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Abstract

We obtain predictions for the Majorana phases α21/2 and α31/2 of the 3 × 3 unitary neutrino mixing 
matrix U = U

†
e Uν , Ue and Uν being the 3 × 3 unitary matrices resulting from the diagonalisation of 

the charged lepton and neutrino Majorana mass matrices, respectively. We focus on forms of Ue and Uν

permitting to express α21/2 and α31/2 in terms of the Dirac phase δ and the three neutrino mixing angles 
of the standard parametrisation of U , and the angles and the two Majorana-like phases ξ21/2 and ξ31/2
present, in general, in Uν . The concrete forms of Uν considered are fixed by, or associated with, symmetries 
(tri-bimaximal, bimaximal, etc.), so that the angles in Uν are fixed. For each of these forms and forms of Ue

that allow to reproduce the measured values of the three neutrino mixing angles θ12, θ23 and θ13, we derive 
predictions for phase differences (α21/2 − ξ21/2), (α31/2 − ξ31/2), etc., which are completely determined 
by the values of the mixing angles. We show that the requirement of generalised CP invariance of the 
neutrino Majorana mass term implies ξ21 = 0 or π and ξ31 = 0 or π . For these values of ξ21 and ξ31 and 
the best fit values of θ12, θ23 and θ13, we present predictions for the effective Majorana mass in neutrinoless 
double beta decay for both neutrino mass spectra with normal and inverted ordering.
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1. Introduction

Determining the status of the CP symmetry in the lepton sector, discerning the type of spec-
trum the neutrino masses obey, identifying the nature — Dirac or Majorana — of massive 
neutrinos and determining the absolute neutrino mass scale are among the highest priority goals 
of the programme of future research in neutrino physics (see, e.g., [1]). The results obtained 
within this ambitious research programme can shed light, in particular, on the origin of the ob-
served pattern of neutrino mixing. Comprehending the origin of the patterns of neutrino masses 
and mixing is one of the most challenging problems in neutrino physics. It is an integral part of 
the more general fundamental problem in particle physics of deciphering the origins of flavour, 
i.e., of the patterns of quark, charged lepton and neutrino masses and of the quark and neutrino 
mixing.

In refs. [2–5] (see also [6]), working in the framework of the reference 3-neutrino mixing 
scheme (see, e.g., [1]), we have derived predictions for the Dirac CP violation (CPV) phase in 
the Pontecorvo, Maki, Nakagawa and Sakata (PMNS) neutrino mixing matrix within the discrete 
flavour symmetry approach to neutrino mixing. This approach provides a natural explanation 
of the observed pattern of neutrino mixing and is widely explored at present (see, e.g., [7,8]
and references therein). In the present article, using the method developed and utilised in [2], 
we derive predictions for the Majorana CPV phases in the PMNS matrix [9] within the same 
approach based on discrete flavour symmetries. Our study is a natural continuation of the studies 
performed in [2–6].

As is well known, the PMNS matrix will contain physical CPV Majorana phases if the mas-
sive neutrinos are Majorana particles [9]. The massive neutrinos are predicted to be Majorana 
fermions by a large number of theories of neutrino mass generation (see, e.g., [7,10,11]), most 
notably, by the theories based on the seesaw mechanism [12]. The flavour neutrino oscillation 
probabilities do not depend on the Majorana phases [9,13]. The Majorana phases play particu-
larly important role in processes involving real or virtual neutrinos, which are characteristic of 
Majorana nature of massive neutrinos and in which the total lepton charge L changes by two 
units, |�L| = 2 (see, e.g., [14]). One widely discussed and experimentally relevant example is 
neutrinoless double beta ((ββ)0ν -) decay of even–even nuclei (see, e.g., [10,15,16]) 48Ca, 76Ge, 
82Se, 100Mo, 130Te, 136Xe, etc.: (A, Z) → (A, Z + 2) + e− + e−. The predictions for the rates 
of the lepton flavour violating processes, μ → e + γ and μ → 3e decays, μ − e conversion 
in nuclei, etc., in theories of neutrino mass generation with massive Majorana neutrinos (e.g., 
TeV scale type I seesaw model, the Higgs triplet model, etc.) depend on the Majorana phases 
(see, e.g., [17,18]). And the Majorana phases in the PMNS matrix can provide the CP violation 
necessary for the generation of the observed baryon asymmetry of the Universe [19].2

In the reference case of 3-neutrino mixing, which we are going to consider in the present 
article, there can be two physical Majorana CPV phases in the PMNS neutrino mixing matrix in 
addition to the Dirac CPV phase [9]. The PMNS matrix in this case is given by

U = V Q, Q = diag
(

1, ei
α21

2 , ei
α31

2

)
, (1)

2 This possibility can be realised within the leptogenesis scenario of the baryon asymmetry generation [20,21], which 
is based on the type I seesaw mechanism of neutrino mass generation [12].
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where α21,31 are the two Majorana CPV phases and V is a CKM-like matrix containing the Dirac 
CPV phase. The matrix V has the following form in the standard parametrisation of the PMNS 
matrix [1], which we are going to employ in what follows:

V =

⎛
⎜⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎟⎠ . (2)

Here 0 ≤ δ ≤ 2π is the Dirac CPV phase and we have used the standard notation cij = cos θij , 
sij = sin θij with 0 ≤ θij ≤ π/2. In the case of CP invariance we have δ = 0, π , 2π , 0 and 2π

being physically indistinguishable, and [22] α21 = kπ , α31 = k′π , k, k′ = 0, 1, 2.3

The neutrino mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13 play important role in our fur-
ther considerations. They were determined with relatively small uncertainties in the most recent 
analysis of the global neutrino oscillation data performed in [24] (for earlier analyses see, e.g., 
[25,26]). The authors of ref. [24], using, in particular, the first NOνA (LID) data on νμ → νe os-
cillations from [27], find the following best fit values and 3σ allowed ranges of sin2 θ12, sin2 θ23
and sin2 θ13:

(sin2 θ12)BF = 0.297 , 0.250 ≤ sin2 θ12 ≤ 0.354 , (3)

(sin2 θ23)BF = 0.437 (0.569) , 0.379 (0.383) ≤ sin2 θ23 ≤ 0.616 (0.637) , (4)

(sin2 θ13)BF = 0.0214 (0.0218) , 0.0185 (0.0186) ≤ sin2 θ13 ≤ 0.0246 (0.0248) . (5)

The values (values in brackets) correspond to neutrino mass spectrum with normal ordering 
(inverted ordering) (see, e.g., [1]), denoted further as the NO (IO) spectrum. Note, in particular, 
that sin2 θ23 can differ significantly from 0.5 and that sin2 θ23 = 0.5 lies in the 2σ interval of 
allowed values. Using the same set of data the authors of [24] find also the following best fit 
value and 2σ allowed range of the Dirac phase δ:

δ = 1.35π (1.32π) , 0.92π (0.83π) ≤ δ ≤ 1.99π . (6)

The discrete flavour symmetry approach to neutrino mixing is based on the observation that 
the PMNS neutrino mixing angles θ12, θ23 and θ13 have values which differ from those of specific 
symmetry forms of the mixing matrix by subleading perturbative corrections (see further). The 
fact that the PMNS matrix in the case of 3-neutrino mixing is a product of two 3 × 3 unitary 
matrices Ue and Uν , originating from the diagonalisation of the charged lepton and neutrino 
mass matrices,

U = U†
e Uν , (7)

is also widely exploited. In terms of the parameters of Ue and Uν , in the absence of constraints 
the PMNS matrix can be parametrised as [28]

U = U†
e Uν = (Ũe)

† � Ũν Q0 . (8)

Here Ũe and Ũν are CKM-like 3 × 3 unitary matrices, and � and Q0 are given by

� = diag
(

1, e−iψ , e−iω
)

, Q0 = diag
(

1, ei
ξ21

2 , ei
ξ31

2

)
, (9)

3 If the neutrino masses are generated via the type I seesaw mechanism, the interval in which α21 and α31 vary is 
[0, 4π) [23]. Thus, in this case α21 and α31 have CP-conserving values for k, k′ = 0, 1, 2, 3, 4.
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where ψ , ω, ξ21 and ξ31 are phases which contribute to physical CPV phases. The phases in 
Q0 result from the diagonalisation of the neutrino Majorana mass term and contribute to the 
Majorana phases in the PMNS matrix.

In the approach of interest one assumes the existence at certain energy scale of a (lepton) 
flavour symmetry corresponding to a non-Abelian discrete group Gf . The symmetry group Gf

can be broken, in general, to different symmetry subgroups, or “residual symmetries”, Ge and 
Gν of the charged lepton and neutrino mass terms, respectively. Given a discrete symmetry Gf , 
there are more than one (but still a finite number of) possible residual symmetries Ge and Gν . 
The subgroup Ge, in particular, can be trivial. Non-trivial residual symmetries Ge and Gν (of a 
given Gf ) constrain the forms of the matrices Ue and Uν , and thus the form of U .

Among the widely considered symmetry forms of U are: i) the tri-bimaximal (TBM) form 
[29,30], ii) the bimaximal (BM) form4 [32], iii) the golden ratio type A (GRA) form [33,34], 
iv) the golden ratio type B (GRB) form [35], and v) the hexagonal (HG) form [36,37]. It is typi-
cally assumed that the matrix Ũν in eq. (8), and not Ũe, has a symmetry form and, in particular, 
has one of the forms discussed above. For all these forms we have

Ũν = R23(θ
ν
23)R12(θ

ν
12) , (10)

with θν
23 = −π/4, R23 and R12 being 3 × 3 orthogonal matrices describing rotations in the 2–3 

and 1–2 planes:

R12
(
θν

12

) =
⎛
⎝ cos θν

12 sin θν
12 0

− sin θν
12 cos θν

12 0
0 0 1

⎞
⎠ , R23

(
θν

23

) =
⎛
⎝1 0 0

0 cos θν
23 sin θν

23
0 − sin θν

23 cos θν
23

⎞
⎠ . (11)

The value of the angle θν
12, and thus of sin2 θν

12, depends on the form of Ũν . For the TBM, 
BM, GRA, GRB and HG forms we have: i) sin2 θν

12 = 1/3 (TBM), ii) sin2 θν
12 = 1/2 (BM), 

iii) sin2 θν
12 = (2 + r)−1 ∼= 0.276 (GRA), r being the golden ratio, r = (1 +√

5 )/2, iv) sin2 θν
12 =

(3 − r)/4 ∼= 0.345 (GRB), and v) sin2 θν
12 = 1/4 (HG).

The TBM form of Ũν , for example, can be obtained from a Gf = A4 symmetry, when the 
residual symmetry is Gν = Z2. In this case there is an additional accidental μ − τ symmetry, 
which together with the Z2 symmetry leads to the TBM form of Ũν (see, e.g., [38]). The TBM 
form can also be derived from Gf = T ′ with Gν = Z2, provided the left-handed (LH) charged 
lepton and neutrino fields each transform as triplets of T ′.5 One can obtain the BM form from, 
e.g., the Gf = S4 symmetry, when Gν = Z2. There is an accidental μ–τ symmetry in this case 
as well [40]. The A5 symmetry group can be utilised to generate GRA mixing, while the groups 
D10 and D12 can lead to the GRB and HG mixing forms, respectively.

The symmetry forms of Ũν considered above do not include rotation in the 1–3 plane, i.e., 
θν

13 = 0. However, forms of Ũν of the type

Ũν = R23(θ
ν
23)R13(θ

ν
13)R12(θ

ν
12) , (12)

with non-zero values of θν
13 are inspired by certain types of flavour symmetries (see, e.g., 

[41–44]). In [41], for example, the so-called tri-permuting pattern, corresponding to θν
12 = θν

23 =

4 Bimaximal mixing can also be a consequence of the conservation of the lepton charge L′ = Le −Lμ −Lτ (LC) [31], 
supplemented by a μ − τ symmetry.

5 When working with 3-dimensional and 1-dimensional representations of T ′ , there is no way to distinguish T ′ from 
A4 [39].
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−π/4 and θν
13 = sin−1(1/3), was proposed and investigated. In this study we will consider also 

the form in eq. (12) for three representative values of θν
13 discussed in the literature: θν

13 = π/20, 
π/10 and sin−1(1/3).

The symmetry values of the angles in the matrix Ũν typically, and in all cases considered 
above, differ by relatively small perturbative corrections from the experimentally determined 
values of at least some of the angles θ12, θ23 and θ13. The requisite corrections are provided by 
the matrix Ue, or equivalently, by Ũe. In the approach followed in [2–4,6] we are going to adopt, 
the matrix Ũe is unconstrained and was chosen on phenomenological grounds. This corresponds 
to the case of trivial subgroup Ge, i.e., of the charged lepton mass term breaking the symmetry 
Gf completely. The matrix Ũe in the general case depends on three angles and one phase [28]. 
However, in a class of theories of (lepton) flavour and neutrino mass generation, based on a GUT 
and/or a discrete symmetry (see, e.g., [45–50]), Ũe is an orthogonal matrix which describes one 
rotation in the 1–2 plane,

Ũe = R−1
12 (θe

12) , (13)

or two rotations in the planes 1–2 and 2–3,

Ũe = R−1
23 (θe

23)R−1
12 (θe

12) , (14)

θe
12 and θe

23 being the corresponding rotation angles. Other possibilities include Ũe being an 
orthogonal matrix which describes i) one rotation in the 1–3 plane,6

Ũe = R−1
13 (θe

13) , (15)

or ii) two rotations in any other two of the three planes, e.g.,

Ũe = R−1
23 (θe

23)R−1
13 (θe

13) , or (16)

Ũe = R−1
13 (θe

13)R−1
12 (θe

12) . (17)

We use the inverse matrices in eqs. (13)–(17) for convenience of the notations in expressions that 
will appear further in our analysis.

In refs. [2,4] sum rules for the cosine of the Dirac phase δ of the PMNS matrix, by which 
cos δ is expressed in terms of the three measured neutrino angles θ12, θ23 and θ13, were derived 
in the cases of the following forms of Ũe and Ũν :

A. Ũν = R23(θ
ν
23)R12(θ

ν
12) and i) Ũe = R−1

12 (θe
12), ii) Ũe = R−1

13 (θe
13),

iii) Ũe = R−1
23 (θe

23)R
−1
12 (θe

12), iv) Ũe = R−1
23 (θe

23)R
−1
13 (θe

13), v) Ũe = R−1
13 (θe

13)R
−1
12 (θe

12);
B. Ũν = R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12) and vi) Ũe = R−1

12 (θe
12), vii) Ũe = R−1

13 (θe
13).

The sum rules thus found allowed us in the cases of the TBM, BM (LC), GRA, GRB and HG 
mixing forms of Ũν in item A and for certain fixed values of θν

ij in item B to obtain predictions 
for cos δ (see refs. [2–4,6]) as well as for the rephasing invariant

JCP = Im
{
U∗

e1U
∗
μ3Ue3Uμ1

}
= 1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 , (18)

6 The case of Ũe representing a rotation in the 2–3 plane is ruled out for the five symmetry forms of Ũν listed above, 
since in this case a realistic value of θ13 �= 0 cannot be generated.
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on which the magnitude of CP-violating effects in neutrino oscillations depends [51]. The results 
of these studies showed that the predictions for cosδ exhibit strong dependence on the symmetry 
form of Ũν . This led to the conclusion that a sufficiently precise measurement of cosδ combined 
with high precision measurements of sin2 θ12, sin2 θ23 and sin2 θ13 can allow to test critically the 
idea of existence of an underlying discrete symmetry form of the PMNS matrix and, thus, of 
existence of a new symmetry in particle physics.

In ref. [2] predictions for the Majorana phases of the PMNS matrix α21 and α31 in the case 
of Ũν = R23(θ

ν
23)R12(θ

ν
12), corresponding to the TBM, BM (LC), GRA, GRB and HG symmetry 

forms, and Ũe = R−1
23 (θe

23)R
−1
12 (θe

12) were derived under the assumption that the phases ξ21 and 
ξ31 in eqs. (8) and (9), which originate from the diagonalisation of the neutrino Majorana mass 
term, are known (i.e., are fixed by symmetry or other arguments). In the present article we extend 
the analysis performed in [2] to obtain predictions for the phases α21 and α31 in the cases of the 
forms of the matrices Ũν and Ũe listed in items A and B above. This allows us to obtain predic-
tions for the phase differences (α21 − ξ21) and (α31 − ξ31). We further employ the generalised 
CP symmetry constraint in the neutrino sector [52–54], which allows us to fix the values of the 
phases ξ21 and ξ31, and thus to predict the values of α21 and α31. We use these results together 
with the sum rule results on cos δ to derive (in graphic form) predictions for the dependence of 
the absolute value of the (ββ)0ν-decay effective Majorana mass (see, e.g., [10]), |〈m〉|, on the 
lightest neutrino mass in all cases considered for both the NO and IO spectra.

Our article is organised as follows. In Section 2 we obtain sum rules for (α21 −ξ21) and (α31 −
ξ31) in schemes containing one rotation from the charged lepton sector, i.e., Ũe = R−1

12 (θe
12), or 

Ũe = R−1
13 (θe

13), and two rotations from the neutrino sector: Ũν = R23(θ
ν
23) R12(θ

ν
12). In these 

schemes the PMNS matrix has the form

U = Rij (θ
e
ij )� R23(θ

ν
23)R12(θ

ν
12)Q0 , (19)

with (ij) = (12), (13). We obtain results in the general case of arbitrary fixed values of θν
23 and 

θν
12. In Section 3 we analyse schemes with Ũe = R−1

23 (θe
23) R

−1
12 (θe

12), Ũe = R−1
23 (θe

23) R
−1
13 (θe

13), 
or Ũe = R−1

13 (θe
13) R

−1
12 (θe

12), and7 two rotations from the neutrino sector, i.e.,

U = Rij (θ
e
ij )Rkl(θ

e
kl)� R23(θ

ν
23)R12(θ

ν
12)Q0 , (20)

with (ij) − (kl) = (12) − (23), (13) − (23), (12) − (13). Again we provide results for arbitrary 
fixed values of θν

23 and θν
12. Further, in Section 4, we extend the analysis performed in Section 2

to the case of a third rotation matrix present in Ũν :

U = Rij (θ
e
ij )� R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 , (21)

with (ij) = (12), (13). Section 5 contains a brief summary of the sum rules for the Majorana 
phases α21/2 and α31/2 derived in Sections 2–4. Using the sum rules, we present in Section 6
predictions for phase differences (α21/2 − ξ21/2), (α31/2 − ξ31/2), etc., involving the Majorana 
phases α21/2 and α31/2, which are determined just by the values of the three neutrino mixing 
angles θ12, θ23 and θ13, and of the fixed angles θν

ij . In the cases listed in item A we give re-
sults for values of θν

23 (= −π/4) and θν
12, corresponding to the TBM, BM (LC), GRA, GRB and 

HG symmetry forms of Ũν . In each of the two cases given in item B the reported results are 
for θν

23 = −π/4 and five sets of values of θν
13 and θν

12 associated with symmetries. We then set 

7 We consider only the “standard” ordering of the two rotations in Ũe , see [6]. The case with Ũe = R−1
23 (θe

23) R−1
12 (θe

12)

has been investigated in [2] and we consider it here briefly for completeness.
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(ξ21, ξ31) = (0, 0), (0, π), (π, 0) and (π, π) and use the resulting values of α21/2 and α31/2 to de-
rive graphical predictions for the absolute value of the effective Majorana mass in (ββ)0ν-decay, 
|〈m〉|, as a function of the lightest neutrino mass in the schemes of mixing studied. We show in 
Section 7 that the requirement of generalised CP invariance of the neutrino Majorana mass term 
in the cases of S4, A4, T ′ and A5 lepton flavour symmetries leads indeed to ξ21 = 0 or π , ξ31 = 0
or π . In the first two cases (third case) studied in Section 3, B1 and B2 (B3), the phase α31/2 (the 
phases δ, α21/2 and α31/2) depends (depend) on an additional phase, β (ω), which, in general, 
is not constrained. For schemes B1 and B2, the predictions for |〈m〉| are obtained in Section 6
by varying β in the interval [0, π]. In the case of scheme B3 the results for the Majorana phases 
and |〈m〉| are derived for the value of ω = 0, for which the Dirac phase δ has a value in its 2σ

allowed interval quoted in eq. (6). Section 8 contains summary of the results of the present study 
and conclusions.

We note finally that the titles of Sections 2–4 and of their subsections reflect the rotations 
contained in the corresponding parametrisation, eqs. (19)–(21).

2. The cases of θe
ij − (θν

23, θ
ν
12) rotations

In this section we derive the sum rules for α21 and α31 of interest in the case when the ma-
trix Ũν = R23(θ

ν
23) R12(θ

ν
12) with fixed (e.g., symmetry) values of the angles θν

23 and θν
12, gets 

correction only due to one rotation from the charged lepton sector. The neutrino mixing matrix 
U has the form given in eq. (19). We do not consider the case of eq. (19) with (ij) = (23), be-
cause in this case the reactor angle θ13 = 0 and thus the measured value of θ13 ∼= 0.15 cannot be 
reproduced.

2.1. The scheme with θe
12 − (θν

23, θ
ν
12) rotations (Case A1)

In the present subsection we consider the parametrisation of the neutrino mixing matrix given 
in eq. (19) with (ij) = (12). In this parametrisation the PMNS matrix has the form

U = R12(θ
e
12)� R23(θ

ν
23)R12(θ

ν
12)Q0 . (22)

The phase ω in the phase matrix � is unphysical.
We are interested in deriving analytic expressions for the Majorana phases α21 and α31 i) in 

terms of the parameters of the parametrisation in eq. (22), θe
12, ψ , θν

23, θν
12, ξ21 and ξ31, and pos-

sibly ii) in terms of the angles θ12, θ13, θ23 and the Dirac phase δ of the standard parametrisation 
of the PMNS matrix, the fixed angles θν

23 and θν
12, and the phases ξ21 and ξ31. The values of the 

phases α21 and α31 in the latter case, as we will see, indeed depend on the value of the Dirac 
phase δ. Thus, we first recall the sum rule satisfied by the Dirac phase δ in the case under study, 
by which cos δ is expressed in terms of the angles θ12, θ13 and θ23. The sum rule of interest 
reads [2]:

cos δ = tan θ23

sin 2θ12 sin θ13

[
cos 2θν

12 +
(

sin2 θ12 − cos2 θν
12

) (
1 − cot2 θ23 sin2 θ13

)]
. (23)

Although the expression in eq. (23) was derived in [2] for θν
23 = −π/4, it was shown in [4] to be 

valid for arbitrary θν
23. The dependence of cos δ on θν

23 is “hidden”, in particular, in the specific 
relation between θ23 and θν

23:

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = sin2 θν

23 − sin2 θ13

1 − sin2 θ13
. (24)
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We give also the expressions of sin2 θ13 and sin2 θ12 in terms of the parameters of the parametri-
sation of the PMNS matrix given in eq. (22), which will be used further in the analysis performed 
in this subsection:

sin2 θ13 = |Ue3|2 = sin2 θe
12 sin2 θν

23 , (25)

sin2 θ12 = |Ue2|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
cos2 θν

23 sin2 θe
12 cos2 θν

12 + cos2 θe
12 sin2 θν

12

+ 1

2
sin 2θe

12 sin 2θν
12 cos θν

23 cosψ

]
. (26)

The parameters sin2 θν
23 and sin2 θe

12 can be expressed in terms of sin2 θ13 and sin2 θ23 using 
eqs. (24) and (25).

From eqs. (25) and (26) we get the following expression for cosψ :

cosψ = sin2 θν
23

(
cos2 θ13 sin2 θ12 − sin2 θν

12

) + sin2 θ13
(
cos2 θν

12 sin2 θν
23 − cos 2θν

12

)
sgn(sin 2θe

12) sin 2θν
12 cos θν

23 sin θ13
(
sin2 θν

23 − sin2 θ13
)1/2

.

(27)

The sign of sin 2θe
12 is supposed to be fixed in the underlying theory leading to the neutrino 

mixing given in eq. (22). In what follows we will account for both possibilities of sin2θe
12 > 0

and sin 2θe
12 < 0. Using eq. (24) and setting sin2 θν

23 = sin2 θ23 cos2 θ13 + sin2 θ13, cos θν
23 =

cos θ23 cos θ13 and sgn(sin 2θe
12) = 1 in eq. (27) leads to an expression for cosψ in terms of 

θν
12 and the standard parametrisation mixing angles θ12, θ13 and θ23, which coincides with the 

expression for cosφ given in eq. (22) in [2]. For θν
23 = −π/4, eq. (27) reduces to the expression 

for cosφ in eq. (46) in ref. [2] and in eq. (37) in ref. [3].
The cosine of the phase ψ can be determined uniquely using eq. (27), i.e., using as input 

sgn(sin 2θe
12), the symmetry values of θν

12 and θν
23 (of θν

12) and the measured value of θ12 and 
θ13 (θ12, θ13 and θ23). However, the sign of sinψ in this case remains unfixed if no additional 
information allowing to fix it is available. This in turn leads to an ambiguity in the determination 
of the phase ψ from the value of cosψ : in the interval [0, 2π ], two values of ψ will be possible.

Sum rules for the Majorana phases α21 and α31 of the type we are interested in were derived 
in [2]. The sum rules for α21 and α31 we are aiming to obtain in this subsection turn out to be a 
particular case of the sum rules derived in [2]. This becomes clear from a comparison of eq. (18) 
in [2], which fixes the parametrisation of U used in [2], and the expression for U in eq. (22). 
It shows that to get the sum rules for α21 and α31 of interest, one has formally to set θ̂23 = θν

23, 
φ = −ψ and β = 0 in the sum rules for α21 and α31 derived in eq. (102) in [2] and to take into 
account the two possible signs of the product ce

12c
ν
23s

ν
23 ≡ cos θe

12 cos θν
23 sin θν

23:

α21

2
= βe2 − βe1 + ξ21

2
, (28)

α31

2
= βe2 + ϕ̃ + ξ31

2
, eiϕ̃ = sgn(ce

12c
ν
23s

ν
23) = +1 or (−1) . (29)

Thus, ϕ̃ = 0 or π . The results in eqs. (28) and (29) can be obtained formally from eqs. (88), (89) 
and (95) in [2] by setting θ̂23 = θν

23, φ = −ψ , Q1 = diag(1, 1, 1) and Q2 = diag(1, ei(βe2−βe1),

sgn(ce
12c

ν
23s

ν
23) e

iβe2). We note that in the case considered of arbitrary fixed signs of ce
12, se

12 ≡
sin θe , cν and sν , the Ue3 element of the PMNS matrix in eq. (95) in [2] must also be replaced 
12 23 23
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by Ue3 sgn(ce
12s

e
12c

ν
23). Correspondingly, in terms of the parametrisation in eq. (22) of the PMNS 

matrix, the phases βe2 and βe1 are given by eqs. (90) and (91) in [2]:

βe1 = arg(Ue1) = arg
(
ce

12c
ν
12 − se

12c
ν
23s

ν
12e

−iψ
)

, (30)

βe2 = arg(Ue2 e−i
ξ21

2 ) = arg
(
ce

12s
ν
12 + se

12c
ν
23c

ν
12e

−iψ
)

, (31)

where cν
12 ≡ cos θν

12 and sν
12 ≡ sin θν

12. For ϕ̃ = 0, eq. (29) reduces to the expression for α31/2 in 
eq. (102) in [2]. By using eq. (25), se

12 and ce
12 in eqs. (30) and (31) can be expressed (given their 

signs) in terms of sin θ13 and sin θν
23, while the phase ψ is determined via eq. (27) by the values 

of θ12, θ13, θν
12 and θν

23 (up to an ambiguity of the sign of sinψ ). The phases βe2 and βe1 in this 
case will be given in terms of θ12, θ13, θν

12 and θν
23, i.e., in terms of mixing angles which are 

measured or fixed by symmetry arguments. It is often convenient to express sinθν
23 and cos θν

23
in terms of the measured angles θ13 and θ23 of the standard parametrisation of the PMNS matrix 
using the relation in eq. (24).

As can be shown employing the formalism developed in [2] and taking into account the possi-
bility of negative signs of ce

12s
ν
12 and ce

12c
ν
12, the expressions for the phases βe2 and βe1 in terms 

of the angles θ12, θ13, θ23 and the Dirac phase δ of the standard parametrisation of the PMNS 
matrix have the form:

βe2 = arg
(
Uτ1sgn(ce

12s
ν
12)

) = arg
[(

s12s23 − c12c23s13e
iδ

)
sgn(ce

12s
ν
12)

]
, (32)

βe1 = arg
(
Uτ2 eiπ sgn(ce

12c
ν
12) e−i

α21
2

)
= arg

[(
c12s23 + s12c23s13e

iδ
)

sgn(ce
12c

ν
12)

]
.

(33)

For sgn(ce
12s

ν
12) = 1 and sgn(ce

12c
ν
12) = 1, eqs. (32) and (33) reduce respectively to eqs. (100) and 

(101) in ref. [2].
It follows from eqs. (32) and (33) that the phases βe1 and βe2 are determined by the values of 

the standard parametrisation mixing angles θ12, θ13, θ23 and of the Dirac phase δ. The phase δ is 
also determined (up to a sign ambiguity of sin δ) by the values of “standard” angles θ12, θ13, θ23
via the sum rule given in eq. (23). Since the relations in eqs. (28) and (29) between the Majorana 
phases α21 and α31 and the phases βe1 and βe2 involve the phases ξ21 and ξ31 originating from 
the diagonalisation of the neutrino Majorana mass term, α21 and α31 will be determined by the 
values of the “standard” neutrino mixing angles θ12, θ13, θ23 (up to the mentioned ambiguity 
related to the undetermined so far sign of sin δ), provided the values of ξ21 and ξ31 are known. 
Thus, predictions for the Majorana phases α21 and α31 can be obtained when the phases ξ21 and 
ξ31 are fixed by additional considerations of, e.g., generalised CP invariance, symmetries, etc. 
In theories with discrete lepton flavour symmetries the phases ξ21 and ξ31 are often determined 
by the employed symmetries of the theory (see, e.g., [45,49,50,55,56] and references quoted 
therein). We will show in Section 7 how the phases ξ21 and ξ31 are fixed by the requirement of 
generalised CP invariance of the neutrino Majorana mass term in the cases of the non-Abelian 
discrete flavour symmetries S4, A4, T ′ and A5. In all these cases the generalised CP invariance 
constraint fixes the values of ξ21 and ξ31, which allows us to obtain predictions for the Majorana 
phases α21 and α31.

The phases βe1, βe2, ψ and δ can be shown to satisfy the relation:

δ = ψ + βe1 + βe2 + ϕ , eiϕ = sgn(ce
12s

e
12c

ν
23) = +1 or (−1) . (34)

For ϕ = 0 (sgn(ce
12s

e
12c

ν
23) = +1), this relation reduces to eq. (94) in ref. [2] by setting ψ = −φ. 

From eqs. (28), (29) and (34) we get further
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(α31 − ξ31) − 1

2
(α21 − ξ21) = βe1 + βe2 + 2ϕ̃ = δ − ψ − ϕ , ϕ = 0 or π , (35)

where we took into account that 2ϕ̃ = 0 or 2π .
The Dirac phase δ and the phase ψ are related [2]. We will give below only the relation 

between sin δ and sinψ . It can be obtained from eq. (28) in [2] by setting8 φ = −ψ and by 
taking into account that in the case considered both signs of sin2θe

12 cos θν
23 are, in principle, 

allowed9:

sin δ = sgn (sin 2θe
12 cos θν

23)
sin 2θν

12

sin 2θ12
sinψ . (36)

We note that within the approach employed in our analysis, the results presented in 
eqs. (28)–(36) are exact and are valid for arbitrary fixed values of θν

12 and θν
23 and for arbitrary 

signs of sin θe
12 and cos θe

12 (| sin θe
12| and | cos θe

12| can be expressed in terms of θ13 and θν
23).

Although the sum rules derived above allow to determine the values of the Majorana phases 
α21 and α31 (up to a two-fold ambiguity related to the ambiguity of sgn(sin δ) or of sgn(sinψ)) if 
the phases ξ21 and ξ31 are known, we will present below an alternative method of determination 
of α21 and α31, which can be used in the cases when the method developed in [2] cannot be 
applied. The alternative method makes use of the rephasing invariants associated with the two 
Majorana phases of the PMNS matrix.

In the case of 3-neutrino mixing under discussion there are, in principle, three independent 
CPV rephasing invariants. The first is associated with the Dirac phase δ and is given by the 
well-known expression in eq. (18), where we have shown also the expression of the JCP factor 
in the standard parametrisation. The other two, I1 and I2, are related to the two Majorana CPV 
phases in the PMNS matrix and can be chosen as [15,57,58]10:

I1 = Im
{
U∗

e1 Ue2
}

, I2 = Im
{
U∗

e1 Ue3
}

.

The rephasing invariants associated with the Majorana phases are not uniquely determined. In-

stead of I1 defined above we could have chosen, e.g., I ′
1 = Im

{
U∗

τ1 Uτ2
}

or I ′′
1 = Im

{
Uμ1U

∗
μ2

}
, 

while instead of I2 we could have used I ′
2 = Im

{
U∗

τ2 Uτ3
}
, or I ′′

2 = Im
{
Uμ2 U∗

μ3

}
. However, 

the three invariants — JCP and any two chosen Majorana phase invariants — form a complete 
set in the case of 3-neutrino mixing: any other two rephasing invariants associated with the Ma-
jorana phases can be expressed in terms of the two chosen Majorana phase invariants and the 
JCP factor [57]. We note also that CP violation due to the Majorana phase α21 requires that both 
I1 = Im

{
U∗

e1Ue2
} �= 0 and Re

{
U∗

e1Ue2
} �= 0 [58]. Similarly, I2 = Im

{
U∗

e1Ue3
} �= 0 would imply 

violation of the CP symmetry only if in addition Re
{
U∗

e1Ue3
} �= 0.

In the standard parametrisation of the PMNS matrix U , the rephasing invariants I1 and I2 are 
given by

I1 = cos θ12 sin θ12 cos2 θ13 sin(α21/2) , (37)

I2 = cos θ12 sin θ13 cos θ13 sin(α31/2 − δ) . (38)

8 The relation between cos δ and cosψ can be deduced from eq. (29) in [2].
9 In [2] both sin 2θe

12 and cos θν
23 could be and were considered to be positive without loss of generality.

10 The expressions for the invariants I1,2 we give and will use further correspond to Majorana conditions satisfied by 
the fields of the light massive Majorana neutrinos, which do not contain phase factors, see, e.g., [15].
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Comparing these expressions with the expressions for I1 and I2 in the parametrisation of U
defined in eq. (22), we obtain sum rules for sin(α21/2) and sin(α31/2 − δ) in terms of θe

12, ψ , 
θν

12, θν
23 and the standard parametrisation mixing angles θ12 and θ13:

sin(α21/2) = 1

cos2 θ13 sin 2θ12

×
[

sin 2θe
12 cos θν

23

(
sin(ξ21/2 − ψ) − 2 sin2 θν

12 cosψ sin(ξ21/2)
)

+ sin 2θν
12 sin(ξ21/2)

(
cos2 θe

12 − sin2 θe
12 cos2 θν

23

)]
, (39)

sin(α31/2 − δ) = 2 sin θe
12 sin θν

23

cos θ12 sin 2θ13

[
cos θe

12 cos θν
12 sin(ξ31/2 − ψ)

− cos θν
23 sin θe

12 sin θν
12 sin(ξ31/2)

]
. (40)

The result in eq. (40) can be derived also from eqs. (29) and (34), which lead to

α31

2
− δ = −ψ − βe1 + ϕ̃ − ϕ + ξ31

2
, (41)

and by using further eq. (30) for βe1. The expression for sin(α31/2), which can be obtained from 
eqs. (29) and (31), has a form similar to that of sin(α31/2 − δ):

sin(α31/2) = sgn(ce
12c

ν
23s

ν
23)

sin θ12 cos θ13

[
sin θe

12 cos θν
12 cos θν

23 sin(ξ31/2 − ψ)

+ cos θe
12 sin θν

12 sin(ξ31/2)

]
. (42)

The angles θν
12 and θν

23 in eqs. (39), (40) and (42), as we have already emphasised, are as-
sumed to be fixed by symmetry arguments, θe

12 can be expressed in terms of θ13 and θν
23 using 

eq. (25), while eq. (27) allows to express ψ in terms of θ12, θ13, θν
12 and θν

23. The formulae for 
cos(α21/2) and cos(α31/2 − δ), which enter into the expression for the absolute value of the 
effective Majorana mass in (ββ)0ν -decay (see, e.g., [15]), |〈m〉|, can be obtained from eqs. (39)
and (40) by changing ξ21 to ξ21 + π and ξ31 to ξ31 + π , respectively.

In terms of the standard parametrisation mixing angles θ12, θ13, θ23 and the Dirac phase δ, 
and the angles θν

12 and θν
23, the expressions for sin(α21/2) and sin(α31/2) read:

sin(α21/2) = 1

sin2 θν
23 sin 2θν

12

×
[

sin 2θ23 sin θ13
(

sin(ξ21/2 − δ) − 2 cos2 θ12 cos δ sin(ξ21/2)
)

+ sin(ξ21/2) sin 2θ12
(

sin2 θ23 − cos2 θ23 sin2 θ13
)]

, (43)

sin(α31/2) = sgn(cν
23)

sin θν
12 sin θν

23

[
sin θ12 sin θ23 sin(ξ31/2)

− cos θ12 cos θ23 sin θ13 sin(ξ31/2 + δ)

]
, (44)

where, we recall, sin2 θν = 1 − cos2 θ23 cos2 θ13.
23
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The phases ξ21 and ξ31, as we have already discussed, are supposed to be fixed by symmetry 
arguments. Thus, it proves convenient to have analytic expressions which allow to calculate 
the phase differences (α21/2 − ξ21/2), (α31/2 − δ − ξ31/2) and (α31/2 − ξ31/2). We find for 
sin(α21/2 − ξ21/2), sin(α31/2 − δ − ξ31/2) and sin(α31/2 − ξ31/2):

sin(α21/2 − ξ21/2) = − sin 2θe
12

cos2 θ13 sin 2θ12
cos θν

23 sinψ = − sin 2θ23 sin θ13

sin2 θν
23 sin 2θν

12

sin δ ,

(45)

sin(α31/2 − δ − ξ31/2) = − sin 2θe
12

cos θ12 sin 2θ13
cos θν

12 sin θν
23 sinψ

= − sgn(cos θν
23)

sin θ12 sin θ23

sin θν
12 sin θν

23
sin δ , (46)

sin(α31/2 − ξ31/2) = − sgn(ce
12c

ν
23s

ν
23)

sin θ12 cos θ13
sin θe

12 cos θν
12 cos θν

23 sinψ

= − sgn(cos θν
23)

sin θν
12 sin θν

23
sin θ13 cos θ12 cos θ23 sin δ . (47)

It follows from eqs. (45) and (47) that | sin(α21(31)/2 − ξ21(31)/2)| ∝ sin θ13. Using the results 
given, e.g., in eqs. (28), (29), (32), (33), (23), and the best fit values of the neutrino oscilla-
tion parameters quoted in eqs. (3)–(5), we can obtain predictions for the values of the phases 
(α21/2 − ξ21/2) and (α31/2 − ξ31/2) for the symmetry forms of Ũν (TBM, BM (LC), GRA, 
etc.) considered. These predictions as well as predictions for the values of (α21/2 − ξ21/2) and 
(α31/2 − ξ31/2) in the cases investigated in the next subsection and in Sections 3 and 4 will be 
presented in Section 6.

2.2. The scheme with θe
13 − (θν

23, θ
ν
12) rotations (Case A2)

In the present subsection we consider the parametrisation of the neutrino mixing matrix given 
in eq. (19) with (ij) = (13). In this parametrisation the PMNS matrix has the form

U = R13(θ
e
13)� R23(θ

ν
23)R12(θ

ν
12)Q0 . (48)

Now the phase ψ in the phase matrix � is unphysical. We employ the approaches used in the pre-
ceding subsection, which are based on the method developed in [2] and on the relevant rephasing 
invariants, for determining the Majorana phases α21 and α31.

We first give the expressions for sin2 θ13, sin2 θ23 and sin2 θ12 in terms of the parameters of 
the parametrisation in eq. (48), which will be used in our analysis:

sin2 θ13 = |Ue3|2 = sin2 θe
13 cos2 θν

23 , (49)

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = sin2 θν

23

1 − sin2 θ13
, (50)

sin2 θ12 = |Ue2|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
sin2 θν

23 sin2 θe
13 cos2 θν

12

+ cos2 θe
13 sin2 θν

12 − 1

2
sin 2θe

13 sin 2θν
12 sin θν

23 cosω

]
. (51)
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The formulae for sin2 θ13 and sin2 θ23 given above have been derived in [4]. The expression for 
sin2 θ12 is a generalisation to arbitrary fixed values of θν

23 of that derived in [4] for θν
23 = −π/4.

From eqs. (49) and (51) we obtain an expression for cosω in terms of the measured mixing 
angles θ12 and θ13, and the known θν

12 and θν
23:

cosω = −cos2 θν
23

(
cos2 θ13 sin2 θ12 − sin2 θν

12

) + sin2 θ13
(
sin2 θν

12 − cos2 θν
12 sin2 θν

23

)
sgn(sin 2θe

13) sin 2θν
12 sin θν

23 sin θ13
(
cos2 θν

23 − sin2 θ13
)1/2

.

(52)

For θν
23 = −π/4 and sgn(sin 2θe

13) = 1, this sum rule reduces to the sum rule for cosω given in 
eq. (25) in [4].

As we will see, the expressions for the Majorana phases α21 and α31 we will obtain depend 
on the Dirac phase δ. Therefore we give also the sum rule for the Dirac phase δ in the considered 
case by which cos δ is expressed in terms of the measured angles θ12 and θ13 of the standard 
parametrisation of the PMNS matrix [4]:

cos δ = − (cos 2θ13 + cos 2θν
23)

1
2√

2 sin 2θ12 sin θ13| sin θν
23|

[
cos 2θν

12

+
(

sin2 θ12 − cos2 θν
12

) 2 cos2 θν
23 − (3 − cos 2θν

23) sin2 θ13

cos 2θ13 + cos 2θν
23

]
. (53)

Equating the expressions for the rephasing invariant associated with the Dirac phase in the 
PMNS matrix, JCP, obtained in the standard parametrisation and in the parametrisation given in 
eq. (48) allows us to get a relation between sinδ and sinω:

sin δ = sgn(sin 2θe
13 sin θν

23)
sin 2θν

12

sin 2θ12
sinω . (54)

As can be shown using the method developed in [2] and employed in the preceding subsection, 
the phases δ, α21/2 and α31/2 are related with the phase ω and the phases βe1 and βe2,

βe1 = arg (Ue1) = arg
(
ce

13c
ν
12 + se

13s
ν
23s

ν
12e

−iω
)

, (55)

βe2 = arg(Ue2 e−i
ξ21

2 ) = arg
(
ce

13s
ν
12 − se

13s
ν
23c

ν
12e

−iω
)

, (56)

in the following way:

δ = ω + βe1 + βe2 + arg
(
se

13c
e
13s

ν
23

)
, (57)

α21

2
= βe2 − βe1 + ξ21

2
, (58)

α31

2
= βe2 + ξ31

2
+ arg

(
ce

13s
ν
23c

ν
23

)
. (59)

From eqs. (57)–(59) we get a relation analogous to that in eq. (35) in the preceding subsection:

(α31 − ξ31) − 1

2
(α21 − ξ21) = βe1 + βe2 = δ − ω − arg

(
se

13c
e
13s

ν
23

)
, (60)

where we took into account that 2 arg
(
ce

13s
ν
23c

ν
23

) = 0 or 2π .
Equation (49) allows one to express se

13 and ce
13 (given their signs) in terms of sin θ13 and 

cos θν . The phase ω is determined by the angles θ12, θ13, θν and θν via eq. (52) (up to an 
23 12 23
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ambiguity of the sign of sinω). Thus, using eqs. (55) and (56), the phases βe1 and βe2 can be 
expressed in terms of the measured mixing angles θ12 and θ13 and the angles θν

12 and θν
23 fixed 

by symmetry arguments.
It is not difficult to derive expressions for βe1 and βe2 in terms of the angles θ12, θ13, θ23 and 

the phase δ of the standard parametrisation of the PMNS matrix. They read:

βe1 = arg
(
Uμ2 sgn

(
ce

13c
ν
12

)
e−i

α21
2

)
= arg

[(
c12c23 − s12s23s13e

iδ
)

sgn
(
ce

13c
ν
12

)]
, (61)

βe2 = arg
(
Uμ1 eiπ sgn

(
ce

13s
ν
12

)) = arg
[(

s12c23 + c12s23s13e
iδ

)
sgn

(
ce

13s
ν
12

)]
. (62)

We give below also the expressions for sin(α21/2 − ξ21), sin(α31/2 − ξ31) and sin(α31/2 −
δ − ξ31/2) which have particularly simple forms:

sin(α21/2 − ξ21/2) = sin 2θe
13

cos2 θ13 sin 2θ12
sin θν

23 sinω = sin 2θ23 sin θ13

sin 2θν
12 cos2 θν

23
sin δ , (63)

sin(α31/2 − ξ31/2) = sgn
(
ce

13s
ν
23c

ν
23

)
sin θ12 cos θ13

sin θe
13 cos θν

12 sin θν
23 sinω

= sgn(sν
23)

sin θν
12 cos θν

23
cos θ12 sin θ23 sin θ13 sin δ , (64)

sin(α31/2 − δ − ξ31/2) = − sin 2θe
13

cos θ12 sin 2θ13
cos θν

12 cos θν
23 sinω

= −sgn(sν
23)

sin θ12 cos θ23

sin θν
12 cos θν

23
sin δ . (65)

Equations (63), (64) and (65) do not allow one to obtain unique predictions for sin(α21/2 −
ξ21/2), sin(α31/2 − ξ31/2) and sin(α31/2 − δ − ξ31/2) because of the ambiguity in determin-
ing the sign of sinω (sin δ). As in the case discussed in the preceding subsection, we have 
| sin(α21/2 −ξ21/2)| ∝ sin θ13 and | sin(α31/2 −ξ31/2)| ∝ sin θ13. Predictions for (α21/2 −ξ21/2)

and (α31/2 − ξ31/2) in the case studied in this subsection will be given in Section 6.

3. The cases of (θe
ij , θe

kl) − (θν
23, θ

ν
12) rotations

As it follows from eqs. (24) and (50) in the preceding Section, in the cases when the matrix 
Ũe originating from the charged lepton sector contains one rotation angle (θe

12 or θe
13) and θν

23 =
−π/4, the mixing angle θ23 cannot deviate significantly from π/4 due to the smallness of the 
angle θ13. If the matrix Ũν has one of the symmetry forms considered in this study, the matrix 
Ũe has to contain at least two rotation angles in order to be possible to reproduce the current best 
fit values of the neutrino mixing parameters quoted in eqs. (3)–(5), or more generally, in order 
to be possible to account for deviations of sin2 θ23 from 0.5 which are bigger than sin2 θ13, i.e., 
for sin2 θ23 �= 0.5(1 ∓ sin2 θ13). In this Section we consider the determination of the Majorana 
phases α21 and α31 in the cases when the matrix Ũe contains two rotation angles.

3.1. The scheme with (θe
12, θ

e
23) − (θν

23, θ
ν
12) rotations (Case B1)

The PMNS matrix in this scheme has the form

U = R12(θ
e )R23(θ

e )� R23(θ
ν )R12(θ

ν )Q0 . (66)
12 23 23 12
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The scheme has been analysed in detail in [2], where a sum rule for cosδ and analytic expressions 
for α21 and α31 were derived for θν

23 = −π/4. As was shown in [4], the sum rule for cos δ found 
in [2] holds for an arbitrary fixed value of θν

23. The sum rule under discussion, eq. (30) in [2], 
coincides with the sum rule given in eq. (23) in subsection 2.1. However, in contrast to the case 
considered in subsection 2.1, the PMNS mixing angle θ23 in the scheme under discussion can 
differ significantly from θν

23 and from π/4:

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = sin2 θ̂23 − sin2 θ13

1 − sin2 θ13
, (67)

where

sin θ̂23 =
∣∣∣ e−iψ cos θe

23 sin θν
23 + e−iω sin θe

23 cos θν
23

∣∣∣ ,

cos θ̂23 =
∣∣∣ e−iψ cos θe

23 cos θν
23 − e−iω sin θe

23 sin θν
23

∣∣∣ . (68)

In the preceding equations sin θ̂23 and cos θ̂23 are expressed in terms of the parameters of 
the scheme considered, defined in eq. (66) for the PMNS matrix. Obviously, sin θ̂23 > 0 and 
cos θ̂23 > 0. The parameter sin2 θ̂23 enters also into the expression for sin2 θ13:

sin2 θ13 = |Ue3|2 = sin2 θe
12 sin2 θ̂23 . (69)

The angle θ̂23 results from the rearrangement of the product of matrices R23(θ
e
23)�R23(θ

ν
23)

in the expression for U given in eq. (66):

R23(θ
e
23)� R23(θ

ν
23) = P1 �R23(θ̂23)Q1 . (70)

Here

P1 = diag(1,1, e−iα) , � = diag(1, eiφ,1) , Q1 = diag
(

1,1, eiβ
)

, (71)

where

α = γ + ψ + ω , β = γ − φ , (72)

and

γ = arg
(

e−iψ cos θe
23 sin θν

23 + e−iω sin θe
23 cos θν

23

)
, (73)

φ = arg
(

e−iψ cos θe
23 cos θν

23 − e−iω sin θe
23 sin θν

23

)
. (74)

Equations (68), (73) and (74) have been derived in [6].
The phase α in the matrix P1 is unphysical. The phase β contributes to the matrix of physical 

Majorana phases, which now is equal to Q̂ = Q1 Q0. The phase φ serves as source for the Dirac 
phase δ and gives contributions also to the Majorana phases α21 and α31 [2]. The PMNS matrix 
takes the form

U = R12(θ
e
12)�(φ)R23(θ̂23)R12(θ

ν
12) Q̂ , (75)

where θν
12 has a fixed value which depends on the symmetry form of Ũν used.

Before continuing further we note that we can consider both sinθe
12 and cos θe

12 to be positive 
without loss of generality. Only their relative sign is physical. If sinθe

12 > 0 (sin θe
12 < 0) and 

cos θe
12 < 0 (cos θe

12 > 0), the negative sign can be absorbed in the phase φ by adding ±π to φ. 
Similarly, we can consider both sin θν and cos θν to be positive: the negative signs of sinθν
12 12 12
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and/or cos θν
12 can be absorbed in the phases ξ21/2, ξ31/2 and φ.11 Nevertheless, for convenience 

of using our results for making predictions in theoretical models in which the value of, e.g., 
| sin θe

12| and the signs of sin θe
12 and cos θe

12 are specified, we will present the results for arbitrary 
signs of sin θe

12 and cos θe
12.

The analytic results on the Majorana phases α21 and α31, on the relation between the Dirac 
phase δ and the phase φ, etc., derived in [2], do not depend explicitly on the value of the angle θν

23
and are valid in the case under consideration. Thus, generalising eqs. (88)–(91), (94) and (102) 
in [2] for arbitrary sings of se

12, ce
12, sν

12 and cν
12, we have:

α21

2
= βe2 − βe1 + ξ21

2
,

α31

2
= βe2 + βμ3 − φ + β + ξ31

2
, (76)

δ = βe1 + βe2 + βμ3 − βe3 − φ , (77)

where

βe1 = arg (Ue1) = arg
(
ce

12c
ν
12 − se

12ĉ23s
ν
12e

iφ
)

, (78)

βe2 = arg
(
Ue2 e−i

ξ21
2

)
= arg

(
ce

12s
ν
12 + se

12ĉ23c
ν
12e

iφ
)

, (79)

βe3 = arg

(
Ue3e

−i
(
β+ ξ31

2

))
= arg

(
se

12

) + φ , (80)

βμ3 = arg

(
Uμ3e

−i
(
β+ ξ31

2

))
= arg

(
ce

12

) + φ , (81)

with ĉ23 ≡ cos θ̂23. The preceding results can be obtained by casting U in eq. (75) in the standard 
parametrisation form. This leads, in particular, to additional contribution to the matrix Q̂ of the 
Majorana phases, which takes the form Q̂ = Q2 Q1 Q0, where the generalisation of the corre-
sponding expression for Q2 in [2] reads: Q2 = diag

(
1, ei(βe2−βe1), ei(βe2+βμ3−φ)

)
. Note that we 

got rid of the common unphysical phase factor e−i(βe2+βμ3−φ) in the matrix Q2.
The expressions for the phases (βe2 + βμ3 − φ) and (βe1 + βμ3 − φ) in terms of the angles 

θ12, θ13, θ23 and the Dirac phases δ of the standard parametrisation of the PMNS matrix have the 
form (cf. eqs. (100) and (101) in ref. [2]):

βe2 + βμ3 − φ = arg (Uτ1) − βτ1 = arg
(
s12s23 − c12c23s13e

iδ
)

− βτ1 , (82)

βe1 + βμ3 − φ = arg
(
Uτ2e

−i
α21

2

)
− βτ2 = arg

(
−c12s23 − s12c23s13e

iδ
)

− βτ2 , (83)

where

βτ1 = arg(sν
12) , βτ2 = arg(−cν

12) . (84)

We also have

sin δ = − sgn
(
sin 2θe

12

) sin 2θν
12

sin 2θ12
sinφ . (85)

11 If sin θν
12 < 0 and cos θν

12 < 0, getting rid of the negative signs of sin θν
12 and cos θν

12 leads only to the change 
ξ31/2 → ξ31/2 ± π . If, however, sin θν

12 cos θν
12 < 0, the relevant negative signs can be absorbed in ξ21/2, ξ31/2 and φ, 

each of three phases being modified by ±π .
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A few comments are in order. As like the cosine of the Dirac phase δ, cosφ satisfies a sum rule 
by which it is expressed in terms of the three measured neutrino mixing angles θ12, θ13 and θ23, 
and is uniquely determined by the values of θ12, θ13 and θ23 [2]. The values of sin δ and sinφ, 
however, are fixed up to a sign. Through eq. (85) the signs of sin δ and sinφ are correlated. Thus, 
δ and φ are predicted with an ambiguity related to the ambiguity of the sign of sinδ (or of sinφ). 
Together with eqs. (82) and (83) this implies that also the phases βe1 and βe2 are determined 
by the values of θ12, θ13, θ23 and δ with a two-fold ambiguity. The knowledge of the difference 
(βe2 −βe1) allows to determine the Majorana phase α21 (up to the discussed two-fold ambiguity) 
if the value of the phase ξ21 is known. In contrast, the knowledge of βe2 and ξ31 is not enough to 
predict the value of the Majorana phase α31 since it receives a contribution also from the phase β
that cannot be fixed on general phenomenological grounds. It is possible to determine the phase 
β in certain specific cases (see [2] for a detailed discussion of the cases when β can be fixed). 
It should be noted, however, that the term involving the phase α31 in the (ββ)0ν -decay effective 
Majorana mass 〈 m 〉 gives practically a negligible contribution in |〈m〉| in the cases of neutrino 
mass spectrum with IO or of quasi-degenerate (QD) type [2,15]. In these cases we have [59]
|〈m〉| � 0.014 eV (see also, e.g., [1,14]). Values of |〈m〉| � 0.014 eV are in the range of planned 
sensitivity of the future large scale (ββ)0ν-decay experiments (see, e.g., [60]).

The expressions for sin(α21/2 −ξ21/2), sin(α31/2 −ξ31/2 −β) and sin(α31/2 −δ−ξ31/2 −β)

have the following simple forms:

sin(α21/2 − ξ21/2) = sin 2θe
12 cos θ̂23

cos2 θ13 sin 2θ12
sinφ

= cos(βτ2 − βτ1)

2|Uτ1Uτ2| sin 2θ23 sin θ13 sin δ , (86)

sin(α31/2 − δ − ξ31/2 − β) = sin 2θe
12 cos θν

12

cos θ12 sin 2θ13
sin θ̂23 sinφ

= −cosβτ1

|Uτ1| sin θ12 sin θ23 sin δ , (87)

sin(α31/2 − ξ31/2 − β) = sin θe
12 cos θν

12

sin θ12 cos θ13
cos θ̂23 sinφ

= −cosβτ1

|Uτ1| cos θ12 cos θ23 sin θ13 sin δ . (88)

The sign factors cos(βτ2 − βτ1) and cosβτ1 are known once the angle θν
12 is fixed:

cos(βτ2 − βτ1) = −sgn
(
sν

12c
ν
12

)
, cosβτ1 = sgn

(
sν

12

)
. (89)

It follows from eqs. (86)–(88) that since sin δ can be expressed in terms of the “standard” 
neutrino mixing angles θ12, θ23 and θ13, sin(α21/2 − ξ21/2), sin(α31/2 − ξ31/2 − β) and 
sin(α31/2 − δ − ξ31/2 − β) are determined (up to an ambiguity related to the sign of sin δ) 
by the values of θ12, θ23 and θ13. Equations (86) and (88) imply that also in the discussed case 
| sin(α21/2 − ξ21/2)| ∝ sin θ13 and | sin(α31/2 − ξ31/2 −β)| ∝ sin θ13. Predictions for the phases 
(α21/2 − ξ21/2) and (α31/2 − ξ31/2 −β) in the case considered in the present subsection will be 
given in Section 6.
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3.2. The scheme with (θe
13, θ

e
23) − (θν

23, θ
ν
12) rotations (Case B2)

In this subsection we consider the parametrisation of the PMNS matrix as in eq. (20) with 
(ij) − (kl) = (13) − (23). Analogously to the previous subsection, this parametrisation can be 
recast in the form

U = R13(θ
e
13)P1(α)R23(θ̂23)R12(θ

ν
12) Q̂ , (90)

where the angle θ̂23 and the matrix P1 are given by eqs. (68) and (71), respectively, and Q̂ =
Q1 Q0 with Q1 as in eq. (71). In explicit form eq. (90) reads:

U =

⎛
⎜⎜⎝

ce
13c

ν
12 + se

13ŝ23s
ν
12e

−iα ce
13s

ν
12 − se

13ŝ23c
ν
12e

−iα se
13ĉ23e

−iα

−ĉ23s
ν
12 ĉ23c

ν
12 ŝ23

−se
13c

ν
12 + ce

13ŝ23s
ν
12e

−iα −se
13s

ν
12 − ce

13ŝ23c
ν
12e

−iα ce
13ĉ23e

−iα

⎞
⎟⎟⎠ Q̂ . (91)

To bring this matrix to the standard parametrisation form, we first rewrite it as follows:

U =

⎛
⎜⎜⎝

|Ue1|eiβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uμ1|eiβμ1 |Uμ2|eiβμ2 |Uμ3|
|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

⎞
⎟⎟⎠ Q̂ , (92)

where βli are the arguments of (UQ̂−1)li from eq. (91). We recall that the angle θ̂23 belongs to 
the first quadrant by construction (see eq. (68)).

Further, comparing the expressions for the JCP invariant in the standard parametrisation and 
in the parametrisation given in eq. (90), we have12

sin δ = sgn
(
sin 2θe

13

) sin 2θν
12

sin 2θ12
sinα . (93)

It is not difficult to check that this relation holds if

δ = βe1 + βe2 + βτ3 − βe3 + α , βτ3 − βe3 = 0 or π , (94)

which, in turn, suggests what rearrangement of the phases in the PMNS matrix in eq. (92) one 
has to do to bring it to the standard parametrisation form. Namely, the required rearrangement 
should be made in the following way:

U = P2

⎛
⎜⎜⎝

|Ue1| |Ue2| |Ue3|e−iδ

|Uμ1|ei(βμ1+βe2+βτ3+α) |Uμ2|ei(βμ2+βe1+βτ3+α) |Uμ3|
|Uτ1|ei(βτ1+βe2+α) |Uτ2|ei(βτ2+βe1+α) |Uτ3|

⎞
⎟⎟⎠Q2 Q̂ , (95)

where

P2 = diag
(
ei(βe1+βe2+βτ3+α),1, eiβτ3

)
, (96)

Q2 = diag
(
e−i(βe2+βτ3+α), e−i(βe1+βτ3+α),1

)
= e−i(βe2+βτ3+α) diag

(
1, ei(βe2−βe1), ei(βe2+βτ3+α)

)
. (97)

12 This relation is the generalisation of eq. (43) in ref. [4], where we considered θe to be in the first quadrant.
13
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The phases in the matrix P2 are unphysical. The phases (βe2 − βe1) and (βe2 + βτ3 + α) in the 
matrix Q2 contribute to the Majorana phases α21 and α31, respectively, while the common phase 
(−βe2 −βτ3 −α) in this matrix is unphysical and we will not keep it further. Thus, the Majorana 
phases in the PMNS matrix are determined by the phases in the product Q2 Q̂:

α21

2
= βe2 − βe1 + ξ21

2
,

α31

2
= βe2 + βτ3 + α + β + ξ31

2
, βτ3 + α = 0 or π . (98)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac phase δ the 
phases (βe1 + βτ3 + α) and (βe2 + βτ3 + α) read:

βe1 + βτ3 + α = arg
(
Uμ2e

−i
α21

2

)
− βμ2 = arg

(
c12c23 − s12s23s13e

iδ
)

− βμ2 , (99)

βe2 + βτ3 + α = arg
(
Uμ1

) − βμ1 = arg
(
−s12c23 − c12s23s13e

iδ
)

− βμ1 . (100)

The relevant expressions for the parameters sin2 θe
13, sin2 θ̂23 and cosα in terms of the neutrino 

mixing angles θ12, θ13, θ23 and the angles contained in Ũν have been derived in [4]:

sin2 θ13 = sin2 θe
13 cos2 θ̂23 , (101)

sin2 θ̂23 = sin2 θ23 cos2 θ13 , (102)

cosα = 2
sin2 θν

12 cos2 θ23 + cos2 θν
12 sin2 θ23 sin2 θ13 − sin2 θ12

(
1 − sin2 θ23 cos2 θ13

)
sin 2θν

12 sin 2θ23 sin θ13
.

(103)

As in the previous subsections, the expressions for sin(α21/2 −ξ21/2), sin(α31/2 −ξ31/2 −β)

and sin(α31/2 − δ − ξ31/2 − β) have rather simple forms:

sin(α21/2 − ξ21/2) = sin 2θe
13 sin θ̂23

cos2 θ13 sin 2θ12
sinα

= −cos(βμ2 − βμ1)

2|Uμ1Uμ2| sin 2θ23 sin θ13 sin δ , (104)

sin(α31/2 − ξ31/2 − β) = sin θe
13 cos θν

12

sin θ12 cos θ13
sin θ̂23 sinα

= −cosβμ1

|Uμ1| cos θ12 sin θ23 sin θ13 sin δ , (105)

sin(α31/2 − δ − ξ31/2 − β) = − sin 2θe
13 cos θν

12

cos θ12 sin 2θ13
cos θ̂23 sinα

= cosβμ1

|Uμ1| sin θ12 cos θ23 sin δ . (106)

Also in this case we have | sin(α21/2 − ξ21/2)| ∝ sin θ13 and | sin(α31/2 − ξ31/2 − β)| ∝
sin θ13. As we have already mentioned earlier, predictions for the phases (α21/2 − ξ21/2) and 
(α31/2 − ξ31/2 − β) in the case analysed in this subsection will be presented in Section 6.

We would like to note finally that formulae in eqs. (104)–(106) can be obtained formally 
from the corresponding formulae in subsection 3.1, eqs. (86)–(88), by making the following 
substitutions:

φ → −α , θe
12 → θe

13 , θ̂23 → θ̂23 + π

2
, θ23 → θ23 − π

2
and τ → μ. (107)
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3.3. The scheme with (θe
12, θ

e
13) − (θν

23, θ
ν
12) rotations (Case B3)

In this subsection we switch to the parametrisation of the PMNS matrix U given in eq. (20)
with (ij) − (kl) = (12) − (13), i.e.,

U = R12(θ
e
12)R13(θ

e
13)� R23(θ

ν
23)R12(θ

ν
12)Q0 . (108)

In explicit form this matrix reads:

U =
⎛
⎜⎝

|Ue1|eiβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uμ1|eiβμ1 |Uμ2|eiβμ2 |Uμ3|eiβμ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

⎞
⎟⎠Q0 , (109)

where the expressions for |Uli |eiβli are given in Appendix A.1.
Comparing the expressions for the absolute value of the element Uτ3 in the standard 

parametrisation of the PMNS matrix and the parametrisation we are considering here, we 
have [4]

cos2 θe
13 = cos2 θ23 cos2 θ13

cos2 θν
23

. (110)

Hence, the angle θe
13 is expressed in terms of the known angles and can be determined up to a 

quadrant. The phase ω is a free phase parameter, which enters, e.g., the sum rule for cos δ (see 
eq. (63) in ref. [4]), so its presence is expected as well in the sum rules for the Majorana phases 
we are going to derive.

We aim as before to find an appropriate phase rearrangement in order to bring U to the stan-
dard parametrisation form. For that reason we compare first the expressions for the JCP invariant 
in the standard parametrisation and in the parametrisation given in eq. (108) and find

sin δ = 8J
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13

, (111)

where J is the expression for JCP in the parametrisation of U given in eq. (108):

J = 1

8
cos θe

13

[
sin 2θe

12

{
2 sin 2θν

12 cos θν
23

[(
cos2 θe

13 − cos2 θν
23

)
sinψ

− sin2 θe
13 sin2 θν

23 sin(ψ − 2ω)
] − sin 2θe

13 cos 2θν
12 sin 2θν

23 sin(ψ − ω)
}

+ 2 cos 2θe
12 sin θe

13 sin 2θν
12 sin 2θν

23 cos θν
23 sinω

]
. (112)

This expression looks cumbersome, but one can verify that the relation in eq. (111) holds if δ is 
given by

δ = βe1 + βe2 + βμ3 + βτ3 − βe3 + ψ + ω . (113)

Now we can cast U in the following form:

U = P2

⎛
⎜⎝

|Ue1| |Ue2| |Ue3|e−iδ

|Uμ1|ei(βμ1+βe2+βτ3+ψ+ω) |Uμ2|ei(βμ2+βe1+βτ3+ψ+ω) |Uμ3|
|Uτ1|ei(βτ1+βe2+βμ3+ψ+ω) |Uτ2|ei(βτ2+βe1+βμ3+ψ+ω) |Uτ3|

⎞
⎟⎠Q2 Q0 ,

(114)
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where

P2 = diag
(
ei(βe1+βe2+βμ3+βτ3+ψ+ω), eiβμ3, eiβτ3

)
, (115)

Q2 = diag
(
e−i(βe2+βμ3+βτ3+ψ+ω), e−i(βe1+βμ3+βτ3+ψ+ω),1

)
= e−i(βe2+βμ3+βτ3+ψ+ω) diag

(
1, ei(βe2−βe1), ei(βe2+βμ3+βτ3+ψ+ω)

)
. (116)

The phases in the matrix P2 as well as the overall phase in the matrix Q2 are unphysical. Thus, 
for the Majorana phases we get:

α21

2
= βe2 − βe1 + ξ21

2
,

α31

2
= βe2 + βμ3 + βτ3 + ψ + ω + ξ31

2
. (117)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac phase δ we 
have:

βe1 + βμ3 + ψ + ω = arg
(
Uτ2e

−i
α21

2

)
− βτ2 = arg

(
−c12s23 − s12c23s13e

iδ
)

− βτ2 ,

(118)

βe2 + βμ3 + ψ + ω = arg (Uτ1) − βτ1 = arg
(
s12s23 − c12c23s13e

iδ
)

− βτ1 , (119)

where βτ1 and βτ2 are the arguments of the expressions given in eqs. (221) and (222), respec-
tively. They are fixed once the angles θν

12 and θν
23, the quadrant to which θe

13 belongs and the 
phase ω are known. Finally, we find:

α21

2
= arg

(
Uτ1U

∗
τ2e

i
α21

2

)
+ βτ2 − βτ1 + ξ21

2
, (120)

α31

2
= arg (Uτ1) + βτ3 − βτ1 + ξ31

2
, (121)

where βτ3 is the argument of the expression in eq. (223), which is fixed under the conditions 
specified above for βτ1 and βτ2.

The mixing angles θ12, θ23 and θ13 of the standard parametrisation are related with the angles 
θe
ij , θν

kl and the phases ψ and ω present in the parametrisation of U given in eq. (108) in the 
following way:

sin2 θ13 = |Ue3|2 = sin2 θe
12 sin2 θν

23 + cos2 θe
12 sin2 θe

13 cos2 θν
23 − X , (122)

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
cos2 θe

12 sin2 θν
23 + sin2 θe

12 sin2 θe
13 cos2 θν

23 + X

]
,

(123)

sin2 θ12 = |Ue2|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
cos2 θe

12 cos2 θe
13 sin2 θν

12

+ 1

2
sin 2θν

12

(
sin 2θe

12 cos θe
13 cos θν

23 cosψ − cos2 θe
12 sin 2θe

13 sin θν
23 cosω

)
+ cos2 θν

12

(
sin2 θe

12 cos2 θν
23 + cos2 θe

12 sin2 θe
13 sin2 θν

23 + X
)]

, (124)

where

X = −1
sin 2θe

12 sin θe
13 sin 2θν

23 cos(ψ − ω) . (125)

2



I. Girardi et al. / Nuclear Physics B 911 (2016) 754–804 775
The sum of eqs. (122) and (123) leads to the result given in eq. (110), i.e., the angle θe
13 is known 

(up to a quadrant). Then, solving eq. (122) for X and substituting the solution in eq. (124), we 
find cosψ as a function of θ12, θ13, θe

12, θe
13 and ω:

cosψ = 2

sin 2θe
12 cos θe

13 sin 2θν
12 cos θν

23

[
cos2 θ13

(
sin2 θ12 − cos2 θν

12

)

+ cos2 θe
12 cos2 θe

13 cos 2θν
12 + 1

2
cos2 θe

12 sin 2θe
13 sin 2θν

12 sin θν
23 cosω

]
. (126)

Finally, substituting cosψ and sinψ = ±√
1 − cos2 ψ in eq. (122), one can express θe

12 in terms 
of the known angles.

As in the previous subsections, we give the formulae for sin(α21/2 − ξ21/2), sin(α31/2 −
ξ31/2) and sin(α31/2 − δ − ξ31/2), which in the case under consideration read:

sin(α21/2 − ξ21/2) = 1

2|Ue1Ue2|
[

cos2 θe
12 sin 2θe

13 sin θν
23 sinω

− sin 2θe
12 cos θe

13 cos θν
23 sinψ

]
= 1

2|Uτ1Uτ2|
[

cos(βτ2 − βτ1) sin 2θ23 sin θ13 sin δ

+ sin(βτ2 − βτ1)

×
(

sin 2θ12

(
cos2 θ23 sin2 θ13 − sin2 θ23

)
+ cos 2θ12 cos δ

)]
,

(127)

sin(α31/2 − ξ31/2) = − 1

2|Ue2Uμ3Uτ3|
[

sin 2θe
12 cos θe

13 cos2 θν
23

[
cos θν

12 sin θν
23

×
(

sinψ − sin2 θe
13 sin(ψ − 2ω)

)
+ 1

2
sin 2θe

13 sin θν
12 sin(ψ − ω)

]
+ 1

2
sin 2θe

13 cos θν
12 cos θν

23

(
cos 2θe

12 cos 2θν
23 − 1

)
sinω

]
= − 1

|Uτ1|
[

cos(βτ3 − βτ1) cos θ12 cos θ23 sin θ13 sin δ

+ sin(βτ3 − βτ1) (cos θ12 cos θ23 sin θ13 cos δ − sin θ12 sin θ23)
]
,

(128)

sin(α31/2 − δ − ξ31/2) = − 1

2|Ue1Ue3|
[

sin 2θe
12 sin θe

13 sin θν
12 sin(ψ − ω)

+ cos θe
13 cos θν

12

(
sin 2θe

12 sin θν
23 sinψ

+ 2 cos2 θe
12 sin θe

13 cos θν
23 sinω

)
= − 1

|Uτ1|
[

cos(βτ3 − βτ1) sin θ12 sin θ23 sin δ

+ sin(βτ3 − βτ1) (cos θ12 cos θ23 sin θ13 − sin θ12 sin θ23 cos δ)
]
.

(129)

Given the angles θν
12 and θν

23 and the quadrant to which θe
13 belongs, the phases (βτ2 − βτ1)

and (βτ3 − βτ1), and sin(α21/2 − ξ21/2) and sin(α31/2 − ξ31/2) depend on the free phase 
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parameter ω. The phases (α21/2 − ξ21/2 − (βτ2 − βτ1)) and (α31/2 − ξ31/2 − (βτ3 − βτ1)), 
as it follows from eqs. (120) and (121), are completely determined by the values of the 
standard parametrisation angles θ12, θ23 and θ13, and of the Dirac phase δ. The expression 
for, e.g., sin(α21/2 − ξ21/2 − (βτ2 − βτ1)) (sin(α31/2 − ξ31/2 − (βτ3 − βτ1))) can formally 
be obtained from eq. (127) (eq. (128)) by setting sin(βτ2 − βτ1) = 0, cos(βτ2 − βτ1) = 1
(sin(βτ3 − βτ1) = 0, cos(βτ3 − βτ1) = 1). It follows from the results thus obtained that both 
| sin(α21/2 − ξ21/2 − (βτ2 − βτ1))| ∝ sin θ13 and | sin(α31/2 − ξ31/2 − (βτ3 − βτ1))| ∝ sin θ13. 
It should be noted, however, that in the considered scheme the phase δ also depends on the phase 
ω and as long as δ is not fixed (e.g., measured directly or determined in a global data analysis), 
the phases (α21/2 − ξ21/2 − (βτ2 − βτ1)) and (α31/2 − ξ31/2 − (βτ3 − βτ1)) will depend on ω
via δ. Therefore in [4] we have given predictions for δ for ω = 0 and sgn(sin 2θe

13) = 1. Corre-
spondingly, in Section 6 we will derive predictions for the values of the phases (α21/2 − ξ21/2)

and (α31/2 − ξ31/2) for the same values of ω = 0 and sgn(sin 2θe
13) = 1, for which the predicted 

value of δ lies in its 2σ allowed interval quoted in eq. (6).
We note finally that sin2 θ23 is constrained by the requirements that cosψ , sin2 θe

12 and sin2 θe
13

possess physically acceptable values, to lie for both the NO and IO spectra in the following 
narrow intervals [4]:

(0.489,0.498) for TBM,

(0.489,0.496) for GRA,

(0.489,0.499) for GRB,

(0.489,0.499) for HG,

(0.489,0.521) for BM.

Thus, we will present results for the phases of interest for the NO (IO) spectrum for sin2 θ23 =
0.48907 (sin2 θ23 = 0.48886).13

4. The cases of θe
ij − (θν

23, θ
ν
13, θ

ν
12) rotations

We consider next a generalisation of the cases analysed in Section 2 with the presence of a 
third rotation matrix in Ũν arising from the neutrino sector, i.e., we employ the parametrisation 
of U given in eq. (21). Non-zero values of θν

13 are inspired by certain types of flavour symmetries 
[41,42]. In the numerical analysis of the predictions for α21, α31 and |〈m〉| we will perform in 
Section 6, we will consider three representative values of θν

13 discussed in the literature: θν
13 =

π/20, π/10 and sin−1(1/3). We are not going to consider the case in which the U matrix is 
parametrised as in eq. (21) with (ij) = (23) for the reasons explained in [4], i.e., the absence of 
a correlation between the Dirac CPV phase δ and the mixing angles. It should be noted that for 
this and other cases for which it is not possible to derive such a correlation, different symmetry 
forms of Ũν can still be tested with an improvement of the precision in the measurement of the 
neutrino mixing angles. For instance, in the case corresponding to eq. (21) with (ij) = (23), one 
has, as was shown in [4], sin2 θ13 = sin2 θν

13 and sin2 θ12 = sin2 θν
12, i.e., the angles θ13 and θ12

are predicted to have particular values when the angles θν
13 and θν

23 are fixed by a symmetry.

13 For sin2 θ23 < 0.48907 (sin2 θ23 < 0.48886), cos δ acquires an unphysical (complex) value.
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4.1. The scheme with θe
12 − (θν

23, θ
ν
13, θ

ν
12) rotations (Case C1)

In this subsection we consider the parametrisation of the PMNS matrix U given in eq. (21)
with (ij) = (12), i.e.,

U = R12(θ
e
12)� R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 . (130)

In this case the matrix � contains only one physical phase φ, � = diag (1, eiφ, 1) (we have 
denoted φ ≡ −ψ ), since the phase ω in � is unphysical and we have dropped it. The explicit 
form of the matrix U reads:

U =

⎛
⎜⎜⎝

|Ue1|eiβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uμ1|eiβμ1 |Uμ2|eiβμ2 |Uμ3|eiβμ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

⎞
⎟⎟⎠Q0 , (131)

where the expressions for |Uli |eiβli are presented in Appendix A.2.
Comparing the expressions for the JCP invariant in the standard parametrisation and in the 

parametrisation given in eq. (130), one finds the following relation between sinδ and sinφ14:

sin δ = − sin 2θe
12

[(
cos2 θν

13 + (cos2 θν
13 − 2) cos 2θν

23

)
sin 2θν

12 − 2 cos 2θν
12 sin 2θν

23 sin θν
13

]
2 sgn(cos θν

23 cos θν
13) sin 2θ12 sin 2θ13 sin θ23

× sinφ , (132)

where we have used that in this scheme cos2 θ23 cos2 θ13 = cos2 θν
23 cos2 θν

13. The relation in 
eq. (132) suggests the required rearrangement of the phases one has to perform to bring U given 
in eq. (131) to the standard parametrisation form. Namely, it can be shown that eq. (132) holds 
if

δ = βe1 + βe2 + βμ3 − βe3 − φ + βτ3 , βτ3 = 0 or π , (133)

where βτ3 = arg(cν
23c

ν
13). The phase βτ3 provides the sign factor sgn(cos θν

23 cos θν
13) in the rela-

tion between sin δ and sinφ, when one calculates sin δ from eq. (133). Now we can cast U in the 
following form:

U = P2

⎛
⎜⎜⎝

|Ue1| |Ue2| |Ue3|e−iδ

|Uμ1|ei(βμ1+βe2−φ+βτ3) |Uμ2|ei(βμ2+βe1−φ+βτ3) |Uμ3|
|Uτ1|ei(βτ1+βe2+βμ3−φ) |Uτ2|ei(βτ2+βe1+βμ3−φ) |Uτ3|

⎞
⎟⎟⎠Q2 Q0 , (134)

where

P2 = diag
(
ei(βe1+βe2+βμ3−φ), ei(βμ3−βτ3),1

)
, (135)

Q2 = diag
(
e−i(βe2+βμ3−φ), e−i(βe1+βμ3−φ), eiβτ3

)
= e−i(βe2+βμ3−φ) diag

(
1, ei(βe2−βe1), ei(βe2+βμ3−φ+βτ3)

)
. (136)

14 For θν = −π/4 this relation reduces to eq. (75) in ref. [4].
23
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The phases in the matrix P2 are unphysical. The Majorana phases get contribution from the 
matrix Q2Q0 and read:

α21

2
= βe2 − βe1 + ξ21

2
,

α31

2
= βe2 + βμ3 − φ + βτ3 + ξ31

2
, βτ3 = 0 or π . (137)

In terms of the standard parametrisation mixing angles θ12, θ23, θ13 and the Dirac phase δ we 
have:

βe1 + βμ3 − φ = arg
(
Uτ2e

−i
α21

2

)
− βτ2 = arg

(
−c12s23 − s12c23s13e

iδ
)

− βτ2 , (138)

βe2 + βμ3 − φ = arg (Uτ1) − βτ1 = arg
(
s12s23 − c12c23s13e

iδ
)

− βτ1 , (139)

where βτ1 and βτ2 can be 0 or π and are known when the angles θν
12, θν

23 and θν
13 are fixed (see 

eqs. (230) and (231)).
The mixing angles θ12, θ23 and θ13 of the standard parametrisation are related with the angles 

θe
12, θν

ij and the phase φ present in the parametrisation of U given in eq. (130) as follows:

sin2 θ13 = |Ue3|2 = sin2 θe
12 sin2 θν

23 cos2 θν
13 + cos2 θe

12 sin2 θν
13 − X12 sin θν

13 , (140)

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = 1 − cos2 θν

23 cos2 θν
13

1 − sin2 θ13
, (141)

sin2 θ12 = |Ue2|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
sin2 θe

12

(
cos θν

12 cos θν
23 − sin θν

12 sin θν
23 sin θν

13

)2

+ cos2 θe
12 sin2 θν

12 cos2 θν
13 − X12 sin θν

12

(
cos θν

12 cot θν
23 − sin θν

12 sin θν
13

)]
, (142)

where

X12 = − sin 2θe
12 sin θν

23 cos θν
13 cosφ . (143)

We notice that eqs. (140)–(142) are the generalisation of eqs. (66)–(68) in ref. [4] for an arbitrary 
fixed value of θν

23. Solving eq. (140) for X12 and inserting the solution in eq. (142), we find 
sin2 θ12 as a function of θ13, θν

12, θν
13, θν

23 and θe
12:

sin2 θ12 = α sin2 θe
12 + β

1 − sin2 θ13
. (144)

Here

α = cos 2θν
12 cos2 θν

23 + 1

2
sin 2θν

12 cos θν
23 sin θν

13

(
cos2 θν

23

sin θν
23

− sin θν
23

sin2 θν
13

)
, (145)

β = sin θν
12

[
cos2 θ13 sin θν

12 − cos θν
12 cot θν

23

(
sin θν

13 − sin2 θ13

sin θν
13

)]
. (146)

Inverting the formula for sin2 θ12 allows us to express sin2 θe
12 in terms of θ12, θ13, θν

12, θν
13 and 

θν
23:

sin2 θe
12 = 2 cos2 θ13 tan θν

23 sin θν
13

(
sin2 θ12 − sin2 θν

12

) − sin 2θν
12

(
sin2 θ13 − sin2 θν

13

)
cos 2θν

12 sin 2θν
23 sin θν

13 + sin 2θν
12

(
cos 2θν

23 − cos2 θν
23 cos2 θν

13

) .

(147)



I. Girardi et al. / Nuclear Physics B 911 (2016) 754–804 779
Using eq. (140), we can express cosφ in terms of the angle θ13, the angles θν
12, θν

13 and θν
23

which are assumed to have known values and the angle θe
12 whose value is fixed by eq. (147):

cosφ = sin2 θ13 − cos2 θe
12 sin2 θν

13 − sin2 θe
12 sin2 θν

23 cos2 θν
13

sin 2θe
12 sin θν

23 sin θν
13 cos θν

13
. (148)

Finally, we give the expressions for sin(α21/2 − ξ21/2), sin(α31/2 − ξ31/2) and sin(α31/2 −
δ − ξ31/2), which have the following forms:

sin(α21/2 − ξ21/2) = sin 2θe
12

2|Ue1Ue2| cos θν
23 cos θν

13 sinφ

= cos(βτ2 − βτ1)

2|Uτ1Uτ2| sin 2θ23 sin θ13 sin δ , (149)

sin(α31/2 − ξ31/2) = sin 2θe
12 cos2 θν

23

2|Ue2Uμ3Uτ3| cos2 θν
13

(
cos θν

12 sin θν
23

+ sin θν
12 cos θν

23 sin θν
13

)
sinφ

= −cos(βτ3 − βτ1)

|Uτ1| cos θ12 cos θ23 sin θ13 sin δ , (150)

sin(α31/2 − δ − ξ31/2) = sin 2θe
12

2|Ue1Ue3|
(
cos θν

12 sin θν
23 + sin θν

12 cos θν
23 sin θν

13

)
sinφ

= −cos(βτ3 − βτ1)

|Uτ1| sin θ12 sin θ23 sin δ , (151)

where, according to eq. (141), cos2 θ23 cos2 θ13 = cos2 θν
23 cos2 θν

13. Note that, as it follows from 
eqs. (230)–(232), the sign factors cos(βτ2 −βτ1) and cos(βτ3 −βτ1) are known when the angles 
θν
ij are fixed. Equations (149) and (150) imply, in particular, that | sin(α21(31)/2 − ξ21(31)/2)| ∝

sin θ13.

4.2. The scheme with θe
13 − (θν

23, θ
ν
13, θ

ν
12) rotations (Case C2)

In this subsection we derive the formulae for the Majorana phases in the case when the PMNS 
matrix U is parametrised as in eq. (21) with (ij) = (13), i.e.,

U = R13(θ
e
13)� R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 . (152)

In this case the phase ψ in the matrix � is unphysical, and � = diag (1, 1, e−iω). We will proceed 
in analogy with the previous subsection. We start by writing the matrix U in explicit form:

U =

⎛
⎜⎜⎝

|Ue1|eiβe1 |Ue2|eiβe2 |Ue3|eiβe3

|Uμ1|eiβμ1 |Uμ2|eiβμ2 |Uμ3|eiβμ3

|Uτ1|eiβτ1 |Uτ2|eiβτ2 |Uτ3|eiβτ3

⎞
⎟⎟⎠Q0 , (153)

where the expressions for |Uli |eiβli are provided in Appendix A.3.
From the comparison of the expressions for JCP in the standard parametrisation and in the 

parametrisation given in eq. (152), it follows that15

15 For θν = −π/4 this relation reduces to eq. (91) in ref. [4].
23
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sin δ = sin 2θe
13

[(
cos2 θν

13 − (cos2 θν
13 − 2) cos 2θν

23

)
sin 2θν

12 + 2 cos 2θν
12 sin 2θν

23 sin θν
13

]
2 sgn(sin θν

23 cos θν
13) sin 2θ12 sin 2θ13 cos θ23

× sinω , (154)

where we have used the equality sin2 θ23 cos2 θ13 = sin2 θν
23 cos2 θν

13 valid in this scheme. As can 
be shown, the relation between sinδ and sinω in eq. (154) takes place if

δ = βe1 + βe2 + βτ3 − βe3 + ω + βμ3 , βμ3 = 0 or π , (155)

where βμ3 = arg(sν
23c

ν
13). Knowing the expression for δ allows us to rearrange the phases in 

eq. (153) in such a way as to render U in the standard parametrisation form:

U = P2

⎛
⎜⎜⎝

|Ue1| |Ue2| |Ue3|e−iδ

|Uμ1|ei(βμ1+βe2+βτ3+ω) |Uμ2|ei(βμ2+βe1+βτ3+ω) |Uμ3|
|Uτ1|ei(βτ1+βe2+ω+βμ3) |Uτ2|ei(βτ2+βe1+ω+βμ3) |Uτ3|

⎞
⎟⎟⎠Q2 Q0 , (156)

with

P2 = diag
(
ei(βe1+βe2+βτ3+ω),1, ei(βτ3−βμ3)

)
, (157)

Q2 = diag
(
e−i(βe2+βτ3+ω), e−i(βe1+βτ3+ω), eiβμ3

)
= e−i(βe2+βτ3+ω) diag

(
1, ei(βe2−βe1), ei(βe2+βτ3+ω+βμ3)

)
. (158)

The matrix P2 contains unphysical phases which can be removed. The Majorana phases are 
determined by the phases in the product Q2 Q0:

α21

2
= βe2 − βe1 + ξ21

2
,

α31

2
= βe2 + βτ3 + ω + βμ3 + ξ31

2
, βμ3 = 0 or π . (159)

In terms of the “standard” mixing angles θ12, θ23, θ13 and the Dirac phase δ one has:

βe1 + βτ3 + ω = arg
(
Uμ2e

−i
α21

2

)
− βμ2 = arg

(
c12c23 − s12s23s13e

iδ
)

− βμ2 , (160)

βe2 + βτ3 + ω = arg
(
Uμ1

) − βμ1 = arg
(
−s12c23 − c12s23s13e

iδ
)

− βμ1 , (161)

where βμ1 = arg(−sν
12c

ν
23 − cν

12s
ν
23s

ν
13) and βμ2 = arg(cν

12c
ν
23 − sν

12s
ν
23s

ν
13) can take values of 0 or 

π and are known when the angles θν
12, θν

23 and θν
13 are fixed.

The mixing angles θ12, θ23 and θ13 of the standard parametrisation are related with the angles 
θe

13, θν
ij and the phase ω present in the parametrisation of U given in eq. (152) in the following 

way:

sin2 θ13 = |Ue3|2 = sin2 θe
13 cos2 θν

23 cos2 θν
13 + cos2 θe

13 sin2 θν
13 + X13 sin θν

13 , (162)

sin2 θ23 = |Uμ3|2
1 − |Ue3|2 = sin2 θν

23 cos2 θν
13

1 − sin2 θ13
, (163)

sin2 θ12 = |Ue2|2
1 − |Ue3|2 = 1

1 − sin2 θ13

[
sin2 θe

13

(
cos θν

12 sin θν
23 + sin θν

12 cos θν
23 sin θν

13

)2

+ cos2 θe
13 sin2 θν

12 cos2 θν
13 − X13 sin θν

12

(
cos θν

12 tan θν
23 + sin θν

12 sin θν
13

)]
, (164)
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where

X13 = sin 2θe
13 cos θν

23 cos θν
13 cosω . (165)

Equations (162)–(164) are the generalisation of eqs. (82)–(84) in ref. [4] for an arbitrary fixed 
value of θν

23. Solving eq. (162) for X13 and inserting the solution in eq. (164), one finds sin2 θ12
as a function of θ13, θν

12, θν
13, θν

23 and θe
13:

sin2 θ12 = ρ sin2 θe
13 + η

1 − sin2 θ13
, (166)

where ρ and η are given by

ρ = cos 2θν
12 sin2 θν

23 − 1

2
sin 2θν

12 sin θν
23 sin θν

13

(
sin2 θν

23

cos θν
23

− cos θν
23

sin2 θν
13

)
, (167)

η = sin θν
12

[
cos2 θ13 sin θν

12 + cos θν
12 tan θν

23

(
sin θν

13 − sin2 θ13

sin θν
13

)]
. (168)

From eq. (166) we can express sin2 θe
13 as a function of θ12, θ13, θν

12, θν
13 and θν

23:

sin2 θe
13 = 2 cos2 θ13 cot θν

23 sin θν
13

(
sin2 θ12 − sin2 θν

12

) + sin 2θν
12

(
sin2 θ13 − sin2 θν

13

)
cos 2θν

12 sin 2θν
23 sin θν

13 + sin 2θν
12

(
cos 2θν

23 + sin2 θν
23 cos2 θν

13

) .

(169)

Using eq. (162), we can write cosω in terms of the angle θ13, the angles θν
12, θν

13 and θν
23 which 

are assumed to have known values and the angle θe
13 whose value is fixed by eq. (169):

cosω = sin2 θ13 − cos2 θe
13 sin2 θν

13 − sin2 θe
13 cos2 θν

23 cos2 θν
13

sin 2θe
13 cos θν

23 sin θν
13 cos θν

13
. (170)

Thus, we have at our disposal expressions for sin2 θe
13 and cosω in terms of the known angles.

Finally, we provide the expressions for sin(α21/2 − ξ21/2), sin(α31/2 − ξ31/2) and
sin(α31/2 − δ − ξ31/2):

sin(α21/2 − ξ21/2) = sin 2θe
13

2|Ue1Ue2| sin θν
23 cos θν

13 sinω

= −cos(βμ2 − βμ1)

2|Uμ1Uμ2| sin 2θ23 sin θ13 sin δ , (171)

sin(α31/2 − ξ31/2) = sin 2θe
13 sin2 θν

23

2|Ue2Uμ3Uτ3| cos2 θν
13

(
cos θν

12 cos θν
23

− sin θν
12 sin θν

23 sin θν
13

)
sinω

= −cos(βμ3 − βμ1)

|Uμ1| cos θ12 sin θ23 sin θ13 sin δ , (172)

sin(α31/2 − δ − ξ31/2) = − sin 2θe
13

2|Ue1Ue3|
(
cos θν

12 cos θν
23 − sin θν

12 sin θν
23 sin θν

13

)
sinω

= cos(βμ3 − βμ1)

|Uμ1| sin θ12 cos θ23 sin δ , (173)
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Table 1
The phases �21 and �31 entering the sum rules for the Majorana phases given in eqs. (174)–(177) for all the cases 
considered.

Case �21 �31

A1 arg
(−sν

12cν
12

)
arg

(
sν
12sν

23cν
23

)
A2 arg

(−sν
12cν

12

)
arg

(−sν
12sν

23cν
23

)
B1 arg

(−sν
12cν

12

)
arg

(
sν
12

) + β

B2 arg
(−sν

12cν
12

)
arg

(−sν
12

) + β

B3 arg
[(

se
13sν

12 + ce
13cν

12sν
23e−iω

)(
se
13cν

12 − ce
13sν

12sν
23eiω

)]
arg

[
ce

13cν
23

(
ce

13sν
12sν

23 − se
13cν

12e−iω
)]

C1 arg
[− (

cν
12sν

23 + sν
12cν

23sν
13

) (
sν
12sν

23 − cν
12cν

23sν
13

)]
arg

[
cν

23cν
13

(
sν
12sν

23 − cν
12cν

23sν
13

)]
C2 arg

[− (
cν

12cν
23 − sν

12sν
23sν

13

) (
sν
12cν

23 + cν
12sν

23sν
13

)]
arg

[−sν
23cν

13

(
sν
12cν

23 + cν
12sν

23sν
13

)]

where, according to eq. (163), sin2 θ23 cos2 θ13 = sin2 θν
23 cos2 θν

13. As it follows from eqs. 
(236)–(238), the sign factors cos(βμ2 − βμ1) and cos(βμ3 − βμ1) are known once the angles θν

ij

are fixed. As in the cases analysed in the preceding subsections we have | sin(α21/2 − ξ21/2)| ∝
sin θ13 and | sin(α31/2 − ξ31/2)| ∝ sin θ13.

5. Summary of the sum rules for the Majorana phases

In the present Section we summarise the sum rules for the Majorana phases obtained in the 
previous Sections. Throughout this Section the neutrino mixing matrix U is assumed to be in the 
standard parametrisation.

In schemes A1, B1, B3 and C1 the sum rules for α21/2 and α31/2 can be cast in the form:

α21

2
= arg

(
Uτ1U

∗
τ2e

i
α21

2

)
+ �21 + ξ21

2
, (174)

α31

2
= arg (Uτ1) + �31 + ξ31

2
, (175)

where the expressions for the phases �21 and �31, which should be used in these sum rules in 
each particular case, are given in Table 1. In schemes A1 and C1 the phases �21 and �31 take 
values 0 or π and are known once the angles θν

ij are fixed. In scheme B1 (B3), �31 (�21 and �31) 
depends (depend) on the free phase parameter β (ω).

In schemes A2, B2 and C2 we similarly have:

α21

2
= arg

(
Uμ1U

∗
μ2e

i
α21

2

)
+ �21 + ξ21

2
, (176)

α31

2
= arg

(
Uμ1

) + �31 + ξ31

2
, (177)

where the corresponding expressions for �21 and �31 are given again in Table 1. In cases A2 and 
C2 the phases �21 and �31 can take values 0 or π . They are fixed when the angles θν

ij are given. 
The phase β , which is a free parameter as long as it is not fixed by additional arguments, enters 
the sum rule for α31/2 in scheme B2.

In all schemes considered, A1, A2, B1, B2, B3, C1 and C2, the phases (α21/2 − ξ21/2 − �21)

and (α31/2 −ξ31/2 −�31) are determined by the values of the neutrino mixing angles θ12, θ23 and 
θ13, and of the Dirac phase δ. The Dirac phase is determined in each scheme by a corresponding 
sum rule. In schemes A1, A2, C1 and C2 there is a correlation between the values of sin2 θ23
and sin2 θ13. The sum rules for cos δ and the relevant expressions for sin2 θ23 in the cases of 



I. Girardi et al. / Nuclear Physics B 911 (2016) 754–804 783
Table 2
The Dirac CPV phase δ in degrees calculated from the sum rules derived in refs. [2,4] using the best fit values of the 
neutrino mixing angles quoted in eqs. (3)–(5), except for the B3 scheme and the BM (LC) form of Ũν . The results 
shown for the B3 scheme are obtained for ω = 0, sgn (sin 2θe

13) = 1, and for sin2 θ23 = 0.48907 (0.48886) for the NO 
(IO) spectrum. The numbers quoted for the BM (LC) form of Ũν are for sin2 θ12 = 0.354, which is the 3σ upper 
bound. For each cell the first number corresponds to δ = cos−1(cos δ), while the second number corresponds to δ =
2π − cos−1(cos δ). In cases C1 and C2, θν

23 = −π/4 and the values in square brackets are those of [θν
13, θν

12] used. The 
letters a, b, c and d stand for sin−1(1/3), sin−1(1/

√
2 + r ), sin−1(1/

√
3 ) and sin−1(

√
3 − r/2), respectively. See text 

for further details.

Case (O) TBM GRA GRB HG BM (LC)

A1 (NO) 101.9 ∨ 258.1 77.3 ∨ 282.7 107.2 ∨ 252.8 65.3 ∨ 294.7 176.5 ∨ 183.5
A1 (IO) 101.7 ∨ 258.3 77.3 ∨ 282.7 107.0 ∨ 253.0 65.5 ∨ 294.5 171.1 ∨ 188.9

A2 (NO) 78.1 ∨ 281.9 102.7 ∨ 257.3 72.8 ∨ 287.2 114.7 ∨ 245.3 3.5 ∨ 356.5
A2 (IO) 78.3 ∨ 281.7 102.7 ∨ 257.3 73.0 ∨ 287.0 114.6 ∨ 245.4 8.9 ∨ 351.1

B1 (NO) 99.9 ∨ 260.1 77.7 ∨ 282.3 104.8 ∨ 255.2 66.9 ∨ 293.1 153.4 ∨ 206.6
B1 (IO) 104.9 ∨ 255.1 76.4 ∨ 283.6 111.3 ∨ 248.7 62.4 ∨ 297.6 –

B2 (NO) 75.1 ∨ 284.9 103.6 ∨ 256.4 68.8 ∨ 291.2 117.6 ∨ 242.4 –
B2 (IO) 80.5 ∨ 279.5 102.2 ∨ 257.8 75.7 ∨ 284.3 112.8 ∨ 247.2 29.1 ∨ 330.9

B3 (NO) 103.5 ∨ 256.5 78.8 ∨ 281.2 108.9 ∨ 251.1 66.9 ∨ 293.1 –
B3 (IO) 103.1 ∨ 256.9 78.6 ∨ 281.4 108.4 ∨ 251.6 66.8 ∨ 293.2 –

Case [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20,π/6]
C1 (NO) 108.7 ∨ 251.3 44.8 ∨ 315.2 29.7 ∨ 330.3 154.9 ∨ 205.1 132.8 ∨ 227.2
C1 (IO) 108.5 ∨ 251.5 45.2 ∨ 314.8 30.5 ∨ 329.5 153.7 ∨ 206.3 132.3 ∨ 227.7

Case [π/20, c] [π/20,π/4] [π/10,π/4] [a,π/4] [π/20, d]
C2 (NO) 146.0 ∨ 214.0 71.3 ∨ 288.7 135.2 ∨ 224.8 150.3 ∨ 209.7 138.5 ∨ 221.5
C2 (IO) 145.3 ∨ 214.7 71.5 ∨ 288.5 134.8 ∨ 225.2 149.5 ∨ 210.5 138.1 ∨ 221.9

interest, which should be used in eqs. (174)–(177), are given, e.g., in Tables 1 and 2 of ref. [4]. 
In the following Section we use the sum rules given in eqs. (174)–(177) to obtain the numerical 
predictions for the Majorana phases in the PMNS matrix.

6. Predictions

6.1. Dirac phase

In Table 2 16 we show predictions for the Dirac phase δ, obtained from the sum rules, derived 
in refs. [2,4] and summarised in Table 1 in ref. [4]. The numerical values are obtained using the 
best fit values of the neutrino mixing parameters given in eqs. (3)–(5) for both the NO and IO 
spectra. In the BM (LC) case, the sum rules for cos δ lead to unphysical values of | cos δ| > 1 if 
one uses as input the current best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 [2–4,6]. This is an 
indication of the fact that the current data disfavour the BM (LC) form of Ũν . In the case of the B1 
scheme and the NO spectrum, for example, the BM (LC) form is disfavoured at approximately 
2σ confidence level. Physical values of cosδ are found for larger (smaller) values of sin2 θ12
(sin2 θ23) [2–4]. For, e.g., sin2 θ12 = 0.354, which is the 3σ upper bound of sin2 θ12, and the 

16 This table is an updated version of Table 4 in [4].
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best fit values of sin2 θ23 and sin2 θ13, we get | cos δ| ≤ 1 in most of the schemes considered in 
the present article, the exceptions being the schemes B1 with the IO spectrum, B2 with the NO 
spectrum and B3. The values of the Dirac phase corresponding to the BM (LC) form quoted in 
Table 2 are obtained for sin2 θ12 = 0.354 and the best fit values of sin2 θ23 and sin2 θ13.

In each of cases C1 and C2 we report results for θν
23 = −π/4 and five sets of values of 

[θν
13, θ

ν
12], associated with, or inspired by, models of neutrino mixing. These sets include the 

three values of θν
13 = π/20, π/10 and a ≡ sin−1(1/3) and selected values of θν

12 from the set: 
±π/4, π/6, b ≡ sin−1(1/

√
2 + r ), c ≡ sin−1(1/

√
3 ) and d ≡ sin−1(

√
3 − r/2). The values in 

square brackets in Table 2 are those of [θν
13, θ

ν
12] used. In scheme C1 we define cases I, II, III, 

IV and V as the cases with [θν
13, θ

ν
12] being equal to [π/20, −π/4], [π/10, −π/4], [a, −π/4], 

[π/20, b] and [π/20, π/6], respectively. In scheme C2 cases I, II, III, IV and V correspond to 
the following pairs: [π/20, c], [π/20, π/4], [π/10, π/4], [a, π/4] and [π/20, d], respectively.

As can be seen from Table 2, the values of δ for the IO spectrum differ insignificantly from 
the values obtained for the NO one in all the schemes considered, except for the B1 and B2 ones. 
The difference between the NO and IO values of δ in the B1 and B2 schemes is a consequence of 
the difference between the best fit values of sin2 θ23 corresponding to the NO and IO spectra.17

We use the values of δ from Table 2 to obtain predictions for the Majorana phases in the next 
subsection.

6.2. Majorana phases

In this subsection we present results of the numerical analysis of the predictions for the Ma-
jorana phases, performed using the best fit values of the neutrino mixing parameters given in 
eqs. (3)–(5). These predictions are obtained from the sum rules in eqs. (174)–(177), in which we 
have used the proper expressions for sin2 θ23 and cos δ from [2,4]. We summarise the predictions 
for all the cases considered in the present study in Tables 3 and 4, in which we give, respectively, 
the values of the phase differences (α21/2 − ξ21/2) and (α31/2 − ξ31/2) found in schemes A1, 
A2, B3, C1 and C2. In the cases of schemes B1 and B2 we present in Table 4 results for the 
difference (α31/2 − ξ31/2 − β), since the phase β , in general, is not fixed, unless some addi-
tional arguments are used that fix it. In the case of the B3 scheme the results are obtained for 
ω = 0, sgn (sin 2θe

13) = 1, and for sin2 θ23 = 0.48907 (0.48886) for the NO (IO) spectrum (see 
subsection 3.3 and ref. [4] for details).

All the quoted phases are determined with a two-fold ambiguity owing to the fact that the 
Dirac phase δ, which enters into the expressions for all the phases under discussion, is determined 
with a two-fold ambiguity from the sum rules it satisfies in the schemes of interest (see [2,4]). 
The absolute values of the sines of the phases quoted in Tables 3 and 4 are all proportional to 
sin θ13, and thus are relatively small. The results in cases A1 and B1 for the TBM, BM (LC), 
GRA, GRB and HG symmetry forms of Ũν considered were first obtained in [2] using the best 
fit values of sin2 θ12, sin2 θ23 and sin2 θ13 from (the first e-archive version of) ref. [25]. Here, in 
particular, we update the results derived in [2].

As we have already noticed, in the BM (LC) case, the sum rules for cosδ lead to unphysical 
values of | cos δ| > 1 if one uses as input the current best fit values of sin2 θ12, sin2 θ23 and sin2 θ13
[2,4,6]. Physical values of cos δ are found for larger (smaller) values of sin2 θ12 (sin2 θ23) [2–4]. 
The values of the phases given in Tables 3 and 4 and corresponding to the BM (LC) mixing 

17 We recall that sin2 θ23 is a free parameter in schemes B1 and B2.
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Table 3
The phase difference (α21/2 − ξ21/2) in degrees calculated using the best fit values of the neutrino mixing angles quoted 
in eqs. (3)–(5), except for scheme B3 and the BM (LC) form of Ũν . For scheme B3 the results shown are obtained 
for ω = 0, sgn (sin 2θe

13) = 1 and sin2 θ23 = 0.48907 (0.48886) in the case of the NO (IO) spectrum. The numbers 
quoted for the BM (LC) form of Ũν are for the 3σ upper bound of sin2 θ12 = 0.354. For each cell the first number 
corresponds to δ = cos−1(cos δ), while the second number is obtained for δ = 2π − cos−1(cos δ). In cases C1 and C2, 
θν

23 = −π/4 and the values in square brackets are those of [θν
13, θν

12] used. The letters a, b, c and d stand for sin−1(1/3), 
sin−1(1/

√
2 + r ), sin−1(1/

√
3 ) and sin−1(

√
3 − r/2), respectively. See text for further details.

Case (O) TBM GRA GRB HG BM (LC)

A1 (NO) 342.3 ∨ 17.7 341.4 ∨ 18.6 342.9 ∨ 17.1 342.1 ∨ 17.9 359.0 ∨ 1.0
A1 (IO) 342.1 ∨ 17.9 341.2 ∨ 18.8 342.7 ∨ 17.3 341.9 ∨ 18.1 357.4 ∨ 2.6

A2 (NO) 17.7 ∨ 342.3 18.6 ∨ 341.4 17.1 ∨ 342.9 17.9 ∨ 342.1 1.0 ∨ 359.0
A2 (IO) 17.9 ∨ 342.1 18.8 ∨ 341.2 17.3 ∨ 342.7 18.1 ∨ 341.9 2.6 ∨ 357.4

B1 (NO) 340.3 ∨ 19.7 339.3 ∨ 20.7 340.8 ∨ 19.2 339.9 ∨ 20.1 351.7 ∨ 8.3
B1 (IO) 345.0 ∨ 15.0 344.1 ∨ 15.9 345.7 ∨ 14.3 345.0 ∨ 15.0 –

B2 (NO) 15.1 ∨ 344.9 16.0 ∨ 344.0 14.4 ∨ 345.6 15.0 ∨ 345.0 –
B2 (IO) 20.2 ∨ 339.8 21.1 ∨ 338.9 19.6 ∨ 340.4 20.6 ∨ 339.4 9.2 ∨ 350.8

B3 (NO) 342.5 ∨ 17.5 341.4 ∨ 18.6 343.1 ∨ 16.9 342.0 ∨ 18.0 –
B3 (IO) 342.3 ∨ 17.7 341.2 ∨ 18.8 342.9 ∨ 17.1 341.8 ∨ 18.2 –

Case [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20,π/6]
C1 (NO) 163.5 ∨ 196.5 166.9 ∨ 193.1 170.7 ∨ 189.3 353.0 ∨ 7.0 347.6 ∨ 12.4
C1 (IO) 163.3 ∨ 196.7 166.6 ∨ 193.4 170.3 ∨ 189.7 352.6 ∨ 7.4 347.4 ∨ 12.6

Case [π/20, c] [π/20,π/4] [π/10,π/4] [a,π/4] [π/20, d]
C2 (NO) 11.6 ∨ 348.4 16.5 ∨ 343.5 13.1 ∨ 346.9 9.3 ∨ 350.7 13.5 ∨ 346.5
C2 (IO) 11.9 ∨ 348.1 16.7 ∨ 343.3 13.4 ∨ 346.6 9.7 ∨ 350.3 13.7 ∨ 346.3

are obtained for the 3σ upper bound of sin2 θ12 = 0.354 and the best fit values of sin2 θ23 and 
sin2 θ13. For these values of the three mixing parameters | cos δ| has an unphysical value greater 
than one only for schemes B1 with the IO spectrum, B2 with the NO spectrum and B3.

A few comments on the results presented in Tables 3 and 4 are in order. These results show 
that for a given scheme and fixed form of the matrix Ũν , the difference between the predictions 
of the phases (α21/2 − ξ21/2) and (α31/2 − ξ31/2) or (α31/2 − ξ31/2 − β) for the NO and IO 
neutrino mass spectra are relatively small. The largest difference is approximately of 5◦ between 
the NO and IO values of (α21/2 − ξ21/2) in the B1 and B2 schemes. The same observation is 
valid for the variation of the phases with the variation of the form of Ũν within a given scheme, 
the only exceptions being i) the BM (LC) form, for which the phases differ from those for the 
TBM, GRA, GRB and HG forms of Ũν of schemes A1, A2, B1 (NO spectrum) and B2 (IO 
spectrum) by approximately 10◦ to 18◦, and ii) the C1 scheme, in which the values of the phases 
(α21/2 − ξ21/2) and (α31/2 − ξ31/2) differ relatively little within the group of the first three 
cases in Tables 3 and 4 and within the group of the last two ones, but change significantly — ap-
proximately by π — when switching from a case of one of the groups to a case in the second 
group.

For a given symmetry form of Ũν — TBM, GRA, GRB and HG — the phase difference 
(α21/2 − ξ21/2) has very similar values for the A1, B1 and B3 schemes, they differ approxi-
mately by at most 2◦, and for the A2 and B2 schemes, for which the difference does not exceed 
3◦. However, the predictions for (α21/2 − ξ21/2) for schemes A1, B1, B3 and A2, B2 differ sig-
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Table 4
The same as in Table 3, but for the phase difference (α31/2 − ξ31/2) given in degrees. In cases B1 and B2 the presented 
numbers correspond to (α31/2 − ξ31/2 − β), where β is a free phase parameter. See text for further details.

Case (O) TBM GRA GRB HG BM (LC)

A1 (NO) 167.9 ∨ 192.1 166.7 ∨ 193.3 168.4 ∨ 191.6 167.0 ∨ 193.0 179.4 ∨ 180.6
A1 (IO) 167.7 ∨ 192.3 166.6 ∨ 193.4 168.3 ∨ 191.7 166.8 ∨ 193.2 178.5 ∨ 181.5

A2 (NO) 192.1 ∨ 167.9 193.3 ∨ 166.7 191.6 ∨ 168.4 193.0 ∨ 167.0 180.6 ∨ 179.4
A2 (IO) 192.3 ∨ 167.7 193.4 ∨ 166.6 191.7 ∨ 168.3 193.2 ∨ 166.8 181.5 ∨ 178.5

B1 (NO) 346.4 ∨ 13.6 345.2 ∨ 14.8 346.9 ∨ 13.1 345.4 ∨ 14.6 355.2 ∨ 4.8
B1 (IO) 349.7 ∨ 10.3 348.6 ∨ 11.4 350.2 ∨ 9.8 349.1 ∨ 10.9 –

B2 (NO) 10.3 ∨ 349.7 11.4 ∨ 348.6 9.8 ∨ 350.2 11.0 ∨ 349.0 –
B2 (IO) 13.9 ∨ 346.1 15.1 ∨ 344.9 13.4 ∨ 346.6 15.0 ∨ 345.0 5.3 ∨ 354.7

B3 (NO) 168.0 ∨ 192.0 166.7 ∨ 193.3 168.6 ∨ 191.4 166.9 ∨ 193.1 –
B3 (IO) 167.9 ∨ 192.1 166.6 ∨ 193.4 168.4 ∨ 191.6 166.8 ∨ 193.2 –

Case [π/20,−π/4] [π/10,−π/4] [a,−π/4] [π/20, b] [π/20,π/6]
C1 (NO) 348.8 ∨ 11.2 350.2 ∨ 9.8 352.9 ∨ 7.1 175.5 ∨ 184.5 171.9 ∨ 188.1
C1 (IO) 348.7 ∨ 11.3 350.0 ∨ 10.0 352.7 ∨ 7.3 175.2 ∨ 184.8 171.7 ∨ 188.3

Case [π/20, c] [π/20,π/4] [π/10,π/4] [a,π/4] [π/20, d]
C2 (NO) 188.8 ∨ 171.2 191.2 ∨ 168.8 189.8 ∨ 170.2 187.1 ∨ 172.9 190.1 ∨ 169.9
C2 (IO) 189.0 ∨ 171.0 191.3 ∨ 168.7 190.0 ∨ 170.0 187.3 ∨ 172.7 190.3 ∨ 169.7

nificantly — the sum of the values of (α21/2 − ξ21/2) for any of the A1, B1, B3 schemes and for 
any of the A2, B2 schemes being roughly equal to 2π . In contrast, for a given symmetry form 
of Ũν — TBM, GRA, GRB and HG — i) the values of the phase difference (α31/2 − ξ31/2)

((α31/2 − ξ31/2 − β)) for the schemes A1 and A2 (B1 and B2) differ significantly — by up to 
26◦ (337◦), and ii) the values of (α31/2 − ξ31/2) and (α31/2 − ξ31/2 − β) are drastically dif-
ferent. At the same time, the values of (α31/2 − ξ31/2) for the A1 and B3 schemes practically 
coincide.

Finally, for any given of the five cases of schemes C1 and C2, the values of the phase differ-
ence (α21/2 − ξ21/2) for schemes C1 and C2 differ drastically. The same conclusion is valid for 
the C1 and C2 values of the phase difference (α31/2 − ξ31/2) for any of the first three cases of 
these schemes listed in Table 4. For the last two cases in Table 4 the difference between the C1 
and C2 values of (α31/2 − ξ31/2) is approximately 12◦ and 18◦.

Further, we show how the predictions for the phase differences presented in Tables 3 and 4
change when the uncertainties in determination of the neutrino mixing parameters are taken into 
account. As an example, we consider the cases B1 and B2 with the TBM form of the matrix Ũν . 
We fix two of sin2 θij to their best fit values for the NO neutrino mass spectrum and vary the 
third one in its 3σ allowed range given in eqs. (3)–(5). We show the results for cases B1 and B2 
in Figs. 1 and 2, respectively. As can be seen, the phase differences of interest depend weakly on 
sin2 θ12 and sin2 θ13. When these parameters are varied in their 3σ ranges, the variation of the 
phase differences is within a few degrees. The dependence on sin2 θ23 is stronger: the maximal 
variations of (α21/2 − ξ21/2) and (α31/2 − ξ31/2 − β) are approximately of 9◦ and 6◦ in both 
cases. Another example, corresponding to the cases A1 and A2 with the TBM form of the matrix 
Ũν , is considered in Appendix B.
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Fig. 1. The phase differences (α21/2 − ξ21/2) (solid line) and (α31/2 − ξ31/2 −β) (dashed line) as functions of sin2 θij

in case B1 and for the TBM symmetry form of the matrix Ũν . The two other parameters, sin2 θkl and sin2 θmn, ij �= kl �=
mn, have been fixed to their best fit values for the NO spectrum. The upper panels correspond to δ = cos−1(cos δ), while 
the lower panels correspond to δ = 2π − cos−1(cos δ). The vertical line and the three coloured vertical bands indicate 
the best fit value and the 1σ , 2σ and 3σ allowed ranges of sin2 θij . (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

Fig. 2. The same as in Fig. 1, but for case B2.
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Performing a full statistical analysis of the predictions for (α21/2 −ξ21/2) and (α31/2 −ξ31/2)

((α31/2 − ξ31/2 − β)) is however outside the scope of the present study. Such an analysis will 
be presented elsewhere.

6.3. Neutrinoless double beta decay

If the light neutrinos with definite mass νj are Majorana fermions, their exchange can trigger 
processes in which the total lepton charge changes by two units, |�L| = 2: K+ → π− + μ+ +
μ+, e−+(A, Z) → e++(A, Z−2), etc. The experimental searches for (ββ)0ν -decay, (A, Z) →
(A, Z +2) + e− + e−, of even–even nuclei 48Ca, 76Ge, 82Se, 100Mo, 116Cd, 130Te, 136Xe, 150Nd, 
etc., are unique in reaching the sensitivity that might allow to observe this process if it is triggered 
by the exchange of the light neutrinos νj (see, e.g., refs. [14,16]). In (ββ)0ν -decay, two neutrons 
of the initial nucleus (A, Z) transform by exchanging virtual ν1,2,3 into two protons of the final 
state nucleus (A, Z + 2) and two free electrons. The corresponding (ββ)0ν -decay amplitude has 
the form (see, e.g., refs. [10,16]): A((ββ)0ν) = G2

F 〈 m 〉 M(A, Z), where GF is the Fermi constant, 
〈 m 〉 is the (ββ)0ν -decay effective Majorana mass and M(A, Z) is the nuclear matrix element 
of the process. The (ββ)0ν -decay effective Majorana mass 〈 m 〉 contains all the dependence of 
A((ββ)0ν) on the neutrino mixing parameters. The current experimental limits on |〈m〉| are in the 
range of (0.1 − 0.7) eV. Most importantly, a large number of experiments of a new generation 
aim at sensitivity to |〈m〉| ∼ (0.01 − 0.05) eV (for a detailed discussion of the current limits 
on |〈m〉| and of the currently running and future planned (ββ)0ν-decay experiments and their 
prospective sensitivities see, e.g., the recent review article [60]).

The predictions for |〈m〉| (see, e.g., [10,15,16]),

|〈m〉| =
∣∣∣∣∣

3∑
i=1

miU
2
ei

∣∣∣∣∣
=

∣∣∣m1 cos2 θ12 cos2 θ13 + m2 sin2 θ12 cos2 θ13e
iα21 + m3 sin2 θ13e

i(α31−2δ)
∣∣∣ , (178)

m1,2,3 being the light Majorana neutrino masses, depend on the values of the Majorana phase 
α21 and on the Majorana–Dirac phase difference (α31 − 2δ). In what follows we will derive 
predictions for |〈m〉| as a function of the lightest neutrino mass mmin ≡ min(mj ), j = 1, 2, 3, for 
both the NO and IO neutrino mass spectra18 and for two values of each of the phases ξ21 and 
ξ31: ξ21 = 0 or π , ξ31 = 0 or π . The choice of the two values of the phases ξ21 and ξ31 will be 
justified in the next Section where we show that the requirement of generalised CP invariance of 
the neutrino Majorana mass term in the cases of the S4, A4, T ′ and A5 lepton flavour symmetries 
leads to the constraints ξ21 = 0 or π , ξ31 = 0 or π .

We use the standard convention for numbering the neutrinos with definite masses in the cases 
of the NO and IO spectra (see, e.g., [1]): m1 < m2 < m3 for the NO spectrum and m3 < m1 < m2

for the IO one. We recall that the two heavier neutrino masses are expressed in terms of the 
lightest neutrino mass and the two independent neutrino mass squared differences measured in 
neutrino oscillation experiments as follows:

18 For a discussion of the physics implications of a measurement of |〈m〉|, i.e., of the physics potential of the 
(ββ)0ν -decay experiments see, e.g., [16,61].
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m2 =
√

�m2
21 + m2

1 , m3 =
√

�m2
31 + m2

1 for the NO spectrum , (179)

m1 =
√

�m2
23 − �m2

21 + m2
3 , m2 =

√
�m2

23 + m2
3 for the IO spectrum , (180)

where �m2
ij ≡ m2

i − m2
j . The best fit values and the 3σ allowed ranges of �m2

21 and �m2
31(23)

obtained in the global analysis of the neutrino oscillation data performed in [24] we are going to 
use in our numerical study read:

(�m2
21)BF = 7.37 × 10−5 eV2 , 6.93 × 10−5 eV2 ≤ �m2

21 ≤ 7.97 × 10−5 eV2 , (181)

(�m2
31(23))BF = 2.54 (2.50) × 10−3 eV2 ,

2.40 (2.36) × 10−3 eV2 ≤ �m2
31(23) ≤ 2.67 (2.64) × 10−3 eV2 , (182)

where the quoted values of �m2
31 and �m2

23 correspond to the NO and IO spectra, respectively.
As can be seen from Tables 2–4, the values of all three phases, δ, α21 and α31, for scheme 

B3 with ω = 0 and sgn (sin 2θe
13) = 1 are very close to the values for scheme A1. Thus, the 

predictions for |〈m〉| in scheme B3 are practically the same as those for scheme A1 and we 
present predictions only for the latter.

In Fig. 3 we show the absolute value of the effective Majorana mass |〈m〉| versus the lightest 
neutrino mass mmin in the cases of schemes A1, A2, B1, B2, C1 and C2 for the NO (blue lines 
and bands) and IO (dark-red lines and bands) neutrino mass spectra, using the best fit values of 
the mixing angles θ12 and θ13 quoted in eqs. (3) and (5), the best fit values of the two neutrino 
mass squared differences �m2

21 and �m2
31(23) given in eqs. (181) and (182), the values of the 

Dirac phase δ from Table 2 and the values of the Majorana phases α21 and α31 extracted from 
Tables 3 and 4 setting (ξ21, ξ31) = (0, 0). In Figs. 4, 5 and 6 the values of (ξ21, ξ31) are fixed to 
(0, π), (π, 0) and (π, π), respectively.

In cases A1 and A2 the solid blue line corresponds to the TBM symmetry form of the matrix 
Ũν , while the medium, small and tiny dashed blue lines are for the GRB, GRA and HG sym-
metry forms, respectively. In cases B1 and B2 the predicted values of |〈m〉| for all the symmetry 
forms considered are within the blue and dark-red bands obtained varying the phase β within 
the interval [0, π]. In case C1 (C2) the solid blue line stands for case I (II) characterised by 
[θν

13, θ
ν
12] = [π/20, −π/4] ([π/20, π/4]), while the large, medium, small and tiny dashed blue 

lines are for cases V (III), II (V), IV (I) and III (IV), respectively, where the values of [θν
13, θ

ν
12]

in each of these cases are given in the penultimate paragraph of subsection 6.1.
The light-blue and light-red areas are obtained varying the neutrino oscillation parameters 

θ12, θ13, �m2
21 and �m2

31(23) within their respective 3σ ranges quoted in eqs. (3), (5), (181) and 

(182), and the phases α21 and (α31 − 2δ) within the interval19 [0, 2π ]. The horizontal grey band 
indicates the upper bound on |〈m〉| of (0.2–0.4) eV obtained in [62]. The vertical dashed line 
represents the prospective upper limit on mmin of 0.2 eV from the KATRIN experiment [63].

As Figs. 3 and 4 show, for (ξ21, ξ31) = (0, 0) and (0, π), the absolute value of the effective 
Majorana mass |〈m〉| for the IO spectrum has practically the maximal possible values for all 

19 The absolute value of the effective Majorana mass as a function of α21 and (α31 − 2δ), |〈m〉| = f (α21, α31 − 2δ), 
possesses the following symmetry:

f (α21, α31 − 2δ) = f (2π − α21,2π − (α31 − 2δ)) .

Thus, it is enough to vary one phase (e.g., α21) in the interval [0, π ] and the second phase (e.g., (α31 − 2δ)) in the 
interval [0, 2π ].
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Fig. 3. The absolute value of the effective Majorana mass |〈m〉| versus the lightest neutrino mass mmin. The blue (dark-
red) lines and bands correspond to |〈m〉| computed using the best fit values of θ12 and θ13 for the NO (IO) spectrum 
and the values of δ, α21 and α31 obtained using the corresponding sum rules and assuming (ξ21, ξ31) = (0, 0). In cases 
A1 and A2 the solid blue line corresponds to the TBM symmetry form, while the medium, small and tiny dashed blue 
lines are for the GRB, GRA and HG symmetry forms, respectively. In cases B1 and B2 the predicted values of |〈m〉| for 
all the symmetry forms considered are within the blue and dark-red bands obtained varying the phase β in the interval 
[0, π ]. In case C1 (C2) the solid blue line stands for case I (II), while the large, medium, small and tiny dashed blue lines
are for cases V (III), II (V), IV (I) and III (IV), respectively. The light-blue and light-red areas are obtained varying the 
neutrino oscillation parameters θ12, θ13, �m2

21 and �m2
31(23)

in their respective 3σ ranges quoted in eqs. (3), (5), (181)
and (182) and the phases α21 and (α31 − 2δ) in the interval [0, 2π ]. The horizontal grey band indicates the upper bound 
|〈m〉| ∼ 0.2–0.4 eV obtained in [62]. The vertical dashed line represents the prospective upper limit on mmin of 0.2 eV
from the KATRIN experiment [63]. (For interpretation of the references to colour in this figure, the reader is referred to 
the web version of this article.)



I. Girardi et al. / Nuclear Physics B 911 (2016) 754–804 791
Fig. 4. The same as in Fig. 3, but for (ξ21, ξ31) = (0,π).

schemes considered. In the case of the NO spectrum and (ξ21, ξ31) = (0, 0), |〈m〉| is always 
bigger than (1.5–2.0) × 10−3 eV. For (ξ21, ξ31) = (0, π), |〈m〉| has the maximal possible values 
in the A1 and A2 schemes as well in case I (II) of the C1 (C2) scheme; in the other cases of the C1 
(C2) scheme, |〈m〉| is always bigger than 2.0 × 10−3 eV. In the B1 and B2 schemes and the NO 
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Fig. 5. The same as in Fig. 3, but for (ξ21, ξ31) = (π,0).

spectrum, |〈m〉| can have the maximal possible values for both sets of values of (ξ21, ξ31) = (0, 0)

and (0, π).
For (ξ21, ξ31) = (π, 0) and (π, π) (Figs. 5 and 6) and the IO spectrum, a partial compensation 

between the three terms in |〈m〉| takes place for all schemes considered. However, |〈m〉| � 2 ×
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Fig. 6. The same as in Fig. 3, but for (ξ21, ξ31) = (π,π).

10−2 eV for all cases analysed by us. The mutual compensation between the different terms in 
|〈m〉| can be stronger in the case of the NO spectrum, when |〈m〉| � 10−3 eV in certain cases in 
specific intervals of values of m1, typically between approximately 10−3 eV and 7 × 10−3 eV.
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7. Implications of generalised CP symmetry combined with flavour symmetry

In the present Section we derive constraints on the phases ξ21 and ξ31 in the matrix Uν , which 
diagonalises the neutrino Majorana mass matrix Mν , within the approach in which a lepton 
flavour symmetry Gf is combined with a generalised CP symmetry HCP. We examine succes-
sively the cases of Gf = A4 (T ′), S4 and A5 with the three LH charged leptons and three LH 
flavour neutrinos transforming under a 3-dimensional representation ρ of Gf . At low energies 
the flavour symmetry Gf has necessarily to be broken down to residual symmetries Ge and Gν

in the charged lepton and neutrino sectors, respectively. All the cases considered in the present 
study fall into the class of residual symmetries with trivial Ge (Gf being fully broken in the 
charged lepton sector) and Gν = Z2 × Z2.20

The residual symmetry Gν alone does not provide any information on the phases ξ21 and 
ξ31 of interest. Indeed, let Ūν be a unitary matrix which diagonalises the complex symmetric 
neutrino Majorana mass matrix:

ŪT
ν Mν Ūν = diag

(
m1e

−iξ1,m2e
−iξ2,m3e

−iξ3
)

, (183)

where mi are non-negative non-degenerate masses21 and ξi are phases contributing to the Majo-
rana phases in the PMNS matrix. Let us introduce the matrices

Q̄0 = diag
(
ei

ξ1
2 , ei

ξ2
2 , ei

ξ3
2

)
, (184)

and Uν ≡ ŪνQ̄0, such that

UT
ν Mν Uν = Md

ν ≡ diag (m1,m2,m3) . (185)

Thus,

Uν = Ūν Q̄0 = ei
ξ1
2 �νŨν Q0 , (186)

where �ν is a diagonal phase matrix containing, in general, two phases, ξ1/2 is a common 
unphysical phase, and

Q0 = diag
(

1, ei
ξ2−ξ1

2 , ei
ξ3−ξ1

2

)
= diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (187)

Clearly, the phases of interest are ξ21 = ξ2 − ξ1 and ξ31 = ξ3 − ξ1. It is clear from eq. (186) that 
the common phases of the columns of Uν have been factorised in the matrix Q̄0.

The Gν invariance of the neutrino mass matrix implies

ρ(gν)
T Mν ρ(gν) = Mν ∀gν ∈ Gν . (188)

Further, using eq. (185), we find

(ρ(d)(gν))
T Md

ν ρ(d)(gν) = Md
ν , with ρ(d)(gν) = U†

ν ρ(gν)Uν . (189)

20 Note there are two possibilities for Gν = Z2 × Z2 to be realised. The first possibility is Gν = Z2 × Z2 being an 
actual subgroup of Gf . Other possibility is that only one Z2 subgroup of Gf is preserved, while the second Z2 arises 
accidentally.
21 It follows from the neutrino oscillation data that m1 �= m2 �= m3, and that at least two of the three neutrino masses, 
m2,3 (m1,2) in the case of the NO (IO) spectrum, are non-zero. However, even if m1 = 0 (m3 = 0) at tree level and the 
zero value is not protected by a symmetry, m1 (m3) will get a non-zero contribution at least at two-loop level [64] and in 
the framework of a self-consistent (renormalisable) theory of neutrino mass generation this higher contribution will be 
finite.
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For m1 �= m2 �= m3 and min(mj ) �= 0, j = 1, 2, 3, as it is not difficult to show, the matrix ρ(d)(gν)

can have only the following form:

ρ(d)(gν) = diag(±1,±1,±1) , (190)

where the signs of the three non-zero entries in ρ(d)(gν) are not correlated. Finally, from the 
preceding two equations we get

ρ(d)(gν) = Q̄0 ρ(d)(gν) Q̄∗
0 = Ū†

ν ρ(gν) Ūν , (191)

i.e., the phases ξi cancel out. Therefore a lepton flavour symmetry alone does not lead to any 
constraints on the phases ξi , i = 1, 2, 3, and thus on the phases ξ21 and ξ31.

Let us consider next the implications of a residual generalised CP symmetry Hν
CP ⊂ HCP, 

which is preserved in the neutrino sector. In this case the neutrino Majorana mass matrix satisfies 
the following condition:

XT
i Mν Xi = M∗

ν , (192)

where Xi ∈ Hν
CP are the generalised CP transformations. Substituting Mν from eq. (185), we 

find

(Xd
i )

T Md
ν Xd

i = Md
ν , with Xd

i = U†
ν Xi U

∗
ν . (193)

Again, since the three neutrino masses in Md
ν have to be, as it follows from the data, non-

degenerate, we have

Xd
i = diag(±1,±1,±1) . (194)

Finally, using that Uν ≡ ŪνQ̄0, we obtain [65]

diag
(
±eiξ1,±eiξ2,±eiξ3

)
= Q̄0 Xd

i Q̄0 = Ū†
ν Xi Ū

∗
ν . (195)

Thus, we come to the conclusion that the phases ξi will be known once i) the matrix Ūν is fixed by 
the residual flavour symmetry Gν , and ii) the generalised CP transformations Xi ∈ Hν

CP, which 
are consistent with Gν , are identified.

Now we turn to concrete examples. For Gf = A4 we choose to work in the Altarelli–Feruglio 
basis [66]. Preserving the S generator leads to Ūν = UTBM, provided there is an additional ac-
cidental μ–τ symmetry [38]. Then, twelve generalised CP transformations consistent with the 
A4 flavour symmetry for the triplet representation in the chosen basis have been found in [67], 
solving the consistency condition

X ρ∗(g)X−1 = ρ(g′) , g, g′ ∈ Gf . (196)

These transformations can be summarised in a compact way as follows:

X = ρ(g) , g ∈ A4 , (197)

i.e., the generalised CP transformations consistent with the A4 flavour symmetry are of the same 
form as the flavour symmetry group transformations [67]. They are given in Table 1 in [67]
together with the elements Ŝ and T̂ to which the generators S and T of A4 are mapped by 
the consistency condition in eq. (196). Further, since in our case the residual flavour symmetry 
Gν = Z2 × Z2, where one Z2 factor corresponds to the preserved S generator, only those X are 
acceptable, for which Ŝ = S. From Table 1 in [67] it follows that there are four such generalised 
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Table 5
The ten symmetric generalised CP transformations X = ρ(g) consistent with 
the S4 flavour symmetry for the triplet representation ρ in the chosen basis [40]
determined by the consistency condition in eq. (196). The mapping (T , S) →
(T̂ , Ŝ) is realised via the consistency condition applied to the group generators 
T and S, i.e., Xρ∗(T )X−1 = ρ(T̂ ) and Xρ∗(S)X−1 = ρ(Ŝ).

g, X = ρ(g) T → T̂ S → Ŝ

(ST 2)2 T S

T 3 T 3 T 3ST

E T 3 S

T T 3 T ST 3

T 2ST 2 ST S S

ST 2S T T 2ST 2

S T ST S

T 2 T 3 T 2ST 2

ST S ST 2 ST 2ST

T ST T 2S T ST 2S

CP transformations, namely, ρ(E), ρ(S), ρ(T 2ST ) and ρ(T ST 2), where E is the identity ele-
ment of the group. The last two transformations are not symmetric in the chosen basis, and, as 
shown in [67], lead to partially degenerate neutrino mass spectrum with two equal masses (see 
also [53]), which is ruled out by the existing neutrino oscillation data. Thus, we are left with two 
allowed generalised CP transformations, ρ(E) and ρ(S), for which we have:

U
†
TBM ρ(E)U∗

TBM = ρ(E) = diag(1,1,1) , (198)

U
†
TBM ρ(S)U∗

TBM = diag(−1,1,−1) . (199)

Finally, according to eq. (195), this implies that the phases ξi can be either 0 or π . The same con-
clusion holds for a T ′ flavour symmetry, because restricting ourselves to the triplet representation 
for the LH charged lepton and neutrino fields, there is no way to distinguish T ′ from A4 [39].

In the case of Gf = S4 we choose to work in the basis given in [40]. The residual symmetry 
Gν = Z2 ×Z2, where one Z2 factor corresponds to the preserved S generator in the chosen basis 
and the second one arises accidentally (a μ–τ symmetry), leads to Ūν = UBM [40]. As in the 
previous example, the generalised CP transformations consistent with the S4 flavour symmetry 
are of the same form as the flavour symmetry group transformations [54]. Solving the consistency 
condition in eq. (196), we find ten symmetric generalised CP transformations consistent with the 
S4 flavour symmetry for the triplet representation in the chosen basis. We summarise them in 
Table 5 together with elements T̂ and Ŝ to which the consistency condition maps the group 
generators T and S.

From this table we see that there are four symmetric generalised CP transformations consistent 
with the preserved S generator, namely, ρ(E), ρ(S), ρ(T 2ST 2) and ρ(ST 2ST 2). Substituting 
them and Ūν = UBM in eq. (195), we find:

U
†
BM ρ(E)U∗

BM = ρ(E) = diag(1,1,1) , (200)

U
†
BM ρ(S)U∗

BM = diag(1,−1,1) , (201)

U
†
BM ρ(T 2ST 2)U∗

BM = diag(−1,1,1) , (202)

U
†
BM ρ(ST 2ST 2)U∗

BM = diag(−1,−1,1) . (203)
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Table 6
The 16 symmetric generalised CP transformations X = ρ(g) consistent with the A5
flavour symmetry for the triplet representation ρ in the chosen basis [68] determined by 
the consistency condition in eq. (196). The mapping (T , S) → (T̂ , Ŝ) is realised via the 
consistency condition applied to the group generators T and S, i.e., Xρ∗(T )X−1 = ρ(T̂ )

and Xρ∗(S)X−1 = ρ(Ŝ).

g, X = ρ(g) T → T̂ S → Ŝ

T 3ST 2ST 3 ST S S

S T ST S

(ST 2)2S ST 3 (T 2S)2T 4

T ST T 2S T ST 2S

ST 3S T 2ST ST 3ST 2S

T 3ST 3 T 4ST 3 T 2ST 2ST 3S

T 3ST 2ST 3S T S

T T 4 T ST 4

T 2 T 4 T 2ST 3

E T 4 S

T 3 T 4 T 3ST 2

T 4 T 4 T 4ST

ST 2S T ST 2 ST 2ST 3S

T 2ST 2 T 3ST 4 T 4ST 2ST 3S

ST S ST 2 ST 2ST

(T 2S)2T 2 T 3S T 4(ST 2)2

Therefore also in this case the phases ξi are fixed by residual generalised CP symmetry to be 
either 0 or π .

As a third example, we consider Gf = A5. We employ the basis for the triplet representation 
of the generators S and T of this group given in [68]. The residual symmetry Gν = Z2 × Z2
generated by S and T 3ST 2ST 3 leads to GRA mixing, i.e., Ūν = UGRA, as is shown in [68]. It is 
stated in [69] that the generalised CP transformations consistent with A5 are of the same form as 
the group transformations. Solving the consistency condition in eq. (196), we find 16 symmetric 
generalised CP transformations consistent with A5 for the triplet representation in the working 
basis. We summarise them in Table 6, where we present also the elements T̂ and Ŝ.

It follows from this table that the generalised CP transformations consistent with Gν =
Z2 × Z2 of interest are of the same form of Gν . Namely, they are ρ(E), ρ(S), ρ(T 3ST 2ST 3)

and ρ(T 3ST 2ST 3S), and we have:

U
†
GRA ρ(E)U∗

GRA = ρ(E) = diag(1,1,1) , (204)

U
†
GRA ρ(S)U∗

GRA = diag(1,−1,−1) , (205)

U
†
GRA ρ(T 3ST 2ST 3)U∗

GRA = diag(−1,1,−1) , (206)

U
†
GRA ρ(T 3ST 2ST 3S)U∗

GRA = diag(−1,−1,1) . (207)

Thus, as in the previous cases, the phases ξi are fixed by generalised CP symmetry to be either 0
or π .

It follows from the results derived in the present Section that the two phases ξ21 = ξ2 − ξ1 and 
ξ31 = ξ3 − ξ1, present in the matrix Q0 (see eq. (9)) and giving contributions to the Majorana 
phases α21 and α31 in the PMNS matrix, are constrained to be either 0 or π for all examples 
considered.
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Finally, we note that although in the cases of the flavour symmetry groups considered — A4, 
T ′, S4 and A5 — we choose to work in specific basis for the generators of each symmetry group, 
the results on the phases ξ1,2,3 we have obtained, as we show below, are basis-independent. 
Indeed, let B be a unitary matrix, which realises the change of basis. Then, the representation 
matrices of the group elements in the new basis, ρ̃(g), are given by

ρ̃(g) = B ρ(g)B† , g ∈ Gf . (208)

Expressing ρ(g) from this equation and substituting it in the consistency condition given in 
eq. (196) leads to

X̃ ρ̃∗(g) X̃−1 = ρ̃(g′) , g, g′ ∈ Gf , (209)

where

X̃ = B X BT (210)

are the generalised CP transformations in the new basis. Now we substitute X from this equation 
in eq. (195) and obtain( ˜̄Uν

)†
X̃i

( ˜̄Uν

)∗ = Ū†
ν Xi Ū

∗
ν = diag

(
±eiξ1,±eiξ2,±eiξ3

)
, (211)

where ˜̄Uν = B Ūν is the matrix which diagonalises the neutrino Majorana mass matrix M̃ν , M̃ν =
B∗Mν B†, in the new basis, i.e.,

˜̄UT
ν M̃ν

˜̄Uν = ŪT
ν Mν Ūν = diag

(
m1e

−iξ1 ,m2e
−iξ2,m3e

−iξ3
)

. (212)

What concerns the charged lepton sector, in all cases we consider in the present study a flavour 
symmetry Gf is completely broken in the charged lepton sector, i.e., the residual symmetry group 
Ge consists only of the identity element E. The change of basis yields ρ̃(E) = B ρ(E) B†. As 
can be easily shown, the matrix U ′

e = B Ue diagonalises the hermitian matrix M̃e M̃
†
e , M̃e M̃

†
e =

B Me Me B†, in the new basis, Me being the charged lepton mass matrix in the initial basis. 
Namely,

U ′
e

†
M̃e M̃†

e U ′
e = U†

e Me M†
e Ue = diag

(
m2

e,m
2
μ,m2

τ

)
. (213)

Taking into account that U ′
ν = B Uν = B Ūν Q̄0, we obtain for the PMNS matrix U :

U = U ′
e

†
U ′

ν = U†
e Uν = U†

e Ūν Q̄0 . (214)

Thus, as eqs. (211) and (214) demonstrate, the results for the phases ξi are basis-independent.

8. Summary and conclusions

In the present article we have obtained predictions for the Majorana phases α21/2 and α31/2
of the 3 × 3 unitary neutrino mixing matrix U = U

†
e Uν = (Ũe)

† �Ũν Q0, Ue (Ũe) and Uν (Ũν ) 
being 3 × 3 unitary (CKM-like) matrices arising from the diagonalisation, respectively, of the 
charged lepton and neutrino Majorana mass terms. Each of the diagonal phase matrices � and 
Q0 contains, in general, two physical CPV phases [28]. The phases in the matrix Q0, ξ21/2 and 
ξ31/2, contribute to the Majorana phases in the PMNS matrix. Our study employs a method pro-
posed in [2] and is a natural continuation of the studies performed in [2–4]. We have considered 
forms of Ũe and Ũν , permitting to express δ as a function of the PMNS mixing angles, θ12, θ13
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and θ23, present in U , and the angles contained in Ũν [2,4]. As we have shown, for the same 
forms, the Majorana phases α21/2 and α31/2 are determined by the values of θ12, θ13 and θ23

and the phases ξ21/2 and ξ31/2 (see below). We have derived such sum rules for α21/2 and α31/2
in the following cases:

i) U = R12(θ
e
12)�R23(θ

ν
23)R12(θ

ν
12)Q0 (case A1),

ii) U = R13(θ
e
13)�R23(θ

ν
23)R12(θ

ν
12)Q0 (case A2),

iii) U = R12(θ
e
12)R23(θ

e
23)�R23(θ

ν
23)R12(θ

ν
12)Q0 (case B1),

iv) U = R13(θ
e
13)R23(θ

e
23)�R23(θ

ν
23)R12(θ

ν
12)Q0 (case B2),

v) U = R12(θ
e
12)R13(θ

e
13)�R23(θ

ν
23)R12(θ

ν
12)Q0 (case B3),

vi) U = R12(θ
e
12)�R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 (case C1),

vii) U = R13(θ
e
13)�R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12)Q0 (case C2),

where Rij are real matrices, RT = R−1, and θe
ij and θν

ij denote the rotation angles in Ũe and Ũν , 
respectively. The sum rules are summarised in Section 5. In the sum rules, α21/2 and α31/2 are 
expressed, in general, in terms of the three measured angles of the PMNS matrix, θ12, θ13 and 
θ23, the phases ξ21/2 and ξ31/2 of the matrix Q0, and the angles in Ũν , which are supposed to 
have known values, determined by symmetries. In the cases of schemes B1 and B2 (scheme B3), 
α31/2 (δ, α21/2 and α31/2) depends (depend) on one additional, in general, unknown phase β
(ω), whose value can only be fixed in a self-consistent theory of generation of neutrino masses 
and mixing.

In order to obtain predictions for the Majorana phases one has to specify, in particular, the 
values of the angles in the matrix Ũν . In the present study we have considered the following 
symmetry forms of Ũν : tri-bimaximal (TBM), bimaximal (BM), golden ratio A (GRA), golden 
ratio B (GRB), and hexagonal (HG). All these forms are characterised by the same θν

23 = −π/4
and θν

13 = 0, but differ by the value of the angle θν
12. For the forms cited above and used in 

the present study the values of θν
12 are given in the Introduction. In schemes C1 and C2 we have 

employed three representative fixed values of θν
13 �= 0 considered in the literature and appearing in 

models with flavour symmetries, θν
13 = π/20, π/10 and sin−1(1/3), together with certain fixed 

values of θν
12 — in total five different pairs of values of [θν

13, θ
ν
12] in each of the two schemes. 

The values of the five pairs are given in Table 2.
Thus, for the specific symmetry forms of Ũν listed above and used in our numerical analysis, 

the phase differences a) (α21/2 − ξ21/2) and (α31/2 − ξ31/2) in schemes A1, A2, C1 and C2, 
b) (α21/2 − ξ21/2) and (α31/2 − ξ31/ − β) in schemes B1 and B2, and c) (α21/2 − ξ21/2) and 
(α31/2 − ξ31/2) for a fixed ω in scheme B3, are determined completely by the values of the 
measured neutrino mixing angles θ12, θ13 and θ23 and the angles in the matrix Ũν . If the value 
of the Dirac phase δ is measured, that will allow to fix the value of ω in scheme B3. Using the 
best fit values of θ12, θ13 and θ23, we have obtained predictions for the phase differences listed 
above, which are summarised in Tables 3 and 4. In the case of scheme B3, we have set ω = 0. For 
this value of ω the predicted value of the Dirac phase δ lies in the 2σ interval of allowed values 
quoted in eq. (6). The results reported in Tables 3 and 4 show that the phase differences of interest 
involving the Majorana phases α21/2 and α31/2 are determined with a two-fold ambiguity by the 
values of θ12, θ13 and θ23. This is a consequence of the fact that, as long as the sign of sinδ is 
not fixed by the data, the Dirac phase δ, on which the phase differences under discussion depend, 
is determined by the values of θ12, θ13 and θ23 in the schemes studied by us with a two-fold 
ambiguity [2–4], as Table 2 also shows. It follows from eq. (6) that the current data appear 
to favour negative values of sin δ. The predictions for the BM (LC) symmetry form of Ũν in 
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Tables 3 and 4 correspond to the current 3σ upper bound of allowed values of sin2 θ12 = 0.354
and the best fit values of sin2 θ23 and sin2 θ13, since using the best fit values of the three neutrino 
mixing angles one gets unphysical values of | cosδ| > 1 [2,4,6]. Physical values of cos δ are 
found for larger (smaller) values of sin2 θ12 (sin2 θ23) [2–4]. For sin2 θ12 = 0.354 and the best fit 
values of sin2 θ23 and sin2 θ13, | cos δ| has an unphysical value greater than one only for schemes 
B1 with the IO spectrum, B2 with the NO spectrum and B3, and for these cases we do not present 
results for the relevant phase differences.

We have investigated also how the predictions for the phase differences (α21/2 − ξ21/2) and 
(α31/2 − ξ31/2) ((α31/2 − ξ31/2 −β)) presented in Tables 3 and 4 change when the uncertainties 
in determination of the neutrino mixing parameters are taken into account (see Figs. 1 and 2 and 
the related discussion as well as Appendix B).

Extracting the values of the Majorana phases α21/2 and α31/2 from the results presented in 
Tables 3 and 4 for two fixed values of each of the phases ξ21 and ξ31, ξ21 = 0 and π , ξ31 = 0
and π (altogether four cases), and using also the predicted values of the Dirac phase δ from 
Table 2 and the best fit values of sin2 θ12, sin2 θ23, sin2 θ13, �m2

21 and �m2
31(23), we derived (in 

graphic form) predictions for the absolute value of the neutrinoless double beta decay effective 
Majorana mass |〈m〉| as a function of the lightest neutrino mass mmin ≡ min(mj ), j = 1, 2, 3, for 
both the NO and IO neutrino mass spectra (Figs. 3–6). For schemes B1 and B2 the predictions 
are obtained by varying the phase β in the interval [0, π]. As a possible justification of the choice 
of the two values of the phases ξ21 and ξ31 used for the predictions of |〈m〉|, we show that the 
requirement of generalised CP invariance of the neutrino Majorana mass term in the cases of the 
S4, A4, T ′ and A5 lepton flavour symmetries leads to the constraints ξ21 = 0 or π , ξ31 = 0 or π .

The results derived in the present article for the Majorana CPV phases in the PMNS neutrino 
mixing matrix U complement the results obtained in [2–4] on the predictions for the Dirac phase 
δ in U in schemes in which the underlying form of U is determined by, or is associated with, in 
particular, discrete (lepton) flavour symmetries.
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Appendix A. Expressions for the elements of the mixing matrix

This Appendix contains expressions for the elements of the neutrino mixing matrix in the 
parametrisations corresponding to cases B3, C1 and C2.

A.1. Case B3

The expressions for the elements of UQ−1
0 from eq. (109) read:

|Ue1|eiβe1 = ce
12c

e
13c

ν
12 − sν

12

(
se

12c
ν
23e

−iψ − ce
12s

e
13s

ν
23e

−iω
)

, (215)
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|Ue2|eiβe2 = ce
12c

e
13s

ν
12 + cν

12

(
se

12c
ν
23e

−iψ − ce
12s

e
13s

ν
23e

−iω
)

, (216)

|Ue3|eiβe3 = se
12s

ν
23e

−iψ + ce
12s

e
13c

ν
23e

−iω , (217)

|Uμ1|eiβμ1 = −se
12c

e
13c

ν
12 − sν

12

(
ce

12c
ν
23e

−iψ + se
12s

e
13s

ν
23e

−iω
)

, (218)

|Uμ2|eiβμ2 = −se
12c

e
13s

ν
12 + cν

12

(
ce

12c
ν
23e

−iψ + se
12s

e
13s

ν
23e

−iω
)

, (219)

|Uμ3|eiβμ3 = ce
12s

ν
23e

−iψ − se
12s

e
13c

ν
23e

−iω , (220)

|Uτ1|eiβτ1 = −se
13c

ν
12 + ce

13s
ν
12s

ν
23e

−iω , (221)

|Uτ2|eiβτ2 = −se
13s

ν
12 − ce

13c
ν
12s

ν
23e

−iω , (222)

|Uτ3|eiβτ3 = ce
13c

ν
23e

−iω . (223)

A.2. Case C1

In this case the expressions for the elements of UQ−1
0 from eq. (131) are given by:

|Ue1|eiβe1 = ce
12c

ν
12c

ν
13 − se

12

(
sν

12c
ν
23 + cν

12s
ν
23s

ν
13

)
eiφ , (224)

|Ue2|eiβe2 = ce
12s

ν
12c

ν
13 + se

12

(
cν

12c
ν
23 − sν

12s
ν
23s

ν
13

)
eiφ , (225)

|Ue3|eiβe3 = ce
12s

ν
13 + se

12s
ν
23c

ν
13e

iφ , (226)

|Uμ1|eiβμ1 = −se
12c

ν
12c

ν
13 − ce

12

(
sν

12c
ν
23 + cν

12s
ν
23s

ν
13

)
eiφ , (227)

|Uμ2|eiβμ2 = −se
12s

ν
12c

ν
13 + ce

12

(
cν

12c
ν
23 − sν

12s
ν
23s

ν
13

)
eiφ , (228)

|Uμ3|eiβμ3 = −se
12s

ν
13 + ce

12s
ν
23c

ν
13e

iφ , (229)

|Uτ1|eiβτ1 = sν
12s

ν
23 − cν

12c
ν
23s

ν
13 , (230)

|Uτ2|eiβτ2 = −cν
12s

ν
23 − sν

12c
ν
23s

ν
13 , (231)

|Uτ3|eiβτ3 = cν
23c

ν
13 . (232)

A.3. Case C2

For the elements of the matrix UQ−1
0 from eq. (153) we have:

|Ue1|eiβe1 = ce
13c

ν
12c

ν
13 + se

13

(
sν

12s
ν
23 − cν

12c
ν
23s

ν
13

)
e−iω , (233)

|Ue2|eiβe2 = ce
13s

ν
12c

ν
13 − se
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(
cν

12s
ν
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12c
ν
23s

ν
13

)
e−iω , (234)

|Ue3|eiβe3 = ce
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ν
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ν
23c

ν
13e

−iω , (235)

|Uμ1|eiβμ1 = −sν
12c

ν
23 − cν

12s
ν
23s

ν
13 , (236)

|Uμ2|eiβμ2 = cν
12c

ν
23 − sν

12s
ν
23s

ν
13 , (237)

|Uμ3|eiβμ3 = sν
23c

ν
13 , (238)

|Uτ1|eiβτ1 = −se
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ν
12c

ν
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13

(
sν

12s
ν
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12c
ν
23s
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(
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12c
ν
23s
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13
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e−iω , (240)

|Uτ3|eiβτ3 = −se
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ν
13 + ce

13c
ν
23c

ν
13e

−iω . (241)
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Fig. 7. The phase differences (α21(31)/2 − ξ21(31)/2) as functions of sin2 θ12(13) in case A1 and for the TBM form of the 
matrix Ũν , fixing sin2 θ13(12) to its best fit value for the NO spectrum. The upper panels correspond to δ = cos−1(cos δ), 
while the lower panels correspond to δ = 2π − cos−1(cos δ). The vertical line and the three coloured vertical bands 
indicate the best fit value and the 1σ , 2σ and 3σ allowed ranges of sin2 θ12(13) . (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The same as in Fig. 7, but for case A2.

Appendix B. Impact of the sin2 θij uncertainties in Cases A1 and A2

In this Appendix we illustrate the impact of the uncertainties in determination of the neutrino 
mixing parameters on the predictions for the phase differences (α21/2 − ξ21/2) and (α31/2 −
ξ31/2) in cases A1 and A2 with the TBM symmetry form of the matrix Ũν . In Fig. 7 we show 
the dependence of (α21/2 − ξ21/2) and (α31/2 − ξ31/2) on sin2 θ12 (sin2 θ13) in case A1, fixing 
sin2 θ13 (sin2 θ12) to its best fit value for the NO spectrum. We recall that in this setup sin2 θ23 is 
correlated with sin2 θ13 by eq. (24) and, hence, is not a free parameter. In Fig. 8 we present results 
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for case A2. Also in this scheme sin2 θ23 is correlated with sin2 θ13 and is not a free parameter 
(see eq. (50)). As can be seen from Figs. 7 and 8, in both cases A1 and A2 the variation of 
(α21/2 − ξ21/2) is within 3◦, while that of (α31/2 − ξ31/2) is within 2◦.
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