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Abstract

The study of dynamics of quantum systems proposes both a highly interesting frame-
work to current research in physics and a demanding numerical and computational
task. Disordered systems and those that mimic the dynamical properties inherent
to disorder, constitute a stepping stone to reach further understanding of quantum
electronic and energy transport along with other properties that can be used to shed
light to diverse topics in both theoretical and applied physics.
We have developed an application and implemented parallel algorithms using the
Message Passing Interface in order to provide a computational framework suitable
for massively parallel supercomputers to study the dynamics of such physical sys-
tems. We used high-performing libraries such as PETSc/SLEPc combined with High
Performance Computing approaches in order to study systems whose subspace di-
mension is constituted by over 9 billion independent quantum states. Moreover, we
provide descriptions on the parallel approach used for the two most important stages
of the computation: constructing a matrix representation for a generic Hamiltonian
operator and the time evolution of the system by means of the Krylov subspace
methods. We have enabled the application and successfully performed simulations
using three different supercomputers (on both SISSA and CINECA computational
frameworks) and provide results to evaluate the overall performance of the appli-
cation, as well as physical results from the dynamics of a quasi-disordered system
under the Aubry-André model.
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boundary conditions and L = 55 . . . . . . . . . . . . . . . . . . . . . 39

4.4 Temporal decay exponent γ for different densities (ρ ≡ N/L) and val-
ues of λ for the interacting Aubry-André model with periodic bound-
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Chapter 1

Introduction

The study of quantum many-body systems out of equilibrium has received a ren-
ovated interest. In early stages, it was established that equilibrium states can be
effectively described with proper quantum statistical mechanics models. However,
the mechanisms of how these states can be reached by local dynamics that follow
microscopic laws is less clear.

A sort of dissonance between a microscopic description and one that uses the clas-
sical ensembles from statistical mechanics has raised many questions, for example,
as in how the dynamics of quantum phase transitions may be described. Another
example is the question of how thermodynamics emerges from microscopic quan-
tum mechanics, which has been of interest since the foundation of quantum theory.
For the latter, a setting for non-equilibrium dynamics that has been used in recent
studies is related to global quenches. In a global quench, the system is in an initial
state and then an instantaneous modification of the system’s parameters is done.
Afterwards, the unitary time evolution of the many-body system under some local
Hamiltonian is done to study the behavior of specific observables of interest. This
constitutes a method that has been used recently to study thermalization or quan-
tum transport, for instance. [3]

Unitary time evolution of quantum dynamical systems is, both in intellectual and
computational terms, a very demanding task. Given the fact that studying quantum
many-body systems out of equilibrium allow us to probe questions in the foundation
of statistical mechanics and condensed matter theory, provide quantum simulators
related to quantum computing as well as other quantum technologies; a platform
to perform numerical operations and simulations involving these systems is indeed
very important to current research.

In this sense, a High Performance Computing approach can provide a solid frame-
work to perform these simulations in an efficient manner.

The present work intends to establish an instance of an HPC approach used to tackle
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2 CHAPTER 1. INTRODUCTION

this particular problem. Several different algorithms were developed and optimized
in order to implement an application suitable to be enabled in massively parallel
supercomputers. Some of these algorithms were developed and optimized during the
duration of the project in order to solve specific problems related to the computation
of unitary time evolution of quantum many-body systems and further parallelized
using the Message Passing Interface, however, we also make use of well established
and efficient libraries to develop a well-performing and portable application, such as
PETSc and SLEPc. [1] [11]

A common practice to evaluate the dynamics of quantum many-body systems is
to perform full diagonalisation to obtain eigenvalues and eigenvectors, however, for
relatively large systems this practice is computationally problematic when it comes
to actual computing times. In order to avoid this, we have employed the method
of Krylov subspace techniques. We demonstrate that by using the techniques of
Krylov subspaces, the unitary time evolution can be performed successfully up to a
given numerical tolerance.

A drawback of the mentioned methodology is given by the amount of memory that is
required to perform the calculations in a timely manner. Specifically, the basis of the
Hilbert space and the matrix representation of the Hamiltonian operator need to be
stored in memory for the used algorithm. Up to a certain degree, established by the
amount of memory available in a given computational environment, we have over-
come this typical barrier by undertaking a paradigm of full distribution by means
of a Message Passing Interface model and therefore, the study of larger quantum
many-body systems can be performed using typical supercomputing resources. The
developed methodology constitutes an instance for which a HPC approach proves
most useful towards finding solutions to computational barriers in scientific com-
puting.

We provide a brief background on the problem in Chapter 2, while Chapter 3 is
entirely devoted to the description of the computational methodology developed
and enabled to tackle specific problems related to the problem from the computation
point of view. We perform diverse benchmarks on the developed application and
provide physical results that can be obtained with the implemented methodology in
Chapter 4.



Chapter 2

Background

2.1 The quantum N body problem

In order to solve the quantum N body problem in the framework of a quantum
lattice system, sparse matrix algorithms are usually applied in order to solve for the
corresponding eigenstates of a given system. Before proceeding with these sparse
matrix algorithms a translation of the considered many-particle Hamiltonian needs
to be done, in the language of the second quantization, into a sparse Hermitian
matrix. This is usually the intellectually and technically challenging part of the
project, in particular if we want to take into account symmetries of the problem. [4]

Typical lattice models in condensed matter involve electrons, spins and even spinless
particles; and to understand the properties of different materials and quantum me-
chanical systems, the Hamiltonian operator of the full quantum problem is simplified
using generic models, such as the tight-binding model, the Hubbard model and the
t-J model. In the present work we have committed our interest in the Heisenberg
model for clean systems and the Aubry-André model for quasi-disordered systems.

All these models exploit different symmetries of the system to translate a problem
that scales as O(exp(N)) into a polynomial scaling, such as O(N4). [14]

2.2 Hardcore bosons

The Heisenberg/Hardcore bosons model, as well as other models such as the Aubry-
André model, allow us to understand the dynamic of strongly correlated systems.
We’re particularly interested in the time evolution of such systems to understand
such dynamics under certain prepared conditions.

As a particular approach to the problem we have focused our attention on the
method applied to the Hamiltonian of the so-called hardcore bosons arranged in a
1-D lattice with periodic boundary conditions. A hardcore bosons model is similar

3



4 CHAPTER 2. BACKGROUND

to that of the spinless fermions, but without the antisymmetric exchange property.
A Hamiltonian operator can be written for such a system [14]:

H = −t
L−1∑
i=1

(c†ici+1 +H.c) + V

L−1∑
i=1

nini+1 (2.1)

where in such a system the operation H |ψ〉 returns a linear combination of other
eigenstates in the Hilbert space basis, and so a Hamiltonian matrix can be con-
structed for the specific operator at hand. The result is a (usually very large) sparse
Hermitian matrix. In this framework, an initial eigenstate can be prepared to study
the behavior as a function of time of the system by means of the Schrödinger equa-
tion:

i~
∂

∂t
Ψ(r, t) = HΨ(r, t) (2.2)

With the corresponding solutions given by:

|Ψt〉 = e−iHt/~ |Ψ0〉 (2.3)

2.3 Basis representation

In order to create a matrix representation of the Hamiltonian operator, a proper
representation of the basis vectors of the Hilbert space of dimension D needs to be
devised in order to perform operations on the computer. In particular, for the case
of the hardcore bosons described before, the dimension of this space is given by
L!/N !(L−N)!, where L is the linear dimension of the lattice and N is the number
of particles.

An approach that can be used consists in assigning an integer value to each of the
basis states of the space. In this representation, each of the states correspond to
a value in a memory buffer that can be transversed by lookup algorithms. In that
sense, the following is an example for the case of L = 4 and N = 2:

|0011〉 → 3

|0101〉 → 5

|0110〉 → 6

|1001〉 → 9

|1010〉 → 10

|1100〉 → 12

(2.4)
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This is a very powerful mechanism to represent the basis, given that integer values
are easier to work with than binary objects. In particular, if the basis is stored as
a contiguous memory buffer effective lookup algorithms can be used to search for a
specific element; even more so if the elements are sorted.1

2.4 Krylov subspace methods

Applying the methodology described, the problem translates to evaluate the expo-
nential of a large sparse matrix for the system. We may employ the technique of
Krylov subspaces in order to avoid full diagonalisation. The basic idea corresponds
to approximate the solution to equation (2.3) using power series. The optimal poly-
nomial approximation to |Ψ(t)〉 from within the Krylov subspace,

Km = span{|Ψ0〉 , H |Ψ0〉 , H2 |Ψ0〉 . . . , Hm−1 |Ψ0〉 (2.5)

is obtained by an Arnoldi decomposition of the matrix Am = V T
mHVm where m is

dimension of the subspace, which is much smaller than the dimension of the Hilbert
space.
The solution is then given by:

|Ψ(t)〉 ≈ Vmexp(−itAm) |e1〉 (2.6)

where |e1〉 is the first unit vector of the Krylov subspace. The much smaller matrix
exponential is then evaluated using irreducible Padè approximations. The algorithm
to evaluate the numerical method has been extensively described by R.B. Sidje. [9]

2.5 Towards a massively parallel application

Given the nature of the problem, a research stage is required in order to evaluate
the possible high performance libraries that can be used to perform linear algebra
operations. In our particular case, support for sparse matrix representations and
operations on these objects is a requirement.
Several different libraries with support for sparse and linear algebra operations were
considered in order to solve this particular problem, however, with massively parallel
computations in mind, we’ve devoted our implementation in favor of PETSc[1] and
SLEPc[11]. More about both libraries can be found in the references.
These libraries, provide all the required computational background necessary to
carry out the unitary time evolution of the system, a few features that are of par-
ticular interest to us are listed as follows:

1For instance, a binary lookup could be used to search for an element of an array of size N with
complexity log(N), compared to the complexity of N given by an element-by-element lookup
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Figure 2.1: Some of the components that take part of the PETSc and SLEPc li-
braries. Taken from [1]

• Large list of functionality involving of both sparse and dense operations

• Extensive documentation

• Proven to provide good performance in high-end applications

• Flexibility in the use of datatypes, including complex datatypes

• Profiling component

• Parallelism using Message Passing Interface paradigm

PETSc and it’s extension SLEPc are huge libraries with basically all the functionally
required to carry out sparse matrix operations and has been proven to perform very
well in many different computational systems and architectures. Figure 2.1 shows a
small section of the most important components of the libraries.



Chapter 3

Workflow and description of the
implementation

3.1 Workflow

In light of what has been described in the previous chapter, a workflow to obtain
solutions to the problem at hand is presented in Figure 3.1.

We start with a an abstract 1D lattice quantum system described by the size of the
grid, the number of particles present in the system and a given Hamiltonian oper-
ator, such as the one presented in Eq (2.1). The size of the subspace1 is given by
L!/N !(L − N)!, with a particular boundary conditions this describes the quantum
system.2 The next step in the workflow is to create a representation of the Hilbert
space, as described in the first chapter, this can be done using integer values in the
computer. The method we use for this section is a lexicographic computation of
next bit permutations, this provides a fast way of computing all the possible combi-
nations in a sorted manner, therefore avoiding the requirement of sorting algorithms
for later lookup routines.

The construction of matrix representation of the Hamiltonian operator rests on this
basis. This requires to apply the Hamiltonian operator to each of the states in the
basis to get the correlation among each of the states. As described in the previous
chapter this translates into a sparse, Hermitian matrix that is used for the time
evolution of a particular system. A sparse storage format is required in this stage,
being that the expected sizes of the system subspace are very large.
The preparation of the initial eigenstates needs to be done in consistently with
the format of the Hamiltonian matrix. When it comes to the study of disordered
systems, many layers of disorder can be introduced to the system in the form of
randomness. One way to introduce disorder to the system is to introduce random-

1Composed by all the accessible states of the system
2It’s easy to see that half-filling, i.e, N = L/2 gives the larger subspace for the present system

7
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Figure 3.1: Workflow description of the problem

ness to the parameters of the Hamiltonian for example, or to use a random initial
eigenstate for each simulation.
When it comes to the unitary time evolution of the system, there’s no requirement
to construct the Hamiltonian matrix for each timestep. One can just adjust the
time parameter and evolve the system using the same Hamiltonian representation.
This is done by means of the Krylov subspace methods in order to obtain an evolved
state, once this is computed many different properties of the system can be com-
puted in the form of quantum observables, which characterizes the behavior of the
system as a function of time.

The following sections provide a very brief description of the components and algo-
rithms implemented in order to achieve a solution to the problem.
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3.2 Configuration of computational dependencies

Before exposing the methodology and algorithms used to develop the application,
we devote this section to describe the builds of the libraries that were used as
dependencies for the application and it’s configuration. For compilation and linking
the final application we use Makefiles to obtain the application executable.

3.2.1 Boost

Boost[2] is a header-only library, which means that there’s really nothing to build.
It consists of header files containing templates and inline functions and require no
separately-compiled library binaries or special treatment when linking.
This means that using Boost is as simple as including the header files in the source
code and providing the directory of the header files at compilation time. We use
Makefiles for compiling and linking the application, so, an environment variable
can be declared here as BOOST DIR=/path/to/boost and at compilation time we
pass -I $(BOOST DIR).

3.2.2 PETSc

Building and installing a fully functional implementation of PETSc can provide a
bit of a challenge. The library is huge and has many components, one can think of
building only the components of PETSc that are required for the application, how-
ever, we build the library using all the components available. This provides more
versatility if one were to introduce more functionality from PETSc to the application.

To start with, before building the library, the configuration requires to declare the
location in which the library will be installed in the form of environment variables:

• PETSC DIR=/path/to/desired/location/petsc

• PETSC ARCH=desired name for installation

PETSc allows the users to have different builds of the library with different config-
urations, PETSC ARCH is used to differentiate them from one another.
We used the following configuration options to build a compatible PETSc installation
with the required functionality to solve the problem:

1. --with-shared-libraries=1

• We use shared libraries to reduce the size of the executables and reduce
compilation times

2. --with-mpi=1



10
CHAPTER 3. WORKFLOW AND DESCRIPTION OF THE

IMPLEMENTATION

• In order to use MPI in the application. This should be done with care
and will change from one computational environment to another. In a
supercomputer or cluster, for example, PETSc should be installed using
one of the local implementations of MPI already present such as Open-
MPI, MPICH or Intel MPI. Allowing PETSc to download and install an
implementation of MPI will most likely result in low performance or run
time errors. For our particular case, we built PETSc using Intel MPI

3. --with-debugging=0

• Performance is best when running applications compiled with PETSc
without debugging mode

4. --with-scalar-type=complex

• This allows the usage of the PetscScalar types as complex datatypes

5. --with-64-bit-ints --with-64-bit-indices

• 64-bit integer representations using PETSc’s own datatypes

6. --with-fortran-kernels=1

• PETSc can use Fortran kernels to provide better performance when op-
erating complex datatypes

7. --with-blas-lapack-dir=/path/to/blas/lapack/dir

• PETSc can download and install these libraries on its own, however, this
has to be specified if another implementation is to be used, such as Intel
MKL. We used Intel MKL for our build

3.2.3 SLEPc

The SLEPc configuration rests on the build that was used for PETSc, so the only
requirement is to pass to the configuration the directory in which the installation
will be done and should be set as an environment variable:

• SLEPC DIR=/path/to/desired/location/slepc
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3.3 Serial implementation

A serial implementation was developed as a starting point in order to have a base
for later parallelization. Part of the methodology used in this implementation holds
even in the parallel version, although this serial application was never used for pro-
duction runs, therefore, linear algebra operations were not optimized or offloaded
to well-performing libraries: this was done at a later stage in the parallel version.
Most of the simulations done with this implementation were used in order to verify
results with the later parallel version.

This version is a C++ implementation that relies on the popular library Boost [2],
namely the dynamic bitset and uBlas components.

3.3.1 Construction of the Hilbert space basis representation

When it comes to calculating the dimension of the Hilbert space, datatype over-
flowing can occur3, so instead of computing the dimension using the combinatorial
factor, we do a very simple modification in order to avoid this. Algorithm 3.1 shows
the pseudocode used for a member function that returns the dimension of the Hilbert
subspace without overflowing the standard 64-bit integer datatypes for a much larger
set of possible values of L and N :

Algorithm 3.1 Computing basis size

1: function BasisSize(void)
2: double size = 1.0
3: for LLInt i = 1 to L−N do
4: size ∗ = static cast<double> (i+N) / static cast<double> (i)
5: end for
6: return floor(size+ 0.5)
7: end function

This is an important value to keep handy as it gives the size required for the basis
and leading dimension of the Hamiltonian matrix. Memory allocation is done with
this value in mind.

The next step is to actually compute the integers that represent each of the states
of the subspace. In order to do this we use a contiguous section of memory of the
required size. One could use standard C++ containers for this, but for specific design
reasons related to memory management in later stages, we allocate memory using
the regular mechanism by means of the new command and use raw pointers to access
and modify elements. As was described before, a lexicographical next bit permutation
approach provided all the required needs to compute the integer representation of
the basis. This was implemented as shown in Algorithm 3.2.

3The value of 21!, for instance, already overflows the long int (64-bit ints) representation
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Algorithm 3.2 Next permutation of bits

1: procedure ConstructIntBasis(LLInt *int basis)
2: LLInt w . Next permutation of bits
3: LLInt smallest = smallest int() . Smallest int of the basis
4: int basis[0] = smallest
5: for LLInt i = 1 to basis size − 1 do
6: LLInt t = (smallest | (smallest −1)) +1
7: w = t | ((((t & -t / (smallest & -smallest)) >> 1) −1)
8: int basis[i] = w
9: smallest = w

10: end for
11: end procedure

In such a way, the int basis container gets filled with each of the possible permu-
tations in a sorted manner. The smallest() function is a very simple routine that
computes the smallest integer value of the bit representation corresponding for any
given L and N .

Boost’s component, dynamic bitset, provides easy to use functionality to create
binary objects out of each of the elements of this container and moving from a binary
to integer representation. This functionality was used for the later construction of
the Hamiltonian matrix.

3.3.2 Construction of the Hamiltonian matrix

Once the basis of the subspace has been computed, the construction of the Hamilto-
nian matrix can be achieved based on this object and a given Hamiltonian operator.
For this purpose, we used periodic boundary conditions and the Hamiltonian
operator shown in Eq (2.1), although modifications to the actual Hamiltonian op-
erator can be easily added in the code.

Algorithm 3.3 Binary to integer

1: function BinarytoInt(boost::dynamic bitset<> bs)
2: LLInt integer = 0
3: for LLInt i = 0 to L− 1 do
4: if bs[i] == 1 then
5: integer += 1ULL << i
6: end if
7: end for
8: return integer
9: end function
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Algorithm 3.4 shows a minimalistic approach to the construction of the Hamilto-
nian and provides a base description of what was implemented both in the serial
and parallel versions. A rotation term is added in the next site* variables in or-
der to produce periodic boundary conditions. Bit swaps were done using Boost’s
dynamic bitset functionality. For the conversion of binary objects to integer values,
a simple approach was used as shown in Algorithm 3.3

Algorithm 3.4 Construction of the Hamiltonian matrix

1: procedure HamMat(LLInt ∗int basis, double V , double t)
2: for state = 0 to basis size − 1 do
3: bs = integer to binary(int basis[state])
4: for site = 0 to L− 1 do
5: bitset = bs
6: if bitset[site] == 1 then
7: int next site1 = (site+ 1)%L . Periodic boundary condition
8: if bitset[next site1] == 1 then
9: (...add V to hamiltonian at position [state, state])

10: else
11: (...do a swap...)
12: (...turn this object into a integer...)
13: (...look for the integer in int basis...) . Important!
14: index1 = position in basis(...)
15: (...add t to hamiltonian at position [index1, state])
16: end if
17: else
18: int next site0 = (site+ 1)%L . Periodic boundary condition
19: if bitset[next site0] == 1 then
20: (...do a swap...)
21: (...turn this object into a integer...)
22: (...look for the integer in int basis...) . Important!
23: index0 = position in basis(...)
24: (...add t to hamiltonian at position [index0, state])
25: else
26: (...do nothing...)
27: end if
28: end if
29: end for
30: end for
31: end procedure

The lookup section of Algorithm 3.4 is indeed very important. One could do an
element-by-element lookup for each of the values in the basis buffer and this would
be satisfactory, if the size of the system is kept small. However, for the study of
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larger systems a better way is required. As per the description before, we decided
to sequentially compute the values of the basis by means of bit permutations, in
such a way that the next permutation of a given bitset corresponds to the binary
combination that provides the next integer value when translated into an integer
representation. One of the benefits of doing this is not only it’s performance, but
the fact that the resulting integer representation of the basis is sorted.

In light of this, we can use a well-performing method to lookup entries of the mem-
ory buffer. For this particular case4, a very good choice is to use a binary lookup
and therefore using an algorithm with complexity O(logN) instead of an element-
by-element lookup with complexity O(N). Both in the serial and parallel versions,
this accounts for a good optimization when it comes to the computational walltime
of this section of the code. Algorithm 3.5 shows the lookup method that was imple-
mented in the application.

Algorithm 3.5 Binary lookup

1: function BinSearch(const LLInt *array, LLInt len, LLInt value)
2: if len == 0 then
3: return -1
4: end if
5: LLInt mid = len / 2
6: if array[mid] == value then
7: return mid
8: else if array[mid] < value then
9: LLInt result = BinSearch(array + mid + 1, len - (mid + 1), value)

10: if result == −1 then
11: return -1
12: else
13: return result + mid + 1
14: end if
15: else
16: return BinSearch(array, mid, value)
17: end if
18: end function

3.3.3 Time evolution: Krylov subspace methods approach

The methodology and approach used in this section relies on the development pre-
sented by [9]. Both the numerical approach and implementation are developed and
described in this reference. The original work presented there lacks parallelization,

4A sorted array of integer values
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which is a requirement (in terms of time to solution and memory) to solve the
problem at hand in an efficient manner for larger sizes.
The serial implementation developed differs only in the programming language and
the libraries used to accomplish the numerical operations and was used to study
the methodology and approach, as well as to test the results produced from the
numerical computations on the later developed parallel version.
We leave the discussion involving the implementation of this, additional details, per-
formance and simulation results to the parallel version section of this document.
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3.4 Parallel version

In this section we describe the implementation details of the parallel approach used
to solve the problem. This development constitutes the biggest part of the effort
devoted to solving the problem efficiently.
Parallelization in the sense of the problem described not only allows the usage com-
putational resources efficiently distributed in order to reduce time to solution, but it
also translates into the possibility to solve much larger systems that are unsolvable
from the computational point of view otherwise.

Several different parallel implementations were developed5, however, we expose here
four different approaches used to solve a specific problem: large memory manage-
ment and it’s relation to computation time.
Unlike the serial version, this implementation is designed to be used in production
runs and most of our results were obtained using an application developed with the
following descriptions.

This version is a C++ application that relies on Boost [2] for binary operations and
some mathematical functions, and both PETSc and SLEPc [1][11] for the matrix
objects and time evolution. Part of the development is designed to be compatible
with PETSc, such as the parallel distribution of the Hamiltonian matrix or time
evolution vectors, for instance. More about parallel distribution in PETSc and the
way the matrix objects are constructed can be consulted in [1].
The following section provides a brief description of the methods used towards de-
veloping a parallel application.

3.4.1 Design

In Figure 3.2 we provide a brief description of the parallel design.
One of the biggest problems related to the unitary time evolution of these systems
is related to amount of memory that is required to solve the problem efficiently,
this not a problem for small systems sizes, but it grows with a very rapid rate with
increasing L.

A drawback of this particular approach is the fact that the Hamiltonian matrix
needs to be stored in memory (in a sparse format, to reduce memory consumption)
and that the basis needs to be accessed and stored in particular ways in order to
construct this matrix efficiently. Part of the design is, in this sense, to develop a
mechanism for which the construction of the Hamiltonian matrix step can be done
and that this procedure scales with the number of computation elements.

5Differences with each other differ mainly in the construction of the Hamiltonian section of the
problem
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Figure 3.2: Brief summary of the parallel design

Table I. Memory consumption estimation for different problem sizes at half-filling.

System sizes Problem size Basis memory
(GB, exact)

Matrix memory
(GB, overesti-
mation)

L = 28, N = 14 40 116 600 0.320 18
L = 30, N = 15 155 117 520 1.25 75
L = 32, N = 16 601 080 390 4.8 308
L = 34, N = 17 2 333 606 220 18.7 1269
L = 36, N = 18 9 075 135 300 72.6 5 227
L = 38, N = 19 35 345 263 800 282.8 21 490

Table I presents a numerical estimation of memory consumption in order to illus-
trate the previously described drawback. In the estimation presented in Table I,
there’s no estimation in the amount of resources (memory) to achieve the actual
time evolution. For instance, the method requires to obtain projections on the
Krylov subspace, which means that the actual memory consumption for the entire
application is in fact larger. Leaving this fact aside for the moment, Table I provides
an insight on how the dimension of the problem is related to computing resources.

We have measured, using PETSc’s own profiler tool, that the actual overall memory
requirement to perform the simulations including time evolution can go as far as 4
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times the estimated values for the matrix, this is accounted by internal memory
allocation required to perform the time evolution procedure.

Estimation was produced as follows: the memory required for one buffer containing
the basis is equal to dimension of the subspace, or problem size, times the size in
bytes for each of the objects. In this case this corresponds to 64-bit integers, if
one were to use 32-bit representations the datatype would overflow at certain point
for a given size. For the case of the Hamiltonian matrix, the estimation counts the
dimension of the subspace times the size in bytes of the double precision complex

datatype. An additional factor is introduced in this estimation to account for the
sparsity of the matrix, roughly speaking, an overestimation would be computed as
follows:

GBmatrix ∼ 16 Bytes× L!

N !(L−N)!
× L (3.1)

Which is far less amount of memory in comparison to a dense representation of the
matrix.
The information provided in Table I suggests that at some point, partial or full dis-
tribution of the basis is going to be required in order to solve larger systems without
exhausting intranode memory resources. The Hamiltonian matrix also requires a
full distribution across nodes.
Another fact that can be extracted from Table I is that up to a certain problem size
the unitary time evolution can’t be computed using a single computational node,
hence, a full distribution using Message Passing Interface is required.

In the following subsections we provide a description of four particular versions used
to tackle the problem with the previously described considerations in mind.

3.4.2 Replicated basis version

This constitutes the first instance towards a parallel application. It can be seen from
Table I that for a large set of problem sizes6, basis replication isn’t really a problem
to be concerned with memory-wise. Basis replication in this context means having a
memory section devoted to contain the integer values representing each of the states
in the subspace per each computing element, hence, there’s no distribution on the
basis memory across processing elements. In Message Passing Interface terms, each
MPI process allocates and has access to the memory address of the entire basis.
However, the Hamiltonian matrix object and the time evolution is performed with
full distribution across processing elements in this version.

6L = 28 at half filling and smaller values of L, plus all the systems with subspace dimension
smaller than this one
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Even though we kept the memory requirements shown in Table I in mind during
development, this first version allowed us to analyze the overall performance for
moderate system sizes in which basis replication is not a problem. With this version
we introduced the functionality of PETSc and SLEPc for the first time into the
application, so this allowed us also to study the behavior of the library and a base
line for further distribution of the basis and development.

We devote this section to describe the changes involving the main parts of the
implementation in light of what has been described in the serial version section.

Construction of the Hilbert space representation

Given that for this version replication of the basis is allowed, there’s no change in-
volving the computation of the basis. The computation is done in the same manner
as described in Section 3.3.1.

In the sense of Object Oriented programming, paradigm that was used to implement
the application, each MPI process creates an instance of the class Basis and each
process manages this resource on it’s own; such as reclaiming the memory resources
at the end of the application.

Construction of the Hamiltonian matrix

As stated in Figure 3.2, we intend to make this section of the application run with
full distribution in both memory resources and computation of matrix elements. In
this sense, a mechanism to assign distribution is required.
In order to make this distribution compatible with the internal MPI distribution
that PETSc uses for it’s objects, we use the same row distribution per computing
elements, as shown in Algorithm 3.6

Algorithm 3.6 Parallel distribution

1: procedure Distribution(PetscInt &nlocal, PetscInt &start, PetscInt &end)
2: nlocal = basis size / mpisize
3: PetscInt rest = basis size % mpisize
4: if rest && (mpirank < rest) then
5: nlocal + +
6: end if
7: start = mpirank * nlocal
8: if rest && (mpirank >= rest) then
9: start += rest

10: end if
11: end = start + nlocal
12: end procedure
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The use of a particular datatype can be noticed: PetscInt. Using the configuration
shown in Section 3.2 this makes compatibility easier with the routines from PETSc.
The variables mpirank and mpisize are queried with the usual MPI directives
and taken as private members of the class Hamiltonian. The constructor of this
class initializes the PETSc, SLEPc and MPI environments. The variables nlocal,
start and end provide global indices and sections of the row distribution. This is a
very standard parallel row distribution across processing elements and most of the
PETSc routines stick to this distribution.
The next step is to construct the matrix representation of the Hamiltonian opera-
tor in parallel. For this purpose we use a PETSc Mat object in MATMPIAIJ format.
Each processing element or MPI rank will contain in memory only it’s own sec-
tion of the matrix given by Distribution and compute the elements of the same
section. Collective operations are done at a later stage through MPI communication.

Algorithm 3.7 shows the mechanism used to construct and assemble the Hamiltonian
matrix parallel object. As can be seen, for this version the algorithm is very similar to
the serial version, however, there are important differences worth mentioning. The
whole procedure is row subdivided, which means that each MPI process will only
have direct access to it’s own section of memory addresses for the matrix object and
computation of elements is also distributed, which means we expect this procedure
to scale as the number of processing elements increases.
The first procedure of Algorithm 3.7 is important. There are basically three different
ways in which a PETSc Mat object can be constructed:

1. Create an instance of the object without specifying preallocation

2. Create an instance of the object providing estimated values of sizes for preal-
location

3. Create an instance of the object providing the exact amount of elements in the
diagonal and off-diagonal portions of the matrix with the parallel subdivision
taken into account

Out of the three methods, the first one is the simplest but performs the worst. This
is because of the overhead related to dynamically resizing memory sections. The
second method performs well if a good estimation is provided, this usually requires
allocating more memory than what it’s actually required for the object.

Given that our goal is to optimize memory consumption, the third method de-
scribed above is the best for our purposes. This requires implementing another
routine similar to the one shown in Algorithm 3.7, that computes the elements that
each processing element contains in it’s own section of the matrix, so that a preal-
location step can be performed. This can also be performed in parallel in order to
avoid compromising scalability.
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Algorithm 3.7 Parallel Construction of the Hamiltonian matrix

1: procedure RepHamMat(LLInt *int basis, double V , double t, PetscInt
nlocal, PetscInt start, PetscInt end)

2: determine allocation details (...) . Important!
3: (...instantiate the Mat object with the allocation details...)
4: for state = start to end− 1 do
5: bs = integer to binary(int basis[state])
6: for site = 0 to L− 1 do
7: bitset = bs
8: if bitset[site] == 1 then
9: int next site1 = (site+ 1)%L . Periodic boundary condition

10: if bitset[next site1] == 1 then
11: (...add V to hamiltonian at position [state, state])
12: else
13: (...do a swap...)
14: (...turn this object into a integer...)
15: (...look for the integer in int basis...) . Binary lookup routine
16: index1 = position in basis(...)
17: (...add t to hamiltonian at global position [index1, state])
18: end if
19: else
20: int next site0 = (site+ 1)%L . Periodic boundary condition
21: if bitset[next site0] == 1 then
22: (...do a swap...)
23: (...turn this object into a integer...)
24: (...look for the integer in int basis...) . Binary lookup routine
25: index0 = position in basis(...)
26: (...add t to hamiltonian at global position [index0, state])
27: else
28: (...do nothing...)
29: end if
30: end if
31: end for
32: end for
33: (...begin assembling procedure...)
34: (...end assembling procedure...)
35: (...indicate PETSc that this is a symmetric matrix...)
36: end procedure
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This introduces computational overhead, but the mechanism performs well enough
so that we can use this in order to save memory resources.
The mechanism used is very similar to the one shown in Algorithm 3.7, but instead
of adding elements to the matrix object in lines 11, 17 and 26 we count the number
of elements in the diagonal and off-diagonal subsection of the matrix owned by each
MPI process as shown in Algorithm 3.8.
The steps involving the PETSc Mat object are not applied here, since this procedure
only computes the number of elements so a proper, well-performing preallocation
step can be done.

Algorithm 3.8 Parallel allocation details

1: procedure DetermineAllocationDetails (...)
...

17: if index1 < end && index1 >= start then
18: diagonal[state− start]++
19: else
20: off [state− start]++
21: end if

...
22: end procedure

Time evolution

Now that the matrix representation has been constructed in a distributed fashion
and in consistency with the parallel distribution required to the PETSc and SLEPc
routines, we can proceed to evaluate the time evolution of the system with an initial
state. The initial state can be constructed in many different ways to study different
behaviors of the system and should be represented as a vector distributed in parallel
among processing elements, this can be easily done using PETSc and the given
distribution shown in Algorithm 3.6. For the time evolution procedure we can use
SLEPc’s routine related to the MFN component, which provides all the necessary
framework with enough versatility to carry out the computation. Algorithm 3.9
shows a minimalistic approach to implementing this, we will not focus on the APIs
or actual function calls, this can be consulted in [11].
Algorithm 3.9 shows just an example in which the time evolution can be performed,
though this will change depending on what properties of the system are to be evalu-
ated and computed observables. PETSc and it’s extension SLEPc are very complete
libraries with a lot of versatility implemented. We have performed and evaluated
time evolution using Krylov subspace methods for our own purposes, but the other
components can be used on the constructed Hamiltonian in order to, for example,
do exact diagonalization or perform different mathematical procedures.
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Algorithm 3.9 Time evolution

1: procedure TimeEvolution(...)
2: (...create and change parameters of the MFN component...)
3: (...declare and allocate a helping vector for time evolution...) . Can be

avoided by using in place directives
4: for tt = 1 to iterations + 1 do . tt is the number of time steps
5: (...scale the FN component by the current tt...)
6: MFNSolve(...)
7: (...get converging reason and abort if convergence is not achieved...)
8: (...check that the time-evolved vector retains norm...) . Optional
9: (...evaluate the time-evolved vector in any desired way...)

10: (...evolved vector becomes new initial vector...)
11: end for
12: (...destroy helping vector...)
13: (...destroy MFN environment...)
14: end procedure

3.4.3 Node communicator version

Taking a closer look at Table I, we can see that replicating the basis per computing
element will rapidly exhaust memory resources, particularly if a large set of MPI
processes are used to perform the computation.
This has to be dealt with if one is interested in studying large system sizes, or in
this case, systems with a large subspace dimension.

We focus our attention now on the first method that was used to overcome this
problem. The paradigm consists in distributing the basis among all the processing
elements, except for the first MPI process of each node, which allocates and holds the
memory addresses of the entire basis. In this scenario, the entire memory required for
the basis alone would be: 1 entire basis per node plus 1 entire basis distributed across
the rest of the MPI processes. Computations required to construct the Hamiltonian
matrix then require intranode communications to find missing information. One of
the benefits that are posed by this solution is the fact that the communication is
being done inside of the node, most MPI implementations benefit from this using
hardware locality directives. Figure 3.3 shows a visual representation of this.
We want to use this particular distribution for the construction of the Hamiltonian,
however, the time evolution computation should use the distribution shown in the
previous subsection using the global communicator since that provides the best
balance and compatibility with PETSc functionality.
This can be done by means of a second MPI communicator. We called this second
communicator node comm and it’s a private member of the class Hamiltonian. As
of the release of the MPI 3.0 standard there’s a very natural way to accomplish this
task by means of the MPI shared regions:
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Figure 3.3: Visual representation of the node communicator version

. . .
MPI Comm node comm ;
MPI Comm split type (PETSC COMM WORLD, MPI COMM TYPE SHARED,

mpirank , MPI INFO NULL , &node comm ) ;
. . .

The node comm MPI communicator can be used to establish communication pat-
terns of computing elements within a local node. Given that the first MPI process
of each node contains the entire basis, communication can be performed in order
to construct the matrix representation of the Hamiltonian operator using the data
contained by this computing element.

Construction of the Hilbert space representation

Given that the basis is distributed in a different fashion in relation to the replicated
basis version, the parallel paradigm to compute the basis needs to be changed. In
particular, each MPI process will allocate and hold the addresses in memory of only
a section of the basis with the exception of the first process of each node as described
before. Using the same distribution shown in Algorithm 3.6, we can redesign the
public method of the class Basis that computes the basis of the system in order
to introduce the parallel distribution. This is shown in Algorithm 3.10.
It can be noticed that each MPI process will compute only it’s own section of the
basis. The int basis buffer has size nlocal7 given by the distribution in Algorithm
3.6. The method first int() is a very simple routine that computes the first

7nlocal = basis size for the first MPI process of every node
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Algorithm 3.10 Construction of the basis in the Node communicator version

1: procedure ConstructIntBasis(LLInt *int basis, PetscInt nlocal, PetscInt
start)

2: LLInt w . Next permutation of bits
3: LLInt first = first int(nlocal, start) . Smallest int of the section of the

basis
4: int basis[0] = first
5: for LLInt i = 1 to nlocal − 1 do
6: LLInt t = (first | (first −1)) +1
7: w = t | ((((t & -t / (first & -first)) >> 1) −1)
8: int basis[i] = w
9: first = w

10: end for
11: end procedure

element in the basis for a given MPI process.

Construction of the Hamiltonian matrix

In relation to what was described in the previous design using a replicated basis,
we use the new communicator both in the DetermineAllocationDetails and in
the HamMat procedures for the purposes of constructing the Hamiltonian matrix. In
this particular scenario, each MPI process will take ownership of a given subsec-
tion of rows in the matrix and compute the elements of the matrix by means of
it’s own basis section. Some elements of the matrix won’t be able to be computed
given that the local basis is incomplete, so this information is stored and commu-
nicated to the first MPI process of the local node in order to complete the procedure.

Algorithm 3.11 shows the first section of the DetermineAllocationDetails routine,
most of the changes in relation to the replicated basis version are in the indexing of
the elements with this new distribution but there’s a new function at the end of the
procedure: NodeComm. This routine uses MPI directives to perform the communica-
tion required in order to complete the construction of the Hamiltonian matrix.

At this point, each of the processes that are not the first MPI process have com-
puted integer representations of states that are not found in the basis, given that
they have access to only a portion of the basis. So what we do is use the NodeComm

routine to find missing information that can be queried from the first MPI process
of the local node. There’s a caveat to this approach: looking at Figure 3.3, the
communication pattern has to be ordered in a sequential fashion; i.e, each process
of the node communicates to the first process of the node one after the other. This
has to be done in order to avoid exhausting of the local node memory resources. In
spite of this, we have found that scalability of this section of the implementation is
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Algorithm 3.11 Node communicator parallel allocation details of the Hamiltonian
matrix

1: procedure DetermineAllocationDetails(...)
2: (...diag[0 : nlocal] = 1...)
3: for state = start to end− 1 do
4: PetscInt basis ind;
5: node rank ? basis ind = state− start : basis ind = state;
6: bs = integer to binary(int basis[basis ind])
7: bool counter = false;
8: for site = 0 to L− 1 do
9: bitset = bs

10: if bitset[site] == 1 then
11: int next site1 = (site+ 1)%L . Periodic boundary condition
12: if bitset[next site1] == 1 then
13: counter = true;
14: else
15: (...do a swap...)
16: (...turn this object into a integer...)
17: (...look for the integer in int basis...) . Binary lookup routine
18: LLInt index1;
19: if node rank then
20: index1 = position in basis(...)
21: (...if not found store the unfound value, otherwise keep it...)
22: else
23: index1 = position in basis(...) . Rank 0 of node
24: end if
25: if index1 < end && index1 >= start then
26: diagonal[state− start]++
27: else
28: off [state− start]++
29: end if
30: end if
31: else
32: ...
33: end if
34: end for
35: (...reduce diagonal by 1 if counter is false...)
36: end for
37: NodeComm((...))
38: end procedure
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Algorithm 3.12 Node communication pattern

1: procedure NodeComm(...)
2: // Communication to rank 0 of every node to find size
3: if node rank then
4: MPI Send(...)
5: else
6: for i = 1 to node size do
7: MPI Recv(...)
8: end for
9: end if

10: // Communication to rank 0 of node to find missing indices
11: if node rank then
12: MPI Send(...missing info...) . Send unfound information
13: MPI Recv(...required info...) . Required to finish the construction
14: else . Rank 0 of every node
15: for i = 1 to node size do
16: MPI Recv(...missing info of rank i)
17: (...binary search...)
18: MPI Send(...required info to rank i)
19: end for
20: end if
21: (...complete construction with the updated data...)
22: end procedure

not compromised and the construction of the Hamiltonian matrix can be performed
in a timely manner in relation to the previous version, which was exactly our goal.

Furthermore, Algorithm 3.12 shows the MPI approach implemented to accomplish
this.

In this scenario, the first step would be to communicate the amount of elements that
are going to be sent from each process to the corresponding rank 0 of every node,
afterwards the actual communication and binary search is performed on every rank 0
of every node to find the required data to finish the construction of the Hamiltonian
matrix before communicating again the updated data back to the sender.

After the computation of the allocation details is completed, a routine that fills the
elements of the distributed matrix needs to be called. The routine is very similar to
the one shown in Algorithm 3.11 but instead of counting diagonal and off-diagonal
elements, the values are introduced into the matrix. This happens in lines 25-29
in Algorithm 3.11. All the missing information resulting from the distribution of
the basis has been updated at this point so the communication pattern is no longer
required and the matrix can be filled from each of the processes using these data
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segments.

We have found that this mechanism provides a good performing solution to the
replicated basis problem. Performance and results can be found in the next chapter
of this document.

Before performing the time evolution of the system, the basis memory is reclaimed
and the communicator used to perform this task is switched back to the global
communicator, or PETSC COMM WORLD, as shown in Figure 3.3. In this sense, there’s
no modification required to the time evolution step.

3.4.4 Ring exchange version

Depending on the available memory resources per node of the computational en-
vironment in which the application is executed, according to the estimates shown
in Table I, allocating and constructing one entire basis per node can exhaust the
memory resources of the system for large system sizes. Even if this could be done,
there’s still memory resources required for the actual Hamiltonian matrix. The node
communicator version provides a good solution for a very large range of system sizes,
however, for systems that have a very large subspace dimension a fully distributed
approach needs to be devised.

We developed an algorithm that uses a ring exchange of the subdivided basis among
all the processing elements. In relation to our previous NodeComm setup, this version
differs in the following:

• Full distribution of the basis across all the processing elements

• Unlike the previous version, communication is done in order to exchange sec-
tions of the basis and not the unfound elements of the Hamiltonian matrix.
This is an important difference: computational load is more balanced in this
setup

• The algorithm can be implemented by means of a single MPI communicator

In this new setup then, each processing element will exchange sections of the basis in
order to compute the elements of the Hamiltonian matrix. After mpi processes− 1
exchanges, all the elements have been computed and the Hamiltonian matrix is com-
puted and distributed. With this setup, a linear scaling in memory is achieved which
means that with increasing number of processing elements the amount of memory
per MPI process required decreases linearly. However, time scaling is compromised,
as increasing the number of processing elements will require more communication
steps. Therefore, we expect that with this setup the time required to compute the
Hamiltonian matrix will increase in relation to previous procedures.
Results obtained with this setup are explained in greater detail in the next chapter.
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Figure 3.4: Visual representation of the ring exchange version

Construction of the Hilbert space representation

The same procedure used in Algorithm 3.10 can be used here, each processing el-
ement will compute it’s section of the basis of size nlocal by means of the same
method of the class Basis.

Construction of the Hamiltonian matrix

In relation to the previous description used for the NodeComm setup, the major dif-
ference is given by the communication step. There needs to be some modification
regarding the indexing of elements from the procedure shown in Algorithm 3.11, but
the changes are not the essence of the algorithm so we will focus on the communi-
cation step instead.
Algorithm 3.13 shows the procedure used to perform the ring exchange of the basis
in order to compute the Hamiltonian matrix. The first step is to to perform a
collective communication step so that every processing element holds the nonlocal
values of the indices of each subsection of basis being communicated. This has to
be done to keep track of the positions of the elements in the Hamiltonian matrix.
Afterwards, since the number of processors is a generic parameter, different MPI
processes may hold larger sections of the basis than others. To account for this,
we use the larger size for the exchanging buffers with the remaining elements set
to zero, as this won’t affect the binary lookup given that no state in the basis is
represented by the zero value.
The variable source identifies the MPI process that sends the section of the basis,
this is required in order to align the indices with global values. The last step is to
perform the ring exchange and the binary lookup procedure until all sections of the
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Algorithm 3.13 Ring communication pattern

1: procedure RingComm(...)
2: // Collective communication of global indices
3: gather nonlocal values (...);
4: // Even when rest != 0, Proc 0 always gets the larger section
5: // of the distribution, so we use this value for the ring exchange buffers
6: broadcast size of buffers (...); . From 0 to all
7: (...allocate ring exchange buffers, initialized to basis in a sorted fashion...)
8: PetscMPIInt next = ( mpirank + 1 ) % mpisize ;
9: PetscMPIInt prec = ( mpirank + mpisize - 1 ) % mpisize ;

10: for PetscMPIInt exc = 0 to mpisize − 2 do
11: MPI Sendrecv replace (...); . Basis exchange using prec and next
12: // source is required to find global indices
13: // from nonlocal values
14: PetscMPIInt source = mod ((prec - exc), mpisize );
15: (...binary lookup of elements, if found, assign and multiply by −1)...
16: end for
17: (...flip all the signs: multiply by -1 all elements...)
18: end procedure

basis have been exchanged. In order to keep track of the already found elements,
we set then to negative values and when the procedure is done we flip them back
to positive entries. At the end of the procedure all the elements of the Hamiltonian
matrix have been found and computed.

For the following step, which is to actually insert the elements to Hamiltonian ma-
trix, we can use the already computed values and the ring exchange is no longer
required. Furthermore, the time evolution of the system; as in the previous ver-
sion, is left unchanged by this mechanism so we use the same procedure shown in
Algorithm 3.9.

3.4.5 Combined Ring-Node communicator version

The ring exchange version presented before constitutes the best scenario when it
comes to memory scalability: no sections of memory are replicated and everything
is computed in a fully distributed fashion in all sections of the implementation.
There’s no memory replication whatsoever.
The caveat of this implementation is related to the strong scalability of the applica-
tion, given that increasing the number of processing elements increases the amount
of communications overall. This is not a concerning problem given that the compu-
tation of the Hamiltonian matrix is not a computationally intensive task, so even
in the ring exchange design the time required to construct the Hamiltonian matrix
object is small compared to the time evolution procedure. On an effort to recover
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strong scalability of the application we have developed a final version that combines
the two previous descriptions: node communication and ring exchanges.

The Node communicator version described in Section 3.4.3 relies on distributing
the entire basis across all processing elements, with the exception of the first MPI
process of each node which constructs and holds in memory the entire basis. This
new combined version is similar to some extend: we distribute the entire basis across
all MPI processes, but instead of allocating the entire basis on the first MPI process
of each node we only construct and allocate another subdivision of the basis based
on the number of computing nodes used. In this scenario a first step in constructing
the Hamiltonian matrix for every MPI process is to communicate to the first MPI
process of every node to find values connected to nonlocal sections of the basis,
afterwards a ring exchange is done between each rank 0 of every node until a full
cycle is done. Figure 3.5 shows a visual representation of this description.

Figure 3.5: Visual representation of the combined Ring-Node communicator version

At this point two different MPI communicators have been used to solve the problem:
PETSC COMM WORLD which involves all the processing elements and node comm which
groups all the MPI processes of a given node.
The current task can be implemented by means of a third communicator: zero node comm .
This is more of a communicator group in the MPI language. Algorithm 3.14 shows
the approach used to accomplish this.
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Once the communicator has been established, it can be used to perform collective
operations between the MPI processes of the group defined. In our particular case,
a ring exchange procedure will be done by means of the MPI processes that are part
of this communicator.

Algorithm 3.14 Establishing a communicator group: zero node comm

1: procedure RingNodeComm(...)
2: MPI Group petsc group;
3: MPI Comm group(PETSC COMM WORLD, &petsc group);
4: PetscInt nodes = (( mpisize - 1 ) / node size ) + 1;
5: int *ranks = new int[nodes];
6: for i = 0 to nodes - 1 do
7: ranks[i] = node size * i;
8: end for
9: MPI Group zero of node group;

10: MPI Group incl(petsc group, nodes, ranks, &zero of node group);
11: MPI Comm zero node comm ;
12: MPI Comm create group(PETSC COMM WORLD,

zero of node group, 0, &zero of node group);
...
(...rest of communication procedure goes here...)
...

13: delete [] ranks;
14: MPI Group free(&petsc group);
15: MPI Group free(&zero of node group);
16: MPI Comm free(&zero node comm )
17: end procedure

Construction of the Hilbert space representation

The public methods described in previous sections contained in the class Basis to
construct the basis are still valid in this scenario but since the distribution changes
from the processors that are part of the zero node comm to the ones that are not,
a new distribution method is to be used for the first MPI processes of each node.
For this distribution we can use a similar approach to the one used all along: a
row distribution of each of the subdivisions of the basis for the MPI processes in
the zero node comm . Algorithm 3.15 shows a way to accomplish this, the method
is called from all the processors so for those that are not part of zero node comm

we can set the descriptors to -1 just to avoid confusion. In order to construct and
allocate the basis for these MPI processes, one only has to call the same method
described in Algorithm 3.10 using these new parameters.



33

Algorithm 3.15 Parallel distribution

1: procedure NodeDistribution(PetscInt &nlocal, PetscInt &start, PetscInt
&end)

2: nlocal = -1; start = -1; end = -1;
3: if node rank == 0 then
4: PetscInt nodes = (( mpisize - 1 ) / node size ) + 1;
5: PetscInt node 0 id = mpirank / node size ;
6: nlocal = basis size / nodes;
7: PetscInt rest = basis size % nodes;
8: if rest && (node 0 id < rest) then
9: nlocal + +

10: end if
11: start = node 0 id * nlocal;
12: if rest && (node 0 id >= rest) then
13: start += rest
14: end if
15: end = start + nlocal;
16: end if
17: end procedure

Construction of the Hamiltonian matrix

Now that the basis has been computed with the desired distribution, the Hamil-
tonian matrix can be constructed by means of this object. Once again, the new
parallel distribution of elements implicates that the way the elements of the Hamil-
tonian matrix in relation to the elements of the basis needs to be done somewhat
differently. Simply put, the relationship between global and local indices changes
depending on the MPI process that computes the elements of the matrix. This is
a simple modification so we will focus on the most important change instead: the
communication procedure.
In this particular case the procedure is a combination of the methods exposed before.
We start by performing communications from each of the MPI processes to the first
MPI process of the local node to compute the unfound matrix elements due to
incomplete basis. However in this scenario, the local node masters also hold an
incomplete basis so in order to compute the elements a ring exchange is done by
means of zero node comm as described in Section 3.4.4. This methodology is design
specifically for very large physical system sizes and there’s an important caveat
to using this approach: given the large amount of elements to be computed, the
intranode communication procedure has to be done in a sequential fashion in order to
use the same section of memory for all processes. If one were to communicate all the
elements in a single step, because of the size of the system, memory would exhaust
very quickly. In this sense, the intranode communication procedure has to be done
one MPI process after the other. Furthermore, this intranode communication step
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has to be done after each ring exchange cycle for the same reason. The performance
section of the next chapter will provide more insight regarding the approaches used
to solve the problem of large memory requirements.
Algorithm 3.16 exposes the communication pattern approach used in this version.

The procedure shown in Algorithm 3.16 is called during the computation of alloca-
tion details of the parallel matrix. Like in the previous descriptions, the next step is
to actually fill the elements of the matrix by means of PETSc directives but in this
step the communication pattern shown before is no longer required and the matrix
can be constructed by means of the already computed elements. Likewise, the time
evolution procedure is unaffected by this treatment so we proceed with the same
mechanism shown in Algorithm 3.9
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Algorithm 3.16 Ring-Node communication pattern

1: procedure RingNodeComm(...)
2: (...communicator object construction shown in Algorithm 3.14...)

...
3: // Collective communication of global indices, only ranks 0 of node
4: gather nonlocal values (...); . By means of MPI Allgather on

zero node comm
5: // Even when rest != 0, Proc 0 always gets the larger section
6: // of the distribution, so we use this value for the ring exchange buffers
7: broadcast size of buffers (...); . From 0 to all in zero node comm
8: (...allocate ring exchange buffers, initialized to basis in a sorted fashion, only

on ranks 0 of node...)
9: // Communication to rank 0 of every node to find size

10: MPI Gather(...); . On node comm
11: // IDs for the ring exchange
12: PetscMPIInt zerosize = -1, zerorank = -1, next = -1, prec = -1;
13: if zero node comm != MPI COMM NULL then
14: MPI Comm size(zero node comm , &zerosize);
15: MPI Comm rank(zero node comm , &zerorank);
16: next = (zerorank + 1) % zerosize;
17: prec = (zerorank + zerosize - 1) % zerosize;
18: end if
19: (...broadcast zerosize on node comm ...)
20: if node rank then
21: for PetscMPIInt exc = 0 to zerosize-1 do
22: MPI Send(...) . Unfound elements
23: MPI Recv(...) . Computed elements
24: end for
25: else
26: for PetscMPIInt exc = 0 to zerosize-1 do
27: MPI Sendrecv replace (...); . Basis exchange using prec and next
28: // source is required to find global indices
29: // from nonlocal values
30: PetscMPIInt source = mod ((prec - exc), zerosize);
31: (...binary lookup of local elements...)
32: for i = 1 to node size do
33: MPI Recv(...missing info of rank i)
34: (...binary search, if found assign and multiply by -1...)
35: MPI Send(...required info to rank i)
36: end for
37: end for
38: end if
39: (...flip all the signs: multiply by -1 all elements...)
40: end procedure



Chapter 4

Results, performance and
discussion

We devote the following sections to expose several results that were obtained study-
ing the time evolution of the physical system under certain conditions and to describe
the performance of the application developed.

4.1 Results

4.1.1 Survival probability

We can study the time evolution of the system by means of the survival probability.
We start with the system prepared with a given initial state |Ψ(0)〉 at t = 0. The
probability of finding the system in state |Ψ(0)〉 at time t is the so-called survival
probability given by

F (t) = |A(t)|2 ≡ | 〈Ψ(0)| e−iHt |Ψ(0)〉 |2 (4.1)

A(t) is the survival amplitude. We evaluated this quantity by means of the Krylov
subspace methods up to a size of L = 36 at half-filling, which has a subspace
dimension of over 9 billion. Figure 4.1 exposes a very clean behavior of the survival
probability given that we haven’t introduced any form of disorder to the system,
for these simulations we used the Hamiltonian shown in Eq. (2.1) with t = 1 and a
weak interaction of V = 0.2. The initial state used in these simulations is the Neel
ordered state, which in our binary representation is the state given by (...010101).
The actual decay behavior of the survival probability can be used as a measure to
extract the physical properties of the system.

4.1.2 Disordered systems

We now proceed to evaluate the survival probability of a disordered system by
focusing our attention to the Aubry-André model with Hamiltonian operator given

36
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Figure 4.1: Survival probability for different system sizes on a system with no dis-
order
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Figure 4.2: Temporal autocorrelation for the Aubry-André model non-interacting
case with 1 particle (L = 55) using periodic boundary conditions for different values
of λ

by

H = −t
L−1∑
i=1

(c†ici+1 +H.c) + V
L−1∑
i=1

(nini+1) + h
L−1∑
i=1

ni cos(2πβi) (4.2)

where we have introduced an on-site potential term. The β factor is the golden
ratio given by

√
5−1
2

. In this set up we stick to lattices with sizes corresponding
to numbers in the Fibonacci sequence so that the oscillating term introduces an
aperiodic modulation due to the irrationality of β. This introduces some form of
disorder normally known as quasi-disorder. We stick to periodic boundary conditions
and gather disorder averaging results over a random initial state. We evaluate the
so-called temporal autocorrelation function instead of the survival probability which
is given by

C(t) =
1

t

∫ t

0

| 〈Ψ(0)| |Ψ(t′)〉 |2dt′ (4.3)

to study the dynamical behavior of the system.
The system is usually studied as a function of the parameters t, V and h in Eq.
(4.2). We can define λ ≡ h/t and change this parameter for a fixed value of V .
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Figure 4.3: Temporal decay exponent γ for different number of particles (N) and
values of λ for the interacting Aubry-André model with periodic boundary conditions
and L = 55

Figure 4.2 shows the behavior of the temporal autocorrelation function for three
different regimes in the non-interacting case for a single particle: λ < 2 exposes the
behavior of the delocalized states or extended states, λ > 2 shows the localized state
behavior and λ = 2 is known to be a critical state, neither localized nor extended.
[6]
For λ = 2, the system is know to be in a critical phase with a very rich energy
spectra with fractal properties. The temporal decay of the system in this phase will
highly depend on the initial state of the system. For the extended states and the
localized states our results are in full agreement with those shown by [6], however
for the critical phase a temporal decay exponent (γ) of -0.14 has been reported with
a localized initial wave packet; while we average over several random initial states
and obtained an average value of -0.27 for the decay exponent. We believe the dif-
ference is due to rich spectrum inherent to the critical phase of the system and it’s
dependency on the initial state chosen.

An interesting case of study is to evaluate the temporal evolution of the system de-
scribed with the Aubry-André model for the interacting case, using higher densities.
We proceed in a similar fashion as we did for the single particle case and study the
dynamics of the system using increasing densities. For this section we provide a
perspective on the results obtained, and each of the simulations done are presented
in the Appendix section of this document.
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Figures 4.3 and 4.4 shows a perspective of the temporal decay exponent as a function
of both λ and the density, it can be seen from this and from the results shown
in the Appendix that increasing the density of system favors the decay towards
the extended states. In the language of Ref. [13], it can be said that increasing
the density favors thermalization; although according to [13] the regime for which
0 < γ < 1 no thermalization occurs at all.
It can also be extracted from our analysis that γ ≤ 1 for the λ values considered.
This is an indicator that the powerlaw exponent extracted behaves and scales with
similarity with the participation ratio PR

PR ∝ Dγ (4.4)

where D is the dimension of the Hilbert space. We can interpret the illustrated
regimes of the system as follows:

• γ → 1: As illustrated for increasing densities and λ = 1.0, indicates the
presence of chaotic initial states and diffusive dynamics

• γ < 1: For λ = 2.0 and λ = 3.0, indicates the presence of non-chaotic delocal-
ized states and subdiffusive dynamics
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Figure 4.5: Representation of the absolute error for the time evolution of an un-
perturbed clean system as a function of the subspace dimension of the quantum
system

The system can be studied further in light of the results presented in Figure 4.3 to,
for example, extract the regime for which the system enters a critical state.

4.1.3 A perspective on the absolute error

Given that our approach relies on projections on the Krylov subspace with a given
dimension on it’s own, a form of truncation error is expected as we keep this dimen-
sion to a finite value. We can evaluate this absolute error by using an initial state
and evolving the system up to a certain time value t, the resulting state is then
evolve to time −t. For an unperturbed clean system (such as the ones used for time
evolution in Figure 4.1), we should obtain the initial state with a given tolerance
set internally as a numerical parameter in the mathematical method.

Figure 4.5 puts this into perspective for increasing system sizes. For our purposes
we set the internal numerical tolerance of the Krylov subspace method to 10−7 and
the dimension of the Krylov subspace to 30, this value though, can be increased or
reduced depending on the nature of the calculations. In Figure 4.5 we plot the norm
of the difference between the initial state and the final state after evolving to time
t and returning by using time −t
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error = || |Ψ(0)〉 − eiHte−iHt |Ψ(0)〉 ||2 (4.5)

The results show what we expect from the Krylov subspace approach and the de-
scriptions discussed in [9] and even for very large subspace sizes of the system the
global error in the time evolution stays within tolerance.
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4.2 Performance

4.2.1 Systems

Both the serial and parallel application (including all it’s versions) have been en-
abled and tested in three different computational environments. Table II shows the
description of each of the systems in which the application was tested and used for
production runs.

Table II. Systems.

Description Ulysses-SISSA Galileo-CINECA Marconi-CINECA
Model — IBM NeXtScale Lenovo NeXtScale
Architecture x86 64 Linux IB Cluster Intel OmniPath Cluster
Nodes — 516 1 512
Processors 10-cores Intel Xeon

E5-2680 v2 2.80 GHz (2
per node)

8-cores Intel
Haswell 2.40 GHz

(2 per node)

18-cores Intel Xeon
E5-2697 v4 2.30 GHz (2

per node)
RAM 40 GB/node 128 GB/node 128 GB/node
Internal
Network

— IB with 4x QDR
switches

Intel OmniPath

4.2.2 Compilers and libraries

The application has been compiled and tested using the C++ MPI wrappers of
OpenMPI version 1.8.3 above GNU GCC 4.9.2 and the Intel MPI compiler from the
2016 package version 5.1.3. We expose the results obtained with the latter. Different
versions of Intel MKL and OpenBLAS have been tested also for underlying linear
algebra operations, we show the results obtained with Intel MKL version 11.3.3. The
application was tested with OpenBLAS at the beginning, since this is the default
linear algebra library installed with PETSc if another is not specified. The versions
of the higher-end libraries used are:

• Boost 1.61.0

• PETSc 3.7.3

• SLEPc 3.7.2

Configuration has been discussed in Section 3.2.

4.2.3 Performance results

Our objective in this section is to present the performance of the application using
a single environment to evaluate the application itself, so, unless otherwise stated
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we present the results using the Galileo-CINECA machine shown in Table II. We
decided to use Galileo as our main testing environment, given that Ulysses-SISSA
provides less resources in terms of memory than the ones required to undertake
some of the simulations presented here. Furthermore, although Marconi has more
updated hardware and a better network (OmniPath), this project was developed
during the early stages of the machine, shortly after it was enabled. Due to this,
some results (particularly the ones resulting from simulations with a large amount of
nodes) were not reproducible. We have chosen Galileo for our performance results,
given that during development of the project this machine provided the most stable
results in terms of performance.
We proceed to compare each of the versions described in the previous chapter using
the same configuration overall, with the Hamiltonian shown in Eq. (2.1).

Replicated basis version

We start by evaluating the performance of the first instance of the application in
a parallel environment. As was described in the previous chapter this version uses
basis replication among all processing elements to construct the matrix representa-
tion of the Hamiltonian matrix, however, the computation and distribution of this
object and the later time evolution step are performed in a fully distributed fash-
ion. Figure 4.6 shows the strong scaling behavior of the application in the two most
important steps: the construction of the Hamiltonian object and the time evolution.

It can be seen that the time of the construction of the Hamiltonian object is very
small compared to the actual time evolution procedure even for a relatively small
physical time parameter (t = 100). This constituted our base for following devel-
opment: one of our objectives is to keep the time to construct the Hamiltonian
object small when compared to the time evolution, in order to avoid compromising
scalability for a very large number of processing elements. Our results show a good
scaling behavior even for large amount of processing elements (2048 MPI processes
mapped to each core, as shown in the last bar in Figure 4.6). An MPI approach was
also required, given that for larger problem sizes (L = 30 at half filling and larger,
for instance) can’t be solved by means of a single computational node because of
memory requirements and to be able to use more than one computational node for
calculations.

Another important fact that can be extracted is that constructing and solving the
system for the given parameters takes under 2 minutes overall with 128 nodes on
the Galileo-CINECA machine. This is an important factor if for instance, one
is interested to undertake disorder averages over random initial states or another
random parameter of study.
A big improvement was obtained when using Intel MKL for underlying linear algebra
operations instead of OpenBLAS, this was done by properly linking PETSc/SLEPc
with the library. In Figure 4.6 we present the results obtained with MKL. Given
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that the method used for time evolution relies heavily on linear algebra operations,
we conclude that using MKL is highly beneficial as the library is highly optimized
for the architecture used.

Node communicator version

As was described in the previous section, basis replication is a big issue when it
comes to large problem sizes. We developed the Node communicator version with
two objectives in mind: avoid basis replication and therefore have the possibility of
studying larger system sizes and retain strong scaling behavior in the process. With
this development we managed to achieve both.
On the Galileo-CINECA machine we managed to solve a system with size up to
L = 34 at half filling using this approach, although this version is also very useful
on machines with less amount memory per node given that full replication of the
basis is avoided and actual computation and scalability of the overall application
is not compromised. The actual time evolution of the system is unchanged from
the previous version so Figure 4.7 shows the same behavior as the previous version.
In Figure 4.7 we can also see that the increase in time required to construct the
Hamiltonian operator is very small compared to the time evolution of the system
even for this relatively big system size, which was exactly our goal. Other different
approaches, such as a systematic re-computation of sections of the basis to avoid
storing this object in memory, proved to be inefficient.
Strong scaling behavior for this approach is not linear, but the results obtained are
satisfactory when it comes to actually solving the problem for a large amount of
processing elements. A flat behavior can be seen at the transition from 16 to 32
nodes, we believe this could be related to the network arrangement of the machine
so that communication beyond 16 nodes could be using different switches in the
interface (higher tree in the network arrangement); though this would have to be
investigated further in order to ascertain.

Ring exchange version

The ring exchange version was designed with the purpose to open the possibility
to even larger problem sizes. Recalling the description in the previous chapter, in
this version no memory replication occurs in the application whatsoever. Memory
requirements decrease linearly with increasing number of computing nodes, but time
scalability is indeed compromised given that a larger amount of processing elements
implicates more overall communications. So in perspective, a strong scaling view of
the performance like the one shown for the previous developments is not a meaningful
for this approach.
With this version, our goal was to have the ability to study even larger systems sizes
by means of a full distribution of memory and computation overall. To demonstrate
a perspective of the performance accomplished by this approach we show the time
of computation required in the most important sections of the application with in-
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Figure 4.7: Running time of the application for the construction of Hamiltonian,
time evolution and overall time using a system with L = 28 at half-filling (subspace
dimension of 40 116 600) up to t = 100 with a tolerance of 10−7 for a different
amount of computing nodes (Node comm version)
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Figure 4.8: Running time of the application for the construction of Hamiltonian
and time evolution using a different problem sizes at half-filling up to t = 100
with a tolerance of 10−7 for a different amount of computing nodes (Ring exchange

version)

creasing problem size and processing elements in Figure 4.8.

It can be seen that the time to construct the Hamiltonian matrix object becomes
important as the problem size increases, up to roughly 10% of the overall computa-
tion time for the larger case (L = 36 at half-filling). With this approach, most of the
communication done during the construction of the Hamiltonian object occurs in-
side of the node which is beneficial in general terms, but when using a large number
of processing elements the communication steps start to a considerable percentage
of the overall execution time.
Even so, with this approach we were able to solve the L = 36 at half-filling system; a
system that roughly has a subspace dimension of more than 9 billion elements. Mem-
ory requirements to solve this system are very large as was estimated and presented
in Table I. Using this approach we were able to calculate the survival probability
with a tolerance of 10−7 shown as shown in Figure 4.1.
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Combined Ring-Node communicator version

The previous Ring exchange version is presented as a good solution towards ob-
taining a solution to the problem for very large systems sizes. This is our go-to
approach for systems that have large subspace dimension. Even for a big number
of processing elements (2048 MPI processes in our example), the time to construct
the Hamiltonian object accounts for 10% of execution time of the application for
the larger example tested.
This version was developed as an attempt to reduce the execution time of the con-
struction of the Hamiltonian section of the application by means of another dis-
tribution of the basis and a different communication pattern. In comparison to
our previous Ring exchange version, this approach uses more memory resources in
storing the elements of the basis, as some replication occurs in the new distribution.
Figure 4.9 shows a similar representation to the one shown for the Ring exchange

version for the sake of comparison. It can be seen that as the number of processing
elements and size of the problem, instead of a speedup we have achieved an under-
performing behavior when compared to the previous version. The reason behind it
has been mentioned previously: in order to avoid exhausting memory resources for
a given node, the same memory segment has to be used for the intranode communi-
cation between each of the MPI processes of the node and the first MPI process of
the same node. This has to be performed in such a way because of the large amount
of elements in the communication, in turn, a sequential communication pattern is
done.
This effect compromises performance in relation to the previous Ring exchange

version, in which each MPI process has a more balanced workload. We conclude
that the Ring exchange version provides a better approach when it comes to solving
very large problem sizes.

4.2.4 Strong scaling

Here we present the speedup of the application for the two versions that were de-
signed to scale in time. As previously stated, for the Ring-Exchange version and the
Combined Ring-Node communicator version, Figures 4.8 and 4.9 present a better
perspective on the performance of the application.

As expected, the version with the replicated basis provides the best scaling in time
with the number of computational nodes, even though the system presented here
to evaluate performance is relatively small compared to the biggest system we were
able to simulate, the application continues to scale even up to 128 nodes for both
the construction of the Hamiltonian and the time evolution steps.

On the Node comm version, the time scaling for the time evolution step remains the
same. However, in Figure 4.11 we see that the construction of the Hamiltonian
matrix stops scaling after 16 nodes. This is related to the size of the system: with
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Figure 4.9: Running time of the application for the construction of Hamiltonian and
time evolution using a different problem sizes at half-filling up to t = 100 with a
tolerance of 10−7 for a different amount of computing nodes (Combined Ring-Node

comm version)

smaller system sizes one reaches the so-called Amdahl’s law quicker as the number of
computing nodes increases. In order to provide evidence of this, Figure 4.12 shows
the strong scaling of the construction of the Hamiltonian section of the application
for the L = 30 at half-filling system.

Since the system with L = 30 at half-filling is too large memory-wise to be simulated
on a single computational node, the strong scaling is measured based on the time
to construct the Hamiltonian representation on 2 computing nodes in Figure 4.12.
It can be seen that for a larger system the communication algorithm implemented
using MPI continues to scale even up to 128 nodes.
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Figure 4.10: Speedup of the application for the construction of Hamiltonian and
time evolution using a system with L = 28 at half-filling (subspace dimension of 40
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Figure 4.11: Speedup of the application for the construction of Hamiltonian and
time evolution using a system with L = 28 at half-filling (subspace dimension of 40
116 600) up to t = 100 with a tolerance of 10−7 for a different amount of computing
nodes (Node comm version)
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Figure 4.12: Speedup of the construction of the Hamiltonian step using a system
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Chapter 5

Future Work

The memory problem that is entailed by basis replication among processing elements
in a parallel environment has been addressed in this work by means of distribution
and MPI communication patterns. This has allowed us to study the dynamics of
systems with a very large subspace dimension. A caveat of the method employed is
the fact that the Hamiltonian matrix needs to be stored in memory to perform the
time evolution and this would have to be addressed if one is interested in studying
even larger systems, as even with a full distribution the memory requirement is too
large. A possible solution to be evaluated would be an on-the-fly construction of
the Hamiltonian matrix and intermediate operations of the time evolution, although
this procedure would have to be highly optimized to obtain results in a timely man-
ner. This would also imply a specialization of the routines to specific Hamiltonian
operators, which means that if one is interested in studying systems with a different
Hamiltonian a much bigger effort would have to be committed and versatility would
be reduced.

The results presented here were limited by the amount of computing resources that
a user can allocate on the systems described: 128 nodes on Galileo and 166 nodes
on Marconi. However, a large scale simulation using larger computing resources can
be undertaken if enough scientific motivation is proposed.

Heterogeneous computing using GPGPUs or co-processors can provide a viable
framework to study the dynamics of the system. With pending evaluation, this
solution might be able to provide a good performing method to study not large sys-
tems (due to memory consumption reasons) but perhaps smaller systems for very
large values of time. PETSc already provides the background to perform this task,
but the complex datatypes that are required to solve the problem might provide dif-
ficulties with some of the routines (namely, SLEPc’s BV class). Another solution if
one is interested in using GPGPUs would be to re-implement the application exposed
in the Section 3.3 (Serial version) using specialized libraries such as cuSPARSE of
CUSP.
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Chapter 6

Conclusion

An application to study the dynamics of quantum correlated systems suitable to be
executed on massively parallel supercomputers has been developed and tested in this
work. We have used high-performing libraries in conjunction with MPI distribution
algorithms in order to study large quantum systems with subspace dimension of over
9 billion states with the computational resources available.
To check the validity of the results we have studied and presented the dynamics of
known models. [13][6]
We have studied the performance of the application with different MPI distribution
schemes using equal physical systems and concluded that the best approach for
moderate system sizes is the Replicated basis or Node Communicator subject to
available computational resources; while the Ring Exchange method proposes an
efficient and simple approach to study the dynamics of very large problem sizes.
The work presented here constitutes an instance for which an HPC approach is most
useful towards scientific computing and the development of cutting-edge scientific
results.
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Appendix A

Interacting Aubry-André model
results

We devote this appendix section to show the results obtained for each of the simula-
tions related to the interacting case of the Aubry-André model for different densities.
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Figure A.1: Temporal autocorrelation for the Aubry-André model interacting case
with 2 particles (L = 55, D = 1485) using periodic boundary conditions for different
values of λ (200 realisations)
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Figure A.2: Temporal autocorrelation for the Aubry-André model interacting case
with 3 particles (L = 55, D = 26235) using periodic boundary conditions for different
values of λ (200 realisations)
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Figure A.3: Temporal autocorrelation for the Aubry-André model interacting case
with 4 particles (L = 55, D = 341055) using periodic boundary conditions for
different values of λ (100 realisations)
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Figure A.4: Temporal autocorrelation for the Aubry-André model interacting case
with 5 particles (L = 55, D = 3478761) using periodic boundary conditions for
different values of λ (25 realisations)
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Figure A.5: Temporal autocorrelation for the Aubry-André model interacting case
with 6 particles (L = 55, D = 28989675) using periodic boundary conditions for
different values of λ (5 realisations)
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