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ESTIMATES ON PATH FUNCTIONALS OVER WASSERSTEIN SPACES

S. BIANCHINI AND A. BRANCOLINI

Abstract. In this paper we consider the class a functionals (introduced in [BBS]) Gr,p(γ)
defined on Lipschitz curves γ valued in the p-Wasserstein space. The problem considered is
the following: given a measure µ, give conditions in order to assure the existence a curve γ

such that γ(0) = µ, γ(1) = δx0
, and Gr,p(γ) < +∞.

To this end, new estimates on Gr,p(µ) are given and a notion of dimension of a measure
(called path dimension) is introduced: the path dimension specifies the values of the param-
eters (r, p) for which the answer to the previous reachability problem is positive. Finally,
we compare the path dimension with other known dimensions.
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1. Introduction

Optimal transportation problems aroused great interest in the last years, both on the
point of view of the classical Monge-Kantorovich approach and its many applications and
the so-called branched transportation.
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2 S. BIANCHINI AND A. BRANCOLINI

The problem of branched transportation was first stated in [MMS] and [X1] with the
purpose to give a simple mathematical modelling of branched structures which arise in
nature, i.e. cardiovascular systems and lungs, or in artificial systems, i.e. roads. In [MMS]
the authors consider a functional, defined on the set of all possible trajectories of the particles,
with a subadditive term which assigns less cost to motions where the particles move together.
In [X1] the author introduced a functional defined on weighted directed graphs (here the
motion of a single particle is not considered) with a similar subadditive term which penalizes
the transport in spread masses. It has been shown that these model turn out to be equivalent,
meaning that the underlined optimal structure is the same. From a purely mathematical
point of view the main questions are the existence of a minimum (which is the easy part) and
the regularity of the optimal structure (see [X2] or [BCM2] for the equivalent formulation of
[BCM1]).

Another approach to the branched transportation problem is the one proposed in [BBS].
Here, the moving particles are represented by a curve γ valued in the set of probability
measures equipped by the Wasserstein distance. An initial measure µ0 and a final one µ1

are given. Then, they consider the functional Gr,p(γ), defined on Lipschitz curves γ : [0, 1] →
(Wp(Ω), Wp), (Wp, Wp) being the Wasserstein space of order p ≥ 1 (we will consider the
general case p > 0), such that γ(0) = µ and γ(1) = ν, given by

(1.1) Gr,p(γ) =

∫ 1

0

Gr(γ(t))|γ′|p(t)dt,

where (given a parameter r ∈ [0, 1[)

(1.2) Gr(µ) =

{∑

i a
r
i if µ =

∑

i aiδxi
,

+∞ otherwise.

Since the r-th power is sub-addictive and Gr is finite only on discrete measures the resulting
minimal curves are expected to give the branched structure.

The main result of [BBS] is that, given µ, ν ∈ Wp(Ω), the functional (1.1) admits a
minimum, provided there exists a curve of finite cost, i.e. a curve γ such that Gr,p(γ) < +∞.
Actually, in the paper the existence result for the functional (1.1) follows from a result of
the same kind for a general type of functionals. In the same paper it is also proved that if
µ, ν are discrete measures, then there exists such a curve; the same is true for every couple
of measures, provided r > 1 − 1/N , where N is the linear dimension of the space, while if
r ≤ 1 − 1/N a Dirac mass cannot be connected to an LN -absolutely continuous measure
keeping the cost finite.

The question of the reachability of a measure from a Dirac mass arises then naturally
in this context and this paper is mainly devoted to provide an exhaustive answer to this
problem as far as the functional (1.1) is concerned. Actually, the same question is of interest
in the Maddalena-Morel-Solimini model, which has been answered in [DS2]. Let us mention
a different approach on path functionals introduced in [B].

The main results of this paper are the followings.
In Section 2, we study equivalent formulations of the property that there exists a path γ

connecting µ 6= ν. It turns out that the fact that a measure µ can be connected to another
measure ν 6= µ with a path γ with finite cost Gr,p(γ) is independent on ν. The next definition
is then natural (Definition 2.12).
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Definition. A probability measure µ is reachable w.r.t. r, p (or (r, p)-reachable) if there
exists γ ∈ Lip([0, ε],Wp(Ω)) such that γ(0) = µ and |γ′|(t) = 1 for a.e. t ∈ [0, ε] and

Gr,p(γ) =

∫ ε

0

Gr(γ(t))dt < +∞.

The main theorem of this section is the following (Theorem 2.13 of Section 2.4).

Theorem. Let µ ∈ Wp(Ω). The following conditions are equivalent:

(1) µ is reachable;
(2) there exists ε > 0 (equivalently for all ε > 0)

∫ ε

0

min{Gr(ν) : Wp(ν, µ) ≤ t}dt < +∞;

(3) there exists γ ∈ Lip([0, 1],Wp(Ω)) which satisfies Var(γ) > 0, γ(0) = µ, γ(1) = δx0

and ∫ 1

0

Gr(γ(t))|γ′|(t)dt < +∞.

The proof is based on careful estimates of the functional Gr,p on paths connecting finitely
atomic measure (Proposition 2.8 of Section 2.3). This result allows us to prove that in the
case r < 1 − 1

N
the set of reachable measures is of first category in the Wasserstein space

(Proposition 2.15 of Section 2.4). Finally in Section 2.6 we introduce the path dimension,

dimpath,p(µ) =
min{1, p}

1 − r∗
,

where
r∗ = inf{0 ≤ r < 1 : µ is reachable w.r.t. p, r}.

The quantity dimpath,p(µ) will be compared in the next sections to other known measure-
theoretic dimensions.

In Section 3 we recall some classical and more recent notions of dimensions for sets and
measures:

• Hausdorff dimension dimH(µ) in Section 3.1,
• Minkowski dimension dimM(µ) in Section 3.2,
• Renyi dimension or q-dimension dimq(µ) in Section 3.3,
• resolution dimension dimWp(µ) in Section 3.4,
• irrigation dimension dimirr(µ) in Section 3.5.

In the same sections we compare the various dimensions on the same measure µ, with the
idea that in different cases one dimension can be easier estimated that the others and its
value gives bounds to the others. The results here are certainly not new: we however think
that this collections of definitions and properties can be useful and simplify the reading of
the paper.

In Section 4 we consider the comparison of the path dimension of a measure µ with the
classical dimensions studied in the previous sections. Among the many comparisons, the
most useful are

dimH(µ) ≤ dimpath,p(µ) ≤ max{dimM(µ), 1},

(which holds also for the irrigation dimension), and

dimirr(µ) ≤
p

p − 1
dimpath,p(µ),
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providing an answer to the questions left open in [BBS].
In Section 4.1 we study the case where uniform bounds on the local dimension (Definition

4.5) hold. In this case it turns out that all the above notions of dimension are equivalent.
Finally a simple example (Example 4.8) concludes the section and the paper.

1.1. Notation. A list of notations used in this paper is given.

N, N0 natural numbers, natural numbers with 0
Q, R rational numbers, real numbers
:= the left side is defined by the right side
♯A the cardinality of the set A
(X, d) Polish space, for the purpose of of this paper locally compact
Bε(x) the open ball of radius ε centered in x
Ω open subset of a Polish space
Ā the closure of A ⊆ X, X topological
Ac the complementary of a set (in a specified ambient set)
QR cube of size R in RN

Pi1...iI projection of x ∈ ΠiXi into its (i1, . . . , iI) coordinates
diam A diameter of A ⊆ X
d(x, A) distance of the point x from the set A
DHaus(A, B) Hausdorff distance of A, B closed (1.7)
|γ′|(t) metric derivative of γ(t) (1.9)
B the Borel σ-algebra on X topological
M(X) measures on a measurable space (X,B)
P(X) probability measures on a measurable space (X,B)
L Lebesgue measure on R
µ|A the measure µ|A(A′) = µ(A′ ∩ A)
Π(µ, ν) probability measures on X × X with marginals µ, ν (1.3)
spt µ the support of the measure µ
Πopt(µ, ν) probability measures in Π(µ, ν) minimizing

∫
cπ

Πext(µ, ν) extremal points of the convex set Π(µ, ν)
Γ a subset of Ω̄ × Ω̄ where a measure π is concentrated
Wp(µ, ν) the p-Wasserstein distance of µ, ν (1.4)
Dn set of measures with n atoms
Wp(µ, Dn) distance of µ from Dn (3.21)
Wp(Ω) Wasserstein space of exponent p ∈ [0, +∞] (1.5)
Gr(µ) l.s.c. functional on P(Ω) defined in (1.2)
Gr,p(µ, ν) path functional defined in (1.1)
gr,p,µ(t) functional defined in (2.11)
Hα

δ outer Hausdorff measure (3.1)
Hα Hausdorff measure (3.2)
dimH(A) Hausdorff dimension of the set A (3.3)
dimH(µ) Hausdorff dimension of the measure µ (3.4)
N(A, ε) minimal number of balls or radius ε needed to cover A (3.7)
dimM(B) Minkowski dimension of a set B (3.8)
P (A, ε) packing number of A (3.10)
Q(A, m) number of dyadic cubes of size 2−m intersecting A, Definition 3.6
dimM(µ) Minkowski dimension of a measure µ, Definition 3.8
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a a finite probability vector
Hq(a) q-entropy for a probability vector (3.16), (3.17)
dimq(µ) Renyi dimension or q-dimension of the measure µ (3.18), (3.19)
dimpath,p(µ) path dimension or reachability dimension of the measure µ,

Definition 2.19
dimWp(µ) resolution dimension of µ (3.22)
χ set of fibers, Definition 3.20
P family of fibers χ, Definition 3.20
PS family of fibers χ starting from S ∈ RN , Definition 3.20
σχ absorption time, Definition 3.22
At(χ) absorbed points at time t (3.26)
Mt(χ) moving points at time t, Mt(χ) = At(χ)c (3.27)
Iα(χ) irrigation cost (3.28)
dimirr(µ) irrigation dimension of µ (3.29)
dimloc(x, µ) local dimension of µ at x (4.3)

1.2. Settings. Let (X, d) be a Polish space, and P(X) be the Borel probability measures
on X. Given µ, ν ∈ P(X), let Π(µ, ν) be the set of transport plans

(1.3) Π(µ, ν) =
{

π ∈ P(X × X) : (P1)♯π = µ, (P2)♯π = ν
}

,

Let Πopt(µ, ν) denote the set of optimal transport plans with respect to the functional

π 7→

∫

X×X

c(x, y)π(dxdy).

Recall that both Π(µ, ν), Πopt(µ, ν) are convex sets. Then, let Πext(µ, ν) denote the subset
of extreme points of Π(µ, ν).

On P(X) consider the Wasserstein metric Wp, p ∈ [0, +∞],

(1.4) Wp(µ, ν) = inf

{(∫

d(x, y)pπ(dxdy)

)min{1,1/p}

, π ∈ Π(µ, ν)

}

,

and define the Wasserstein space

(1.5) Wp(X) =
{
µ : Wp(µ, δx) < +∞

}
.

It is easy to see that Wp(X) does not depend on x ∈ X.
Particular cases are p = 0 and p = ∞: for p = 0 set

(1.6) W0(µ, ν) = inf
Π(µ,ν)

π{x 6= y} =
1

2
‖µ − ν‖,

while for p = +∞ define

(1.7) W∞(µ, ν) = inf

{

DHaus

(
{x = y}, sptπ

)
, π ∈ Π(µ, ν)

}

,

where DHaus is the Hausdorff distance between closed sets:

(1.8) DHaus(A, B) = max
{

sup
y∈B

inf
x∈A

d(x, y), sup
x∈A

inf
y∈B

d(x, y)
}

.
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For any Lipschitz curve γ : [0, 1] 7→ P(X), let |γ′|p(t) (or just |γ′|(t) when no confusion
occurs) be the metric derivative w.r.t. Wp,

(1.9) |γ′|p(t) = lim inf
s→0+

Wp(γ(t + s), γ(t))

s
.

By the assumption of Lipschitz continuity of γ, it follows that the limit exists L1-a.e. t, and
the length of γ is

(1.10) Lp(γ) =

∫ 1

0

|γ′|p(t)dt.

See, for example, Chapter 3 of [AT].

2. Reachability results

The following lemma is an easy, but useful, tool we will use in the analysis of the problem.

Lemma 2.1 (Reparametrization of paths functionals). Every path γ : [0, 1] → Wp(Ω) can
be extended to a Lipschitz curve γ̃ : [0, +∞] → Wp(Ω) such that Var(γ̃) = Var(γ) and

∫ 1

0

Gr(γ(t))|γ′|(t)dt =

∫ +∞

0

Gr(γ̃(t))|γ̃′|(t)dt.

Vice versa, every Lipschitz curve γ : [0, +∞] → Wp(Ω) such that Var(γ) < +∞ can be
re-parametrized as a path γ̃ : [0, Var(γ)] → Wp(Ω) with |γ̃′|(t) = 1 such that

∫ +∞

0

Gr(γ(t))|γ′|(t)dt =

∫ Var(γ)

0

Gr(γ̃(t))|γ̃′|(t)dt.

Proof. First of all note that any path functional γ̃ : [0, 1] → Wp(Ω) can be extended on
[0, +∞[ setting γ̃(t) = γ(1) when t > 1 without changing the value of the integral:

∫ 1

0

Gr(γ(t))|γ′|(t)dt =

∫ +∞

0

Gr(γ̃(t))|γ̃′|(t)dt.

Vice versa, given γ : [0, +∞] → Wp(Ω) such that
∫ +∞

0

Gr(γ(t))|γ′|(t)dt < +∞,

since Gr(γ(t)) ≥ 1, we have:

Var(γ) =

∫ +∞

0

|γ′|(t)dt < +∞.

Setting

l(t) := Vart
0(γ) =

∫ t

0

|γ′|(τ)dτ,

we get a Lipschitz function l : [0, +∞] → [0, Var(γ)] with Lip(l) ≤ Lip(γ). Let λ :
[0, Var(γ)] → [0, +∞] be the pseudo-inverse function of l:

λ(s) := inf{t : l(t) = s}.

If λ(Var(γ)) < +∞, then it can be seen as in [AT] that γ̃ : [0, Var(γ)] → Wp(Ω) defined by

γ̃(s) := γ(λ(s))
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satisfies |γ̃′|(t) = 1 and
∫ +∞

0

Gr(γ(t))|γ′|(t)dt =

∫ Var(γ)

0

Gr(γ̃(t))|γ̃′|(t)dt.

Otherwise, if λ(Var(γ)) = +∞ we get a Lipschitz curve γ̃ : [0, Var(γ)[→ Wp(Ω) with can
be extended (as a uniformly continuous function to a complete metric space) to the closed
interval [0, Var(γ)]. �

2.1. Lower semicontinuity.

Theorem 2.2. Suppose that µn → µ, νn → ν w.r.t. the Wasserstein distance of order p.
Then

Gr,p(µ, ν) ≤ lim inf
n→+∞

Gr,p(µn, νn).

Proof. Consider γn : [0, 1] → Wp(Ω) such that γn(0) = µn, γn(1) = νn and

Gr,p(µn, νn) =

∫ 1

0

Gr(γn(t))|γ
′
n|(t)dt.

If we parametrize γn by arc length and map linearly the interval [0, Var(γn)] on [0, 1], we
can suppose that |γ′

n| is a constant (depending on n, actually |γ′
n| = Lip(γn) = Var(γn) since

Lip(γ) = supt∈[0,1] |γ
′|(t)).

If lim infn Gr,p(µn, νn) = +∞ the inequality is trivial. So, we suppose that

lim inf
n

Gr,p(µn, νn) < +∞

and extract a subsequence without relabelling such that

lim inf
n

Gr,p(µn, νn) = lim
n

Gr,p(µn, νn).

The sequence {γn}n∈N is equi-bounded and equi-lipschitzean since

Var(γn) =

∫ 1

0

|γ′
n|(t)dt ≤ Gr,p(µn, νn) ≤ C < +∞,

that is γn([0, 1]) ⊆ BC(µn) in the p-Wasserstein Space and Wp(µn, µ) is bounded. Up to
a subsequence we can suppose by Ascoli-Arzelà theorem that the sequence is uniformly
convergent: γn → γ in Wp(Ω) and µn = γn(0) → γ(0) = µ, νn = γn(1) → γ(1) = ν in Wp(Ω).
Up to a subsequence we can suppose that lim infn Lip(γn) = limn Lip(γn) = limn |γ

′
n|(t). We

have that

|γ′|(t) ≤ lim
n→+∞

Lip(γn),

so, by lower semicontinuity of Gr,

Gr(γ(t)) ≤ lim inf
n→+∞

Gr(γn(t)),

and finally

Gr(γ(t))|γ′|(t) ≤ lim inf
n→+∞

Gr(γn(t))|γ′
n|(t).

The statement of the theorem then follows integrating on [0, 1] and applying the Fatou
Lemma. �
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2.2. Extremality of a discrete plan. We recall the following theorem (Theorem 3 of
[HW]). We define a set Γ ⊂ Ω̄ × Ω̄ acyclic if for any finite sets of points (xi, yi) ∈ Γ,
i = 1, . . . , I, {

(xi+1, yi), i = 1, . . . , I, xI+1 = x1

}

* Γ.

Theorem 2.3. If π ∈ Πext(µ, ν), then there exists a σ-compact acyclic subset Γ ⊂ Ω̄ × Ω̄
such that π(Γ) = 1.

We will say that π is acyclic if it satisfies the second part of the theorem, i.e. there exists
an acyclic set Γ ⊂ Ω̄ × Ω̄ such that π(Γ) = 1. When at least one of the marginals of π is
purely atomic, it is easy to prove that this condition is also equivalent to extremality (see
for example Theorem 1 of [LE]).

Using Theorem 2.3 and the elementary fact that the extremal measures in Πopt(µ, ν) are
given by Πopt(µ, ν) ∩ Πext(µ, ν), we conclude the following corollary.

Corollary 2.4. Let µ, ν be discrete measures given by

µ =
m∑

i=1

aiδxi
, ν =

n∑

j=1

bjδyj
.

Let π ∈ Πopt(µ, ν) be extremal. Then, given two sets of different indexes {i1, i2, . . . , ik} and
{j1, j2, . . . , jk} (so, with k ≤ min{♯ sptµ, ♯ spt ν}) we must have

k∏

l=1

(πiljl
πiljl+1

) = 0.

Since the function Gr(µ) is concave, the choice of an extremal optimal plan will play an
important role in the next section.

2.3. Estimate Gr,p(γopt).

Proposition 2.5. Let µ, ν be discrete measures given by

µ =

m∑

i=1

aiδxi
, ν =

n∑

j=1

bjδyj
.

Let π ∈ Πext(µ, ν). Then,

(2.1)
∑

i,j

πr
ij ≤

∑

i

ar
i +

∑

j

br
j .

The constraints to be satisfied by a transport plan is given by m + n equations which are
not linearly independent (summing the first m and subtracting the last n equations gives
zero). We recall that the marginal equations are

(2.2)

n∑

j=1

πij − ai = 0,

for i = 1, 2, . . . , m, and

(2.3)

m∑

i=1

πij − bj = 0,

for j = 1, 2, . . . , n. We also recall the following lemma from [DT2, DT1].
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Lemma 2.6. m + n − 1 of the equations above are linearly independent.

Proof. Drop the one with j = n, and consider the remaining m + n − 1. Suppose the λi

and µj (with i = 1, 2, . . . , m, j = 1, 2, . . . , n − 1) are coefficient of a null linear combination.
Since the variables πin (with i = 1, 2, . . .m) appear only once, we must have that λi = 0 for
all i. Then also µj = 0 for all j = 1, 2, . . . , n − 1. �

We recall that in Linear Programming, the feasible set is the set
{
π ∈ Rm×n : πij ≥ 0 and (2.2), (2.3) holds

}
.

Lemma 2.7. At most m + n − 1 of the πij are non-zero if π is extremal.

Proof. By the equation from the marginal conditions we can determine m + n− 1 of the πij .
Since the minimum is reached also on the extremal points of the feasible set, a minimum
which is also an extremal must satisfy equality in exactly mn − (m + n − 1) of the non-
negativity constraints πij ≥ 0. �

Proof of Proposition 2.5. The proof follows immediately if we can prove that there exists an
injective function

h : {πij > 0} → {ai, bj}

such that πij ≤ h(πij). We divide the proof into several steps.
Step 1. Suppose that m ≤ n. Since the sum of the entries of the i-th row is ai > 0 and of

the j-th column is bj > 0, in every row or column there must be at least a non-zero entry.
In order to satisfy this condition at least n non-zero entries are needed (a diagonal of the
matrix (πij)ij plus the remaining entries of the last row). It is not possible that on each
column one finds at least two non-zero entries, otherwise the non-zero entries would be at
least 2n > m+n−1. Let j0 be the index of that column and let then πi0j0 the only non-zero
entry in that column. We thus define h(πi0j0) = bj0 .

Step 2. We proceed by (finite) induction. Assume that at the k − 1 step we have defined
h on the k − 1 points πiℓjℓ

, ℓ = 1, . . . , k, such that the marginals of the reduced transference
plan πk−1 = π −

∑

ℓ πiℓjℓ
satisfies

(µk−1)i =
(
(P1)♯πk−1

)

i
=
∑

j 6jℓ

πij ≤ µ, (νk−1)j =
(
(P2)♯πk−1

)

j
=
∑

i6iℓ

πij ≤ ν,

and the cardinality mk−1 of the support of µk−1 plus the cardinality nk−1 of the support of
νk−1 is bounded by n + m − 1 − k.

Step 3. If mk−1 ≤ nk−1, then the procedure of Point (1) yields an entry πikjk
such that

πikjk
= b′jk

≤ bjk
, and moreover by removing this entry it follows that µk = (P1)♯π ≤ µ,

νk = (P2)♯πk ≤ ν and the cardinality mk of the support of µk plus the cardinality nk of the
support of νk is bounded by n + m − k − 2. Define the h(ik, jk) = bjk

.
Step 4. If mk−1 ≤ nk−1, then repeat the procedure of Point (1) to find an entry πikjk

such
that it is the unique non-zero entry on the ik-row: hence πikjk

= a′
jk
≤ ajk

, and moreover by
removing this entry it follows that µk = (P1)♯π ≤ µ, νk = (P2)♯πk ≤ ν and the cardinality mk

of the support of µk plus the cardinality nk of the support of νk is bounded by n+m−k−2.
Define in this case h(ik, jk) = aik .

Step 5. The proof of the existence of h now follows by finite induction, since the measures
are finitely atomic. �

A simple approximation argument implies that (2.1) holds also for purely atomic measure
µ, ν.
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Proposition 2.8. Let µ and ν be discrete probability measures with finite support. Then the
following estimates hold:

• if 0 ≤ p ≤ 1, then

(2.4) Gr,p(γopt) ≤
1

1 + r
Wp(µ, ν)(Gr(µ) + Gr(ν));

• if p > 1, then

(2.5) Gr,p(γopt) ≤ Wp(µ, ν)(Gr(µ) + Gr(ν));

• if p = 1 and r = 0, then

(2.6) Gr,p(γopt) ≤ W1(µ, ν) max{Gr(µ), Gr(ν)}.

Proof. We split the proof in three parts.
Proof of inequality (2.4). Consider the curve given by:

(2.7) γ(t) = (1 − t)µ + tν.

For this curve

Gr(γ(t)) =

m∑

i=1

(1 − t)rar
i +

n∑

j=1

trbr
j = (1 − t)rGr(µ) + trGr(ν).

We have now to evaluate the metric derivative. Consider an optimal transport plan π
between µ and ν. In the time interval [t, t′] a portion of mass πij(t

′− t) disappears in xi and
appears in yj. The cost of the transportation is then at most

(2.8)
∑

i,j

πij(t
′ − t)|xi − yj|

p.

Passing to the limit as t′ → t, the metric derivative is then
∑

i,j

πij |xi − yj|
p = Wp(µ, ν).

The curve is actually a geodesic since the optimal transport plan between (1− t)µ + tν and
(1− t′)µ + t′ν has only to move the masses (t′ − t)ai on the point xi on the masses (t′ − t)bj

on the points yj. The optimal transport plan between these two measures is (t′ − t)π and
the Wasserstein distance is then (t′ − t)Wp(µ, ν). Integrating in the interval [0, 1], we then
have

Gp,r(γopt) ≤

∫ 1

0

(
(1 − t)rGr(µ) + trGr(ν)

)
Wp(µ, ν)dt

≤
1

1 + r
(Gr(µ) + Gr(ν))Wp(µ, ν).

Proof of inequality (2.5). First, to clarify computations, we consider the case ν = δy1 . Let
the curve γ : [0, 1] → Wp(Ω) be given by:

γ(t) :=
m∑

i=1

aiδxi+t(y1−xi).

We have |γ′|(t) = Wp(µ, δy1), and Gr(γ) = Gr(µ). So, we have

Gr,p(γopt) ≤ Wp(µ, δy1)Gr(µ) ≤ Wp(µ, δy1)
(
Gr(µ) + 1

)
.
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In the general case, we consider an acyclic optimal transference plan π =
∑

ij πijδ(xi,yj)

and the path

t 7→ γ(t) =
∑

ij

πijδ(1−t)xi+tyj
.

The functional
∫ 1

0
Gr(γ(t))|γ′|(t)dt can be computed to be

∑

ij πr
ijWp(µ, ν). Thanks to

Proposition 2.5 we have
∑

ij

πr
ij ≤ Gr(µ) + Gr(ν).

The proof of the inequality is complete.
Proof of inequality (2.6). In this case we are evaluating

G0,1(γ) =

∫ 1

0

♯ spt γ(t)|γ′|(t)dt.

The main point is that if p = 1, then both paths of the kind

(2.9) t 7→ δx1+t(y1−x1),

and

(2.10) t 7→ (1 − t)δx1 + tδy1 ,

are Lipschitz curves. Roughly speaking, we use paths of the first kind (2.9) to move the
mass in a point yj where there is still no mass and the paths of type (2.10) to move the mass
in a point yj where there is already some mass without incrementing the cardinality of the
support of the measure γ(t).

Let π be an extremal transference plan, and assume that µk−1 ≤ µ, νk−1 ≤ ν have been
determined in such a way G0(µk−1) + G0(νk−1) ≤ max{G0(µ), G0(ν)}.

If there is a row ik−1 with a unique non-zero element πik−1jk−1
, then using then the path

of the form (2.9),

γk−1(t) =
∑

i6=ik−1

(µk−1)iδxi
+
∑

j

(νk−1)jδyj
+ (µk−1)ik−1

δ(1−t)xik−1
+tyjk−1

,

we obtain that |γ′
k−1|(t) = πik−1jk−1

and G0(γ(t)) = G0(µk−1) + G0(νk−1).
If instead there exist only columns with a single non-zero element πik−1jk−1

, two cases can
happen:

(1) if there is an element 0 < νk−1(yjk−1
) < ν(yjk−1

), then we take πik−1jk−1
6= 0 and we

can use the path

γk−1(t) =
∑

i6=ik−1

(µk−1)iδxi
+
∑

j 6=jk−1

(νk−1)jδyj

+
(
(µk−1)ik−1

− tπik−1jk−1

)
δxik−1

+
(
(νk−1)ik−1

+ tπik−1jk−1

)
δyjk−1

,

for which |γ′
k−1|(t) = πik−1jk−1

and

G0(γk−1(t)) = G0(µk−1) + G0(νk−1) ≤ max{G0(µ), G0(ν)};
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(2) if νk−1(yjk−1
) = 0, then by using the path

γk−1(t) =
∑

i6=ik−1

(µk−1)iδxi
+
∑

j

(νk−1)jδyj

+
(
(µk−1)ik−1

− πik−1jk−1

)
δxik−1

+ πik−1jk−1
δ(1−t)xik−1

+tyjk−1
,

we obtain |γ′|(t) = πik−1jk−1

G0(γk−1(t)) = G0(µk−1) + G0(νk−1) + 1.

In this last case πik−1jk−1
= νjk−1

.

Define µk, νk as the final measures obtained by γk−1(1).
It remains to show that in the last case

G(γk−1(t)) = G0(µk) + G0(νk)

= G0(µk−1) + G0(νk−1) + 1 ≤ max{G0(µ), G0(ν)}.

Assume that in each row there are at least two elements πij > 0, and that for some index
m0 up to re-parametrization

0 < (νk−1)j ≤ νj j = 1, . . . , m0, (νk−1)j = 0 j = m0 + 1, . . . , m.

The above conditions imply that m−m0 > G0(µk−1), otherwise there is certainly a row ik−1

with a unique non-zero element.
Hence we have that

G0(µk−1) + G0(νk−1) < m − m0 + m0 ≤ m = G0(ν) ≤ max{G0(µ), G0(ν)}.

By finite induction we conclude that |γ′
k|(t) = πikjk

,

Gr(γk(t)) ≤ max{G0(µ), G0(ν)},

so that by piecing together the γk one constructs a path satisfying the last inequality. �

The estimates of Proposition 2.8 will be extended to all measures in Corollary 2.10. We
begin with a lemma.

Lemma 2.9. Let Ω be a subset of RN . Let µ ∈ Wp(Ω) such that Gr(µ) < +∞ (so, a discrete
measure with possibly infinite support). Then, given ε > 0 there exists a measure µ̃ ∈ Wp(Ω)
with finite support such that

Gr(µ̃) ≤ Gr(µ),

and

Wp(µ, µ̃) < ε.

Proof. Let

µ =
+∞∑

i=0

ahδxh
.

Define (the parameters H, b are to be chosen, actually b may be chosen arbitrarily)

µ̃ =
H∑

i=0

ahδxh
+

(
+∞∑

i=H+1

ah

)

δb.



ESTIMATES ON PATH FUNCTIONALS OVER WASSERSTEIN SPACES 13

By subadditivity we easily have that

Gr(µ̃) ≤ Gr(µ).

The estimate on the p-Wasserstein distance follows. The transport plan that fixes the masses
in xh for h = 0, 1, . . . , H and moves those in xh for h ≥ H + 1 in b gives the upper estimate:

Wp(µ, µ̃) ≤

(
+∞∑

h=H+1

ah|xh − b|p

)min{1,1/p}

.

Since the momentum of order p of µ is finite, we can find H such that

(
+∞∑

h=H+1

ah|xh − b|p

)min{1,1/p}

< ε.

This concludes the proof. Note that there is no boundedness assumption on Ω thanks to the
finiteness of the momentum of order p of µ. �

Corollary 2.10. The estimates of Proposition 2.8 are true for all measures.

Proof. Let µ, ν be generic measures in Wp(Ω). The only non-trivial case is if both Gr(µ) <
+∞ and Gr(ν) < +∞. This means that both µ and ν are discrete measures and ♯(spt µ) =
+∞, ♯(spt ν) = +∞.

Let µn and νn be approximating sequences as in Lemma 2.9. Then,

µn → µ, νn → ν

w.r.t. Wp and

Gr(µn) → Gr(µ), Gr(νn) → Gr(ν).

Then, for example for (2.5) one obtains using Theorem 2.2

Gr,p(µ, ν) ≤ lim inf
n→+∞

Gr,p(µn, νn)

≤ lim inf
n→+∞

Wp(µn, νn)(Gr(µn) + Gr(νn))

≤ Wp(µ, ν)(Gr(µ) + Gr(ν)).

This concludes the proof in that case. The other cases are completely similar. �

Corollary 2.11. The following holds:

(1) The estimate (2.4) holds for all metric spaces.
(2) Let X be a metric space such that there exists a constant C > 0 such that for every

couple (x, y) there exists a Lipschitz curve g such that g(0) = x, g(1) = y and Var(g) ≤
Cd(x, y). Then, the results of Corollary 2.10 are still true (except for a change in
the constants in the r.h.s. of (2.5), (2.6)).

Proof. The proof is the same, simply use the curve g to interpolate between points instead
of straight lines in the second case. �
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2.4. Reachability of measures.

Definition 2.12 (Reachable measure w.r.t. r, p). A probability measure µ is reachable
w.r.t. r, p (or (r, p)-reachable) if there exists γ ∈ Lip([0, ε],Wp(Ω)) such that γ(0) = µ and
|γ′|(t) = 1 for a.e. t ∈ [0, ε] and

Gr,p(γ) =

∫ ε

0

Gr(γ(t))|γ′|(t)dt =

∫ ε

0

Gr(γ(t))dt < +∞.

Note that the existence of a curve γ ∈ Lip([0, ε],Wp(Ω)) such that γ(0) = µ and |γ′|(t) = 1
for a.e. t ∈ [0, ε] is equivalent to the existence a curve γ ∈ Lip([0, ε′],Wp(Ω)) such that
γ(0) = µ and Var(γ) > 0.

Let

(2.11) gr,p,µ(t) := min{Gr(ν) : Wp(ν, µ) ≤ t}.

Note that the infimum is actually a minimum since ν 7→ Gr(ν) is lower semicontinous w.r.t.
the weak convergence of measures and the set {ν : Wp(ν, µ) ≤ t} is closed w.r.t. the
topology induced by Wp (which is essentially the weak topology). Note moreover that the
map t 7→ gr,p,µ(t) is monotone non-increasing.

The following is the main theorem of the paper.

Theorem 2.13. Let µ ∈ Wp(Ω). The following conditions are equivalent:

(1) µ is reachable;
(2) there exists ε > 0 (equivalently for all ε > 0)

(2.12)

∫ ε

0

gr,p,µ(t)dt < +∞;

(3) there exists γ ∈ Lip([0, 1],Wp(Ω)) which satisfies Var(γ) > 0, γ(0) = µ, γ(1) = δx0

and
∫ 1

0

Gr(γ(t))|γ′|(t)dt < +∞.

Proof. We will show that (1. ⇒ 2.), (2. ⇒ 3.), (3. ⇒ 1.).
(1. ⇒ 2.) If µ is reachable there exists a curve γ as in Definition 2.12. Since

∫ ε

0

gr,p,µ(t)dt ≤

∫ ε

0

Gr(γ(t))dt < +∞,

condition (2.12) is satisfied.
(2. ⇒ 3.) Suppose now that condition (2.12) is satisfied. Let µi a measure such that

Gr(µi) = gr,p,µ(ε2
−i) and Wp(µi, µ) ≤ ε2−i. µi is a discrete measure with possibly infinite

support. We now connect µi and µi+1 with a curve γi : [0, 1] → Wp(Ω) as in Corollary 2.10
such that

∫ 1

0

Gr(γi(t))|γ
′
i|(t)dt ≤ (Gr(µi) + Gr(µi+1))Wp(µi, µi+1)

≤ 2Gr(µi)(ε2
−i + ε2−(i+1))

≤ 22−iεGr(µi) = 22−iεgr,p,µ(ε2
−i) ≤ 8

∫ ε2−i

ε2−i−1

gr,p,µ(t)dt.
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Gluing the paths γi together, we obtain a path γ (up to a change of variable to set the speed
at a unitary value, see Lemma 2.1) with the desired properties.

(3. ⇒ 1.) Directly from the definition. �

Remark 2.14. If a measure µ is reached by some curve defined on an interval [0, ε] with
finite total variation, then the measure is reachable from a Dirac mass: just observe that
γ(ε) satisfies Gr(γ(ε)) < +∞ and use Corollary 2.10.

We define the following equivalence relation: the measure µ is equivalent to ν if there
exists a path γ such that γ(0) = µ, γ(1) = ν and Gr,p(γ) < +∞. Definition 2.12 actually
characterizes the measures in the equivalence class of a Dirac mass. All the other measures
are “isolated”.

Proposition 2.15. If µ is not reachable from a Dirac mass, then its equivalence class con-
sists of a single element (µ itself).

Proof. Suppose on the contrary that there exists a measure ν 6= µ in the same class of µ and
let γ be a path between them with finite cost. Then condition (1) or (2) of Theorem 2.13 are
satisfied (note that in general 0 < Wp(µ, ν) ≤ Var(γ)). Then µ is in the equivalence class of
a Dirac mass, which is not possible. �

By Theorem 3.4 of [BBS], for r > 1− 1/N every measure is reachable. If r < 1− 1/N not
all measures are reachable. In this case the equivalence class of a Dirac mass is a set of first
category.

Proposition 2.16. The equivalence class of a Dirac mass is a set of first category in Wp(Ω),
if 0 ≤ r ≤ 1 − 1/N .

Proof. The equivalence class of a Dirac mass is the set
{
µ ∈ Wp(Ω) : Gr,p(µ, δx1) < +∞

}
=
⋃

n≥1

{
µ ∈ Wp(Ω) : Gr,p(µ, δx1) ≤ n

}
.

We now prove that the set {µ ∈ Wp(Ω) : Gr,p(µ, δx1) ≤ n} is closed and nowhere dense.
The set is closed by the semicontinuity of Gp,r(·, δx1).
Suppose on the contrary that some ball (w.r.t. Wp) Br(µ) is contained in {µ ∈ Wp(Ω) :

Gr,p(µ, δx1) ≤ n}. First consider a measure µ̃ discrete with finite support such that µ̃ ∈ BR(µ)
(thanks to Lemma 2.9). Let

µ̃ =
n∑

h=1

ahδxh
.

Consider now the measure

µ̂ =
a1

|BR1 |
χBR1

(x1)L
N +

n∑

h=2

ahδxh
.

Choosing R1 sufficiently small, we have µ̂ ∈ BR(µ) (Wp(µ̂, µ̃) is bounded by R1 if p ≥ 1 and
Rp

1 if 0 ≤ p ≤ 1).
By (2.12) of Theorem 2.13, it follows that

∑

i

2−igr,p,µ(2
−i) < +∞.
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However, it is easy to see from the analysis of [BBS] that

gr,p,µ(t) ≥
C

t
for some fixed constant C, so that we reach a contradiction. �

2.5. Regularity.

Theorem 2.17. Let µ, ν be measures and let γ ∈ Lip([0, 1],Wp(Ω)) such that γ(0) =
µ, γ(1) = ν and Gr,p(γ) < +∞. Then, fixed δ > 0, there exists γ̃ ∈ Lip([0, 1],Wp(Ω))
such that γ̃(0) = µ, γ̃(1) = ν, ♯ spt γ(t) < +∞ for t ∈]0, 1[ and Gr,p(γ̃) < (2 + δ)Gr,p(γ).

Proof. We parametrize γ by arc length obtaining
∫ L

0

Gr(γ(t))|γ′|(t)dt =

∫ L

0

Gr(γ(t))dt < +∞.

Fix d > 0. We will construct a perturbed path between two atomic measure with finite
support: in fact from Theorem 2.13, we can find a path connecting µ to some purely atomic
measure µ̃, and a path connecting ν to some purely atomic measure ν̃. By Lemma 2.9, we
can assume that there is a measure µ1 and a measure ν1 with finite support such that

Gr,p(µ, µ1) + Gr,p(ν, ν1) ≤ dGr,p(µ, ν).

We conclude that there is a path γ1 connecting µ̃ to ν with G(µ̃, ν) ≤ (1 + d)G(µ, ν). One
then repeats the argument below from µ to µ̃ and from ν to ν̃.

Step 1. We use the following fact: if d > 0 and f : [0, L] → [0, +∞) is an integrable
function, then for all ε sufficiently small there exists points ti, ti+1− ti ∈ (ε/(1+d), (1+d)ε),
such that ∣

∣
∣
∣

∑

f(ti)(ti+1 − ti) −

∫ L

0

f(t)dt

∣
∣
∣
∣
≤ d

∫ L

0

f(t)dt.

The proof follows immediately from the definition of Lebesgue integral, by approximating f
with simple functions whose level sets are made of finitely many connected components.

Applying this to Gr,p(γ1), it follows that we can fix a sequence of increasing points xi,
i = 1, . . . , I, such that

∣
∣
∣
∣
G(µ1, ν) −

∑

i

Gr(γ1(ti))Wp(γ1(ti+1), γ(ti))

∣
∣
∣
∣
≤ dG(µ1, ν).

and Wp(γ1(ti+1), γ1(ti)) ∈ [ε/(1 + d), (1 + d)ε].
Step 2. Let mi be measures with finite support such that Gr(mi) ≤ Gr(γ1(ti)), and such

that
Wp(mi, γ1(ti)) ≤ dε.

Consider the path γ1,i of Proposition 2.8 connecting mi with mi+1. It follows that

Gr,p(m1, mi+1) ≤ Wp(m1, mi+1)
(
Gr(mi) + Gr(mi+1)

)

≤ (1 + 3d)ε
(
Gr(mi) + Gr(mi+1)

)
.

Step 3. Piecing together all these paths, one obtains that µ1 can be connected to ν with
a path γ̃1 such that γ̃1(t) has finite support for all t and

G(γ̃1) ≤ (1 + 3d)
∑

i

ε
(
Gr(mi) + Gr(mi+1)

)
≤ 2(1 + 3d)2G(γ1). �
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Example 2.18. The curve provided by Theorem 2.17 is in general not optimal (at least on
non compact Ω), as the following example shows. We consider the measures

µ(0) =
∑

i

aiδxi(0), µ(1) =
∑

i

aiδxi(1)

such that
∑

j>0

ai+j < ai, Di ≤ Di+1, xi(0) + di = xi(1), xi(1) + Di = xi+1(0).

To prove that the optimal transportation is only the trivial translation, i.e. the path

µ(t) =
∑

i

aiδxi(t), xi(0) ≤ xi(t) ≤ xi(1), xi(t) ≥ xi(s),

we assume first that there exists a t̄ ∈ (0, 1) such that

Gr(µ(t̄)) =
∑

i

br
i <

∑

i

ar
i ,

and estimate the path as
∫

Gr(µ(t))|γ′|(t)dt ≥ Gr(µ(t̄))
(

W1(µ(0), µ(t̄)) + W1(µ(t̄), µ(1)
)

.

Since we are in R, the Wasserstein distance can be evaluated as the area among the two
distribution functions.

Fixed the measure µ̄ =
∑

i biδyi
, we observe that the Wasserstein distance

W1(µ(0), µ(t̄)) + Wi(µ(t̄), µ(1))

decreases if yi ∈ [xi(0), xi(1)] (up to a re-parametrization of the yi): in fact, one just needs
to move towards the left if more mass comes from the left, or towards the right in the other
case. Moreover, if for some i bi 6= ai, then the mass difference |bi − ai| should arrive from a
distance of at least Di: the mass which leaves xi(0) and arrives in xi(1) has a cost of at least

|bi − ai|(Di − di) + aidi.

In fact, the difference in mass should come from some other point with distance ≥ Di, and
the rest of the mass (ai − bi)

+ should move of at least di.
We thus have

Gr(µ(t̄))
(

W1(µ(0), µ(t̄)) + Wi(µ(t̄), µ(1))
)

− Gt(µ(0))W1(µ(0), µ(1))

≥

(
∑

i

br
i

)(
∑

i

|bi − ai|(Di − di) +
∑

i

aidi

)

−

(
∑

i

ar
i

)(
∑

i

aidi

)

≥
∑

i

|bi − ai|(Di − di)

(
∑

i

aidi

)

−

(
∑

i

ar
i − br

i

)(
∑

i

aidi

)

≥
∑

i

|bi − ai|(Di − di)

(
∑

i

aidi

)

−

(
∑

i

rar−1
i |bi − ai|

)(
∑

i

aidi

)

=
∑

i

|bi − ai|

[

Di − di − rar
i

](
∑

i

aidi

)

,
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where we used the estimate
∑

i

(ar
i − br

i ) ≤
∑

i

rar−1
i |bi − ai|.

If we choose

Di > di + rar−1
i ,

then the optimal transference plans should have bi = ai. This concludes the example, if we
can show an explicit case: for this, take

r =
1

2
, ai = 2 · 3−i, di = 1, Di = 2 +

3i/2

23/2
.

Note that
∑

i

2 · 3−i

(

i +
∑

j≤i

Dj

)

≤ C
∑

i

3−i3(i+1)/2 < +∞,

so that this measure can be connected to a δ.

2.6. Path functional dimension. We now introduce a new definition of dimension recov-
ered from path functionals. We assume that p > 0 to avoid pathological cases (only some
purely atomic measures can be reached for p = 0). Set

dr :=
1

1 − r
.

The map r 7→ dr is monotone increasing on the interval [0, 1[, dr ≥ d0 = 1

lim
r→1−

dr = +∞.

Definition 2.19 (Path dimension). Let µ ∈ Wp(Ω) and define

Sp(µ) =
{
0 ≤ r < 1 : µ is reachable w.r.t. r, p

}
.

Note that Sp(µ) is an interval, since

(2.13) r1 < r2 ⇒ Gr2(µ) ≤ Gr1(µ).

Set r∗ := inf Sp(µ). We define then

dimpath,p(µ) := min{1, p}dr∗ =
min{1, p}

1 − r∗
.

For every measure µ, dimpath,p(µ) ≥ 1. Moreover, by Theorem 3.4 of [BBS] we know that
]1 − 1/N, 1[⊆ Sp(µ) in the case p ≥ 1, so that r∗ ≤ 1 − 1/N and

dimpath,p(µ) ≤ N.

With a slight modification of Theorem 3.4 of [BBS] (see (2.17)), in the case 0 ≤ p < 1,
]1 − p/N, 1[⊆ Sp(µ), so that r∗ ≤ 1 − p/N and

dimpath,p(µ) ≤ N.

We now enumerate some easy known inequalities.
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(1) By Jensen inequality with f(t) = tq/p with q ≥ p

[∫

X×X

d(x, y)pπ(dxdy)

]q/p

≤

∫

X×X

[d(x, y)p]q/pπ(dxdy).

Then,

[∫

X×X

d(x, y)pπ(dxdy)

]1/p

≤

[∫

X×X

d(x, y)qπ(dxdy)

]1/q

and

(2.14) Wmax{1,1/p}
p (µ, ν) ≤ Wmax{1,1/q}

q (µ, ν).

(2) Suppose now the space X is bounded. Since

d(x, y)

diam X
≤ 1,

taking the power q − p > 0,

[d(x, y)]q

[diam X]q
≤

[d(x, y)]p

[diam X]p
.

Then,

(2.15) Wmax{1,q}
q (µ, ν) ≤ (diam X)q−pWmax{1,q}

p (µ, ν).

(3) Let r ≤ s ≤ 1. Then, we have

s = r
1 − s

1 − r
+ 1

s − r

1 − r
,
∑

i

as
i =

∑

i

(ar
i )

1−s
1−r (ai)

s−r
1−r .

Applying Hölder inequality with p = (1 − r)/(1 − s), q = (1 − r)/(s − r), we get

∑

i

as
i ≤

(
∑

i

ar
i

) 1−s
1−r
(
∑

i

ai

) s−r
1−r

=

(
∑

i

ar
i

) 1−s
1−r

.

This gives

(2.16) Gs(µ) ≤ Gr(µ)
1−s
1−r .

Note that since (1 − s)/(1 − r) < 1 and Gr(µ) ≥ 1, (2.16) is a better estimate than
simply Gs(µ) ≤ Gr(µ).

Using the above inequalities, we deduce immediately the following theorem.

Theorem 2.20. Let µ, ν be Borel probability measures.
If 1 ≤ p ≤ q, r ≤ s ≤ 1, then

Gs,p(µ, ν) ≤ Gr,q(µ, ν).

If p ≤ q ≤ 1, r ≤ s ≤ 1, and diam Ω < +∞, then

Gs,q(µ, ν) ≤ (diam Ω̄)q−pGr,p(µ, ν).
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Proof. Our setting is now Wq(Ω) which is included in Wp(Ω). The first inequality relies on
the fact that for 1 ≤ p ≤ q, Wp(µ, ν) ≤ Wq(µ, ν) which implies the Lip([0, 1],Wp(Ω)) ⊆
Lip([0, 1],Wq(Ω)) and |γ′|p(t) ≤ |γ′|q(t) when γ ∈ Lip([0, 1],Wq(Ω)) and finally on equation
(2.13) for estimating Gs(µ):

Gs,p(µ, ν) =

∫ 1

0

Gs(γ(t))|γ′|p(t)dt ≤

∫ 1

0

Gr(γ(t))|γ′|q(t)dt = Gr,q(µ, ν).

The second inequality follows from the fact that for bounded domains in the case p ≤
q ≤ 1 we have Wp(µ, ν) ≤ (diam Ω̄)q−pWq(µ, ν) which implies the Lip([0, 1],Wq(Ω)) ⊆
Lip([0, 1],Wp(Ω)) and |γ′|q(t) ≤ (diam Ω̄)q−p|γ′|p(t) when γ ∈ Lip([0, 1],Wp(Ω)) and finally
on equation (2.13). �

Theorem 2.21. Consider the function

(0, +∞) ∋ p 7→ d(p) = dimpath,p(µ) ∈ [1, +∞)

for a fixed measure µ. Then d(p) satisfies the following estimates:

(1) for µ with bounded support

(2.17) 1 ≤ d(p) ≤ N ;

(2) for p ≤ q then

(2.18) d(p) ≤ d(q);

(3) if µ has bounded support, then for q ≤ p

(2.19) d(p) ≤ d(q)
p

q
.

In particular we have the following corollary.

Corollary 2.22. The function p 7→ d(p) is monotone and locally Lipschitz continuous when
X is bounded.

We prove Theorem 2.21: the first part reflects the estimate of Theorem 3.4 of [BBS] with
a proof based on Theorem 2.13.

Proof. 1) Let QR be a cube of size R where the mass of µ is supported, and consider the
cubes Qj , j = 1, . . . , 2iN , of size 2−iRk and centered in xj : let νi be the measure

νi =

2iN
∑

j=1

δxj
µ(Qj),

so that a direct computation of Wp yields

Wp(µ, νi) ≤ (2−iRk)
min{1,p}

∑

j

µ(Qj) = (2−iRk)
min{1,p}.

We next estimate the function Gr(νi): using the concavity of xr and Jensen’s inequality
one obtains

I∑

j=1

ar
j = I

I∑

j=1

ar
j

1

I
≤ I

( I∑

j=1

aj
1

I

)r

= I1−r

( I∑

j=1

aj

)r

,
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p1

N

dimp(µ)

dimp(µ)

dimp(µ)

Figure 1. The estimates given by Theorem 2.21, in the case of bounded
domain: the red curve is the estimate (2.17), while the blue and green ones
correspond to estimates (2.18), (2.19) in two different points. The magenta
curve is an admissible graph of the function p 7→ d(p) for a measure µ.

we obtain

Gr(νi) =
2iN
∑

j=1

µ(Qj)
r ≤ 2iN(1−r).

Hence, using Theorem 2.13, we conclude that
∑

k

Wp(µ, νi)Gr(νi) ≤
∑

k

(2−iRk)
min{1,p}2iN(1−r),

which is convergent for min{1, p}/(1− r) > N .
2) Let r > 1 − min{1, q}/d(q) and let νi be a sequence of measures such that

Wq(µ, νi) ≤ 2−i,
∑

i

2−iGr(νi) < +∞.

Using (2.14), it follows that

Wp(µ, νi) ≤ 2−i min{1,p}max{1,1/q},

and using (2.16) one obtains for r ≤ s

Gs(νi) ≤
(
Gr(νi)

) 1−s
1−r .

Hence we conclude by Theorem 2.13 that
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Gp,s(γ) ≤ C
∑

i

2−i min{1,p}max{1,1/q}Gs(νi)

≤ C
∑

i

2−i min{1,p}max{1,1/q}Gr(νi)
1−s
1−r

= C
∑

i

(

2−imin{1,p}max{1,1/q} 1−r
1−s Gr(νi)

) 1−s
1−r

.

Since Gr(νi) ≤ 2i definitely by
∑

i 2
−iGr(νi) < +∞, we conclude that the series converges

for
min{1, p}

1 − s
>

min{1, q}

1 − r
.

From the definition of d(p) the estimate (2.18) follows.
3) In the case µ has bounded support, we use the same computation as in the second case

by replacing (2.14) with (2.15): let νi be a sequence of measures such that

Wq(µ, νi) ≤ 2−i,
∑

i

2−iGr(νi) < +∞.

Then from (2.15) it follows that for p ≥ q

Wp(µ, νi) ≤ CWq(µ, νi)
max{1,q}min{1,1/p},

so that, using again Gr(µi) ≤ C2i,

Gp,s(γ) ≤ C
∑

i

2−i max{1,p}min{1,1/q}Gs(νi)

≤ C
∑

i

(

2−i max{1,p}min
{

1, 1
q

}
1−r
1−s Gr(νi)

) 1−s
1−r

≤ C
∑

i

(

21−i max{1,p}min
{

1, 1
q

}
1−r
1−s

) 1−s
1−r

< ∞,

if
1

1 − s
>

1

1 − r

max{1, q}

max{1, p}
.

This implies immediately (2.19). �

3. Other notions of dimension

In this section we consider the comparison of various definitions of dimension for a measure.
In the next section we will compare these dimensions with dimpath,p.

3.1. Hausdorff measure and dimension. We just recall some definitions for reader’s
convenience. Let α ≥ 0, and given δ > 0 define:

(3.1) Hα
δ (A) := inf

{ +∞∑

n=1

(diam An)α : A ⊆
+∞⋃

n=1

An, diam An < δ

}

.
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In the previous definition one can always assume An closed. The α-dimensional Hausdorff
outer measure is defined by:

(3.2) Hα(A) := sup
δ>0

Hα
δ (A) = lim

δ→0+
Hα

δ (A).

Let α < β. Then, Hβ
δ (A) ≤ δβ−αHα

δ (A), and

Hα(A) < +∞ =⇒ Hβ(A) = 0, Hβ(A) > 0 =⇒ Hα(A) = +∞.

The map α 7→ Hα(A) is strictly positive and finite in at most one point. So, we define:

(3.3) dimH(A) := inf{α ≥ 0 : Hα(A) = 0}.

Definition 3.1 (Hausdorff concentration dimension). We define the Hausdorff concentration
dimension of µ as

(3.4) dimH(µ) = inf {dimH(B) : µ(Bc) = 0} .

Trivially, the Hausdorff concentration dimension of µ is lower than the Hausdorff dimension
of spt µ, and the infimum is assumed.

Lemma 3.2. There exists B such that dimH(B) = dimH(µ).

Proof. The definition of dimH(µ) implies that for all β > dimH(µ) there exists B such that
Hβ(B) = 0 and µ(B) = 1. Consider then a sequence βn ց dimH(µ) and sets Bn such that
µ(Bn) = 1 and Hβn(Bn) = 0: the set B = ∩nBn satisfies µ(B) = 1 and Hβ(B) = 0 for all
β > dimH. Hence dimH(B) = dimH(µ). �

The estimate of the Hausdorff measure implies the following lemma.

Lemma 3.3. If dimH(µ) = β, then

(1) for all γ < β there exists a set E of positive µ-measure such that

(3.5) lim sup
r→0+

µ(B(x, r))

rγ
= 0

for all x ∈ E.
(2) for all γ > β

(3.6) lim sup
r→0+

µ(B(x, r))

rγ
= +∞

for µ-a.e. x.

Proof. This lemma can be obtained immediately by using the following estimates (Theorem
2.4.3 of [AT]): for all x ∈ A, A Borel,

lim sup
r→0+

µ(B(x, r))

rγ
≤ t =⇒ µ|A ≤ 2γtHγ |A,

and

lim sup
r→0+

µ(B(x, r))

rγ
≥ t =⇒ µ|A ≥ tHγ |A.

In fact, the first implies Point (2) for γ > β, while the second implies Point (1) by contra-
diction. �
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In the next sections we will use the following elementary lemma, which will allow us to
compute the Hausdorff concentration dimension.

Lemma 3.4. Assume that for all δ there is a set Γδ of measure µ(A) > 1 − δ whose δ-
Hausdorff outer measure Hα

δ (Γδ) is less than δ. Then, there exists a set Γ of Hausdorff
measure Hα(Γ) = 0 and µ(Γ) = 1.

Proof. One just considers the sequence δnm = 2−n−m, n, m ∈ N, and sets Γδnm such that
Hα

δnm
(Γnm) ≤ 2−n−m and µ(Γnm) > 1− 2−n−m. Define the set Γ = ∪n ∩m Γδnm : the measure

of ∩mΓδnm is > 1 − 2−n and its α-Hausdorff measure is

Hα(Γn) = lim
δ→0+

Hα
δ (Γn) = lim

m→∞
Hα

2−n−m(∩mΓnm)

≤ lim
m→∞

Hα
2−n−m(Γnm) ≤ lim

m→∞
2−n−m = 0.

Using the σ-additivity of Hα and µ, it follows that µ(Γ) = 1 and Hα(Γ) = 0. �

3.2. Minkowski dimension. Let A be a bounded subset of RN . Define N(A, ε) as

(3.7) N(A, ε) := min

{

k ∈ N : A ⊆
k⋃

i=1

Bε(xi), xi ∈ RN

}

,

which is the least number of balls of radius ε whose union covers A.
Let α < β. Then,

lim sup
ε→0+

N(A, ε)εα < +∞ =⇒ lim sup
ε→0+

N(A, ε)εβ = 0,

lim sup
ε→0+

N(A, ε)εβ > 0 =⇒ lim sup
ε→0+

N(A, ε)εα = +∞.

The map α 7→ lim supε→0+ N(A, ε)εα is strictly positive and finite in at most one point.
So, we define Minkowski upper dimension:

(3.8) dimM(A) := inf
{

α ≥ 0 : lim sup
ε→0+

N(A, ε)εα = 0
}

.

It is easy to see that Minkowski upper dimension is also given by:

(3.9) dimM(A) = lim sup
ε→0+

log N(A, ε)

− log ε
= lim sup

ε→0+

log1/ε N(A, ε).

Minkowski dimension measures in terms of a power of 1/ε how fast N(A, ε) grows as ε → 0+.
Since Ā ⊆ ∪k

i=1B̄ε(xi), then dimM(A) = dimM(Ā).
Another way to introduce Minkowski dimensions is to use the packing number P (A, ε)

defined as the maximum number of balls of radius ε with center in A that are pairwise
disjoint:

(3.10) P (A, ε) := min
{

k ∈ N : {x1, . . . , xk} ⊆ A, B(xi, ε) ∩ B(xj , ε) = ∅ ∀i 6= j
}

.

Lemma 3.5. We have the following bound:

(3.11) P (A, 2ε) ≤ N(A, ε) ≤ P (A, ε/2).
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Proof. For the first inequality suppose on the contrary that P (A, 2ε) > N(A, ε) and let the
balls B2ε(xi) be maximizers for P (A, 2ε) and let the balls Bε(x̃j) be minimizers for N(A, ε).
Since ∪jBε(x̃j) = A for every i there exists j(i) such

xi ∈ Bε(x̃j(i)) ⊆ B2ε(xi).

The map i 7→ j(i) is clearly injective, so that we reach a contradiction.
For the second inequality, let Bε/2(x̃i) be maximizers for P (A, ε/2). The balls with the

same centers and double radius cover A (if there were y out of their union, the ball with
center in y and radius ε/2 does not intersect any of Bε/2(x̃i) in contrast to the fact that they
were maximizers). The definition of N(A, ε) concludes the proof. �

Now, thanks to (3.11) we can restate equations (3.8), (3.9) and (3.11) in terms of P (A, ε)
instead of N(A, ε).

Consider the closed ε-neighborhood of A:

Aε :=
{
x ∈ RN : d(x, A) ≤ ε

}
.

Thanks to the easy estimate:

P (A, ε)ωNεN ≤ LN(Aε) ≤ N(A, ε)ωN(2ε)N ,

the definition of Minkowski upper dimension can be restated in terms of the Minkowski
contents :

(3.12) M
s
(A) := lim sup

ε→0+

(2ε)s−NLN(Aε).

In fact, we have:

(3.13) dimM(A) := inf
{
α ≥ 0 : M

s
(A) = 0

}
.

Another equivalent definition following from (3.9), (3.12) and (3.13) is also:

(3.14) dimM(A) := N + lim sup
ε→0+

logLN(Aε)

− log ε
.

Finally, a definition for computer scientists (which turns out useful in this context). By
a dyadic cube of order m in RN we mean a Cartesian product of N intervals of the kind
[k2−m, (k + 1)2−m[ for k ∈ Z, m ∈ N. Note that, fixed m, the dyadic cubes of order m cover
RN and they are pairwise disjoint.

Definition 3.6 (Minkowski box counting dimension). Let Q(A, m) be the cardinality of
dyadic cubes of order m which meet A, and define

(3.15) dimB(A) = lim sup
ε→0+

log Q(A, m)

m log 2

Note that since we can find an estimate like (3.11) between N(A, ·) and Q(A, ·), we have
dimM(A) = dimB(A).

In the same way, replacing lim sup with lim inf, Minkowski lower dimension dimM(A) can
be defined. Clearly

dimM(A) ≤ dimM(A).

Proposition 3.7. We have that

dimH(A) ≤ dimM(A) ≤ dimM(A).
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Proof. In fact, if α > dimM(A), then Hα(A) = 0, since α > dimM(A) implies that there are
εi → 0+ such that

lim sup
i→+∞

N(A, εi)ε
α
i = 0,

and

Hα
εi
(A) ≤

N(A,εi)∑

i=1

(2εi)
α = 2αεα

i N(A, εi).

Finally,
Hα(A) ≤ lim

i→+∞
2αεα

i N(A, εi) = 0,

concluding the proof. �

Definition 3.8. The upper (lower) Minkowski dimension of a measure µ is given by the
infimum of upper (lower) Minkowski dimensions of the sets B on which µ is concentrated
(or equivalently of the support of µ).

Hence there exists a set B such that µ(B) = 1 and dimM(B) = dimM(µ) or dimM(B) =
dimM(µ). From this fact and Proposition 3.7 the next proposition follows.

Proposition 3.9. Let µ be a measure. Then,

dimH(µ) ≤ dimM(µ) ≤ dimM(µ).

3.3. Renyi dimension or q-dimension. Let q ∈ R \ {1}. The q-entropy is defined for a
probability vector a = (a1, . . . , an) by

(3.16) Hq(a) :=
1

1 − q
log

( n∑

k=1

aq
k

)

.

If q = 1 we set

(3.17) H1(a) := −
n∑

k=1

ak log ak.

Lemma 3.10. The functions Hq satisfy the following properties:

lim
q→1

Hq(a) = H1(a).

and
q1 < q2 =⇒ Hq1(a) ≥ Hq2(a).

Proof. The first one is straightforward. For the second we have for q2 < 1:

Hq2(a) =
1

1 − q2

log

( n∑

k=1

aq2

k

)

=
1

1 − q2

log

( n∑

k=1

aka
q2−1
k

)

=
1

1 − q2

log

( n∑

k=1

ak(a
q1−1
k )

q2−1
q1−1

)

≤
1

1 − q2

q2 − 1

q1 − 1
log

( n∑

k=1

aq1

k

)

=
1

1 − q1

log

( n∑

k=1

aq1

k

)

= Hq1(a).

The inequality follows from the concavity of the map t 7→ t
q2−1
q1−1 . The case 1 < q1 < q2 is

treated similarly.
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The inequality between Hq and H1 can be seen directly by the concavity of the log function:

log

( n∑

k=1

aq2

k

)

= log

( n∑

k=1

aka
q2−1
k

)

≥
n∑

k=1

ak(q2 − 1) log ak,

or using the fact that Hq(a) → H1(a). �

Let q ∈ R \ {1}. Let Iq(µ, ε) defined by:

Iq(µ, ε) = inf

{[ k∑

i=1

µ(Si)
q

] 1
1−q

: µ(∪iSi) = 1, diam Si ≤ 2ε

}

,

and set

(3.18) dimq(µ) := lim sup
ε→0+

log Iq(µ, ε)

− log ε
, dimq(µ) := lim inf

ε→0+

log Iq(µ, ε)

− log ε
.

If q = 1. Let I1(µ, ε) defined by:

I1(µ, ε) = inf

{[ k∏

i=1

µ(Si)
−µ(Si)

]

: µ(∪iSi) = 1, diamSi ≤ 2ε

}

.

We define now the so-called information dimension:

(3.19) dim1(µ) := lim sup
ε→0+

log I1(µ, ε)

− log ε
, dim1(µ) := lim inf

ε→0+

log I1(µ, ε)

− log ε
.

The following are easy remarks.

(1) It can be seen directly from the definition that the upper (lower) 0-Renyi dimension
coincides with upper (lower) Minkowski dimension.

(2) dim2(µ) coincides with the correlation dimension defined by

dimcorr(µ) = lim sup
ε→0+

− log
(

µ × µ({(x, y) : |x − y| < ε})
)

− log ε
,

dimcorr(µ) = lim inf
ε→0+

− log
(

µ × µ({(x, y) : |x − y| < ε})
)

− log ε
.

In general for q integer ≥ 2 dimq(µ) coincides with the q-correlation dimension

dimq(µ) = lim sup
ε→0+

− log
(

µ × · · · × µ
︸ ︷︷ ︸

q times

({
(x1, . . . , xq) : |xi − xj | < ε ∀i, j

}))

− log ε
,

dimq(µ) = lim inf
ε→0+

− log
(

µ × · · · × µ
︸ ︷︷ ︸

q times

({
(x1, . . . , xq) : |xi − xj | < ε ∀i, j

}))

− log ε
.

(3) Directly from Lemma 3.10 it follows that for q1 ≥ q2

(3.20) dimq1
(µ) ≤ dimq2

(µ), dimq1(µ) ≤ dimq2(µ).
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We observe that for q ≥ 1 the q-dimension has peculiar behavior, as the next lemma
shows.

Lemma 3.11. The following holds:

(1) If q = 1 and µ = µ1 + µ2 with disjoint supports, then

dim1(µ) = µ1(X)dim1

(
µ1

µ1(X)

)

+ µ2(X)dim1

(
µ2

µ2(X)

)

.

(2) If q > 1 and there exists µ̃ ≤ µ such that dimq(µ̃) ≤ α (dimq(µ̃) ≤ α), then

dimq(µ) ≤ α (dimq(µ) ≤ α).

Proof. Point (1). From the definition, we have that for ε < dist(spt µ1, spt µ2)

I1(µ, ε) =

[

µ1(X)I1

(
µ1

µ1(X)
, ε

)]µ1(X)[

µ2(X)I1

(
µ2

µ2(X)
, ε

)]µ2(X)

,

from which it follows

lim sup
ǫ→0+

log I1(µ, ε)

− log ε
≤ µ1(X) lim sup

ǫ→0+

log I1

(
µ1

µ1(X)
, ε
)

− log ε
+ µ2(X) lim sup

ǫ→0+

log I1

(
µ2

µ2(X)
, ε
)

− log ε
.

Point (2). Take a disjoint family of sets Bj of diameter ≤ 2r such that
∑

j

µ̃(Bj)
q ≥ (1 + ε)1−qIq(µ̃, r)1−q.

Since µ̃(A) ≤ µ(A) for all measurable sets A, then

(1 + ε)1−qIq(µ̃, r)1−q ≤
∑

j

µ̃(Bj)
q ≤

∑

j

µ(Bj)
q ≤ Iq(µ, r)1−q.

It follows from q > 1 that

log Iq(µ, r)

log 1/r
≤

log I(q, r; µ̃) + log(1 + ε)

log 1/r
.

Taking the limit for r → 0+ we obtain the conclusion. �

In particular, if µ = cδx + ν, then dimq(µ) = 0 for all q > 1. To compare dimq(µ) with
dimH(µ), we use the following easy lemma.

Lemma 3.12. If
∑

i ai = 1,
∑

i a
q
i = A and q < 1, then by erasing a set of measure

B ≤ Ac1−q, we obtain a sum with only a finite number 1/c of elements ≥ c. Similarly, if
−
∑

i ai log ai = A, one can remove a set of measure B ≤ A/ log(1/c).

Proof. We have the estimate

A ≥
∑

ai<c

aq
i =

∑

ai<c

ai
1

a1−q
i

≥
B

c1−q
, i.e. B ≤ Ac1−q,

and the number of the remaining elements is ≤ 1/c, because
∑

i ai = 1.
With similar computations, we have

∑

ai<c

ai =
∑

ai<c

ai log(1/ai)
1

log(1/ai)
≤

1

log(1/c)

∑

i

ai log(1/ai). �
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We deduce the following proposition.

Proposition 3.13. For all probability measures µ we have dimH(µ) ≤ dimq(µ), 0 ≤ q < 1.

Proof. For any fixed 0 ≤ q < 1, we take ri ≤ 2−i and a disjoint covering Bi with diam Bi ≤ 2ri

and such that
∑

µ(Bi)
q ≤ r

−(dimq(µ)+ε)(1−q)

i .

Let β = dimq(µ) + ε, and use the above lemma with A = r
−β(1−q)
i , c = rβ+ε

i so that the

mass we remove is B ≤ r
ε(1−q)
i and the number of the remaining elements in the sum is

≤ r−β−ε
i . We thus conclude that the Hausdorff outer measure Hβ+2ε

ri
of the set ∪µ(Bi)≥cBi is

Hβ+2ε
ri

(
⋃

µ(Bi)≥c

Bi

)

≤
∑

µ(Bi)≥c

rβ
i ≤ r−β−ε

i rβ+2ε
i = rε

i .

We now use Lemma 3.4, replacing δ with 2−iε(1−q) so that Hdimq(µ)+3ε(Γ) = 0 for all ε > 0:
then dimH(µ) ≤ dimq(µ). �

Since dim0(µ) = dimM(µ), the following corollary follows.

Corollary 3.14. For all probability measure µ we have dimH(µ) ≤ dimM(µ).

3.4. Resolution dimension. The resolution dimension was introduced by Devillanova and
Solimini in [DS2]. Let µ ∈ P(Ω). Consider the set Dn of discrete measures ν with ♯ spt ν ≤ n
and the minimization problem

(3.21) Wp(µ, Dn) := min
ν∈Dn

Wp(µ, ν).

It is well-known (see, for example, [BJR, BW]) that if µ has a lower semicontinuous density
f w.r.t. LN and p ≥ 1, then

lim
n→+∞

Wp(µ, Dn)n
1
N = θN,p

(∫

Ω

f(x)
N

p+N dx

) p+N
N

> 0,

where θN,p is constant depending only on the dimension. It is then reasonable to consider
the quantity given by

−

(

lim sup
n→+∞

log Wp(µ, Dn)

log n

)−1

.

which turns out to be equal to N .

Definition 3.15 (Resolution dimension). Let µ ∈ P(Ω) and p > 0, then the upper resolution
dimension of µ of index p is given by

(3.22) dimWp(µ) := −min{1, p}

(

lim sup
n→+∞

log Wp(µ, Dn)

log n

)−1

.

Similarly, the lower resolution dimension of µ of index p is given by

(3.23) dimWp
(µ) := −min{1, p}

(

lim inf
n→+∞

log Wp(µ, Dn)

log n

)−1

.

The estimates of page 18 provide the following proposition (see also Proposition 5.3 in
[DS2]).
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Proposition 3.16. Let µ ∈ P(Ω) and let p ≤ q. Then

dimWp
(µ) ≤ dimWq

(µ), dimWp(µ) ≤ dimWq(µ),

and if Ω is bounded

dimWq
(µ) ≤ dimWp

(µ)
p

q
, dimWq(µ) ≤ dimWp(µ)

p

q
.

In particular, for any measure µ the maps p 7→ dimWp(µ), p 7→ dimWp
(µ) are Lipschitz

continuous and monotone increasing.

Remark 3.17. By Definition 3.15 it easily follows that given d, there exists N such that

(3.24) Wp(µ, Dn) ≤ n− 1
d for all n ≥ N,

if min{1, p}d > dimWp(µ). On the other side, if min{1, p}d < dimWp(µ), for infinitely many
n,

Wp(µ, Dn) ≥ n− 1
d .

Similar conditions hold when comparing min{1, p}d with dimWp
(µ).

The next proposition is contained in [DS2].

Proposition 3.18. For all probability measures µ we have

(3.25) dimH(µ) ≤ dimWp
(µ) ≤ dimM(µ), dimWp(µ) ≤ dimM(µ).

Moreover for p = ∞ the resolution dimension coincides with the Minkowski dimension.

We now compare the resolution dimension with the q-dimension for q > 1.

Lemma 3.19. For q > 1 it holds

dimq(µ) ≤ dimWp
(µ), dimq(µ) ≤ dimWp(µ).

Proof. We prove this lemma for the upper dimensions, the proof for the lower one being
completely similar.

Assume p ≤ 1 (for p > 1 the resolution dimension is greater than p = 1 by Proposition

3.16), and let Wp(µ, Dn) ≤ n
− (1−ε)p

dimWp
(µ) . Let Br(xi,n), i = 1, . . . , n, be the balls centered at

the atoms of µn ∈ Dn. The definition of Iq(µ, r) and Jensen’s inequality imply that for q > 1

Iq(µ, r) ≤

( n∑

i=1

µ(Br(xi,n))q

) 1
1−q

=

(

n

n∑

i=1

µ(Br(xi,n))q 1

n

) 1
1−q

≤

(

n1−q

( n∑

i=1

µ(Br(xi,n))

)q) 1
1−q

= µ
(
∪i Br(xi,n)

)− q
q−1 n.

The estimate on the Wasserstein distance implies that for

r ∈

[

n
−

(1−2ε)

dimWp
(µ) , (n − 1)

−
(1−2ε)

dimWp
(µ)

)

the mass outside the balls Br(xi,n) is bounded by n
− εp

dimWp
(µ) , so that

log Iq(µ, r)

log 1/r
≤

− q
q−1

log
(
µ
(
∪i Br(xi,n)

))
+ log n

(1−2ε)

dimWp(µ)
log(n − 1)

≤

q
q−1

n
− εp

dimWp
(µ) + log n

(1−2ε)

dimWp(µ)
log(n − 1)

.
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Taking first the limit for n → +∞ and then for ε → 0+ we obtain the conclusion. �

3.5. Irrigation dimension. For the definition of irrigation functional and irrigation dimen-
sion, we refer to [MMS, BCM1, DS1, DS2].

Consider ([0, 1],B,L|[0,1]) and let S ∈ RN be a given point of RN .

Definition 3.20 (Set of fibers). A set of fibers is a mapping

χ : [0, 1] × [0, +∞) → RN

such that:

(1) for µ-almost-every ω ∈ [0, 1], the curve given by χω

t 7→ χω(t) := χ(ω, t)

is Lipschitz continuous and Lip(χω) ≤ 1;
(2) χ is measurable.

We will denote by P the set of such functions.
A set of fibers with source S is a set of fiber χ such that

(3) χω(0) = S for all ω ∈ [0, 1].

We will denote by PS the set of such functions.

Definition 3.21 (χ-vessels at time t). Given t ∈ [0, +∞), the χ-vessels at time t will be the
equivalence classes of the equivalence relation defined by:

ω1 ≃t ω2 ⇐⇒ χω1 = χω2 on [0, t].

Definition 3.22 (Absorption time). Given χ ∈ P, the function σχ : [0, 1] → [0, +∞) given
by

σχ(ω) := inf{t ∈ [0, +∞) : χω constant on [t, +∞]}

is the absorption time. A point ω ∈ [0, 1] is absorbed if σ(ω) < +∞, while it is absorbed at
time t if σ(ω) ≤ t. We will denote by At(χ) the set of absorbed points at time t:

(3.26) At(χ) := {ω ∈ [0, 1] : σχ(ω) ≤ t},

and by Mt(χ) its complementary:

(3.27) Mt(χ) := [0, 1] \ At(χ) = {ω ∈ [0, 1] : σχ(ω) > t}.

Set Aχ = ∪tAt(χ) ⊆ [0, 1] as the set of absorbed points, and define the irrigation function
iχ : Aχ 7→ RN as iχ(p) = χ(p, σχ(p)). The irrigated measure is defined as µ = (iχ)♯L|[0,1].

Let α ∈ [0, 1]. The irrigation cost Iα(χ) is the functions

(3.28) Iα(χ) :=

∫ +∞

0

[ ∫

Mt(χ)

[L([ω]t)]
α−1 dω

]

dt.

We say that a measure ν is α-irrigable if there exists a set of fiber χ ∈ PS such that
Iα(χ) < ∞ and (iχ)♯µ = ν. As before, this definition does not depend on the point S.

Definition 3.23. The irrigation dimension dimirr(µ) is

(3.29) 1 −
1

dimirr(µ)
= inf

{
α : µ is α irrigable

}
.

We recall the following result for irrigation dimension (actually it is a simple extension of
Theorem 1.1 of [DS2]).
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Proposition 3.24. The following estimates hold:

(1) dimH(µ) ≤ dimirr(µ) ≤ max{dimM(µ), 1};
(2) dimirr(µ) = dimWp(µ) for the p ∈ [1,∞] solution to dimWp(µ) = p/(p − 1);

(3) dimirr(µ) ≥ dimq(µ) for all q > 1.

Proof. Point (1) is Theorem 1.1 and Point (2) is Theorem 8.1 of [DS2], and Point (3) follows
from Point (2) and Lemma 3.19. �

4. Upper and lower bounds for path dimension

In this section we compare the path dimension with the dimensions introduced in the
previous section. As one can expect, the first result is that dimH(µ) ≤ dimpath,p(µ) for all
p > 1.

Proposition 4.1. If Gp,r(µ) < ∞, then there exists B such that H
min{1,p}

1−r (B) = 0 and µ is
concentrated on B.

In particular we conclude that dimH(µ) ≤ dimpath,p(µ).

Proof. As usual we assume that p ≤ 1.
Step 1. We first observe that if Gp,r(µ) < ∞, p ≤ 1, it follows that there are µi, i ∈ N,

such that

Wp(µ, µi) ≤ 2−i and

+∞∑

i=1

2−iGr(µi) ≤ +∞.

Hence we can choose indexes ik ≥ 2k such that µik =
∑

j µikjδxikj
and

2−ik
∑

j

µr
ikj ≤ 2−k and Wp

(

µ,
∑

µjδxj

)

≤ 2−ik ,

because 2−iGr(µi) → 0.
Step 2. By Lemma 3.12, it follows that the total mass Bk of atoms of µik with mass ≤ c

is bounded by

Bk =
∑

µikj<c

µikj < c1−r
∑

j

µr
j ≤ c1−r2ik−k ≤ 2−

k
3

when c = ck = 2
k−ik
1−r 2−

k
3(1−r) .

Step 3. Since Wp(µ, νik) ≤ 2−ik , the measure outside the balls of radius rk = 2−
ik
p

+ k
3p

is bounded by 2−
k
3 . Hence, by Step 1., the mass of µ outside the balls of radius 2−

ik
p

+ k
3p

centered at the points with mass greater than ck = 2
k−ik
1−r

− k
3(1−r) is bounded by 2−2k/3.

Step 4. If follows that the set

ΓK =
⋂

k≥K

⋃

j:µikj≥ck

B(xikj, rk)

measures µ(Γ) ≥ 1 −O(1)2−2K/3 and its Hα
rk

outer measure is

Hα
rk

(Γ) ≤
1

ck
rα
k = 2α2

−
k−ik
1−r

+ k
3(1−r) 2(−

ik
p

+ k
3p

)α

which tends to 0 for α ≥ p
1−r

. We the use Lemma 3.4 to conclude. �

We then have the following proposition for the comparison with Minkowski dimension.
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Proposition 4.2. The following holds:

(1) dimpath,p(µ) ≤ max{1, dimM(µ)};
(2) dimq(µ) ≤ dimpath,p(µ) for q > 1.

(3) for p = ∞ we have dimpath,∞(µ) = dimq(µ) for the q such that

dimq(µ) =
1

1 − q
.

Proof. Point (1). From the definition of Minkowski dimension we have that the number ni

of ball B2−i(xj), j = 1, . . . , ni, covering spt µ is bounded by

ni ≤ 2i(dimM (µ)+ε)

for all ε > 0 for i ≥ ī sufficiently large.
Let νi =

∑ni

j=1 νjδxj
be an atomic measure such that W∞(µ, νi) ≤ 2−i (i.e. the mass travels

at most of 2−i). Theorem 2.13 yields that for a large constant

Gp,r(µ) ≤ O(1) + 2
+∞∑

i=ī

2−imin{1,p}2i(dimM+ε)(1−r)

= O(1) + 2

+∞∑

i=ī

2−i(min{1,p}−(dimM +ε)(1−r)).

The conclusion follows because the series is converging for

min{1, p}

1 − r
≥ dimM(µ)(1 + ε)

and ε is arbitrary.
Point (2). By Theorem 2.13, consider a sequence νi, i ∈ N, of measures such that for

p ≤ 1

Wp(µ, νi) ≤ 2−i,
∑

i

2−iGr(νi) < +∞.

The measure νi is clearly purely atomic, and the estimate on the Wasserstein distance yields
that the measure outside the balls centered at the atoms of νi =

∑

j νijδxij
and of radius

2−i(1−ε)/p is bounded by 2−iε.
Restricting the measure µ to the set

Γ =
⋂

i

⋃

j

B(xij , 2
−i(1−ε)/p),

we thus remove a total mass
∑

i 2
−iε < 1 and we have the estimate

Ir(µ|Γ, 2−i(1−ε)/p) ≤

[
∑

j

νr
ij

] 1
1−r

=
(
Gr(νi)

) 1
1−r ≤ C2

i
1−r ,

where we used the fact that µ(B2−i(1−ε)/p(xj)) ≤ νij .
The definition of r-dimension yields

dimr(µ|Γ) ≤
p

(1 − ε)(1 − r)
,

and letting ε → 0+ one conclude that dimr(µ|Γ) ≤ dimpath,p(µ). By Lemma 3.11 and the
monotonicity of dimq(µ) w.r.t. q, the conclusion follows.
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Point (3). For p = ∞, we do not need to remove the mass outside the balls of radius 2−i.
Then

inf
{
Gq(ν), W∞(µ, ν) ≤ r

}
= Iq(µ, r)1−q

and thus Iq(µ, r) ≤ C
r1/(1−q) if µ is (q,∞)-reachable or there exists νi, i ∈ N, such that

Gq(νi) ≤ 2i(1−ε) if dimq(µ) < 1−ε
1−q

.

In both cases we conclude that max{1, dimq(µ)} = dimpath,∞(µ). �

We now compare with the resolution dimension.

Proposition 4.3. We have dimpath,p(µ) ≤ max{1, dimWp(µ)}. Moreover, if it is reachable
for r = 0, then the lower resolution dimension is ≤ 1.

Proof. Let νn ∈ Dn be the atomic measure minimizing Wp(µ, Dn). From the concavity of
Gr it follows that Gr(νn) ≤ n1−r, and the definition of resolution dimension yields that for

any ε > 0 Wp(µ, νn) ≤ n
− 1

dimWp
(µ)+ǫ for n ≥ N(ε).

Hence we conclude with
∑

i

2−iGr(νi) ≤
∑

i

2−i2i(dimWp+ε)(1−r) < ∞

for all r > 1 − 1
max{1,dimWp(µ)+ε}

.

The last part follows because G0(µ) = ♯ spt(µ) counts exactly the number of Dirac masses,
so that if there exists νi such that

Wp(µ, νi) ≤ 2−i,
∑

i

2−iG0(νi) < +∞,

then ♯ spt νi ≤ 2i and

dimWp
(µ) ≤ lim

i→+∞

log 2i

log 1/2−i
= 1.

�

We can consider the path dimension as an average of the upper and lower resolution
dimension.

We finally compare with the irrigation dimension.

Proposition 4.4. If the measure is (r, p)-reachable with p > 1, then it is irrigable, and the
following estimates holds

(4.1) dimirr(µ) ≤
p

p − 1
dimpath,p(µ).

Proof. Let ni be a sequence of measures such that

Wp(µ, νi) ≤ 2−i,
∑

i

2−iGr(νi) < +∞.

The measures νi are clearly purely atomic.
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We estimate the irrigation cost of the optimal transport considered in Proposition 2.8: the
irrigation cost Ir′(νi, νi+1) from νi to νi+1 is bounded by

Ir′(νi, νi+1) ≤
∑

ij

πr′

ij |xi − yj| ≤

(
∑

ij

π
r′−α
1−α

ij

)1−α(∑

ij

πij |xi − yj|
1
α

)α

≤
(
Gr(νi) + Gr(νi+1)

)1−α
W 1

α
(νi, νi+1) ≤ C2i(1−α)Wp(νi, νi+1)

αp

≤ C2−i(α(1+p)−1)

when α satisfies

α ≥
1

p
,

r′ − α

1 − α
= r.

Hence we conclude that the irrigation cost of µ (obtained by adding all the irrigation costs
of the path [νi, νi+1]) is bounded if

1

1 − r′
=

1

1 − α

1

1 − r
and α ≥

1

p
>

1

1 + p
.

�

4.1. Special distributed measures. As one can see from the proofs, the main difficulty in
comparing the various dimensions arises from the fact that the measures do not need to be
uniformly distributed. A great simplification is to consider measures so that for µ-almost-all
points x

(4.2)
1

C
rβ̄ ≤ µ(Br(x)) ≤ Crβ

with C independent on x.
We first define the local dimension.

Definition 4.5. The upper/lower local dimension of µ at x are given by

(4.3) dimloc(µ, x) = lim sup
r→0+

log µ(B(x, r))

log r
, dimloc(µ, x) = lim inf

r→0+

log µ(B(x, r))

log r
.

Under the assumption (4.2), the local dimensions satisfy uniform estimates for almost all
points.

Theorem 4.6. Under the assumption (4.2), the following estimates hold:

(1) β ≤ H(µ) ≤ β̄;

(2) β ≤ dimq(µ) ≤ dimq(µ) ≤ β̄ for all q ∈ [0, +∞];

(3) β ≤ dimWp
(µ) ≤ dimWp(µ) ≤ β̄;

(4) β ≤ dimirr(µ) ≤ β̄;

(5) β ≤ dimpath,p(µ) ≤ β̄.

Proof. Using Proposition 3.18, Proposition 3.24 and Proposition 4.2, Points (3), (4) and (5)
are a consequence of Points (1), (2).

Point (1). We can use the estimates in the proof of Lemma 3.3 to conclude immediately.
Point (2). For the lower bound, we consider q = ∞, so that

I(∞, r) ≥
1

Crβ
.
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This implies that dim∞(µ) ≥ β, and the monotonicity of dimq yields dimq(µ) ≥ β for all
q ∈ [0,∞].

For the upper estimate, we consider the case q = 0, and we use the Besicovich covering
theorem (Theorem 2.18 of [AFP]) to find a finite number ξ of disjoint finite families of balls
Br(xij) such that they cover the support of µ. It follows that the number of these balls is at
most

ξ ≥

ξ
∑

j=1

∑

i

µ(Bi) ≥
rβ̄

C

∑

j

♯i{Br(xij)} =
rβ̄

C
♯ij{Br(xij)},

i.e. we need less than O(1)r−β̄ balls of radius r to cover spt µ, so that dim0(µ) = dimM(µ) ≤
β̄. �

In particular we have that for Ahlfors regular measures β = β = β̄.

Corollary 4.7. For Ahlfors regular measures we have that all dimensions coincide.

To end this section, we give a summarizing table: the dimension on each line is compared
to the dimension on each column.

dimH(µ) dimq(µ) dimWp(µ) dimirr(µ) dimpath,p(µ)
dimH(µ) ≤ for q < 1 ≤ ≤ ≤
dimq(µ) ≥ for q < 1 ≥ for q = 0 ≥ for q = 0 ≥ for q = 0

≤ for q > 1 ≤ for q > 1 ≤ for q > 1
dimWp(µ) ≥ ≤ for q = 0 = p

p−1
≥

≥ for q > 1
dimirr(µ) ≥ ≤ for q = 0 = p

p−1
≤ p

p−1
dimpath,p

≥ for q > 1

dimpath,p(µ) ≥ ≤ for q = 0 ≤ ≥ p−1
p

dimirr

≥ for q > 1

We conclude this section with a simple example, where not all computations are given.

Example 4.8. In the space RN , consider the atomic measure

(4.4) µ({x}) = (1 − a−1)(2Na)−i x =
∑

1≤j≤i

b−j(±ek), a > 1, b > 2,

where ek are the unit vector of the coordinate axis. To be more clear, we write the first
elements of µ:

µ = (1 − a−1)δ(x) +
1 − a−1

2Na

N∑

k=1

[
δ(x − bek) + δ(x + bek)

]

+
1 − a−1

4N2a2

N∑

k=1

N∑

ℓ=1

[

δ(x − bek − b2eℓ) + δ(x − bek + b2eℓ)

+ δ(x + bek − b2eℓ) + δ(x + bek + b2eℓ)
]

+ . . .

We consider now the measure ν obtained by truncating the above sum at a index j and
rescaling the measure in order to obtain a probability. The cost of transporting the remaining
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mass to µ is given by

Wp(µ, ν)max{1,p} =
∑

i>j

(1 − a−1)a−i

∣
∣
∣
∣

∑

j<k≤i

±ekb
−k

∣
∣
∣
∣

p

≃ a−jb−jp.

The cost function is then

Gr(ν) =
∑

i≤j

(1 − a−1)r(2Na)−ir(2N)i ≃
∑

i≤j

(
(2N)1−r

ar

)i

≃

(
(2N)1−r

ar

)j

,

where we assumed that a ≤ (2N)1/r−1, otherwise the sum is converging and the measure µ
is (r, p)-reachable. The condition of Theorem 2.13 is then

∑

j

(
(2N)1−r

bmin{1,p}amin{1,1/p}+r

)j

< ∞,

so that one obtains

r > 1 −
min{1, p} log b + (1 + min{1, 1/p}) log(a)

log(2Na)
.

It follows that the path functional dimension is

dimpath,p(µ) =
min{1, p} log(2Na)

min{1, p} log b + (1 + min{1, 1/p}) log a
,

and we have in particular that p = 0 dimpath,0(µ) = 0 and for p = +∞ dimpath,∞(µ) =
log(2Na)/ log(ab).

We next estimate various dimensions of this measure.

Hausdorff dimension: dimH = 0.
Renyi dimension: we need the same number of balls ≃ (2N)i of radius b−i,

∑

µq
i ≃ (2N)i(1−q)a−iq for q <

log(2N)

log(2Na)
.

The dimension is then

dimq(µ) = −
1

1 − q
lim

i

log((2N)i(1−q)a−iq)

log b−i
=

log(2N) − q
1−q

log a

log b
.

For q = 0 we reduce to the Minkowski dimension

dimM(µ) =
log(2N)

log b
.

Note that for q ≥ log(2N)
log(2Na)

one has dimq(µ) = 0.

Resolution dimension: we need (2N)i balls if we want to be (a1/pb)−i close in Wasser-
stein distance p. Thus the dimension is

lim
i

log(a1/pb)i(2N)i =
min{1, p} log(2N)

min{1, 1/p} loga + min{1, p} log b
= dimWp(µ).
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Irrigation dimension: by considering the tree in the definition of the support of µ,
we have that each branch of length b−i costs ≃ (2Na)−iα, so that since there are 2N
branches the reachability condition is

∑
(

(2Na)1−α

ab

)i

< ∞,

which gives α > 1 − log(ab)/ log(2Na), and the dimension is

dimirr(µ) =
log(2Na)

log(ab)
.

This coincides with the p = ∞ path dimension.
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