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1 Introduction

Conformal Field Theories (CFTs) play a fundamental role in theoretical physics. For

instance, they are the starting and ending points of renormalization group flows in quantum

field theories, they describe second-order phase transitions in critical phenomena and, by

means of the AdS/CFT correspondence, they can help us in shedding light on various

aspects of quantum gravity and string theory. Thanks to the tight constraints imposed by

the conformal symmetry, CFTs are also among the few examples (if not the only one) of

interacting quantum field theories where exact results are available without supersymmetry

in any number of space-time dimensions. In particular, it is well-known that three-point

functions of scalar primary operators are univocally determined by the conformal symmetry,

up to a coefficient. Three-point functions of arbitrary fields, not only scalars, are also fixed

by conformal symmetry up to some coefficients. Most of the attention has been devoted
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to correlators involving traceless symmetric conserved operators,see e.g. refs. [1–8]. More

general correlators involving again traceless symmetric (conserved or not) tensors have

recently been computed in ref. [9], while some other specific correlator with fermions was

considered, e.g., in ref. [10]. Despite these progresses, a general comprehensive computation

of three-point functions involving arbitrary fields is not available yet.1 The knowledge

of such correlators is an important ingredient to extend the recently renewed conformal

bootstrap approach [12] beyond scalar correlators and might as well have applications in

the AdS/CFT correspondence and in other contexts.

Aim of this paper is to make a step forward along this direction by computing the most

general three-point function in four dimensional (4D) CFTs between bosonic or fermionic

operators in irreducible representations of the Lorentz group. No extra symmetry (like

parity) is assumed. We will achieve this task by extending and generalizing the so called

6D embedding formalism in twistor space as developed by Simmons-Duffin in ref. [13]. As in

ref. [13], we will use an index free notation for the correlators, obtained by saturating indices

with auxiliary commuting spinors. Constraints coming from bosonic or fermionic conserved

currents can be simply worked out in this formalism. We will see, generalizing the results

found in ref. [9] for traceless symmetric operators, that 4D current conservation conditions

can be covariantly lifted to 6D only if the conserved operator saturates the unitarity bound.

The extension of our formalism to higher-point functions is in principle straightfor-

ward, but technically complicated. Using the OPE, however, we can at least determine

the number of structures appearing in higher-point functions with arbitrary operators by

using our result for three-point functions. We have in particular computed in closed form

the number of structures appearing in certain 4-point functions with traceless symmetric

operators and checked the consistency of the result using crossing symmetry.

The structure of the paper is as follows. In section 2 we will review the 6D embedding

formalism in twistor space in index-free notation and set-up our notation. We classify and

compute all possible three-point functions in section 3. This is the key section of the paper,

with eq. (3.31) being the most important result of this work. We show in section 4 how the

additional constraints imposed by conserved currents are implemented in the 6D twistor

space. The key relations of this section are eqs. (4.10) and (4.11). In order to show the

power and simplicity of our formalism, in section 5 we work out explicitly some examples

of correlators, with and without conserved operators. In section 6 we show how our results

can be used to compute the number of independent tensor structures of four-point functions

and their consistency with crossing symmetry. We conclude in section 7. Our notation and

conventions, as well as useful relations, are summarized in appendix A, while in appendix

B we recall the map between the vector and spinor notation for tensor fields.

2 The 6D embedding formalism in twistor space in an index-free notation

The embedding formalism idea dates back to Dirac [15]. It is based on the simple observa-

tion that the 4D conformal group is isomorphic to SO(4, 2), that is the Lorentz group of a

6D flat space with signature (−−++++). The non-linear action of the conformal group

1See ref. [11] for an early attempt.
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in 4D turns into simple linear Lorentz transformations in 6D. Hence, by properly extending

4D fields to 6D, one can more easily derive the constraints imposed by the conformal sym-

metry on the correlation functions. The embedding formalism has successfully been used

in ordinary space to study correlation functions of traceless symmetric tensors [9, 10, 16–

18] (see also ref. [19]). Using the local isomorphism between SO(4, 2) and SU(2, 2), the

embedding formalism can be reformulated in twistor space. In this form it has sporadically

been used in the literature, mainly in the context of super conformal field theories (see e.g.

refs. [20–25]). More recently, it has been applied in ref. [13] to study correlation functions

in 4D CFTs. For completeness, we briefly review here the embedding formalism in twistor

space, essentially following the analysis made in section 5 of ref. [13]. We assume that the

reader is familiar with basics of CFT.

On R4,2, we consider the light-cone defined by (see appendix A for our notations and

conventions)

X2 = XMXNηMN = ηµνX
µXν +X+X− = 0 . (2.1)

We define a projective light-cone by identifying (on the cone) XM ∼= λXM , with λ any real

non-vanishing constant. In this way, we have a map between 6D and 4D coordinates. The

standard 4D coordinates xµ should not depend on λ and are defined as

xµ =
Xµ

X+
. (2.2)

It can be shown that conformal transformations acting on xµ are mapped to Lorentz

transformations acting on the light-cone.

Let us now consider how 4D fields are uplifted to 6D, starting with scalar fields. Let

φ(x) be a 4D primary scalar operator with scaling dimension ∆ and Φ(X) its corresponding

6D field. In order to be well defined on the projective cone, Φ(X) should be a homogeneous

function: Φ(λX) = λ−nΦ(X), for some n. A natural identification is

φ(x) = (X+)nΦ(X) . (2.3)

It is easy to verify that n = ∆ in eq. (2.3) to correctly reproduce the conformal transforma-

tions of φ(x). Let us now consider spin 1/2 primary fermions ψα(x) and φ̄
α̇(x), with scaling

dimension ∆. As shown in ref. [10], such fields are uplifted to 6D homogeneous twistors

Ψa(X) and Φ̄a(X), with degree n = ∆− 1/2. A transversality condition is imposed on the

6D fields, in order to match the number of degrees of freedom:

X
ab
Ψb(X) = 0 ,

Φ̄a(X)Xab = 0 ,
(2.4)

where X and X are twistor space-time coordinates, defined in eq. (A.11). By solving

eq. (2.4), we get

Ψa(X) = (X+)−∆+1/2

(

ψα(x)

−(xµσ̄
µ)α̇βψβ(x)

)

,

Φ̄a(X) = (X+)−∆+1/2

(

φ̄β̇(x)(xµσ̄
µ)β̇α

φ̄α̇(x)

)

.

(2.5)
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As discussed in ref. [13], it is more convenient to embed ψα(x) and φ̄
α̇(x) to twistors Ψ̄a(X)

and Φa(X), respectively, with degree n = ∆ + 1/2. In this way, we essentially trade the

transversality condition for a gauge redundancy. A generic solution of eq. (2.4) is given by

Ψ = XΨ̄ and Φ̄ = ΦX for some Ψ̄ and Φ, since on the cone

XX = XX = 0. (2.6)

We can then equivalently associate ψα(x) to a twistor Ψ̄a(X), and φ̄α̇(x) to a twistor Φa(X)

as follows:

ψα(x) = (X+)∆−1/2XαaΨ̄
a(X) ,

φ̄α̇(x) = (X+)∆−1/2X
α̇a
Φa(X) ,

(2.7)

where X
β̇b

= ǫβ̇γ̇X
b

γ̇ . The twistors Ψ̄(X) and Φ(X) are subject to an equivalence relation,

Ψ̄(X) ∼ Ψ̄(X) +XV ,

Φ(X) ∼ Φ(X) +XW ,
(2.8)

with V and W generic twistors. We are now ready to consider a 4D primary spinor-tensor

in an arbitrary irreducible representation of the Lorentz group, with scaling dimension ∆:

f
β̇1...β̇l̄
α1...αl

(x) , (2.9)

where dotted and undotted indices are symmetrized. We will denote such a representation

as (l, l̄), namely by the number of undotted and dotted indices that appear. Hence, a spin

1/2 Weyl fermion will be in the (1, 0) or (0, 1), a vector in the (1, 1), an antisymmetric

tensor in the (2, 0) ⊕ (0, 2) and so on. Generalizing eq. (2.7), we encode f
β̇1...β̇l̄
α1...αl

in a 6D

multi-twistor field F a1...al
b1...bl̄

of degree n = ∆+ (l + l̄)/2 as follows:

f
β̇1...β̇l̄
α1...αl

(x) = (X+)∆−(l+l̄)/2Xα1a1 . . .XαlalX
β̇1b1 . . .X

β̇l̄bl̄F a1...al
b1...bl̄

(X) . (2.10)

Given the gauge redundancy (2.8) in each index, the 4D field f is uplifted to an equivalence

class of 6D fields F . Any two fields F and F̂ = F +XV or F̂ = F +XW , for some multi

twistors V and W , are equivalent uplifts of f , because of eq. (2.6). There is yet another

equivalence class, due again to eq. (2.6). Twistors of the form F a1a2...
b1b2...

= δa1b1 Z
a2...
b2...

give a

vanishing contribution in eq. (2.10). Hence, without loss of generality, we can take as uplift

of f a multi-twistor F with vanishing trace, namely:

δ
bj
aiF

a1...al
b1...bl̄

(X) = 0 , ∀i = 1, . . . , l, ∀j = 1, . . . , l̄ . (2.11)

It is very useful to use an index-free notation by defining

f(x, s, s̄) ≡ f
β̇1...β̇l̄
α1...αl

(x)sα1 . . . sαl s̄β̇1
. . . s̄β̇l̄

, (2.12)

where sα and s̄β̇ are auxiliary (commuting and independent) spinors. Similarly, we define

F (X,S, S̄) ≡ (X+)∆+(l+l̄)/2F a1...al
b1...bl̄

(X) Sa1 . . . Sal S̄
b1 . . . S̄bl̄ (2.13)
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in terms of auxiliary (again commuting and independent) twistors Sa and S̄a. Consistency

of eqs. (2.10), (2.12) and (2.13) implies that

Sa = sα
Xαa

X+
, S̄a = s̄β̇

X
β̇a

X+
. (2.14)

From eq. (2.14) we also deduce

X
ab
Sb = S̄bXba = S̄aSa = 0 , (2.15)

consistently with the gauge redundancies we have in choosing F . Given a 6D multi-twistor

field F , the corresponding 4D field f is explicitly given by

f
β̇1...β̇l̄
α1...αl

(x) =
1

l!l̄!

∂

∂sα1
. . .

∂

∂sαl

∂

∂s̄β̇1

. . .
∂

∂s̄β̇l̄

F

(

X,
sX

X+
,
s̄X

X+

)

. (2.16)

It is useful to compare the index-free notation introduced here with the one introduced

in ref. [9] for symmetric traceless tensors in terms of polynomials in auxiliary variables zµ

and ZM . Recall that in vector notation, a 4D symmetric traceless tensor tµ1...µl
can be

embedded in a 6D tensor TM1...Ml
by means of the relation

tµ1...µl
= (X+)∆−l ∂X

M1

∂xµ1
. . .

∂XMl

∂xµl
TM1...Ml

, (2.17)

where TM1...Ml
is symmetric traceless in 6D, homogeneous of degree ∆, as well as transverse:

XA1TA1A2...Al
= 0. In ref. [9], 4D and 6D fields are encoded in the polynomials

t(x, z) = tµ1...µnz
µ1 . . . zµn ,

T (X,Z) = (X+)∆TM1...MnZ
M1 . . . ZMn ,

(2.18)

where in Minkowski space zµ is a light-cone vector, zµz
µ = 0. A null vector can always be

written as a product of two spinors:

zµ = σµ
αβ̇
sαs̄β̇ . (2.19)

Given the relation (B.6) between symmetric traceless tensors written in vector and spinor

notation, the spinors sα and s̄α̇ appearing in eq. (2.19) are exactly the ones defined in

eq. (2.12). On the contrary, there is not a simple relation between the 6D coordinates ZA

and the 6D twistors Sa and S̄a.

3 Three-point functions

The goal of this section is to classify and compute the most general three-point function in

a 4D CFT using the 6D embedding formalism reviewed in section 2, essentially completing

the program that was outlined in ref. [13], where this formalism was first proposed and

used. Although some of the results of this section were already obtained in ref. [13], for

the clarity of the presentation and for completeness, they will be reported here in a more

systematic framework.
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Three-point functions in a CFT are completely fixed by the conformal symmetry, up

to a set of constants. Let us denote by Fi = Fi(Xi, Si, S̄i) the index-free 6D multi tensor

field corresponding to some (li, l̄i) 4D tensor field fi. An arbitrary three-point function can

schematically be written as

〈F1F2F3〉 = K
N3
∑

s=1

λsTs, (3.1)

where K is a kinematic factor which depend on the scaling dimension and spin of the

external fields, Ts are dimensionless (i.e. homogeneous with degree zero) SU(2, 2) invariant

tensor structures which encode the Lorentz structure of the fields and λs are constants.

The index s runs over all the possible different independent tensor structures compatible

with conformal invariance.

Let us start with the kinematic factor

K =
1

Xa12
12 X

a13
13 X

a23
23

, (3.2)

where we use a 6D short-hand notation

Xij ≡ Xi ·Xj . (3.3)

The coefficients aij are determined by matching the scaling dimension of both sides of

eq. (3.1):

aij =
1

2

(

∆ijk +
(li + l̄i) + (lj + l̄j)− (lk + l̄k)

2

)

, i 6= j 6= k , (3.4)

where we have defined

∆ijk ≡ ∆i +∆j −∆k = ∆jik . (3.5)

Finding the tensor structures Ts is a much less trivial problem. Any Ts will be a product

of some fundamental SU(2, 2) invariant building blocks that are to be determined.

3.1 Invariant building blocks

The fundamental group-theoretical objects carrying SU(2, 2) indices, which should even-

tually be combined with the auxiliary twistors Sa and S̄b to form SU(2, 2) invariants, are

obtained as products of

δab , εabcd, ε
abcd, Xab, X

ab
. (3.6)

Let us first focus on the ε tensors. Their contraction with any other object in eq. (3.6) does

not give any new structures, because they reduce to a sum of already existing elements in

eq. (3.6), for example:

εabcdεaefg = δbeδ
c
fδ

d
g − δbeδ

c
gδ

d
f − δbfδ

c
eδ

d
g + δbfδ

c
gδ

d
e + δbgδ

c
eδ

d
f − δbgδ

c
fδ

d
e , (3.7)

εabcdXae = −δbeX
cd

+ δceX
bd − δdeX

bc
. (3.8)

Actually, for three-point functions the ε-symbols drop from the discussion completely. It

can be seen using the index-free formalism where ε is encoded into εabcdS̄
a
i S̄

b
j S̄

c
kS̄

d
l , which

– 6 –
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vanishes unless i 6= j 6= k 6= l. Thus, the tensors ε become relevant starting from the

four-point functions. The fundamental group-theoretical objects can be grouped into three

sets

{

δba, [XiXj ]
b
a , [XiXjXkXl]

b
a , . . .

}

,
{

[Xi]
ab, [XiXjXk]

ab, . . .
}

,
{

[Xi]ab, [XiXjXk]ab, . . .
}

.

(3.9)

Multiplying these objects by auxiliary twistors S and S̄ will give us the SU(2,2) invari-

ant building blocks needed to characterize the three-point (or any other n-point) function.

They are not all independent, given the relations (2.6), (2.15) and (A.13).

Let us first determine the general form of two-point functions 〈F1F2〉. It is clear

in this case that the only non-vanishing independent SU(2,2) invariant is obtained by

contracting one twistor S̄1 with S2 or viceversa. The form of the two-point function is

uniquely determined:

〈F1(X1, S1, S̄1)F2(X2, S2, S̄2)〉 = cX2∆1

12 I l121I
l̄1
12δl1,l̄2δl2,l̄1δ∆1,∆2

, (3.10)

where c is a normalization factor and we have defined the SU(2,2) invariant

Iij ≡ S̄iSj . (3.11)

For three-point functions three more invariants arise:

Ki,jk ≡ Ni,jkSjXiSk , (3.12)

Ki,jk ≡ Ni,jkS̄jXiS̄k , (3.13)

Ji,jk ≡ NjkS̄iXjXkSi . (3.14)

The normalization factors

Njk ≡ 1

Xjk
, Ni,jk ≡

√

Xjk

XijXik
, (3.15)

are introduced to make the SU(2, 2) invariants in eqs. (3.11)–(3.14) dimensionless and well-

defined on the 6D light-cone.2 Notice that in eqs. (3.12)–(3.14) i 6= j 6= k and indices are

not summed. The invariants (3.12)–(3.14) are all anti-symmetric in the two indices after

the comma:

Ki,jk = −Ki,kj , Ki,jk = −Ki,kj , Ji,jk = −Ji,kj , (3.16)

due to the anti-symmetry of X, X and the relations (2.15), (A.13).

Every other SU(2, 2) invariant object obtained from eq. (3.9) can be written in terms

of different combinations of Iij ,Ki,jk,Ki,jk and Ji,jk. Using eqs. (3.11)–(3.14), the most

general tensor structure can be written as follows:

Ts = λs I
m12

12 Im21

21 Im13

13 Im31

31 Im23

23 Im32

32 Kk1
1,23K

k2
2,13K

k3
3,12K

k̄1
1,23K

k̄2
2,13K

k̄3
3,12J

j1
1,23J

j2
2,13J

j3
3,12, (3.17)

2Notice the different normalization and slight different index notation in the definition of the invariants

I, K, K and J with respect to the ones defined in ref. [13].
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where mij , ki, k̄i and ji are a set of non-negative integers. Matching the powers of Si and

S̄j in both sides of eq. (3.1) gives us six constraints:















































l1 = m21 +m31 + 0 + k2 + k3 + j1

l2 = m12 +m32 + k1 + 0 + k3 + j2

l3 = m13 +m23 + k1 + k2 + 0 + j3

l̄1 = m12 +m13 + 0 + k̄2 + k̄3 + j1

l̄2 = m21 +m23 + k̄1 + 0 + k̄3 + j2

l̄3 = m31 +m32 + k̄1 + k̄2 + 0 + j3 .

(3.18)

This would have completed the classification of the three-point functions if the tensor

structures Ts were all linearly independent, but they are not, and hence a more refined

analysis is necessary.

3.2 Relations between invariants

The dependence of the structures (3.17) has its roots in a set of identities among the

twistors Si and the coordinates Xj , when i = j. Recall that on the 6D light-cone X can

be written in terms of auxiliary twistors V and W :

Xab = VaWb − VbWa. (3.19)

The twistor S can also be rewritten in an analogous manner. We solve eq. (2.15) by

Sa = XabT̄
b for some T̄ b and then we use eq. (3.19) to get

Sa = αVa + βWa , (3.20)

with α = T̄W , β = −T̄ V . Using eqs. (3.19) and (3.20) it is immediate to verify the

identities

SaXbc + SbXca + ScXab = 0 , (3.21)

XabXcd +XcaXbd +XbcXad = 0 . (3.22)

Analogous relations apply for the dual twistors S̄ and X. We have not found identities in-

volving more S’s orX’s that do not boil down to eqs. (3.21) and (3.22). Applying eqs. (3.21)

and (3.22) (actually it is enough to use only eq. (3.21)) to bi-products of invariants we get

the following relations (no sum over indices):

Kj,ikKi,jk = 2IkiIjk − IjiJk,ij , (3.23)

Ji,jkJj,ik = 2
(

2IijIji +Kk,ijKk,ij

)

, (3.24)

Jj,ikKj,ik = 2
(

− IjiKi,jk + IjkKk,ij

)

, (3.25)

Jj,ikKj,ik = 2
(

− IijKi,kj − IkjKk,ij

)

. (3.26)

We have verified that higher order relations involving more than 2 invariants always arise

as the composition of the relations (3.23)–(3.26). This is expected, since the fundamental

– 8 –
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identities (3.21) and (3.22) involve only two tensors. A particularly useful third-order

relation is

J1,23J2,13J3,12 = 8
(

I21I13I32−I12I31I23
)

+4
(

I23I32J1,23−I13I31J2,13+I12I21J3,12
)

, (3.27)

which is obtained by applying, in order, eqs. (3.24), (3.26) and (3.23). The relations (3.23)–

(3.27) have been originally obtained in ref. [13], though it was not clear there whether

additional relations were possible.

Combining eqs. (3.23) and (3.24), we see that a product of anyK andK can be reduced

to a combination of I’s and J ’s. Thus, we obtain the first constraint on the integers ki and

k̄i appearing in eq. (3.17):

k1 = k2 = k3 = 0 or k̄1 = k̄2 = k̄3 = 0 . (3.28)

In other words, we can always choose a basis of invariants Ts where K’s and K’s never ap-

pear together. Next we can apply eq. (3.27) successively. At each step the tensor structure

splits into five ones, each time with a reduced number of J ’s. We keep applying eq. (3.27)

until the initial tensor structure is written as a sum of tensor structures where all have at

least one value of j1, j2, or j3 equal to zero. Thus we get the second constraint in eq. (3.17):

j1 = 0 or j2 = 0 or j3 = 0. (3.29)

The last step is to apply eq. (3.26) (for k1,2,3 = 0) or eq. (3.25) (for k1,2,3 = 0), so that

products of the form Ki,...Ji,... or Ki,...Ji,...can be rewritten using only K’s or K’s of a

different type. It is not difficult to convince oneself that this boils down to the following

further constraints on eq. (3.17):











k1 = 0 or j1 = 0

k2 = 0 or j2 = 0

k3 = 0 or j3 = 0











k̄1 = 0 or j1 = 0

k̄2 = 0 or j2 = 0

k̄3 = 0 or j3 = 0 .

(3.30)

3.3 Final classification of tensor structures and further considerations

There are no further relations to be imposed so we can finally state the main result of this

paper.

The most general three-point function 〈F1F2F3〉 can be written as

〈F1F2F3〉 = K
N3
∑

s=1

λs

(

3
∏

i 6=j=1

I
mij

ij

)

Kk1
1,23K

k2
2,13K

k3
3,12K

k̄1
1,23K

k̄2
2,13K

k̄3
3,12J

j1
1,23J

j2
2,13J

j3
3,12, (3.31)

where K is given by eq. (3.2) and s runs over all the independent tensor structures. These

are given by the set of non-negative exponents mij, ki, k̄i and ji solution of eq. (3.18) and

subjected to the constraints (3.28), (3.29) and (3.30). The latter require that, modulo the

Iij invariants, at most three more invariants can be present in each tensor structure. We

can have i) 2 J ’s, ii) 3 K’s, iii) 2 K’s and 1 J , iv) 1 K and 2J ’s, v) 3 K’s, vi) 2 K’s and 1

J , vii) 1 K and 2 J ’s.
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Let us discuss some implications of eq. (3.31). It is useful to define

∆l ≡ l1 + l2 + l3 − (l̄1 + l̄2 + l̄3) . (3.32)

Using the system (3.18), we immediately get

∆l = 2(k1 + k2 + k3 − k̄1 − k̄2 − k̄3) , (3.33)

k1 + k2 + k3 ≤ min(l1 + l2, l1 + l3, l2 + l3) , k̄1 + k̄2 + k̄3 ≤ min(l̄1 + l̄2, l̄1 + l̄3, l̄2 + l̄3) ,

and hence

− 2min(l̄1 + l̄2, l̄1 + l̄3, l̄2 + l̄3) ≤ ∆l ≤ 2min(l1 + l2, l1 + l3, l2 + l3) . (3.34)

These are the conditions for the 4D three-point function 〈f1f2f3〉 to be non-vanishing.

They exactly match the findings of ref. [26]. Indeed, in that paper it was found that the

3-point function 〈f1f2f3〉, with fi primary fields in the (li, l̄i) representations of SL(2, C), is

non-vanishing if the decomposition of the tensor product (l1, l̄1)⊗ (l2, l̄2)⊗ (l3, l̄3) contains

a traceless-symmetric representation (l, l). Then we have

(l1, l̄1)⊗(l2, l̄2)⊗(l3, l̄3) =

min(l1,l2)
∑

m=0

min(l̄1,l̄2)
∑

m̄=0

pm
∑

p=0

p̄m
∑

p̄=0

(l1+l2+l3−2m−2p, l̄1+ l̄2+ l̄3−2m̄−2p̄),

(3.35)

where pm = min(l1+ l2− 2m, l3), p̄m = min(l̄1+ l̄2− 2m̄, l̄3), and the indices of summation

are subjected to the following constraints

m+ p ≤ min(l1 + l2, l1 + l3, l2 + l3), m̄+ p̄ ≤ min(l̄1 + l̄2, l̄1 + l̄3, l̄2 + l̄3). (3.36)

Demanding that a term of the form (l, l) appears in the r.h.s. of eq. (3.35) implies

∆l = 2(m+ p− m̄− p̄), (3.37)

where ∆l is defined in eq. (3.32). We then see that eqs. (3.36) and (3.37) exactly correspond

to eqs. (3.33), with the identification m+ p→ k1 + k2 + k3, m̄+ p̄→ k̄1 + k̄2 + k̄3.

The master formula (3.31) computes the most general three-point function compati-

ble with conformal symmetry. Invariance under parity transformations, in particular, is

not assumed. It should be obvious that additional symmetries (like exchange symmetries

with identical operators or conserved operators) put further constrains on the form of the

3-point function. We will consider in more detail parity in subsection 3.5 and conserved

operators in section 4.

For any given correlator, the explicit form and the number N3 of independent ten-

sor structures is easily determined with a numerical algorithm. In general, N3 =

N3(l1, l̄1, l2, l̄2, l3, l̄3) and it is a laborius task (which we have not tried to do) to find its

analytic expression for any correlator. However, we have been able to get a simple for-

mula for the correlations involving two traceless-symmetric tensors (l1, l1), (l2, l2) and an

arbitrary (l3, l̄3) field. The number of independent structures is found to be

N3(l1, l1, l2, l2, l3, l̄3) = 1+l2 (l1+1)2− 1

3
l1 (l

2
1−4)+

1

24
|∆l| (∆l2−4)− 1

4
∆l2 (l1+1) (3.38)

+
1

6
q (q2−1)− 1

3
m1 (m1−1) (m1−2)− 1

3
m2 (m2−1) (m2−2),
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where ∆l = l3 − l̄3 and

q = max

(

0,
1

2
|∆l|+ l1 − l2

)

, m1 = max

(

0,
1

2
|∆l| − l1

)

, m2 = max

(

0,
1

2
|∆l| − l2

)

.

(3.39)

The domain of validity of this formula is l1 ≤ l2 and l1 + l2 − 1
2 |∆l| ≤ min(l3, l̄3). When

l̄3 = l3 eq. (3.38) agrees with the analytic counting of independent tensor structures

performed in ref. [9].3

In principle the classification performed here for three-point functions can be extended

to four (or higher) point functions, although its complexity rapidly grows. There are 64

SU(2,2) invariant building blocks (compared to 15 for three-point functions) and many

relations among bi-products of invariants for four-point functions. For this reason we have

not attempted to make a general classification of correlators with more than three fields.

3.4 6D to 4D dictionary

The transition from the 6D index-free form to the 4D one is extremely easy. Given a 6D

three-point function, we just need to rewrite the invariants I,K, K̄, J in 4D form. We have

Iij =
1

X+
i X

+
j

s̄iα̇(XiXj)
α̇
αs

α
j = s̄iα̇(xij · σǫ)α̇α sαj , (3.40)

Kk,ij =
Nk,ij

X+
i X

+
j

sαi s
β
j (XiXkXj)αβ

=
i√
2

|xij |
|xik||xjk|

sαi s
β
j

(

(x2ik + x2jk − x2ij)ǫαβ + 4xµikx
ν
kj(σµνǫ)αβ

)

, (3.41)

Kk,ij =
Nk,ij

X+
i X

+
j

s̄iα̇s̄jβ̇(XiXkXj)
α̇β̇

=
i√
2

|xij |
|xik||xjk|

s̄iα̇s̄jβ̇

(

(x2ik + x2jk − x2ij)ǫ
α̇β̇ + 4xµikx

ν
kj(σ̄µνǫ)

α̇β̇

)

, (3.42)

Jk,ij =
Nij

(X+
k )2

s̄kα̇(XkXiXjXk)
α̇
αs

α
k = 2

x2ikx
2
kj

x2ij
sαk (Zk,ij · σǫ)α̇αs̄kα̇ , (3.43)

where

Zµ
k, ij ≡

xµki
x2ki

−
xµkj
x2kj

, Zµ
k, ij = −Zµ

k, ji . (3.44)

Explicit 4D correlation functions with indices are obtained by removing the auxiliary

spinors si and s̄i through derivatives, as described in eq. (2.16).

3.5 Transformations under 4D parity

Under the 4D parity transformation (x0, ~x) → (x0,−~x), a 4D field in the (l, l̄) representation

of the Lorentz group is mapped to a field in the complex conjugate representation (l̄, l).

We parametrize the transformation as follows:

f
β̇1...β̇l̄
α1...αl

(x) → η(−)
l+l̄
2 f α̇1...α̇l

β1...βl̄
(x̃) , (3.45)

3When matching our result with ref. [9] one should not forget that eq. (3.38) counts both parity-even

and parity-odd structures.
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where η is the intrinsic parity of the field and x̃ is the parity transformed coordinate.

Applying parity twice gives

η ηc(−)l+l̄ = 1 , (3.46)

where ηc is the intrinsic parity of the conjugate field. We then see that ηηc = +1 for

bosonic operators and ηηc = −1 for fermionic ones. Under parity, in particular, we have

(x · σǫ)β̇α ↔ −(x · σ̄ǫ)α̇β , ǫαβ ↔ −ǫα̇β̇ , xµyν(σµνǫ)αβ ↔ −xµyν(σ̄µνǫ)α̇β̇ . (3.47)

We can see how parity acts on the 6D invariants (3.11)–(3.14) by using their 4D expres-

sions (3.40)–(3.43) on the null cone and eqs. (3.47). We get

Iij → −Iji ,
Ki,jk → +Ki,jk ,

Ki,jk → +Ki,jk ,

Ji,jk → +Ji,jk .

(3.48)

In general, parity maps correlators of fields into correlators of their complex conjugate

fields. Imposing parity in a CFT implies that for each primary field (l, l̄) there must exist

its conjugate one (l̄, l), and the constants entering in their correlators are related. Of

course, we can also have correlators that are mapped to themselves under parity. Since

∆l → −∆l under parity, where ∆l is defined in eq. (3.32), such correlators should have

∆l = 0. Due to eqs. (3.34) and (3.28), the structures K and K cannot enter in correlators

with ∆l = 0, which depend only on the invariants Iij and Ji,jk. For correlators that are

mapped to themselves under parity, one has to take linear combinations of the tensor

structures appearing in eq. (3.31) that are even or odd under parity, according to the

transformation rules for I’s and J ’s in eq. (3.48). Depending on the intrinsic parity of the

product of the fields entering the correlator, the coefficients multiplying the parity even or

parity odd structures should then be set to zero if parity is conserved.

A particular relevant class of correlators that are mapped to themselves under

parity are those involving symmetric traceless tensors only. In this case we have verified

that eqs. (3.48) lead to the correct number of parity even and parity odd structures as

separately computed in ref. [9].

4 Conserved operators

Primary tensor fields whose scaling dimension ∆ saturates the unitarity bound [27] (see

also ref. [28] for a generalization to D 6= 4 space-time dimensions)

∆ ≥ l + l̄

2
+ 2 , l 6= 0 and l̄ 6= 0 , (4.1)

are conserved. Three-point functions with conserved operators are subject to further con-

straints which will be analyzed in this section. Given a conserved spinor-tensor primary

field in the (l, l̄) representation of the Lorentz group, with scaling dimension ∆, we define

(∂ · f)β̇2...β̇l̄
α2...αl

(x) ≡ (ǫσµ)α1

β̇1

∂µf
β̇1...β̇l̄
α1...αl

(x) = 0 . (4.2)
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Let us see how the 4D current conservation (4.2) can be uplifted to 6D as a constraint on

the field F a1...al
b1...bl̄

. This will allow us to work directly with the 6D invariants (3.11)–(3.14),

providing a great simplification. The analysis that follows is essentially a generalization

to arbitrary conserved currents of the one made in ref. [9], where only symmetric traceless

currents were considered. From eq. (2.10), we get

(∂ · f)β̇2...β̇l̄
α2...αl

(x) = (X+)∆−(l+l̄)/2∂µ

(

(eµ) b1
a1 Xα2a2 . . .XαlalX

β̇2b2 . . .X
β̇l̄bl̄F a1...al

b1...bl̄
(X)

)

,

(4.3)

where

(eµ) b
a ≡ −Xaα(ǫσ

µ)α
β̇
X

β̇b
= (Mµ+) b

a , (4.4)

in terms of the tensor

MMN = 2
(

XMΣN
PX

P −XNΣM
PX

P
)

. (4.5)

Applying the derivative to each term gives

(∂ · f)β̇2...β̇l̄

α2...αl
= (X+)∆−(l+l̄)/2Xα3a3

. . .Xαlal
X

β̇3b3
. . .X

β̇
l̄
b
l̄

(

(∂µe
µ) b1

a1
Xα2a2

X
β̇2b2

+
∂XM

∂xν
(eν) b1

a1

×
(

(l − 1)

(

∂Xα2a2

∂XM

)

X
β̇2b2

+ (l̄ − 1)

(

∂X
β̇2b2

∂XM

)

Xα2a2
+Xα2a2

X
β̇2b2 ∂

∂XM

)

)

F a1...al

b1...bl̄
.

(4.6)

After some algebraic manipulations, eq. (4.6) can be recast in the form

(∂ · f)β̇2...β̇l̄
α2...αl

= (X+)∆−(l+l̄)/2+2Xα2a2 . . .XαlalX
β̇2b2 . . .X

β̇l̄bl̄Ra2...al
b2...bl̄

, (4.7)

where

Ra2...al
b2...bl̄

= 2

(

−
(

XMΣMN ∂

∂XN

) b1

a1

+
1

X+

(

∆− l + l̄

2
− 2

)

XM (ΣM+) b1
a1

)

F a1...al
b1...bl̄

. (4.8)

In writing eq. (4.8), we used the fact that F is a homogeneous function of degree ∆+(l+l̄)/2

and the following two identities hold:

((

XMΣMN ∂

∂XN

) b1

a1

Xα2a2

)

F a1...al
b1...bl̄

=

((

XMΣMN ∂

∂XN

) b1

a1

X
β̇2b2

)

F a1...al
b1...bl̄

= 0 , (4.9)

since F is symmetric in its indices and satisfies eq. (2.11).

Analogously to what found in ref. [9] for symmetric traceless operators, we see here

what is special about operators that saturate the unitarity bound (4.1). They are the only

ones for which the 6D uplifted tensor R is SO(4, 2) covariant. In our index-free notation,

current conservation in 6D takes an extremely simple form:

∂ · f(x, s, s̄) = (∂ · f(x))β̇2...β̇l̄
α2...αl

sα2 . . . sαl s̄β̇2
. . . s̄β̇l̄

= −2D · F (X,S, S̄) = 0 , (4.10)

where

D =

(

XMΣMN ∂

∂XN

) b

a

∂

∂Sa

∂

∂S̄b
. (4.11)
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5 Example: fermion-fermion-tensor correlator

In this section we show some examples on how to use the formalism presented in section 3.

In particular, we will determine all the three-point functions involving two fermion fields ψα

and χ̄β̇ : 〈ψα(x1)χ̄
β̇(x2)O(x3)〉.4 According to eq. (3.34), the only non-vanishing 3-point

function occurs when O is in one of the following three Lorentz representations: (l, l),

(l + 2, l) and (l, l + 2), with l ≥ 0. We will determine the form of the correlators in two

cases: with non-conserved and conserved operator O.

5.1 Non-conserved tensor

Let us start by considering the (l, l) representations. According to eq. (3.31), for l = 0

there is only one possible structure to this correlator, proportional to I21. Using eqs. (2.16)

and (3.40) we immediately get

〈ψα(x1)χ̄
β̇(x2)φ(x3)〉 = λψχ̄O0,0

x−∆123−1
12 x−∆132

13 x−∆231

23 (x21 · σǫ) β̇
α , (5.1)

with λψχ̄O0,0
a complex parameter. For l ≥ 1, two independent structures are present,

〈F1F2F3〉 = K
(

λ1I21J3,12 + λ2I31I23

)

J l−1
3,12 , l ≥ 1 , (5.2)

where λ1,2 are two complex parameters and K is defined in eq. (3.2). Again using eqs. (2.16)

and (3.40) we find

〈ψα(x1)χ̄
β̇(x2)t

β̇1...β̇l
α1...αl

(x3)〉 =
x−∆123−l−1
12 x−∆132+l

13 x−∆231+l
23

(l!)2
×

×
(

λ
(1)
ψχ̄Ol,l

(x12 · σǫ) β̇
α (Z3,12 · σǫ) β̇1

α1
. . . (Z3,12 · σǫ) β̇l

αl
+

x212
2x213x

2
23

× λ
(2)
ψχ̄Ol,l

(x13 · σǫ) β̇1
α (x23 · σǫ) β̇

α1
(Z3,12 · σǫ) β̇2

α2
. . . (Z3,12 · σǫ) β̇l

αl

+ perms.

)

.

(5.3)

In eq. (5.3), λ
(1)
ψχ̄Ol,l

and λ
(2)
ψχ̄Ol,l

are proportional to λ1 and λ2 in eq. (5.2) respectively

with the same proportionality factor, Zµ
3,12 is defined in eq. (3.44) and perms. refer to

the (l!)2 − 1 terms obtained by permuting the αi and β̇i indices. When χ̄ is the complex

conjugate of ψ, namely χ̄β̇ = ψ̄β̇ = (ψβ)
† and the symmetric traceless tensor components

are real, the OPE coefficients λ
(1,2)
ψχ̄tl

are either purely real or purely imaginary, depending

on l. When xµ1,2,3 are space-like separated, causality implies that the operators commute

between each other [12]. Taking β = α and βi = αi, we then have

〈ψα(x1)ψ̄
α̇(x2)t

α̇1...α̇l
α1...αl

(x3)〉∗ = −〈ψα(x2)ψ̄
α̇(x1)t

α̇1...α̇l
α1...αl

(x3)〉 . (5.4)

4Three-point functions between two fermions and i) one scalar, ii) one vector, one rank two iii) symmetric

or iv) antisymmetric tensor have already been considered in appendix B of ref. [29], though some tensor

structures in the correlators were missed in that paper.
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Since Z3,12 = −Z3,21 we get

(λ
(1)

ψψ̄Ol,l
)∗ = (−1)lλ

(1)

ψψ̄Ol,l
, (λ

(2)

ψψ̄Ol,l
)∗ = (−1)lλ

(2)

ψψ̄Ol,l
. (5.5)

Let us now consider the parity transformations of eq. (5.3). Parity maps the three-

point function 〈ψα(x1)χ̄
β̇(x2)t

β̇1...β̇l
α1...αl

(x3)〉 to the complex conjugate three-point function

〈ψ̄α̇(x̃1)χβ(x̃2)t
α̇1...α̇l

β1...βl
(x̃3)〉. When χ̄ = ψ̄, and αi = βi, the three-point function is mapped

to itself, provided the exchange x1 ↔ x2 and α ↔ β. The two structures appearing in

eq. (5.3) have the same parity transformations. If we impose parity conservation in the

CFT and we choose a negative intrinsic parity for the traceless symmetric tensor, ηO = −1,

then the three-point function must vanish: λ
(1)

ψψ̄tl
= λ

(2)

ψψ̄tl
= 0. For ηO = 1, instead, parity

invariance does not give any constraint.

Let us next consider the (l + 2, l) representations. According to eq. (3.31), there is

only one possible structure to this correlator, for any l:

〈F1F2F3〉 = KλI23K2,13J
l
3,12 , (5.6)

that gives rise to the 4D correlator

〈ψα(x1)χ̄
β̇(x2)t

β̇1...β̇l
α1...αl+2

(x3)〉 =
x−∆123−l−1
12 x−∆132+l

13 x−∆231+l−2
23

(l!)(l + 2)!
λψχ̄Ol+2,l

(

(x23 · σǫ) β̇
αl+1

×

×
(

(x212 + x223 − x213)ǫααl+2
+ 4xµ12x

ν
23(σµνǫ)ααl+2

)

×

×(Z3,12 · σǫ) β̇1
α1
. . . (Z3,12 · σǫ) β̇l

αl
+ perms.

)

, (5.7)

where λψχ̄O is proportional to λ in eq. (5.6).

A similar analysis applies to the complex conjugate (l, l+2) representations. The only

possible 6D structure is

〈F1F2F3〉 = KλI31K1,23J
l
3,12 , (5.8)

and gives

〈ψα(x1)χ̄
β̇(x2)t

β̇1...β̇l+2
α1...αl

(x3)〉 =
x−∆123−l−1
12 x−∆132+l−2

13 x−∆231+l
23

(l!)(l + 2)!
λψχ̄Ol,l+2

(

(x31 · σǫ) β̇l+1
α ×

×
(

(x212 + x213 − x223)ǫ
β̇β̇l+2 + 4xµ21x

ν
13(σ̄µνǫ)

β̇β̇l+2

)

×

×(Z3,12 · σǫ) β̇1
α1
. . . (Z3,12 · σǫ) β̇l

αl
+ perms.

)

. (5.9)

If χ = ψ, as expected, eq. (5.9) is mapped to eq. (5.7) under parity transformation. In

particular, in a parity invariant CFT, we should have the same number of (l, l + 2) and

conjugate (l + 2, l) fields, with

λψψ̄Ol+2,l
= ηOλψψ̄Ol,l+2

. (5.10)
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5.2 Conserved tensor

Let us start by considering (l, l) representations. The scaling dimension of O is now fixed to

be ∆3 = l+2. Taking the divergence (4.11) of eq. (5.2) and using eqs. (2.15) and (A.13) gives

D3F =
∆1 −∆2

2

2λ2(l − 1)(l + 2)I31I23J
l−2
3,12 + [λ2 + 2l(l + 1)λ1]I21J

l−1
3,12

X
∆1+∆2−2l−1

2

12 X
∆1−∆2+2l+2

2

13 X
−∆1+∆2+2l+2

2

23

= 0 , (5.11)

where the subscript 3 in D indicates that derivatives are taken with respect to X3, S3 and

S̄3. Eq. (5.11) has the correct form for a Fermion-Fermion-spin (l − 1) symmetric tensor,

as it should, and is automatically satisfied if ∆1 = ∆2. For ∆1 6= ∆2 we have

2λ2(l − 1)(l + 2) = 0 , λ1 = − λ2
2l(l + 1)

. (5.12)

For l = 1 we get one independent structure in eq. (5.2) with λ2 = −4λ1. For l > 1

eq. (5.12) admits only the trivial solution

〈ψα(x1)χ̄
β̇(x2)Oβ̇1...β̇l

α1...αl
(x3)〉 = 0 , l > 1 , ∆1 6= ∆2 . (5.13)

Let us next consider the (l+ 2, l) representations, where O(l+2,l) is a conserved tensor

with ∆3 = l + 3, l > 0. The divergence (4.11) of eq. (5.6) gives now

D3F = −λ
2
(∆2 −∆1 + 1)

2l(l + 3)I23K2,31J
l−1
3,12

X
∆1+∆2−2l−3

2

12 X
∆1−∆2+2l+4

2

13 X
−∆1+∆2+2l+4

2

23

= 0 . (5.14)

For ∆2 = ∆1 − 1 eq. (5.14) is automatically satisfied. When ∆2 6= ∆1 − 1, there are no

non-trivial solutions of eq. (5.14) for l > 0:

〈ψα(x1)χ̄
β̇(x2)Oβ̇1...β̇l

α1...αl+2
(x3)〉 = 0 , l > 0 , ∆2 6= ∆1 − 1 . (5.15)

A similar result applies for conserved O(l,l+2) operators.

We have checked that the current conservation condition (4.10) reproduces various

results found in the literature. In particular we have verified that the correlator of three

energy-momentum tensors, once permutations and current conservations are imposed, con-

tains three independent structures, as found in ref. [1].

6 Consistency with crossing symmetry: counting four-point function

structures

We have seen how three-point functions of spinor-tensors in arbitrary representations

of the Lorentz group can be computed. The most subtle step of the procedure is the

identification of the independent tensor structures entering three-point functions. For the

particular case of traceless symmetric tensors, we reproduce the results of ref. [9]. But

only a subset of the building blocks we have found enter traceless symmetric tensors, so

more checks are welcome. In this section we use four-point functions to show how our

three-point function counting passes the highly non-trivial consistency check of crossing
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symmetry. Recall that, by using the OPE, the number of independent structures N4

entering a generic four-point function

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 (6.1)

can be put in one to one correspondence with those of the three-point functions. For

instance by taking the limit x1 → x2 and x3 → x4, eq. (6.1) schematically boils down to

the sum of the two-point functions

∑

r

∑

i,j

Ci
O1O2Or

Cj
O3O4Or̄

〈Oi
r(x2)Oj

r̄(x4)〉 . (6.2)

In eq. (6.2), r runs over all possible representations that can appear simultaneously in the

two OPE’s (r̄ being the complex conjugate one), while i and j denote, for a given represen-

tation r, the possible independent OPE coefficients, one for each independent tensor struc-

ture. All kinematic factors and tensor structures have been omitted for simplicity. Denoting

the number of structures in the three-point function 〈OiOjOr〉 by N ij
3r, we conclude that

N4 =
∑

r

N12
3rN

34
3r̄ . (6.3)

On the other hand, it is clear that the very same number N4 should be obtained by pairing

the four operators in any other way:

∑

r

N12
3rN

34
3r̄ =

∑

r

N14
3rN

23
3r̄ =

∑

r

N13
3rN

24
3r̄ . (6.4)

We will refer to the three OPE pairing in eq. (6.4) as the s, t or u-channel, respectively. We

have numerically verified the validity of eq. (6.4) for any four-point function involving arbi-

trary non-conserved fermionic or bosonic operators with 0 ≤ li, l̄i ≤ 6, i = 1, . . . 4. Finding

a closed analytic form of N ij
3r in the most general case is a laborious task, so we focus here

on the case in which the external operators are all symmetric traceless. The number of

independent structures appearing in the three-point function of two symmetric traceless

operators (l1, l1) (l2, l2) and one arbitrary (lx, l̄x) tensor has been found in eq. (3.38). Using

that formula and summing over all the possible representations that can be exchanged,

we can obtain in a closed analytical form the number of independent structures for any

four-point function involving arbitrary non-conserved symmetric traceless operators.

For simplicity, let us consider four symmetric traceless operators with l3 = l1, l4 = l2,

and l1 ≤ l2. In the u-channel, the representations that can appear in the OPE are of the

form (lx, lx + δ), with |δ| ≤ 4l1. In the s and t-channel, they are of the form (lx, lx + δ),

with |δ| ≤ 2(l1+ l2). Using eq. (3.38) and summing over all the representations exchanged,
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we get the number of four-point function structures. For l2 ≤ 2l1 we get

N l2≤2l1
4 (l1, l2) =

1

630

(

630− 35l71 + 1518l2 + 1232l22 + 364l32 + 35l42 + 7l52

− 7l62 + l72 + 7l61(34l2 − 1) + l51(175 + 84l2 − 672l22)+

+ 35l41(1− 26l2 − 12l22 + 28l32) + 70l31(1 + 20l2 + 64l22 + 40l32

− 4l42) + 14l21(88 + 447l2 + 600l22 + 200l32 − 30l42 + 6l52)

+ 14l1(120 + 398l2 + 384l22 + 100l32 − 5l42 + 6l52 − l62)

)

.

(6.5)

For l2 ≥ 2l1 we get

N l2≥2l1
4 (l1, l2) =

1

210

(

210 + 592l1 + 448l21 − 126l31 − 175l41 + 133l51 + 147l61 + 31l71

− 70l2(l1 + 1)4(l1(2 + l1)− 7) + 420(1 + l1)
4l22 + 140l32(1 + l1)

4

)

.

(6.6)

Although it is not obvious from their expressions, eqs. (6.5) and (6.6) always give rise to

positive integers numbers, as they should, and agree for l2 = 2l1. In both cases, we get

the same formula by counting structures either in the s-, t-, or u-channel. We believe this

is a highly non-trivial check supporting the validity of our approach. Eqs. (6.5) and (6.6)

count the total number of parity even and parity odd structures.5 For illustration we also

report the individual number of parity even (N4+) and parity odd (N4−) structures when

l2 = l1 = l, i.e. four traceless symmetric operators with the same spin. We get

N4+(l) =
(l + 1)(l + 2)

630

(

315 + l
(

957 + l
(

1361 + l(1127 + 151l(l + 4))
)

)

)

,

N4−(l) =
(l + 1)l

630

(

339 + l
(

1789 + l
(

2985 + l(2335 + 151l(l + 6))
)

)

)

.

(6.7)

We have in particular N4+(1) = 43, N4+(2) = 594, N4+(3) = 4174. Our formula for N4+(l)

does not agree with eq. (4.68) of ref. [9] for l ≥ 2. The number of structures which is found

by using eq. (4.68) of that paper is slightly bigger than what found using N4+ in eq. (6.7)

(there is agreement between the two formulas only for l = 1). The same kind of mismatch is

found for four-point functions featuring traceless symmetric operators with different spins.

We believe that ref. [9] might have missed some relation between invariants, resulting in

an overcounting of structures in four space-time dimensions.

It is important to stress that the number of invariants above refer to the generic case

of four different non-conserved operators. For identical operators, the obvious permutation

5As explained in subsection 3.5, by parity even and odd we mean the structures that are respectively

allowed or forbidden when we impose parity conservation to a correlator where the product of the 4

intrinsic parities equals one. In this case, the parity odd structures in vector notation are those involving

one ǫµνρσ tensor.
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symmetries should be imposed, resulting in a reduced number of tensor structures. For

any given correlation function, the constraints arising from conserved operators are easily

worked out using the results of section 4, but we have not tried to get an analytical general

formula in this case.

7 Conclusions

We have computed in this paper the most general three point function occurring in a

4D CFT between bosonic and fermionic primary fields in arbitrary representations of the

Lorentz group. We have used the 6D embedding formalism in twistor space with an index

free notation, as introduced in ref. [13], to efficiently recast the result in terms of 6D SU(2,2)

invariants. The most important equation of the paper is the compact 6D formula (3.31),

from which any 4D correlator can easily be extracted. The constraints arising from con-

served operators take a very simple form, see eqs. (4.10) and (4.11), and can be solved

within our formalism. Once the number of independent tensor structures in three-point

functions are known, one can compute the number of independent structures of higher point

functions by taking the OPE limit in pairs of operators. As a highly non-trivial check of

our results, we have shown that this number is independent of the way the operators are

paired in the OPE, as it should be by crossing symmetry.

As one of many applications of our results, we have reported the closed form expres-

sion (3.38) for the number of tensor structures in three-point functions of two symmetric

traceless and another arbitrary operator. Such result, in turn, allows to analytically

determine the number of tensor structures of four-point functions of traceless symmetric

tensors, see eqs. (6.5), (6.6) and (6.7).

Understanding three-point functions is the first crucial step to extend the conformal

bootstrap beyond scalar four-point functions. The methods used in this paper should allow

to determine the conformal blocks associated to fields in arbitrary Lorentz representations

entering in arbitrary four-point functions, in terms of a number of “seed” conformal blocks,

analogously to the way the results of ref. [9] allow to compute conformal blocks of symmet-

ric traceless tensors entering in four-point functions of symmetric traceless tensors in terms

of the known conformal blocks for scalar four-point functions [18]. It would also be nice to

extend to arbitrary bosonic and fermionic fields the conjectured agreement that was found

between the number of tensor structures in n-point functions of symmetric traceless opera-

tors in D dimensional CFTs and the number of independent terms in n-point scattering am-

plitudes of massive higher spin particles in flat D+1 dimensional Minkowski space [9]. The

embedding twistor formalism developed in this paper should be able to address this point for

the D=4 case. We hope to come back to these further applications in a separate publication.

Note added. During the final stages of this work, ref. [14] appeared, where tensors with

mixed symmetry are studied. Ref. [14] considers CFTs in arbitrary dimensions, but focuses

on bosonic, non-conserved, operators only. When a comparison is possible, the number of

tensor structures computed in the examples considered in ref. [14] agrees with our results.6

6We thank Tobias Hansen for some clarifications about the results presented in ref. [14].
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A Notation and conventions

We follow the conventions of Wess and Bagger [30] (see in particular their appendix A)

for the two-component spinor algebra in 4D. Six dimensional vector indices are denoted

by M,N, . . ., with M = {µ,+,−}; four dimensional vector indices are denoted by µ, ν, . . .;

four-dimensional spinor indices are denoted by dotted and undotted Greek letters, α, β, . . .,

α̇, β̇, . . .; six-dimensional spinor (twistor) indices are denoted by a, b, . . ., with a = {α, α̇}.
We use capital and small letters for 6D and 4D tensors; in particular, 6D and 4D coordinates

are denoted as XM and xµ, where xµ = Xµ/X+.

The conformal group SO(4, 2) is locally isomorphic to SU(2, 2). The spinorial represen-

tations 4± of SO(4, 2) are mapped to the fundamental and anti-fundamental representations

of SU(2, 2). Roughly speaking, SO(4, 2) spinor indices turn into SU(2, 2) twistor indices.

We denote by Va and W
a ≡ W †bρab , where ρ is the SU(2, 2) metric, twistors transforming

in the fundamental and anti-fundamental of SU(2, 2), respectively:

V → UV , W →W U . (A.1)

In eq. (A.1), U and U ≡ ρ U †ρ satisfy the condition UU = UU = 1.

The non-vanishing components of the 6D metric ηMN and its inverse ηMN in light-cone

coordinates are

ηµν = ηµν = diag(−1, 1, 1, 1) , η+− = η−+ =
1

2
, η+− = η−+ = 2 . (A.2)

Six dimensional Gamma matrices ΓM are constructed by means of the 6D matrices ΣM

and Σ
M
, analogues of σµ and σ̄µ in 4D:

ΓM =

(

0 ΣM

Σ
M

0

)

, (A.3)

obeying the commutation relation

{ΓM ,ΓN} = 2ηMN . (A.4)

It is very useful to choose a basis for the Σ and Σ̄ matrices where they are antisymmetric.

This is explicitly given by

ΣM
ab =

{(

0 σµαγ̇ǫ
β̇γ̇

−σ̄µα̇γǫβγ 0

)

,

(

0 0

0 2ǫα̇β̇

)

,

(

−2ǫαβ 0

0 0

)}

,

Σ
Mac

=

{(

0 −ǫαγσµ
γβ̇

ǫα̇γ̇σ
µγ̇β 0

)

,

(

−2ǫαβ 0

0 0

)(

0 0

0 2ǫα̇β̇

)}

,

(A.5)
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where, in order, M = {µ,+,−} in eq. (A.5). The 6D spinor Lorentz generators are defined

as

ΣMN =
1

4
(ΣMΣ

N − ΣNΣ
M
) ,

Σ
MN

=
1

4
(Σ

M
ΣN − Σ

N
ΣM ) .

(A.6)

Useful relations among the ΣM and Σ
M

matrices, used repeatedly in the paper, are the

following:

Σ
Mab

= −1

2
ǫabcdΣM

cd , ΣM
ab = −1

2
ǫabcdΣ

Mcd
,

ΣM
abΣMcd = 2ǫabcd, Σ

Mab
Σ
cd
M = 2ǫabcd,

ΣM
abΣ

cd
M = −2(δcaδ

d
b − δdaδ

c
b) ,

(A.7)

where ǫ1234 = ǫ1234 = +1.

The 6D null cone is defined by

X2 = XMXNηMN = 0 =⇒ X− = −XµX
µ

X+
. (A.8)

On the null cone we have

X1 ·X2 = XM
1 XN

2 ηMN = −1

2
X+

1 X
+
2 (x1 − x2)

µ(x1 − x2)µ , (A.9)

where xµ = Xµ/X+ are the standard 4D coordinates. We define

xµij ≡ xµi − xµj , x2ij ≡ xµijxµ,ij . (A.10)

Twistor space-coordinates are defined as

Xab ≡ XMΣM
ab = −Xba , X

ab ≡ XMΣ
Mab

= −X
ba
. (A.11)

A very useful relation is

XX = XMXNΣMΣ
N

=
1

2
XMXN (ΣMΣ

N
+ΣNΣ

M
) = XMX

M = X2, (A.12)

and similarly XX = X2. One also has

X1X2 +X2X1 = X1X2 +X2X1 = 2X1 ·X2 . (A.13)

In the basis defined by eq. (A.5), we have



























Xαγ = −X+ǫαγ

X
γ̇

α = −Xµσ
µ

αβ̇
ǫβ̇γ̇

Xα̇
γ = Xµσ

µα̇βǫβγ

Xα̇γ̇ = X−ǫα̇γ̇



























X
αγ

= −X−ǫαγ

X
α
γ̇ = −Xµǫ

αβσµβγ̇

X
γ

α̇ = Xµǫα̇β̇σ
µβ̇γ

Xα̇γ̇ = X+ǫα̇γ̇

(A.14)
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The 4D spinors are embedded as follows in the 6D chiral spinors (twistors):

Ψa =

(

ψα

χ̄α̇

)

, Φ̄a =

(

φα

ξ̄α̇

)

. (A.15)

In order to avoid a proliferation of spinor indices, we define

(σµǫ)γ̇α ≡ σµ
αβ̇
ǫβ̇γ̇ . (A.16)

Notice that in writing eq. (A.16) we have used the usual convention of matrix multiplication.

A similar comment applies for other similar expressions involving σ̄µ, σµν and σ̄µν .

B Spinor and vector notation for tensor fields

We usually write bosonic fields transforming in the lowest representations of the Lorentz

group in vector notation: Aµ, Tµν , etc. With the notable exception of symmetric traceless

tensors of the form T(µ1...µl), the vector notation becomes awkward for higher spin. On the

contrary, by using the isomorphism between SO(3, 1) and SL(2, C), a generic irreducible

representation of the Lorentz group is defined by two integers (l, l̄). The matrix σµ provides

the link between the vector and spinor representations of fields. Given a reducible bosonic

tensor field tµ1...µn or fermionic spinor-tensor fields ψα,µ1...µn , ψ̄
α̇
µ1...µn

, we have

(σµ1ǫ) β̇1
α1
. . . (σµnǫ) β̇n

αn
tµ1...µn =

n
∑

l,l̄

t
β̇1...βl̄
α1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n ,

(σµ1ǫ) β̇1
α1
. . . (σµnǫ) β̇n

αn
ψγµ1...µn =

n
∑

l,l̄

ψ
β̇1...βl̄
γα1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n ,

(σµ1ǫ) β̇1
α1
. . . (σµnǫ) β̇n

αn
ψ̄γ̇
µ1...µn

=
n
∑

l,l̄

ψ̄
γ̇β̇1...βl̄
α1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n ,

(B.1)

where the sum over l, l̄ runs over even or odd integers, for even or odd n, respectively.

Taking symmetric and antisymmetric combinations in the undotted and dotted indices of

the r.h.s. of eq. (B.1) allows us to find the explicit relations between the different field

components in vector and spinor notations. Inverse relations are obtained by multiplying

eq. (B.1) by powers of (ǫσµ):

tµ1...µn = 2−n
n
∑

l,l̄

(ǫσµ1
)α1

β̇1

. . . (ǫσµn)
αn

β̇n
t
β̇1...β̇l̄
α1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n ,

ψγµ1...µn = 2−n
n
∑

l,l̄

(ǫσµ1
)α1

β̇1

. . . (ǫσµn)
αn

β̇n
ψ
β̇1...β̇l̄
γα1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n ,

ψ̄γ̇
µ1...µn

= 2−n
n
∑

l,l̄

(ǫσµ1
)α1

β̇1

. . . (ǫσµn)
αn

β̇n
ψ̄
γ̇β̇1...β̇l̄
α1...αl

ǫαl+1αl+2
. . . ǫαn−1αnǫ

β̇l̄+1β̇l̄+2 . . . ǫβ̇n−1β̇n .

(B.2)
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It may be useful to work out in detail the case for, say, a bosonic rank-two tensor tµν . We

have

(σµǫ) β̇1
α1

(σνǫ) β̇2
α2
tµν = tǫα1α2

ǫβ̇1β̇2 + tα1α2
ǫβ̇1β̇2 + tβ̇1β̇2ǫα1α2

+ tβ̇1β̇2
α1α2

, (B.3)

which corresponds to the decomposition (0, 0) ⊕ (1, 0) ⊕ (0, 1) ⊕ (1, 1), scalar, self-dual

antisymmetric tensor, anti self-dual antisymmetric tensor, symmetric tensor. From

eq. (B.3) we get

t =
1

2
ηµνtµν ,

tα1α2
= tµν(σ

µνǫ)α1α2
,

tβ̇1β̇2 = tµν(ǫσ̄
µν)β̇1β̇2 ,

tβ̇1β̇2
α1α2

=
1

4
tµν

(

(σµǫ) β̇1
α1

(σνǫ) β̇2
α2

+ (σµǫ) β̇1
α2

(σνǫ) β̇2
α1

+ (µ↔ ν)
)

.

(B.4)

Notice that in the last relation in eq. (B.4) the trace part of tµν automatically gives a van-

ishing contribution. We get the inverse relations by means of eq. (B.2). Decomposing tµν =

ηµνt/2+t[µν]+t(µν), where t(µν) = 1/2(tµν+tνµ)−ηµνt/2 and t[µν] = 1/2(tµν−tνµ), one has

t[µν] =
1

2
(ǫσµν)

α1α2tα1α2
+

1

2
(σ̄µνǫ)β̇1β̇1

tβ̇1β̇2 ,

t(µν) = (ǫσµ)
α1

β̇1

(ǫσν)
α2

β̇2

tβ̇1β̇2
α1α2

.
(B.5)

For arbitrary symmetric traceless fields t(µ1...µl), in particular, we have

tβ̇1...β̇l
α1...αl

=
1

l!
t(µ1...µl)

(

(σµ1ǫ) β̇1
α1
. . . (σµlǫ) β̇l

αl
+ perms.

)

,

t(µ1...µl) = (ǫσµ1
)α1

β̇1

. . . (ǫσµl
)αl

β̇l

tβ̇1...β̇l
α1...αl

.
(B.6)
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