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1 Introduction

The main goal of this work is to study in detail under which conditions the right-handed

(RH) neutrinos present in a general type I seesaw scenario [1–4] can give a direct sizable

contribution to the neutrinoless double beta (0νββ) decay rate, i.e., a contribution in the

range of sensitivity of the current and upcoming 0νββ decay experiments, once all the

relevant constraints are included in the analysis.

In [5, 6], it was shown that a sizable sterile neutrino contribution to the 0νββ decay

can be achieved if the heavy neutrino spectrum is hierarchical, with at least one RH neu-

trino with mass M below 100 MeV and the other state(s) above this scale. However, this

spectrum is disfavoured by cosmological observations since the region M ∈ [1 eV, 100 MeV]

is excluded by BBN and CMB data [7, 8]. In [9–11] the possibility of having a relevant

contribution from heavy RH neutrinos up to the TeV scale was explored.1 It was found

that indeed RH neutrinos as heavy as 100 GeV–10 TeV could, in principle, give a sizable

and observable contribution to the 0νββ decay rate. In [11] the role of the fine-tuning and

one-loop effects were discussed, concluding that for RH neutrino masses above 10 GeV a

relatively high level of fine-tuning would be required. In [6] a more detailed study of the

one-loop effects was performed and it was found that indeed they are significant and can

1The interplay between the light and heavy Majorana neutrino contributions in 0νββ decay was inves-

tigated phenomenologically first in [12].
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play a very important role in the type I seesaw scenario. The lepton number violation in-

troduced through the RH neutrino Majorana mass term, required to obtain a sizable effect

in the 0νββ decay rate, naturally appears at one-loop level in the light neutrino sector. If

fine-tuning is not invoked, the light neutrino mass constraints on the one-loop corrections

make it very difficult to obtain a significant (RH) heavy Majorana neutrino contribution in

the 0νββ decay effective Majorana mass, i.e., to have |mheavy
ββ | & 0.01 eV, mheavy

ββ being the

heavy Majorana neutrino contribution under discussion. We will show, in particular, that

the scenario in which RH neutrinos with a mass M & 1 GeV can give a sizable contribution

to the 0νββ decay rate necessarily involves a fine-tuned cancellation between the tree-level

and one-loop light neutrino contributions.

More specifically, in this work we re-analyse the conditions under which the heavy

Majorana neutrinos with masses M > 100 MeV of the type I seesaw scenario can give a

significant direct contribution to the 0νββ decay effective Majorana mass, i.e., a contri-

bution in the range of sensitivity of the current and upcoming 0νββ decay experiments.

We show that for M & a few GeV this requires a relatively large active-sterile neutrino

mixing (charged current couplings of the heavy Majorana neutrinos). We clarify which

seesaw realisations can provide the requisite mixing. We discuss the impact of the one-loop

corrections in the different type I seesaw realisations considered. We analyse also numeri-

cally the problem of the sizable heavy Majorana neutrino contribution to the 0νββ decay

effective Majorana mass, by studying the full parameter space, including the relevant one-

loop corrections and the bounds on the active-sterile neutrino mixing from direct searches,

charged lepton flavour violation and non-unitarity [13–20]. We quantify, in particular,

the level of fine-tuning required in order to have a sizable heavy neutrino contribution to

the 0νββ decay rate. In order to do the analysis and generate the right pattern for the

light neutrino masses and mixing, we have constructed a modification of the Casas-Ibarra

parametrization [21], which takes into account the impact of the one-loop corrections.

The paper is organized as follows: in section 2 we derive under which conditions it

is possible to obtain a sizable active-sterile neutrino mixing, which can strongly affect

the effective Majorana neutrino mass, mββ . In section 3 we study the impact on mββ

of the one-loop corrections to the light neutrino masses and present our modified Casas-

Ibarra parametrization which takes into account the one-loop effects. In section 4 we

perform the numerical analysis and quantify the level of fine-tuning necessary to have a

dominant contribution in mββ from the exchange of the heavy (sterile) neutrinos. Finally,

we summarise our results in the concluding section.

2 Large active-sterile neutrino mixing and 0νββ decay

We consider the most general type I seesaw scenario [1–4] with n ≥ 2 RH neutrino fields

νsR (s = 1, . . . , n). After the spontaneous breaking of the electroweak (EW) symmetry the

full neutrino mass Lagrangian is

Lν = − ν`L (mD)`s νsR −
1

2
νcsL (MR)st νtR + h.c. (2.1)
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where ` = e, µ, τ and νcsL ≡ C νsRT , C being the charge conjugation matrix. MR = (MR)T

is the Majorana mass matrix of the RH neutrinos and mD is the 3×n neutrino Dirac mass

matrix. The full mass matrix derived from Lagrangian (2.1) is therefore

M≡

(
O mD

mT
D MR

)
= U∗ diag (mi,Mk)U

†, (2.2)

where mi (i = 1, 2, 3) and Mk (k = 1, . . . , n) are the light and heavy Majorana neutrino

masses, respectively. We define O as a 3 × 3 matrix with all elements equal to zero. The

full neutrino mass M is diagonalised by a (3 + n) × (3 + n) unitary matrix U , through

a well known rotation between the neutrino flavour and mass eigenstates. We give below

the relation between the left-handed (LH) components of the corresponding fields (ν`L, νcsL
and χiL, NkL): (

ν`L
νcsL

)
= U

(
χiL
NkL

)
. (2.3)

Taking into account that the active block of U is unitary to a very good approximation,

the complete mixing matrix can be expanded as2

U =

(
1− θθ†/2 θ

−θ† 1− θ†θ/2

)(
UPMNS 0

0 V

)
+O

(
θ3
)

=

(
UPMNS θV

−θ†UPMNS V

)
+O

(
θ2
)
, (2.4)

where θ is a 3×n matrix with “small” entries, which characterises the mixing between the

active and the sterile neutrinos, UPMNS is the PMNS neutrino mixing matrix [22, 23] and

V is a n×n unitary matrix. The quantity (θ V )`k, ` = e, µ, τ , k = 1, . . . , n, is the coupling

of the heavy Majorana neutrino Nk to the charged lepton ` in the weak charged lepton

current, and to the flavour neutrino ν` in the weak neutral lepton current.

From the diagonalization of the complete neutrino mass matrix M, at leading order

in θ we have [9]

θ∗MR θ
† ≈ −U∗PMNS m̂U †PMNS , (2.5)

θ∗MR ≈ mD , (2.6)

MR ≈ V ∗ M̂ V † , (2.7)

where

m̂ ≡ diag(m1,m2,m3) , M̂ ≡ diag(M1, . . . ,Mn) . (2.8)

It follows from eqs. (2.5) and (2.7) that

(θ V )∗ M̂ (θ V )† ≈ −U∗PMNS m̂U †PMNS . (2.9)

In terms of the seesaw parameters we have for the active-sterile neutrino mixing:

θ∗ ≈ mDM
−1
R . (2.10)

2In the following we work in the basis in which the charged lepton mass matrix is diagonal.
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Using eqs. (2.5) and (2.10), we recover the usual type I seesaw relation for the (tree-level)

light neutrino mass matrix, namely

mtree
ν = −mDM

−1
R mT

D ≡ −θ∗MR θ
† = −(θ V )∗ M̂ (θ V )† = U∗PMNS m̂U †PMNS . (2.11)

The effective Majorana neutrino mass, mββ , which enters in the 0νββ decay amplitude,

receives, in general, two different contributions, corresponding to the exchanges of the light

and heavy virtual Majorana neutrinos:

mββ = mlight
ββ + mheavy

ββ , (2.12)

with

mlight
ββ =

3∑
i=1

(UPMNS)2eimi = −
∑
k

(θ V )2ekMk , (2.13)

where we have used eq. (2.9), which holds at tree-level in the type I seesaw models. A good

estimate for the contribution due to the heavy Majorana neutrino exchange for Mk �
100 MeV is [5]

mheavy
ββ ≈ −

∑
k

(θV )2ek f(A) (Ma/Mk)
2Mk , (2.14)

where Ma ≈ 0.9 GeV and f(A) depends on the decaying isotope considered. For, e.g.,
48Ca, 76Ge, 82Se, 130Te and 136Xe, the function f(A) takes the values f(A) ≈ 0.033, 0.079,

0.073, 0.085 and 0.068, respectively.

Using eq. (2.14), it is easy to estimate the minimum mixing (θV )min required in or-

der to have a contribution at the aimed sensitivity of the next generation of 0νββ decay

experiments, that is |mheavy
ββ | & 10−2 eV. In figure 1 we compare this estimate for (θV )min

for the 76Ge isotope, (θV )2min ' 1.6× 10−10M GeV−1 (dashed line), with the naive seesaw

scaling suggested by eq. (2.11), (θV )2naive =
√

∆m2
atm/M ' 5× 10−11 GeV/M (solid line)

as a function of the RH neutrino mass scale M (expressed in units of GeV).

From figure 1 it is clear that for RH neutrino masses larger than ∼ 1 GeV a considerable

enhancement with respect to the naive seesaw scaling of θV is required in order to have a

sizable RH neutrino contribution. Obviously, this enhancement increases with the mass of

the RH neutrinos. We notice that in the region M ≈ 500 MeV–1 GeV, the naively estimated

mixing, (θV )2naive, is in the right ballpark. Similar conclusions are valid for (θV )2min and

(θV )2naive in the cases of 0νββ decay of other isotopes (48Ca, 82Se, 130Te, 136Xe, etc.).

2.1 Casas-Ibarra parametrization and large active-sterile neutrino mixing

In order to understand under which conditions an enhancement with respect to the naive

scaling of the active-sterile mixing (or equivalently, of the charged current couplings of

the heavy Majorana neutrinos (θV )`k) can be expected, we employ the Casas-Ibarra

parametrization of θV [21]. In this parametrization the light neutrino masses and the

angles and phases of the PMNS matrix are input parameters, in such a way that the cor-

rect light neutrino mixing pattern is always recovered. The Casas-Ibarra parametrization

is obtained rewriting eq. (2.5) as(
±i m̂−1/2 U †PMNS θV M̂

1/2
) (
±i m̂−1/2 U †PMNS θV M̂

1/2
)T
≡ RRT = 1 , (2.15)

– 4 –



J
H
E
P
1
1
(
2
0
1
5
)
0
3
0

HΘVL
min

2

1

M

Dm
a t m

2

1 10 10
2

10
3

10
4

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

M HGeVL

HΘ
V
L2

Figure 1. Active-sterile neutrino mixing. The dashed line stands for an estimate of the minimum

(θV )2 required in order to have |mheavy
ββ | > 10−2 eV in the case of 0νββ decay of 76Ge. The solid

line corresponds to the naive seesaw scaling of (θV )2 (see the text for further details).

where R is a general 3× n complex matrix which parametrizes the new physics degrees of

freedom associated to the sterile neutrino sector. Using this parametrization, θV can be

written as

θV = ∓ i UPMNS m̂
1/2RM̂−1/2 . (2.16)

The matrix V can be set to the unit matrix if one works in the basis in which the Majorana

sub-matrix MR is diagonal.3

Naively, from eq. (2.11) one may conclude that θV ≈ O
(√

m̂
M̂

)
, i.e., that the mixing

(or coupling) θV is expected to be suppressed by the heavy neutrino mass scale. However,

having a larger mixing is perfectly possible due to an enhancement factor contained in the

matrix R [9, 10]. Obviously, such enhancement can only be in agreement with the light

neutrino spectrum if there is a non-trivial suppression/cancellation in the l.h.s. of eq. (2.9).

This extra suppression is related to particular textures of the neutrino mass matrix, which

can be motivated, for instance, introducing an extra U(1) global symmetry in the La-

grangian, as it is the case in the so called “inverse” and “direct” seesaw models [26–28].

In these models the indicated global symmetry can be identified with that corresponding

to the conservation of a non-standard lepton charge (see further).

In the following we will focus on the minimal seesaw scenario with n = 2 RH sterile

neutrinos4 (see, e.g., [29–36]) giving rise to two heavy Majorana mass-eigenstate neutrinos,

which predicts one massless and two massive light active neutrinos. For the light neutrino

3 An extension of this parametrization to all orders in the seesaw expansion can be found in [24, 25].
4In the present article we will use the term “heavy Majorana neutrinos” for Majorana neutrinos having

masses exceeding approximately 100 MeV.
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mass spectrum with normal hierarchy (NH) and inverted hierarchy (IH) we have

m1 = 0 , m2 =
√

∆m2
21 , m3 =

√
∆m2

31 , (NH) (2.17)

m1 =
√
|∆m2

32| −∆m2
21 , m2 =

√
|∆m2

32| , m3 = 0 (IH) . (2.18)

The current best fit values obtained from the global fit analysis in [37] are

∆m2
21 = 7.50× 10−5 eV2 , (2.19)

∆m2
31 = 2.457× 10−3 eV2 (NH) and ∆m2

32 = −2.449× 10−3 eV2 (IH) .

In this minimal seesaw scenario, the two (tree-level) non-zero light neutrino masses mtree
2

and mtree
3 (mtree

1 ) in the case of NH (IH) neutrino mass spectrum satisfy the relation:

mtree
2 mtree

3(1) ≡ − det[M−1R ] det[mT
DmD] , NH (IH) , (2.20)

which is basis independent.

In the considered case the R-matrix, which enters into eq. (2.16), can be

parametrized as [10]

R =

 0 0

cos (θ45 + iγ) − sin (θ45 + iγ)

sin (θ45 + iγ) cos (θ45 + iγ)

 , for NH , (2.21)

R =

cos (θ45 + iγ) − sin (θ45 + iγ)

sin (θ45 + iγ) cos (θ45 + iγ)

0 0

 , for IH , (2.22)

where θ45 and γ are real parameters. If R were real, i.e., γ = 0, there is no way to obtain

any enhancement of the couplings/mixings θV of interest since R would essentially be a

real orthogonal matrix. However, for γ 6= 0 and e±γ � 1 an enhancement of θV is possible:

| cos (θ45 + iγ) |2 = cos2 θ45 + sinh2 γ � 1⇔ e±γ � 1 ,

| sin (θ45 + iγ) |2 = sin2 θ45 + sinh2 γ � 1⇔ e±γ � 1 . (2.23)

In fact, for e±γ � 1 the expression of R in the NH case reduces to

R ≈ e−i θ45 e
±γ

2

 0 0

1 ±i
∓i 1

 , NH . (2.24)

Similarly, one can derive from (2.22) the same limit of R for the IH neutrino mass spectrum:

R ≈ e−i θ45 e
±γ

2

 1 ±i
∓i 1

0 0

 , IH . (2.25)
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Notice that the Casas-Ibarra parameter γ in (2.24) and (2.25) can be related to the maxi-

mum eigenvalue y [10] of the Dirac mass matrix mD in eq. (2.2), that is

y2 v2 = 2 max
{

eig
(
mDm

†
D

)}
=

1

2
e±γM1 (m2 +m3) (2 + z) , NH , (2.26)

y2 v2 = 2 max
{

eig
(
mDm

†
D

)}
=

1

2
e±γM1 (m1 +m2) (2 + z) , IH , (2.27)

where z denotes the relative mass splitting of the two heavy Majorana neutrino masses,

z = (M2 −M1)/M1, and v = 246 GeV is the EW symmetry breaking scale.

Introducing the expression (2.24) (or (2.25)) in eq. (2.16) one obtains [9, 10, 38, 39]

(θV )`1
(θV )`2

≈ ±i
√
M2

M1
. (2.28)

Then, in terms of y the active-sterile neutrino mixing in eq. (2.16) takes the form [10]

|(θV )`1|
2 =

1

2 (2 + z)

y2v2

M2
1

m3

m2 +m3

∣∣∣U`3 + i
√
m2/m3 U`2

∣∣∣2 , NH , (2.29)

|(θV )`1|
2 =

1

2 (2 + z)

y2v2

M2
1

m2

m1 +m2

∣∣∣U`2 + i
√
m1/m2 U`1

∣∣∣2 , IH . (2.30)

All in all, the previous relations imply that in the basis in which the RH neutrino Majorana

mass term is diagonal, the neutrino Yukawa couplings, or equivalently (mD)`1 and (mD)`2,

should satisfy the following relation:

(mD)`1
(mD)`2

≈ ±i
√
M1

M2
(2.31)

Any texture of the neutrino mass matrix which satisfies this condition gives rise to relatively

large couplings θV with the right suppression/cancellation in the light (flavour) neutrino

mass matrix, which allows to recover the correct light neutrino mass spectrum at tree-level.

The relatively large θV thus generated can saturate the present bounds even in the case

in which the heavy Majorana neutrino spectrum is hierarchical.

Using eqs. (2.14) and (2.28), one can easily estimate the contribution to the 0νββ

decay effective Majorana mass due to the exchange of the heavy Majorana neutrinos in the

large coupling/mixing case of interest [9]:

mheavy
ββ ≈ − (θV )2e1 f(A)

M2
a

M1

{
1−

(
M1

M1 + ∆M

)2
}
, (2.32)

with5 ∆M = M2 −M1. Clearly, if ∆M � M1 the contribution will be proportional to

∆M , while in the limit ∆M �M1 the dependence on ∆M is subleading since the lightest

RH neutrino dominates the contribution.

The interplay between the light and heavy Majorana neutrino exchange contributions

in the effective Majorana mass, mββ = mlight
ββ + mheavy

ββ , in the scheme under discussion

5 Note that (θV )2e1 depends, in particular, on the phase θ45. This implies that mββ will also depend on

θ45 [10].
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in which eq. (2.28) holds and mheavy
ββ is given by eq. (2.32), was investigated in detail

in [10] in the case when the two heavy Majorana neutrinos form a pseudo-Dirac pair,

0 < ∆M = M2 − M1 � M1,M2, and have masses in the interval ∼ (50 − 1000) GeV.

It was found that there exists a relatively large region of the allowed parameter space of

the scheme in which the heavy Majorana neutrino contribution can change drastically the

predictions based on the light Majorana neutrino exchange contribution. More specifically,

it was found that [10]: i) |mββ | in the case of NH spectrum can have values in the interval

0.01 eV . |mββ | . 0.1 eV, i.e., in the range of sensitivity of the current GERDA [40],

EXO [41], Kamland-Zen [42] and CUORE [43] experiments and of a few other experiments

under preparation (Majorana [44], SNO+ [45], AMORE [46], etc.). We recall that in the

case of 0νββ decay generated only by light Majorana neutrino exchange we have (see,

e.g., [47, 48]) |mββ | = |mlight
ββ | . 0.005 eV;

ii) |mββ | in the case of IH spectrum can be strongly suppressed due to partial, or even

total, cancellation between mlight
ββ and mheavy

ββ in mββ (see also [49]). Since the magnitude

of mheavy
ββ , as it follows from eq. (2.32), depends on the atomic number A of the decaying

nucleus [12], the cancellation between mlight
ββ and mheavy

ββ in mββ can take place for a given

nucleus (say, e.g., for 48Ca) but will not hold for other nuclei (76Ge, 82Se, 130Te, 136Xe,

etc.). If the 0νββ decay is due only to the light Majorana neutrino exchange we have in

the case of IH spectrum, as is well known [50, 51] (see also, e.g., [47]), 0.013 eV . |mββ | =
|mlight

ββ | . 0.050 eV.

On the other hand, in [10] the role of the one-loop corrections was not studied. In [6]

it was shown that the one-loop corrections to the light neutrino masses generated in the

scheme under discussion turn out to be very relevant. Essentially, a sizable heavy contri-

bution to the 0νββ decay for heavy masses in the range ∼ (50 − 1000) GeV generates at

the same time a very large one-loop correction to the light neutrino masses. In this work

we analyse in detail the role of the one-loop effects showing that similar conclusions to

the ones drawn in [10] will be obtained. However, we will also show that the price one

has to pay in order to have a significant impact of the heavy neutrinos in the 0νββ decay

is the requirement of a highly fine-tuned cancellation between the tree-level and one-loop

contributions to the light neutrino masses.

2.2 Comparison with extended and inverse seesaw scenarios

As an application of the previous results, we consider the effect of heavy RH neutrinos

on the 0νββ decay amplitude in the case of two different realisations of the type I seesaw

scenario, which predict a large active-sterile neutrino mixing θV , that is the well known

extended seesaw (ESS) [52] and inverse/direct seesaw (ISS) [26–28] models. In particular,

we will clarify how the large mixing realisations described in the previous section in terms

of the Casas-Ibarra parametrization match with the ISS and ESS scenarios.

In order to understand the predictions in these classes of models it is useful to adopt

the following parametrization of the generic mass terms in the seesaw Lagrangian (2.1),

– 8 –
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namely

M ≡

(
O mD

mT
D MR

)
=

 O Y1 v/
√

2 εY2 v/
√

2

YT
1 v/
√

2 µ′ Λ

εYT
2 v/
√

2 Λ µ

 , (2.33)

where Yi ≡ (yie, yiµ, yiτ )T , for i = 1, 2. This parametrization is completely general and, in

principle, ε, µ, µ′ and Λ can take any value.6 However, ε, µ and µ′ can be interpreted as lep-

ton number violating couplings and, therefore, in principle they take arbitrarily small val-

ues, because in this case there is an approximate global symmetry of the seesaw Lagrangian

corresponding to the conservation of the lepton charge L′ = Le +Lµ+Lτ +L1−L2, where

L1 and L2 are the charges carried by the RH neutrino fields ν1R and ν2R, respectively. In

the limit of ε = µ = µ′ = 0, the conservation of L′ is exact. In this case the neutrino sector

consists of three massless neutrinos and one massive Dirac fermion, which can be inferred,

in particular, directly from the expression of the charge L′ in terms of the charges L` and

L1,2 [53, 54]. The exact conservation of L′ corresponds to the case in which condition (2.28)

is exactly fulfilled and the RH neutrino splitting satisfies: ∆M = M2 −M1 → 0.

In terms of the new parameters, the exact (tree-level) expression of the light neutrino

mass matrix given in (2.11) is proportional to µ and ε, that is

mtree
ν =

v2

2 (Λ2 − µ′µ)

(
µY1Y

T
1 + ε2 µ′Y2Y

T
2 − Λ ε (Y2Y

T
1 + Y1Y

T
2 )
)
, (2.34)

and thus if µ = ε = 0 there is a complete cancellation at tree-level for the light neutrino

masses. As we will see in the next section, if µ′ is different from zero, at least one neu-

trino mass can be generated at one-loop, even for µ = ε = 0 [6]. Furthermore, from the

diagonalization of (2.34), we obtain for the product of the smallest (mtree
l ) and the largest

(mtree
h ) light neutrino masses:∣∣mtree
l mtree

h

∣∣ =
∣∣det

[
M−1R

]
det
[
mT
DmD

]∣∣ =

(2.35)

v4 ε2
∣∣y22e (y21µ + y21τ ) + y21e(y

2
2µ + y22τ )− 2 y1ey2e(y1µy2µ + y1τy2τ ) + (y2µ y1τ − y1µy2τ )2

∣∣
4|Λ2 − µµ′|

.

From this relation it follows that in order to have two massive active neutrinos at tree-level,

i.e., mtree
l,h 6= 0, i) an explicit breaking of the lepton charge conservation via the neutrino

Yukawa couplings is necessary, that is the parameter ε must always be different from zero;

ii) the vectors of neutrino Yukawa couplings Y1 and Y2 cannot be proportional.

Accordingly, the two seesaw limits of eq. (2.34) which give rise to large active-sterile

neutrino mixing θV and generate sufficiently small active neutrino masses are:

• i) µ′ � Λ, y1α v � µ, ε y2α v (ESS limit). This limit matches the so-called extended

seesaw [52] models and corresponds to a hierarchical spectrum for the heavy neutri-

6In the following we will assume for simplicity that all the parameters introduced in eq. (2.33) are real.
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nos:

M1 ≈ (Λ2/µ′ − µ) , (θV )`1 ≈ i
v√

2M1

[
y1`

Λ

µ′ − µ
− ε y2`

(
1− Λ2

2(µ′ − µ)2

)]
,

(2.36)

M2 ≈ µ′ + Λ2/µ′ , (θV )`2 ≈
v√

2M2

[
y1`

(
1− Λ2

2(µ′ − µ)2

)
+ ε y2`

Λ

µ′ − µ

]
,

(2.37)

where we also show the corresponding mixing with the active neutrinos. Then, the

approximate tree-level contribution to the 0νββ decay effective Majorana mass due

to the exchange of the light and the heavy neutrinos is

mlight
ββ ≈ v2

2 (Λ2/µ′ − µ)

(
µ

µ′
y21e − 2 ε

Λ

µ′
y1e y2e

)
, (2.38)

mheavy
ββ ≈ f(A)

v2M2
a

2 (Λ2/µ′ − µ)3

(
Λ2

µ′2
y21e − 2 ε

Λ

µ′
y1e y2e

)
, (2.39)

respectively. The dominant term in mheavy
ββ is due to the exchange of the lighter

of the two heavy Majorana neutrinos N1, the exchange of N2 giving a subleading

(and negligible in the leading approximation we employed) correction. Notice that,

if Λ2/µ′ � µ, mlight
ββ becomes independent of µ′ while mheavy

ββ is proportional to µ′:

mlight
ββ ≈ v2

2 Λ2

(
µ y21e − 2 εΛ y1e y2e

)
, (2.40)

mheavy
ββ ≈ f(A)

µ′ v2M2
a

2 Λ4

(
y21e − 2 ε

µ′

Λ
y1e y2e

)
. (2.41)

• ii) Λ� y1α v � µ′, µ, ε y2α v (ISS limit). This limit corresponds to a minimal realisa-

tion with only two RH neutrinos of the so-called inverse or direct seesaw models [39].

In this case the heavy neutrino spectrum is quasi-degenerate, forming a quasi-Dirac

pair [55, 56]

M1 ≈ Λ− µ+ µ′

2
, (θV )`1 ≈ i

v

2M1

[
y1`

(
1 +

µ− µ′

4Λ

)
− ε y2`

(
1− µ− µ′

4Λ

)]
,

(2.42)

M2 ≈ Λ +
µ + µ′

2
, (θV )`2 ≈

v

2M2

[
y1`

(
1− µ− µ′

4Λ

)
+ ε y2`

(
1 +

µ− µ′

4Λ

)]
,

(2.43)

In this limit the light and heavy contributions to the 0νββ decay rate are given by:

mlight
ββ ≈ v2

2 Λ2

(
µ y21e − 2 εΛ y1e y2e

)
, (2.44)

mheavy
ββ ≈ f(A)

v2M2
a

2 Λ4

(
(2µ + µ′) y21e − 2 εΛ y1e y2e

)
. (2.45)

Both of them are proportional to the small lepton number violating parameters, as

it should be. Notice that the expression of mlight
ββ above is exactly the same as the

one given in eq. (2.40).
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On one hand, it follows from eqs. (2.40), (2.41), (2.44) and (2.45) that a relatively

large contribution to the 0νββ decay rate due to the heavy Majorana neutrino exchange

might be possible at tree-level without affecting the smallness of the light neutrino masses

since in the limits considered here mheavy
ββ ∝ µ′, while mlight

ββ is independent of µ′. On

the other hand, eqs. (2.36)–(2.37) and (2.42)–(2.43) confirm that the condition to obtain

relatively large mixings, eq. (2.28), is fulfilled at leading order, that is in the Casas-Ibarra

parametrization the R-matrix corresponding to these two cases is similar to the textures

reported in eqs. (2.24) and (2.25).

Finally, we note that in the case of the ISS model, the smallness of the light neutrino

masses comes from the existence of an approximate symmetry corresponding to the conser-

vation of the lepton charge L′. In contrast, in the ESS limit, the conservation of the lepton

charge L′ is strongly violated through the µ′ coupling. This means that, in principle, the

one-loop corrections to the neutrino masses can be expected to be more important in the

ESS limit than in the ISS one since in the ESS case there is no symmetry protecting the

light neutrino masses from getting relatively large corrections [6].

3 One-loop corrections to the neutrino mass matrix

We turn now to the computation of the one-loop corrections to the light neutrino mass

matrix and the effective Majorana neutrino mass associated to 0νββ decay amplitude.

At one-loop the neutrino self-energy Σ(p) provides the dominant finite correction to

mν [6, 57–60], which depends on the square of the neutrino Yukawa couplings, as in the

tree-level contribution (2.11), and is further suppressed by the one-loop factor 1/(16π2).

In a generic basis, with the Dirac and Majorana mass terms defined in Lagrangian (2.1),

we obtain:

M =

(
m1−loop
ν mD

mT
D MR

)
= U∗ diag (mi,Mk)U

† , (3.1)

where the new Majorana mass term generated at one-loop is in this case

m1−loop
ν =

1

(4π v)2
mD

(
M−1R F (MRM

†
R) + F (M †RMR)M−1R

)
mT
D . (3.2)

The loop function F (x) is defined as

F (x) ≡ x

2

(
3 log(x/M2

Z) (x/M2
Z − 1)−1 + log(x/M2

H) (x/M2
H − 1)−1

)
, (3.3)

MH andMZ denoting the Higgs and the Z boson mass, respectively. Hence, the overall light

neutrino mass matrix, mν , is given by the sum of the tree-level (2.11) and one-loop (3.2)

terms, which in the basis of charged lepton mass eigenstates satisfies the relation

mν = mtree
ν +m1−loop

ν = U∗PMNS diag(m1,m2,m3)U
†
PMNS . (3.4)

The finite radiative correction given in (3.2) is in general subdominant in the case of RH

neutrinos with a high mass scale M � v, but it may be sizable and comparable to the

tree-level term in seesaw scenarios where the lepton number violating scale is taken below
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the TeV range. It is therefore interesting to analyse in greater detail the dependence of the

light neutrino masses on the additional finite one-loop contribution, eq. (3.2).

In the basis in which the RH neutrino mass is diagonal, the one-loop correction of

interest has the following form:

(m1−loop
ν )``′ =

1

(4π v)2
(θV )∗`kM

3
k

(
3 log(M2

k/M
2
Z)

M2
k/M

2
Z − 1

+
log(M2

k/M
2
H)

M2
k/M

2
H − 1

)
(θV )†k`′ , (3.5)

where we have used eqs. (2.6) and (2.7). The contribution of the one-loop correction under

discussion to the effective Majorana neutrino mass mlight
ββ , generated by the light Majorana

neutrino exchange, as can be shown, is given by

m1−loop
ββ = (m1−loop

ν )∗ee . (3.6)

3.1 The scheme with two RH neutrinos

In the phenomenologically interesting scheme with two RH neutrinos, for each non-zero

eigenvalue mk of eq. (3.4), we have the exact relation

0 = det
[
mk 13×3 + mDM

−1
R (12×2 −H(MR) ) mT

D

]
= mk det

[
mk 12×2 + M−1R (12×2 −H(MR) ) mT

DmD

]
, (3.7)

where the second equality follows form the Sylvester’s determinant theorem and we have

introduced the function7

H(MR) ≡ 1

(4π v)2

(
F (MRM

†
R) +MR F (M †RMR)M−1R

)
. (3.8)

Using (3.7) and (2.20), we get the identity

det [12×2 −H(MR) ]
∣∣mtree

l mtree
h

∣∣ = mlmh , (3.9)

where ml (mh) is the smaller (larger) non-zero active neutrino mass, whose experimental

value in the cases of NH and IH neutrino mass spectrum is given in eqs. (2.17) and (2.18),

respectively.8 Therefore, the determinant on the left hand side of eq. (3.9) provides a

measurement of the deviation of the tree-level mass eigenvalues from the observed neutrino

masses. Notice that, this is a positive quantity smaller than one in the scenarios considered

here. As a consequence of eq. (3.9), one has that in the case mtree
l = 0, i.e. if two of the

active neutrinos are massless at tree-level, it is not possible to generate at one-loop level

two non-zero light (active) neutrino masses in the spectrum. In other words, in such a

scenario both the solar and atmospheric neutrino oscillation mass differences cannot be

radiatively generated.

As it is not difficult to show, in the minimal scenario with only two heavy Majorana

neutrinos, in which condition (2.28) is exactly fulfilled, the one-loop contribution to the

7The definition given in eq. (3.8) is by construction basis independent.
8In the convention we are using mtree

l mtree
h = mtree

2 mtree
3 ( mtree

l mtree
h = mtree

1 mtree
2 ) and mlmh = m2m3

(mlmh = m1m2) in the NH (IH) case.
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light neutrino mass matrix goes to zero in the limit ∆M = M2 −M1 → 0. Indeed, from

eqs. (2.28) and (3.6) we find:

m1−loop
ββ =

1

(4π v)2
(θV )2e1M

3
1

{[(
3 log(M2

1 /M
2
Z)

M2
1 /M

2
Z − 1

+
log(M2

1 /M
2
H)

M2
1 /M

2
H − 1

)
−
(
M2

1 →M2
2

)]

− z(2 + z)

(
3 log(M2

2 /M
2
Z)

M2
2 /M

2
Z − 1

+
log(M2

2 /M
2
H)

M2
2 /M

2
H − 1

)}
, (3.10)

where z ≡ ∆M/M1, i.e., M2 = (1 + z)M1. Note that eq. (3.10) is valid for arbitrary values

of z and M1. In the case of M2
1 ,M

2
2 �M2

Z ,M
2
H we get:

m1−loop
ββ =

(θV )2e1
(4π v)2

M3
1

[
8(1+z)2 log(1+z)+z(2+z)

(
3 log(M2

1 /M
2
Z)+log(M2

1 /M
2
H)
)]
.

(3.11)

If, in addition, z � 1, this expression further simplifies to:

m1−loop
ββ =

(θV )2e1
(4π v)2

M3
1 z(2 + z)

[
4(1 + z)2 + 3 log(M2

1 /M
2
Z) + log(M2

1 /M
2
H)
]
.(3.12)

In the opposite limit, namely, M2
1 ,M

2
2 �M2

Z ,M
2
H , m1−loop

ββ takes also a rather simple form

for z � 1. In this case, to leading order in z � 1, we obtain:

m1−loop
ββ = − 2 z

1

(4π v)2
(θV )2e1M1

(
3M2

Z +M2
H

)
. (3.13)

Thus, in the scheme considered here, in which condition (2.28) is fulfilled, the magni-

tude of the one-loop correction to mlight
ββ of interest, m1−loop

ββ , exhibits a strong dependence

on z. This dependence is particularly important in the case when the two heavy Majorana

neutrinos form a pseudo-Dirac pair, 0 < ∆M � M1,M2, or z � 1. In this case the ratio

of the one-loop correction to the 0νββ decay amplitude and the heavy Majorana neutrino

exchange contribution given in eq. (2.32), |m1−loop
ββ /mheavy

ββ |, practically depends only on the

massM1. As it is not difficult to show, for f(A) = 0.79 (0.033), i.e., for 76Ge (48Ca), we have

|m1−loop
ββ /mheavy

ββ | ≈ 1 at M1 ≈ 15 (9.7) GeV. For M1 > 15 (9.7) GeV (M1 < 15 (9.7) GeV),

|m1−loop
ββ | is bigger (smaller) than |mheavy

ββ |. This is illustrated in figure 2, which shows

the dependence of |m1−loop
ββ | and |mheavy

ββ | on M1 > 0.5 GeV for ∆M = 10−2 GeV in the

scheme in which condition (2.28) is exactly fulfilled and fixing the active-sterile mixing

to the reference value of |(θV )2e1| = 10−3. In this plot the Higgs mass has been set to

MH = 125 GeV. Note, however, that given the values of MZ = 90 GeV and MH = 125 GeV,

for M1 = 15 (9.7) GeV, the factor (4(1 + z)2 + 3 log(M2
1 /M

2
Z) + log(M2

1 /M
2
H)) in eq. (3.12)

for m1−loop
ββ is negative. Thus, at M1 = 15 (9.7) GeV, we have m1−loop

ββ /mheavy
ββ > 0 (see

eq. (2.32)), and therefore a cancellation, or even a partial compensation, between the two

terms m1−loop
ββ and mheavy

ββ in the 0νββ decay amplitude is impossible.

As it should be clear from figure 2 and eqs. (3.11)–(3.13), |m1−loop
ββ | grows rapidly

with the increase of M1. However, the dependence of |m1−loop
ββ | on z when z � 1 makes
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Figure 2. The contributions to the 0νββ decay effective Majorana mass due to the one-loop

correction to the light neutrino mass matrix (dashed line) and due to the heavy Majorana neutrino

exchange (solid line), |m1−loop
ββ | and |mheavy

ββ | (eqs. (3.10) and (2.32)), as functions of the heavy

Majorana neutrino mass M1, for ∆M = 10−2 GeV, |(θV )e1|2 = 10−3 and f(A) = 0.079 (i.e., for
76Ge). The range of values the effective Majorana neutrino mass can take in the case of light

Majorana neutrino exchange and IH spectrum is also shown (the band in red color). See the text

for further details.

it possible, in principle, for |m1−loop
ββ | to have values in the range of sensitivity of the

current and next generation of 0νββ decay experiments, i.e., to have |m1−loop
ββ | ∼ (0.01 −

0.10) eV even for, e.g., M1 = 103 GeV and the maximal value of |(θV )2e1| = 10−3 allowed

by the current data. This requires, however, exceedingly small values of z, which lead

to a subleading heavy neutrino contribution. Indeed, using the quoted values of M1 and

|(θV )2e1|, and taking into account that v = 246 GeV, it is not difficult to find from eq. (3.13)

that we can have |m1−loop
ββ | ≈ 0.01 (0.10) eV for z ≈ 6×10−10 (6×10−9). Such a small value

of z suggests a severe fine-tuning, but it can also be understood in the context of the ISS

scenario as a technically naturally small value of the lepton number violating parameters

of this model.

In the analyses which follow we will not assume that eq. (2.28) relating (θV )e1 and

(θV )e2 is satisfied. We will use only the phenomenological constraint on (θV )e1 and

(θV )e2 [13–20]. Notice, however, that for values of the Casas-Ibarra parameter |γ| & 6

(see eqs. (2.16), (2.24) and (2.25)), the relation given in eq. (2.28) is effectively satisfied.

3.2 One-loop generalisation of the Casas-Ibarra parametrization

In order to make sure that we generate the correct light neutrino mixing pattern, it is

useful to generalise the Casas-Ibarra parametrization introduced in the previous section

including the one-loop correction to the neutrino mass matrix. Taking into account the

expression (3.5) for (m1−loop
ν )``′ in the basis in which the RH neutrino mass is diagonal,
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Figure 3. Maximum value of the contribution to the 0νββ decay effective Majorana mass due to

the heavy Majorana neutrino exchange |mheavy
ββ | (solid thick line) for 76Ge and ∆M = 10−2 GeV in

the IH (left panel) and NH (right panel) case, including the following constraints: |mheavy
ββ | ≤ 0.5 eV

and |(θV )e1|2 + |(θV )e2|2 ≤ 2 × 10−3. The corresponding values of the contributions to the 0νββ

decay effective Majorana mass due to the tree-level (dashed line) and one-loop correction (dotted

line) to the light neutrino mass matrix, |mtree
ββ | and |m1−loop

ββ |, are also shown. The range of values

the effective Majorana mass can take in the case of light Majorana neutrino exchange and IH (NH)

spectrum is shown in the red (blue) band. See the text for further details.

eq. (3.4) takes the explicit form:

(mν)``′ = −(mD V )`k

[
M−1k −

1

(4πv)2
Mk

(
3 log(M2

k/M
2
Z)

M2
k/M

2
Z − 1

+
log(M2

k/M
2
H)

M2
k/M

2
H − 1

)]
(V T mT

D)k`′

≡ − (mD V )`k ∆−1k (V T mT
D)k`′ = (U∗PMNS diag(m1,m2,m3)U

†
PMNS)``′ . (3.14)

Hence, in analogy to the tree-level contribution, we have now(
±i m̂−1/2 U †PMNS θV M̂ ∆−1/2

) (
±i m̂−1/2 U †PMNS θV M̂ ∆−1/2

)T
≡ RRT = 1 . (3.15)

Thus, we get the following expression for the heavy Majorana neutrino couplings in the

weak charged current, or equivalently, for the active-sterile neutrino mixing, at one-loop

order:

θV = ∓i UPMNS m̂
1/2R∆1/2 M̂−1 . (3.16)

In the numerical analysis reported in section 4 we will make use of this parametrization of

θV , with R given in (2.21) and (2.22), in order to include the one-loop corrections to the

light neutrino masses and at the same time ensure that all the neutrino mixing parameters

match with their experimental values.

In figure 3 we illustrate the interplay between the contributions to the 0νββ decay

effective Majorana neutrino mass due to the heavy Majorana neutrino exchange, |mheavy
ββ |,

the tree-level light neutrino masses, |mtree
ββ | = |(mtree

ν )∗ee|, and the one-loop correction to the

light neutrino mass matrix, |m1−loop
ββ | = |(m1−loop

ν )∗ee|, using the generalised Casas-Ibarra

parametrization derived above. In particular, we have maximised |mheavy
ββ | over the free

parameters of the model (θ45, γ and the Dirac and Majorana phases of the PMNS matrix),
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in order to show the maximum heavy neutrino contribution to the process (solid thick

line) as a function of M1 for ∆M = 10−2 GeV and fixing the already measured PMNS

parameters and neutrino squared mass differences to the best fit values given in [37]. The

Higgs mass has been set to MH = 125 GeV. In the plot we show the corresponding value of

the separate contributions associated to the tree-level (dashed line) and one-loop correction

(dotted line) to the light neutrino mass matrix. We also impose the following constraints:

|mheavy
ββ | ≤ 0.5 eV and |(θV )e1|2 + |(θV )e2|2 ≤ 2× 10−3.

From figure 3 we conclude that for M1 . 1 GeV the one-loop correction is subleading

for ∆M = 10−2 GeV, being the tree-level contribution the one responsible for the light

neutrino mass generation. At the same time, in that region the heavy neutrino contribution

to the 0νββ decay effective Majorana neutrino mass can be sizable and larger than the one

from light neutrino exchange. According to the estimate given in figure 1, for M1 . 1 GeV

there is no need of any enhancement of the active-sterile mixing with respect to the naive

seesaw scaling in order to obtain a sizable |mheavy
ββ |. However, around M1 ∼ 2 GeV, the one-

loop correction starts to be of the same size as the value of the light neutrino contribution

dictated by neutrino oscillation data. Indeed, this correction increases with M1 in such a

way that in order to stabilise the light neutrino mass and mixing, a fine-tuned cancellation

between the tree-level and one-loop correction is required. This is reflected in the fact that

for M1 & 5 GeV the dotted and dashed lines merge. Therefore, as it is shown in figure 3,

for 5 GeV . M1 . 1 TeV a sizable |mheavy
ββ | can in principle be realised, but a fine-tuned

cancellation between the tree-level and one-loop contributions to the light neutrino masses

is also necessary.

Note that the bound |mheavy
ββ | ≤ 0.5 eV imposed by us can be saturated for M1 .

100 GeV. At M1 = 10 GeV, for instance, we have |mheavy
ββ | = 0.5 eV for |(θV )e1|2 +

|(θV )e2|2 ' 0.8 × 10−4, where we have used f(A) = 0.079 corresponding to 76Ge. For

M1 & 100 GeV the maximum value of |mheavy
ββ | decreases with M1 since an active-sterile

mixing |(θV )ei|2 bigger than 2× 10−3 would be required in order to saturate the bound.

It is interesting that the solid line and the blue and red bands in figure 3 intersect

around M1 ∼ 103 GeV. This implies that in the case of NH neutrino mass spectrum, the

effective Majorana neutrino mass |mββ | can be larger at 0.1 GeV . M1 . 103 GeV than

that predicted in the case of the light neutrino exchange mechanism. In particular, it

can be in the range of sensitivity of the experiments aiming to probe the range of values

of the effective Majorana mass corresponding to the IH and quasi-degenerate (QD) light

neutrino mass spectra (see, e.g., [47]). In the case of the IH light neutrino mass spectrum,

the indicated result implies that at M1 . 103 GeV there can be, in principle, a significant

interplay between the light and heavy Majorana neutrino exchange contributions in the

effective Majorana mass, as discussed in detail in [10] and summarised by us at the end

of subsection II.A (see the paragraph before the last in subsection II.A). More specifically,

due to this interplay of the light and heavy Majorana neutrino contributions, |mββ | can be

larger (smaller) than that predicted in the case of the exchange of light neutrinos with IH

mass spectrum and |mββ | will exhibit a dependence on the atomic number A of the decaying

nucleus. It should be mentioned that, given the already high level of fine-tuning required
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for the cancellation between the tree-level and one-loop light neutrino contributions in mββ ,

an additional cancellation between the light and heavy Majorana neutrino contributions

would suggest further fine-tuning.

The main features of figure 3 also appear for larger splittings ∆M . In particular, the

necessity of fine-tuned cancellation between the tree-level and one-loop correction to the

light neutrino mass matrix is present also in this case. The level of the fine-tuning required

increases with M1, as we will show in section 4.

3.3 Radiative corrections to the ESS and ISS scenarios

In this section, we compute the one-loop contribution to the effective Majorana neutrino

mass in the ESS and ISS limits of the seesaw Lagrangian (2.1) with two RH neutrinos. Ac-

cordingly, we apply the parametrization of the Dirac and Majorana mass matrices reported

in eq. (2.33) to the general expression given in eq. (3.2). The exact result of the one-loop

contribution in terms of the parameters introduced in (2.33) is reported in appendix A.

For the ESS scenario we have at leading order in Λ/µ′

m1−loop
ββ ≈ µ′

2

y21e
(4π)2

(
3 ln

(
µ′2/M2

Z

)
µ′2/M2

Z − 1
+

ln
(
µ′2/M2

H

)
µ′2/M2

H − 1

)
. (3.17)

Notice that for µ′ �MH ,MZ , this expression reduces to

m1−loop
ββ ≈ y21e

(4π)2

(
3M2

Z

2µ′
ln
(
µ′2/M2

Z

)
+
M2
H

2µ′
ln
(
µ′2/M2

H

))
. (3.18)

Therefore, when µ′ � MH ,MZ , since the lepton number violating scale µ′ is introduced

at high energies, the one-loop contribution to the light neutrino masses appears to be

suppressed as 1/µ′, as expected.

In the ISS realisation, i.e. for ε v, µ, µ′ � Λ, we obtain

m1−loop
ββ ≈ 1

(4π)2

(
εΛ y1e y2e −

µ

2
y21e

)(3 ln
(
Λ2/M2

Z

)
Λ2/M2

Z − 1
+

ln
(
Λ/M2

H

)
Λ2/M2

H − 1

)
(3.19)

−µ+µ′

2

y21e
(4π)2

(
4M2

HM
2
Z−Λ2

(
M2
H+3M2

Z

)(
Λ2−M2

Z

) (
Λ2−M2

H

) +
ln
(
Λ2/M2

H

)(
Λ2/M2

H−1
)2 +

3 ln
(
Λ2/M2

Z

)(
Λ2/M2

Z−1
)2
)
.

It is remarkable that in the ESS limit with µ′ .MH ,MZ and in the ISS limit the one-

loop correction to the light neutrino masses has a contribution proportional to µ′. This

dependence on µ′ is very relevant since at one-loop the light neutrino contribution to the

0νββ decay amplitude does depend directly on µ′, as for the heavy contribution in (2.41)

and (2.45). This makes much more difficult to obtain a dominant contribution from the

RH neutrinos in this limit, unless a fine-tuning of the seesaw parameters is introduced to

guarantee the smallness of the neutrino masses as it was indeed already shown in figure 3.

4 Large heavy neutrino contribution to 0νββ decay

In this section, we will address in more detail the question if the RH neutrinos can even-

tually give a sizable contribution to the 0νββ decay rate. As we have already mentioned,
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cosmological constraints close the mass window of M < 100 MeV [7, 8] and thus only if

the RH neutrino masses are larger than 100 MeV, a direct contribution to the process of

interest can be expected.

Following the notation in ref. [5], the 0νββ decay rate can be written as

Γ0νββ

ln 2
= G01

∣∣∣∣∣∣
∑
j

U2
ej

mj

me
M0νββ(mj)

∣∣∣∣∣∣
2

, (4.1)

where G01 is a well-known kinematic factor, U is the unitary matrix given in eq. (2.4)

which diagonalizes the complete neutrino mass matrix, mj are the corresponding eigen-

values, i.e., the neutrino masses (light and heavy), and M0νββ are the Nuclear Matrix

Elements (NMEs) associated with the process. Notice that the NMEs depend on the mass

of the neutrino mediating the process since the dependence on the neutrino propagator is

already included in the NMEs computation. The sum should be made over all the neutrino

masses, including the heavy ones. In the following we will use the NMEs data provided

in [5]. In particular, we will consider the NMEs computed for the 76Ge. However, we

have checked that the conclusions of our analysis do not significantly change considering a

different nucleus.

We will use the modified Casas-Ibarra parametrization of the active-sterile neutrino

mixing given in eq. (3.16), to compute the full effective Majorana neutrino mass mββ ,

which is given by the sum of the contributions from the exchange of the light and heavy

Majorana neutrinos. In this way, we include in the computation the effect of the one-

loop correction to the light neutrino masses, reproducing at the same time the correct

neutrino oscillation parameters. We will also take into account the relevant bounds on the

active-sterile mixing which come from direct searches, charged lepton flavour violation and

non-unitarity constraints [13–20]. Notice that the inclusion of such bounds guarantees

the perturbativity of the neutrino Yukawa couplings for any value of RH neutrino masses

considered in this paper.

In the top panels (down panels) of figures 4 and 5, the blue shaded area corresponds

to the region of the parameter space in which 10−2 eV < |mlight
ββ + mheavy

ββ | < 0.5 eV

(10−2 eV < |mheavy
ββ | < 0.5 eV), projected on the γ −∆M plane for NH (IH) and several

values of M1. In these plots we have fixed the already measured PMNS parameters and

neutrino oscillation mass differences to the best fit values given in [37]. The relevant

Majorana and Dirac CP violation phases in the PMNS matrix have been set to zero, but

we have checked that there is no significant impact on the results when other values are

considered. The Casas-Ibarra parameter θ45 is also set to zero. It is irrelevant when the

heavy Majorana neutrino exchange contribution is dominant (subdominant) in mββ , but

can play an important role in the interplay of the light and heavy Majorana neutrino

exchange contributions when these two contributions are comparable in size [10]. The

Higgs mass has been fixed to MH = 125 GeV. The solid black line stands for different

values, stated in the plots, of the α parameter defined as

α ≡ |m1−loop
ββ |/|mlight

ββ | , (4.2)
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Figure 4. Neutrinoless double beta decay (M1 ≥ 100 GeV). The blue shaded areas in the top

panels (down panels) represent the region of the parameter space in which we have 10−2 eV <

|mlight
ββ + mheavy

ββ | < 0.5 eV (10−2 eV < |mheavy
ββ | < 0.5 eV) in the case of NH (IH) neutrino

mass spectrum with the active-sterile mixing (or couplings) (θV )`k satisfying the bounds form

direct searches, charged lepton flavour violation and non-unitarity constraints. The black solid line

stands for different values of the parameter α ≡ |m1−loop
ββ |/|mlight

ββ |, which quantifies the fine-tuning

required in order to achieve the cancellation between the one-loop and tree-level contributions to

the light neutrino masses. In the region to the right of the red dashed line the ratio between

the leading order and the next to leading order contributions to the light neutrino masses in the

seesaw expansion is smaller than 10. The gray region to the right of the dotted line corresponds to

y2
1em

1−loop
ββ > 16π2mlight

ββ . The blue dashed line corresponds to |mheavy
ββ | = 0.05 eV. The measured

neutrino oscillation parameters are fixed to the central values reported in [37].

wheremlight
ββ = mtree

ββ +m1−loop
ββ is the full (tree-level plus one-loop) contribution to mββ given

by the light neutrinos. Therefore, α quantifies the level of fine-tuning in the cancellation

between mtree
ββ and m1−loop

ββ described in section 3.2 and required in order to keep the light

neutrino masses and mixing to the observational values. Notice that the level of fine-tuning

increases with α. The region to the right of the black solid line corresponds to values of α

larger than those stated in the plots.

In the red shaded area of figures 4 and 5, the ratio between the leading and next to

leading order contributions to the light neutrino masses in the seesaw expansion is smaller

than 10. The next to leading order contribution is given by [61]:

δmν = −1

2

(
mtree
ν +mloop

ν

)
(θ V )(θV )† − 1

2
(θV )∗ (θV )T

(
mtree
ν +mloop

ν

)
. (4.3)
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From this expression, one can conclude that a cancellation between the one-loop and tree-

level contributions to the light neutrino masses remains at next to leading order in the

seesaw expansion. This is in agreement with figures 4 and 5, which show that the next to

leading order contribution is always negligible in the range of parameters of interest.

Ignoring for the time being the impact of the two-loop corrections, which will be

commented below, two main conclusions can be extracted from figures 4 and 5. First, we

have proved that a sizable and dominant heavy neutrino contribution to the 0νββ decay

is possible for RH neutrino masses as heavy as 10 TeV, satisfying at the same time the

relevant constraints and keeping under control the light neutrino mass and mixing pattern.

Second, and not less important, it is shown that this possibility can only take place if a

highly fine-tuned cancellation between the tree-level and one-loop light neutrino masses is

at work. The level of fine-tuning ranges from α = 104 to 109, for heavy masses between

M1 = 100 GeV and M1 = 10 TeV. On the other hand, the level of fine-tuning is smaller for

lighter masses, being in the case of M1 = 100 MeV smaller than α = 2. In addition, we

have checked that for M1 & 10 TeV a heavy contribution to mββ in the range of sensitivity

of the next-generation of experiments, |mββ | & 0.01 eV, cannot be expected.

Figures 4 and 5 also show that in the limit ∆M � M1 the sizable heavy neutrino

contribution corresponding to the blue region becomes independent of ∆M , according

with the ESS limit — see eq. (2.32). However, in the ISS limit ∆M � M1 this is not the

case and, according to eq. (2.32), the smaller the heavy splitting ∆M , the larger is the

value of γ.

Notice that in the IH case we have plotted only mheavy
ββ because |mlight

ββ | is already in

the planned range of sensitivity of the next generation of 0νββ decay experiments. In this

case for M1 . 103 GeV and ∆M �M1,2, there can be, in principle, a significant interplay

between the light and heavy Majorana neutrino exchange contributions in the effective

Majorana mass, as discussed at tree level in detail in [10] and summarised by us at the end

of subsection II.A (see the paragraph before the last in subsection II.A). More specifically,

due to this interplay of the light and heavy Majorana neutrino contributions, |mββ | can

be larger (smaller) than that predicted in the case of the exchange of light neutrinos with

IH mass spectrum and |mββ | will exhibit a dependence on the atomic number A of the

decaying nucleus. This can happen roughly in the region located to the left of the blue

dashed line corresponding to |mheavy
ββ | = 0.05 eV inside the blue areas in figures 4 and 5.

In the NH case, the light neutrino contribution is smaller than 10−2 eV and therefore

any sizable effect to the process is due to the heavy neutrinos. This is why in the NH case

we plot the total contribution mββ , including light and heavy neutrinos.

It follows from figure 4 that for M1 ≥ 100 GeV the regions of interest (the blue shaded

areas) correspond to γ & 6. For such values of γ, as it is not difficult to show, we have for

the NH and IH neutrino mass spectra:

M1|(θV )e1|2 ≈ M2|(θV )e2|2

≈ e2γ

4
|Ue2
√
m2 − i Ue3

√
m3|2 , NH (4.4)

≈ e2γ

4
|Ue1
√
m1 − i Ue2

√
m2|2 . IH (4.5)
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Figure 5. Neutrinoless double beta decay (M1 < 100 GeV). The same conventions as in figure 4,

but for different choices of M1.

Taking into account that figure 4 is obtained by setting to zero the phase θ45 and the

Dirac and Majorana phases in the PMNS matrix and by using the best fit values of the

neutrino oscillation parameters, eqs. (4.4) and (4.5) imply the following relations between

|(θV )e1(e2)|2 and the parameter γ:

M1|(θV )e1|2 ≈M2|(θV )e2|2 ≈ e2γ 0.94 (12.4)× 10−3 eV , NH (IH) . (4.6)

In view of the high level of fine-tuning required in order to have a cancellation between

the tree-level and one-loop light neutrino masses, the obvious question arising here is what

is the role of the two-loop corrections. Can the two-loop corrections spoil this fine-tuned

cancellation? In order to answer this question, we estimate the impact of the two-loop

contributions. Since we are studying the case in which heavy neutrinos can give a sizable

contribution to the 0νββ decay, which means relatively large Yukawa couplings, we expect

the diagram with two Higgs bosons in the loop to be the leading two-loop contribution to the

light neutrino mass matrix. The contribution of this diagram can be roughly estimated as

m2−loop
ββ ∼ y21e

(4π)2
m1−loop
ββ , (4.7)

where m1−loop
ββ is the one-loop contribution in mlight

ββ . This estimate of the impact of the

two loop corrections is also shown in figures 4 and 5, where the gray area to the right of the

dotted line corresponds to the region of the parameter space with y21em
1−loop
ββ > 16π2mlight

ββ .
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This region of the parameter space is excluded since the two-loop correction, which would

dominate the light neutrino masses, would be larger than the value dictated by neutrino

oscillation data. Notice that this would essentially exclude the possibility of having a

large sterile neutrino contribution for M1 & 1 TeV, as can be seen in figures 4 and 5. For

M1 . 100 GeV the impact of the two-loop correction is basically negligible.

5 Conclusions

We have performed a systematic analysis of the radiative corrections to the light neutrino

masses arising in low scale type I seesaw scenarios, where the RH (sterile) neutrino masses

vary in the interval 100 MeV . M . 10 TeV. Within this range of masses a significant

enhancement of the neutrinoless double beta (0νββ) decay rate in several isotopes - at the

level of sensitivity of the present and next generation experiments searching for this rare

process - is possible, due to the new physics contribution in the decay amplitude given

by the exchange of the virtual heavy sterile neutrinos. Notice that one of the most clear

signatures of a significant heavy sterile Majorana neutrino contribution to the 0νββ decay

amplitude is the dependence of the 0νββ decay effective Majorana mass, |mββ |, on the

atomic number A of the decaying nucleus [12].

The requirement of a sizable contribution of heavy neutrinos with masses & 1 GeV to

the 0νββ decay implies strong cancellations between the tree-level and one-loop expressions

in the light neutrino mass matrix mν originated from the seesaw mechanism. We show that

such a cancellation can always be achieved while being consistent with neutrino oscillation

data and low energy constraints from direct searches, charged lepton flavour violation

and non-unitarity by using a generalisation of the Casas-Ibarra parametrization of the

neutrino Yukawa matrix, which can be derived from eqs. (3.15) and (3.16). We clarify

the connection between this parametrization and the lepton number breaking terms in the

seesaw Lagrangian, as usually defined in extended as well as inverse/direct seesaw UV

completions of the Standard Model. Then, we numerically quantify the level of fine-tuning

between the tree-level and one-loop parts of mν in the case the heavy neutrino contribution

mheavy
ββ to the effective Majorana neutrino mass - which enters in the 0νββ decay amplitude

- is sizable, namely |mheavy
ββ | & 0.01 eV.

The main results of our analysis are summarised in figures 4 and 5, where we show

that a fine-tuning of one part in 104 (105) for RH neutrino masses ∼ 100 (1000) GeV is

unavoidable in order to have an observable effect in 0νββ decay experiments. Furthermore,

we conclude that for seesaw scales M larger than few TeV, two-loop effects in the generation

of the light neutrino masses cannot be neglected, thus excluding the possibility of having

a large |mheavy
ββ |. Conversely, in the low mass regime, M . 1 GeV, the level of fine-tuning

in the seesaw parameter space is very mild and the sterile neutrino contribution can easily

exceed the current limits on the effective Majorana neutrino mass.

Finally, we can conclude on the basis of the results obtained in the present analysis

that 0νββ sets the strongest constraints on lepton number violation in low scale type I

seesaw extensions of the Standard Model. In particular, this implies a strong suppression
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of processes which involve the production at colliders (LHC included) of RH neutrinos and

their decays with two like-sign charged leptons in the final state (see, e.g., [9, 62]).
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A m1−loop
ν in an arbitrary basis for 2 RH neutrinos

We report in this appendix the full computation of the one-loop correction (3.2) to the light

neutrino mass matrix in terms of the seesaw parameters introduced in eq. (2.33), from which

it is possible to derive the one-loop correction to effective Majorana neutrino mass in the

extended and inverse seesaw limits, eqs. (3.17) and (3.19), respectively. In order to obtain

an analytic expression for the one-loop neutrino mass matrix, we conveniently change the

basis of the heavy RH neutrinos, i.e. νaR = V̂ab ν
′
bR, with the unitary transformation

V̂ =
1√
2

(
i 1

−i 1

)
. (A.1)

In the new basis the RH neutrino Majorana mass matrix takes the form:

M ′R ≡ V̂ T MR V̂ =
1

2

(
2 Λ− (µ+ µ′) −i(µ− µ′)
−i(µ− µ′) 2 Λ + (µ+ µ′) .

)
(A.2)

Then, the resulting one-loop Majorana mass term for active neutrinos is

m1−loop
ν =

1

(4πv)2
mD V̂

(
M ′R

−1
F (M ′RM

′
R
†
) + F (M ′R

†
M ′R)M ′R

−1
)
V̂ T mT

D , (A.3)

where the loop function F (x) is defined in eq. (3.3) and the Dirac mass matrix mD is

parametrized as in (2.33). In this case we have:9

M ′RM
′
R
†

=

(
Λ2 +

1

2

(
|µ|2 + |µ′|2

))
(12×2 −A(a, b, c)) , (A.4)

M ′R
†
M ′R =

(
Λ2 +

1

2

(
|µ|2 + |µ′|2

))
(12×2 −A(a,−b, c)) , (A.5)

where

A(a, b, c) ≡ (a σ3 + b σ2 + c σ1) , (A.6)

9We assume without loss of generality that the parameter Λ in (2.33) is real.
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σi (i = 1, 2, 3) denoting the 2 × 2 Pauli matrices. The real parameters a, b and c are

defined as

a =
2 Λ Re (µ+ µ′)

2 Λ2 + |µ|2 + |µ′|2
, (A.7)

b =
|µ′|2 − |µ|2

2 Λ2 + |µ|2 + |µ′|2
, (A.8)

c =
2 Λ Im (µ′ − µ)

2 Λ2 + |µ|2 + |µ′|2
. (A.9)

In this way, one can obtain a closed form for the logarithms which enter in eq. (A.3) through

the loop function. Indeed, we have

log [12×2 −A(a, b, c)] = −
∞∑
n=1

1

n
A(a, b, c)n , (A.10)

with

[A(a, b, c)n]11 =
1

2

(
a2 + b2 + c2

) 1
2
(−1+n)

(
a (1− (−1)n) +

√
a2 + b2 + c2 (1 + (−1)n)

)
,

[A(a, b, c)n]22 = −1

2

(
a2 + b2 + c2

) 1
2
(−1+n)

(
a(1− (−1)n)−

√
a2 + b2 + c2 (1+(−1)n)

)
,

[A(a, b, c)n]12 = [A(a, b, c)n]∗21 =
i

2
(b+ i c)

(
a2 + b2 + c2

) 1
2
(−1+n)

(−1 + (−1)n) . (A.11)

Then, one can show that the infinite series in (A.10) gives the exact results

[
log [12×2 −A(a, b, c)]

]
11

=
2 a tanh−1

(√
a2 + b2 + c2

)
√
a2 + b2 + c2

− log
(
1− a2 − b2 − c2

)
,

[
log [12×2 −A(a, b, c)]

]
12

= [log (12×2 −A(a, b, c))]∗21 =
i (b+ i c) log

(
1−
√
a2+b2+c2

1+
√
a2+b2+c2

)
√
a2 + b2 + c2

,

[
log [12×2 −A(a, b, c)]

]
22

= −
2 a tanh−1

(√
a2 + b2 + c2

)
√
a2 + b2 + c2

− log
(
1− a2 − b2 − c2

)
.(A.12)

Therefore, by replacing eqs. (A.12) in (A.3), we obtain an analytic expression for the

one-loop contribution to the light Majorana neutrino mass matrix as a function of the

parameters given in (2.33).
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