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Model order reduction in fluid dynamics:
challenges and perspectives

Toni Lassila, Andrea Manzoni, Alfio Quarteroni and Gianluigi Rozza

Abstract This chapter reviews techniques of model reduction of fluid dynamics

systems. Fluid systems are known to be difficult to reduce efficiently due to several

reasons. First of all, they exhibit strong nonlinearities – which are mainly related

either to nonlinear convection terms and/or some geometric variability – that often

cannot be treated by simple linearization. Additional difficulties arise when attempt-

ing model reduction of unsteady flows, especially when long-term transient behav-

ior needs to be accurately predicted using reduced order models and more complex

features, such as turbulence or multiphysics phenomena, have to be taken into con-

sideration. We first discuss some general principles that apply to many parametric

model order reduction problems, then we apply them on steady and unsteady vis-

cous flows modelled by the incompressible Navier-Stokes equations. We address

questions of inf-sup stability, certification through error estimation, computational

issues and – in the unsteady case – long-time stability of the reduced model. More-

over, we provide an extensive list of literature references.
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1 Introduction

Numerical methods for Computational Fluid Dynamics (CFD) are by now essential

in engineering applications dealing with flow simulation and control, such as the

ones arising in aerodynamics, hydrodynamics and, more recently, in physiological

flows. In despite of a constant increase in available computational power, numerical

simulations of turbulent flows, multiscale and multiphysics phenomena, flows sep-

aration and/or bifurcation phenomena are still very demanding, possibly requiring

millions or tens of millions of degrees of freedom and several days of CPU time on

powerful parallel hardware architectures. This effort is even more substantial when-

ever we are interested in the repeated solution of the fluid equations for different

values of model parameters, such as in flow control or optimal design problems

(many-query contexts), or in real time flow visualization and output evaluation.

These problems represent a remarkable challenge to classical numerical ap-

proximations techniques, such as Finite Elements (FE), Finite Volumes or spec-

tral methods. In fact, these methods require huge computational efforts (and also

data/memory management) if we are interested to provide accurate response, thus

making both real-time and many-query simulations unaffordable. For this reason,

we need to rely on suitable Reduced-Order Models (ROMs) – that can reduce both

the amount of CPU time and storage capacity – in order to enhance the computa-

tional efficiency in these contexts.

This chapter reviews the current state-of-the art for the model reduction of pa-

rametrized fluid dynamics equations. In particular, we focus on the incompressible

Navier-Stokes equations, because of their ubiquitous presence in fluid flow appli-

cations and the fact that they involve the most important features and challenges

relevant to nonlinear model reduction. These equations are usually written in prim-

itive variables as follows: find the velocity field u : Ω × [0,T ) → R
d and pressure

field p : Ω × (0,T )→ R such that

∂u

∂ t
+(u ·∇)u+∇p− 1

Re
△u = 0, in Ω × (0,T )

∇ ·u = 0, in Ω × (0,T )

u(x,0) = u0(x),

(1)

where Ω ⊂ R
d denotes the fluid domain, Re = |umax|L/ν is the nondimensional

Reynolds number, L is a characteristic length, ν is the fluid kinematic viscosity and

|u|max =maxx∈Ω |u|. In addition, suitable boundary conditions need to be prescribed

in order to solve problem (1), see e.g. [51, 80, 118].

The Navier-Stokes equations are the most accurate continuum-based approxi-

mation for viscous flows where both convective and diffusive effects contribute,

and they are known to accurately reproduce many interesting physical phenomena

observed in fluids, such as the onset of turbulence. Concerning the functional set-

ting required to frame the analysis of problem (1), let us denote (H1
0 (Ω))d ⊂ V ⊂

(H1(Ω))d and Q ⊂ L2(Ω). The solution of (1) is such that (u, p) ∈ L2(0,T ;V )×
C0(0,T ;Q); see e.g. [102, 118] for the definition of Sobolev spaces and more details
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about this functional setting. Moreover, let us introduce a further functional space

W ⊆ V ×Q, denote 〈·, ·〉X the scalar product over a generic space X and ‖ · ‖X its

induced norm. When the subscript is omitted, 〈·, ·〉 denotes in the following the L2-

scalar product and ‖ · ‖ the induced norm, respectively.

In many applications, the fluid problem can depend in addition on a number of

parameters. In this case we deal with a parametric model reduction problem. We

denote µ ∈ P ⊂ R
P a vector of P parameters of interest for a given fluid dynam-

ics problem, as in the case of the Reynolds number appearing in (1). Other typical

examples deal with different physical parametrizations (e.g. by considering Grashof

number, Prandtl number, inflow velocity peaks, etc. as parameters) or geometrical

parametrization, i.e. when the fluid domain Ω = Ω(µ) depends on a set of parame-

ters allowing to describe/modify its shape. For the sake of simplicity, in this chapter

we will focus on physical parameters, whereas several details about flexible but ef-

ficient geometrical parametrizations can be found e.g. in [87].

Model reduction of the Navier-Stokes equations is a challenging task because

their solutions tend to exhibit complex phenomena at multiple temporal and spatial

scales, which means they are difficult to reduce to low-dimensional models without

losing at least some of the scales. In the case of unsteady flows, application of the

standard “method of lines” to the time-discretization of the unsteady Navier-Stokes

equations leads in three dimensions to the lack of sharp long-time stability esti-

mates. It is well known [68] that application of the discrete Grönwall lemma leads

to excessive growth of error bounds in time, because standard linear stability anal-

ysis of the unsteady Navier-Stokes equations results in stability constants that can

be of the order Cs ∼ exp(Re T ). While turbulence has sometimes been offered as

an explanation to this difficulty, the underlying situation is more delicate. The same

type of problem is exhibited by the one-dimensional Burgers’ equation, which does

not possess turbulent solutions. This also makes hard to provide meaningful error

bounds for the solutions of ROMs for the unsteady Navier-Stokes equations.

During the last three decades, several efforts in theoretical foundations, numeri-

cal investigations and methodological improvements have made possible to develop

general ideas in reduced order modelling and to tackle several problems arising

in fluid dynamics. Among a number of early contributions, we want to highlight

the most important – in our opinion – that date back to the late 1980s (see e.g.

[39, 98, 114]). These were mainly based on ad hoc selection of the basis functions,

without the benefit of a formal algorithm. Indeed, model reduction has come into

play as a truly invaluable tool in CFD applications only once systematic strategies

for constructing quasi-optimal bases were made available.

For the sake of exposition, we limit ourselves to describe two main algorithms for

choosing the basis on which to build ROMs, namely the Proper Orthogonal Decom-

position (POD) and the (greedy) Reduced basis (RB) methods. They share several

features but have been historically introduced and developed to address different

types of problems – POD is typically applied to build bases for time-dependent prob-

lems, while the greedy RB method is usually applied to build bases for parameter-
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dependent problems. Moreover, we provide detailed remarks and references about

extensions of these techniques and alternative strategies. We do not address in this

review the case of combined time and parameter-dependent problems; the interested

reader can refer to some recent works concerning error estimates for ROMs in the

case of acoustic Helmholtz and incompressible Navier-Stokes equations [63], the

Boussinesq equations [70], and the viscous Burgers’ equation using the method of

lines [93] or in the space-time formulation [131].

1.1 Proper Orthogonal Decomposition

POD is the leading model reduction tool for the unsteady Navier-Stokes equa-

tions. It was first introduced in [83] in the context of fluid dynamics as a method for

discerning and analyzing coherent structures in experimental turbulent flows, and

more recently in direct numerical simulations of turbulent flows in [53, 126], where

also the concept of space-time windowing of POD has been introduced, to identify

turbulent effects in transitional flow that are highly localized both in space and time.

POD techniques reduce the dimensionality of a system by transforming the orig-

inal unknowns onto a new set of Nr variables (called POD modes, or principal com-

ponents) such that the first few modes retain most of the energy present in all of the

original unknowns. This allows to obtain a reduced, modal representation through a

spectral decomposition which requires basic matrix computations (a singular value

decomposition) also for nonlinear equations. For a deeper review on POD we recall

here also the contribution of Bergman et al. and Grinberg et al. in MS&A Vol.8,

A.Quarteroni-G.Rozza (Eds.), Springer, 2013.

For the reader’s convenience, we recall briefly the POD based on the method of

snapshots, as presented in [114]. An approximation ur(x, t) to the solution u(x, t) of

(1) is sought as the sum of a base flow ū and a linear combination of some spatial

modes Ψi(x) through a set of temporal coefficients, as follows:

u(x, t)≈ ur(x, t) := ū(x)+
Nr

∑
i=1

ai(t)Ψi(x), (2)

for a suitable Nr ≥ 1, where ū(x) :=
∫ T

0 u(x,τ) dτ is the time-averaged base flow.

This ansatz is reasonable assuming that the flow field can be approximated by a

stochastic process that is stationary in time and ergodic [60]. In Section 4.3 we will

discuss some extensions in situations where such assumptions do not hold.

The spatial modes are assumed to satisfy the orthogonality relation 〈Ψi,Ψj〉 = 0

if i 6= j, for 〈· , ·〉 denoting a convenient scalar product, whereas the coefficients ai(t)
satisfy the following system of ODEs
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dai(t)

dt
= Fi +

Nr

∑
j=1

Ai ja j(t)+
Nr

∑
j=1

Nr

∑
k=1

Ci jka j(t)ak(t), t ≥ 0

ai(0) = 〈Ψi,u0〉,
(3)

for i = 1, . . . ,Nr, where the functional forms of the reduced system coefficient ten-

sors
Fi :=− 1

Re
〈∇Ψi,∇ū〉−〈Ψi,(ū ·∇)ū〉

Ai j :=−〈Ψi,(ū ·∇)Ψj〉−〈Ψi,(Ψj ·∇)ū〉− 1

Re
〈∇Ψi,∇Ψj〉

Ci jk :=−〈Ψi,(Ψj ·∇)Ψk〉

(4)

are obtained by Galerkin projection of the original system (1) on the spatial modes

Ψ1, . . . ,ΨNr in (2). The resulting ROM is referred to as a Galerkin ROM.

We point out that the pressure terms do not appear in these equations, and our

space is defined as X ≡ V . In fact, by construction the POD modes {Ψi}Nr
i=1 are

discretely divergence-free. However, for some flows we could be interested ei-

ther in evaluating the pressure field through the ROM, or to explicitly enforce the

divergence-free constraint in the ROM; we will go back to this point in Section 3.1.

From the structure of (2) we note immediately that trajectories of the reduced so-

lution ur live in an Nr-dimensional submanifold of the full space. Thus the accuracy

of the ROM is implicitly dependent on the assumption that the trajectories of the

full-order system (1) can reasonably be approximated on a much lower-dimensional

submanifold. As we will see in the following sections, these two ingredients, namely

(i) the expression of the approximate solution in a reduced-order model as a linear

combination of properly selected snapshots and (ii) a projection onto the subspace

spanned by the snapshot solutions in order to find the weights in the linear combi-

nation, are peculiar also to the (greedy) reduced basis methods.

We now focus on computation of the spatial modes {Ψi}Nr
i=1. We start from a

set of snapshot solutions Un(x) := u(x, tn) of the trajectory u(x, t) at some selected

times tn, for n = 1, . . . ,Ns. These solutions can be either obtained through accurate

numerical simulations of the discretized Navier-Stokes equations (1), or by experi-

mental measurements of the physical system. In the former case, a POD approach

is premised upon a “truth approximation” space Xh ⊂ X of (typically very large)

dimension, for which the snapshot solutions Un(x) := uh(x, t
n) of the (truth ap-

proximation of the) trajectory uh(x, t) at some selected times tn, for n = 1, . . . ,Ns.

Nonetheless, we omit the subscript h wherever possible. The snapshots are typically

equispaced in time along the entire period T and obtained after discarding the initial

transient of the flow until a stable regime is reached and the flow can be modelled

as a stochastic process that is stationary in time1.

The POD space XPOD
Nr

:= span{Ψi : i = 1, . . . ,Nr} of dimension 1 ≤ Nr ≤ Ns, for

a suitable Ns, is defined as the subspace which minimizes the least-squares discrep-

1 In practice, Nr POD modes are required to resolve the first Nr/2 temporal harmonics, and these

can be computed from Ns = 2Nr snapshots [96].
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ancy between the snapshots {Ui(x)}Nr
i=1 and their best approximation in the X-norm:

XPOD
Nr

:= arg inf
XNr⊂XNs ,dim(XNr )=Nr

1

Nr

Ns

∑
i=1

∥∥Ui(·)−ΠXNr
(Ui(·))

∥∥2

(L2(Ω))d , (5)

where ΠXNr
denotes the (L2(Ω))d projection onto the subspace XNs ; for incompress-

ible fluid problems this means that the POD basis is the best approximation basis in

the sense of capturing the kinetic energy contained in the snapshots.

From a practical point of view, we form the correlation matrix C∈R
Ns×Ns , whose

components are

Cnm :=
1

T

∫

Ω

[
Un(x)− Ū(x)

]
·
[
Um(x)− Ū(x)

]
dx, (6)

where Ū(x) := 1
N ∑

N
n=1 Un(x) is the ensemble average that approximates the base

flow ū. Then, we compute the eigenpairs (λk,ψk), k = 1, . . . ,Ns (with positive eigen-

values ordered by decreasing size) of C. The central result of POD states that the

optimal subspace XPOD
Nr

of dimension Nr satisfying (5) is such that

Ψi = Ψ̃i/‖Ψ̃i‖W , Ψ̃i =
Ns

∑
n=1

ψi,n(Un(x)− Ū(x)), 1 ≤ k ≤ Ns, (7)

being ψin = (ψ i)n the n-th component of the i-th eigenvector. In this way, the basis

functions {Ψi}Ns
i=1 are L2-orthonormal2.

The POD can equally be applied to the reduction of parametric fluid flow prob-

lems (see e.g. the parametric studies in [33] for rotating transitional flow, in [54] for

modeling the airflow in a large public building, and in [67] for the analysis of tur-

bulent plane channel flow). In fact, if the system (1) depends in addition on a vector

µ ∈ P ⊂R
P of P parameters of interest, we can follow the same procedure, except

that the snapshots are now sampled also in the parameter space. It should be noted,

however, that even if the POD procedure is the same in both the time interval and

the parameter space, the practical results will differ considerably, due to the causal

nature of time as opposed to other types of physical parameters.

So far we have not mentioned the treatment of boundary conditions that need

to be imposed on (1). In the case of homogeneous boundary conditions, the snap-

shots as well as their linear combinations will naturally satisfy the same boundary

conditions so that nothing special needs to be done. If we have non-homogeneous

Dirichlet boundary conditions, the linear combinations of snapshots will not in gen-

eral satisfy them, and neither will the ROM solution. To remedy this problem we

can either subtract the non-homogeneous boundary values from the snapshots be-

2 For numerical stability reasons the POD eigenvalues are usually not computed from the correla-

tion matrix itself, but rather as the squares of the singular values of the snapshot matrix obtained

by collecting all the snapshots as column vectors.
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fore constructing the POD basis, or add an additional constraint equation to the

ROM that enforces the boundary condition. These two methods can also be applied

to parameter-dependent problems with multiple parameters in the boundary data.

For a comparison of the two approaches we refer to [54], where both methods were

found to produce similar results.

More difficulties arise when the non-homogeneous boundary conditions depend

on time. This is a very typical case when POD-based ROMs are used for boundary

control applications on unsteady flows. In [112] the time-dependent velocity bound-

ary condition was handled by augmenting the Galerkin system (3) with a penalty

term, so that (3) can be written as

dai(t)

dt
= Fi +

Nr

∑
j=1

Ai ja j(t)+
Nr

∑
j=1

Nr

∑
k=1

Ci jka j(t)ak(t)+ τ

[
U in

i (t)−
Nr

∑
j=1

Mi ja j(t)

]

ai(0) = (Ψi,u0),

,

(8)

where the boundary tensors are U in and M are defined as

U in
i (t) :=

∫

Γin

Ψi(x) ·uin(x)ds, Mi j :=
∫

Γin

Ψi(x) ·Ψj(x)ds (9)

with the assumption that the time-averaged base flow is zero on the inflow section

Γin, i.e. ū|Γin
≡ 0. The penalty term τ > 0 was chosen such that the correct asymp-

totically stable solution was obtained. This can be understood as a weak imposition

of the Dirichlet condition that approaches strong imposition as τ → ∞.

1.2 Reduced basis construction by greedy algorithms

A popular strategy for constructing ROMs in the case of parameter-dependent prob-

lems is that of using greedy algorithms, based on the idea of selecting at each step

the locally optimal element. This option can be seen as an alternative to POD strat-

egy of previous section, yet preferable in the context of parametrized problems for

reasons that will be sketched later on.

Before describing the greedy algorithm, let us formulate a steady version of prob-

lem (1), depending on a set of parameters µ ∈ P ⊂ R
P, in a convenient way also

for the following. Here we introduce the weak form, which was not the case in

Sec. 1.1 to go from (2) to (3). The weak form of parametrized steady Navier-Stokes

equations reads as follows: find (u, p) = (u(µ), p(µ)) ∈V ×Q such that

{
a(u,w; µ)+b(p,w; µ)+ c(u,u,w; µ) = F(w; µ) , ∀w ∈V

b(q,u; µ) = G(q; µ) , ∀q ∈ Q,
(10)

where the parametrized bilinear and trilinear forms are defined as follows:
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a(v,w; µ) =
∫

Ω

∂v

∂xi

νi j(·; µ)
∂w

∂x j

dΩ , b(q,w; µ) =−
∫

Ω
qχi j(·; µ)

∂w j

∂xi

dΩ , (11)

c(v,w,z; µ) =
∫

Ω
vi χ ji(·; µ)

∂wm

∂x j

zm dΩ . (12)

In what follows, we consider the more general case including the pressure field,

so that X = V ×Q. Here µ may denote both physical and geometrical parameters,

whose action on the problem is encoded by parametrized tensors ν(·; µ), χ(·; µ). We

point out that tensors components might depend a priori on both parameter compo-

nents and spatial coordinates; see e.g. [87, 100, 109] for their complete derivation.

Furthermore, F(·; µ) and G(·; µ) are linear forms accounting for non-homogeneous

boundary data and source terms. Until stated otherwise, summation over repeated

indices is understood.

The goal of the Reduced Basis (RB) method is to compute a low-dimensional

approximation (ur(µ), pr(µ)) of the solution to problem (10) by seeking a linear

combination of well-chosen solutions3 (Ψi,ξi) = (u(µ i), p(µ i)) of problem (10),

corresponding to specific choices of the parameter values:

ur(x; µ) :=
Nr

∑
i=1

ui(µ)Ψi(x), pr(x; µ) :=
Nr

∑
i=1

pi(µ)ξi(x), (13)

where the coefficients ui(µ), pi(µ) are computed by solving the following nonlinear

algebraic system:





Nr

∑
j=1

Ai j(µ)u j(µ)+
Nr

∑
j=1

Bil(µ)pl(µ)+
Nr

∑
j=1

Ci jk(µ)u j(µ)uk(µ) = Fi(µ),

Nr

∑
j=1

BT u j(µ) = Gl(µ),

(14)

with i = 1, . . . ,Nr. Reduced spaces for pressure and velocity fields (denoted respec-

tively QRB
Nr

and V RB
Nr

) have the same dimension in the case of physical parametriza-

tions, whereas geometrical parametrizations require modifying the velocity space in

order to manage the divergence-free constraint; see Section 3.1. As in the case of

problem (1), the functional forms appearing in (14) are obtained by Galerkin pro-

jection of the original problem (10) onto the RB space XRB
Nr

= V RB
Nr

×QRB
Nr

, spanned

by the solutions (Ψi,ξi), so that, for 1 ≤ i, j,k ≤ Nr,

Ai j(µ) := a(Ψi,Ψj; µ), Bk j(µ) = b(ξk,Ψj; µ), Ci jk(µ) = c(Ψi,Ψj,Ψk; µ)

Fi(µ) := F(Ψi; µ), Gl = G(ξl ; µ),
(15)

3 Gram-Schmidt orthonormalization is required in order to ensure the algebraic stability of the re-

duced basis approximation. Furthermore, in case of parameter-dependent geometries, the velocity

space has to be enriched, as detailed in Section 3.
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resulting again in a Galerkin ROM. In the parametrized setting the goal is to approx-

imate uniformly well all the elements of the parametric manifold of solutions

M(µ) = {U(µ) := (u(µ), p(µ)) ∈ X , µ ∈ P}

using finite dimensional subspaces XRB
Nr

generated from elements of M(µ).
From a practical point of view, this approach is premised upon a classical Fi-

nite Element (FE) method “truth approximation” space Xh ⊂ X of (typically very

large) dimension. The RB method thus consists in a low-order approximation of the

“truth” manifold Mh = {Uh(µ) := (uh(µ), ph(µ)) ∈ Xh : µ ∈ D}. Nonetheless, we

omit the subscript h wherever possible.

Next we address the construction of these subspaces. The so-called greedy algo-

rithm, first proposed in [125], provides a quasi-optimal procedure for sampling the

parameter space P – and so the manifold M(µ).
Thus, we seek a set of snapshot functions {U(µ1),U(µ2), . . . ,U(µNr)} such that

each U(µ) ∈ M(µ) is well approximated by the elements of the subspace XNr =
span{U(µn),1 ≤ n ≤ Nr}, according to the following algorithm:

S1 = {µ1}; compute U(µ1); XRB
1 = span{U(µ1)};

for n = 2 : Nr

compute U(µn) = argmaxW∈M(µ) ‖W−ΠXn−1
W‖X ;

set Sn = Sn−1 ∪ {µn};

set XRB
n = XRB

n−1 ∪ span{U(µn)};

if maxW∈M(µ) ‖W−ΠXRB
n

W‖X ≤ ε∗tol

setNr = n−1;

end;

end.

where ΠXn is the orthogonal projection w.r.t. the scalar product induced by ‖ · ‖X

onto XRB
n . Thus, at each step n = 1, . . . ,Nr, U(µn) is the worst case element, which

maximizes the error in approximating the subspace M(µ) using the elements of

XRB
n . However, this procedure (sometimes called strong greedy algorithm) is com-

putationally infeasible: finding the maximum of the error of best approximation

‖W − ΠXnW‖X in XRB
n would require a suitable maximization algorithm, which

would also involve a large number of solutions of the full-order system (10). In a

more feasible variant of this algorithm – sometimes called weak greedy algorithm –

we replace the max over W ∈ M(µ) with a max over a very fine sample Ξtrain ⊂ D

of cardinality |Ξtrain|= ntrain, and the true error ‖W−ΠXn W‖X with a suitable error

estimate ∆n(µ), satisfying

c∆ ∆n(µ)≤ ‖W−Π RB
Xn

W‖X ≤C∆ ∆n(µ), ∀W ∈ M(µ) (16)
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for some constants C∆ > c∆ > 0. In this way, U(µn) = argmaxW∈M(µ) ∆n(µ) can be

computed more effectively, under the assumption that the surrogate error ∆n(µ) is

cheap to evaluate. In Sec. 3.2 we recall some a posteriori error estimates for reduced

basis approximations for steady Navier-Stokes equations, and refer to [101] for their

practical numerical implementation.

We point out that greedy-RB sampling methods are similar in objective to, but

substantially different in approach from, the POD methods, which are more expen-

sive from a computational standpoint. In fact, in the former we only need to compute

the Nr retained snapshots (or winning candidates), which are typically very few.

Only the error estimate has to be evaluated over the whole train set Ξtrain, which is

very large – this is the reason why we require that the surrogate error must be cheap

to evaluate. Instead, in the latter we must compute all the Ns candidate snapshots as

well as compute the SVD of a large matrix.

We conclude this section by mentioning also some additional techniques quite

close to POD for generating efficiently reduced spaces, the Centroidal Voronoi Tes-

sellation (CVT) [25, 26, 46] and the Proper Generalized Decomposition (PGD)

method [92], which has been recently applied to the solution of Navier-Stokes

equations [47, 117]. Recent contributions are also contained in MS&A Vol.8,

A.Quarteroni-G.Rozza (Eds.), Springer, 2013, see the chapter by Farhat and Am-

sallem dealing both with POD and Galerkin projection, and by Urban et al. A com-

parison on reduced representation approximations is provided instead by Bebendorf

et al. in the same volume.

The rest of the chapter is structured as follows: In Section 2 we lay out some gen-

eral guidelines that should be considered before attempting to build a ROM for any

specific fluid problem. In Section 3 we address some issues related to approxima-

tion stability and error estimation which occur in the reduced basis approximation of

steady-state solutions of parametrized Navier-Stokes equations. Moreover, in Sec-

tion 4 we discuss specific issues related to the POD/Galerkin -based ROMs, such as

the need for stabilizing the ROM, and how to ensure that the proper long-term be-

havior is recovered by the ROM. Some final remarks and a quick glance on current

developments in the field are given in Section 5.

2 Some principles of model reduction of fluid systems

In this section we try to condense some fundamental principles to take into account

when building ROMs that are known to most practitioners in the reduced-order mod-

elling community but not always clearly communicated or established in literature.

They are based both on our personal experience as well as on the general impres-

sion conveyed by state-of-the art literature on this subject. We have included mo-

tivating examples and several references to literature. Moreover, together with the
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description of these fundamental principles, we also sketch the basic ingredients of

reduced-order models for the computational reduction of PDEs.

2.1 “Never try to reduce the irreducible”

Once a full-order computational model for the fluid dynamics problem has been

constructed, e.g. by means of finite elements or finite volumes discretizations, we

may begin the process of constructing a suitable reduced-order model (ROM). The

first step is to verify the assumption that the trajectories of the system live on a low-

dimensional submanifold of the full space. From a practical point of view such a

check is straightforward: it is sufficient to compute several trajectories of the full-

order dynamical system, to collect snapshots into one matrix, and to perform a POD

by using the singular value decomposition of this matrix. If the decay of the sin-

gular values is sufficiently rapid, then a limited number of modes will potentially

suffice to represent the solution trajectories and an attempt at building a ROM can

be performed.

It is easy to construct examples where slow decay or even no decay of the

singular values of empirical snapshots is obtained. Consider for instance the

one-dimensional linear transport equation

∂tu(x, t)+ c∂xu(x, t) = 0, (x, t) ∈ R× (0,T )

u(x,0) = u0(x), x ∈ R
(17)

with solution u(x, t) = u0(x− ct). Take Ns snapshots of this solution at times

t = 0,∆ t,2∆ t, . . . ,(Ns−2)∆ t,T . Assume that u0 ∈ L2(R) and localized so that

the measure of its support λ (spt(u0))< |c|∆ t/2. Thus, it follows that

∫

R

u j(ξ )uk(ξ )dξ =
∫

R

u0(ξ − c j∆ t)u0(ξ − ck∆ t)dξ = ‖u0‖L2(R) δ jk (18)

so that the correlation matrix of the snapshots (6) is diagonal with all eigen-

values equal. The singular values of the snapshot matrix do not decay at all,

so that snapshot-based POD is not successful at representing traveling waves.

Using the empirical singular values to measure the feasibility of model reduction

can also be theoretically justified. As already mentioned, the subset where solutions

of the dynamical system live has typically the structure of a compact manifold M(µ)
belonging to some larger function space X . To quantify how well such a manifold

can be approximated by Galerkin projection onto a low-dimensional subspace, one

can rely on the concept of Kolmogorov n-width, defined as

dn(M;X) := inf
Xn⊂X

sup
u∈M

inf
ũ∈Xn

‖u− ũ‖X (19)
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where the first infimum is taken over all linear subspaces Xn ⊂ X of dimension n.

The decay of dn → 0 as n → ∞ can then be used as a measure of how many (POD

or greedy-RB) modes need to be considered for the ROM (2) – the faster the decay,

the smaller need to be the dimension of the linear subspace.

In the case that one is able to obtain exponential convergence in the n-width,

that is to say dn(M;X)≤C exp(−αnβ ) for some constants C,α,β > 0, exponential

convergence is also inherited (albeit at a reduced rate) by reduced-order approxima-

tions, and the same equivalence holds also for algebraic convergence rates, as was

recently proved in [18]. Results regarding the connection between n-width decay

rates and greedy algorithm converges rates can be found in [18, 22] for parametric

problems, in [55] for time-dependent problems, and results regarding the n-width

decay rates for parameter-dependent elliptic PDEs in [77, 86]. We stress that such

results rely on a suitable sampling algorithm (such as the greedy algorithm, that

selects proper time instances tn or parameter points µn) where to compute the snap-

shots Un(·, tn) (respectively Un(·,µn)) according to a reliable estimate of the error

between the ROM and the full-order model. This is in order to actually find a (quasi-

)optimal approximation space. We will revisit this point in Section 2.2.

Exponentially fast convergence of numerical approximations is often linked to

spectral approximations of smooth (analytic) functions. In the case of elliptic coer-

cive PDEs with random coefficients it was shown (see e.g. [10], Lemma 3.2) that

if an elliptic and uniformly coercive parametric bilinear form a : X ×X ×P → R

(consider for instance the scalar equivalent of the one defined in (11)) is such that

a(w,w; µ)≥ νmin‖w‖2
X for all w ∈ X ,µ ∈ P ⊂ R (20)

and its dependence on µ is analytic, then also the solutions u(µ) of

a(u(µ),w; µ) = f (w) for all w ∈ X (21)

for any f ∈ X ′ are analytic functions of µ , provided that the parameter range

P = [µmin,µmax] is bounded. The analyticity is then sufficient to prove exponential

convergence of certain approximations to the solutions by expanding the solution as

a power series. For example, when an approximation uh,p is obtained by using the

FE method in space (with mesh size h) and the spectral collocation method in pa-

rameter (with polynomial order p), an exponential convergence result was obtained

in [10] (Theorem 4.1): for any µ ∈ D

‖u(µ)−uh,p(µ)‖L2
p(P)⊗X ≤ 1√

νmin

inf
w∈L2

p(P)⊗X

(
1

|P|

∫

P×Ω
ν |∇(u(µ)−w)|2

)1/2

+C exp

(
−p log

[
2τ

|P|

(√
1+

|P|2
4τ2

)])
,

(22)

where the (sub)exponential convergence rate in p depends on the distance τ > 0

between P and the nearest singularity in the complex (parameter) plane. Unfortu-

nately, theoretical results that give estimates on the regularity of Navier-Stokes solu-
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tion with respect to parameters acting on boundary terms, external forces, or initial

data require stringent assumptions of small data and small Reynolds number that

are not usually fulfilled by realistic flows. Nevertheless, exponential convergence of

ROM approximation is often recovered also in nonlinear fluid problems.

2.2 “If it is not in the snapshots, it is not in the ROM”

We now turn to the question of how to choose the dimension Nr of the reduced

space, so that we can take advantage of a substantial computational reduction but

dealing with a reliable reduced-order model. In the case of the greedy-RB algorithm,

reliable error estimates ∆n(µ) satisfying (16) can be used to assess the quality of the

ROM, so that the sampling procedure stops when the error between the full-order

model and the ROM is (estimated) lower than a give threshold, say 10−m with m≥ 2,

uniformly over the parameter space.

In the POD case, we can rely on the Relative Information Content (RIC) of the

POD basis, which is defined as the ratio between the sum of the retained POD modes

vs. the sum of the whole set of eigenvalues of the correlation matrix:

RIC :=
∑

Nr
i=1 λi

∑
Ns
i=1 λi

. (23)

The RIC is usually chosen up to 100(1−α)% by retaining a limited number of

the most energetic POD modes, being, say α ∈ [10−m,10−1] for a suitable m > 1.

Flow features that are not sufficiently energetic will be omitted in the POD and thus

cannot be captured by the ROM. A possible way to check which features to retain is

to use a spatially weighted L2-norm in the computation of the POD that gives more

weight to features located at particular sites of interest.

Individual snapshots in the ensemble can be weighted accordingly to their im-

portance, as proposed in [33]. In a series of papers (see e.g. [31, 36, 37]) Navon et al

proposed a dual-weighted POD method, where the weights assigned to each snap-

shot were derived from an adjoint related to the optimality system of a variational

data assimilation problem in meteorology. It is also known that for compressible

flows the choice of inner product and weighting of the different flow variables (ve-

locity, pressure, speed of sound) in the snapshot matrix can have a large effect on

the stability and accuracy of the ROM [14, 35]. Similarly, the H1 inner product was

recommended for the computation of POD modes for compressible Navier-Stokes

equations in [66] for the purpose of enhancing stability.

On the other hand, in the case of parametrized problems, the approximation prop-

erties of the basis depend on the parameter points µk where the snapshots are com-

puted. It is known that, in general, a POD basis computed at a single parameter point

is not a good approximation for solutions computed at different parameter points.

This is another reason, in addition to computational efficiency pointed out in Sec-

tion 1.2, why a greedy algorithm should be chosen in order to manage with a careful



14 Toni Lassila, Andrea Manzoni, Alfio Quarteroni and Gianluigi Rozza

sampling of a parameter space. In summary, two typical improvements to the POD

sampling process are adopted:

1. Adaptivity. In this case an initial POD basis is constructed and the resulting ROM

used for simulations, but is later updated based on some problem-dependent cri-

teria. This is a typical approach in ROM-based optimization and optimal control

applications, such as those presented in [17, 103], where the snapshots and the

POD are updated after every optimization step to improve the accuracy of the

ROM near the optimal point. The price to be paid is that the cost of the opti-

mization loop will increase due to the need of additional full-order simulations

to update the ROM. The idea of a trust-region POD method was presented in

[49]. In this case, the POD version of the optimality system is solved at each

iteration within a trust-region radius ∆ (k) to obtain a quasi-optimal c(k+1) set of

controls. Then the full-order Navier-Stokes equations are solved with the quasi-

optimal controls to obtain u(c(k+1). The discrepancy between the ROM predic-

tion and the full-order solution is then measured, and if its too large the step is

rejected and the trust region radius decreased, ∆ (k+1) < ∆ (k). Otherwise, the step

is accepted and the trust region possibly increased, ∆ (k+1) ≥ ∆ (k). The ROM is

updated after each iteration step to incorporate the newly computed snapshots.

2. Optimality (or near-optimality). A priori error estimates for POD approxima-

tions were introduced in [72] and can be used to gauge the total number of POD

modes to retain to achieve a given representation accuracy at one single param-

eter point. In this case, snapshots are typically chosen iteratively by measuring

the error of the current ROM at different trial points of the parameter space, then

computing snapshots at the parameter point where the maximum error (estimate)

is obtained and adding them to the ROM, like in the greedy-RB algorithm, first

proposed in [52], and now standard in the parametric model reduction commu-

nity. For sampling in time POD-greedy strategies have been proposed for linear

evolution equations in [56], the viscous nonlinear Burgers’ equation in [93], and

the Navier-Stokes equations in [127].

In [73] the authors derived sensitivity equations to measure the effect of adding

new snapshots in the POD basis and use them to find optimal locations for new

snapshots that minimize the error between the POD-solution and the trajectory

of the full-order system. This can avoid the expensive computation of full-order

trial solutions typically needed in a POD-greedy approach. Furthermore, in [24]

the POD procedure was extended to incorporate goal-oriented quantities related

to specific outputs of interest over the entire range of parameters.

2.3 “Exploit the known structure of the solutions”

Both POD and greedy-RB strategies use a set of full-order solutions to build a global

basis for the approximation of the solution of a PDE problem for any given time

t ∈ (0,T ) or parameter value µ ∈ P . It is important to understand that the basis
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functions of a ROM do not really tell us much about the dynamical structure of a

time-dependent problem. In the case of parameter-dependent problems, a parameter

value µ different from the snapshots µ1, . . . ,µNr may result in a flow regime that

is qualitatively very different (for instance when the flow is parametrized with re-

spect to the Reynolds number) than those exhibited at the snapshot parameters. Also

parametrized geometrical features can greatly affect the qualitative behavior of the

solutions. Thus, in order to make the ROM capable to represent the physics of the

full model correctly, we need to let the equations play a role also at the evaluation

level, for any new problem instance to solve. This is the reason why, in equations (3)

or (14), we follow a projection approach, rather than an interpolation-based strategy.

This makes more reliable also the evaluation of outputs derived from the solution,

such as energy, stresses, vorticity, etc.

We still have to explain how to pursue a strong computational reduction when

solving the problem obtained by plugging the reduced solution into the equations.

Thus, we need to equip ROMs of previous sections with an efficient implementation

aiming at decoupling the generation and projection stages. Let us focus, for the sake

of clarity, on the case of parametrized problems. In particular, two ingredients need

to come into play, in order to obtain the so-called Offline/Online splitting:

1. Affine parameter dependence. In order to speed up the evaluation of a reduced

approximation when the differential operators depend on some parameters, the

key point is to isolate the contribute of parametrized quantities in the differential

operators, so that expensive parameter-independent structures can be computed

Offline and stored once, whereas inexpensive parameter-dependent quantities can

be efficiently evaluated Online for each new value of the parameters.

To make the Online evaluation step efficient, we need to take the parametrized

quantities out of the integrals appearing in (11)-(12). The usual assumption re-

quired in the reduced-basis methods is the so-called affine parameter depen-

dence, i.e. we require that parametrized forms (11)-(12) can be expressed as

linear combinations of parameter-independent operators:

a(v,w; µ) =
Qa

∑
q=1

Θ q
a (µ)a

q(v,w), b(q,w; µ) =
Qb

∑
q=1

Θ
q
b (µ)b

q(q,w); (24)

c(v,w,z; µ) =
Qc

∑
q=1

Θ q
c (µ)c

q(v,w,z) (25)

for some integers Qa, Qb, Qc, where q is a condensed index of i, j quantities. This

is straightforward when dealing with common physical parametrizations (e.g. by

considering Reynolds number, Grashof number, Prandtl number, inflow velocity

peaks, etc. as parameters [42, 44]) or simple affine geometrical parametrization

– in all these cases, parametrized tensors entering in (11)-(12) depend only on

parameter µ . Instead, when parametrized tensors depend also on x, affinity as-

sumptions (24)-(25) can only be recovered by suitable approximations, such as
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the ones based on the so-called Empirical Interpolation Method (EIM); see e.g.

[15, 85].

2. Reduced matrix structures. Once the parameters have been taken out of the oper-

ators by requiring the affine parameter dependence (24)-(25), the reduced opera-

tors (15) can be expressed (e.g. for the diffusion term) as

Ai j(µ) = a(Ψi,Ψj; µ) =
Qa

∑
q=1

Θ q
a (µ)a

q(Ψi,Ψj) =
Qa

∑
q=1

Θ q
a (µ)A

q
i j.

In order to make the Online evaluation independent of the dimension of the full-

order space, structures Aq and Cq corresponding to parameter-independent oper-

ators must be constructed properly and stored during the Offline stage.

We remark that the basis functions are given by full-order approximations of (10)

for selected values of the parameters, under the form

Ψi(x) =
Nu

∑
m=1

Ψ m
i φ u

m(x), ξi(x) =
N p

∑
m=1

ξ m
i φ p

m(x),

where {φ u
m(x)}Nu

m=1, {φ
p
m(x)}N p

m=1 are two bases of the full-order (velocity, resp.

pressure) approximation spaces, of dimension Nu, N p, respectively. Thus, the as-

sembling of reduced-order algebraic structures (15) can be efficiently performed

by combining the matrices collecting the basis functions, given by

Zu = [Ψ1 | . . . |ΨNr ] ∈ R
Nu×Nr , Zp = [ξ1 | . . . |ξNr ] ∈ R

N p×Nr ,

and the full-order algebraic structures. It is straightforward to check that, e.g.,

aq(Ψi,Ψj) =
Nu

∑
m=1

Nu

∑
n=1

Ψ m
i aq(φ u

m,φ
u
n )Ψ

n
j , i.e. Aq(µ) = Z

T
u Ãq(µ) Zu,

where Ã
q
mn(µ) = aq(φ u

m,φ
u
n ) is the full-order stiffness matrix corresponding to

the bilinear form aq(·, ·). The same procedure can be applied to pressure and

nonlinear terms as well; see e.g. [87, 100] for a detailed explanation.

Both these ingredients, together with the snapshot selection procedures and

(wherever available) rigorous error estimates allow to successfully apply Galerkin

ROMs to incompressible flows. However, some caveats should be mentioned.

For instance, the evaluation of the trilinear convective term – given by Ci jka j(t)ak(t)
in (3) or Ci jk(µ)u j(µ)uk(µ) in (14) – even in the reduced-order formulation requires

evaluating tensorial terms of relatively large sizes. This is even more involved when

the size Qc of the affine expansion (25) is large. For more general nonpolynomial

nonlinearities of the form
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〈
f

(
ū(x)+

Nr

∑
i=1

ai(t)Ψi(x)

)
, ū(x)+

Nr

∑
j=1

a j(t)Ψj(x)

〉
(26)

deflating the nonlinear terms to their full-order representations may be necessary in

order to evaluate the nonlinear terms, negating many advantages of using a ROM in

the first place. In order to reduce the online cost of evaluating the nonlinear term(s),

several “hyper-reduction” techniques have been proposed, such as DEIM [30] (Dis-

crete Empirical Interpolation Method), DBPIM [12] (Discrete Best Points Interpo-

lation Method), MPE (Missing Point Estimation) [8] and GNAT [5] (Gauss-Newton

with Approximated Tensor quantities). In general, most of these methods attempt to

approximate the nonlinearity using linear combinations of the POD basis functions

f

(
ū(x)+

Nr

∑
i=1

ai(t)Ψi(x)

)
≈ f0 ū(x)+

Nr

∑
i=1

f̃i(t)Ψi(x) (27)

and differ mainly on the strategy of choosing the approximation coefficients f̃i(t).
When the nonlinearity is treated using a Newton algorithm, a similar approximation

can be applied to the Jacobian J f , see e.g. [5, 30]. A contribution on discrete EIM

(DEIM) is the chapter by Antil et al. in MS&A Vol.8, A.Quarteroni-G.Rozza (Eds.),

Springer, 2013.

2.4 “Divide and conquer whenever possible”

The rationale behind the efficacy of the ROMs we have discussed so far is the reg-

ularity of the parameter dependence in the case of parametrized problems like (10)

– respectively, time continuity in the case of time-dependent problems like (1). In

other words, solutions to these problems lie on a low-dimensional manifold, as al-

ready pointed out in Section 1.2. The more regular the manifold (and the parametric

dependence), the more conveniently the solution can be approximated by a suitable

combination of snapshots.

However, even laminar flow can experience strong qualitative changes (bifurca-

tions) when critical parameters such as the Reynolds number is varied. For example,

the flow behind a cylinder experiences first a transition from steady flow to a time-

periodic flow, then a loss of periodicity in the vortex shedding, and finally transition

to a chaotic turbulent regime as the Reynolds number is gradually increased. In or-

der to make sure that a ROM approximates correctly the fluid flow in some range

of the parameter(s), we require that the parameter space (or the time interval) are

chosen such that the manifold is locally a branch of nonsingular solutions.

Although quite restrictive, this is a standard assumption also in the case of full-

order approximations, based e.g. on the FE method (see e.g. [21, 27]). Nevertheless,

bases constructed using the greedy algorithm provide reliable approximations also
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in the case of bifurcation points included in the parameter space; for instance, ROMs

have been used to track particular solution branches past the bifurcation point, see

e.g. [97, 119]. In case of parametrized flows, in order to minimize the required num-

ber of basis functions, a good ROM should be tailored so that different flow regimes

can be captured in a reliable way. Since POD-based ROMs provide poor approx-

imations away from the parameter values for which the snapshot solutions were

computed, it rarely makes sense to try and develop one global approximation basis

for the entire parameter space. Many works have been focused in these last years on

possible strategies to rectify this aspect.

One possibility is to combine ROMs computed for different physical flow regimes.

In [3, 4] the ROMs computed at different parameter points were interpolated to ob-

tain a new ROM that was valid also in the intermediate zone between the original

parameter points. In [58, 59] the parametric sensitivities of the POD modes were

computed and added to the snapshot set, which improved the validity of the reduced

solutions away from the parametric snapshots. However, in a more involved geo-

metrical parametrization case the ROM failed completely, as it did not converge to

the exact solution even when the number of POD modes was increased.

A “compact POD” approach based on goal-oriented Petrov-Galerkin projection

was proposed in [28], in order to minimize the approximation error subject to a

chosen output criteria, also including sensitivity information (with proper weighting

coming from the Taylor-expansion) and including “mollification” of basis functions

far away from the snapshot parameter. A further option, described in [5], exploits a

k-means clustering procedure to construct local ROMs by grouping together nearby

snapshots. In this way, once the snapshots have been computed, the reduced space

is partitioned in subregions and a local reduced basis is assigned to each subregion.

This can be seen as an adaptive version of a former strategy based on the so-called

Centroidal Voronoi Tessellation, introduced in [46] and extended in [25, 26].

Finally, we mention that local ROMs can be properly combined also in view

of a further computational reduction for instance in the solution of parametrized

problems featuring a repetitive geometrical structure – such as networks, or multi-

domain configurations. The Reduced Basis Element (RBE) method combines do-

main decomposition with parametric ROMs, by exploiting nonconforming ap-

proaches – such as mortar methods or discontinuous Galerkin methods – between

the subdomains and the greedy RB method within each subdomain. Recent appli-

cation of the RBE method to fluid flows can be found e.g. in [43, 65, 81]. A more

advanced variant exploits static condensation at the interdomain level [62] by con-

necting (at some interfaces, or ports, during the online stage) a library of reference,

interchangeable components.
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3 Model reduction of steady viscous flows

In this section we summarize those features which are peculiar to ROMs for

parametrized steady viscous flows, such as inf-sup stability, correct treatment of

pressure, suitable a posteriori error estimates. We also point out the analogies with

the case of linear viscous flows modelled by Stokes equations. In particular, we ex-

ploit a greedy algorithm for the construction of the reduced space: at each step the

basis of snapshots is augmented by the solution corresponding to the largest error

estimate. The downside is that the method is completely reliant on the existence of

computable a posteriori error bounds, which are not really available for the unsteady

Navier-Stokes equations, as we mentioned. This is the main reason why, so far, this

method has largely been limited to steady Navier-Stokes equations.

3.1 A question of stability: inf-sup constants and supremizers

A feature of the standard POD-Galerkin ROM (3) is that the pressure term −∇p has

been completely eliminated. In fact, assuming that the POD modes Ψi satisfy the

strong incompressibility constraint by construction, ∇ ·Ψi = 0 pointwise, integration

by parts of the pressure-gradient term evaluated on the POD modes gives

(∇p,Ψi) =
∫

Ω
∇p ·Ψi dx =−

∫

Ω
p(∇ ·Ψi)dx+

∫

∂Ω
p(Ψi ·n)ds, (28)

which demonstrates that the pressure only enters the ROM on the boundary and for

enclosed flows (Ψi · n ≡ 0 on ∂Ω ) it vanishes completely from the equations. For

instance, this is the case of a standard driven cavity problem. It should be noted,

however, that the situation also depends on the choice of the adopted spatial dis-

cretization. For standard FE discretizations the incompressibility of solutions ap-

plies only elementwise, i.e.

∫

K∈Th

∇ ·Ψi dx = 0 for all mesh elements K ∈ Th (29)

so that unless piecewise constant functions in each mesh element K are used for

the pressure, the term −∫Ω p(∇ ·Ψi) dx does not vanish identically. Nevertheless,

this term is neglected for many flows as small and unnecessary to enforce the in-

compressibility of the ROM solutions. It is known that neglecting the pressure term

for convectively unstable shear layers, especially ones with two-dimensional mix-

ing layers, can result in large errors as was demonstrated in [96]. Pressure-extended

ROMs include also the pressure in the equations, either by deriving the necessary

terms in the expansion (3) to account for the pressure [96], or by performing a sep-

arate POD to construct another basis {Φ j}Nr
j=1 for the pressure field [16, 79]. The

benefit of the latter approach is that the pressure field is immediately recovered with-
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out any post-processing steps necessary.

We focus our analysis on pressure-extended ROMs, using a greedy algorithm to

also build a basis for the pressure. In this way, for each selected parameter value, we

compute both the (truth FE approximation of the) velocity and the pressure fields.

Reduced velocity and pressure spaces result as follows:

VNr := span(Ψj : j = 1, . . . ,Nr), QNr := span(Φ j : j = 1, . . . ,Nr),

(we omit the superscript RB for the sake of brevity) where Ψj ∈ Vh and Φ j ∈ Qh

for any j = 1, . . . ,Nr, being Vh and Qh the truth velocity and pressure approxima-

tion spaces. Mathematically, a necessary and sufficient condition ensuring the ROM

stability is the reduced (Brezzi) inf-sup condition

βr(µ) := inf
q∈QNr

sup
v∈VNr

b(q,v; µ)

‖q‖Q‖v‖V

> 0, (30)

which is obviously related to, but not implied by, the full-order (Brezzi) inf-sup

condition

βh(µ) := inf
q∈Qh

sup
v∈Vh

b(q,v; µ)

‖q‖Q‖v‖V

> 0, (31)

for velocity and pressure spaces Vh ⊃ VNr and Qh ⊃ QNr . We recall that b(q,v; µ)
denotes the pressure/divergence bilinear form, defined in (11). We also point out that

now the stability factors such as βr(µ), βh(µ) are functions of the parameter vector

µ , rather than constants, as in usual discretization techniques. We remind that (31)

is ensured e.g. by choosing as Vh ×Qh the space of Taylor-Hood P2 −P1 elements

(see [19, 20]); however, this choice is not restrictive, the whole construction keeps

holding for other spaces combinations as well (e.g. [99]).

Instead, in order to fulfill the reduced inf-sup condition (30), we define for each

pressure basis function Φ j the corresponding inner supremizer velocity function

[106, 109]

T µ Φ j := argsup
v∈Vh

b(Φ j,v; µ)

‖v‖V

, (32)

which can be obtained by solving the discrete elliptic problem

(T µ Φ j,v)V = b(Φ j,v; µ), for all v ∈Vh. (33)

By applying (32) and enriching the RB velocity space Vh to include the inner

supremizers, we define a new extended velocity space as

V ∗
Nr

:=VNr ⊕ span(T µ Φ j : j = 1, . . . ,Nr),

such that
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0 < βh(µ) = inf
q∈Qh

sup
v∈Vh

b(q,v; µ)

‖q‖Q‖v‖V

≤ inf
q∈Qr

sup
v∈Vh

b(q,v; µ)

‖q‖Q‖v‖V

= inf
q∈Qr

b(q,T µ q; µ)

‖q‖Q‖T µ q‖V

≤ inf
q∈Qr

sup
v∈V ∗

Nr

b(q,v; µ)

‖q‖Q‖v‖V

= βr(µ).

(34)

Thus, the inf-sup stability of the full-order space now implies the stability of the

supremizer-enchanced reduced space, provided that this latter is enriched with the

solutions of the supremizer equation (33).

We remark that, by enriching VNr with the supremizers {T µ Φ j}Nr
j=1, the new RB

velocity space V ∗
Nr

has dimension 2Nr, the double of the dimension Nr of the RB

pressure space.

The treatment of the (Brezzi) inf-sup stability through the supremizer operator is

common to Stokes and Navier-Stokes equations, and more in general to any problem

written under a saddle-point form. Further details about the efficient construction of

the supremizer solutions and the Gram-Schmidt orthonormalization of the RB basis

functions can be found for instance in [87, 106, 109], whereas a general context

drawn for saddle-point problems has been developed in [50].

3.2 Certification of ROMs for the steady Navier-Stokes equations

We now introduce the main aspects related with a posteriori error estimation in the

RB context for parametrized steady Navier-Stokes equations. This approach is in

analogy with the so-called (Babuška) inf-sup stability theory [11], which can be seen

as a generalization to the Petrov-Galerkin case of the Lax-Milgram result for the

Galerkin-type formulation. Its application to the Stokes problem is just a possible

use, as shown in [106], where a general framework to compute error bounds for

noncoercive problems solved by the RB method has been introduced. Within this

framework, a joint residual-based estimation for velocity and pressure fields in the

Stokes case can be easily obtained under the form

‖Uh(µ)−Ur(µ)‖X ≤ ‖r(µ)‖X ′

β LB
S,h(µ)

=: ∆Nr(µ), ∀µ ∈ D , (35)

where:

• Uh(µ) = (uh(µ), ph(µ)) ∈ Xh = Vh ×Qh and Ur(µ) = (ur(µ), pr(µ)) ∈ XNr =
V ∗

Nr
×QNr denote the truth and the RB approximations of velocity and pressure;

• ‖r(µ)‖X ′ = supV∈Xh
r(V; µ)/‖V‖X is the dual norm of the global residual

r(V; µ) := rS
u(v; µ)+ rp(q; µ),

being

rS
u(v; µ) := F(v; µ)−a(ur(µ),v; µ)−b(pr(µ),v; µ),

rp(q; µ) := G(q; µ)−b(q,ur(µ); µ);
(36)
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• the bilinear form AS(·, ·; µ) : X ×X → R denotes the global Stokes operator

AS(U,V; µ) := a(u,v; µ)+b(p,v; µ)+b(q,u; µ); (37)

• β LB
S,h(µ) is a computable lower bound for the Babuška inf-sup stability factor

βS,h(µ), involving the global Stokes operator:

∃ β LB
S,h(µ)> 0 : βS,h(µ) = inf

U∈Xh

sup
V∈Xh

AS(U,V; µ)

‖U‖X‖V‖X

≥ β LB
S,h(µ), ∀ µ ∈ D . (38)

In this way, the stability of the reduced basis approximation is based on Brezzi’s

saddle point theory (and the introduction of a supremizer operator on the pressure

terms), whereas a rigorous a posteriori error estimation procedure for velocity and

pressure fields is based on Babuška’s inf-sup constant.

Alternatively, we could rely on the Brezzi’s theory also for the sake of error es-

timation, by deriving two distinct error bounds for velocity and pressure, as shown

in [50]. However, despite their similar effectivity, these latter require the approxi-

mation of two stability factors (for stiffness and pressure/divergence terms) and of a

continuity constant (for the stiffness term), which entail larger computational costs

in a parametrized context.

In the Navier-Stokes case we can instead obtain a rigorous a posteriori error es-

timation by relying on the so-called Brezzi-Rappaz-Raviart (BRR) theory [21, 27],

which is useful for the analysis of a wider class of nonlinear equations. We require

some slight modifications with respect to the linear preliminaries, even if also for

the Navier-Stokes problem the a posteriori error estimation takes advantage of the

dual norm of residuals and of an effective lower bound of a suitable (parametric)

stability factor, given in this case by the Babuška inf-sup constant referred not to the

global Navier-Stokes operator

A(U,V; µ) = AS(U,V; µ)+C(U,U,V; µ), (39)

but to its Fréchet derivative (with respect to the first variable), defined as

dA(W; µ)(U,V) = AS(U,V; µ)+C(W,U,V; µ)+C(U,W,V; µ), (40)

when evaluated at W ∈ X . In both cases, we denote by C(U,U,V; µ) = c(u,u,v; µ).
In this framework, a joint residual-based estimation for velocity and pressure fields

in the Navier-Stokes case takes the following form: for any Nr ≥ N∗(µ),

‖Uh(µ)−Ur(µ)‖X ≤
β LB

NS,h(µ)

2γ(ρ; µ)

(
1−
√

1− τNr(µ)
)
=: ∆Nr(µ), ∀µ ∈ D (41)

provided that τNr(µ)< 1. In particular:

• τNr(µ) is a non-dimensional measure of the residual, defined as

τNr(µ) =
4γ(ρ; µ)‖r(µ)‖X ′

(β LB
NS,h(µ))

2
;
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moreover, we denote N∗(µ) the smallest Nr such that τNr(µ) < 1, for all Nr ≥
N∗(µ). Since ‖r(µ)‖X ′ – and thus τNr(µ) – undergoes a fast decrease when Nr

increases, usually N∗(µ)< 10, so that (41) holds for reasonable dimensions Nr;

• γ(ρh; µ) is the (discrete) continuity constant of the trilinear form c(·, ·, ·; µ), de-

pending on the Sobolev embedding constant ρh defined as

ρ2
h = sup

v∈Vh

‖v‖2
L4(Ω)

(v,v)H

;

• the dual norm ‖r(µ)‖X ′ of the global residual, which is given in this case by

r(V; µ) := ru(v; µ)+ rp(q; µ),

ru(v; µ) := rS
u(v; µ)− c(ur(µ),ur(µ),v; µ);

(42)

• β LB
NS,h(µ) is a computable lower bound for the Babuška inf-sup stability factor

βNS,h(µ), involving the Fréchet derivative of the global Navier-Stokes operator:

∃ β LB
NS,h(µ)> 0 : βNS,h(µ) = inf

V∈Xh

sup
W∈Xh

dA(Uh(µ); µ)(V,W)

‖V‖X‖W‖X

≥ β LB
NS,h(µ). (43)

We remark that the framework described above is essential the nonlinear ex-

tension of the much simpler linear a posteriori error estimation (35), to which the

nonlinear error estimation (41) reduces in the limit that ‖r(µ)‖X ′ → 0.

A posteriori error estimation for the Navier-Stokes problem poses, from a com-

putational standpoint, more severe challenges than for Stokes problem. We do not

provide any detail about the evaluation of these quantities; the interested reader can

refer, for instance, to [76, 87, 94, 124].

3.3 Relevant computational issues

Finally we point out the most relevant computational difficulties encountered in

developing/applying the methodology presented in this section. We focus, in par-

ticular, on the evaluation of the a posteriori error bounds, a crucial aspect when

attempting to build a reduced space with the greedy RB method.

With respect to linear problems, where the computational speedup between a

reduced basis method and a truth approximation is usually about 102, reduction

may be even larger (sometimes up to one order of magnitude) in nonlinear prob-

lems. In this case, nonlinear solvers might require several iterations to converge to

the solution. Each iteration entails a large linear system to solve in the case of the

truth approximation. Instead, a reduced-order model requires at each iteration of the

nonlinear solver the solution of a small linear system, which can be assembled by

exploiting the precomputed structures (14).



24 Toni Lassila, Andrea Manzoni, Alfio Quarteroni and Gianluigi Rozza

Nevertheless, we need to rely on a suitable Offline/Online splitting to speed up

our computation. Such a strategy is also required to evaluate in a very small amount

of time the error estimates (35) or (41), so that all the parametric-dependent quanti-

ties appearing in these formulas can exploit the affine parametric dependence.

Moreover, error estimates should to be uniformly effective across entire param-

eter range, to avoid the greedy algorithm skew towards particular locations in pa-

rameter space. In this case, the basis resulting from the selected snapshots could

be inadequate to uniformly approximate the whole manifold of solutions, or result

larger than required. Essentially, we pursue the following strategy:

1. Stability factors. If the (Navier)-Stokes operator is parameter-dependent, so is the

lower bound of the stability factor (38) or (43). In this case, computing its lower

bound according to a suitable Offline/Online splitting is not easy. We face it by

using the so-called Successive Constraint Method (SCM)4 which converts the

eigenproblem corresponding to the computation of (38) or (43) on the successive

solution of suitable linear optimization problems.

This algorithm has been applied for the first time to saddle point Stokes problems

in [106], while a first extension to the nonlinear Navier-Stokes case has been con-

sidered in [87]. In case of physical parametrizations (for instance, involving the

Reynolds number) and large parametric variations, stability factors might un-

dergo large variations and the SCM algorithm is able to capture this behavior. In-

stead, according to our own experience, in case of geometrical parametrizations

arising from local shape changes or simple scaling (or affine) transformations,

piecewise constant approximations of the stability factors can provide good re-

sult at a very lower cost. In more involved cases, alternative heuristic strategies

to derive lower bounds of stability factors might take advantage of suitable inter-

polation techniques (see e.g. [87]).

2. Residuals. A suitable Offline/Online splitting can be used to evaluate the dual

norms of residuals (36)-(42). Indeed, these quantities can be expressed as the sum

of products of µ-dependent known functions and µ-independent inner products,

formed of more complicated but precomputable quantities, involving the Riesz

representations of ru(µ) and rp(µ).
As already remarked in Section 2.3, in the case of nonlinear convective terms

tensorial terms of relatively large sizes are generated; they depend on both the

dimension Nr of the reduced spaces and the parametric complexity Qc of the

trilinear convective term. Unfortunately, evaluating and storing these structures

might become computationally infeasible, so that an Offline/Online splitting for

evaluating the dual norms of residuals is not always practicable.

A Galerkin projection is well suited for symmetric and coercive PDEs, as in this

case it provides the optimal approximation in the corresponding energy norm. In the

4 This algorithm has been first introduced in [64] for both coercive and noncoercive problems,

analyzed in [107] in the coercive case and afterwards improved in [32]. A general version using the

so-called “natural norm” [110] has been analyzed in [61], where it has been applied to noncoercive

problems such as Helmholtz equations – the simpler coercive case can be seen as a particular

instance where the stability factor is just the coercivity constant.
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case of convection-dominated flows, symmetry is broken and no a priori optimal-

ity can be ascertained. Indeed, a large gap between the magnitude of the observed

nonlinear residuals and the true error between full and reduced solution may exist.

A remedy consists in using Petrov-Galerkin methods, with different spaces of

test and trial functions. They are usually presented in the guise of stabilization meth-

ods, such as in the case of the Streamline-Upwind Petrov-Galerkin (SUPG) method.

However, one is then left with the question of how to choose the test space. Re-

cent works on optimal or near-optimal choice of Petrov-Galerkin test spaces were

presented in [40, 41] and [38]. These options are “optimal” in the sense that they

give the best possible ratio of continuity constant to stability constant in the energy

norm estimates. In the finite element or discontinuous Galerkin context, optimal test

spaces are usually avoided, as this would lead to using test functions with global

support. However, in the ROM setting one does not care too much if the reduced

order system is full, as it is typically small enough to be solved with direct solvers

(the reduced dimension Nr is typically in the range 10−102).

In fact, the optimal test spaces are precisely equivalent to the method of suprem-

izers used in [109, 106] to stabilize ROMs for the Stokes equations. Unfortunately,

in the parametrized setting one has to face the fact that the optimal test spaces (and

also the supremizers) usually depend explicitly on the parameters and thus suitable

strategies to recover the Offline/Online splitting must be devised.

4 Model reduction of unsteady viscous flows

In this section we provide an overview of some reduction techniques available for

unsteady viscous flows. We do not restrict ourselves to parametrized problems and

RB methods; rather, we provide a quick survey of more general ROM techniques

based on the study of the stability of the underlying dynamical system – arising

for instance from model order reduction for ODEs – addressed in the following

chapters of the book. We start by recalling that current approaches for construct-

ing reduced basis approximations of time-dependent parametrized PDEs exploit a

combined POD-greedy procedure – POD in time to capture the causality associated

with the evolution equation, greedy procedure for sampling the parameter space and

treat more efficiently extensive ranges of parameter variation [93].

Certified RB methods have been applied to parametrized (moderate Reynolds)

unsteady viscous flows in [70], where a nonisothermal viscous flow is modelled

by Boussinesq equations describing natural convection. Parameters are the Grashof

number and the gravity direction. In [48] an improved h-p adaptive certified method

is introduced to address the same natural convection problem, which has also been

applied to a multiscale Stokes Fokker-Planck system modelling liquid crystals in

[71]. More recent contributions in the field adopt a space-time Petrov-Galerkin vari-

ational approach to improve the control of the exponentially growing energy es-

timates in the linear case [123] dealing with convection-conduction problems, for

Burgers’ equations [131], Boussinesq equations for moderate Grashof number flows
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exhibiting steady periodic responses [129] and even addressing interesting hydrody-

namic stability problems for moderate Reynolds number flows in an eddy-promoted

channel [130].

4.1 Model reduction of linearized time-invariant systems

The POD modes discussed in Section 2.2 only represent the statistical information

content of the set of snapshots without taking into account the underlying dynamical

system. Many examples of fluid dynamics where a POD-Galerkin ROM described

exactly the limit cycle of the system exist, however they completely miss the long-

time dynamical behavior of its trajectories.

An example of a dynamical system whose POD-modes are able to exactly

represent the stable limit cycle, but for which a Galerkin ROM gives incorrect

dynamics was described in [95]. The quadratically nonlinear ODE system





u̇1(t) = µu1(t)−u2(t)−u1(t)u3(t)

u̇2(t) = µu2(t)+u1(t)−u2(t)u3(t)

u̇3(t) =−u3(t)+u2
1(t)+u2

2(t)

,

has one fixed point at u = (0,0,0), which is unstable, and an asymptotically

stable limit cycle uLS(t) = (
√

µ cos(t),
√

µ sin(t),µ). All trajectories tend to-

wards the limit cycle. Since

1

t − t0

∫ t

t0

u(τ)dτ −→
t→∞

(0,0,µ),

the POD basis of dimension 2 is given by

ū := (0,0,µ), Ψ1 = (1,0,0), Ψ2 = (0,1,0)

and is able to exactly represent the stable limit cycle:

uLS(t) = ū+
√

µ cos(t)Ψ1 +
√

µ sin(t)Ψ2.

However, Galerkin projection on the POD basis of dimension 2 using the Eu-

clidean inner product leads to

ur(t) := ū+a1(t)Ψ1 +a2(t)Ψ2.

The coefficients of the ROM are given by the dynamical system

{
ȧ1(t) =−a2(t)

ȧ2(t) = a1(t)
,
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which is only marginally stable and whose trajectories remain on a circle of

radius r = (a2
1(t0)+a2

2(t0))
1/2 for all time without converging asymptotically

towards the correct limit cycle.

In order to capture the correct temporal dynamics, the characteristics of the dy-

namical system (fixed points, periodic solutions, and their (in)stability) should be

preserved by the ROM – such ROMs are built based on analyzing the stability of the

underlying dynamical system. In this section we discuss some, namely, linearized

time-invariant flows, which exhibit asymptotically stable periodic steady-states.

For linear time-invariant systems (LTIs), system-theoretical reduction methods

such as balanced truncation [7, 91] are more effective, in the sense that they provide

a ROM that has nearly the best possible approximation error. A linearized input-

output system in state-space form is





dU

dt
(t) = AU(t)+BS(t) for t ∈ (t0, t f )

Y(t) =CU(t) for t ∈ (t0, t f )

U(t0) = U0

(44)

with inputs (controls) S and outputs (observations) Y. If the system (44) is stable,

the controllability and observability Gramians are the matrices defined respectively

as

Wc =
∫ t f

t0

eAτ BB∗eA∗τ dτ, Wo =
∫ t f

t0

eA∗τC∗CeAτ dτ (45)

which can be computed from the Lyapunov equations:

AWc +WcA∗+BB∗ = 0, A∗Wo +WoA+C∗C = 0;

see e.g. [105] for further details. The controllability Gramian Wc measures to what

degree each state of the system (44) is excited by an input; in particular, Wc is posi-

tive definite if and only if all states are reachable with some input S(t). Instead, the

observability Gramian Wo measures to what degree each state excites future outputs;

in particular, Wo is positive definite if and only if any initial state U(t0) = U0 can be

uniquely determined from Y(t) on (t0, t f ).

A balancing transformation T is sought to transform the state variables of the LTI

into equivalent “balanced state variables”, Û = TU, in a way that the transformed

Gramians become equal and diagonal:

T
−1WcT

−∗ = T
∗WoT= Σ = diag(σ̂1, . . . , σ̂N). (46)

In the balanced coordinates, the states that are least influenced by the input also have

the least influence on the output, and such a balancing transformation exists as long
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as the system is both controllable and observable (i.e., both Wc and Wo are positive

definite). The {σ̂i} are called the Hankel singular values; when sorted in descending

order, we can split the balanced LTI system into two parts:





d

dt

[
Û1

Û2

]
(t) =

[
Â11 Â12

Â21 Â22

][
Û1

Û2

]
(t)+

[
B̂1

B̂2

]
S for t ∈ (t0, t f )

Y(t) =
[
Ĉ1 Ĉ2

][Û1

Û2

]
(t) for t ∈ (t0, t f )

Û(t0) = TU0,

(47)

where dim(Û1) = r and dim(Û2) = N − r. A balanced truncation ROM is then ob-

tained by retaining only the balanced state variables related to the first r Hankel

singular values:





d

dt
Û1(t) = Â11Û1 + B̂1S for t ∈ (t0, t f )

Ỹ(t) = Ĉ1Û1(t) for t ∈ (t0, t f )

Û1(t0) = T1U0

. (48)

In other words, balanced truncation involves first changing the coordinates accord-

ing to (46), and then truncating the least controllable/observable states, which have

little effect on the input-output behavior.

When the exact transfer function G(s) =C(sI−A)−1B of the LTI system is com-

pared with the one obtained after balanced truncation, Ĝ(s) = Ĉ1(sI− Â11)
−1B̂1, we

have the following results [7]:

1. Any ROM with r states and transfer function G̃r(s) has operator norm error at

least ‖G− G̃r‖∞ > σ̂r+1, where σ̂r+1 is the (r+1)st Hankel singular value.

2. The balanced truncation ROM with r states and transfer function Ĝr(s) has oper-

ator norm error bounded by ‖G− Ĝr‖∞ < 2∑
N
i=r+1 σ̂i.

3. If the full-order system (44) is stable, so is the balanced truncation ROM (48).

The Hankel singular values {σ̂i} characterize also the Kolmogorov n-width dis-

cussed in Section 2.1 of the range space of the Hankel operator, see [45]. As already

discussed in Sect. 2.1, the main requirement for constructing efficient ROMs is that

the associated singular values decay reasonably fast. Previously, we used the de-

cay of the empirical POD singular values to measure this, whereas in the balanced

truncation method one looks at the Hankel singular values. In fact, there exists an

interesting connection between the Hankel singular values and the empirical POD

singular values – it was pointed out in [105] that the POD modes are equivalent to

the modes obtained by balanced truncation provided that the snapshots Ui are taken

as the impulse responses of the system and the inner product equal to the one in-

duced by the observability Gramian.
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Balanced truncation methods based on explicitly computing the Gramians in (45)

by solving Lyapunov equations are generally too expensive to apply to large linear

systems with millions of state variables. A possible remedy is the balanced trun-

cation POD method [74, 128], in which the exact Gramians (45) are approximated

using a method of snapshots:

W e
c =

1

K

K

∑
k=1

1

w2
k

∫ t f

t0

(
ξk(τ)− ξ̄k

)(
ξk(τ)− ξ̄k

)∗
dτ,

W e
o =

1

K

K

∑
k=1

1

w2
k

∫ t f

t0

Qk

(
ζk(τ)− ζ̄k

)∗ (
ζk(τ)− ζ̄k

)
Q∗

k dτ.

(49)

Here the empirical trajectories ξk(t) and empirical outputs ζk(t) are computed by

solving the system (44) using generalized impulse controls Sk(t) = wkQkekδ (t),
where wk > 0 are positive weights, Qk ∈R

P×P are orthogonal matrices, ek ∈R
P are

Euclidean unit vectors, and δ (t) is the one-dimensional Dirac delta distribution:





dξk

dt
(t) = Aξk(t)+BSk(t) for t ∈ (t0, t f )

ζk(t) =Cξk(t) for t ∈ (t0, t f )

ξ (t0) = U0

(50)

for each k = 1, . . . ,K. In the case of LTI systems, the empirical Gramians (49) coin-

cide with the exact Gramians (45) provided that K ≥ P empirical impulse responses

are computed. It was proposed in [75] to use the same balanced truncation POD

method for dealing also with nonlinear flows. In this case the empirical Gramians

(49) – which are (approximate) finite Gramians – are obtained by solving the nonlin-

ear system and taking snapshots of the trajectory. By using these finite Gramians to

perform the balancing we obtain the following, empirical balancing transformation

Te = [Te,1 Te,2 ]:

T
−1
e W e

c T
−∗
e = T

∗
eW e

o T= Σ = diag(σ̂1, . . . , σ̂N). (51)

The balanced POD modes were applied in [105] to a linearized flow in a plane

channel and a comparison was made between POD, balanced truncation, and bal-

anced POD methods. The conclusion was that the balanced POD modes produced

nearly identical results with the balanced truncation modes, and both methods sig-

nificantly outperformed the standard POD modes. Another comparison on a prob-

lem of designing closed-loop controllers for flow over a cavity was done in [13],

where again the balanced POD modes achieved a stable closed-loop controller with

fewer ROM degrees-of-freedom. A difficulty related to balanced truncation is that

the linearized system must be stable. An extension to unstable linear systems was

proposed in [132] by decoupling the dynamics on the stable and unstable subspaces,

and then truncating the relatively uncontrollable and unobservable modal represen-

tations on each subspace (see e.g. [132] for further details). This strategy was used
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to propose reduced-order controllers around linearly unstable steady states for flow

around a cylinder in [122] and for flow past a flat plate in [1].

4.2 Stabilization of ROMs for unsteady Navier-Stokes equations

As mentioned before, usually a standard Galerkin projection-based ROM does not

produce satisfactory results when applied to nonlinear unsteady Navier-Stokes equa-

tions. There do exist exceptions – for nonautonomous problems with strong external

sources, such as periodically driven inflow, long-time drifting from asymptotically

stable states was not observed in [84, 113]. The drifting of ROM trajectories in the

general case is however a well-known problem and many attempts have been made

to remedy it.

First works on stabilization experimented in adding artificial viscosity [9] to the

reduced equations. The idea was further developed by extending the spectral van-

ishing viscosity method of Tadmor [115] to the Navier-Stokes equations in [111].

In long-time simulation of convection dominated flows some type of closure model

that takes into account the energy transfer between the ROM modes is needed. In

[29] a driven cavity problem at Re = 20,000 was successfully stabilized by adding a

linear damping term in the Galerkin ROM. The computation of correct limit cycles

was done in [2] by applying a shooting method. For a review of various stabilization

methods for Galerkin ROMS we refer to [16].

4.3 Dynamic mean-field representations and shift-modes

In many fluid dynamics systems, the Reynolds decomposition (2) together with

Galerkin projection leads to unstable ROMs because the interaction between the

time-averaged mean flow ū and the oscillating part of the flow field represented

by the POD modes is neglected. In [95] this problem was analyzed and identified

moving from the consideration that a Galerkin model without dynamic mean-field

correction is unable to represent correctly the unstable fixed point of the dynami-

cal system, which leads to structurally unstable ROMs (small perturbations in the

model can cause divergent trajectories). This was found to occur even in problems

where theoretically the POD-Galerkin ROM was able to capture the stable attrac-

tor exactly. As a result the periodic limit cycle was correctly captured, but transient

dynamics of the ROM were off by orders of magnitude.

The simplest method proposed in [95] to correct the mean-field approximation

error of POD is the inclusion of a shift-mode Ψ∆ , which is added to the POD basis in

order to represent the correct unstable fixed point of the full-order system, resulting

in the extended POD ansatz
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u(x, t)≈ ur(x, t) := ū(x)+a0(t)Ψ∆ (x)+
Nr

∑
i=1

ai(t)Ψi(x). (52)

For instance, in the case of the unsteady cylinder wake flow, the unstable fixed point

corresponds to the solution us of the steady Navier-Stokes flow. The shift-mode is

obtained by applying a Gram-Schmidt process to the correction term u∆ := ū−us:

Ψ ∗
∆ := u∆ −

Nr

∑
i=1

(u∆ ,Ψi)Ψi, Ψ∆ :=
Ψ ∗

∆

‖Ψ ∗
∆ ‖Ω

(53)

and applying the Galerkin ROM to the expanded POD basis of dimension Nr + 1.

This allows the ROM to represent exactly the unstable fixed point of the system. A

comprehensive discussion of the various other types of mean-field corrections and

their effects on the ROM predictions can be found in [116].

4.4 Model reduction of periodic steady-state solutions

In Section 4.3 we have discussed the difficulties of building ROMs that are capable

of accurately representing the transient dynamics of unsteady flows. In many ap-

plications of fluid dynamics, for example in turbomachinery or in large “straight”

arteries in the human circulatory system, the behavior of the flow is such that all tra-

jectories approach a single stable periodic solution. One option is then to disregard

the simulation of the transient, and concentrate only on approximating the periodic

steady-state solution.

For linearized flows the frequency-domain POD technique was introduced in

[69]. It replaces the time-domain representation of the Galerkin-projected equations

with a Fourier-domain representation for each individual harmonic. For fully non-

linear flows the individual harmonics are coupled by the nonlinear terms and no

term-by-term analysis of the harmonics can be performed. To solve this problem, the

Harmonic Balance (HB) method used for the study of harmonic ODEs was adapted

for the efficient solution of time-periodic flows in [57, 89, 90]. After suitable spatial

discretization of (1) the system

[
u̇h

0

]
=−

[
−(uh ·∇)uh −∇ph +ν△uh + f(t)

−∇ ·uh

]
=−

[
S1(U)
S2(U)

]
=−S(U), (54)

is obtained, where the spatial operator S(U) depends nonlinearly on the solution

U := (uh, ph) ∈ R
Nu

h
+N

p
h , Nu

h and N
p
h being the number of degrees of freedom of the

discrete velocity and pressure fields, respectively.

The method starts from the assumption that this system admits a periodic steady-

state solution U∞(t) with known period T , so that U∞(t) = U∞(t +T ) for all t. If in

addition the spatial operator is time periodic with the same period T , they can both

be represented using Fourier series expansions as



32 Toni Lassila, Andrea Manzoni, Alfio Quarteroni and Gianluigi Rozza

U∞(t) =
∞

∑
k=−∞

Ûk exp

(
2πikt

T

)
, S(U∞) =

∞

∑
k=−∞

Ŝk(U∞)exp

(
2πikt

T

)
, (55)

where each Ûk and Ŝk(U∞) is a (discrete representation of a) complex-valued vector

field over Ω ; by expressing Ŝk = Ŝk(U∞) we mean that each coefficient in the expan-

sion of S = S(U∞) depends on (potentially all of) the spatial coefficients {Ûk}k of

U∞(t). Since the periodic steady-state solution satisfies equation (54), its complex

Fourier coefficients Ûk ∈ C
Nu

h
+N

p
h must satisfy

2πik

T
Ûk + Ŝk(U∞) = 0, for all k ∈ Z. (56)

The harmonic balance (HB) method starts by truncating the Fourier series to

2N +1 terms and matching only those terms in (56), i.e.

2πik

T
Ûk + Ŝk(U∞) = 0, for all k =−N, . . . ,N. (57)

For real-valued fields Û−k = Ûk, so that only N +1 equations need to be solved.

If the flow is linear, all the harmonics decouple and we only need to solve N +
1 uncoupled steady equations. For nonlinear flows, each Ŝk(U∞) depends on all

the Ûk for k = −N, . . . ,N and thus the system (57) is a fully coupled nonlinear

system of (N + 1)× (Nu
h +N

p
h ) complex-valued equations. Due to the nonlinearity

of the spatial operator its Fourier series coefficients cannot be computed directly.

This problem is solved either using the alternating frequency/time domain method,

as was done in [57, 90], or by the asymptotic numerical method, as was done in

[34]. Once the Fourier coefficients are known, the periodic steady state solution can

be reconstructed with arbitrary temporary precision.

An advantage of HB compared to POD is that no full-order transient simulations

need to be performed until the periodic steady-state is reached, nor is the ROM

dependent on the initial condition of these simulations. For a comparison between

POD and HB we refer to [82]. We remark that the HB method is very efficient

in reducing the temporal complexity, as typically only N < 10 terms are needed to

accurately represent the solution. However, it has no effect on the spatial complex-

ity of the problem. Like many space-time formulations it requires the solution of a

system that is several times larger than the one solved when using the more stan-

dard method of lines. So far the HB method has been applied mainly to industrial

problems, such as the design and simulation of turbomachinery [57] and problems

in aeroelasticity [120].
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5 Conclusions

In this chapter we have presented an overview of model reduction methods for in-

compressible fluid dynamics, both in the steady and unsteady flow cases. The main

focus was on Galerkin-projection based ROMs, and the main strategies for con-

structing the low-order projection basis have been discussed. Theoretical properties

of ROMs for fluid problems are related to, e.g.: the possibility to reduce the dy-

namics of a fluid system to a low-dimensional submanifold, measured for instance

by the very fast exponential convergence of empirical POD singular values or of the

Kolmogorov n-width; the lack of long-time stability of Galerkin ROMs and the need

for stabilization; the error estimation of the ROM in the case of steady flow prob-

lems; the gain of computational efficiency thanks to the online/offline paradigm that

allows fast real-time ROM simulations as well as to the use of hyperreduction for

treating the nonlinear terms in an efficient way.

Ad hoc reduced order modelling techniques have recently been proposed for op-

timal flow control problems [104, 108, 121], optimal shape design of devices related

with fluid flows [6, 58, 23, 88], and the treatment of fluid-structure interaction prob-

lems [76, 78].

Far from having covered the subject exhaustively, we hope nonetheless that this

chapter could offer the reader a contribution for understanding which type of ROM

may be the best for his or her particular fluid dynamics application, having made

extensive reference to available results in the literature.
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