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CHAPTER

ONE

INTRODUCTION

Magnetism at the micro- and nano-scale level is a well-established research field,
by virtue of its relentless technological impact and astounding variety of structures
it can shape in condensed-matter systems. The characterization of most of these
structures has become possible in the last fifty years thanks to the development and
refinement of magnetic spectroscopies, most notably neutron scattering for bulk
magnetism, and electron spectroscopies for surfaces and thin films. A fundamental
outcome of the most recent experiments is the need to address magnetism in its full
non-collinear nature also at the theoretical level, i.e. by treating the magnetization
density as a true vector field, allowed to vary its direction at each point in space.
This paves the way to the study of chiral topological magnetic structures such as
skyrmions, or of the effect of Spin-Orbit Coupling (SOC) on the ground-state con-
figuration and on the excited-state dynamics. Handling non-collinearity however,
a far-from-trivial task on its own, proves to be particularly demanding in ab-initio
calculations, where, at present, it is far from being a standard tool in the study of
excited states. In this thesis we shall focus on the development of a method to study
the dynamical spin-fluctuations of magnetic systems in a fully non-collinear frame-
work, within Time-Dependent Density Function Theory (TDDFT). The outline of
the thesis follows. In Ch. 1 the technological framework and the main experimental
findings which have inspired our work are presented; a link between the experi-
ments and the relevant physical quantities, namely the magnetic susceptibility, will
also be shown. In Ch. 2 and 3 the theoretical framework in which we move will
be introduced, namely Time-Dependent Density Functional Theory (TDDFT) and
linear response. In Ch. 4 and Ch. 5 original work is presented: in the former, we
devise a computational approach for the study of magnetic excitations via TDDFT,
in a fully non-collinear framework. In the latter, we discuss the implementation and
compute the spin-wave dispersion for BCC Iron. The final chapter is devoted to the
conclusions.
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CHAPTER 1. INTRODUCTION 4

1.1 Spin Dynamics

The basic quantity that characterizes the magnetic properties of a system is the
microscopic magnetization-density, m(r). For a system of N electrons in the many-
body state Ψ, it is defined by

m(r) ≡ 〈Ψ,M̂(r) Ψ〉 , (1.1)

where

M̂(r) =
N∑
i=1

n̂i(r) µ̂i , (1.2)

with n̂i(r) and µ̂i being respectively the density and magnetic-moment operator of
the i-th electron. In magnetic materials, the electronic magnetic moments organize
in some pattern in the ground state, which results in a non-vanishing m(r). The
low-lying excited states of such systems may feature travelling magnetization waves,
also known as spin-waves (a pictorial example is reported in Fig. 1); their dynamics
strongly depends on the structure of the density of excitations of the system at low
energy.

�

Figure 1. Sketch of a spin wave of wave vector Q = 2π/λ in a one-dimensional ferromag-
netic chain.

1.1.1 Magnonics: Propagation on Ferromagnetic Films

The dynamics of the spin waves has drawn much interest due to their uncommon
features: first, the index of refraction of the spin wave in a material can be changed
just by altering the magnetization direction of the medium. Secondly, their wave
length spans several ordersj of magnitude, from ∼ 10 mm down to ∼ 1 nm, with fre-
quencies varying from GHz to THz. Lastly, no electrical charge transport is involved
during the propagation, and hence no electrical losses or Joule heating occur. These
features encouraged the birth of magnonics, a branch of spintronics whose aim is to
use spin waves as information carriers in circuits made of ferromagnetic guides [1].

The geometry of a spin wave propagating in a ferromagnetic guide, endowed with
an in-plane magnetization, is sketched in the left panel of Fig. 2. In the right panel
the spin-wave dispersion is reported at two different wave-length scales: the µm-
region and nm-region. In the µm-region the dipolar interaction between magnetic
domains dominates, and there is a continuum of dispersions according to the angle
between the direction of propagation and the magnetization of the guide. Moving
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Fig. 9. Schematic spin-wave dispersion. In the micron wave length (left), dipolar interactions dominate. The Damon–Eshbach and backward volume
modes are shown. At an arbitrary angle in between further modes are found (gray shaded area). In the nanometer region (right), the dispersion shows
cosine-like behavior. Here, the exchange interaction is dominant and can be approximated by a parabola for small energies. It intersects in a broad region
of high-energy spin wave excitation, where spin waves are heavily damped (red shaded area).

4.1.2. Exchange spin-waves
Since spin-wave lengths span several orders of magnitude from tens of microns (even higher for low-dampingmaterials)

to below 1 nm, also their frequencies may vary from GHz to THz. In addition, the frequency for a given wave length can
be shifted by the magnetic field. This broad region in length and time scales is one reason that makes spin waves so
interesting for high frequency applications. However, also the dominating interaction varies: at wave lengths below 100 nm,
the dispersion is dominated by the exchange interaction. The magnetostatic contribution to the energy of the wave can
be neglected. This simple picture is solved in many solid states physics textbooks for a chain of precessing spins, where
next neighbors are coupled by the exchange interaction. The solution is a (1 − cos(kr)) like behavior. As a consequence of
neglecting the anisotropic dipolar contribution, the dispersion in the exchange limit does not changewith themagnetization
direction. It only depends on the next neighbor distance r and the strength of the exchange interaction, and can be calculated
in the ‘‘frozenmagnon’’ picture from the electronic structure. For small k, the dispersion can be approximated to a quadratic
form. In that region, the energy increases quadratically with momentum h̄k similar to the free electron behavior. One can
think of realizing ‘‘free electron like’’ magnonic materials.

At even higher energies, the spin waves approach the THz regime. Their energy gets comparable to single spin-flip
excitations (Stoner excitations) between the bands of different spin character. These high-energy spin-wave modes in the
THz range are heavily damped, indicatedby the red shaded area. Dynamic excitations have to be thought of as a superposition
of multiple spin excitations propagating through the ferromagnet [26,27]. Life times of these high-energy spin waves of nm
length scales are a few picoseconds before the decay into other spin-wave excitations of lower energy [28]. Investigated
heavily in the 80s [29], their physics have drawn new interest. They are thought to be the key to the further understanding
of ultrafast demagnetization processes after femtosecond laser excitations. Because of their short wave length and lifetime,
at the moment, these are not suited for studies of the formation of magnonic bands. They propagate only a few nanometers.
In the following, we will discuss the formation of magnonic band structures in the dipolar region.

4.2. Band structures of magnonic crystals

In this section we will discuss first what are the expectations for a band structure in a magnetic material that is
periodically modified. If novel spin-wave states appear due to the periodic modification, a magnonic crystal is formed.
Second, we will calculate for one example the respective band structure. For wave lengths larger than 1 µm, the dispersion
of the spin waves is dominated by dipolar interactions. Corresponding frequencies are below 20 GHz, depending on the
magnetic material and applied field. A steep quadratic increase is related to the nanometer wave length range. The strong
magnetic exchange interaction takes over as the frequency reaches 1 THz. The dispersion has completely different slopes
for both regions. The consequence is shown in Fig. 10: in the short wave length range a periodic modification will lead to a
‘‘quasi free electron’’-like band structure in the periodic zone scheme (schematically constructed on the left), similar towhat
is found in micromagnetic simulations [30]. If dipolar interactions dominate, the energy splits for the Damon–Eshbach and
backward volume modes: the band structure will be anisotropic with regard to the applied field. When the structure size
is larger than the micrometer range, the negative dispersion of the backward volume mode leads to the surprising result
that the second band can be lower in energy than the first band. We will see that this unexpected feature is found as well in
our band structure calculations. A very complex spin-wave manifold can develop with many bands having similar energies.
The three types of magnonic crystals classified in Fig. 10 will show a very different behavior: dipolar bands with negative or
positive dispersion as well as quadratic exchange dominated bands.

In the following, we will discuss in greater detail how, similar to the Bloch theorem applied to electrons and photons,
a magnonic band structure of a periodic ferromagnetic system can be computed. A theory was developed by Puszkarski

Figure 2. Left: geometry and damping mechanisms in the spin-wave propagation on
a ferromagnetic surface. Right: dispersion of spin waves travelling on a ferromagnetic
surface, with an in-plane magnetization. The red-shaded area marks the region in which
Landau damping becomes active (figure reproduced from [1]).

toward nm-wavelengths and THz-frequencies, the exchange interaction prevails and
the dispersion tends to be isotropic. The prototypical material with spin waves in
the µm-region is yttrium iron garnet, whose spin waves display a lifetime of ∼ 100 ns
and a mean free path of several millimetres [2]. These materials, however, are not
suited for nano-fabrication, because of the long wave length of the carrier, hence one
faces the need to study shorter-wavelength spin waves.

Spin-Wave Damping

At the nanometre scale, where standard ferromagnetic materials such as Fe dis-
play prononced spin-wave excitations, one incurs the issue of increasing spin-wave
damping. In the THz-regime the spin-wave energy becomes comparable to the one
of single spin-flips (Stoner excitations), so that it is not possible to excite a single
travelling spin-wave, but only a superposition of modes, whose lifetime drops to the
order of few tens of fs. Recently, some progress has been made by engineering the
density of Stoner excitations by altering the Pd percentage in FePd alloys films,
reaching lifetimes of ∼ 100 fs [3].

The damping due to the superposition of spin waves and Stoner excitations is
called Landau damping, and it is not the only mechanism which hinders the propa-
gation of a spin wave. Recently, damping related to a strong spin-orbit coupling has
been observed experimentally in a two-atomic-layer Fe film on W(110), with an in-
plane magnetization M [4, 5]. When a spin wave propagates perpendicularly to the
in-plane magnetization, i.e. Q ⊥ M, its lifetime has been measured to be different
from the one of another spin wave propagating in the opposite direction, i.e. along
−Q. The phenomenon has been attributed to a strong spin-orbit coupling induced
by the W substrate, which produces a horizontal shift in the spin-wave dispersion
ω(Q) when inversion symmetry is lacking, such as it happens at an interface. The
shift is then related to a different spin-wave lifetime, as showed by the experiements
reported in Fig. 3. Tight-binding calculations have confirmed this picture [6], how-
ever no calculations with a realistic band structure have been performed so far.
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Figure 3. Left: spin-wave dispersion in 2-ML Fe@W(110) at room temperature. The
dispersion with Q parallel to the magnetization is reported in blue, in red the one with
Q along the perpendicular direction, where a horizontal shift is observed. This is often
called spin-wave Rashba effect, due to the parallel with the Rashba splitting of the elec-
tronic bands. Right: different damping of two spin waves travelling in opposite direction,
perpendicularly to the magnetization. Figures from [5].

Eventually, spin-orbit effects have been related also to the so called Gilbert damp-
ing [7], which owes its name to the Landau-Lifshitz-Gilbert (LLG) equation [8]

∂m(r, t)

∂t
= −γm(r, t)× beff(r, t)− α m(r, t)

m(r, t)
× ∂m(r, t)

∂t
, (1.3)

where γ is the electron gyromagnetic ratio, beff(r, t) the effective magnetic field in the
medium and α the damping parameter. The LLG equation is of phenomenological
origin, and describes the magnetization dynamics in a continuous medium. The
first term on the right-hand side of (1.3) is responsible for the precession of the
magnetization around the axis perpendicular to the plane defined by m and beff ,
whereas the second term tends to align m to beff , resulting in a damping of the
motion, known as Gilbert damping. It is known that SOC induces Gilbert-like terms
in the quantum equation of motion, and some attempts to estimate α from linear-
response calculations have been made [9, 10].

1.1.2 Chiral Magnetic Structures

We conlude this section by mentioning chiral magnetic structures, i.e. magnetization
patterns non-symmetric under parity, such as helicoids. The most notable structures
of these are skyrmions, nanometre-sized chiral spin textures, found as stable or meta-
stable states in different condensed-matter systems (see Fig. 4). Skyrmions have
drawn much attention due to their topological origin, which endows them with a long
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lifetime and stability under perturbations, so to be considered a strong candidate
for the role of spin-carriers in magnetic-transport devices. A first classification of
these states [11] is made accordingly to the size of skyrmions: when the skyrmion
size is bigger than the lattice constant, its energy density is much smaller than the
atomic exchange energy, and the chiral state benefits of topological stability; in other
words, the skyrmion lives in a different energy region than the continuum of Stoner
excitations. The difference between the standard spin-wave case is that topological
states are stable against all the perturbations which have not enough energy to
alter their topology (in this case the spin-flip energy). Skyrmions of this type are
due to the dipolar (∼ 100 nm–1µm) and spin-orbit (∼ 5–10 nm) interactions in
non-centrosymmetric lattices; in the latter case experimental evidence has come out
only recently, with the observation of skyrmions in the non-centrosymmetric bulk
magnet MnSi [12], or in 1 ML Fe@Ir(111) [13]. Skyrmions with size of the lattice
constant (∼ 1 nm) have been reported in frustated lattices with strong enchange
interaction, or systems with a dominant four-spin exchange interaction; their energy
is comparable with the one of the Stoner continuum, with the subsequent loss of
stability.

(several tens of nanometres) can be regarded as a magnetically 2D
system, in which the direction of q is confined within the plane
because the sample thickness is less than the helical wavelength;
therefore, various features should appear that are missing in bulk
samples. In the context of the skyrmion, the thin film has the advant-
age that the conical state is not stabilized when the magnetic field is
perpendicular to the plane23. Therefore, it is expected that the SkX can
be stabilized much more easily, and even at T 5 0, in a thin film of
helical magnet.

In this Letter, we report the real-space observation of the forma-
tion of the SkX in a thin film of B20-type Fe0.5Co0.5Si, the thickness of
which is less than the helical wavelength, using Lorentz TEM28 with a
high spatial resolution. The quantitative evaluation of the magnetic
components is achieved by combining the Lorentz TEM observation
with a magnetic transport-of-intensity equation (TIE) calculation
(Supplementary Information).

We first discuss the two prototypical topological spin textures
observed for the (001) thin film of Fe0.5Co0.5Si. The Monte Carlo
simulation (Supplementary Information) for the discretized version
of the Hamiltonian in equation (1) predicts that the proper screw
(Fig. 1a) changes to the 2D skyrmion lattice (Fig. 1b) when a perpen-
dicular external magnetic field is applied at low temperature and when
the thickness of the thin film is reduced to close to or less than the
helical wavelength. The Lorentz TEM observation of the zero-field
state below the magnetic transition temperature (,40 K) clearly
reveals the stripy pattern (Fig. 1d) of the lateral component of the
magnetization, with a period of 90 nm, as previously reported18; this
indicates the proper-screw spin propagating in the [100] or [010]
direction. When a magnetic field (50 mT) was applied normal to the
plate, a 2D skyrmion lattice like that predicted by the simulation
(Fig. 1b) was observed as a real-space image (Fig. 1e) by means of
Lorentz TEM. The hexagonal lattice is a periodic array of swirling spin
textures (a magnified view is shown in Fig. 1f) and the lattice spacing is
of the same order as the stripe period, ,90 nm. Each skyrmion has the
Dzyaloshinskii–Moriya interaction energy gain, and the regions
between them have the magnetic field energy gain. Therefore, the
closest-packed hexagonal lattice of the skyrmion has both energy
gains, and forms at a magnetic field strength intermediate between
two critical values, each of which is of order a2/J in units of energy. We

note that the anticlockwise rotating spins in each spin structure reflect
the sign of the Dzyaloshinskii–Moriya interaction of this helical mag-
net. Although Lorentz TEM cannot specify the direction of the mag-
netization normal to the plate, the spins in the background (where the
black colouring indicates zero lateral component) should point
upwards and the spins in the black cores of the ‘particles’ should point
downwards; this is inferred from comparison with the simulation of
the skyrmion and is also in accord with there being a larger upward
component along the direction of the magnetic field. The situation is
similar to the magnetic flux in a superconductor29, in which the spins
are parallel to the magnetic field in the core of each vortex.

Keeping this transformation between the two distinct spin textures
(helical and skyrmion) in mind, let us go into detail about their field
and temperature dependences. First, we consider the isothermal vari-
ation of the spin texture as the magnetic field applied normal to the
(001) film is increased in intensity. The magnetic domain configura-
tion at zero field is shown in Fig. 2a. In analogy to Bragg reflections
observed in neutron scattering22, two peaks were found in the cor-
responding fast Fourier transform (FFT) pattern (Fig. 2e), confirm-
ing that the helical axis is along the [100] direction. In the real-space
image, however, knife-edge dislocations (such as that marked by an
arrowhead in Fig. 2a) are often seen in the helical spin state, as
pointed out in ref. 18. When a weak external magnetic field, of
20 mT, was applied normal to the thin film, the hexagonally arranged
skyrmions (marked by a hexagon in Fig. 2b) started to appear as the
spin stripes began to fragment. The coexistence of the stripe domain
and skyrmions is also seen in the corresponding FFT pattern (Fig. 2f);
the two main peaks rotate slightly away from the [100] axis, and two
other broad peaks and a weak halo appear. With further increase of
the magnetic field to 50 mT (Fig. 2c), stripe domains were completely
replaced by hexagonally ordered skyrmions. Such a 2D skyrmion
lattice structure develops over the whole region of the (001) sample,
except for the areas containing magnetic defects (Supplementary
Information). A lattice dislocation was also observed in the SkX, as
indicated by a white arrowhead in Fig. 2c. The corresponding FFT
(Fig. 2g) shows the six peaks associated with the hexagonal SkX
structure. The SkX structure changes to a ferromagnetic structure
at a higher magnetic field, for example 80 mT (Fig. 2d, h), rendering
no magnetic contrast in the lateral component.

d e f

90 nm 90 nm 30 nm

[010] [100]

a b c

Figure 1 | Topological spin textures in the helical magnet Fe0.5Co0.5Si.
a, b, Helical (a) and skyrmion (b) structures predicted by Monte Carlo
simulation. c, Schematic of the spin configuration in a skyrmion. d–f, The
experimentally observed real-space images of the spin texture, represented
by the lateral magnetization distribution as obtained by TIE analysis of the

Lorentz TEM data: helical structure at zero magnetic field (d), the skyrmion
crystal (SkX) structure for a weak magnetic field (50 mT) applied normal to
the thin plate (e) and a magnified view of e (f). The colour map and white
arrows represent the magnetization direction at each point.

LETTERS NATURE | Vol 465 | 17 June 2010

902
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Figure 4. Topological spin textures in a thin film of Fe0.5Co0.5Si. In the bottom panels
(d), (e) and (f) Lorentz TEM measurements are reported, the colour map reprensenting
the direction of the on-plane magnetization, the arrows put as a reinforce. Panel d)
show a stripy pattern at zero external field, whereas panel (e) displays the transition to
a hexagonal skyrmion-lattice configuration for an external field of 50 mT normal to the
plane. The top panels (a) and (b) show the same structures predicted by Monte Carlo
simulations and a sketch of a skyrmionic configuration in panel (c). Figure reproduced
from [14].
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Remarks

From the cases examinated above, a full characterization of the magnetic excitations
of a system turns out to be essential in order to predict, and even engineer, the dy-
namics of quantum non-collinear states. On the experimental side, the two principal
spectroscopies which allow such a characterization are Inelastic Neutron Scattering
(INS) for bulk and Spin-Polarized Electron Energy Loss Spectroscopy (SPEELS)
for surface excitations. In the following the link between these spectroscopies and
response functions will be discussed.

1.2 Probing Magnetic Excitations

Historically, neutrons have been the standard probes for magnetic spectroscopies.
In fact, due to their neutrality, only two types of interaction are relevant with a
condensed-matter system. The first one is the neutron-nucleus short-range interac-
tion, widely used to determine the crystal structure and the phonon excitations of
solid-state systems. The second one is the dipolar interaction between the magnetic
moment of the neutron µ̂n and the one of the electrons µ̂e,

µ̂e =
geµB
~

ŝe , µ̂n =
gnµn
~

ŝn , (1.4)

where ge ≈ 2.002 and gn ≈ 3.826 are the electron and neutron g-factors, µB =
−e~/2me < 0 and µn = −e~/2mn Bohr and neutron magnetons, ŝe and ŝn the spin
operators acting respectively on the electron and neutron spin degrees of freedom.
The dipolar interaction is quadratic in the magnetic moments, therefore the electron-
neutron magnetic interaction is roughly 103 times stronger that the neutron-nucleus
one. When able to separate the crystallographic signal from the magnetic one,
Neutron Scattering (NS) immediately returns vital information about the magnetic
feautures of electrons in a specimen. Moreover, neutrons display a high mean free
path in solids, so that NS is the prototypical bulk spectroscopy. We now focus on
Inelastic Neutron Scattering (INS) which sheds lights on the bulk magnetic exci-
tations of a system, to illustrate which physical quantities have to be computed to
interpret the experiment.

In a typical INS experiment, a beam of unpolarized neutrons with wavevector
ki and energy εi = ~2|ki|2/2mn impinges on a system in the ground state Ψi. The
intensity I and energy εf of the outgoing neutrons are detected at different solid
angles, so that also the wave vector kf of the outgoing neutrons can be inferred; two
examples of recorded I(q, ω) signals are reported in Fig. 5. The intensity I(q, ω),
where ~ω = εi − εf and Q = kf − ki are respectively the energy and momentum
transfer, displays peaks in correspondence of the (q, ω) at which the system is able
to exchange energy with the probing particles, i.e. its own excitations. This picture
is of course simplified since it considers only single scattering processes, namely
assumes the impinging neutrons to undergo only one scattering event while inside the
sample; nevertheless, multiple-scattering processes are less likely to occur, appearing
as higher-order terms in the transition-probability density, and resulting in a weaker
intensity in the I(Q, ω) signal.
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measurement would be obtained.
We were guided in our measurements by the calcula-

tions by Blackman et al. Indeed their calculation
showed that for the [100] direction, a sharp spin wave
was to be expected at low energies which faded out in the
neighborhood of 200 meV, but that an additional spin-
wave branch becomes prominent at high energies. Be-
cause of the high energies used in the experiment, spec-
trometer resolution effects were important, and it was
necessary to take them into account. Generally in
analyzing the triple-axis results, a trial dispersion surface
is convoluted with the four-dimensional (three wave vec-
tor and one energy) spectrometer resolution and the re-
sult is least squares fitted with the data. Parameters are
then adjusted for the dispersion surface until a good fit is
obtained. The analysis thus proceeded by assuming a sin-
gle isotropic dispersion surface, convoluting this with the
resolution, and adjusting the slope, width, and intensity
of the dispersion surface until the best possible agreement
with the data was obtained. This does not give a very
good representation of the data, and the band calculation
suggested that the scattering would be better represented
by using two independent dispersion surfaces. The data
were thus reanalyzed using two dispersion surfaces and
separate parameters for the position, width, and intensity
of the two surfaces. One of the surfaces established the
lower-energy spin waves while the other determined the
high-energy branch. This gave a better fit to the data as
might be expected because more parameters were used.
Figure 1 shows three scans for the [100] direction where

the solid curve is the fit using the two-dispersion-surface
model. The spin waves at 52 and 248 meV are nearly
resolution-limited while the result for 155 meV is much
broader than the resolution.
There is no way to tell convincingly from the present

data whether more than one dispersion surface really ex-
ists. In any case, the result of interest is the position of
the scattering contours, and these are shown in Fig. 2 as
determined from the two-dispersion-surface model. This
result is entirely inconsistent with the scattering as calcu-
lated by a localized-electron model but closely resembles
that obtained by the band calculations of Blackman
et al. The rapid broadening and decrease in intensity of
the spin wave near 150 meV is an itinerant-electron
effect. The sharp mode that is found to begin at around
200 meV and extends out of the energy range of the mea-
surement shows that the spin-wave dispersion curve for
the [100] direction appears to consist of more than one
part. The results near 300 meV are the highest spin-wave
energies attained in any measurement, and the scattering
contours in Fig. 2 give a clear indication of the unusual
behavior of the excitations of a material whose electrons
are at least partly itinerant.
Figure 3 shows results obtained for the [111]direction.

In this case, only one dispersion surface is needed to give
a good fit to the data. The spin waves start out as sharp
excitations and broaden considerably as they near the
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FIG. 1. Triple-axis measurements of spin waves for Fe for
the [100] direction. The solid line is the least-squares fit using
two isotropic dispersion surfaces.

FIG. 2. Scattering contours for the [100]direction for Fe ob-
tained by least-squares fitting of the two-dispersion-surface
model, convoluted with the spectrometer resolution, to the data.
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! 

FIG. 1. Schematic representation of a time-of-fight scan parallel to [PO]. 
The locus of neutron energy transfers in a detector intersects the spin- 
wave dispersion surface in both the (110) and (310) zones, and the 
intersection points at A, B, and C result in peaks in the inelastic scatter- 
ing. 

tional Laboratory, in which spin waves were measured in 
pure iron up to 160 meV. The scans, however, were in no 
particular symmetry direction, and the resolution and in- 
tensity was much poorer than on HET. 

Our procedure for measuring collective modes is dif- 
ferent from that generally used on a reactor source. 
Whereas on a triple-axis spectrometer scans are usually 
performed with q along a symmetry direction and in 
constant-q or constant-w mode, the time-of-flight method 
employs a constant scattering angle so that both the energy 
transfer and q vary with the scattered neutron’s time of 
flight. To measure spin waves along a symmetry direction 
we aim to find a combination of incident neutron energy 
and crystal orientation so that the time-of-flight trajectory 
in reciprocal space is parallel to the symmetry direction 
and intersects the dispersion surface at the required ener- 
gies. However, the incident energy in such a scan is not 
always a sensible choice; for example, it may be excessively 
large. Alternatively, we use advance knowledge to position 
the crystal so that the time-of-flight trajectory is not par- 
allel to the symmetry direction except at the point of in- 
tersection with the dispersion surface. Figure 1 illustrates 
how a typical time-of-flight scan parallel to [loo] intersects 
the spin-wave dispersion curve in different zones. 

Ill. RESULTS 

In this work we report on the measurement of spin 
waves along the [loo] direction. A variety of incident en- 
ergies and crystal orientations were used to ensure that the 
scans included spin-wave excitations in the [ 1001 direction. 
In most cases the spin waves were measured about the 
( 110) reciprocal lattice point from intersections of type A 
and B in Fig. 1, but the highest-energy excitations were 
obtained from type-C intersections in the (200) or (3 10) 
zones. 

ment of weak magnetic signals at high energies the incident 
energy must be restricted to less than twice the excitation 
energy. To obtain reliable estimates of the peak positions it 
is essential to’ subtract the sloping background from the 
magnetic scattering. It was noted that the spectra in the 
2.5-m detectors retained approximately the same shape and 
intensity across the whole angular range of the bank and, 
after normalization for solid angle by scattering from va- 
nadium, gave a good estimate of the nonmagnetic back- 
ground in the 4-m detectors. 

Because of the nature of the time-of-flight scan the As an illustration of the raw data Fig. 2(a) shows the 
magnetic excitations occur on a sloping, nonmagnetic observed scattering converted from time of flight to energy 
background that arises from multiphonon processes. This transfer for an incident energy of 600 meV before back- 
background falls rapidly with increasing energy transfer ground subtraction. The spectrum has been corrected for 
and becomes negligibly small at an energy transfer roughly the energy dependence of the detector efficiency and for the 
equal to half of the incident energy. Thus, for the measure- k/ki phase-space term in the cross section, but not for the 
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FIG. 2. Examples of spin-wave scattering from Fe( 12%Si). c is the re- 
duced scattering vector parallel to [KM] measured from the (1 IO) zone 
center. (a) Raw data for an incident energy of 600 meV without back- 
ground subtraction. The inset shows the third spin wave in the scan, at 
320 meV, together with the multiphonon background (the intensity below 
250 meV is from the spin wave at 220 meV). (b) Spin-wave scattering at 
400 meV on the upper, *‘optic,” branch of the dispersion curve, measured 
with neutrons of incident energy 900 meV. The multiphonon background 
has been subtracted from the magnetic scattering. (c) Residual magnetic 
intensity in the region of the zone boundary (indicated by the vertical 
line) after background subtraction. The detectors were masked in (a) and 
(c), but not in (b). 
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Figure 5. Measurements of the outcoming-neutron intensities I(Q, ω) in INS experiments
on BCC-Fe, with Q along the [100]-direction. Left: I(Q, ω̄) recorded at three fixed neutron
energy-losses ~ω̄; data coming from the triple-axis neutron spectroscopy measurements
of [15]. Right: neutron intensity recorder with the time-of-flight method, which employs a
constant scattering angle so that Q and ω vary together with the scattered neutron time-
of-flight; Q = (η, 0, 0) is reported on the x-axis above the figure. Data taken from [16].

1.2.1 Inelastic Neutron Scattering

From a theoretical point of view, considering only single-scattering events corre-
sponds to the Born approximation in the Scattering Theory. We start by defining
the cross section as

dσ =
1

Ji

∑
F

dwFI , (1.5)

where Ji = ~ki
m

is the flux per unit volume of incoming particles and dwFI is the
transition-probability density from the global initial state I (beam+system) to the
global final state F per unit of time. The cross section describes the efficiency of
a certain scattering process defined by dwFI , which in the Born Approximation is
written via first-order time-dependent perturbation theory, namely Fermi’s Golden
Rule, as [17]

dwFI =
2π

~
Tr
[
ρ̂I V̂†ρ̂F V̂

]
δ(EF − EI) , (1.6)

where ρ̂I , EI , ρ̂F , EF are the density matrices and energies of, respectively, the
initial state and final state (beam+system), whereas V̂ the interaction Hamiltonian
between the beam and the sample. Eq. (1.6) is the form of the transition probability
in terms of the density matrices, which allow to account for non-pure initial states
(such, e.g., an unpolarized beam or temperature effects); the density matrix ρ̂F shall,
instead, always represent a pure state.



CHAPTER 1. INTRODUCTION 10

kf

 i  f

ki hŝni=0,

Figure 6. Pictorial view of an INS experiment, a beam of unpolarized neutron with
momentum ki impinges on a sample in the state Ψi. The recording of the momentum of
the outgoin neutrons kf allows to infer information on the final state of the sample Ψf .

As regards the term V̂ , the dipolar interaction between a neutron and N electrons
reads

V̂(rn, r1, . . . , rN) =
N∑
i=1

V̂ (ri,n) (1.7)

=
N∑
i=1

[
µ̂i · µ̂n
r3
i,n

− 3(µ̂i · ri,n)(µ̂n · ri,n)

r5
i,n

− 8π

3
µ̂i · µ̂n δ(ri,n)

]
.

Eq. (1.7) is explicitly written in the coordinates-only representation, not to burden
the notation with spin indexes.1 The letter “i” labels electron quantities, wheres
“n” the neutron ones, ri,n = ri − rn and r = |r|. We consider as initial state the
target system in its ground state ΨGS, and an unpolarized beam of momentum ki;
as final state the system in a given excited state Ψf and a beam of momentum kf ,
summed on both the polarizations (which, experimentally, means not to resolve the
polarization of the outgoing beam). By substituting (1.7) into (1.6) one obtains the
differential cross section for solid angle Ωf and outgoing neutron energy εf

d2σ

dΩfdεf
= − 1

π

(egn
2~

)2 kf
ki

∑
αβ

(
δαβ −

QαQβ

Q2

)
Lαβ(Q, ω) , (1.8)

where, we recall, ~ω = εi−εf and Q = kf−ki. The quantity Lαβ(Q, ω), named loss
tensor, can be shown via linear-response theory (see Ch. 3) to be the anti-hermitian
part of χαβ(Q, ω), i.e.

Lαβ(Q, ω) =
1

2i

[
χαβ(Q, ω)− χ∗βα(Q, ω)

]
, (1.9)

1Here, the hat refers only to the spin degrees of freedom.



CHAPTER 1. INTRODUCTION 11

where χαβ(Q, ω) is the Fourier transform of the magnetic susceptibility, which de-
fines the linear response of a system to a magnetic perturbation. Hence, the solution
of a linear-response problem allows to interpret the results of a INS experiment, the
peak-structure of the recorder signal I(Q, ω) should in fact be the same as

S(Q, ω) = −
∑
αβ

(
δαβ −

QαQβ

Q2

)
Lαβ(Q, ω) , (1.10)

which is nothing but the specialization to the magnetic case of the original study of
van Hove about the connection between the cross section in the Born approximation
and correlation functions [18].

When the probing species are spin-polarized electrons, such as the case of SPEELS
experiments, the dominant scattering mechanism is not due to the dipolar interac-
tion between magnetic moments, but to the Coulomb interaction between charged
fermions (i.e. electrons), which endows the total cross section with a magnetic con-
tribution through an exchange process. In spite of that, the final form of the cross
section still depends on the loss tensor Lαβ(Q, ω), which can be used to interpret
also surface excitations. For a detailed derivation the reader is referred to [19], for
a discussion of the experimental setup to [20].

1.2.2 Polarization Effects

We consider explicitly the polarization of the neutron beam. Before proceeding, it
is useful to rewrite Eq. (1.8) by noting that

(
δαβ −QαQβ/Q2

)
is a projector over

the plane perpendicular to Q, so that

d2σ

dΩfdεf
=
(egn

2~

)2 kf
ki

∑
f

mf
⊥ ·mf∗

⊥ δ
(
~ω − (Ef − EGS)

)
, (1.11)

where EGS and Ef are the energy of the target system before and after the scattering
process, respectively. We have also used the shorthand

mα,f
⊥ =

∑
β

(
δαβ −

QαQβ

Q2

)
〈ΨGS,M̂β(Q)Ψf〉 . (1.12)

Only the fluctuations perpendicular to the Q-direction are meaningful for the cross
section: magnetic excitations in the Born approximation are of transverse nature.
The polarization of a neutron beam is described by the density matrix in the spin
space

ρ̂(i)
n =

1

2
(σ◦ + Pi · σn) , (1.13)

where Pi is the polarization vector, related to the expectation value of the spin
operator via2

〈ŝn〉i =
~
2
Pi = tr

[
ρ̂(i)
n ŝn

]
. (1.14)

2The lower-case tr denotes a trace over the spin degrees of freedom only.
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Figure 7. The knowledge of the incoming and outgoing neutron-beam polarization give
additional information about the state Ψf , such as its chirality.

If one sends a polarized beam (and still records all the outgoing neutrons) the
resulting cross section is

d2σ

dΩfdεf
=
(egn

2~

)2 kf
ki

∑
f

[
mf
⊥ ·mf∗

⊥ + iPi ·
(
mf
⊥ ×mf∗

⊥

)]
δ
(
~ω − (Ef − EGS)

)
,

(1.15)

where the second term displays an explicit dependence on the direction of the po-
larization.3 The origin of the new term can be understood by computing the polar-
ization of the outgoing beam, which is given by [21, 12]

Pf =
(egn

2~

)2 kf
ki

(
d2σ

dΩfdεf

)−1∑
f

{
−Pi

(
mf
⊥ ·mf∗

⊥

)
+ 2Re

[
mf
⊥

(
Pi ·mf∗

⊥

)]
− i
(
mf
⊥ ×mf∗

⊥

)}
δ
(
~ω − (Ef − EGS)

)
.

(1.17)

The additional term −i
(
mf
⊥×mf∗

⊥
)

gives rise to a polarization in the scattered beam
along the Q-direction, even though the impinging beam is unpolarized. Furthermore,
it vanishes for simple ferromagnets [21], and therefore is an intrinsic feature of more
complex magnetization orderings. We conlcude by noticing that also −i

(
mf
⊥×mf∗

⊥
)

can be obtained by suitable combinations of the loss-tensor elements Lαβ(Q, ω), and
can therefore be inferred by linear-response theory.

3Notice that the new term is real, since, given a complex vector z = a + ib, one has

(z× z∗) = −2i(a× b) . (1.16)
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1.2.3 Summary

In the first part of this chapter we have outlined the phenomenology that has inspired
the present work, i.e. the description of damping mechanisms in the propagation of
spin-waves, due to a strong spin-orbit interaction. These dampings can be studied
by the perspective of the density of magnetic excitations in a system in the (Q, ω)-
space, which is accessible by scattering and energy-loss experiments, as commented
in the second part of the chapter. The theoretical tool we need to interpret these
experiments is the magnetic susceptibility, which has to be computed in a non-
collinear framework in order to account for spin-orbit effects. At the same time, we
mentioned that the knowledge of the full magnetic susceptibility of a system can also
give information on the structure, in particular on the chirality, of magnetic excita-
tions, and may be used to identify and study the stability of magnetic formations
such as skyrmions. We shall pursue this study in the framework of Time-Dependent
Density Functional Theory.



CHAPTER

TWO

DENSITY-FUNCTIONAL THEORY

The theoretical study of condensed-matter systems requires to deal with several
levels of approximation, due to the impracticability of a brute-force solution of the
Schrödinger (or Dirac) equations for a system of interacting electrons and nuclei.
A first simplification, known as Born-Oppenheimer approximation, is to consider
the electron dynamics decoupled from the nuclear one. This has been shown to be
a fair good approximation also in some gapless systems, such as ordinary metals,
due to the low coupling between electronic excitations and nuclear vibrations in
normal conditions [22]. Under this assumption, the problem reduces to a system of
interacting electrons subject to the electrostatic potential of the nuclei at rest, which
still proves too hard a task and requires further approximations. Density Functional
Theory (DFT) is a well-established methodology to tackle such a problem, and will
be the theoretical framework of this thesis. The basic equations of DFT, with a
focus on its spin-dependent implementation, will be outlined in the first part of this
chapter; in the second part, more technical aspects such as pseudopotentials and
the Brillouin Zone (BZ) integration will be covered.

2.1 Basic Theory

In the Born-Oppenheimer approximation, the non-relativistic Hamiltonian for a
system of N electrons subject to the electrostatic field of M nuclei reads

Ĥ[{R}] =
N∑
i=1

p̂2
i

2m
+

1

2

N∑
i,j=1

e2

|r̂i − r̂j|
−

N∑
i=1

M∑
I=1

eZI
|RI − r̂i|

+
1

2

M∑
I,J=1

ZIZJ
|RI −RJ |

, (2.1)

where e is the absolute value of the electron charge, m the electron rest mass, ZI the
I-th nuclear charge, r̂i and RI the electron and nucleus positions. We can rewrite
(2.1) as

Ĥ[{R}] =
N∑
i=1

p̂2
i

2m
+

1

2

N∑
i,j=1

e2

|r̂i − r̂j|
+

∫
R3

d3r N̂ (r) vext(r; {R}) , (2.2)

14
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where N̂ (r) =
∑

σ ψ̂
†
σ(r)ψ̂σ(r) is the electron density-operator,1 which couples lin-

early with the external potential

vext(r; {R}) = −
M∑
I=1

eZI
|RI − r| +

1

2

M∑
I,J=1

ZIZJ
|RI −RJ |

. (2.3)

Eq. (2.2) is the starting point for the application to condensed-matter systems of
DFT, where the central role is assigned to the electron charge-density, defined by

n(r) =
〈
Ψ, N̂ (r)Ψ

〉
, (2.4)

or equivalently, in terms of the many-body wavefunction,

n(r) = N
∑

σ1,··· ,σN

∫
R3

d3r2 · · ·
∫
R3

d3rN
∣∣Ψ(rσ1, r2σ2, . . . , rNσN)

∣∣2 . (2.5)

In the following, it will be shown how the variational principle of quantum mechanics,
holding for Ψ(r1 σ1, r2σ2, . . . , rNσN), is recast in terms of the more tractable charge
density n(r).

2.1.1 The Energy Functional

Let an N -electron system be described by the Hamiltonian

Ĥ = Ĥsys + V̂ , (2.6)

V̂ =

∫
R3

d3r N̂ (r) vext(r) ; (2.7)

in 1965 Hohenberg and Kohn [23] proved that

1. The potential vext(r) is (up to a constant) a unique functional of the ground-
state density n(r). This implies that the total Hamiltonian Ĥ, and therefore
all the properties of the system, are functionals of the ground-state density.

2. Once fixed the external potential, the energy, viewed as a functional of the
density, has a minimum at the ground-state n(r).

Hence one can define the energy functional for a chosen external potential

Evext [n] = F [n] +

∫
R3

d3r n(r) vext(r) , (2.8)

F [n] ≡
〈
Ψ[n], ĤsysΨ[n]

〉
, (2.9)

which has its minimum when n = nGS,and whose stationarity condition reads

δF

δn(r)
= −vext(r) . (2.10)

1The Fermi field ψ̂σ(r) annihilates an electron of spin σ in the position r. Fermi fields will be
used only to define the density operators in a more compact way and should not be confused with
ψi(r), which will be used to denote a spinor in the one-particle state i.
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2.1.2 The Kohn-Sham Scheme

The most widespread implementation of DFT is due to Kohn and Sham [24], who
devised a way to translate the minimization problem with respect to the density
into the solution of a set of self-consistent, single-particle equations. They proposed
the decomposition

F [n] = Ts[n] + EH[n] + Exc[n] , (2.11)

where Ts[n] is the kinetic energy of a system of non-interacting electrons, EH[n] is
the Hartree energy functional

EH[n] =
e2

2

∫
R3

d3r

∫
R3

d3r′
n(r)n(r′)

|r− r′| , (2.12)

and Exc[n] is the exchange-correlation functional, which is actually defined by
Eq. (2.11). Within this decomposition, the stationarity condition (2.10) reads

δTs
δn(r)

= −vH(r)− vxc(r)− vext(r) , (2.13)

with

vH(r) = e2

∫
R3

d3r′
n(r′)

|r− r′| , vxc(r) ≡ δExc

δn(r)
. (2.14)

This is exactly the same condition we would find when minimizing the functional

EKS[n] = Ts[n] +

∫
R3

d3r n(r) vKS(r) , (2.15)

vKS(r) ≡ vH(r) + vxc(r) + vext(r) , (2.16)

i.e. the functional of a system of non-interacting electrons under the action of the
(fixed) single-particle, local potential vKS(r). The ground-state wave function of the
Kohn-Sham functional (which is not the ground-state wave function of the interact-
ing system, they only share the density) is then a Slater determinant whose orbitals
satisfy the so-called Kohn-Sham equations :[
− ~2

2m
∇2 + vHxc[n](r) + vext(r)

]
ψi(r) = εi ψi(r) , n(r) =

occ.∑
i

|ψi(r)|2 , (2.17)

where we grouped the self-consistent terms in vHxc = vH + vxc. Once the density
is known from the solution of the Kohn-Sham equations, all the properties of the
interacting system are also at hand in virtue of the Hohenberg-Kohn Theorem. Note
that, at the minimum, the total energy of the true sytem does not correspond to
the sum of the eigenvalues εi defined by the Kohn-Sham scheme.

We finally remark that Eqs. (2.17) can also be obtained by minimizing with
respect to ψ∗i the functional

E [{ψ}] =
occ.∑
i

∫
R3

d3r ψ∗i (r)

(
− ~2

2m
∇2ψi(r)

)
+ EHxc [n] +

∫
R3

d3r n(r) vext(r) ,

(2.18)
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under the orthonormality constraint 〈ψi, ψj〉 = δij.
2 The density has to be considered

a function of the orbitals through (2.17).

2.1.3 Spin-Density Functional Theory

Though the total Hamiltonian does not contain any term that couples with the
spin degrees of freedom, some systems may exhibit a ground state with non-zero
magnetization density due the fermionic statistics of the electrons, i.e.

m(r) =
µBge
~
〈Ψ, Ŝ(r)Ψ〉 6= 0 , (2.19)

where Ŝ(r) is the spin-density operator

Ŝ(r) =
~
2

∑
σσ′

ψ̂†σ(r)σσσ′ ψ̂σ′(r) , (2.20)

and σ the vector of Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.21)

The theory discussed previously applies also in these cases, but it gives no practi-
cal instruction on how to compute the expectation values of the operator of interest,
neither a way to distinguish between degenerate ground states.3 In these cases it
is convenient to generalize the theory considering local external potentials wσσ′(r)
which couple to the spin-resolved density matrix ρ̂σσ′(r) = ψ̂†σ(r)ψ̂σ′(r), i.e. entering
the total Hamiltonian as

V̂ =
∑
σσ′

∫
R3

d3r ρ̂σσ′(r)wσ′σ(r) . (2.22)

In this more general case, the spin-resolved density does not determine univo-
cally the external potential wσσ′(r); it is nevertheless possible to define an energy-
functional E[ρ] which is variational with respect to ground-state ρ [25], and to apply
the Kohn-Sham procedure, resulting in4

∑
σ′

[
− ~2

2m
∇2δσσ′ + vσσ

′

Hxc[ρ](r) + vext(r)δσσ′

]
ψiσ′(r) = εi ψiσ(r) , (2.23)

2The contraint is accounted for via Lagrange multipliers Λij . After the minimization, Eqs. (2.17)
are recovered performing a unitary rotation of the orbitals ψi, so to diagonalize Λij into εi (the
functional E is invariant under unitary rotations of {ψ}). We also point out that the kinetic-
energy term in (2.18) is not the functional Ts[n], but gives the same energy contribution, being
the kinetic-energy of a non-interacting system.

3Such as in the case of non-relativistic ferromagnetism, where the ground-state energy does not
depend on the direction of the magnetization in space.

4The generalization is needed just to define the Kohn-Sham functional such as in (2.15), in fact
that is the only place in which the (self-consistent) potential couples to the spin. The external
potential remains purely scalar.
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where

vσσ
′

Hxc(r) = δσσ′vH(r) + vσσ
′

xc (r) , (2.24)

vσσ
′

xc (r) ≡ δExc

δρσσ′(r)
. (2.25)

It is usually preferred to work with the charge and magnetization densities

n(r) =
∑
σ

ρσσ(r) , m(r) = µB

∑
σσ′

σσσ′ρσ′σ(r) , (2.26)

so that we can write

vσσ
′

xc (r) =
δExc

δn(r)

∂n(r)

∂ρσσ′(r)
+

δExc

δm(r)
· ∂m(r)

∂ρσσ′(r)
(2.27)

=
δExc

δn(r)
σ◦ + µB

δExc

δm(r)
· σ (2.28)

where σ◦ stands for the 2× 2 identity in the spin space. Now we can define

vxc(r) =
δExc

δn(r)
, bxc(r) = − δExc

δm(r)
, (2.29)

so to recast Eq. (2.23) as[(
− ~2

2m
∇2 + vHxc[n,m](r) + vext(r)

)
σ◦ − µB σ · bxc[n,m](r)

]
ψi(r) = εi ψi(r) ,

(2.30)
where ψi has to be considered a two-component spinor. The charge and magnetiza-
tion densities of the Kohn-Sham system, which equal by assumption the true ones,
read

n(r) =
occ.∑
i

ψ†i (r)ψi(r) , m(r) = µB

occ.∑
i

ψ†i (r)σψi(r) . (2.31)

2.1.4 The Exchange-Correlation Functional

The success or failure of DFT depends on the capability of modelling the functional
Exc[n,m], without which the Kohn-Sham system would reduce to the Hartree equa-
tions. In the Local Spin-Density Approximation (LSDA) one uses the form

ELSDA
xc [n,m] =

∫
R3

d3r n(r) εxc

(
n(r),m(r)

)
, (2.32)

with m(r) = |m(r)| and εxc(n,m) being the exchange-correlation energy per particle
of a homogeneous electron gas, constrained to a collinear spin-polarized state with
magnetization m [25]. We have

εxc(n,m) = εx(n,m) + εc(n,m) , (2.33)
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where εx(n,m) is known analitically (see, e.g., Ch. 5 of [26]), and the form of εc(n,m)
has been drawn by fitting Monte Carlo calculations [27].

LSDA is most accurate at slowly-varying densities, since it approximates point-
by-point the system with a homogeneous electron gas; to overcome its limitations,
functionals depending also on the gradient of the spin-resolved density have been
developed throughout the years. The most successful class of these functionals goes
by the name of Generalized Gradient Approximation (GGA), which are usually
written as

EGGA
xc [n↑, n↓] =

∫
R3

d3r n(r) εunp.
x (n)Fxc(n

↑, n↑,∇n↓,∇n↓) , (2.34)

where n↑(r) = ρ↑↑(r), n↓(r) = ρ↓↓(r) and εunp.
x (n) = εx(n, 0) is the exchange energy

of the unpolarized homogeneous electron gas. The function Fxc is a correction factor
that restores the LSDA form for when the density gradients vanish.

Nowadays LSDA and GGAs are the most widely used xc-approximations in solid-
state DFT computations, and their range of applicability is well enstablished. In
the last 20 years, however, several other functional forms have been proposed in
order to heal the reknown limits of the local and semilocal (i.e. gradient-based)
approximations of the xc-energy, giving birth to orbital-based functionals (such as
hybrids), meta-GGA (depending on the Laplacian of the density), or van der Waals
functionals. The discussion of the accuracy and limitations of the various functional
forms is beyond the scope of this thesis and an active research field. For success and
failures of LSDA and GGAs, the reader is referred to standard textbooks, such as
Ch. 8 of [26], Ch. 7 of [28], or Sec. 2.5 of [29].

2.1.5 Collinear and Non-Collinear Magnetism

The LSDA and GGA xc-functionals are based on the homogeneous electron gas
in a collinear state, in which the magnetization m(r) is constant in modulus and
direction everywhere in space. As a result, the xc-functionals are sensitive only to
the modulus of the magnetization, and not to its direction.The xc-magnetic field bxc

generated by this approximations is always locally aligned with the magnetization,
in fact

bLSDA
xc (r) = −δE

LSDA
xc

δm(r)
= −n(r)

∂εxc

∂m

m(r)

m(r)
, (2.35)

whereas in the GGA case, considering that n↑ = 1
2
(n+m/µB) and n↓ = 1

2
(n−m/µB),

one has5

bGGA
xc (r) = −δE

GGA
xc

δm(r)

= −
∫
R3

d3r′
δEGGA

xc

δm(r′)

δm(r′)

δm(r)

= −n(r)εx(n(r))

[
∂Fxc

∂m
−∇ · ∂Fxc

∂∇m

]
m(r)

m(r)
. (2.37)

5Here we have used the standard differentiation rule

F [ρ] =

∫
d3r f(r, ρ(r),∇ρ(r)) ,

δF

δρ
=
∂f

∂ρ
−∇ · ∂f

∂∇ρ . (2.36)
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This is a general feature of any functional that depends on ∇m, instead of ∇m.
Several efforts to develop xc-functionals yielding a bxc field with a component per-
pendicular to the magnetization have been made, we mention in particular the usage
of the electron gas in a spin-spiral wave state (instead of collinear) as a reference to
build Exc [30, 31], or orbital functionals [32].

Since LSDA and GGA use the functional dependence of a collinear electron
gas, their first application has been on collinear magnetic structures, in which the
magnetization has the same direction (but may have different magnitude) in all the
points in space. This allows to choose a global spin quantization axis along the same
direction of m, so that mx = my = 0, yielding Kohn-Sham orbitals eigenstates of
ŝz, so that

ψi(r) =

(
ϕi↑(r)

0

)
, i = 1, . . . , N↑ (2.38)

ψj(r) =

(
0

ϕj↓(r)

)
, j = 1, . . . , N↓ , (2.39)

with N↑ +N↓ = N . In this case the Kohn-Sham equations become[
− ~2

2m
∇2 + vHxc[n

↑, n↓](r) + vext(r)− µB b
z
xc[n

↑, n↓](r)

]
ϕi↑(r) = εi↑ ϕi↑(r) ,[

− ~2

2m
∇2 + vHxc[n

↑, n↓](r) + vext(r) + µB b
z
xc[n

↑, n↓](r)

]
ϕi↓(r) = εi↓ ϕi↓(r) , (2.40)

with

n↑(r) =

N↑∑
i=1

|ϕi↑(r)|2 , n↓(r) =

N↓∑
i=1

|ϕi↓(r)|2 . (2.41)

Nonetheless, non-collinear systems can be described with collinear functionals,
considering a local (instead of global) spin-quantization axis: m(r) is free to vary
its direction in space, and at each point the xc-functional is evaluated using only
its modulus [33]. In other words, the xc-energy is evaluated as the xc-energy of a
collection of infinitesimal boxes of homogeneous electron gases polarized in different
directions, in the same spirit of LDA for the density only. In this latter case we
have to resort to the general form of the Kohn-Sham equations (2.30) and (2.31),
and the Kohn-Sham orbitals have to be considered as two-component spinors. It
remains however valid, as showed before, that bxc(r) //m(r).

2.1.6 TDDFT

The success of the Kohn-Sham mapping to approximate the solutions of the station-
ary Shrödinger equation inspired efforts towards the generalization to the dynamical
case. The first question to answer is whether the correspondence density and po-
tential still holds in the time-dependent case; if so, the Kohn-Sham Ansatz can be
formulated. Affermative answers to this question came by the Runge-Gross The-
orem first, and by the van Leeuwen Thereom later, which provides also rigorous
foundations to the Kohn-Sham Ansatz.
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We consider a time-dependent Hamiltonian of the form of

Ĥ(t) = T̂ + Ĥint +

∫
R3

N̂ (r) vext(r, t) , (2.42)

where T̂ is the kinetic energy and Ĥint the particle-particle interaction, the Runge-
Gross theorem [34] states:

Runge-Gross Theorem. The densities n(r, t) and n′(r, t) evolving with Ĥ(t) from
a common initial state Ψ◦ under the action of two local potentials vext(r, t) and
v′ext(r, t) that are expandable in Taylor series about the initial time t0, are necessarily
different, provided that

vext(r, t) 6= v′ext(r, t) + c(t) .

Some years later, van Leeuwen proved a generalization of this thereom [35]:

van Leeuwen Theorem. Consider a Hamiltonian in the form of (2.42), and an-
other Hamiltonian Ĥ′(t)with a different local potential v′ext(r, t) and interacting part
Ĥ′int. Let n(r, t) be the density which evolves from the initial state Ψ◦ under the
Hamiltonian Ĥ(t), and let Ψ◦′ be another initial state with the same density and
the same derivative of the density with respect to time −∇ · j(r, t). Then the time-
dependent density n(r, t) uniquely determines, up to a time-dependent constant, the
potential Ĥ′int that yields n(r, t) starting from Ψ◦′ and evolving under Ĥ′(t).

Notice that the Runge-Gross theorem is recovered by setting Ψ◦′ = Ψ◦ and
Ĥ′int = Ĥint. Most importantly, in the case in which Ĥ′int = 0, van Leeuwen’s theorem
proves the existence of a scalar potential that yields, for a non-interacting system,
the same density of the interacting one. This paves the way to the introduction of a
time-dependent Kohn-Sham system of equations: we assume our system to be in the
ground state, where the density n(r) given by the Kohn-Sham wave function ΨKS is
assumed to be the same as the one given by the true wave function Ψ◦, by virtue of
DFT. Thanks to van Leeuwen’s theorem we know that even the evolution of the ΨKS

will yield the true density n(r, t), provided with the correct local potential vKS(r, t).
In principle, by solving the evolution of the non-interacting Kohn-Sham system6

i~
∂

∂t
ψi(r, t) =

[
−~2∇2

2m
+ vKS[n](r, t)

]
ψi(r, t) ,

n(r, t) =
occ.∑
i

|ψi(r, t)|2 (2.43)

we gain access to the evolution of the true density. In practice, we have no recipe
on how to build such a potential. Similarly to what has been done in the ground-
state case, a time-dependent Hartree term is isolated in the definition of the time-
dependent effective potetnial

vKS[n](r, t) = vH[n](r, t) + vxc[n](r, t) + vext(r, t) , (2.44)

6Note that the time-dependent Kohn-Sham potential depends self-consistently on the density
due to the choice of ΨGS as a starting state.
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where

vH[n](r, t) = e2

∫
R3

d3r′
n(r, t)

|r− r′| , (2.45)

and vxc[n](r, t) is the time-dependent exchange-correlation potential. In theory, the
xc-potential at a time vxc(r, t) should depend on all the past densities n(r, t′), with
t′ < t . In practice, it is not clear how to define such a functional and one usually
resorts to the adiabatic local density approximation (ALDA), where the xc-potential
is assumed to be the derivative of the ground-state energy functional evaluated at
the instantaneous value of the density:

vALDA
xc (r, t) =

δELDA
xc

δn(r)

∣∣∣
n(r)=n(r,t)

. (2.46)

This approximation has been extensively tested in linear response calculations, and
proved to work fairly well in the computation of optical excitations in finite sys-
tems [36], and collective excitations in extended systems [37, 38], whereas is known
to fail to reproduce the optical gap in extended systems (see, e.g. Sec. 7.6 of [28]).

TD-SDFT

The generalization of TDDFT to external potentials which couple to the spin degrees
of freedom followed the Runge-Gross theorem quite soon [39]. We report here the
equations since, though very similar to ones introduced in the last section, they will
be the starting point for the derivation of our linear-response working equations in
the next chapter.

We consider the time-dependent Hamiltonian

Ĥ(t) = Ĥ◦ +

∫
R3

[
N̂ (r) vext(r, t)− M̂(r) · bext(r, t)

]
, (2.47)

where the ground state of Ĥ◦ is described by the densities n(r) and m(r). The
time-evolution of the many-body densities can be followed through the auxiliary
single-particle system

i~
∂

∂t
ψi(r, t) =

[
−~2∇2

2m
+ vKS[n,m](r, t)− µBσ · bKS[n,m](r, t)

]
ψi(r, t) , (2.48)

with

n(r, t) =
occ.∑
i

|ψi(r, t)|2 , m(r, t) = µB

occ.∑
i

ψ†i (r, t)σψi(r, t) (2.49)

and

vKS[n,m](r, t) = vH[n](r, t) + vxc[n,m](r, t) + vext(r, t)

bKS[n,m](r, t) = bxc[n,m](r, t) + bext(r, t) . (2.50)

As in the unpolarized case, the xc-potential in the adiabatic approximation reads

vxc(r, t) =
δExc

δn(r)

∣∣∣ n(r)=n(r,t)
m(r)=m(r,t)

, bαxc(r, t) = − δExc

δmα(r)

∣∣∣ n(r)=n(r,t)
m(r)=m(r,t)

, (2.51)

and no memory effects are taken into account.
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2.2 Pseudopotentials

The pseudopotential approximation consists in building an effective potential for
the outermost electrons of an atom, which mimics the scattering properties of the
ion formed by the nucleus and the inner electrons. This approach relies on the
assumption that the core electrons do not participate significantly in the formation
of chemical bonds due to inter-atomic interactions. Apart from reducing the number
of active electrons in a simulation, pseudopotentials are also fundamental in plane-
wave calculations, since they can be built in such a way as to result softer (i.e.
with lower Fourier-components) than the bare ionic potentials. Pseudopotentials
play a key role also when relativistic effects are present, which usually involve core
electrons in heavy elements. Relativistic pseudopotentials [40, 41, 42] can be built by
solving Dirac’s equations for the isolated atom and then used in the self-consistent
non-relativistic calculations for the valence electrons only, so that effects such as
spin-orbit coupling can be accounted for [43].

2.2.1 Norm-Conserving Pseudopotentials

If we treat an isolated atom within DFT, the Kohn-Sham effective potential can be
shown to be spherically symmetric, so that the Kohn-Sham orbitals can be classified
with the eigenvalues of the single-particle angular momentum operators ˆ̀2 and ˆ̀z, i.e.[

− ~2

2m
∇2 + vKS[n](r)

]
ψi(r) = εi ψi(r) , i ≡ {n, l,m} , (2.52)

where l and m label the angular momentum eigenstates. In the formation of atomic
bonds, not all the atomic states contribute, and some, the deeper and more localized,
keep their isolated-atom character. These are called core states, whereas the ones
responsible for the bonding are called valence states.

Since the density is a summation over the single-particle states, we can also
define a core- and valence-charge

nc(r) =
core∑
i

∣∣ψi(r)
∣∣2 , nv(r) =

valence∑
i

∣∣ψi(r)
∣∣2 , (2.53)

with n = nc + nv. When performing a DFT calculation, the self-consistency can be
reduced to the valence charge only, since the core charge is not expected to change
from the isolated-atom case (frozen-core approximation). It has been shown that,
though the core wave functions are sensitive to changes of chemical environment
with shifts of several eV, the total-energy error is instead of ∼ 0.1 eV, due to its
variational nature with respect to the density [44].

In the DFT framework, one can then extremize a “frozen-core” functional of the
valence orbitals only:

Efc [{ψ}] =
valence∑

i

〈
ψi,
( p̂2

2m
+ v̂fc

ext

)
ψi
〉

+ EHxc [nv]−
valence∑
ij

Λij

(
〈ψi, ψj〉 − δij

)
,

(2.54)
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where v̂fc
ext is the potential felt by the valence electrons. In the pseudopotential

approximation, v̂fc
ext is replaced by a potential v̂PP, built in such a way that the elec-

trostatic and scattering properties of the atom described by the all-electron prob-
lem (2.52) are well-reproduced outside of a certain core radius rc [45]. It is possible
to build pseudopotentials with the properties above, which produce smooth wave
functions inside the core radius rc and which coincide with the all-electron wave
functions of (2.52) outside rc. They satisfy the eigenvalue problem[

p̂2

2m
+ v̂Hxc[ñv] + v̂PP

]
ψ̃i(r) = ε̃i ψ̃i(r) , (2.55)

with the additional property that ε̃i ≈ εi within few meV. The smoothness of the
pseudo-orbitals ψ̃i turns out to be very useful in calculations which use plane-waves
as a basis set, since fewer Fourier components are required to expand the ψ̃i.

Unfortunately, the construction of such a potential is different for each l, and
the total pseudopotential is non-local,7 in the form of

vPP(r, θ, φ, θ′φ′) =
∑
lm

Ylm(θ, φ) vl(r) Y∗lm(θ′, φ′) . (2.56)

In actual calculations a summation of terms like (2.56) occurs, one for each ion,
with the spherical coordinates referred to the position of the ion. This form, how-
ever, is particularly expensive in plane-wave calculations, where the fully separable
Kleinman-Bylander reformulation [46] is used instead.

2.2.2 Nonlinear Core Corrections

The ab-initio construction of a pseudopotential begins with an all-electron reference
calculation for the isolated atom, such as (2.52); then an effective potential vleff(r)
is built for each l of the valence: to this end, several recipies are present in the
literature [45, 47, 48, 49]. At this stage, vleff(r) contains also the Hartree and xc-
contribution of the all-electron configuration; to unveil the potential given by the
ion and core electrons only one has to unscreen vleff(r), i.e.

vl(r) = vleff(r)− vH[nv](r)− vxc[nv](r) . (2.57)

This procedure, though working well in most of the cases, sometimes may prove to be
poorly transferable, i.e. fails to reproduce the scattering properties of the atom when
in a configuration different than the reference one (such as it may happen if using the
atomic pseudopotential in a solid). To improve transferability, it has been noted that
the unscreening procedure leaves some dependence on the starting configuration,
since the xc-potential is not linear in density, therefore vxc[nc]+vxc[nv] 6= vxc[nc+nv].
The correct unscreening procedure is [50]

vl(r) = vleff(r)− vH[nv](r)− vxc[nv + nc](r) . (2.58)

7Pseudopotentials have then to be regarded as an approximation which gives results close to
the original Kohn-Sham problem; their non-local nature, in fact, excludes them from proper DFT.
It holds however the total-energy variational principle with respect to the orbitals ψ̃i.
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Since the core contribution to the exchange-correlation part is also removed from
the pseudopotential, it has to be reintroduced in the self-consistent calculation every
time that vxc is computed. It has been shown, however, that a pseudo core density
ñc, smoothed below a cutoff radius r0, can be used instead of the true one. The
energy functional to minimize in the pseudopotential scheme, with nonlinear core
correction, is then given by

E
[
{ψ̃}

]
=

valence∑
i

〈
ψ̃i,
( p̂2

2m
+ v̂PP

ext

)
ψ̃i
〉

+ EH [ñv] + Exc [ñv+ñc] , (2.59)

under the usual contraint 〈ψ̃i, ψ̃j〉 = δij for all the valence electrons. Nonlinear core
corrections are particulary important in magnetic calculations, where the above
procedure reads

vl(r) = vleff(r)− vH[nv,mv](r)− vxc[nc+nv,mc+mv](r) . (2.60)

In these cases, in fact, the difference in the magnetization between the atomic and
the condensed-matter case can be dramatic, hence a high transferability is required.
From now on the ’tilde’ will be dropped, yet keeping in mind that the orbitals
and densities discussed in the following chapters are pseudo-orbitals and pseudo-
densities.

2.2.3 Spin-Orbit Coupling

SOC is a one-body relativistic effect which would not emerge if one considered Hamil-
tonian (2.1). The correct starting point is the Dirac equation for a 4-component
spinor under the action of external static quadri-potential (v/c,A), which read
(see [51], Ch. 15)

cσ · π̂ ψ(s)
i (r) +

(
mc2 − ev(r)

)
ψ

(l)
i (r) = εi ψ

(l)
i (r)

cσ · π̂ ψ(l)
i (r)−

(
mc2 + ev(r)

)
ψ

(s)
i (r) = εi ψ

(s)
i (r) , (2.61)

where π̂ = p̂+eA(r). The 2-component spinors ψ
(s)
i and ψ

(l)
i are respectively called

the small and large component of the 4-component Dirac spinor, where the name
follows from the possibility to write ψ

(s)
i as a Taylor expansion of (v/c)n-order terms

applied to ψ
(l)
i . Stopping at the (v/c)2-terms one obtains that the large component

has to satisfy [
ĥPauli + ĥSO + ĥDarwin + ĥkinetic

]
ψ

(l)
i =

(
εi −mc2

)
ψ

(l)
i , (2.62)
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where

ĥPauli =
π̂2

2m
− ev(r)− µB σ · b(r) (2.63)

ĥSO =
µB

2mc
σ ·
[
∇v(r)× p̂

]
(2.64)

ĥDarwin = − ~2e

8m2c2
∇2v(r) (2.65)

ĥkinetic = − p̂4

8m3c2
(2.66)

and b(r) = ∇ ×A(r). The three corrections are responsible for the so called fine
structure of the electronic levels in atomic physics8 we notice that the spin-orbit
term acquires its well-known form in the case of spherical scalar potentials, when
∇v(r) = dv

dr
r
r
, so that

ĥSO = ξ(r) ŝ · ˆ̀ , (2.67)

where ξ(r) = µB
~mc

dv
dr

1
r

and ˆ̀ = r̂ × p̂ is the angular-momentum operator. It can be
estimated that the splitting induce by spin-orbit on the atomic levels grows as ∼ Z4,
with Z the nuclear charge, in fact its footprints are the more evident the heavier
the atom.

In DFT calculations relativistic corrections are included via the pseudopotentials,
and allow to solve Pauli-type Kohn-Sham equations for 2-component spinors also
for systems where relativistic corrections become relevant. Relativistic DFT can
be formulated in terms of the four-current variable [52], but it has been shown
that non-relativistic xc-functionals, depending on charge- and magnetization-density
only, can be used without major discrepancies [53, 54]. Once the all-electron, Dirac-
like Kohn-Sham equations have been solved for the isolated atom, Pauli-like Kohn-
Sham equations are solved for the valence electrons, tayloring the effective potentials
in order to reproduce the all-electron large components outside of a cutoff radius.
The main difference with the non-relativistic case is that the solution of the Dirac
equation are classified by the quantum number l, j,mj, with j = l ± 1

2
and −j ≤

mj ≤ j, so that the pseudopotential acquires the form

vPP(r, θ, φ, θ′φ′) =
∑
ljmj

Ỹl,j,mj(θ, φ) vl,j(r) Ỹ
∗
l,j,mj

(θ′, φ′) , (2.68)

with Ỹl,j,mj(θ, φ) being the spin-angle functions, eigenstates of ĵ2, ĵz and ˆ̀2, ĵ = ˆ̀+ŝ.
The pseudopotentital (2.68) displays a dependence on the spin degrees of freedom,
which can be shown to be [40]

vPP(r, θ, φ, θ′φ′) =
∑
lm

Ylm(θ, φ)
[
vion
l (r)σ◦ + vSO

l (r) ŝ · ˆ̀
]

Y∗lm(θ′, φ′) , (2.69)

8The kinetic term is a relativistic correction to the kinetic energy coming from the Taylor
expansion of E =

√
(mc2)2 + p2c2, the Darwin term produces shifts in the s-states, being propor-

tional to δ(r) when v(r) is the Coulomb potential. The vector-field terms contained in π̂ describe
different physical phenomena, namely diamagnetism and absorbtion, scattering and emission of
electromagnetic waves.
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where the term vion
l (r) is obtained in practice by j-averaging form (2.68), and is the

only term used in scalar-relativistic pseudopotentials. A fully-separable Kleinamn-
Bylander form for relativistic pseudopotentials have been devised in [43].

Ultra-Soft Pseudopotentials and PAW

The pseudopentials sketched in the previous sections are called Norm-Conserving
(NC), since the sum of the square modulus of the pseudo-orbitals gives the same
integral of the all-electron valence density. There are, however, more advanced
pseudopontials in which the norm-conservation, and subsequently the orthonormal-
ity of the pseudo-orbitals, has been sacrificed to improve softness and transferability.
These are the Ultra-Soft (US) pseudopotential [55] and the Projector Augmented-
Wave (PAW) scheme [56], the former being a particular case of the latter [57]. PAW
pseudopotentials display a lower transferability error with respect to US pseudopo-
tentials, and provide a way to reconstruct the all-electron wave functions. Both
the US-pseudopotential and PAW schemes have been extended to linear response,
the interested reader may refer to [58] for the former and to [59] for the latter.
Throughout this thesis only Norm-Conserving pseudopotentials will be used.

2.3 Extended Systems

We consider a crystal as a collection of Ncells = NxNyNz identical unit cells with
periodic boundary conditions (known as Born-von Kármán (BvK) conditions), in
order to avoid the explicit treatment of the surface.9 The Kohn-Sham potential can
be shown to have the same periodicity of the lattice defined by the position of the
ions {RI}, resulting into the Kohn-Sham orbitals being Bloch states, i.e.

ψnk(r) = eik·runk(r) , unk(r + RI) = unk(r) . (2.70)

where n is the band index and k has the discrete values

kx =
2π

axNx

nx , ky =
2π

ayNy

ny , kz =
2π

azNz

nz , nx, ny, nz = 1, 2, . . . , (2.71)

due to BvK conditions that we imposed on the Bloch orbitals. We notice that,
when restricting into the Brillouin Zone (i.e. nmax

α = Nα, α = x, y, z), the number
of k-points equals the number of unit cells, therefore increasing the k-sampling is
another way of performing the limit Ncells → ∞. For this reason, in the following
Nk will be used instead of Ncells Quantities such as the density and magnetization
per unit cell are then given by

n(r) =
1

Nk

BZ∑
k

εnk≤εF∑
n

|unk(r)|2 , m(r) =
µB

Nk

BZ∑
k

εnk≤εF∑
n

u†nk(r)σ unk(r) . (2.72)

where the periodic parts of the Bloch’s functions are to be intended as 2-component
spinors.

9Here we made use of the assumption that for a large enough Ncells, we expect the boundary
conditions not to be relevant.
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Eqs. (2.72) involve only the periodic part of the Bloch orbitals, the self-consistent
equations are then usually rewritten in terms of unk only:∫

Ω0

d3r′δ(r− r′)

[(
− ~2

2m
(∇+ ik)2 + vHxc[n,m](r)

)
+vPP(r, r′)e−ik·(r−r

′)

]
unk(r′) = εnk unk(r) , (2.73)

where Ω0 is the volume of the unit cell and we denote the k-dependent Hamiltonian
in square brackets as ĥk. From now on we restore the general notation ψi and εi,
where i = {nk} and

∑
i → 1

Nk

∑
nk in the case of extended systems.

2.3.1 Smearing the Fermi Function

The summation over the Brillouin Zone as in (2.72) yields the correct thermody-
namic limit if tending to the integral of the discretized function

lim
Nk→∞

1

Nk

BZ∑
k

f(k) =

∫
BZ

d3k f(k) , (2.74)

which cannot be true when f(k) is a discontinuos function. A very important case
of these can be seen by rewriting the electron density as

n(r) =
∑
n

∫
d3k ϑ(εF − εnk) |unk(r)|2 , (2.75)

where ϑ(εF −εnk) is the step-function referred to the Fermi level εF . In metals there
are bands εnk crossing the Fermi level, therefore the integrand of (2.75) is discon-
tinuous and cannot be discretized. This issue is solved by noting that the Fermi oc-
cupation function is actually continuous at any finite temperature, therefore adding
a (fictitious) temperature σ to the system allows to discretize the BZ-integrals. The
price to pay is that the results might depend on the (fictitious) temperature, and
the convergence of the properties of interest with respect to σ has to be checked.

To see how to reach this goal, let us start by smearing the Dirac’s delta functions
appearing in the density of states, i.e.

ñ(ε) =
∑
i

1

σ
δ̃

(
ε− εi
σ

)
. (2.76)

In this way, the knowledge at a given point is spread over a small area of neighbouring
k-points. The parameter σ is related to the width of the smearing function and

lim
σ→0

1

σ
δ̃
( ε
σ

)
= δ(ε) . (2.77)

has to hold. Such a method is equivalent to the addition of a fictitious temperature
to the electronic system, in fact the Kohn-Sham energy can be written as

EKS =

∫ εF

−∞
dε ε ñ(ε) , (2.78)
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substituting the smeared density of states one obtains

EKS(σ) =
∑
i

ϑ̃

(
εF − εi
σ

)
εi − σ

∑
i

S

(
εF − εi
σ

)
, (2.79)

where

ϑ̃(x) =

∫ x

−∞
dy δ̃(y) (2.80)

is a smeared step-function, i.e. an approximation of the Fermi function, and

S(x) = −
∫ x

−∞
dy y δ̃(y) (2.81)

can be interpreted as an entropic term which couples with the fictitious temperature
σ: if we choose the Fermi distribution as ϑ̃, and its derivative as δ̃, one obtains the
entropy of the free-electron gas, and σ ≡ kBT .

The definition of occupied single-particle states changes accordingly to the oc-
cupation function, so that the density and magnetization are now defined as

n(r) =
∑
i

ϑ̃

(
εF − εi
σ

)
|ψi(r)|2 , (2.82)

m(r) = µB

∑
i

ϑ̃

(
εF − εi
σ

)
ψ†i (r)σ ψi(r) . (2.83)

The free-energy functional to extremize when smeared occupations are used is
therefore

Eσ
[
{ψ}, {ϑ̃i}

]
=
∑
i

ϑ̃i
〈
ψi,
( p̂2

2m
+ v̂PP

ext

)
ψi
〉

+ EH [nv,mv] + Exc [nv+nc,mv+mc]

− σ
∑
i

S(ϑ̃i)−
∑
ij

Λij

(
〈ψi, ψj〉 − δij

)
+ µ

(
N −

∑
i

ϑ̃i

)
,

(2.84)

with

nv(r) =
∑
i

ϑ̃i |ψi(r)|2 , mv(r) = µB

∑
i

ϑ̃i ψ
†
i (r)σ ψi(r) . (2.85)

Notice that the functional is variational also with respect to the occupations ϑ̃i, in
fact the stationarity condition reads

δEσ

δϑ̃i
= 0 =⇒ ∂S

∂ϑ̃i
=
εi − µ
σ

, (2.86)

which is true for any occupation function ϑ̃(x) and entropy S(x) satisfying Eqs. (2.80)
and (2.81) with x = µ−ε

σ
. In practice, during the constrained-minimization proce-

dure, the approximate eigenvalues εi and chemical potential µ are computed, and
with them the approximate ϑ̃i = ϑ̃((εi − µ)/σ); when convergence is reached, the
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orbitals {ψi} and the occupations {ϑ̃i} minimize the free-energy functional at a fixed
smearing function and σ.

Different types of smearing functions have been proposed, from a simple Gaus-
sian form [60], to the Methfessel-Paxton’s expansion of the Dirac’s delta in Her-
mite polynomials [61], the latter endowed with better-behaved convergency fea-
tures. The Methfessel-Paxton’s smearing, however, displays a negative bump and
non-monotonic behaviour in the occupation function ϑ̃(x). The Marzari-Vanderbilt
cold-smearing [62] heals the negative-bump feature, at the price of δ̃(x) not being
an even function anymore. A thorough discussion of the derivations sketched above,
and of the subtleties of the smearing approach can be found in Ch. 4 of [63], whereas
for the generalization to the linear-response case the reader is referred to [64].



CHAPTER

THREE

LINEAR RESPONSE

The time-evolution induced by a time-dependent external perturbation drives a sys-
tem into a dynamical superposition of all its unperturbed eigenstates. Consequently,
the dynamics contains information about the excited states of the unperturbed sys-
tem. Linear response theory encodes this information into the response functions,
which, as shown in Ch. 1, are the theoretical tools needed to interpret inelastic
scattering experiments. In the first part of this chapter, response functions, or sus-
ceptibilities, will be introduced in the general linear response theory framework; the
second part is instead devoted to the definition of response functions in TDDFT,
and to the numerical approaches used for their computation.

3.1 Linear Response Theory

Susceptibilities are equilibrium properties of a physical system which characterize
its reaction to external perturbations. They are defined as the first-order response
of an observable Â to a time-dependent external field fext(t),

δA(t) =

∫ t

t0

dt′ χ(t− t′) fext(t
′) , (3.1)

where fext(t) = 0 for t < t0. Time-translational invariance, which ensures χ to be an
equilibrium property, is explicit in its definition (3.1), and so is causality: χ(t− t′)
is defined only for t > t′.

In quantum mechanics, an expression for the susceptibility can be found by
considering the time-evolution of a system, initially in the ground state, undergoing
the perturbation

Ĥext(t) = B̂fext(t) , (3.2)

which describes the interaction between the system and the external field fext(t).
To make an example, fext(t) can be a magnetic field, and B̂ the spin operator. After
a first-order expansion of the time-evolution operator in the external perturbation
(see, e.g., Ch. 3 of [28], or Ch. 5 of [65]), one obtains

χAB(τ) =
1

i~
θ(τ)

〈
Ψ◦GS,

[
ÂH(τ), B̂H(0)

]
Ψ◦GS

〉
(3.3)

31
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where “H” denotes the Heisenberg representation of an operator with respect to the
unperturbed Hamiltonian

ÂH(t) = ei
t
~ Ĥ
◦Â e−i t~ Ĥ◦ . (3.4)

The susceptibility in the form of (3.3) is also known as retarted correlation func-
tion, due to the presence of the step function θ(τ) which ensures causality. To
distinguish the response of different observables to different perturbations, the two
operators appearing in the commutator of (3.3) will be reported as subscript in the
susceptibility.

Finite Temperature Formalism

At finite temperature, for t < t0, the system is assumed to be in the thermal
equilibrium with a reservoir, so that the eigenstates of the unperturbed Hamiltonian
are populated with probability

pn =
e−βEn

Z
, (3.5)

where β = 1/kBT , Z =
∑

n e
−βEn is the canonical partition function and En are the

eigenvalues of Ĥ◦. The expectation value of an observable Â is given by the thermal
average

〈Â〉th =
∑
n

pn 〈Ψ◦n, ÂΨ◦n〉 . (3.6)

When the external field fext(t) is turned on, the interaction Hamiltonian between
the bath and the system should participate in the time-evolution, leading to cou-
pled bath-system dynamics which is, in practice, unfeasible, either for the size of
the problem or for the ignorance of the interaction Hamiltonian. However, when
the typical frequencies of the external field are much higher than the inverse of
the thermal equilibration time, the unperturbed states can be considered to evolve
independently long enough to write

〈Â〉(t) =
∑
n

pn 〈Ψn(t), ÂΨn(t)〉 . (3.7)

where the populations pn have been kept frozen. Within this adiabatic assumption,
the retarded response function is found to be

χAB(τ) =
1

i~
θ(τ)

∑
n

pn
〈
Ψ◦n,

[
ÂH(τ), B̂H(0)

]
Ψ◦n
〉
. (3.8)

At zero-temperature, pn = 1 for the ground state and vanishes for the remaining
others, recovering Eq. (3.3).

3.1.1 Excited States and Energy Dissipation

The Fourier transform of (3.1) reads

δA(ω) = χ(ω) fext(ω) , (3.9)
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and describes the response of the system to a monochromatic perturbation in the
form of

Ĥω
ext(t) =

[
Â†fext(ω)e−iωt + Âf ∗ext(ω)eiωt

]
eηt . (3.10)

Making use of the completeness of the unperturbed eigenstates, the Fourier trans-
form of the susceptibility can be written as1

χAA†(ω) = lim
η→0+

∑
nm

(
pn − pm

)〈Ψ◦n, ÂΨ◦m〉〈Ψ◦m, Â†Ψ◦n〉
~ω − (En − Em) + iη

, (3.12)

and its imaginary part reads

ImχAA†(ω) = −π
~
∑
nm

pn

[
|〈Ψ◦n, ÂΨ◦m〉|2δ(ω − ωmn)− |〈Ψ◦n, Â†Ψ◦m〉|2δ(ω + ωmn)

]
,

(3.13)
with ωmn = (Em − En)/~ being the eigenmodes of the system. Eq. (3.13) contains
the density of excitations of the system, and is stricly linked to the power dissipation
W (ω) via (cf. with Eq. (2.9) of [66])

W (ω) = −2ω|fext(ω)|2 ImχAA†(ω) . (3.14)

The excitations act as absorption channels for the energy delivered by an external
field, but only when the frequency of the latter equals one of the eigenmodes of the
system. It can be further shown that

ImχAA†(ω) = −π
~

(1− e−β~ω)SAA†(ω) , (3.15)

where the dynamical structure factor SAA†(ω) is defined as the Fourier transform of
the auto-correlation function

SAA†(ω) =
1

2π

∫ +∞

−∞
dt eiωt〈ÂH(t)Â†〉th

= |〈Â〉th|2δ(ω) +
1

2π

∫ +∞

−∞
dt eiωt〈δÂH(t)δÂ†〉th , (3.16)

with δÂ = Â − 〈Â〉th. The last term in Eq. (3.16), the only one active for non-zero
frequencies, is the autocorrelation function of the fluctuations of the observable Â;
the energy absorbed by the system through its eigenmodes is therefore fed into the
fluctuations of the coupling variable. The link between W (ω) and SAA†(ω), realized
through ImχAA†(ω), goes by the name of fluctuation-dissipation theorem [66].

1Here we notice that in Eq. (3.10) an adiabatic switching-on has been introduced in order to
extend linear response to the case of perturbations that do not vanish for t→ −∞, such as periodic
ones. The switching-on time scale has to be much longer than the period of the perturbation,
i.e. ω >> η, so that the system can actually experience the periodic field for finite times. On the
other hand, the switching-on has to be faster than the thermal equilibration time γ−1, not to break
the adiabatic approximation, therefore η > γ. We also remind that∫ +∞

−∞
dt θ(t)f(t) = lim

η→0+

∫ +∞

0

dt ei(ω−iη)tf(t) . (3.11)

can be used to obtain (3.12) directy from (3.8). In this sense, the eηt factor and the step function
play the same role in the Fourier transform.
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Multiple Fields

If the system is subject to multiple periodic fields of the same frequency, coupling
with the operators Aα (such, e.g., the three component of a magnetic field coupled
with the three components of the spin operator), the perturbing Hamiltonian reads

Ĥω
ext(t) =

∑
α

[
Â†αfα(ω)e−iωt + Âαf ∗α(ω)eiωt

]
eηt . (3.17)

The average power absorption can be found to be equal to [67, 28]

W (ω) = −2ω
∑
αβ

f ∗α(ω)Lαβ(ω) fβ(ω) , (3.18)

where the loss tensor Lαβ(ω) is nothing but the anti-hermitian part of the Fourier
transform of the susceptibility

Lαβ(ω) =
1

2i

[
χAαA†β

(ω)− χ∗AβA†α(ω)
]
. (3.19)

The fluctuation-dissipation theorem generalizes to

Lαβ(ω) = −π
~
(
1− e−β~ω

)
SAαA†β

(ω) . (3.20)

In the case of one external field only, the anti-hermitian part coincides with the
imaginary part, recovering the previous results.

3.1.2 External Fields and Extended Systems

When the typical spatial modulations of the external field fext(r, t) are comparable
with the size of the physical system, the inhomogeneity of fext(r, t) (and, in case, of
the system) has to be accounted for. This is always the case for extended systems.

The perturbing Hamiltonian for multiple, inhomogeneous fields, reads

Ĥext(t) =
∑
α

∫
R3

d3r Âα(r) fα(r, t) ; (3.21)

the position-dependent susceptibilities are defined as

χAαAβ(r, r′, τ) =
1

i~
θ(τ)

∑
n

pn
〈
Ψ◦n,

[
ÂH
α (r, τ), Âβ(r′)

]
Ψ◦n
〉
, (3.22)

they relate the response of an observable in r′ at the time τ to a perturbation
intervened in r at time τ = 0.

If the system were homogeneous, one would have χAαAβ(r − r′, τ), and conse-
quently

δAα(Q, ω) =
∑
β

χAαA†β
(Q, ω) fβ(Q, ω) , (3.23)
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so that the response to different spatial periodicities would be completely decoupled.
In the case of periodic systems, translational invariance is only discrete and one
obtains

δAα(q + G, ω) =
∑
β

BZ∑
G′

χAαA†β
(q + G,q + G′, ω) fβ(q + G′, ω) , (3.24)

where q ∈ BZ. Therefore, in a periodic system all the wavevectors connected by a G-
vector contribute to the same excitation. The susceptibility appearing in Eq. (3.24)
is often denoted as χGG′

AαA†β
(q, ω).

3.2 Linear Response in TDDFT and TD-SDFT

Let a system described via the DFT-densities n◦(r) and m◦(r) be subjet to the
time-dependent perturbation

Ĥext =

∫
R3

[
N̂ (r) vext(r, t)− M̂(r) · bext(r, t)

]
. (3.25)

As a result, the densities acquire some dynamics, that is considered in the Fourier
space:

n(r, ω) = n◦(r) + n′(r, ω)

mα(r, ω) = m◦α(r) +m′α(r, ω) . (3.26)

The Hartree and xc-potentials will change accordingly, and can be expanded at the
first order in response densities:

vHxc(r, ω) = v◦Hxc(r) + v′Hxc(r, ω)

bαxc(r, ω) = b◦αxc (r) + b′αxc(r, ω) , (3.27)

with

v′Hxc(r, ω) =

∫
R3

d3r′KHxc(r, r
′, ω)n′(r′, ω) +

∫
R3

d3r′ Jαxc(r, r
′, ω)m′α(r′, ω)

b′αxc(r, ω) =

∫
R3

d3r′ Jαxc(r, r
′, ω)n′(r′, ω) +

∫
R3

d3r′ Iαβxc (r, r′, ω)m′β(r′, ω) , (3.28)

where a summation on repeated indexes is intended. One can compactly write

δvHxc(r, ω) =

∫
R3

d3r′fHxc(r, r
′, ω)δρ(r′, ω) , (3.29)

where δv>Hxc =
(
v′Hxc, b

′x
xc, b

′y
xc, b

′z
xc

)
, δv>ext =

(
vext, b

x
ext, b

y
ext, b

z
ext

)
, δρ> =

(
n′,m′x,m

′
y,m

′
z

)
,

and

fHxc =


KHxc Jxxc Jyxc Jzxc

Jxxc Ixxxc Ixyxc Ixzxc

Jyxc Iyxxc Iyyxc Iyzxc

Jzxc Izxxc Izyxc Izzxc

 . (3.30)
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The 4 × 4 susceptibility of the non-interacting Kohn-Sham system χ0(ω) and the
interacting system χ(ω) are defined through

δρ(r, ω) =

∫
R3

d3r′χ0(r, r′, ω)
[
δvHxc(r

′, ω) + δvext(r
′, ω)

]
(3.31)

δρ(r, ω) =

∫
R3

d3r′χ(r, r′, ω)δvext(r
′, ω) , (3.32)

where χ0(ω) can be written in terms of the unperturbed Kohn-Sham orbitals as

χ0
αβ(r, r′, ω) = lim

η→0+

∑
ij

(ϑ̃F,i − ϑ̃F,j)

[
ψ◦†i (r)σαψ◦j (r)

] [
ψ◦†j (r′)σβψ◦i (r

′)
]

~ω − (εj − εi) + iη
. (3.33)

Notice that α = ◦, x, y, z, where σ◦ denotes the 2 × 2 identiy in the spin space,
therefore the charge operator. By combining (3.29), (3.31) and (3.32), one obtains
the TDDFT Dyson equation

χ(ω) = χ0(ω) + χ0(ω) fHxc(ω)χ(ω) , (3.34)

whose solution is, by definition (3.1), the Fourier transform of the charge-spin sus-
ceptibility of the system, a 4× 4 tensor in the form of

χ(ω) =



χNN † χNM†x χNM†y χNM†z

χMxN † χMxM†x χMxM†y χMxM†z

χMyN † χMyM†x χMyM†y χMyM†z

χMzN † χMzM†x χMzM†y χMzM†z


. (3.35)

As seen in Ch. 1,the anti-hermitian component of (3.35) provides the density of
charge-charge, spin-spin and spin-charge excitations of the system. The formalism
of linear-response in TDDFT can be used to compute the susceptibility of any local
one-particle operator, given that their expectation values can be expressed in term of
n(r, t) and m(r, t). To mention but one example, the response of the dipole operator
d̂ = −e r̂ to a time-dependent, homogeneous electric field can be computed in order
to obtain the dynamical polarizability of finite systems [36].

3.2.1 The Adiabatic Kernel

In the TDDFT adiabatic approximation, the kernel fHxc becomes static and can be
expressed via the second derivatives of the Hartree and xc-energy functional

KHxc(r, r
′) =

δ2EHxc

δn(r)δn(r′)

∣∣∣∣
n=n◦
mα=m◦α

(3.36)

Jαxc(r, r
′) =

δ2Exc

δmα(r)δn(r′)

∣∣∣∣
n=n◦
mα=m◦α

(3.37)

Iαβxc (r, r′) =
δ2Exc

δmα(r)δmβ(r′)

∣∣∣∣
n=n◦
mα=m◦α

. (3.38)
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The lack of a frequency dependence means that fHxc is a real tensor, which, in turn,
has implications in the physics that the adiabatic approximation can describe. In
fact it can be seen from (3.34) that the imaginary part of χ0(ω), i.e. the independent-
particle continuum of transitions, can be renormalized but not shifted in the full χ(ω).
This leaves room for only two scenarios: in the first one a new peak appears in χ
at ω0 outside of the independent-particle continuum, after the resummation of the
Dyson equation: this has to be intended as a collective excitation of the system, for
which the adiabatic approximation predicts infinite lifetime, being a genuine pole
that satisfies 1− fHxcReχ0(ω) = 0. In the second scenario, the Dyson resummation
enhances Imχ0 around a certain frequency ω0, producing an excitation which stands
out of the continuum and is endowed with a finite lifetime. These are considered
as collective modes broadened by the continuum, i.e. well-defined excitations that
decay after a certain lifetime in other single-particle excitations of similar energy.

3.2.2 Computing the TDDFT Susceptibility

In order to solve the Dyson equation, the non-interacting Kohn-Sham response func-
tion has to be computed. A straightforward approach involves the summation over
the empty states in Eq. (3.33), which are virtually infinite in number. In practice,
only a finite amount is included up to a cutoff εc, which becomes an additional
convergence parameter. In extended systems, where empty states have to be in-
cluded for each k-point, this turns out to be a serious bottleneck and additional
approximations are required [68].

An alternative approach is to compute via the KKR method the spin-resolved
Green’s function of the Kohn-Sham Hamiltonian Gσσ′(r, r

′, ω) [67, 69], then obtain
χ0(r, r′, ω) as a frequency-convolution of two Green’s functions. The computation of
χ0(ω) still remains the bottleneck of the method, and has to be repeated for different
values of the frequency.

In order to avoid a direct solution of the Dyson equation, an equivalent approach
is to apply perturbation theory to the linearized time-dependent Kohn-Sham equa-
tions. This results in a set of self-consistent Shrödinger equations for the response
orbitals, named Sternheimer equations. This method is the time-dependent gen-
eralization of DFpT [70], and allows the computation of χ(ω) without the explicit
computation of empty states. The first TDDFT magnetic susceptibility has been
computed by Savrasov [38] with this approach which, however, still requires the
solution of a set of Sternheimer equations for each frequency ω.
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Non-Collinearity

If a collinear system is magnetized along the z-direction, the non-interacting sus-
ceptibility χ0(ω) reads

χ0(ω) =



χ0
NN † 0 0 χ0

NM†z

0 χ0

MxM†x
χ0

MxM†y
0

0 −χ0

MxM†y
χ0

MxM†x
0

−χ0

NM†z
0 0 χ0

MzM†z


, (3.39)

whereas the LSDA kernel becomes

fHxc =


KHxc 0 0 Jzxc

0 Ixxxc 0 0

0 0 Iyyxc 0

Jzxc 0 0 Izzxc

 . (3.40)

It follows that the transverse xy-sector is decoupled from the longitudinal charge-
spin sector, and a Dyson equation involving only the 2× 2 xy-blocks in Eqs. (3.39)
and (3.40) can be solved. All the methods mentioned in the last section have been
implemented within this collinear-magnetization framework, and cannot aim at de-
scribing the non-collinear physics mentioned in Ch. 1. When SOC is accounted for in
the ground-state problem, the non-interacting susceptibility χ0(ω) is not decoupled
anymore in a two-block struture such as in (3.39), and the whole 4 × 4 matricial
Dyson equation has to be solved.

To the best of our knowledge, only a KKR-based code at present features the pos-
sibility of computing magnetic susceptibilities for non-collinear systems [9], though
only on the Atomic-Sphere Approximation (ASA) level.2 In the following chapter,
we present a method to compute the spin-charge susceptibility tensor (3.35) in a
fully non-collinear framework, which does not require the explicit computation of
empty states and whose bottleneck is independent of the frequency ω.

3.3 Other Methods

Here we briefly review other methods used to compute ab initio or partially ab initio
magnon dispersions.

Adiabatic Spin Dynamics

In the Adiabatic Spin Dynamics Approximation, the charge and the magnetic-
moment evolutions are decoupled; the spin dynamics is studied by mapping the

2In the ASA approximation the direction of the spin-density is taken to be collinear inside
spherical regions centered on the atoms. SOC is a source of intra-atomic non-collinearity and the
reliability of this approximation strongly depends on the system [9].
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many-body system onto a Heisenberg Hamiltonian

Ĥ = −1

2

∑
RR′

JRR′ ŝR · ŝR′ , (3.41)

which is let evolve under a transverse, time-dependent, magnetic field [71]. The
exchange parameters JRR′ are usually derived from ab-initio ground-state calcula-
tions. This approximation turns out to be appropriate for the long wave-length part
of the acoustic modes, in which the spin dynamics is some orders of magnitude slower
than the ones of the faster Stoner excitations. An important drawback is that only
a finite number of infinite-lifetime modes is given by the Heisenberg Hamiltonian,
therefore no spin-wave damping can be studied within this approximation.

Empirical Tight Binding

In the Empirical Tight Binding (ETB) scheme, a model Hamiltonian of multi-band
Hubbard type is built

Ĥ =
∑
RR′

∑
ijσ

tijRR′ c
†
RiσcR′jσ +

1

2

∑
R

∑
ijkl

∑
σσ′

U ij,kl
R c†Riσc

†
Rjσ′cRlσ′cRkσ (3.42)

where R, R′ label the lattice sites, ijkl the orbitals and σσ′ the spin. The parameters
t and U are usually obtained by fitting ab-initio ground-state calculations, and only
a subspace of the orbitals enters the effective Hamiltonian, e.g. the d-orbitals for
ordinary ferromagnetism. The equation of motion for the spin operator is then
solved in the RPA approximation, yielding a Dyson equation whose solution is the
dynamical susceptibility. ETB is the least expensive approach that features a true
dynamical susceptibility, and historically has always been the first tool used to model
and understand new systems of interest. As an example, the spin-wave damping due
to SOC in ultrathin ferromagnets has been first studied with the ETB approach [6],
with the appropriate inclusion of a spin-orbit term in (3.42). We notice that the
Dyson equation in the ETB approach has a static kernel, linked to the U -parameters
appearing in the Hamiltonian.

Many-Body Pertubation Theory

The Bethe-Salpeter Equation (BSE) is a set of self-consistent equations for the 2-
particle Green’s function, whose partial traces can produce all the correlators of
one- and two-body operators. A formulation of the BSE in terms of spin-resolved
Green’s functions has been applied to collinear systems [72]; the self-consistency
over the 1-particle Green’s function is neglected and the screening W (r, r′, ω) is first
calculated solving the Dyson equation

W (ω) = v + v χ0(ω)W (ω) , (3.43)

and then fed into the BSE for the 2-particle Green’s function. The starting χ0 has
always been chosen as the Kohn-Sham one, represented in some localized basis set.
In spite of the heavy formalism, this formulation of the BSE equations is equivalent
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to a Sternheimer formulation of TDDFT with a non-local, frequency-dependent
response potential [73]. To the best of our knowledge, so far only calculations on
BCC-Fe and FCC-Ni have been performed by using static, non-local screenings
W (r, r′) and a DFT χ0(ω). In these cases the main discrepancies with experiments
have been attributed to the deficiencies of the starting χ0, and the non-locality of
the response potential has been argued to act as a small correction to the adiabatic
TDDFT results [68].



CHAPTER

FOUR

LIOUVILLE-LANCZOS APPROACH TO MAGNETIC

EXCITATIONS

In this chapter we present a method to compute magnetic excitations in a fully
non-collinear framework, without explicit reference to the empty states. The chap-
ter is organized as follows: in Sec. 4.1 we introduce the general framework of the
method. In Sec. 4.2 we review the Liouville-Lanczos (LL) formalism in the cases
of non-magnetic finite systems [74, 75], and non-magnetic, non-metallic, extended
systems [37, 76, 77]; in Sec. 4.3, we present the generalization of the LL approch to
finite magnetic systems and extended magnetic systems; this is the central part of
the chapter. Finally, in Sec. 4.4, we discuss the usage of the Lanczos algorithm in
our approach.

4.1 Linear Response and Density Matrix

The expectation values of a local, one-particle operator Â can be computed in terms
of the spin-resolved one-particle density matrix ρσσ′(r, t)

A(t) = Tr
[
Â ρ̂(t)

]
, (4.1)

where the trace is meant over one-particle spin and space coordinates. In. (4.1) we
have defined one-particle operators as

Â =
N∑
i=1

Âi , (4.2)

with Âi acting on the spin and space degrees of freedom of the i-th electron.1 Ex-
amples of operators as such are the charge- and magnetization densities N̂ (r) and
M̂(r) defined in the previous chapters.

1When there is only one set of single-particle degrees of freedom, the subscript i will be dropped,
since no ambiguity arises. This is the case, e.g., of Â in Eq. (4.1)

41
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Link with the Reponse Functions

Let a system be in equilibrium, described by the one-particle density matrix ρ̂◦, and
subject to a time dependent perturbation due to a local field fext(t). The first-order
expansion of the resulting density matrix

ρ̂(t) = ρ̂◦ + ρ̂′(t) +O
(
f 2

ext

)
, (4.3)

is immediately related to the susceptibilities of the system. In fact, by substitut-
ing (4.3) into (4.1) and Fourier-transforming in time, one obtains

δA(ω) = Tr
[
Â ˆ̃ρ′(ω)

]
= χAB(ω) fext(ω) , (4.4)

where B̂ =
∑N

i=1 B̂i is the one-particle operator coupling with the field fext(t) in

the perturbing Hamiltonian. The knowledge of the response density matrix ˆ̃ρ′(ω)
is therefore enough to compute the response functions of any one-particle, local
operator Â.

Single-Particle Framework

In a single-particle theory, the time-dependent density matrix can be written in
terms of the one-particle wave functions2

ρ̂(t) =
occ.∑
i

ψi(t)ψ
†
i (t) , (4.5)

so that the response density matrix reads

ρ̂′(t) =
occ.∑
i

[
ψ′i(t)ψ

◦†
i + ψ◦i ψ

′†
i (t)

]
. (4.6)

The ψ′i(t) are defined as

e
i
~ εit ψi(t) = ψ◦i + ψ′i(t) +O

(
f 2

ext

)
(4.7)

as the first-order correction to the unperturbed ψ◦i , and can be computed via time-
dependent perturbation theory.

Self-Consistency

In a self-consistent framework the unperturbed system is described by the orbitals
ψ◦i , solution of

ĥ◦ψ◦i = εi ψ
◦
i , ĥ◦ =

p̂2

2m
+ v̂◦eff , (4.8)

with v̂◦eff depending on the ψ◦i . In DFT, the last equations correspond to Eq. (2.17)
in the spin-unpolarized case, to Eq. (2.40) in the case of collinear magnetism, and to

2The † symbol has to be inteded as complex conjugation and transposition over the spin indexes,
in the case of spinorial ψi.
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Eq. (2.30) in the case of non-collinear magnetism. The time-evolution due to fext(t)
is instead described by

i~
∂ψi(t)

∂t
= ĥ(t)ψi(t) , ĥ(t) =

p̂2

2m
+ v̂eff(t) + v̂ext(t) , (4.9)

with v̂eff(t) depending on the ψi(t). Eqs. (4.5)–(4.7) still apply and the ψ′i(t) can be
computed via perturbation theory, with the difference that O (fext)-terms arise also
from the linearization of v̂eff(t), i.e.

v̂eff(t) = v̂◦eff + v̂′eff(t) +O
(
f 2

ext

)
. (4.10)

Perturbation theory has then to be applied considering

v̂′(t) ≡ v̂′eff(t) + v̂ext(t) (4.11)

as the time-dependent perturbation.

Summary

A one-to-one relation between the susceptibilities and the response orbitals ψ′i(t) has
been established through the linearized density matrix. In the following, we shall
write a set of linear equations for the Fourier transform of the response orbitals
ψ̃′i(ω), which determine ˆ̃ρ′(ω) via3

ˆ̃ρ′(ω) =
occ.∑
i

[
ψ̃′i(ω)ψ◦†i + ψ◦i ψ̃

′†
i (−ω)

]
. (4.12)

We shall then relate the solution of the linear system to the susceptibility χAB(ω).
The linear equations turn out to be considerably different when magnetic systems are
considered, therefore we shall first review the non-magnetic case, before we develop
our method in detail.

4.2 The LL Approach to Non-Magnetic Systems

4.2.1 Non-Magnetic Finite Systems

We review the formalism of the Liouville-Lanczos approach in the case of non-
magnetic, finite systems. Only a set of real orbitals is necessary, since no ther-
modynamic limit is required and Time-Reversal Symmetry (TRS) is assumed to
hold.

3Note that ψ̃′†i (−ω) is the Fourier transform of ψ′i(t) computed at −ω, then hermitian conju-
gated.
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Linearized Density Matrix and Empty States

We know by standard time-dependent perturbation theory that the Fourier trans-
form of ψ′i(t) reads

ψ̃′i(ω) = lim
η→0+

∑
j

ṽ′ji(ω)

~ω − (εj − εi) + iη
ψ◦j , (4.13)

where

ṽ′ji(ω) =
1

2π

∫ +∞

−∞
dt eiωt

〈
ψ◦j , v̂

′(t)ψ◦i
〉
. (4.14)

Substituting (4.13) into (4.12) we obtain

ˆ̃ρ′(ω) = lim
η→0+

occ.∑
i

∑
j

[
ṽ′ji(ω)

~ω − (εj − εi) + iη
ψ◦jψ

◦∗
i −

ṽ′∗ji(−ω)

~ω + (εj − εi) + iη
ψ◦iψ

◦∗
j

]
.

(4.15)

Given that the potential v̂′(t) = v̂′Hxc(t) + v̂ext(t) is hermitian,4 one has ṽ′∗ji(−ω) =

ṽ′ij(ω). By writing
∑

j =
∑occ.

j +
∑empty

j , one can see from (4.15) that the terms
where ψ◦j is an occupied orbital identically cancel, thus we can rewrite

ˆ̃ρ′(ω) =
occ.∑
i

[(
P̂Cψ̃

′
i(ω)

)
ψ◦∗i + ψ◦i

(
P̂Cψ̃

′
i(−ω)

)∗]
, (4.16)

where the projector over the empty-state manifold has been introduced

P̂C = 1−
occ.∑
i

ψ◦i ψ
◦∗
i . (4.17)

We conclude that, in order to compute any response property, only the projection of
the response orbitals ψ̃′i(ω) over the unperturbed empy-state manifold are required.

Use of Time-Reversal Symmetry

In non-magnetic systems, the Kohn-Sham Hamiltonian commutes with the time-
reversal operator, and in the case of scalar wavefunctions one has

ψ◦∗i = T̂ψ◦i = ψ◦i ∈ R . (4.18)

Eq. (4.16) can therefore be rewritten as

ˆ̃ρ′(ω) =
occ.∑
i

ψ◦i

[
P̂C ψ̃

′
i(ω) + P̂C ψ̃

′∗
i (−ω)

]
. (4.19)

4The linearized Hxc-potential v̂′Hxc(t) is hermitian, given the symmetry of the kernel K(r, r′)
and the hermiticity of ρ̂′(t).
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Linearized Time-Dependent Kohn-Sham Equations

By virtue of (4.16), we look for the equations whose solutions are

xi(ω) ≡ P̂Cψ̃
′
i(ω) , yi(ω) ≡ P̂Cψ̃

′∗
i (−ω) (4.20)

In Eq. (4.13), the fraction is a complex number which weighs the unperturbed or-
bitals, hence one can see that by applying

[
~ω − (ĥ◦ − εi) + iη

]
to P̂Cψ̃

′
i(ω) and[

~ω + (ĥ◦ − εi) + iη
]

to P̂Cψ̃
′∗
i (−ω) the denominators cancel out, obtaining[

(ĥ◦ − εi)− (~ω + iη)
]
xi(ω) + P̂C ˆ̃v′Hxc

[
X, Y

]
(ω)ψ◦i = −P̂C ˆ̃vext(ω)ψ◦i[

(ĥ◦ − εi) + (~ω + iη)
]
yi(ω) + P̂C ˆ̃v′Hxc

[
X, Y

]
(ω)ψ◦i = −P̂C ˆ̃vext(ω)ψ◦i . (4.21)

In Eq. (4.21) we have defined the sets of orbitals,

X ≡
{
xi(ω)

}
Y ≡

{
yi(ω)

}
, (4.22)

called batches [74]; each set contains NV orbitals, with NV being the number of the
occupied unperturbed states. The linearized Hartree and xc-potential reads, in term
of the batches,5

ṽ′Hxc

[
X, Y

]
(r, ω) =

∫
R3

d3r KHxc(r, r
′)n′(r′, ω)

= 2

∫
R3

d3r KHxc(r, r
′)

occ.∑
i

ψ◦i

[
xi(ω) + yi(ω)

]
. (4.23)

The whole set of equations (4.21) can be recast in the more compact form by intro-
ducing the D and K superoperators,6 whose action over the batch space reads

DX(r) ≡
{

(ĥ◦ − εi)xi(r, ω)

}
(4.24)

KX(r) ≡
{

2
occ.∑
j

P̂C

∫
R3

d3r′ ψ◦i (r)KHxc(r, r
′)ψ◦j (r

′)xj(r
′, ω)

}
. (4.25)

We can then write (4.21) as(
D +K K
−K −D −K

)(
X
Y

)
− ~ω

(
X
Y

)
=

{−P̂C ˆ̃vext(ω)ψ◦i

}{
P̂C ˆ̃vext(ω)ψ◦i

}  . (4.26)

We conclude by noting that a rotation of the batches can be performed by defin-
ing [78]

Q =
1

2
(X + Y ) , P =

1

2
(X − Y ) , (4.27)

5The factor of 2 in Eq. (4.23) comes from the spin-degeneracy which enters the charge density.
6Superoperators are objects which map an operator into another one, such as a commutator

with a fixed operator. Why D and K are (representations of) superoperators will become clear in
the next section.
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so to obtain the even simpler form(
0 D

D + 2K 0

)(
Q
P

)
− ~ω

(
Q
P

)
=

(
0{

−P̂C ˆ̃vext(ω)ψ◦i

})
. (4.28)

The simplification due to the rotation (4.27), which will be referred to as Standard
Batch Rotation, is due to the TRS, which allows to write the response density as a
function of the Q only (cf. (4.19)).

Quantum Liouville Equation and Batch Representation

An alternative way to derive Eqs. (4.26) is to start from the time-evolution equation
for the density matrix

i~
∂ρ̂(t)

∂t
=
[
ĥ(t), ρ̂(t)

]
, (4.29)

known as the quantum Liouville equation. Linearizing ĥ(t) = ĥ◦ + v̂′(t) + O(f 2
ext)

and ρ̂(t) = ρ̂◦ + ρ̂′(t) + O(f 2
ext) like it was done in last section, we obtain, after

Fourier transforming,

L ˆ̃ρ′(ω) = ~ω ˆ̃ρ′(ω)−
[
ˆ̃vext(ω), ρ̂◦

]
, (4.30)

where the Liouvillian superoperator has been introduced

L ˆ̃ρ′(ω) ≡
[
ĥ◦, ˆ̃ρ′(ω)

]
+
[
ˆ̃v′Hxc(ω), ρ̂◦

]
. (4.31)

Note, by considering Eq. (4.30) with a vanishing external field, that the eigenvalues
of the Liouvillian are the excitation energies of the system.

Now we introduce a mapping between one-particle operators defined in (4.2) and
two batches of orbitals, which we shall call batch representation of an operator:

Â →

Ax
Ay

 =


{
axi

}
{
ayi

}
 , (4.32)

where

axi ≡ P̂C Â ψ
◦
i , ayi ≡

(
P̂C Â

†ψ◦i

)∗
. (4.33)

It can be easily shown that the batch representation of Eq. (4.30) is exactly Eq. (4.26):
In particular it is worth noting

ˆ̃ρ′(ω)
BR−−→

(
X
Y

)
(4.34)

L ˆ̃ρ′(ω)
BR−−→

(
D +K K
−K −D −K

)(
X
Y

)
. (4.35)



CHAPTER 4. LIOUVILLE-LANCZOS APPROACH TO MAGNETIC
EXCITATIONS 47

Response Functions

The external potential field couples with the one-particle operator B̂, so that

v̂ext(ω) = B̂† fext(ω) , (4.36)

and we can invert the Liouville equation obtaining

ˆ̃ρ′(ω) = (~ω − L)−1
[
B̂†, ρ̂◦

]
fext(ω) . (4.37)

Substituting (4.37) into (4.4) one obtains

χAB(ω) = Tr

[
Â (~ω − L)−1

[
B̂†, ρ̂◦

]]
. (4.38)

To make an example, if Â and B̂ are two components of the dipole operator, i.e.
Â = d̂α and B̂ = d̂β, then χAB(ω) ≡ ααβ(ω) willa be the dynamical polarizabiliy,
defined as the response function of the dipole operator to a homogeneous electric
field. We conclude by noting that the batch representation maps the trace into a
scalar product, defined as

Tr
[
Â, B̂

]
≡
〈
Â, B̂

〉
≡

occ.∑
i

[
〈axi , bxi 〉+ 〈ayi , byi 〉

]
, (4.39)

4.2.2 Non-Magnetic Extended Systems

The LL approach has been generalized to extended systems in [37, 76]. In the
following only insulating extended system will be treated, the discussion of metallic
systems is delayed to Sec. 4.3. The Kohn-Sham unperturbed system reads

ĥ◦ψ◦nk = εnk ψ
◦
nk (4.40)

and the Kohn-Sham orbitals are Bloch orbitals. It immediately follows

ˆ̃ρ′(ω) =
occ.∑
nk

[
ψ̃′nk(ω)ψ◦∗nk + ψ◦nk ψ̃

′∗
nk(−ω)

]
, (4.41)

where k ∈ BZ.

Response Density Matrix and Empty States

By using (4.13) with i→ nk we have

ˆ̃ρ′(ω) = lim
η→0+

occ.∑
nk

∑
n′k′

[
ṽ′n′k′,nk(ω)

~ω − (εn′k′ − εnk) + iη
ψ◦n′k′ψ

◦∗
nk

−
ṽ′nk,n′k′(ω)

~ω + (εn′k′ − εnk) + iη
ψ◦nkψ

◦∗
n′k′

]
, (4.42)
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where the hermiticity of v̂′(t), i.e. ṽ′∗n′k′,nk(−ω) = ṽ′nk,n′k′(ω) has been considered in
the second term. Likewise in the finite-system case, the terms in which nk and n′k′

are both occupied cancel out, and we can write

ˆ̃ρ′(ω) =
occ.∑
nk

[ (
P̂Cψ̃

′
nk(ω)

)
ψ◦∗nk + ψ◦nk

(
P̂Cψ̃

′
nk(−ω)

)∗ ]
, (4.43)

where

P̂C = 1−
occ.∑
n′k′

ψ◦n′k′ψ
◦∗
n′k′ . (4.44)

Perturbation at Finite Wave Vector

The crucial difference with respect to finite systems is the that for extended systems
one is interested in the response to specific single-wavelength perturbations

ˆ̄vext,Q(ω) = B̂†Q fext(Q, ω) , (4.45)

where B̂†Q bears a phase eiQ·r, and Q = q + G, with q ∈ BZ. It can be shown that〈
ψn′k′ , ˆ̄v

′
ext,Q(ω)ψ◦nk

〉
= δk′,k+q

〈
ψn′k+q, ˆ̄v

′
ext,Q(ω)ψ◦nk

〉
, (4.46)

which demonstrates that the response density can be characterized only by the
wave vector q ∈ BZ. Given that one can always decompose a function into Bloch
components, if we write7

ˆ̃v′Hxc(ω) =
BZ∑
q

ˆ̄v′Hxc,q(ω) , (4.48)

with ˆ̄v′Hxc,q(ω) being a Bloch function of wave vector q, we obtain from (4.42), (4.43),
and (4.46),

ˆ̃ρ′(ω) =
BZ∑
q

ˆ̄ρ′q(ω) , (4.49)

with

ˆ̄ρ′q(ω) =
occ.∑
nk

[ (
P̂Cψ̃

′
nk+q(ω)

)
ψ◦∗nk + ψ◦nk

(
P̂Cψ̃

′
nk−q(−ω)

)∗ ]
, (4.50)

and

P̂Cψ̃
′
nk+q(ω) =

unocc.∑
n′

〈
ψn′k+q, ˆ̄v

′
q(ω)ψ◦nk

〉
~ω − (εn′k+q − εnk) + iη

ψ◦n′k+q , (4.51)

where ˆ̄v′q(ω) = ˆ̄v′Hxc,q(ω) + ˆ̄v′ext,Q(ω).

7When dealing with potentials decomposed into Bloch functions, the following notation will be
used:

ṽ(r, ω) =

BZ∑
q

v̄q(r, ω) =

BZ∑
q

eiq·rṽq(r, ω) , (4.47)

where the ṽq(r, ω) denotes the periodic part. The same notation applies for the density matrix. We
prefer to work with the non-periodic quantities v̄q(r, ω) for a better readability, the final equations
in terms of the periodic quantities can be found in App. B.
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Use of Time-Reversal Symmetry

For Bloch Hamiltonians which commute with the time-reversal operator one has

T̂ψ◦n−k = ψ◦nk , εnk = εn−k . (4.52)

By exchanging k→ −k in the second term of (4.50) one obtains

ˆ̄ρ′q(ω) =
occ.∑
nk

[ (
P̂Cψ̃

′
nk+q(ω)

)
+
(
P̂Cψ̃

′
n−k−q(−ω)

)∗ ]
ψ◦∗nk . (4.53)

Note that (
P̂Cψ̃

′
n−k−q(−ω)

)∗
=

unocc.∑
n′

〈
ψn′k+q, ˆ̄v

′
q(ω)ψ◦nk

〉
~ω + (εn′k+q − εnk) + iη

ψ◦n′k+q (4.54)

is a Bloch orbital of wave vector k+q and that, thanks to TRS, only the knowledge
of the unperturbed orbitals at k + q is required.

Linearized Time-Dependent Kohn-Sham Equations

We seek solutions for

xnk+q(ω) ≡ P̂Cψ̃
′
nk+q(ω) , ynk+q(ω) ≡

(
P̂Cψ̃

′
n−k−q(−ω)

)∗
, (4.55)

so we apply
[
~ω−(ĥ◦−εnk)+iη

]
to xnk+q(ω) and

[
~ω+(ĥ◦−εnk)+iη

]
to ynk+q(ω),

obtaining[
(ĥ◦ − εnk)− (~ω + iη)

]
xnk+q(ω) + P̂C ˆ̄v′Hxc,q

[
X, Y

]
(ω)ψ◦nk = −P̂C ˆ̄vext,Q(ω)ψ◦nk[

(ĥ◦ − εnk) + (~ω + iη)
]
ynk+q(ω) + P̂C ˆ̄v′Hxc,q

[
X, Y

]
(ω)ψ◦nk = −P̂C ˆ̄vext,Q(ω)ψ◦nk .

(4.56)

As done for finite systems, the batches

Xq ≡
{
xnk+q(ω)

}
Yq ≡

{
ynk+q(ω)

}
, (4.57)

have been introduced, where each batch contain as many orbitals as the number
of occupied states considering all the k-points. This means that the dimension
of a batch increases if a finer BZ-sampling is considered. The linearized response
potential in the terms of the batch elements reads as

v̄′Hxc,q

[
X, Y

]
(r, ω) =

∫
R3

d3r KHxc(r, r
′) n̄′q(r′, ω)

= 2

∫
R3

d3r KHxc(r, r
′)

occ.∑
nk

ψ◦∗nk

[
xnk+q(ω) + ynk+q(ω)

]
. (4.58)

One can perform the same batch rotation as (4.27), and obtain the compact form(
0 D

D + 2K 0

)(
Qq

Pq

)
− ~ω

(
Qq

Pq

)
=

(
0{

−P̂C ˆ̄vext,Q(ω)ψ◦nk

})
. (4.59)
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where

DXq(r) ≡
{

(ĥ◦ − εnk)xnk+q(r, ω)

}
(4.60)

KXq(r) ≡
{

2
occ.∑
n′k′

P̂C

∫
R3

d3r′ ψ◦nk(r)KHxc(r, r
′)ψ◦∗n′k′(r

′)xn′k′+q(r′, ω)

}
. (4.61)

Batch Representation and Response Functions

The quantum-Liouville equation for a monochromatic perturbation of wave length
Q reads

L ˆ̄ρ′q(ω) = ~ω ˆ̄ρ′q(ω)−
[
ˆ̄vext,Q(ω), ρ̂◦

]
, (4.62)

with
L ˆ̄ρ′q(ω) ≡

[
ĥ◦, ˆ̄ρ′q(ω)

]
+
[
ˆ̄v′Hxc,q(ω), ρ̂◦

]
. (4.63)

The straightforward generalization of the batch representation (4.32) is found to
be

ÂQ →


{
axnk+Q

}
{
aynk+Q

}
 =


{
P̂C ÂQ ψ

◦
nk

}
{(

P̂C Â
†
Qψ
◦
n−k

)∗ }
 . (4.64)

One can check that Eqs. (4.56) are recovered once (4.64) is applied to (4.62), and,
following the same route as for finite systems one can conclude that

χAQB†Q
(ω) = Tr

{
ÂQ (~ω − L)−1

[
B̂†Q, ρ̂

◦
]}

, (4.65)

where 〈
ÂQ, B̂Q

〉
≡

occ.∑
nk

[
〈axnk+Q, b

x
nk+Q〉+ 〈aynk+Q, b

y
nk+Q〉

]
. (4.66)

As an example, if ÂQ = B̂Q = N̂ (Q), with N̂ (Q) being the Fourier transform

of the charge-density operator N̂ (r),

4.3 Liouville-Lanczos Approach Goes Magnetic

Here we present the generalization of the methodology exposed above to the case of
non-collinear magnetic systems. Two major complications arise: the unperturbed
Kohn-Sham equations

ĥ◦ψ◦i = εi ψ
◦
i , (4.67)

which have to be intended as spinorial equations now, are not time-reversal invariant
anymore, in fact

T̂ĥ◦ψ◦i = ĥ◦[−b]T̂ψ◦i = εi T̂ψ
◦
i , (4.68)
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i.e. the time-reversed wave function is eigenstate of the Hamiltonian with a reversed
magnetic field. The second complication is given by the metallic character of the
most ordinary solid-state magnetic systems, which forces us to use the smearing
techniques explained in Sec. 2.3.1. The LL approach to non-magnetic metallic sys-
tems has already been faced in [37], here we shall generalize it to magnetic systems.

4.3.1 The Linearized Density Matrix and Empty States

The unperturbed one-particle density-matrix of a metallic system reads8

ρ̂◦ =
∑
i

ϑ̃F,i ψ
◦
i ψ
◦†
i , (4.69)

where ϑ̃F,i ≡ ϑ̃((εF − εi)/σ) are the ground-state occupations. When the system
is evolved under an external perturbation, we consider the time-dependent density-
matrix

ρ̂(t) =
∑
i

ϑ̃F,i ψi(t)ψ
†
i (t) , (4.70)

i.e. we neglect the change in the occupations with respect to time, which corresponds
to the adiabatic approximation of linear response theory discussed in Sec. 3.1. This
approximation is justified when the inverse of the thermal relaxation time γ is much
smaller than the frequency of the perturbation. Typical thermal relaxation times
of the electrons in metals are of 10−9–10−10 s at T = 5 K, and tend to decrease
for lower temperatures [79]; this corresponds to γ ≈ 10−5–10−6 eV, which is safely
smaller than the typical magnetic excitations, in the order of 10−2–10−1 eV.

As done in the non-magnetic case, we define the time-dependent response or-
bitals via

e
i
~ εitψi(t) = ψ◦i + ψ′i(t) , (4.71)

that we compute at the first-order level of time-dependent perturbation theory.
Their Fourier transform reads

ψ̃′i(ω) = lim
η→0+

∑
j

ṽ′ji(ω)

~ω − (εj − εi) + iη
ψ◦j , (4.72)

with

ṽ′ji(ω) =
1

2π

∫ +∞

−∞
dt eiωt

〈
ψ◦j , v̂

′(t)ψ◦i
〉
. (4.73)

Substituting (4.71) into (4.70) and taking the Fourier transform to get

ˆ̃ρ(ω) = ρ̂◦ + ˆ̃ρ′(ω) +O(f 2
ext) , (4.74)

where

ˆ̃ρ′(ω) = lim
η→0+

∑
ij

ϑ̃F,i

[
ṽ′ji(ω)

~ω − (εj − εi) + iη
ψ◦jψ

◦†
i −

ṽ′ij(ω)

~ω + (εj − εi) + iη
ψ◦iψ

◦†
j

]
.

(4.75)

8Note that the Kohn-Sham wave functions are now spinors, therefore the hermitian conjugation
takes the place of the complex conjugation.
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The hermiticity of the perturbation has been taken into account as usual in the
second term of (4.75).

When dealing with fractional occupations, the demarcation between occupied
and empty states becomes blurred in a strip around the Fermi level, and a neat
separation in occupied-to-empty transitions is not possible anymore. To face this
problem, we pursue the idea of de Gironcoli [64] in the treatment of the occupation
factors without assuming time-reversal invariance for the ground-state system: first
we exchange i ↔ j in the second term of (4.75), then we introduce ϑi,j + ϑj,i = 1,
where ϑi,j = ϑ(εi−εj) is a non-smeared occupation function, and switch again i↔ j
in the second term, so to obtain

ˆ̃ρ′(ω) =
∑
i

[(
P̂C(i) ψ̃

′
i(ω)

)
ψ◦†i + ψ◦i

(
P̂C(i) ψ̃

′
i(−ω)

)†]
, (4.76)

where

P̂C(i) ψ̃
′
i(ω) ≡ lim

η→0+

∑
j

(
ϑ̃F,i − ϑ̃F,j

)
ϑj,i

ṽ′ji(ω)

~ω − (εj − εi) + iη
ψ◦j . (4.77)

Note that ψ̃′†i (−ω) is the hermitian conjugate of the Fourier transform of ψ̃′i(ω),
computed at −ω and that the operator

P̂C(i) =
[
ϑ̃F,i − P̂i

]
=

[
ϑ̃F,i −

∑
j

(
ϑ̃F,iϑi,j + ϑ̃F,jϑj,i

)
ψ◦jψ

◦†
j

]
(4.78)

is not a projector, i.e. P̂C(i)P̂C(i) 6= P̂C(i), as long as fractional occupations are used.
Before we proceed, we note that

δA(ω) ≡ Tr
[
Â ˆ̃ρ′(ω)

]
=
∑
i

[〈
ψ◦i , Â P̂C(i) ψ̃

′
i(ω)

〉
+
〈
P̂C(i) ψ̃

′
i(−ω), Âψ◦i

〉]
=
∑
i

[〈
Â†ψ◦i , P̂C(i) ψ̃

′
i(ω)

〉
+
〈
T̂Âψ◦i , T̂P̂C(i) ψ̃

′
i(−ω)

〉]
, (4.79)

where in second-to-last line we used the anti-unitarity of the time-reversal operator:

〈u, v〉 = 〈T̂u, T̂v〉∗ . (4.80)

The most natural choice for the unknowns of the linearized equations seems then

xi(ω) ≡ P̂C(i) ψ̃
′
i(ω) (4.81)

yi(ω) ≡ T̂P̂C(i) ψ̃
′
i(−ω) , (4.82)

so that we can express the trace as a standard scalar product

Tr
[
Â ˆ̃ρ′(ω)

]
=
∑
i

[〈
Â†ψ◦i , xi(ω)

〉
+
〈
T̂Âψ◦i , yi(ω)

〉]
. (4.83)
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4.3.2 The Linearized Response Equations

By applying [ĥ◦ − εi − (~ω + iη)] to xi(ω) and [ĥ◦[−b] − εi + (~ω + iη)] to yi(ω) one
obtains[

ĥ◦ − εi − (~ω + iη)
]
xi(ω) = −

∑
j

(
ϑ̃F,i − ϑ̃F,j

)
ϑj,i
〈
ψ◦j , ˆ̃v

′(ω)ψ◦i
〉
ψ◦j , (4.84)[

ĥ◦[−b] − εi + (~ω + iη)
]
yi(ω) = −

∑
j

(
ϑ̃F,i − ϑ̃F,j

)
ϑj,i
〈
ψ◦i , ˆ̃v

′(ω)ψ◦j
〉
T̂ψ◦j . (4.85)

We now make again use of the anti-unitarity of T̂ to rewrite the second equation[
ĥ◦ − εi − (~ω + iη)

]
xi(ω) = −

∑
j

(
ϑ̃F,i − ϑ̃F,j

)
ϑj,i
〈
ψ◦j , ˆ̃v

′(ω)ψ◦i
〉
ψ◦j , (4.86)[

ĥ◦[−b] − εi + (~ω + iη)
]
yi(ω) = −

∑
j

(
ϑ̃F,i − ϑ̃F,j

)
ϑj,i
〈
T̂ψ◦j , T̂ˆ̃v′†(ω)ψ◦i ,

〉
T̂ψ◦j

(4.87)

which allows to write[
ĥ◦ − εi − (~ω + iη)

]
xi(ω) = −P̂C(i) ˆ̃v′(ω)ψ◦i , (4.88)[

ĥ◦[−b] − εi + (~ω + iη)
]
yi(ω) = −Π̂C(i) T̂ˆ̃v′†(ω)ψ◦i . (4.89)

In Eq. (4.89) we have defined the operator

Π̂C(i) ≡
[
ϑ̃F,i − Π̂i

]
≡
[
ϑ̃F,i −

∑
j

(
ϑ̃F,i ϑi,j + ϑ̃F,j ϑj,i

)(
T̂ψ◦j

)(
T̂ψ◦j

)†]
, (4.90)

which is nothing but the P̂C(i) operator acting on the manifold of the time-reversed

orbitals. We notice here that a) both P̂C(i) and Π̂C(i) become true projectors when

the smearing width σ → 0, and b) Π̂C(i) spans the same manifold of P̂C(i) when the
time-reversal symmetry holds, and can be replaced by the latter.

The Response and External Potentials

The external and linearized effective potentials are hermitian in the time-domain,
hence

ˆ̃v′†(ω) = ˆ̃v′(−ω) . (4.91)

We first consider explicitly the linearized effective potential, since it contains new
terms with respect to the non-magnetic case

ṽ′eff(ω) = σ◦

(
δ2EHxc

δn δn
ñ′(ω) +

∑
α

δ2EHxc

δn δmα
m̃′α(ω)

)

+
∑
α

σα

(
δ2EHxc

δmα δn
ñ′(ω) +

∑
β

δ2EHxc

δmα δmβ
m̃′β(ω)

)
. (4.92)
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where the density- and magnetization-response

ñ′(r, ω) =
∑
i

[
ψ◦†i (r)xi(r, ω) +

(
T̂ψ◦i (r)

)†
yi(r, ω)

]
(4.93)

m̃′α(r, ω) = µB
∑
i

[
ψ◦†i (r)σα xi(r, ω)−

(
T̂ψ◦i (r)

)†
σα yi(r, ω)

]
(4.94)

are meant to be integrated with the kernels given by the second derivatives in
Eq. (4.92). If we focus on the spin structure of the potential we can write it as

ṽ′eff(ω) = σ◦ṽ′Hxc(ω)− µBσ · b̃′xc(ω) , (4.95)

The second derivatives are real, symmetric functions, whereas from (4.93) and (4.94)
it follows

ñ′∗(r,−ω) = ñ′(r, ω) , m̃′∗(r,−ω) = m̃′(r, ω) . (4.96)

Putting all together we find

T̂ˆ̃v′eff(−ω) = σ◦ṽ′Hxc(ω) + µBσ · b̃′xc(ω) ≡ ˆ̃v
′[−b]
eff (ω)T̂ . (4.97)

The same holds for the external potential, which reads

vext(t) = σ◦v′ext(t)− µBσ · b′ext(t) , (4.98)

with v′ext(t) and b′ext(t) being real fields.

The Final Form

The linearized time-dependent Kohn-Sham equations can eventually be written as[
ĥ◦ − εi − (~ω + iη)

]
xi(ω) + P̂C(i) ˆ̃v′eff [X, Y ](ω)ψ◦i = −P̂C(i) ˆ̃vext(ω)ψ◦i

(4.99)[
ĥ◦[−b] − εi + (~ω + iη)

]
yi(ω) + Π̂C(i) ˆ̃v

′[−b]
eff [X, Y ](ω) T̂ψ◦i = −Π̂C(i) ˆ̃v

[−b]
ext (ω) T̂ψ◦i .

(4.100)

We refrain from writing down the batch representation of the linearized equations
straight away, since, as it happened for the non-magnetic case, it would be a partic-
ular case of what we are going to present in the next section (namely the k = q = 0
one).

4.3.3 Extended Systems

We start from the response density matrix defined in Eqs. (4.76) and (4.77), in
exteded systems one has

ˆ̃ρ′(ω) =
BZ∑
nk

[(
P̂C(nk) ψ̃

′
nk(ω)

)
ψ◦†nk + ψ◦nk

(
P̂C(nk) ψ̃

′
nk(−ω)

)†]
, (4.101)
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and

P̂C(nk) ψ̃
′
nk(ω) ≡ lim

η→0+

∑
n′k′

(
ϑ̃F,nk − ϑ̃F,nk′

)
ϑn′k′,nk

ṽ′n′k′,nk(ω)

~ω − (εn′k′ − εnk) + iη
ψ◦n′k′ .

(4.102)

We consider an external perturbation in the form of

ˆ̄vext,Q(ω) =
∑
α

B̂α†
Q fαext(Q, ω) , (4.103)

where α labels operators of wave vector Q = q + G, with q ∈ BZ. In our case,
they will be the Fourier transform of the magnetization- and charge-density, and
Q = q + G. By performing a q-separation of the effective potential into Bloch
functions, by virtue of (4.46), one obtains one obtains

P̂C(nk) ψ̃
′
nk(ω) =

BZ∑
q

P̂C(nk) ψ̃
′
nk+q(ω) , (4.104)

where

P̂C(nk) ψ̃
′
nk+q(ω)≡ lim

η→0+

∑
n′

(
ϑ̃F,nk−ϑ̃F,nk+q

)
ϑn′k+q,nk

ṽ′n′k+q,nk(ω)

~ω−(εn′k+q−εnk)+iη
ψ◦n′k+q .

(4.105)

is a Bloch function of wave vector k + q. We also notice that

T̂P̂C(n−k) ψ̃
′
n−k(ω) =

BZ∑
q

T̂P̂C(n−k) ψ̃
′
n−k−q(−ω) , (4.106)

with T̂P̂C(n−k) ψ̃
′
n−k−q(−ω) being a Bloch function of wave vector k + q. We are

then lead to the choice of the unknows in the same spirit of (4.55), i.e.

xnk+q(ω) ≡ P̂C(nk) ψ̃
′
nk+q(ω)

ynk+q(ω) ≡ T̂P̂C(n−k) ψ̃
′
n−k−q(−ω) . (4.107)

Density- and Magnetization-Response

It can be shown by computing the trace of (4.101) with N̂ (r) and M̂(r) that

ñ′(r, ω) =
BZ∑
q

n̄′q(r, ω) , m̃′(r, ω) =
BZ∑
q

m̄′q(r, ω) , (4.108)

where a) n̄′q(r, ω) and m̄′q(r, ω) are Bloch functions of wave vector q and b) the
relations n̄′∗−q(r,−ω) = n̄′q(r, ω) and m̄′∗−q(r,−ω) = m̄′q(r, ω) hold. The charge- and
magnetization densities in terms of the x- and y-spinors read

n̄′q(r, ω) =
BZ∑
nk

[
ψ◦†nk(r)xnk+q(r, ω) +

(
T̂ψ◦n−k(r)

)†
ynk+q(r, ω)

]
(4.109)

m̄′αq (r, ω) = µB

BZ∑
nk

[
ψ◦†nk(r)σα xnk+q(r, ω)−

(
T̂ψ◦n−k(r)

)†
σα ynk+q(r, ω)

]
, (4.110)
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and the q-separation for the effective Kohn-Sham response potential reads

v̄′eff,q(ω) = σ◦

(
δ2EHxc

δn δn
n̄′q(ω) +

∑
α

δ2EHxc

δn δmα
m̄′αq (ω)

)

+
∑
α

σα

(
δ2EHxc

δmα δn
n̄′q(ω) +

∑
β

δ2EHxc

δmα δmβ
m̄′βq (ω)

)
. (4.111)

The Linearized Equations

By applying [ĥ◦ − εnk − (~ω + iη)] to xnk+q(ω) and [ĥ◦[−b] − εn−k + (~ω + iη)] to
ynk+q(ω) we obtain[

ĥ◦ − εnk − (~ω + iη)
]
xnk+q(ω)

+P̂C(nk) ˆ̄v′eff,q[X, Y ](ω)ψ◦nk = −P̂C(nk) ˆ̄vext,Q(ω)ψ◦nk (4.112)[
ĥ◦[−b] − εn−k + (~ω + iη)

]
ynk+q(ω)

+Π̂C(n−k) ˆ̄v
′[−b]
eff,q [X, Y ](ω) T̂ψ◦n−k = −Π̂C(n−k) ˆ̄v

[−b]
ext,Q(ω) T̂ψ◦n−k , (4.113)

where we have defined the batches

Xq ≡
{
xnk+q(ω)

}
, Yq ≡

{
ynk+q(ω)

}
. (4.114)

Also in this case, the whole problem can be recast in a compact block-matrix form[(
DX + PXKXX PXKXY

−PYKY X −
(
DY + PYKY Y

))− (~ω + iη)

](
Xq

Yq

)

=


{
−P̂C(nk) ˆ̄vext,Q(ω)ψ◦nk

}
{

Π̂C(n−k) ˆ̄v
[−b]
ext,Q(ω) T̂ψ◦n−k

}
 ,

(4.115)

where the Liouvillian superoperator reads

L =

(
DX + PXKXX PXKXY

−PYKY X −
(
DY + PYKY Y

)) , (4.116)
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and the action of each block is defines by

DXXq ≡
{[
ĥ◦ − εnk

]
xnk+q

}
(4.117)

DY Yq ≡
{[
ĥ◦[−b] − εn−k

]
ynk+q

}
(4.118)

KXXXq +KXY Yq ≡
{

ˆ̄v′eff,q [X, Y ] (ω)ψ◦nk
}

(4.119)

KY XXq +KY Y Yq ≡
{

ˆ̄v
′[−b]
eff,q [X, Y ] (ω) T̂ψ◦n−k

}
(4.120)

PXXq ≡
{
P̂C(nk) xnk+q

}
(4.121)

PY Yq ≡
{

Π̂C(n−k) ynk+q

}
. (4.122)

4.3.4 The Response Functions

By specializing (4.79) to the case of a Q-perturbation one can write

δAQ(ω) = Tr
[
ÂQ ˆ̄ρ′q(ω)

]
, (4.123)

=
k∈BZ∑
nk

[〈
Â†Qψ

◦
nk, xnk+q(ω)

〉
+
〈
T̂ÂQψ

◦
n−k, ynk+q(ω)

〉]
,

= 〈AQ, %q(ω)〉 (4.124)

where the second line defines the scalar product between the two batches

AQ =


{
Â†Qψ

◦
nk

}
{

T̂ÂQψ
◦
n−k

}
 , %q(ω) =


{
xnk+q(ω)

}
{
ynk+q(ω)

}
 . (4.125)

The second batch is solution of Eq (4.115), that we can rewrite as

%q(ω) =
(
~ω − L

)−1

BQ fext(Q, ω) , (4.126)

where

BQ =


{
P̂CB̂

†
Qψ
◦
nk

}
{
− Π̂CT̂B̂Qψ

◦
n−k

}
 , (4.127)

we conclude that

χAQB†Q
(ω) =

〈
AQ,

(
~ω − L

)−1

BQ

〉
. (4.128)

4.4 Solving with the Lanczos Algorithm

Once the problem has been stated into the form

g(ω) = 〈u, (ω − Â)−1v〉 , (4.129)
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it can be tackled with linear-algebra iterative methods, which come in handy when
one is interested only in some portion of the spectrum of large operators. The
Lanczos algorithm is particularly suitable to the case of static kernels (i.e. when Â
does not depend on ω, such as in ALDA), where the problem can be solved for all
the frequencies ω at once. In the following we briefly illustrate the reason why.

The Lanczos method for non-hermitian operators defines a biorthonormal basis
through the recursion relations

βi+1qi+1 = Â qi − αiqi − γiqi−1

γ∗i+1pi+1 = Â†pi − α∗i pi − β∗i pi−1 (4.130)

with
q1 = p1 = v , q0 = p0 = 0 , (4.131)

where the biorthogonality reads

〈pi, qj〉 = δij . (4.132)

The αi, βi and γi coefficients are computed on the fly through

αi = 〈pi, Â qi〉 (4.133)

βi+1 =

√〈(
Â†pi − α∗i pi − β∗i pi−1

)
,
(
Â qi − αiqi − γiqi−1

)
〉 (4.134)

γi+1 =

〈(
Â†pi − α∗i pi − β∗i pi−1

)
,
(
Â qi − αiqi − γiqi−1

)
〉

βi+1

. (4.135)

It can be shown that the operator Â acquires the tridiagonal form if represented in
the Lanczos basis 〈pi, Â qj〉 = TNij , where

TN =


α1 γ2 0 · · · 0

β2 α2 γ3 0
...

0 β3 α3
. . . 0

... 0
. . . . . . γN

0 · · · 0 βN αN

 . (4.136)

Notice that the dimension of the representation has the number of Lanczos itera-
tions N : the more iterations, the more accurate the representation of Â will be.
Furthermore: the lower the eigenvalue, the faster the convergence. This feature
makes Lanczos extremely appealing for linear-response computations, where the
lowest-lying excitations are seeked.

If we insert into Eq. (4.129) the completeness

1 ≈
N∑
i=1

qi p
†
i , (4.137)
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which is, of course, approximate as long as N is smaller than the dimension of the
operator Â, we obtain

g(ω) ≈
N∑
i=1

〈u, qi〉〈pi, (ω − Â)−1q1〉

≈
N∑
i=1

〈u, qi〉
[
(ω − TN)−1

]
i1
. (4.138)

Summing up, in order to compute a resolvent g(ω) with Lanczos we have to a) gen-
erate the Lanczos chain, storing at each step the αi, βi, γi and ζi = 〈u, qi〉∗, b) solve
the tridiagonal problem (ω − TN)χi = e1, where e>1 = (1, 0, 0 . . .), c) compute
g(ω) ≈ ∑N

i=1 ζ
∗
i χi. Step a) is by-far the most time-consuming, involving the appli-

cation of the operator 2N times. Steps b) and c) are particularly inexpensive, due
to the tridiagonal nature of the problem, which scales linearly with N . The strength
of Lanczos for frequency-independent kernels is precisely due to these reasons: the
numerical bottleneck is the tridiagonalization of the operator, which is done only
once, then the susceptibility can be computed for each ω at a negligible cost.

Conclusions

The formulation of the linearized time-dependent Kohn-Sham equations has been
carried out in the case of finite and extended systems without assuming time-
reversal symmetry, in a fully non-collinear framework and without explicit reference
to the empty states. With a particular choice in the unknowns of the equations,
namely (4.82) for finite systems and (4.107) for extended systems, we are able to
recast the whole TDDFT linear-response problem into a linear form in the batch
space, namely (4.115). This form is particularly suitable for the Lanczos algorithm,
since the tridiagonalization of the operator L can be performed, at a given wave
vector Q, once and for all the frequencies; however, nothing forbids to apply other
iterative methods such as the Davidson or the Conjugate Gradient algorithms. We
remark that the equations we have obtained in Sec. 4.3 chapter are already account-
ing for SOC if present in ĥ◦, due to the fact that relativistic NC pseudopotentials
commute with the time-reversal operator (see App. A).
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FIVE

IMPLEMENTATION AND BENCHMARKING

In this chapter we present the implementation and benchmarking of the method
developed in the last sections. In the first part the algorithm and the implemen-
tation in a Plane-Wave (PW) framework are discussed. In the second part, after
some numerical detail on the pseudopotential we have generated, we benchmark
the performances and accuracy of the method via the computation of the magnon
dispersion of Fe BCC.

5.1 Implementation

We have implemented the approach described in Ch. 4 in the TDDFPT-package
of the Quantum ESPRESSO suite of computer codes [80], which uses a PW
basis set with periodic boundary conditions on the simulation cell, together with
the pseudopotential approximation. In the next two sections, first we comment
on the general implementation strategy, then we go into some details of the PW-
implementation.

5.1.1 The Algorithm

The Lanczos recursion for non-hermitian operators is illustrated in Algorithm 1.
Two main operations need to be implemented: the application of the Liouvillian on
a given vector, and the scalar product.

The Linear Space

The Liouvillian operator acts on the space spanned by batches. A batch is a set of
NV wave functions, where NV is the number of the occupied Kohn-Sham orbitals. In
extended systems, it means Nk×Nb(k) orbitals, where Nk is the number of k-points
in the Brillouin Zone and Nb(k) is the number of occupied bands for each k-point.
If smearing is used, states are considered occupied up to εF + 3σ, where σ is the
broadening parameter.1 The size of these vectors can increase very rapidly, in this

1Notice that, when smearing is used, the size of the batches would in principle be infinite. In
practice, we are allowed to stop at Nb(k) since the batches are built in such a way as to have a

60
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Algorithm 1 Bi-orthogonalization Lanczos.

1: γ1q0 ← 0; β1p0 ← 0;

2: q1 ← v; p1 ← v;

3: for j = 1, Nits do

. Apply operator twice (bottleneck)

4: q̄ ← Lqj ; p̄← L†pj
. Compute and store β and γ

5: βj ←
√
|〈pj , qj〉|

6: γj ← γj/βj
. Rescale vectors

7: qj ← qj/βj ; pj ← pj/γ
∗
j

8: q̄ ← q̄/βj ; p̄← p̄/γ∗j
. Compute and store α and ζ

9: αj ← 〈pj , q̄〉
10: ζj ← 〈qj , u〉

. Build the full (non-normalized) vectors

11: qj+1 ← q̄ − αjqj − γjqj−1

12: pj+1 ← p̄− α∗jpj − βjpj−1

. Prepare for the next iteration

13: qj−1 ← qj ; pj−1 ← pj
14: qj ← qj+1; pj ← pj+1

15: end for

regard Lanczos seems the most suitable choice to solve the problem in such a base,
since it only needs the vectors at the previous two iterations, for a total of 6 vectors
in memory for the recursion (3 for the right subspace and 3 for the left one) plus the
Aq batch of Eq. (4.125) (the u vector in Alg. 1) needed to compute the ζ coefficients
at each step.

Initialization

The starting vector of v of Algorithm 1 is the batch BQ of Eq. (4.127), which depends
on the external perturbation; e.g., in the case of magnetic field along the y-direction,
B̂Q = m̂y(Q), i.e. the Fourier transform of the single-particle magnetization oper-
ator.2 The perturbation defines which column of the susceptibility matrix (3.35)
is computed: with one Lancozs chain, one has access to the entire column. The
rows are instead defined by the batch AQ of Eq. (4.125), which in Algorithm 1 is
represented by the u vector, needed to compute the ζj coefficients. Since the scalar

vanishing norm for εnk > εF + 3σ, due to the definition introduced by de-Gironcoli and explained
in Sec. 4.3.1.

2The many-body magnetization reads as

Mα(r) =

N∑
i=1

m̂α
i (r) , (5.1)

which can be compared with Eq. (4.2).
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product is quite inexpensive compared to the application of the Liouvillian, the ζj
for the charge and the three magnetic polarizations can be computed at each step,
without any appreciable lowering of the performance.

The Scalar Product

Given two batch-vectors

Aq =


{
axnk+q

}
{
aynk+q

}
 , Bq =


{
bxnk+q

}
{
bynk+q

}
 , (5.2)

where axnk+q are single-particle spinors, the scalar product on the batch space is
defined as

〈Aq, Bq〉 ≡
1

Nk

Nk∑
k

Nb(k)∑
n

[
〈axnk+q, b

x
nk+q〉1p + 〈aynk+q, b

y
nk+q〉1p

]
, (5.3)

where 〈· · · 〉1p denotes the scalar product in the single-particle Hilbert space.

Post-Processing

Every M iterations, where M is a user-defined parameter, the α, β, γ and ζ coef-
ficients are written to file. The inversion of the tri-diagonal problem for each value
of ω + iη is performed by a serial post-processing code with a completely negligible
effort with respect to the tridiagonalization.

The q-Decoupling and P̂ - and Π̂-operators

In order to perform a linear-response calculation, the knowledge of the unper-
turbed Kohn-Sham states is required. In general, when TRS does not hold in
the ground-state problem, the response of the unperturbed wave function ψ◦nk to
a q-perturbation contains a Bloch-component with wave vector k + q and another
one of wave vector k − q. This results in the nuisance of treating three different
Bloch states at a time, and even in the more cumbersome rebuilding all the non-
local pseudopotential terms with the two different values of q and −q. When TRS
holds, this problem is avoided by considering the response of a (−k)-state to a (−q)-
perturbation, (the response density is insentive to such a change, being integrated
over the whole BZ), which belongs to the same degenerate space of k + q vectors.
When TRS does not hold, this is not true anymore, but still we can consider the
response of a (−k)-state to a (−q)-perturbation and define the time-reversal of this
state as our variable. This latter state will not in general be degenerate with another
k + q state, but will surely be of wave vector k + q, so that only 2 different sets
of Bloch orbitals and one non-local q-term enter the problem. These considerations
are already included in the formulation given in Sec. 4.3.3, but have been explicitly
reported here, where appropriate.

The price we pay is in disk-storage, in fact the unperturbed wave functions at
−k − q are needed throughout the calculation. To understand this point we first
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consider the action of P̂C(nk) on a wave function of wave vector k′. It can be shown
that

P̂C(nk) ψk′(r) = eik
′·r P̂ k′

C(nk) uk′(r) , (5.4)

where unk(r) is the periodic part of the Bloch orbitals, and

P̂ k′

C(nk) ≡
[
ϑ̃F,nk −

∑
n′

(
ϑ̃F,nk ϑnk,n′k′ + ϑ̃F,n′k′ ϑn′k′,nk

)
u◦n′k′u

◦†
n′k′

]
. (5.5)

On the other hand, the newly-defined projector Π̂C(nk) has the similar property

Π̂C(nk) ψk′(r) = eik
′·r Π̂k′

C(nk) uk′(r) , (5.6)

where

Π̂k′

C(nk) ≡
[
ϑ̃F,nk −

∑
n′

(
ϑ̃F,nk ϑnk,n′−k′ + ϑ̃F,n′−k′ ϑn′−k′,nk

)(
T̂u◦n′−k′

)(
T̂u◦n′−k′

)†]
.

(5.7)
since P̂ k′

C(nk) and Π̂k′

C(n−k) are applied to wave functions of wave vector k+q, in order

to compute the action of the P̂ -operator we need the functions u◦nk+q, instead of

computing the action of the Π̂-operator the unperturbed u◦n−k−q are needed.

The Unperturbed Wave Functions

A customized k-point grid is built in such a way that the occupied wave functions

u◦nk T̂u◦nk

u◦nk+q T̂u◦nk+q

u◦nk−q T̂u◦nk−q

u◦n−k T̂u◦n−k (5.8)

u◦n−k+q T̂u◦n−k+q

u◦n−k−q T̂u◦n−k−q

are stored to disk in separate binary files with the above k-point order. Each block
of orbitals of type (5.8) allows to build the operators P̂ k′

C(nk) and Π̂k′

C(n−k) for two pairs

of Eq. (4.113).

5.1.2 Details of the Implementation in a PW Code

The periodic part of the wave function is expanded in PWs

ψnk(r) = eik·runk(r) , unk(r) =

|k+G|2≤εcut∑
G

cnk(G)
eiG·r√

Ω
, (5.9)
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where Ω = NkΩ0 is the crystal volume. εcut is the user-defined cutoff for the wave-
functions. A wave function is then described by the set of complex numbers cnk(G),3

and a label recalling the k-point. The scalar product when NC pseudopotentials are
used is given by

〈ψnk, ψn′k〉1p =

|k+G|2≤εcut∑
G

c∗nk(G)cn′k(G) , (5.10)

according to which wave functions are normalized to unity. A PW basis set greatly
benefits from Fast Fourier Transform (FFT), which allow to switch between the
G-space and the R-space at a O(N logN)-cost [80], with N the number of grid
points.

Applying the Liouvillian

The application of the Liouvillian operator to a batch is performed via Eqs. (B.9)–
(B.14). Given an input batch

q =


{
xnk+q

}
{
ynk+q

}
 , (5.11)

the output batch Lq is computed by

1. Building n′ and m′ via Eqs. (4.109) and (4.110). The multiplication with the
unperturbed orbitals is done in real space via FFT.

2. The response potentials v′eff and v
′[−b]
eff are computed from n′ and m′ (Eq. (4.111));

the Hartree term in G-space and the xc-one (local or semi-local) in R-space.

3. The terms v′effψ
◦
nk and v

′[−b]
eff T̂ψ◦n−k are computed in R-space.

4. The operators P̂C and Π̂C are applied in G-space.

5. The terms [ĥ◦−εnk]xnk+q and [ĥ◦[−b]−εn−k]ynk+q are computed and summed

to P̂Cv
′
effψ

◦
nk and Π̂Cv

′[−b]
eff T̂ψ◦n−k respectively. The former summation gives the

upper output batch, the latter the lower output batch.

We point out that the superoperators D, K and P appearing in Eq. (4.115) are
hermitian with the exception of KXY † = KY X , (see App. B), therefore to compute
L†p the same routines can be applied.

Parallelization

The code has inherited from the Quantum ESPRESSO environment a two-level
parallelization via the MPI interface. The first parallelization level is the FFT grid
(R&G parallelization), the second over the k-points (pool parallelization). In the
pool parallelization, care has been exerted in order not to break blocks (5.8) among
different pools.

3Notice that the number of coefficients cnk(G) depends on the cutoff and on the size of the
simulation cell. Moreover, at fixed εcut and simulation cell, the number of cnk(G) may slightly
vary from k-point to k-point, due to the different shift of the cutoff sphere of (5.9).
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5.2 Testing

5.2.1 The Norm-Conserving Pseudopotential

Iron is a 3d transition element with atomic number Z = 26 and an electronic
configuration [Ar] 3d6 4s2. At ambient pressure and temperature, it is found in
a ferromagnetic state with a BCC crystal symmetry (called Iron α-phase). Norm-
Conserving pseudopotentials for transition elements tend to be very hard due to the
nodeless, but localized, structure of the radial part of the 3d-orbitals. For this reason
there is poor availability of such pseudopotentials, and we resorted to generating one
ourselves via the atomic package of Quantum ESPRESSO.

Following [81], we have kept the 3d and 4s electrons in valence, with cutoff radii
rc = 2.2 bohr for l = 0, rc = 3.2 bohr for l = 1 and rc = 1.5 bohr for l = 2.
l = 0 has been chosen as the local channel for the Kleinman-Bylander form [46].
The Troullier-Martins [48] pseudization scheme has been used and non-linear core
corrections have been included. The LDA xc-functional with the Perdew-Zunger
(PZ) parametrization has been chosen. We plot the Kohn-Sham band structure
along the high-symmetry directions, as reported in Fig. 8. The two flat branches of
opposite spin, right below and right above the Fermi level, are responsible for the
Stoner transitions, which is expected to reach its maximum slightly above 2 eV. This
can be seen more clearly by plotting the DoS projected on atomic orbitals (pDoS),
as done in Fig. 9: the two flat bands are mainly of d-origin, and produce pronounced
peaks of opposite spin-flavour at a distance of ∼ 2.5 eV.
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Γ H P N Γ P H N
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Δ F D Σ Λ F G
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Minority

Figure 8. LSDA bands of Fe BCC along the high-symmetry directions, computed with
εcut = 90 Ry, Gaussian smearing σ = 0.005 Ry and a 36 × 36 × 36 Monkhorst-Pack grid
for the BZ sampling. On this energy scale, bands are indistinguishable from the ones
computed at lower BZ-sampling up to 16 × 16 × 16 grids. We notice right below and
right above the Fermi level very flat bands with opposite spin orientations, signal of a
high-density of Stoner (spin-flip) transitions.
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Figure 9. Projected Density of States (pDoS) of Fe BCC computed with the same
parameters as the one used for Fig. 8 regarding the self-consistent calculation, plus a
subsequent refinement via a non self-consistent calculation on a 60× 60× 60 Monkhorst-
Pack grid. The positive part represents the majority-spin pDos, the negative part the
minority ones. We notice the predominance of the d-character and the peaked structure
about 1 eV before and 1.5 eV after the Fermi level, which mark the presence of Stoner
excitations.

In order to choose the energy cutoff for the wave functions, the behaviour of the
ground-state magnetization as a function of a volumetric deformation is inspected,
as done in Ref. [82]. The results are reported in the left panel of Fig. 10: already
at εcut = 90 Ry the error in the magnetization per atom is within 1%, yielding a
value of 2.12µB (to be compared with the experimental value of 2.22µB at 0 K).
The equilibrium lattice constant results of a = 2.81 Å (vs. 2.86 Å from [82]) and
the bulk modulus of 222 GPa, which overestimates of about 30% the extrapolated
experimental value at 0 K of 170.35 GPa [83]; this is a well-known failure of the
LSDA approximation [82]. In all the production calculations a cutoff of 90 Ry and
a lattice constant of a = 2.81 Å will be used.

5.2.2 The Non-Interacting Response Function

In the development of a code, intermediate steps are necessary in order to check the
correctness of the work done. Dealing with magnetic systems introduces intricacies
which affect the code in a widespread way, most of them coming from the handling
of Bloch orbitals at different k-points and their time-reversed counterparts. The
implementation of this aspect has been validated by computing the magnetic sector
of the non-interacting Kohn-Sham susceptibility, i.e. χ0

αβ(q, ω) with α, β = x, y, z.
The χ0

αβ(q, ω) obtained with our LL method has been compared to the one given by
the explicit summation over all the possible transitions between occupied and empty
states of Eq. (3.33). Within the LL approach, χ0 is obtained by tri-diagonalizing
a Liouvillian whose K-terms, responsible for the mixing of the independent-particle
excitations, have been set to zero in Eq. (4.115), i.e.

L0 =

(
DX 0

0 −DY

)
, (5.12)
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Figure 10. Left panel : modulus of the ground-state magnetization as a function of the
volumetric deformation, i.e. a change in the lattice parameter a, for bulk Fe BCC. The
curve for εcut = 70 Ry stops prematurely since it predicts an equilibrium lattice constant
far too big than the better-converging cutoffs. The calculations have been performed
with a Gaussian smearing of σ = 0.005 Ry and a 36 × 36 × 36 Monkhorst-Pack grid for
the BZ sampling. At about 90 Ry, the curves start to converge in an oscillatory fashion,
with a width that lead us to estimate the error for the ground-state magnetization and
lattice parameter < 1%. Right panel : magnetization over volume at fixed εcut = 90 Ry
for different Monkhorst-Pack grids. We notice that the agreement is maximum around
equilibrium.

the direct approach consists instead in the evaluation of the Fourier transform of
Eq. (3.33), which in the case of extended systems reads

χ0
αβ(q, ω) =

∑
k∈BZ

εc∑
nn′

(ϑ̃F,nk − ϑ̃F,n′k+q)
〈u◦nk, σαu◦n′k+q〉〈u◦n′k+q, σ

βu◦nk〉
~ω − (εn′k+q − εnk) + iη

, (5.13)

where the summation over n and n′ is cut off at a certain energy value εc. In both
the computations a small, finite imaginary frequency η is kept, so to produce a
Lorentzian broadening of the Dirac deltas appearing in the imaginary part of the
susceptibility (cf. Eq. (3.13)). Notice that the LL solution is equivalent to (5.13)
with εc = εcut, the ground-state cutoff. In Figs. 11, 12 and 13 the convergence
with respect to the Lanczos iterations of the real and imaginary parts of χ0

αβ(ω)
is reported. It can be seen that the region around ∼ 2 eV, where the majority of
Stoner-transitions resides, converges slower than the low-energy region. This is a
well-known feature of the Lanczos algorithm, in which the lowest eigenvalues are the
first to converge.

In Fig. 14 the comparison between the converged Lanczos result and the direct
approach is reported. The two susceptibilities are one on top of each other, thus
validating our implementation. In both cases, the real and imaginary part respect
the correct symmetries. In fact, for a collinear system magnetized along the z-
direction, the following relation holds

χ0(ω) =


χ0
xx(ω) χ0

xy(ω) 0

−χ0
xy(ω) χ0

xx(ω) 0

0 0 χ0
zz(ω)

 . (5.14)
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Note that also the stability relations (see, e.g., Sec. 3.2.4 of [28])

Imχαβ(0) = 0 , Reχαβ(0) ≤ 0 (5.15)

are fulfilled.
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Figure 11. Real and imaginary part of χ0
αβ(q, ω) with q = (0.18, 0, 0)2π/a, at 15000

(red) and 40000 (blue) Lanczos iterations. A lorentzian broadening of η = 0.002 Ry has
been used. The ground-state calculation has been performed with εcut = 60 Ry, a smearing
parameter of 0.01 Ry and a 4× 4× 4 Monkhorst-Pack mesh.
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Figure 12. Real and imaginary part of χ0
αβ(q, ω) with q = (0.18, 0, 0)2π/a, at 25000

(red) and 40000 (blue) Lanczos iterations. A lorentzian broadening of η = 0.002 Ry has
been used. The ground-state calculation has been performed with εcut = 60 Ry, a smearing
parameter of 0.01 Ry and a 4× 4× 4 Monkhorst-Pack mesh.
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Figure 13. Real and imaginary part of χ0
αβ(q, ω) with q = (0.18, 0, 0)2π/a, at 35000

(red) and 40000 (blue) Lanczos iterations. A lorentzian broadening of η = 0.002 Ry has
been used. The ground-state calculation has been performed with εcut = 60 Ry, a smearing
parameter of 0.01 Ry and a 4× 4× 4 Monkhorst-Pack mesh.
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Figure 14. Comparison between the real and imaginary part of χ0
αβ(q, ω) at q =

(0.18, 0, 0)2π/a, computed with the LL approach (orange, 40000 iterations) and via the
expicit form (5.13) (green, εc = 3 Ry). A lorentzian broadening of η = 0.002 Ry has been
used in both cases. The ground-state calculation has been performed with εcut = 60 Ry, a
smearing parameter of 0.01 Ry and a 4× 4× 4 Monkhorst-Pack mesh.
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5.3 Magnetic Excitations in Fe BCC

The final validation of our method is the computation of the full susceptibility of
the collinear state of Fe BCC, within our non-collinear framework. We shall focus
on the quantity

S(q, ω) = −
∑
αβ

(
δαβ −

qαqβ

q2

)
Lαβ(q, ω) , (5.16)

where Lαβ(q, ω) is the anti-hermitian component of the magnetic susceptibility
χαβ(q, ω) (see Eq. (1.9)). As already seen in Chs. 1 and 3, S(q, ω) is proportional to
the scattering intensity of an INS experiment, and its peaks correspond to the mag-
netic excitations. The workflow reads as follows: a DFT, ground-state calculation
is performed with a certain wave-function cutoff εcut, smearing σ, and BZ-sampling.
Subsequently, a Lanczos recursion is performed as the one described in Algorithm. 1,
using the same εcut to describe the wavefunctions, the same occupations defined by
σ, and the same ∆k to build the grid with the k, k + q and k− q points. Results
are reported and analyzed in the following.

Convergence over the Lanczos Iterations

In Fig. 15 the convergence of the magnon peak with respect to the Lanczos iterations
is reported for two different values of q along the (100) direction. From 7000 to 15000
iterations may be necessary to reach a convergence of the position of the peak with
a meV precision. A discussion of these results and possible improvements will be
addressed in the conclusions.
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Figure 15. Convergence of the magnon peak in Fe BCC with respect to the Lanczos
iterations for q = (0.09, 0, 0)2π/a on the left, q = (0.18, 0, 0)2π/a on the right. A cutoff
of εcut = 90 Ry, a smearing parameter σ = 0.005 Ry and a Monkhorst-Pack mesh of
28 × 28 × 28 k-points have been used in the ground-state calculations. The Lorentzian
broadening of both the spectra is η = 10−4 Ry.

Behaviour of the Lanczos Coefficients

Information about the correct behaviour of the Lanczos chain can be inferred by
inspecting the α, β, γ and ζ coefficients defined in Sec. 4.4, reported in Fig. 16 for
the Lanczos chain corresponding to a magnetic perturbation along the y-direction.
As noted in previous applications of the Lanczos algorithm [84, 76], and the β
coefficients oscillate close to half of the energy cutoff, in this case 45 Ry; This is
related to the bandwidth of the Liouvillian operator, which extends from minus
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to plus the maximum excitation energy, roughly given by εcut. Moreover, the β
coefficients averaged over the even and odd iterations should differ in the order of
twice the gap of the system [84], in this case roughly twice the magnon energy, i.e.
∼ 10−1 eV, as shown in Fig. 17.

Figure 16. Lancozs coefficients relative to the calculation at q = (0.18, 0, 0)2π/a of
Fig. 15. Top panel : β and real part of γ, modulus of γ, and imaginary part of γ. Mid
panel : real, imaginary part and modulus of the α coefficients. Lower panel : modulus of
ζx, ζy and ζz.

Figure 17. Magnification of the β coefficients as a function of the even and odd iterations.

Contrary to previous implementations of the LL approach, the lack of time-
reversal invariance does not allow to conclude that α = 0. From Fig. (16) the α
coefficient appears negligible on the eV-energy scale for the first few thousands of
iterations, then its real part starts to oscillate around zero, with amplitudes roughly
on the magnon energy scale.

In the lower row of Fig. 16, the modulus of the ζx, ζy and ζz coefficients are
reported. ζz is correctly negligible, being responsible for the χzy(ω) component
of magnetic susceptibility, which has to vanish for a ferromagnet polarized along
the z direction described within LSDA. The ζx and ζy components, responsible for
the transverse response, show a very slow decaying with respect to the number of
iterations, if compared to other application of this algorithm [84, 76].
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Convergence over the BZ-Sampling

In Fig. 18 the convergence of the peak position with respect to the BZ-sampling
is reported for q = (0.18, 0, 0)2π/a and σ = 0.005 Ry. The position of the peak
oscillates of about 6 meV around a central value up to 283-meshes, then already
with a 323-mesh reaches a precision of about 2 meV.
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Figure 18. Left : convergence of the magnon peak for q = (0.18, 0, 0)2π/a with respect
to the BZ-sampling at smearing parameter σ = 0.005 Ry. All the individual peaks have
converged at 16000 Lanczos iterations. A Lorentzian broadening of η = 10−4 Ry has been
used. Right : Position of the peak reported as a function of number of k-points used for
the linear sampling of the BZ direction.

Dependence On Smearing

The investigation of the convergence of the magnon peak as a function of the BZ-
sampling is compared for two different values of the ground-state smearing in Fig. 19.
Though finer sampling for σ = 0.01 are missing, the overlapping region in Fig. 19
leads us to consider the position of the peak not significantly affected by the magni-
tude of the fictitious temperatures σ used. The overlapping region also tells us that
the position of the peak loosely depends on the degree of convergence of the ground-
state calculation at a fine level, and more on the fine sampling of the single-particle
spin-flips.
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Figure 19. Position of the magnon peak at q = (0.18, 0, 0)2π/a as a function of the
linear BZ-sampling, for two different ground-state smearings.
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5.3.1 The Stoner Continuum

In order to investigate the continuum of Stoner excitations, the spectrum in the right
panel of Fig. 15 is reported on a broader energy range in Fig. 20. The continuous
part of an excitation spectrum computed with the LL method is known to converge
the faster at the price of a lower resolution, i.e. the bigger the broadening η used to
solve Eqs. (4.113).
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Figure 20. Convergence of S(q, ω) for q = (0.18, 0, 0)2π/a with two different broadening
η. On the left, η = 0.005 Ry, on the right η = 0.01 Ry.

From Fig. 20 it can be seen that a broadening of about 0.01 Ry is necessary
in order to converge the Stoner continuum with the same number of iterations
needed to converge the spin-wave peak. This is not an issue as long as the two
regions (spin-wave and Stoner) are well separated; instead, when the spin-wave
energy becomes comparable to the one of the Stoner continuum, the value of η
represents the resolution at which one can estimate the linewidth due to the Landau
damping. If a finer resolution is desired, more Lanczos iterations are needed. This
is the case when larger-wavevector excitations are explored, as reported in Fig. 21.
In order to obtain a converged spectrum within 16000 iterations, the Lorentzian
broadening needed is too big to infer the linewidth of the excitation with sufficient
precision.
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Figure 21. Convergence of S(q, ω) for q = (0.32, 0, 0)2π/a with a Lorentzian broadening
of η = 0.005 Ry (left) η = 0.01 Ry (right). The shoulders on the right-hand side of
the spin-wave peak reveal the presence of Stoner excitations competing with the collective
excitation. A cutoff of εcut = 90 Ry, a smearing parameter σ = 0.005 Ry and a Monkhorst-
Pack mesh of 28× 28× 28 k-points have been used in the ground-state calculations.
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5.3.2 Dispersion along (100)

The results of the previous sections are summed up in Fig. 22, where experimental
dispersions have been reported as well for comparison. The spin stiffness D, defined
by the fit of the magnon dispersion for small q = |q| with the function

~ω(q) = Dq2(1− βq2) , (5.17)

has been computed taking into account the error bars as uncertainties. We obtain
D = 288 ± 21 meV Å2, in fair agreement with the experimental value of Dexp =
325 ± 10 meV Å2 [85]. Other LDA calculations reported spin stiffnesses ranging
from D = 252 meV Å2 [67] to D = 304 meV Å2 [81].
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Figure 22. Spin-wave dispersion along the (100) direction obtained with the LL approach
and compared with the experimental dispersion of pure Fe at 10 K [85], and Fe with a 12%
of Si at room temperature [86]. All the calculations have been performed with εcut = 90 Ry
and σ = 0.005 Ry. Points with the error bar were converged with a 28×28×28 Monkhorst-
Pack mesh, therefore the magnitude of the oscillations for such a coarse BZ-sampling,
discussed in Fig. 18 have been included to give an idea of the possible misplacement. The
remaining points were converged with 36× 36× 36 grid and the uncertainties of ∼ 1 meV
are not visible on this scale.

As seen in Sec. 5.3.1, already at energies of ∼ 150 meV spin-waves start to feel
the presence of the Stoner continuum and incur in Landau damping. Unfortunately,
the high number of Lanczos iterations needed to converge the continuous portion
of the spectrum forces us to use a Lorentzian broadening which does not allow
to determine the linewidth of the excitations with a precision higher than 0.1 eV.
In order to achive a greater accuracy, more iterations are needed with the present
implementation. A more promising alternative, as discussed in the conclusions,
is to use softer pseudopotentials, which would result in a faster convergence with
respect to the iterations and in the subsequent more precise evaluation of the Landau
damping.



CHAPTER

SIX

CONCLUSIONS AND PERSPECTIVES

A new computational approach to the study of magnetic excitations within TDDFT
has been proposed, implemented in a PW-pseudopotential framework and tested on
the magnon dispersion of Fe BCC. In our formulation the spin-charge susceptibil-
ity is computed as the resolvent of the Liouvillian superoperator by using Lanczos
recursion, and, on contrary to the direct Dyson-equation approach, avoiding any
explicit reference to the Kohn-Sham empty states. Our implementation allows to
treat non-collinear magnetic structures and to account for spin-orbit effects; to the
knowledge of the author, only another ab-initio code features the same possibilities
at the present date [9].

The application of our method to non-collinear magnetic systems can already be
carried out at the same computational effort as for BCC Iron, given that collinearity
has not been assumed anywhere during the benchmarking, and layered systems with
SOC can be studied with the present implementation. This represents one branch
of the ongoing work. At the same time, efforts in order to improve the convergency
speed have to be made, so that the high accuracy required by these systems can be
reached within a lower number of iterations.

Due to the nature of the iterative solution, the computational cost of each Lanc-
zos iteration is roughly 4–5 times the cost of one iteration in the ground-state cal-
culation, given that ĥ◦ is applied to the batches twice per Liouvillian application.
However, the number of iterations needed to reach convergency has resulted to be
considerably high, if compared to similar implementations of the Lanczos algorithm
for the computation of charge excitations; the reason why can be found in the very
low energies at which magnetic excitations occur. The Lanczos algorithm, like many
other iterative methods, is known to converge the slowlier, the higher the ratio be-
tween the highest and the lowest eigenvalue of the operator to tridiagonalize (striclty
related to the so-called condition number); in our case a high cutoff forced by the
NC-PP (highest eigenvalue) and a very low excitation energy (lowest eigenvalue)
concur to produce a condition number of the Liouvillian from 2 to 3 order of mag-
nitudes bigger than a typical calculation for charge excitations. The resulting slow
damping of the ζ coefficients impedes the application of extrapolation techniques,
which are particularly powerful in accelerating the convergence of the continuous
parts of the excitation spectrum [84, 76]. This, for the time being, is the major
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drawback of the Liouville-Lanczos approach to magnetic excitations, and causes
an extremely slow convergence of the structures in the continuous portion of the
spectrum.

For these reasons, the extension to US-PP is expected to have a big impact on
the convergency speed, given that cutoffs in the order of half the NC-PP ones are
typically used for transition elements in this scheme. Another direction to pursue
is the implementation of symmetry in the linear-response calculation, although we
expect a smaller gain with respect to US-PP, given the low number of equivalent
point in BZ of the low-symmetry magnetic system we aim to study. A third option
is to precondition the Lanczos algorithm by restricting the manifold in which the
response orbitals are defined. This would result in a lower condition number of the
Liouvillian and in a boost of Lanczos performances, as explained above. Ongoing
work is pointing in this direction.



APPENDIX

A

TIME-REVERSAL SYMMETRY

In analogy with classical mechanics, the time reversal operator T̂ has the properties

T̂ r̂ T̂−1 = r̂ , T̂ p̂ T̂−1 = −p̂ . (A.1)

The operator satisfying these properties is anti-linear and anti-unitary, i.e.

T̂ (a1ψ1 + a2ψ2) = a∗1 T̂ψ1 + a∗2 T̂ψ2 , (A.2)

〈T̂ψ1, T̂ψ2〉 = 〈ψ1, ψ2〉∗ ; (A.3)

both the properties are inherited from the complex-conjugation operator K̂, in fact
it can be shown that T̂ = ÛK̂, where Û is a unitary operator (see, e.g., Sec. 8.3
of [51]). From properties (A.1) it follows that the angular momentum changes sign
as well under T̂, and in analogy also the spin-operator is assumed to have the same
behaviour,

T̂ ˆ̀ T̂−1 = −ˆ̀ , T̂ ŝ T̂−1 = −ŝ . (A.4)

When the Hamiltonian commutes with the time-reversal operator, degeneracies may
be expected; in fact, in the case of a scalar, one-particle wave function the action of
the time-reversal operator coincides with the one of the complex conjugation one:

T̂ψ = K̂ψ ⇒ T̂ψ(r) = ψ∗(r) [scalar] (A.5)

If the one-particle Hamiltonian commutes with T̂, then the eigenstates can be chosen
to be real. In the case of a spin-1/2, one-particle wave function one has instead

T̂ψ(r) = (iσy)K̂ψ(r) , [spin-1/2] (A.6)

where the ‘i’-phase in front of the Pauli matrix is customary. The major difference
between the two cases is that T̂2 = −1 in the spin-1/2 case, whereas T̂2 = 1 in the
scalar one. The former scenario always ensures ψ and T̂ψ to be linearly independent,
so that when

[
ĥ, T̂

]
= 0 all the states will be at least two-fold degenerate (Kramer’s

degeneracy), the same cannot be told in the latter case.1

1 We remark that, for the spin-1/2 case, T̂2 = −1 holds only for states with an odd-number of
particles, whereas with an even number of articles T̂ = 1 also in the spin-1/2 case [51].
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Bloch States and TRS

The action of T̂ on the Bloch state ψnk produces another Bloch state of wave vector
−k, due to the complex-conjugation operation. Hence, when TRS holds, εnk = εn−k,
and the wave functions ψnk and T̂ψn−k are related by a unitary transformation acting
inside the degenerate subspace.

Spin-Orbit and TRS

Due to the properties (A.1) and (A.4), the spin-orbit term commutes with the time-
reversal operator. In particular, the whole pseudopotential term

vPP(r, θ, φ, θ′φ′) =
∑
lm

Ylm(θ, φ)
[
vion
l (r)σ◦ + vSO

l (r) ŝ · ˆ̀
]

Y∗lm(θ′, φ′) , (A.7)

satisfies
T̂ v̂PP T̂−1 = v̂PP . (A.8)
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B

THE MAGNETIC LIOUVILLIAN

In Sec. 4.3 the linearized time-dependent Kohn-Sham equations have been written
in terms of Bloch functions such as Ψ◦k(r), Ψ′k+q(r, ω), v̄′q(r, ω), ρ̄′q(r, ω), etc. Here
we report the same equations in terms of the periodic parts of these functions. The
two formulations are equivalent, however in a PW code only the latter is preferred,
since the periodic parts are expanded in the reciprocal-lattice G-vectors. We define
the periodic parts via

Ψ◦nk(r) = eik·r u◦nk(r) (B.1)

Ψ̃′nk+q(r, ω) = ei(k+q)·r ũ′nk+q(r, ω) (B.2)

v̄′q(r, ω) = eiq·r ṽ′q(r, ω) (B.3)

ρ̄′q(r, ω) = eiq·r ρ̃′q(r, ω) , (B.4)

where u◦nk(r+R) = u◦nk(r) and so on. The definition of ñ′q(r, ω) and m̃′q(r, ω) follows
from the one of ρ̃′q(r, ω).

The Linearized Response Equations

The linearized Kohn-Sham equations in the terms of (B.1)–(B.4) read[
ĥ◦k+q − εnk − (~ω + iη)

]
x̃nk+q(ω)

+P̂ k+q
C(nk)

ˆ̃v′eff,q[X̃, Ỹ ](ω)u◦nk = −P̂ k+q
C(nk)

ˆ̃vext,q(ω)u◦nk (B.5)[
ĥ
◦[−b]
k+q − εn−k + (~ω + iη)

]
ỹnk+q(ω)

+Π̂k+q
C(n−k)

ˆ̃v
′[−b]
eff,q [X̃, Ỹ ](ω) T̂u◦n−k = −Π̂k+q

C(n−k)
ˆ̃v

[−b]
ext,q(ω) T̂u◦n−k . (B.6)

where ĥ◦k+q is the Hamiltonian defined in (2.73) and the operators P̂ k+q
C(nk), Π̂k+q

C(n−k)

have been defined in Eqs. (5.5) and (5.7). The variables x̃nk+q(ω) and ỹnk+q(ω) are
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the periodic parts of (4.107) and read

x̃nk+q(ω) ≡ P̂ k+q
C(nk) ũ

′
nk+q(ω)

ỹnk+q(ω) ≡ T̂P̂−k−qC(n−k) ũ
′
n−k−q(−ω) . (B.7)

The Compact Form

Eqs. (B.6) can be written in the matrix form[(
DXq + PXq KXXq PXq KXYq

−PYq KY Xq −
(
DYq + PYq KY Yq

))− (~ω + iη)

](
X̃q

Ỹq

)

=


{
−P̂ k+q
C(nk)

ˆ̃vext,q(ω)u◦nk

}
{

Π̂k+q
C(n−k)

ˆ̃v
[−b]
ext,q(ω) T̂u◦n−k

}
 , (B.8)

in terms of the batches of the orbitals (B.7). The action of the superoperators is
given by

DXq X̃q ≡
{[
ĥ◦k+q − εnk

]
x̃nk+q

}
(B.9)

DYq Ỹq ≡
{[
ĥ
◦[−b]
k+q − εn−k

]
ỹnk+q

}
(B.10)

KXXq X̃q +KXYq Ỹq ≡
{

ˆ̃v′eff,q[X̃, Ỹ ](ω)u◦nk

}
(B.11)

KY Xq X̃q +KY Yq Ỹq ≡
{

ˆ̃v
′[−b]
eff,q [X̃, Ỹ ](ω) T̂u◦n−k

}
(B.12)

PXq X̃q ≡
{
P̂ k+q
C(nk) x̃nk+q

}
(B.13)

PYq Ỹq ≡
{

Π̂k+q
C(n−k) ỹnk+q

}
. (B.14)

The Response Potentials

The periodic parts of the response potentials read

ṽ′eff,q(r, ω)=σ◦

(∫
Ω0

d3r′KHxc,q(r, r′) ñ′q(r′, ω) +
∑
α

∫
Ω0

d3r′ Jαxc,q(r, r′) m̃′αq (r′, ω)

)

+
∑
α

σα

(∫
Ω0

d3r′ Jαxc,q(r, r′) ñ′q(r′, ω)+
∑
β

∫
Ω0

d3r′ Iαβxc,q(r, r′) m̃′βq (r′, ω)

)
,

ṽ
′[−b]
eff,q (r, ω)=σ◦

(∫
Ω0

d3r′KHxc,q(r, r′) ñ′q(r′, ω) +
∑
α

∫
Ω0

d3r′ Jαxc,q(r, r′) m̃′αq (r′, ω)

)

−
∑
α

σα

(∫
Ω0

d3r′ Jαxc,q(r, r′) ñ′q(r′, ω)+
∑
β

∫
Ω0

d3r′ Iαβxc,q(r, r′) m̃′βq (r′, ω)

)
.

(B.15)

where

KHxc,q(r, r′) = eiq·(r
′−r)KHxc(r, r

′) = eiq·(r
′−r) δEHxc

n(r′)n(r)
, (B.16)
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and similarly for JαHxc,q(r, r′) and IαβHxc,q(r, r′). The periodic parts of the density- and
magnetization-response are instead given by

ñ′q(r, ω) =
BZ∑
nk

[
u◦†nk(r)x̃nk+q(r, ω) +

(
T̂u◦n−k(r)

)†
ỹnk+q(r, ω)

]
(B.17)

m̃′αq (r, ω) = µB

BZ∑
nk

[
u◦†nk(r)σα x̃nk+q(r, ω)−

(
T̂u◦n−k(r)

)†
σα ỹnk+q(r, ω)

]
. (B.18)

Hermitian Conjugate of the Liouvillian

In order to compute the complex conjugate of the Liouvillian, necessary in Algo-
rithm 1, we first rewrite the self-consistent terms as

P̂ k+q
C(nk)

ˆ̃v′eff,q(ω)u◦nk(r) = P̂ k+q
C(nk)

∑
n′k′

K̂XX
nk,n′k′ x̃n′k′+q(r)

+ P̂ k+q
C(nk)

∑
n′k′

K̂XY
nk,n′k′ ỹn′k′+q(r) , (B.19)

Π̂k+q
C(nk)

ˆ̃v
′[−b]
eff,q (ω)T̂u◦n−k(r) = Π̂k+q

C(nk)

∑
n′k′

K̂Y X
nk,n′k′ x̃n′k′+q(r)

+ P̂ k+q
C(nk)

∑
n′k′

K̂Y Y
nk,n′k′ ỹn′k′+q(r) , (B.20)

where K̂XX
nk,n′k′ , K̂

XY
nk,n′k′ , K̂Y X

nk,n′k′ and K̂Y Y
nk,n′k′ are operators whose action is given

by

K̂XX
nk,n′k′ x̃n′k′+q(r) =

∫
Ω0

d3r′
[
unk(r)Kq(r, r′)u†n′k′(r

′) + unk(r)Jαq (r, r′)uα†n′k′(r
′)

+ uαnk(r)Jαq (r, r′)u†n′k′(r
′) + uαnk(r)Iαβq (r, r′)uβ†n′k′(r

′)

]
x̃n′k′+q(r′)

(B.21)

K̂XY
nk,n′k′ ỹn′k′+q(r) =

∫
Ω0

d3r′
[
unk(r)Kq(r, r′)ū†n′k′(r

′)− unk(r)Jαq (r, r′)ūα†n′k′(r
′)

+ uαnk(r)Jαq (r, r′)ū†n′k′(r
′)− uαnk(r)Iαβq (r, r′)ūβ†n′k′(r

′)

]
ỹn′k′+q(r′) ,

(B.22)

K̂Y X
nk,n′k′ x̃n′k′+q(r) =

∫
Ω0

d3r′
[
ūnk(r)Kq(r, r′)u†n′k′(r

′) + ūnk(r)Jαq (r, r′)uα†n′k′(r
′)

− ūαnk(r)Jαq (r, r′)u†n′k′(r
′)− ūαnk(r)Iαβq (r, r′)uβ†n′k′(r

′)

]
x̃n′k′+q(r′)

(B.23)

K̂Y Y
nk,n′k′ ỹn′k′+q(r) =

∫
Ω0

d3r′
[
ūnk(r)Kq(r, r′)ū†n′k′(r

′)− ūnk(r)Jαq (r, r′)ūα†n′k′(r
′)

− ūαnk(r)Jαq (r, r′)ū†n′k′(r
′) + ūαnk(r)Iαβq (r, r′)ūβ†n′k′(r

′)

]
ỹn′k′+q(r′).

(B.24)
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In the last equations, all the ◦ and “xc” have been dropped in order to lighten the
notation. Furthermore, summation over the α and β repeated indexes is indended,
and we ade use of the shorthands

uαnk(r) ≡ σαunk(r) ūαnk(r) ≡ σαT̂ un−k(r) . (B.25)

From Eqs. (B.21)–(B.24) it can be seen that

KXX†q = KXX†q , KY Y †q = KY Y †q , KXY †q = KY X†q ; (B.26)

moreover, the D- and P-blocks result Hermitian from their definitions, and we can
conclude that

Lq ≡

DXXq + PXq KXXq PXq KXYq

−PYq KY Xq −DYq − PYq KY Yq



L†q ≡

DXXq +KXXq PXq −KXYq PYq
KY Xq PXq −DYq −KY Yq PYq

 . (B.27)

The action of the self-consistent part over a batch can be computed as

KXXq PXq X̃q −KXYq PYq Ỹq ≡
{

ˆ̃v′eff,q

[
PXq X̃,−PYq Ỹ

]
(ω)u◦nk

}
(B.28)

KY Xq PXq X̃q −KY Yq PYq Ỹq ≡
{

ˆ̃v
′[−b]
eff,q

[
PXq X̃,−PYq Ỹ

]
(ω) T̂u◦n−k

}
, (B.29)

due to linearity.
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