € RNwain xNiwain | respectively) is a diagonal matrix, containing
the singular values of S, (S, respectively) sorted in descending order.

Moreover, the so-called supremizer enrichment is employed in this work in order to
satisfy the inf-sup stability also at the reduced order level [59-61]. Thus, for each training
sample the following elliptic problem is solved

X, s(un') =BT (w)p(r), i=1..., Niain.
The resulting supremizer snapshots s(it!), i = 1,. .., Nirain are then stored in a snapshot
matrix S¢, on which a thin SVD is performed as described previously.

Finally, the reduced spaces dimensions Ny, are chosen such that the retained energy I,
given by the sum of the squares of the singular values up to N normalized by the sum
up to Nirain, is larger than a prescribed treshold. A similar procedure is applied to choose
N and N,,. The basis functions of the reduced velocity space V' are then obtained as the
union of the first Ny, left singular vectors of Ll,/ 2§u to the first N left singular vectors of
Xlll/ 2§S. Similarly, the basis functions of the reduced pressure space Qp are given by the
first N, left singular vectors of &19/ 2§p. The corresponding basis function matrices, that
hold the basis functions as column vectors, are denoted by Zy s and Z,, respectively.

Reduced order approximation through Galerkin projection on the reduced spaces
In the online stage, we let @ € D be a new value and we seek an approximation of the
form

u(p) = Zysuy(w),  plp) = Zyp,, (1)

through a Galerkin projection over the reduced spaces V5 and Q. Therefore, the fol-
lowing problem has to be solved:

Ky(r)  Bf(w) | Juye)| _ [fx(w) 14)
By(p) 0 P, (1) o |’
where (see e.g. [1] for a detailed description)
Ky() = Z0 K(w) Zus  By(w) = Z] B(w) Zus  fy(n) = Z0 f(n)

and we indicate with uy(n) and BN(;L) the RNutNs and RN vectors of coefficients of
the reduced order approximation of velocity and pressure fields. Moreover, thanks to the
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affine dependence assumption (12), during the online stage each block the ROM linear
system (14) can be assembled as

Qx Qp Q&
Ky => 0KwKL, By => ©ZBL,  fy(mw) = Ojwi,
q=1 g=1 g=1

where the following matrices have been built at the end of the offline stage and stored in
memory:

Ky, =2l K'2,, By=2]B!Zy (=219
resulting in very efficient (\V independent) online queries. We refer to Fig. 4 for a summary

of the proposed reduced order model, where the offline stage is shown in red, while the
online phase is displayed in green.

Numerical results

High-fidelity IGA solver validation

In order to validate our framework, we first perform some tests on the high-fidelity method
for problem with known, exact solution, both for the two dimensional and three dimen-
sional case. The first test is to recover the divergence-free solution:

Parametrized formulation
High-fidelity IGA Stokes problem

offline

__________________________________

i | Empirical Inter-
| polation Method

High fidelity structures
(affine decomposition)
K? BY, f°

Proper Orthogonal
Affine

assumption

Decomposition

!

basis functions

recovery

matrices Zys, Zp

assembly of structures
K(]ZV = Z;isngu,s
BEI\] = Zgﬁqzu,s
% = ZI.f°

online

assemb],
Qx Y K q solution of the online problem
Ky(p) = 3.2 05 (WKjy

) =N —1 . 8
@@ By(u) = ?fl 65 (1)BY, KN(u)gév JEB)N(M)%VO— £ (1)
fx(p) = S 05 (W) By(puy = 0

peD ([ uv(w). py(w) |

Fig.4 Pipeline of the computational reduction paradigm “at large” for the problem at hand [60]
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uy = 1 cos(mx) cos(mwy)
Uy = 1 sin(mwx) sin(w
y (7rx) sin(mry) s
u, =0
p = w2 cos(2mx) sin(27y)
on a unitary cube Q = [0, 1]3. The corresponding forcing term is

fr = 23(cos(mrx) cos(my) — sin(2mx) sin(27y))
fy = 2m3(sin(x) sin(ry) + cos(27x) cos(2y))  in Q. (15)
f:=0

The exact solution is imposed as a Dirichlet boundary condition® at 9<2.

In Fig. 5 we plot the convergence test for the solution over several refinement cycles on
a uniform grid. The rate of convergence is the one predicted by an a priori analysis, as
shown in [46]. In Fig. 6 the numerical solution for the last iteration is shown.

As a second test, we consider the two-dimensional Poiseuille flow in a rectangular
channel Q = [0, L] x [/, [] (see Fig. 7), whose solution is analytical:

u=u(y) =(1-@/)es
p=px)st.Vp = —ce,
u=u(0) onlp (16)

u=0 onlyw

(VWVu-n—pn=0 only

In this case, the error on the numerical solution reaches the machine epsilon already for a
single IGA element, that is, for 18 DoFs for u and 4 for p. This behaviour is related to the
fact that the solution is quadratic in the velocity and linear in the pressure and the fact that
we are using (8%% — S&’é) for the solution of the problem for both the preliminary tests.
In Fig. 8 we plot the solution for Poiseuille flow on a rectangular domain with L = 10 and
[ =05.

Reduced order approximation of Poiseuille-like flows with meanline FFD

Once the code for the Poiseuille flow has been validated, we keep the same model and
boundary conditions and deform the original rectangle (for the two dimensional problem)
or parallelepiped (for the three dimensional case) domain through FFD, obtaining a family
of possible different configuration of Poiseuille-like flows, such as the one depicted in
Figs. 9, 10, 21, and provide main results regarding the ROM framework explained in “A
POD-Galerkin ROM for parametrized Stokes equations” section.

A summary of the computational details is given in Table 1. In Fig. 11 we provide
the geometry of the four problems we treat during the model order reduction: problem
1 characterized by two rotations and 2D (5%% — S&’é ) elements, problem 2 featuring
two rotation problem and an approximation by high-order 2D (Si:i — S;L)’;.L ) elements,
problem 3 considering four rotation problem and 2D (S %% — S&’é) elements, and problem
4 characterized by two rotations, change of the dimensions of the outflow section and
3D (8%%% - S&’é’& ) elements. Thus, two geometrical parameters, namely angles 61 and 6,

3Since in this case I'y = @ we take Q = L3(Q) := {q € L*(Q)s.t. [, q ds = 0}
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Fig.5 Error convergence for sinusoidal solution test (velocity and pressure) according to the dimension of
the mesh elements (8220 — S;)) elements)

Fig.6 Pressure (left) and velocity (right) solution for the sinusoidal preliminary test ((S%f — S&’S) elements);
DoFs: 20577 for u; 4913 for p

e wall 1
inlet- ] RN

outlet| X
= wall

Fig. 7 Sketch of the domain and boundary conditions for Poiseuille viscous flow test

of the meanline FFD introduced in “More practical geometrical parameters in channel
configurations” section, are considered for problems 1, 2 and 4, with parameter range
D = [—-75deg, 75 deg]?. In a similar way, four geometrical parameters are considered for
problem 3, with parameter range D = [—45 deg, 45 deg]*. Moreover, for problem 4 we
also consider variation of the outlet section, that is, D = [—45 deg, 45 deg]? x [0, 2], being
= [61,62 68 lout, § hoye] € D the parameter vector encoding variation of the meanline
channel configuration (angles 6; and ;) and of the outlet area (width § /,,; and height
8 hoyr increments with respect to the undeformed configuration).

The offline stage is carried out sampling from a random set Enin C D of cardinality
| Etrain] = 500. This requires the solution of 500 IGA problems and the computation of
the SVD of the snapshot matrix (as explained in “Reduced basis construction through
proper orthogonal decomposition” section). The resulting singular values are depicted (in

Page 13 of 22
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Fig.8 Pressure (top) and velocity magnitude (bottom) solution for the Poiseuille viscous flow test
(877 — S§) elements); DoFs: 18 for u; 4 for p

7\

Fig.9 Pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow test
((Sﬁ - S&’é) elements), problem 1; DoFs: 2178 for u; 1024 for p

o g

Fig. 10 Pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow test
((Sfﬁ — S&’é) elements), problem 3; DoFs: 2178 for u; 1024 for p

Table 1 Computational details about the high-fidelity model and the model order

reduction

Problem number 1 2 3 4

Space dimension 2D 2D 2D 3D

IGA space dimension (N, J\/p) (2178,1024) (2592,1225) (2178,1024) (6591, 343)

Number of geometrical parameters 2 rotations 2 rotations 4 rotations 4 = 2 rotations+ outflow
variation (length and width)

Geometrical parameters range [—75° 75012 [—75° 75°]12 [—45° 45°1% [—75° 75°) x [0, 2]2
Number of IGA control points 1089 1296 1089 2197
Number of FFD control points 10 10 20 40

EIM tolerance 1073 1073 1073 1073

EIM terms Qx + Qp + Of 27+1440 89+22+0 50+22+0 104+44+0
Number of snapshots 500 500 500 500

POD tolerance /(N) 1073 1072 1072 2%1072
POD space dimension (Ny,s, Np) (20, 10) (20, 10) (20, 10) (40, 20)

HF evaluation time 155 6.15 155 27s

POD offline construction time 250 2344 s 250 123255
POD evaluation time 0.07 s 0.08 s 0.08 s 0.11s

Computational speedup POD 20 76 18 245
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a Problem 1: two rotation problem with b Problem 2: two rotation problem with
(817 — Sa) clements. (835 — 552 clements.

C Problem 3: four rotation problem with d Problem 4: two rotation problem with
(Sf? - Sé’é) elements. variable outflow section with (S?f% 783’3’01)

elements, three dimensional case.

Fig. 11 Sketch of the four different problems

decreasing order) in Figs. 12 (Problem 1), 13 (Problem 2), 14 (Problem 3), 15 (Problem 4).
The time required for this offline stage ranges from about 250 seconds for problems 1 and
3 to more than 12000 seconds for the three-dimensional problem 4.

In Fig. 16 we perform an error analysis on the solution of the reduced model compared
to the high-fidelity one for the geometry configuration of problem 1. In particular, they
show that 10 basis functions are enough to have an error lower than 10~3 for both pressure
and velocity. For the sake of visualization, we also report the reconstructed velocity and
pressure fields in Fig. 17 obtained for 10 basis functions. We can compare it with the
visualization of the high-fidelity solution of Fig. 9. Similar considerations apply for the
other problems: see Fig. 18 for problem 2, Figs. 9, 19 and 20 for problem 3, and Figs. 21,

22 and 23 for problem 4.
10! ‘
s \
=
<
=
5 107° .
=
a0
|
n .
10~ & \ \ \ \ .
2 4 6 8 10
N
Fig. 12 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 1
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Fig. 13 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 2
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Fig. 14 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 3
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Fig. 15 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 4

Table 1 also highlights several factors that slightly affect the online performance in
terms of CPU time. A first point to take into account is related to the number of terms
resulting from the EIM approximation of parametrized tensors: comparing problems 1 to
2 and 3 we can see that both an increased high-fidelity discretization order and an higher
number of parameters result in a larger number of EIM terms. A second factor to take
into account is related to the reduced space dimension. This can be observed comparing
problems 1 and 4, where the latter requires a larger reduced space due to a slower decay
of POD singular values. In any case, computational speedups are of at least an order of
magnitude. Moreover, problem 4 is characterized by a speedup of order 102
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Fig. 16 Error of the POD solution for pressure and velocity as a function of N, problem 1

Fig. 17 Pressure (left) and velocity magnitude (right) solution for the reduced order solution, problem 1;
DoFs: 10 for u; 10 for p
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Fig. 18 Error of the POD solution for pressure and velocity as a function of N, problem 2

Shape optimization of Poiseuille-like flows with ROM and meanline FFD

We now present the results of the shape optimization routine for the deformable pipe.
Motivated by the error analysis of the previous section, we choose N = 10. The aim is
to find the parameter values that minimize the pressure drop in the pipe, for prescribed
inflow section and parametrized meanline variation (and outlet section, in case of problem
4). For prescribed outlet section, the exact result of the optimization procedure is the
straight pipe, obtained for null value of the angles; for parametrized outlet section, the
exact solution is characterized by null angles and maximum outlet area. The optimal
parameter is denoted by p*.

Details about the optimization algorithm are summarized in Table 2. In Table 3 we
summarize the main results for the optimization process, both for the high fidelity solver
and for the reduced order model. The error on the angles and on the pressure drop is
negligible in the case of the high fidelity solver. The error for the ROM is of the order
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Fig.20 Pressure (left) and velocity magnitude (right) solution for the reduced order solution, problem 3;
DoFs: 10 for u; 10 forp

alh

Fig. 21 Section of pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow
test ((Sﬁ — S&'&) elements), problem 4; DoFs: 6591 for u; 343 for p

IS

Fig. 22 Section of pressure (left) and velocity magnitude (right) solution for the reduced order solution,
problem 4; DoFs: 20 for u; 20 for p
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Fig. 23 Error of the POD solution for pressure and velocity as a function of N, problem 4

Table 2 Details about the optimization algorithm

Geometrical parameters range Problem 1 Problem 2 Problem 3 Problem 4

[-75 deg, 75 deg] [—45 deg, 45 deg] [—75 deg, 75 deg]
Optimization algorithm MATLAB fmincon
Cost functional J Jr, pdl = fp pdl

Table 3 Main results for the optimization process

Problem 1 Problem 2 Problem 3 Problem 4

IGA POD IGA POD IGA POD IGA POD
Opt. CPU time (s) 90 2.5 280 25 151 7 1994 5
Opt. speedup - 36 - 112 - 21 - 400
Il — |l 0= 107* 107° 102 10-° 103 1070 1072
Pressure drop (J) 80 79.997 80 79.997 80 80.0003 12643 12643
Relativeerroron) 0 0(10™) 0 0(10™% 0 0(107% 0 0(107%)

of 10~* (1074, respectively), and we obtain a computational speedup of about 36, for the
two rotation case. Interestingly, such speedup is considerably higher than the speedup
for a single simulation (which is around 20), most likely because it is generally easier for
optimization software to explore a smaller state space, and some smarter procedure may
be used internally to save computational effort. This behaviour is less evident for the four
rotation case (problem 3). We expect that also in the nonlinear case the computational
speedup would increase more considerably.

This simple shape optimization test case highlights the capability of the proposed
reduced order model (in terms of reducing the computational cost). In future more
complex applications will deal with the optimal design process of aero-hydrodynamic
components.

Conclusions and future work

We have presented a complete parametric design pipeline from CAD to accurate and effi-
cient numerical simulation, by introducing geometrical parametrization based on FFD,
high order simulations based on IGA and efficient and stable computational reduction
strategies based on proper orthogonal decomposition, after the enrichment of the veloc-
ity space with suited supremizers. This setting is motivated and developed by industrial
applications in mechanical, nautical and naval engineering at low Reynolds number (e.g.
microfluidics devices characterized by low velocity flows and in small geometrical con-
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figurations). Results look promising to continue with the implementation of a viscous
non-linear model and more complex physical and geometrical problems in order to deal
with more advanced fluid mechanics indexes (vorticity, viscous stresses, viscous energy
dissipation), derived from the state equations. For example, we mention the project UBE
(Underwater Blue Efficiency) whose goal is the shape optimization of immersed parts of
motor yachts, including exhaust flow devices, for the reduction of emissions and vibra-
tions , in order to increase on-board comfort. This parametric design automatic embedded
pipeline is motivating also the investigation and improvement of some computational

aspects related with FFD and the already mentioned EIM.
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