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1 Introduction and summary

Renormalization Group (RG) flow in Quantum Field Theory usually falls outside the regime

of validity of perturbation theory. However, if an expansion parameter is available, like in

the small-ε or the large-N expansion, it may become possible to follow operators from the

UV to the IR fixed point, and have direct access to interesting phenomena induced by the

RG-flow. One such example is multiplet recombination : a primary operator that saturates

the unitarity bound at the UV fixed point recombines with another primary operator, i.e.

the latter flows to a descendant of the first at the IR fixed point, and the two distinct

conformal families get mapped into a single one.

Recently, multiplet recombination was used to reproduce, via simple CFT arguments,

perturbative calculations of anomalous dimensions in the ε-expansion. This was first done

for O(N) scalar models in 4 − ε dimensions [1], and later extended to the Gross-Neveu

model in 2 + ε dimensions [2, 3]. In these examples, the short operator is a boson/fermion

saturating the unitarity bound, which becomes long at the interacting fixed point due to

its equations of motion.

In this paper we will consider multiplet recombination in large-N theories having a

gravity dual description. Intuitively, holography should map multiplet recombination to a

Higgs mechanism in the bulk. Indeed, when the protected operator is a conserved current

that recombines due to a deformation that breaks the symmetry, the dual bulk gauge field

is Higgsed and gets a mass. Here we will discuss the case in which the protected operator

is a free scalar φ, and couple it to a single-trace operator O of the large-N CFT via the
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interaction
∫
ddxφO. We will see that also in this case there is a Higgs-like mechanism at

work, albeit of a different kind, which exists only in AdS.

In order to study this problem, we find it useful to start considering two CFT single-

trace operators (O1, O2) of dimension (∆1,∆2) with ∆1 + ∆2 < d, and thereafter take the

decoupling limit ∆1 → d
2 − 1. The relevant double-trace deformation∫

ddx f O1O2 , (1.1)

leads to an IR fixed point where (O1, O2) are replaced by two operators (Õ1, Õ2) of di-

mension (d −∆1, d −∆2), respectively. In the limit ∆1 → d
2 − 1, many terms in the low

energy limit of the correlators become analytical in the momentum, and can be removed

by appropriate counterterms. Focusing on the physical part of the correlators, we will find

that in this case multiplets recombine. In particular, Õ1 ∝ �Õ2, the IR dimensions being

related as

∆IR
1 = ∆IR

2 + 2 , (1.2)

with ∆IR
2 = d−∆2.

In the bulk the interaction (1.1) gets mapped into a non scale-invariant boundary

condition for the scalar fields (Φ1,Φ2) dual to (O1, O2) [4, 5] (see also [6–10]). These bulk

scalars are free at leading order in 1/N expansion. The presence of the coupling f implies

that the boundary modes of Φ1 and Φ2 get mixed. For O1 and O2 above the unitarity

bound, the holographic analysis is standard, and the results agree with the field theory

analysis. The limit ∆1 → d
2 − 1 should instead be treated with some care. One needs to

rescale the field Φ1, otherwise the normalization of the two-point correlator of O1 would

vanish. Doing so, one sees that the on-shell action for Φ1 reduces to the action of a free

scalar field living on the boundary of AdS, i.e. a singleton [11–15]. In the IR limit of the

holographic RG-flow triggered by (1.1), the singleton gets identified with a boundary mode

of Φ2 corresponding to the VEV of the dual operator, i.e. the singleton becomes a long

multiplet by eating-up the degrees of freedom of the bulk scalar.

The rest of the paper is organized as follows. In section 2 we perform the large-N

field theory analysis, and show that recombination takes place in the limit ∆1 → d
2 − 1. In

section 3 we review the singleton limit in the bulk, and derive the holographic dual of the

multiplet recombination flow. We conclude with some comments on relations to previous

work and possible future directions. The appendix contains the calculation of the variation

of the quantity F̃ [16] induced by the flow (1.1), which shows that δF̃ = F̃UV − F̃IR > 0,

in agreement with the generalized F-theorem advocated in [16, 17].

2 Large-N multiplet recombination: field theory

Consider a free scalar φ coupled to a large-N CFT through the interaction∫
ddxfφO , (2.1)

where O is a single-trace primary operator of dimension ∆ < d
2 + 1, so that the deforma-

tion (2.1) is relevant and triggers an RG-flow.
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At leading order in the large-N expansion, one can integrate out the CFT sector and

get the following non-local kinetic term for the scalar φ∫
ddx f2φ(−�)∆− d

2φ . (2.2)

This term is dominant in the IR, indicating that φ flows to an operator of dimension

∆IR
φ = d − ∆. In fact, the equation of motion for φ tells that in the IR O = f−1�φ

becomes a descendant of φ with dimension ∆IR
O = d − ∆ + 2. Therefore, in the IR O

disappears from the spectrum of primary operators, multiplets recombine, and the short

multiplet of φ becomes long.

As we will see, in order to understand the holographic dual phenomenon, it is useful to

consider this flow as the limit of a double-trace flow induced by fO1O2 when the dimension

of O1 saturates the unitarity bound. In the following subsections we review this double-

trace flow and show that multiplet recombination emerges in the limit.

2.1 Double-trace flow

Let us consider a large-N CFT deformed by the double-trace interaction∫
ddx f O1O2 , (2.3)

where (O1, O2) are single-trace primary operators of dimensions (∆1,∆2), with d
2 − 1 <

∆1,2 < d
2 . Without loss of generality we will take ∆1 < ∆2 in what follows. One can

conveniently analyze the perturbed CFT

S = SCFT +

∫
ddx f O1O2 , (2.4)

by introducing two Hubbard-Stratonovich auxiliary fields σ1 and σ2, and rewrite S as

S = SCFT +

∫
ddx (−f−1 σ1σ2 + σ1O1 + σ2O2) . (2.5)

Integrating σ1 and σ2 out gives the following relations

σ1 = fO2 , σ2 = fO1 , (2.6)

which, once substituted back into (2.5), give the original action (2.4).

By performing the path integral in the CFT, one can derive an effective action for σ1

and σ2. To leading order at large N all correlators of O1 and O2 factorize in a product of

two-point functions. The resulting non-local effective action for the auxiliary fields is

S[σ1, σ2] = −
∫
ddx

(
f−1σ1(x)σ2(x)+

1

2
σ1(x)

∫
ddy

(x−y)2∆1
σ1(y)+

1

2
σ2(x)

∫
ddy

(x−y)2∆2
σ2(y)

)
.

(2.7)

Given that ∆1 and ∆2 are smaller than d
2 , the latter two terms dominate over the first, in the

infrared. When only these terms are retained, σ1 and σ2 have IR correlators corresponding

to operators with scaling dimension d−∆1 and d−∆2, respectively.
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Substituting (2.6), we hence obtain the following operators at the IR fixed point

Õ1 = fO2 , ∆IR
1 = d−∆1 , (2.8a)

Õ2 = fO1 , ∆IR
2 = d−∆2 . (2.8b)

The above result shows that the IR fixed point is the same as the one reached via the

double-trace deformation g1O
2
1 + g2O

2
2 [4]. This will be confirmed by the computation of

the quantity F̃ [16] we do in the appendix, where we show that the difference between the

UV and IR values of F̃ induced by the flow (2.3) coincides with the one induced by the

double-trace deformation g1O
2
1 + g2O

2
2.

2.2 Multiplet recombination

We now take ∆1 = d
2 − 1, which means that O1 decouples and becomes a free scalar, and

consider again the perturbation (2.3) and the corresponding effective action (2.7). The

kernel of the non-local quadratic action for σ1 is now 1
(x−y)d−2 , which is the inverse of the

Laplace operator. By the local change of variable

σ′1 = σ1 − f−1�σ2 , σ′2 = σ2 , (2.9)

one can cancel the mixing term in the action (2.7), getting for the two-point function of σ′1
just the contact term �δd(x− y). Therefore, the following operator equation holds

σ′1 = 0 ⇒ σ1 = f−1�σ2 . (2.10)

Using (2.6), (2.8a) and (2.8b), we obtain the following operator relation at the IR fixed

point

Õ1 = f−1�Õ2 , (2.11)

signaling that multiplets recombine, i.e. Õ1 becomes a descendant of Õ2. Recall from

eq. (2.8b) that Õ2 = fO1 has dimension d − ∆2 and, by (2.11), Õ1 = fO2 has now

dimension d−∆2 + 2.

2.3 A more general flow

One might like to consider a more general double-trace deformation constructed out of O1

and O2, namely ∫
ddx

(
f O1O2 +

g1

2
O2

1 +
g2

2
O2

2

)
, (2.12)

and analyze the corresponding RG-flow.1 Introducing again Hubbard-Stratonovich auxil-

iary fields one can recast the above action as

S = SCFT +

∫
ddx

[
− 1

2(f2 − g1g2)
(2fσ1σ2 − g2σ

2
1 − g1σ

2
2) + σ1O1 + σ2O2

]
. (2.13)

1A similar quadratic interaction involving several single-trace operators was studied recently in the

context of large-N field theory in presence of disorder [18].
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Following the same steps as those of section 2.1, one ends-up with the following primary

operators in the IR

Õ1 = g1O1 + fO2 , ∆IR
1 = d−∆1 , (2.14a)

Õ2 = g2O2 + fO1 , ∆IR
2 = d−∆2 . (2.14b)

This shows that the IR fixed point is the same one reaches via the simpler deformation (2.3),

just the UV/IR operator dictionary is modified. So nothing qualitatively changes with

respect to the previous analysis.

Here again, one can safely take the decoupling limit ∆1 → d
2 − 1, getting a relation

similar to (2.11), the proportionality coefficient being now a function of f , g1 and g2

Õ1 =
f

(f2 − g1g2)
2Õ2 . (2.15)

So multiplets recombine also for this more general deformation. Notice that here the free

operator is a massive one, its mass being proportional to g1. Not suprisingly, for f = 0 the

deformation (2.12) does not trigger any multiplet recombination, as it is also clear from

eq. (2.15). The (massive) free operator simply gets integrated out, while O2 still flows to

an operator of dimension d−∆2.

Let us note that had we chosen d
2 < ∆2 < d, O2

2 would have been an irrelevant

deformation. This would not change much the story. Since one can always connect a CFT

with ∆2 >
d
2 to one with ∆2 <

d
2 via an RG-flow with only g2 turned on, there is no loss

of generality in taking g2 to be a relevant coupling, as we did from the outset.

As it is clear from eq.(2.13), the hypersurface in the parameter space described by the

equation f2−g1g2 = 0 needs a separate treatment. It is not difficult to see that in this case

only one linear combination of the operators renormalizes, the IR dimensions of Õ1 and

Õ2 being d − ∆1 and ∆2, respectively (the symmetry in the exchange g1 ↔ g2 is broken

by the fact that we have chosen ∆1 < ∆2). This is a different IR fixed point with respect

to previous cases. Actually, the same fixed point one reaches by deforming the CFT by g1

only. Also in this special case one can take the decoupling limit, ∆1 → d
2 − 1. Proceeding

the same way as before, one can see that the dimensions of Õ1 and Õ2 are now ∆2 + 2 and

∆2, respectively, indicating that multiplet recombination again holds. The IR fixed point

is the same one reaches with a g1 deformation only, which makes the free field disappearing

from the IR spectrum, leaving only one primary of dimension ∆2.

3 Large-N multiplet recombination: holography

In this section we will analyze the large-N flows considered previously from a dual holo-

graphic perspective. Free operators of the QFT are dual to singleton representations of

the AdS isometry group [13, 14] and some care is needed in dealing with them in the con-

text of AdS/CFT. In particular, singletons do not enjoy any dynamics in the bulk. They

correspond to propagating degrees of freedom only at the AdS boundary, and therefore

the usual field/operator map should be properly interpreted. In what follows, we will first

review how singletons can actually arise as a specific limit of ordinary bulk fields and how
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QFT correlators involving operators saturating the unitarity bound can then be consis-

tently computed holographically using ordinary AdS/CFT techniques. This will enable us

to provide a holographic realization of QFT RG-flows enjoying multiplet recombination at

large N .

3.1 Singleton limit

Consider a scalar Φ in AdSd+1 with mass m2 = ∆(∆− d), and ∆ = d
2 − 1 + η. Eventually,

we will be interested in the limit η → 0. To leading order at large N the scalar is free, and

solving the Klein-Gordon equation we have the leading modes at the boundary

Φ(z, x) ∼
z→0

(
Φ−(x)z∆ + Φ+(x)zd−∆

)(
1 +O(z2)

)
, (3.1)

where z is the radial coordinate that vanishes at the boundary and x ∈ Rd. Since ∆ < d
2 ,

the correct boundary condition is that (d− 2∆)Φ+(x) is fixed to coincide with the source

of the operator of the boundary theory: J(x) ≡ (d − 2∆)Φ+(x). This implies, in turn,

that one needs to include an additional boundary term to ensure that the bulk action is

stationary [19]. After this is done, the renormalized on-shell action consists of the following

boundary term in momentum space

Sren
on-shell =

1

2

∫
z=0

ddk

(2π)d
Φ−[J(k)]J(−k) . (3.2)

The solution to the Klein-Gordon equation with the prescribed boundary condition and

regular for z →∞ is

Φ(k, z)on-shell = − 1

Γ
(
1− d

2 + ∆
)(k

2

)∆− d
2

J(k)z
d
2K d

2
−∆(kz) (3.3)

∼
η→0
−2η k−1J(k)z

d
2K1(kz) ,

where K d
2
−∆(kz) is the modified Bessel’s function of the second kind. From the form of

the solution we see that

Φ−[J(k)] = −1

2

Γ
(
d
2 −∆

)
Γ
(
1− d

2 + ∆
)(k

2

)2∆−d
J(k) (3.4)

∼
η→0
−η

2

(
k

2

)−2

J(k) .

Recalling that the two-point function is minus the second derivative of the effective action

with respect to the source, we find that

〈O(k)O(−k)〉 =
1

2

Γ
(
d
2 −∆

)
Γ
(
1− d

2 + ∆
)(k

2

)2∆−d
∼
η→0

2η

k2
. (3.5)

This shows that in order to get a finite result in the limit η → 0 we need to rescale the

source J(x) of the operator as J(x) = 1√
2η
Ĵ(x), with Ĵ(x) finite in the limit. In terms of

– 6 –
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the bulk scalar field, this amounts to rescaling Φ(x, z) =
√

2η Φ̂(x, z) with Φ̂ kept fixed. In

this limit, the solution (3.3) goes to zero everywhere in the bulk, while the boundary term

stays finite and becomes

Sren
on-shell →

η→0

1

2

∫
z=0

ddk

(2π)d
Ĵ(k)

1

k2
Ĵ(−k) . (3.6)

This is the generating functional of a free scalar operator living on the boundary. Note

that for η → 0 we get Φ̂− = −k−2Ĵ(k). We can identify the free scalar operator φ on the

boundary as φ ≡ Φ̂−. In fact, if we Legendre-transform back from Ĵ to φ the boundary

term becomes 1
2

∫
z=0

ddk
(2π)d

φ(k)k2φ(−k), i.e. the action of a free scalar.

3.2 Holographic recombination flow

We have now all ingredients to provide the holographic description of the large-N flows

discussed in section 2. We start considering two primary operators of the CFT with

dimensions ∆1,2 <
d
2 . The CFT operators are dual to two scalar bulk fields Φ1, Φ2 having

the following near boundary expansions

Φ1(z, x) ∼
z→0

(
Φ−1 (x)z∆1 + Φ+

1 (x)zd−∆1
)(

1 +O(z2)
)
, (3.7a)

Φ2(z, x) ∼
z→0

(
Φ−2 (x)z∆2 + Φ+

2 (x)zd−∆2
)(

1 +O(z2)
)
. (3.7b)

The deformation (2.3) is implemented by imposing the boundary condition [4]

J1 ≡ (d− 2∆1)Φ+
1 + fΦ−2 , (3.8a)

J2 ≡ (d− 2∆2)Φ+
2 + fΦ−1 , (3.8b)

where J1 and J2 are the sources for the field theory operators O1 and O2, respectively.

The solutions which are regular in the interior and have subleading boundary modes

Φ+
1,2 are

Φ1(k, z)on-shell = −N∆1k
∆1− d

2 (d− 2∆1)Φ+
1 z

d
2K d

2
−∆1

(kz) , (3.9a)

Φ2(k, z)on-shell = −N∆2k
∆2− d

2 (d− 2∆2)Φ+
2 z

d
2K d

2
−∆2

(kz) , (3.9b)

where

N∆ =
2

d
2
−∆

Γ
(
1− d

2 + ∆
) . (3.10)

From the explicit expressions (3.9), we can read-off the coefficients Φ−1,2, and obtain a linear

relation between Φ+
1,2 and Φ−1,2. We can plug this in (3.8) and solve for (Φ−1 ,Φ

−
2 ) as linear

functions of (J1, J2). The solution is

Φ−1 [J1, J2] =
J1 − fJ2G2

1− f2G1G2
G1 , Φ−2 [J1, J2] =

J2 − fJ1G1

1− f2G1G2
G2 , (3.11)

where

Gi(k) = −1

2

Γ
(
d
2 −∆i

)
Γ
(
1− d

2 + ∆i

)(k
2

)2∆i−d
. (3.12)

– 7 –
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Using standard techniques, one gets the following renormalized on-shell boundary action

consistent with boundary conditions (3.8)

Sren
on-shell =

1

2

∫
ddk

(2π)d
(
(d− 2∆1)Φ+

1 Φ−1 + (d− 2∆2)Φ+
2 Φ−2 + 2fΦ−1 Φ−2

)
. (3.13)

Using (3.11) this can be rewritten in terms of the sources as follows

Sren
on-shell[J1, J2] =

1

2

∫
ddk

(2π)d

(
J1(k)

G1

1− f2G1G2
J1(−k) + J2(k)

G2

1− f2G1G2
J2(−k)

− 2J1(k)
fG1G2

1− f2G1G2
J2(−k)

)
. (3.14)

This expression is equivalent to the the field theory result (2.7). In order to see this, one

needs to add the following local term to the above generating functional

Slocal = −
∫

ddk

(2π)d
J1(k)

1

f
J2(−k) , (3.15)

and Legendre-transform. Identifying the Legendre-transformed fields with ( 1
f σ2,

1
f σ1) one

gets precisely the Fourier transform of (2.7), provided we identify the field theory coupling

defined in section 2 and the holographic coupling in the following manner

f2
hol = 4πd

Γ
(
1− d

2 + ∆1

)
Γ
(
1− d

2 + ∆2

)
Γ(∆1)Γ(∆2)

f2
ft , (3.16)

and pick the negative root for fhol (it is generic in AdS/CFT that field theory couplings

differ from holographic ones by such overall normalizations). After these identifications,

one can repeat the analysis of section 2.1 and obtain eqs. (2.8).

In order to describe the phenomenon of multiplet recombination holographically, one

has just to repeat the above analysis taking the singleton limit on the field Φ1, first. One

should hence set ∆1 = d
2 − 1 + η, rescale the source of O1 as J1 = 1√

2η
Ĵ1, rescale also the

coupling as f = 1√
2η
f̂ , and eventually take the limit η → 0, with the hatted quantities kept

fixed. Doing so, and repeating previous steps one gets, eventually, equation (2.11). Below,

we find it instructive to adopt yet another (but equivalent) point of view. Instead of working

with the effective action for (σ1, σ2) we will work with the generating functional (3.14) itself.

After the singleton limit the on-shell action, analogous to (3.14), reads

Sren
on-shell = −1

2

∫
ddk

(2π)d

(
Ĵ1(k)

−k−2

1 + f̂2k−2G2

Ĵ1(−k) + J2(k)
G2

1 + f̂2k−2G2

J2(−k)

+ 2Ĵ1(k)
f̂k−2G2

1 + f̂2k−2G2

J2(−k)

)
. (3.17)

This action can be recast in the following way

Sren
on-shell =

1

2

∫
ddk

(2π)d

(
(Ĵ1(k) +

k2

f̂
J2(k)

)
k−2

1 + f̂2k−2G2

(
Ĵ1(−k) +

k2

f̂
J2(−k)

)
, (3.18)

– 8 –
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where certain contact terms have been dropped. We see that we are left with just one

effective source Jeff(x) = Ĵ1(x)− 1
f̂
2J2(x). Equivalently, the VEVs are related as

k2 δS
ren
on-shell

δĴ1

= f̂
δSren

on-shell

δJ2
. (3.19)

This equation shows that, as a result of the interaction f , the VEV mode of the bulk

scalar gets identified with the singleton Φ̂−1 , and its original VEV mode is now obtained

by applying � to Φ̂−1 . This is the hallmark signature of multiplet recombination. Notice,

finally, that in the IR the behavior of the two-point function of the leftover primary operator

is 〈Õ2Õ2〉 ∝ kd−2∆2 , implying that at the IR fixed point we have a primary of dimension

∆IR = d−∆2, in agreement with field theory analysis.

Summarizing, when f = 0 there are two independent modes, i.e. the singleton Φ̂−1 ,

which is just a boundary degree of freedom, and an ordinary bulk scalar, Φ2. They are

associated to two independent sources, Ĵ1(k) and J2(k). In contrast, at the IR AdS point,

there exists only one independent source, Ĵ1(k)− 1
f̂
2J2(k) and in turn only one scalar. Φ2

and the singleton merge into one bulk scalar whose VEV mode is Φ̂−1 .

4 Comments

In this paper we have described multiplet recombination induced by coupling a large-N

CFT in d dimensions to a free sector. Working at leading order in 1/N , we have described

this phenomenon in field theory, and provided the holographic dual description. Let us

comment on the relation with previous work on multiplet recombination in holography,

and indicate some possible future directions.

Multiplet recombination in AdS5/CFT4 was studied in [20–23]. In that case the recom-

bination is not due to an RG-flow, rather it occurs as one moves away from the free point

gYM = 0 of N = 4 SYM on the line of the marginal coupling, and the higher-spin currents

of the free theory get broken. Another instance of higher-spin multiplet recombination is

the case of O(N) vector models in AdS4/CFT3 [24–26]. The holographic dual description

consists of a Higgs mechanism for the higher-spin gauge fields dual to the higher-spin cur-

rents of the free theory. The Higgs mechanism happens at tree-level in the example of

N = 4 SYM, while it is a 1/N effect for the O(N) vector models.

The crucial difference between these examples and our setting is that in these examples

one starts with N � 1 free fields with a singlet condition, while we are considering only

one free field. For this reason, in our setting there are no higher-spin gauge fields in the

bulk. We only have higher spin currents associated to the singleton and supported on the

boundary, and those are broken by the boundary condition.

A natural follow-up of our work would be to consider fermionic operators, along the

lines of [27, 28], and study the analogous singleton limit and recombination in the bulk due

to the boundary condition.

The idea of multiplet recombination has been applied extensively in the literature in

various contexts, to compute anomalous dimensions [1–3, 29–33], to constrain the form of

three-point functions [34], or to find exactly marginal deformations [35]. In these examples

– 9 –
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one works perturbatively in a small parameter that controls the breaking of the shortening

condition. In the case we consider, instead, the recombination happens at leading order

in 1/N , so we cannot apply these methods to obtain more information about the IR fixed

point. It would be interesting to consider a set-up in which the shortening is violated by

a multi-trace operator with a suppressed coupling at large N , as would follow for instance

from an interaction
∫
ddxφO2, and see if similar techniques could instead be used in that

case. Another open problem is to try to use multiplet recombination to compute anomalous

dimensions in the IR fixed point of QED in d = 4− 2ε [36, 37].

We hope to report on some of these issues in the future.
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A Calculation of δF̃ for the double-trace flow fO1O2

In the following, we compute the leading large-N variation of F̃ induced by the flow (1.1).

The quantity F̃ can be defined in a CFT where the dimension d is promoted to a contin-

uous parameter, and interpolates between the sphere free energy in odd dimensions and

the a anomaly in even dimensions [16]. In [16] several examples were provided for which

F̃ decreases towards the IR, suggesting a generalization of the a- and F-theorems to con-

tinuous dimensions. In particular, it was proven that the generalized F-theorem holds for

double-trace deformations. Here we follow the methods of [8, 16, 38].

The quantity of interest is defined as F̃ = sin
(
πd
2

)
logZSd , where ZSd is the partition

function on a d-dimensional sphere. At leading order at large-N the sphere partition

function depends on the deformation fO1O2 as

ZSd
f = ZSd

0 ×
1√

det(1Sd − f2GSd
1 ? GSd

2 )
. (A.1)

This can be derived from the equivalent of action (2.7) for the theory on Sd, by performing

the path integral over σ1 and σ2. GSd
i is the two-point function of Oi on the sphere of

radius R

GSd
i (x, y) =

1(
Rs(x, y)

)2∆i
, (A.2)

– 10 –
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where s is the distance between the two points x, y induced by the round metric g on the

sphere of radius 1. Moreover 1S
d

x,y = 1

Rd
√
g(x)

δd(x− y) and ? is the product

(GSd
1 ? GSd

2 )(x, y) =

∫
Sd
ddzRd

√
g(z)GSd

1 (x, z)GSd
2 (z, y) . (A.3)

Taking the logarithm of (A.1) we have

F̃f − F̃0 = − sin

(
πd

2

)
1

2
log det

(
1− (fRd−∆1−∆2)2s−2∆1 ? s−2∆2

)
. (A.4)

We want to compute the difference between the values in the deep UV and in the deep IR.

Those are obtained by taking fRd−∆1−∆2 to be 0 or ∞, respectively. We obtain

δf F̃ = F̃UV
f − F̃ IR

f = sin

(
πd

2

)
1

2
log det(s−2∆1 ? s−2∆2)

= sin

(
πd

2

)
1

2

(
log det(s−2∆1) + log det(s−2∆2)

)
(A.5)

≡ δF̃∆1 + δF̃∆2 .

Comparing (A.5) with eq. (3.4) in [16], we see that this coincides with the variation of F̃

induced by the deformation g1O
2
1 + g2O

2
2. This agrees with the fact that the deformations

fO1O2 and g1O
2
1 +g2O

2
2 connect the same UV and IR fixed points. In [16, 38] the logarithm

of the functional determinant was evaluated via an appropriate regularization of the infinite

sum, and the end result shown to be positive whenever d
2 − 1 < ∆i <

d
2 . We refer to these

papers for an explicit expression (see also [17]).

In the limit ∆1 → d
2 − 1, the part of δf F̃ that depends on ∆1 equals the value of F̃ for

the CFT of a free scalar, and we have

δf F̃ = F̃scalar + δF̃∆2 , (A.6)

which is again a positive quantity if d
2 − 1 < ∆2 <

d
2 , since F̃scalar > 0 [16]. This equation

reflects the fact that along the flow the free scalar and the primary single-trace operator of

dimension ∆2 recombine, giving in the IR one primary single-trace operator of dimension

d−∆2.

The upshot is then that the generalized F-theorem holds for the double-trace defor-

mation (2.3), and it does so also when multiplets recombine.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Rychkov and Z.M. Tan, The ε-expansion from conformal field theory,

J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

– 11 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1751-8113/48/29/29FT01
http://arxiv.org/abs/1505.00963
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00963


J
H
E
P
0
5
(
2
0
1
6
)
1
8
3

[2] S. Ghosh, R.K. Gupta, K. Jaswin and A.A. Nizami, ε-Expansion in the Gross-Neveu model

from conformal field theory, JHEP 03 (2016) 174 [arXiv:1510.04887] [INSPIRE].

[3] A. Raju, ε-Expansion in the Gross-Neveu CFT, arXiv:1510.05287 [INSPIRE].

[4] E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258 [INSPIRE].

[5] M. Berkooz, A. Sever and A. Shomer, ‘Double-trace’ deformations, boundary conditions and

spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

[6] W. Mück, An improved correspondence formula for AdS/CFT with multitrace operators,

Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

[7] S.S. Gubser and I. Mitra, Double-trace operators and one-loop vacuum energy in AdS/CFT,

Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].

[8] S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of

double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

[9] T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and

functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

[10] I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of

the deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

[11] M.J. Duff, Anti-de Sitter space, branes, singletons, superconformal field theories and all that,

Int. J. Mod. Phys. A 14 (1999) 815 [hep-th/9808100] [INSPIRE].

[12] T. Ohl and C.F. Uhlemann, Saturating the unitarity bound in AdS/CFT(AdS),

JHEP 05 (2012) 161 [arXiv:1204.2054] [INSPIRE].

[13] M. Flato and C. Fronsdal, Quantum field theory of singletons. The Rac,

J. Math. Phys. 22 (1981) 1100 [INSPIRE].

[14] C. Fronsdal, The Dirac supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].

[15] A. Starinets, Singleton field theory and Flato-Fronsdal dipole equation,

Lett. Math. Phys. 50 (1999) 283 [math-ph/9809014] [INSPIRE].

[16] S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117

[arXiv:1409.1937] [INSPIRE].

[17] L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Generalized F -theorem and the ε

expansion, JHEP 12 (2015) 155 [arXiv:1507.01960] [INSPIRE].

[18] O. Aharony, Z. Komargodski and S. Yankielowicz, Disorder in large-N theories,

JHEP 04 (2016) 013 [arXiv:1509.02547] [INSPIRE].

[19] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking,

Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[20] M. Bianchi, J.F. Morales and H. Samtleben, On stringy AdS5 × S5 and higher spin

holography, JHEP 07 (2003) 062 [hep-th/0305052] [INSPIRE].

[21] N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4

SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].

[22] M. Bianchi, Higher spin symmetry (breaking) in N = 4 SYM theory and holography,

C. R. Phys. 5 (2004) 1091 [hep-th/0409292] [INSPIRE].

– 12 –

http://dx.doi.org/10.1007/JHEP03(2016)174
http://arxiv.org/abs/1510.04887
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04887
http://arxiv.org/abs/1510.05287
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.05287
http://arxiv.org/abs/hep-th/0112258
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112258
http://dx.doi.org/10.1088/1126-6708/2002/05/034
http://arxiv.org/abs/hep-th/0112264
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112264
http://dx.doi.org/10.1016/S0370-2693(02)01487-9
http://arxiv.org/abs/hep-th/0201100
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201100
http://dx.doi.org/10.1103/PhysRevD.67.064018
http://arxiv.org/abs/hep-th/0210093
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210093
http://dx.doi.org/10.1016/S0550-3213(03)00056-7
http://arxiv.org/abs/hep-th/0212138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212138
http://dx.doi.org/10.1088/1126-6708/2008/01/019
http://arxiv.org/abs/hep-th/0602106
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602106
http://dx.doi.org/10.1088/1126-6708/2007/05/075
http://arxiv.org/abs/hep-th/0703152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703152
http://dx.doi.org/10.1142/S0217751X99000403
http://arxiv.org/abs/hep-th/9808100
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808100
http://dx.doi.org/10.1007/JHEP05(2012)161
http://arxiv.org/abs/1204.2054
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2054
http://dx.doi.org/10.1063/1.524993
http://inspirehep.net/search?p=find+J+"J.Math.Phys.,22,1100"
http://dx.doi.org/10.1103/PhysRevD.26.1988
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D26,1988"
http://dx.doi.org/10.1023/A:1007644223085
http://arxiv.org/abs/math-ph/9809014
http://inspirehep.net/search?p=find+EPRINT+math-ph/9809014
http://dx.doi.org/10.1007/JHEP03(2015)117
http://arxiv.org/abs/1409.1937
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1937
http://dx.doi.org/10.1007/JHEP12(2015)155
http://arxiv.org/abs/1507.01960
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01960
http://dx.doi.org/10.1007/JHEP04(2016)013
http://arxiv.org/abs/1509.02547
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02547
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://arxiv.org/abs/hep-th/9905104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905104
http://dx.doi.org/10.1088/1126-6708/2003/07/062
http://arxiv.org/abs/hep-th/0305052
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305052
http://dx.doi.org/10.1088/1126-6708/2004/07/058
http://arxiv.org/abs/hep-th/0405057
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405057
http://dx.doi.org/10.1016/j.crhy.2004.10.006
http://arxiv.org/abs/hep-th/0409292
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409292


J
H
E
P
0
5
(
2
0
1
6
)
1
8
3

[23] M. Bianchi, P.J. Heslop and F. Riccioni, More on “La Grande Bouffe”: towards higher spin

symmetry breaking in AdS, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].

[24] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model,

Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

[25] L. Girardello, M. Porrati and A. Zaffaroni, 3D interacting CFTs and generalized Higgs

phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181]

[INSPIRE].

[26] R.G. Leigh and A.C. Petkou, Singleton deformation of higher-spin theory and the phase

structure of the three-dimensional O(N) vector model, Phys. Rev. D 88 (2013) 046006

[arXiv:1212.4421] [INSPIRE].

[27] P.J. Heslop and F. Riccioni, On the fermionic Grande Bouffe: more on higher spin symmetry

breaking in AdS/CFT, JHEP 10 (2005) 060 [hep-th/0508086] [INSPIRE].

[28] J.N. Laia and D. Tong, Flowing between fermionic fixed points, JHEP 11 (2011) 131

[arXiv:1108.2216] [INSPIRE].

[29] D. Anselmi, The N = 4 quantum conformal algebra, Nucl. Phys. B 541 (1999) 369

[hep-th/9809192] [INSPIRE].

[30] A.V. Belitsky, J. Henn, C. Jarczak, D. Müller and E. Sokatchev, Anomalous dimensions of

leading twist conformal operators, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936]

[INSPIRE].

[31] P. Basu and C. Krishnan, ε-Expansions near three dimensions from conformal field theory,

JHEP 11 (2015) 040 [arXiv:1506.06616] [INSPIRE].

[32] E.D. Skvortsov, On (un)broken higher-spin symmetry in vector models, arXiv:1512.05994

[INSPIRE].

[33] S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin

symmetry, arXiv:1601.01310 [INSPIRE].

[34] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken

higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

[35] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal

deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

[36] L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum electrodynamics in d = 3

from the ε expansion, Phys. Rev. Lett. 116 (2016) 131601 [arXiv:1508.06278] [INSPIRE].

[37] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QEDd, F -theorem and the ε

expansion, J. Phys. A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].

[38] D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT,

JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].

– 13 –

http://dx.doi.org/10.1088/1126-6708/2005/08/088
http://arxiv.org/abs/hep-th/0504156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504156
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://arxiv.org/abs/hep-th/0210114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
http://dx.doi.org/10.1016/S0370-2693(03)00492-1
http://arxiv.org/abs/hep-th/0212181
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212181
http://dx.doi.org/10.1103/PhysRevD.88.046006
http://arxiv.org/abs/1212.4421
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4421
http://dx.doi.org/10.1088/1126-6708/2005/10/060
http://arxiv.org/abs/hep-th/0508086
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508086
http://dx.doi.org/10.1007/JHEP11(2011)131
http://arxiv.org/abs/1108.2216
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2216
http://dx.doi.org/10.1016/S0550-3213(98)00848-7
http://arxiv.org/abs/hep-th/9809192
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809192
http://dx.doi.org/10.1103/PhysRevD.77.045029
http://arxiv.org/abs/0707.2936
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2936
http://dx.doi.org/10.1007/JHEP11(2015)040
http://arxiv.org/abs/1506.06616
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06616
http://arxiv.org/abs/1512.05994
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05994
http://arxiv.org/abs/1601.01310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01310
http://dx.doi.org/10.1088/0264-9381/30/10/104003
http://arxiv.org/abs/1204.3882
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3882
http://dx.doi.org/10.1007/JHEP06(2010)106
http://arxiv.org/abs/1005.3546
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3546
http://dx.doi.org/10.1103/PhysRevLett.116.131601
http://arxiv.org/abs/1508.06278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06278
http://dx.doi.org/10.1088/1751-8113/49/13/135403
http://arxiv.org/abs/1508.06354
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06354
http://dx.doi.org/10.1088/1126-6708/2007/05/046
http://arxiv.org/abs/hep-th/0702163
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702163

	Introduction and summary
	Large-N multiplet recombination: field theory
	Double-trace flow
	Multiplet recombination
	A more general flow

	Large-N multiplet recombination: holography
	Singleton limit
	Holographic recombination flow

	Comments
	Calculation of delta tilde F for the double-trace flow f O(1) O(2)

