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Abstract. The Jordan decomposition states that a function f : R → R is
of bounded variation if and only if it can be written as the difference of two

monotone increasing functions.
In this paper we generalize this property to real valued BV functions of

many variables, extending naturally the concept of monotone function. Our
result is an extension of a result obtained by Alberti, Bianchini and Crippa.

A counterexample is given which prevents further extensions.

1. Introduction. One of the necessary and sufficient properties, which character-
izes real valued BV functions of one variable, is the well-known Jordan decompo-
sition: it states that a function f : R → R is of bounded variation if and only if it
can be written as the difference of two monotone increasing functions.

The aim of this work is to give a generalization of this property to real valued
BV functions of many variables.

The starting point is a recent result presented in [1], which shows that a real
Lipschitz function of many variables with compact support can be decomposed in
sum of monotone functions. Precisely the authors give the following definition of
monotone function

Definition 1.1. A function f : RN → R, which belongs to Lip(RN ), is said to be
monotone if the level sets {f = t} := {x ∈ RN | f(x) = t} are connected for every
t ∈ R.

and state the theorem below.

Theorem 1.2. Let f be a function in Lipc(RN ) with compact support. Then there
exists a countable family {fi}i∈N of functions in Lipc(RN ) such that f =

∑
i fi and

each fi is monotone. Moreover there is a pairwise disjoint partition {Ai}i∈N of RN

such that ∇fi is concentrated on Ai.
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2 STEFANO BIANCHINI AND DANIELA TONON

In the case of BV functions, which are defined LN -a.e., an appropriate general-
ization of the concept of monotone function has to involve super-level sets, sub-level
sets and the concept of indecomposable set, as given in [2].

Definition 1.3. A set E ⊆ RN with finite perimeter is said to be decomposable
if there exists a partition (A,B) of E such that P (E) = P (A) + P (B) and both
|A| and |B| are strictly positive. A set E is said to be indecomposable if it is not
decomposable.

Here and in the following |E| means the Lebesgue measure of the set E, for E
measurable.

Definition 1.4. A function f : RN → R, which belongs to L1
loc(RN ), is said to be

monotone if the super-level sets {f > t} := {x ∈ RN | f(x) > t} and the sub-level
sets {f < t} := {x ∈ RN | f(x) < t} are of finite perimeter and indecomposable for
L1-a.e. t ∈ R.

As proved in Section 3, in the case of Lipschitz functions, Definition 1.1 and
Definition 1.4 are equivalent.

Other definitions of monotone function can be given.
One can in fact preserve the monotonicity of the product ⟨f(x)−f(y), x−y⟩ ≥ 0

for x ∈ R, defining that f : RN → RN is monotone if

⟨f(x)− f(y), x− y⟩ ≥ 0,

where ⟨·, ·⟩ is the scalar product in RN .
Another possibility is to preserve the maximum principle: the supremum (infi-

mum) of f in every set is assumed at the boundary. Taken Ω ⊂ RN , a Lebesgue
monotone function is defined as a continuous function f : Ω → R, which satisfies
the maximum and minimum principles in every subdomain. Manfredi, in [6], and
Hajlasz and Malý, in [5], give a weaker formulations. Here, a weakly monotone
function is defined as a function f : Ω → R in the Sobolev space W 1,p(Ω), which
satisfies the weak maximum and the weak minimum principles in every subdomain.
A natural generalization is given in the case f is in the Sobolev space W 1,p

loc (Ω).
In our case we choose to maintain the property that sub/super-level sets are

connected. Differences and analogies from the case of functions of one variables
arise.

On the one hand, it can be found an L1 monotone function, which is not of
bounded variation, that is a counterexample to the fact that monotonicity is a
sufficient condition for being of bounded variation (Example 2).

On the other hand, it can be stated that a BV function is decomposable in a
countable sum of monotone functions, similarly to the case of BV functions of one
real variable.

The main result of the paper is the following.

Theorem 1.5 (Decomposition Theorem for BV functions). Let f : RN → R be
a BV (RN ) function. Then there exists a finite or countable family of monotone
BV (RN ) functions {fi}i∈I , such that

f =
∑
i∈I

fi and |Df | =
∑
i∈I

|Dfi|.

This decomposition is in general not unique, see Remark 2.
The main tool for proving this theorem is a decomposition theorem for sets of

finite perimeter, presented here in the form given in [2].
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Theorem 1.6 (Decomposition Theorem for sets). Let E be a set with finite perime-
ter in RN . Then there exists a unique finite or countable family of pairwise disjoint
indecomposable sets {Ei}i∈I such that

|Ei| > 0 and P (E) =
∑
i∈I

P (Ei).

Moreover, denoting with

E̊M :=

{
x ∈ RN | lim

r→0+

|E ∩B(x, r)|
|B(x, r)|

= 1

}
the essential interior of the set E, it holds

HN−1

(
E̊M \

∪
i∈I

E̊M
i

)
= 0

and the Ei’s are maximal indecomposable sets, i.e. any indecomposable set F ⊆ E
is contained, up to LN -negligible sets, in some set Ei.

The property stated in Theorem 1.2 (there is a disjoint partition {Ai}i∈N of RN

such that every derivative ∇fi of the decomposition is concentrated on Ai) is no
longer preserved in the case of BV functions. Example 1 shows that, in general,
this decomposition can generate monotone BV functions without mutually singular
distributional derivatives.

Finally, we conclude the paper showing that there is no hope for a further gener-
alization of this decomposition to vector valued BV functions, apart from the case
of a function f : R → Rm where the analysis is straightforward. We consider Lips-
chitz functions from R2 to R2 and the related definition of monotone function. In
this particular case, we construct a counterexample showing that the decomposition
property is not true in general, see Example 3.
In fact, a necessary condition for the decomposability of a Lipschitz function, from
R2 to R2, is that some of its level sets must be of positive H1-measure. This is an
additional property, which is clearly not shared by all the Lipschitz functions.

The paper is organized as follows.
In Section 2 we prove the main theorem and show that this decomposition can

generate monotone BV functions without mutually singular distributional deriva-
tives.

In Section 3 we give two counterexamples: the first to the fact that a monotone
function is always a BV function, the second to a further extension of the main
theorem to vector valued functions. We also give a proof of the fact that for Lipschitz
functions Definition 1.1 and Definition 1.4 are equivalent.

2. The Decomposition Theorem for BV functions from RN to R. To gener-
alize the Jordan decomposition property, let us concentrate on functions f : RN →
R, which belong to BV (RN ). From now on N > 1.

Since we will consider functions of bounded variation, the Definition 1.4 of mono-
tone function becomes the following:

Definition 2.1. A BV function f : RN → R is said to be monotone if the super-
level sets {f > t} = {x ∈ RN | f(x) > t} and the sub-level sets {f < t} = {x ∈
RN | f(x) < t} are indecomposable, for L1-a.e. t ∈ R.
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Indeed, we recall that, for BV functions, super-level sets and sub-level sets are
of finite perimeter for L1-a.e. t ∈ R.

We now prove the main theorem of this paper.

Proof of Theorem 1.5. The proof will be given in several steps.
Before entering into details, let us consider the following simple case.

Let f = χE with E ⊆ RN a decomposable set of finite perimeter such that RN \E
is indecomposable. Thanks to the Decomposition Theorem for sets, there exists a
unique finite or countable family of pairwise disjoint indecomposable sets {Ei}i∈I

such that

|Ei| > 0 and P (E) =
∑
i∈I

P (Ei).

To see the properties of RN \ Ei let us consider the following lemma.

Lemma 2.2. Let E be a decomposable set of finite perimeter such that RN \ E is
indecomposable. Let {Ei}i∈I be the family of its indecomposable components given
by the Decomposition Theorem for sets. Then RN \ Ei is indecomposable for every
i ∈ I.

Proof. Let î ∈ I be fixed. Without loss of generality we can relabel î = 1.
By contradiction, suppose RN \ E1 be decomposable and let {Fj}j∈J be the

family of its indecomposable components given by the Decomposition Theorem for
sets.

It holds

RN \ E1 = (RN \ E) ∪
∪

i∈I,i̸=1

Ei (mod LN ),

where, we recall, (RN \E)∪{Ei}i∈I,i̸=1 is a family of indecomposable and pairwise
disjoint sets.

From the maximal indecomposability of {Fj}j∈J and {Ei}i∈I , it follows that

∃! ĵ ∈ J s.t. RN \ E ⊆ Fĵ (mod LN )

and

∀j ∈ J, j ̸= ĵ, ∃! i ∈ I, i ̸= 1, s.t. Fj = Ei (mod LN ).

We relabel ĵ = 1.
Moreover, we can found two sub-families {Eil}l∈L and {Eik}k∈K of {Ei}i∈I such
that

{Ei}i∈I = {Eil}l∈L ∪ {Eik}k∈K ,

and

F1 = (RN \ E) ∪
∪
l∈L

Eil (mod LN ),

∀k ∈ K ∃!j ̸= 1 ∈ J s.t. Eik = Fj (mod LN ).

Observe that

RN \ F1 = E1 ∪
∪
k∈K

Eik (mod LN ),

where {E1, Eik k ∈ K} is precisely the family of indecomposable sets given by the
Decomposition Theorem for sets. Therefore

P (RN \ F1) = P (E1) +
∑
k∈K

P (Eik).
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On the other hand

P (RN \ E1) =
∑
j∈J

P (Fj)

=P (F1) +
∑
k∈K

P (Eik),

thus

P (E1) = P (E1) + 2
∑
k∈K

P (Eik).

This implies ∑
k∈K

P (Eik) =
∑

j∈J,j ̸=1

P (Fj) = 0,

i.e. RN \ E1 is equal to F1, up to LN -negligible sets.
Therefore RN \ E1 must be indecomposable.

From this lemma, for every i ∈ I, Ei and RN \Ei are indecomposable. Therefore
the functions χEi are BV (RN ) and monotone, so that the decomposition of χE ,

χE =
∑
i∈I

χEi ,

gives |DχE | =
∑

i∈I |DχEi | as required.

Step 0. We can assume without loss of generality that f ≥ 0: in the general case
one can decompose f+ and f− separately.

Step 1. The sets Et := {f > t} are of finite perimeter for L1-a.e. t ∈ R+, thanks to
the hypothesis that f is BV (RN ) and coarea formula. Therefore, the Decomposition
Theorem for sets gives, for L1-a.e. t ∈ R+, pairwise disjoint indecomposable sets
{Et

i}i∈It such that ∣∣∣∣Et \
∪
i∈It

Et
i

∣∣∣∣ = 0.

In particular, the property of maximal indecomposability yields a natural partial
order relation between these sets: since t1 ≥ t2 gives Et1 ⊆ Et2 , it follows that, for
L1-a.e. t1 ≥ t2 ∈ R+,

∀i ∈ It1 ∃! i′ ∈ It2 s.t. Et1
i ⊆ Et2

i′ (mod LN ).

Taken a countable dense subset {tj}j∈J of R+, such that, for all j ∈ J , the

sets Ej := Etj are of finite perimeter, the countable family {Ej
i }j∈J,i∈Itj

can be

equipped with the partial order relation

Ej
i ≤ Ej′

i′ ⇐⇒ tj ≤ tj′ , Ej
i ⊇ Ej′

i′ (mod LN ).

Therefore there exists at least one maximal countable ordered sequence (here we do
not need the Axiom of Choice).

Let {Ej
i(j)}j∈J one of these maximal countable ordered sequences.

Notice that, once one of these sequences is fixed, the index i is a function of j, by
the uniqueness of the decomposition {Ej

i }i∈Itj
.
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Step 2. Define

f̃(x) :=

{
0 x /∈

∪
j∈J Ej

i(j)

sup{tj | j ∈ J, x ∈ Ej
i(j)} otherwise

Clearly 0 ≤ f̃(x) ≤ f(x) for all x ∈ RN . Indeed, the set{
tj | j ∈ J, x ∈ Ej

i(j)

}
⊆

{
tj | j ∈ J, x ∈ Ej

}
∀x ∈ RN ,

passing to the supremum one has f̃(x) ≤ f(x) for all x ∈ RN . Moreover f ∈
L1
loc(RN ) and 0 ≤ f̃ ≤ f give f̃ ∈ L1

loc(RN ).

Step 3. Fix t ∈ R+ such that Et is a set of finite perimeter. Define Ẽt := {f̃ > t}
and let Et

i(t) the indecomposable component of Et which is contained in a set Ej
i(j)

of the maximal countable ordered sequence and contains another Ej′

i(j′), for certain

j, j′ ∈ J , up to LN -negligible sets. This is possible for L1-a.e. t ∈ R+.
Due to the maximal indecomposability property, one has that

Ej′

i(j′) ⊆ Et
i(t) ⊆ Ej

i(j) (mod LN ) ∀tj′ , tj ,

where tj′ > t > tj .
Notice that, for L1-a.e. t ∈ R+, there exists only one of such an Et

i(t) among all the

indecomposable sets Et
i , i ∈ It.

We show that Ẽt = Et
i(t) (mod LN ), for L1-a.e t in R+, in two steps.

• First we show that Ẽt ⊆ Et
i(t) (mod LN ) for L1-a.e t in R+.

For x ∈ Ẽt = {f̃ > t}, there exist j1 = j1(x), j2 = j2(x) such that

f̃(x) > tj1 > t > tj2 and x ∈ Ej1
i(j1)

∩ Ej2
i(j2)

.

Since for all tj1 > t > tj2 it holds

Ej1
i(j1)

⊆ Et
i(t) ⊆ Ej2

i(j2)
(mod LN ),

it follows that for LN -a.e x ∈ Ẽt it holds x ∈ Et
i(t), hence

Ẽt ⊆ Et
i(t) (mod LN ).

• Next we show the other inclusion up to countably many values of t.
Observe that set Et

i(t) is contained in Ẽt′ for all t′ < t. In fact x ∈ Et
i(t)

implies f(x) > t > tj > t′ for some j ∈ J , hence f̃(x) ≥ tj > t′. Thus for

every t′n ↗ t one has
∩

t′n<t Ẽ
t′n ⊇ Et

i(t).

Suppose |Et
i(t) \ Ẽ

t| > 0: from Ẽt ⊆ Et
i(t) it follows

0 <

∣∣∣∣ ∩
t′n<t

Ẽt′n \ Ẽt

∣∣∣∣ = ∣∣{f̃ ≥ t} \ Ẽt
∣∣

and this implies |{f̃ = t}| > 0. This last condition can be satisfied only for a
countable number of t ∈ R+.

Therefore the set of t’s such that Et
i(t) does not coincide with Ẽt has zero Lebesgue

measure, i.e. for L1-a.e. t ∈ R+ the sets Ẽt coincide with Et
i(t) up to LN -negligible

sets. Since the property of being indecomposable is invariant up to LN -negligible
sets, they are indecomposable.



A DECOMPOSITION THEOREM FOR BV FUNCTIONS 7

In the following we will denote with t̃k, k ∈ K, the countable family of values
such that

Hk := {f̃ = t̃k}, |Hk| > 0.

Step 4. The function f̃ is BV (RN ) and has indecomposable super-level sets.

The indecomposability of the super-level sets of f̃ was proved in the previous
step.

Using coarea formula, see for example Theorem 2.93 of [3], we get

|Df̃ | =
∫ +∞

−∞
P ({f̃ > t})dt

=

∫ +∞

−∞
P (Et

i(t))dt

≤
∫ +∞

−∞
P (Et)dt

=|Df | < +∞.

Thus the function f̃ is BV (RN ).

Step 5. Define the function f̂ := f − f̃ . Clearly f̂ is BV (RN ). The aim of the
following steps is to show that its total variation satisfies

|Df̂ | = |Df | − |Df̃ |.

Denote with Et
1 the super-level sets used to generate the function f̃ : this can be

done setting i(t) = 1 for L1-a.e. t ∈ R+.

It has been proved that, for L1-a.e. t ∈ R+, one has {f̃ > t} = Et
1, up to

LN -negligible sets, therefore for such t’s

P ({f > t}) =
∑
i∈It

P (Et
i )

=
∑

i∈It, i>1

P (Et
i ) + P ({f̃ > t}).

We would like to show that, for L1-a.e. t ∈ R+, for every i ∈ It, i > 1, Et
i is

equal, up to LN -negligible sets, to one of the indecomposable components Ê t̂
i of

{f̂ > t̂ }, where t̂ = t− t̃i for a certain t̃i.
The index i in t̃i refers to the fact that its value varies with the indecomposable
component Et

i , i ∈ It, i > 1.
We prove it in the following three steps.

Step 6. Let t be such that the set Et is of finite perimeter and {Et
i}i∈It are its

indecomposable components.
Let us prove that there exists a unique k ∈ K such that the set Et

i , i ∈ It, i > 1,
is contained in Hk, up to LN -negligible sets.

The set Et
i is indecomposable and Et

i ∩Et
1 = ∅. Being Ej

1 ⊆ Et
1 for all tj ≥ t, up

to LN -negligible sets, it follows∣∣Et
i ∩ Ej

1

∣∣ = 0 ∀tj ≥ t.

Therefore, from the definition of f̃ , for LN -a.e. x ∈ Et
i one has f̃(x) ≤ t.
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Again from the indecomposability of Et
i and from the fact that Et

i is contained
in {f > tj} for all tj ≤ t, it follows that there exists a unique l ∈ Itj such that,

Et
i ⊆ Ej

l (mod LN ) and
∣∣Et

i ∩ Ej
m

∣∣ = 0 ∀m ̸= l, m ∈ Itj ,

for all tj ≤ t.

If there exists a j′ such that
∣∣Et

i ∩ Ej′

1

∣∣ = 0 then

∀tj , 0 ≤ tj′ ≤ tj ≤ t
∣∣Et

i ∩ Ej
1

∣∣ = 0,

on the other hand if there exists a j′′ such that Et
i ⊆ Ej′′

1 , up to LN -negligible sets,
then

∀tj , 0 ≤ tj ≤ tj′′ Et
i ⊆ Ej

1 (mod LN ).

Thus, being the definition

f̃(x) :=

{
0 x /∈

∪
j∈J Ej

1

sup{tj | j ∈ J, x ∈ Ej
1} otherwise

equivalent to

f̃(x) := inf{tj | j ∈ J, x /∈ Ej
1},

it follows that, up to LN -negligible subsets of Et
i , f̃ |Et

i
= constant, which belongs

to {t̃k}k∈K .
In particular, we can order the sets Et

i , i ∈ It, i > 1, as Et
(k,i) where

{Et
(k,i)| i ∈ Bt

k} =
{
Et

i | i ∈ It, i > 1, Et
i ⊆ Hk (mod LN )

}
.

Note that Bt
k could be empty for some t ∈ R+, k ∈ K.

Step 7. Let t̂ > 0 such that the set Ê t̂ is of finite perimeter and {Ê t̂
i}i∈Ît̂

are its

indecomposable components, for L1-a.e. t ∈ R+.

Let us prove that there exists a unique k ∈ K, such that the set Ê t̂
i is contained

in Hk, up to LN -negligible sets.
Define

t̄ := sup
{
0, tj | j ∈ J, Ê t̂

i ⊆ Ej
1 (mod LN )

}
.

It follows that

f |Êt̂
i
= f̂ |Êt̂

i
+ f̃ |Êt̂

i
> t̂+ t̄ > t̄.

For every tj in the countable dense sequence such that t̄ < tj < t̄+ t̂ there exists
a unique ī ∈ Itj such that

Ê t̂
i ⊆ Ej

ī
(mod LN ).

Due to the indecomposability of Ê t̂
i , and, for the definition of t̄, the index ī must

be greater than 1.
Therefore f̃ |Êt̂

i
= t̄ and t̄ belongs to {t̃k}k∈K .

In particular, we can order the sets Ê t̂
i , i ∈ Ît̂, as Ê

t̂
(k,i) where

{Ê t̂
(k,i)| i ∈ B̂ t̂

k} =
{
Ê t̂

i | i ∈ Ît̂, Ê t̂
i ⊆ Hk (mod LN )

}
.

Note that B̂ t̂
k could be empty for some t̂ ∈ R+, k ∈ K.
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Step 8. In this step we prove that, for L1-a.e. t ∈ R+, k ∈ K fixed,

{Et
(k,i)| i ∈ Bt

k} = {Êt−t̃k
(k,i) | i ∈ B̂t−t̃k

k }.

Indeed, fix i ∈ Bt
k

f̂ |Et
(k,i)

= f |Et
(k,i)

− f̃ |Et
(k,i)

> t− t̃k.

Let us consider only the t’s such that the set {f̂ > t− t̃k} is of finite perimeter.
For its indecomposability, Et

(k,i) must be contained, up to LN -negligible sets, in

Êt−t̃k
(k,i′) for a unique i′ ∈ Ît−t̃k

.

Take then the set Êt−t̃k
(k,i′):

f |
Ê

t−t̃k
(k,i′)

= f̃ |
Ê

t−t̃k
(k,i′)

+ f̂ |
Ê

t−t̃k
(k,i′)

> t̃k + t− t̃k = t.

For its indecomposability, Êt−t̃k
(k,i′) must be contained, up to LN -negligible sets, in

Et
(k,i′′) for a unique i′′ ∈ It, i

′′ > 1. Thus i′′ = i and Et
(k,i) = Êt−t̃k

(k,i′), up to LN -

negligible sets.
Hence

{Et
(k,i)| i ∈ Bt

k} ⊆ {Êt−t̃k
(k,i) | i ∈ B̂t−t̃k

k }.

The same argument, reversed, shows that, once i′ ∈ B̂t−t̃k
k is fixed, Êt−t̃k

(k,i′) =

Et
(k,i), up to LN -negligible sets, for a certain i ∈ Bt

k. Hence

{Et
(k,i)| i ∈ Bt

k} ⊇ {Êt−t̃k
(k,i) | i ∈ B̂t−t̃k

k }.

In an equivalent way, we can also say that, for L1-a.e. t̂ ∈ R+, k ∈ K fixed,

{Ê t̂
(k,i)| i ∈ B̂ t̂

k} = {E t̂+t̃k
(k,i) | i ∈ B t̂+t̃k

k }.

In the following we relabel Ê t̂
(k,i) and E t̂+t̃k

(k,i) in order to have

Ê t̂
(k,i) = E t̂+t̃k

(k,i) (mod LN ).

Step 9. Coarea formula gives

|Df | =
∫ +∞

−∞
P ({f > t})dt

=

∫ +∞

−∞

∑
i∈It,i>1

P (Et
i )dt+

∫ +∞

−∞
P ({f̃ > t})dt.

The final steps consist in showing that∫ +∞

−∞

∑
i∈It,i>1

P (Et
i )dt = |Df̂ |.

Step 10. Let {t̃k| k ∈ K} the countable set of values such that
∣∣f̃−1(t̃k)

∣∣ > 0.

Step 6 shows that, for L1-a.e. t ∈ R+ and for all i ∈ It, i > 1, there exists a
unique k ∈ K such that f̃ |Et

i
= t̃k.

For every k ∈ K, let {Et
(k,i)| i ∈ Bt

k} be the set of indecomposable components

of Et such that f̃ |Et
(k,i)

= t̃k, i > 1.
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Observe that
∑

i∈Bt
k
P (Et

(k,i)) are measurable functions of t, for all k ∈ K: indeed

we have ∣∣D((f − t̃k)χHk
)
∣∣ = ∫ +∞

t̃k

∑
i∈It,i>1

{f>t}i⊆{f̃=t̃k}

P ({f > t}i)dt

=

∫ +∞

t̃k

∑
i∈Bt

k

P ({f > t}i)dt ≤ |Df |(RN ) < +∞.

Therefore the function t 7→
∑

i∈Bt
k
P (Et

i ) is integrable for all k ∈ K.

Using this notation, we can write∫ +∞

−∞

∑
i∈It,i>1

P (Et
i )dt =

∫ +∞

−∞

∑
k∈K

∑
i∈Bt

k

P (Et
(k,i))dt

=
∑
k∈K

∫ +∞

−∞

∑
i∈Bt

k

P (Et
(k,i))dt

=
∑
k∈K

∫ +∞

−∞

∑
i∈B̂

t−t̃k
k

P ({f̂ > t− t̃k }(k,i))dt

=
∑
k∈K

∫ +∞

−∞

∑
i∈B̂t̂

k

P ({f̂ > t̂ }(k,i))dt̂

=

∫ +∞

−∞

∑
k∈K

∑
i∈B̂t̂

k

P ({f̂ > t̂ }(k,i))dt̂.

From Step 7 it holds

Ê t̂ =
∪
i

{Ê t̂
i | i ∈ Ît̂}

=
∪
i

∪
k∈K

{Ê t̂
(k,i)| f̃ |Êt̂

i
= t̃k, i ∈ Ît̂}

=
∪
k∈K

∪
i

{Ê t̂
(k,i)| i ∈ B̂ t̂

k},

we can write∫ +∞

−∞

∑
k∈K

∑
i∈B̂t̂

k

P ({f̂ > t̂ }(k,i))dt̂ =
∫ +∞

−∞

∑
i∈Ît̂

P ({f̂ > t̂}i)dt̂

=

∫ +∞

−∞
P ({f̂ > t̂})dt̂ = |Df̂ |.

Step 11. Finally we have

|Df | =
∫ +∞

−∞
P ({f > t})dt

=

∫ +∞

−∞
P ({f̂ > t})dt+

∫ +∞

−∞
P ({f̃ > t})dt

=|Df̂ |+ |Df̃ |.
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Since f has bounded variation we can iterate this process at most a countable
number of times generating the family of functions f̃l ∈ BV (RN ), such that everyone
of them has indecomposable super-level sets, for L1-a.e. t ∈ R+.

Step 12. Let f̃ := f̃l be one of the functions generated in the previous steps.
If {f̃ < t} is indecomposable for L1-a.e. t ∈ R+, then f̃ is already monotone.

Otherwise we must again decompose f̃ . If we succeed in decomposing f̃ in a count-
able sum of monotone BV functions which preserves total variation we are done,
since the decomposition of every function of a countable family in a countable family
gives at the end a countable family as required.

In that case define F̃ t := {f̃ < t} and let {F̃ t
i }i∈It be the family of indecompos-

able sets given by the Decomposition Theorem for sets for L1-a.e. t in R+.
As for the super-level sets, we equip the family {F̃ j

i }i∈Itj
with the natural partial

order relation

F̃ j
i ≤ F̃ j′

i′ ⇐⇒ tj ≥ tj′ , F̃ j
i ⊇ F̃ j′

i′ (mod LN )

and call {F̃ j
1 }j∈J one of the maximal countable ordered sequences.

Define
˜̃
f(x) := inf{tj | j ∈ J, x ∈ F̃ j

1 }.
As in the previous case, one has that

• ˜̃
f is BV (RN ),

• { ˜̃f < t} = F̃ t
1 up to LN -negligible sets and for L1-a.e. t ∈ R+,

• define
ˆ̂
f := f̃ − ˜̃

f then
ˆ̂
f is BV (RN ) and

|Df̃ | = |D ˆ̂
f |+ |D ˜̃

f |.

Recall that, for L1-a.e. t ∈ R+, {f̃ < t} is decomposable and RN \ {f̃ < t}
indecomposable. Since {f̃ < t} =

∪
i∈It

F̃ t
i and { ˜̃f < t} = F̃ t

1 up to LN -negligible

sets, Lemma 2.2 implies that RN \{ ˜̃f < t} is indecomposable, hence the super-level

set { ˜̃f > t} is indecomposable for L1-a.e. t ∈ R+. Therefore
˜̃
f is monotone as

required.
Since f̃ has bounded variation we can iterate this process at most a countable

number of times generating the family of monotone functions fi ∈ BV (RN ), which
satisfies the theorem.

Remark 1. Notice that in Step 10 we have also proved that

f̂ |∪
k∈K Hk

=
∑
k∈K

f |Hk
− t̃k.

Remark 2. In general the decomposition of f in BV monotone functions is not
unique as the following example shows.

The function f in Figure 1 can be decomposed either in the way shown in Figure
2 or in Figure 3.

In the simple case, where f is the characteristic function of a set of finite perimeter
with an indecomposable complementary set, there exists a unique subdivision of f
as a countable sum of BV monotone characteristic functions. Moreover in that case,



12 STEFANO BIANCHINI AND DANIELA TONON

f

Figure 1. Function f

f

2

1

f

Figure 2. Decomposition 1

f
1

2

f

Figure 3. Decomposition 2

due to the fact that the sets Ei are pairwise disjoint, DχEi are mutually singular
for all i ∈ I.

This property, which has been proved also for the decomposition of Lipschitz
functions in Theorem 1.2, can be false in the general case. As shown in the example
below, one can have monotone BV functions, whose distributional derivatives are
concentrated on sets with non empty intersection.

Example 1. Let us consider a BV function f as in the Figure 4.
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f

1

2

3

1 2 3

Figure 4. Function f

1

21 ff

321

3

2

Figure 5. Decomposition of the function

In this case the Decomposition Theorem gives two BV monotone functions f1
and f2 such that f = f1 + f2. Their distributional derivatives are

|Df1| = 2δ0 − δ1 − δ3 and |Df2| = 2δ2 − 2δ3,

where δx is the Dirac measure, δx(A) = 1 if x belongs to the set A, δx(A) = 0
otherwise. Clearly these distributional derivatives are not mutually singular, since
both have an atom in x = 3.

One can easily show that for any other monotone decomposition it is impossible
to find two disjoint sets on which the distributional derivatives are concentrated.

3. Counterexamples. As we said in the Introduction, the definition of monotone
function could be given even for a function which is only L1

loc(RN ). In that case one
has to require that this function must have super-level sets with finite perimeter,
which is true L1-a.e. t ∈ R for the super-level sets of a BV function.

The Jordan decomposition states that monotonicity is a sufficient condition for
a function of one variable to be of bounded variation. However, we cannot say that
every monotone function f : RN → R defined as in Definition 1.4 is of bounded
variation.
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A counterexample is given below by a function, whose super-level sets are pro-
gressive configurations of the construction of a Koch snowflake.

Example 2. The Koch snowflake is a curve generated iteratively from a unitary
triangle T adding each time, on each edge, a smaller centered triangle with edges
one third of the previous edge, see Figure 6.

Figure 6. Progressive configurations of the construction of a Koch snowflake

More precisely letting T0 be the equilateral triangle T with unitary edge, and Ti

the successive iterations of the curve, one has that at every stage

• the number of edges is Nk = 3 · 4k,
• the length of the edges is Lk =

(
1
3

)k
,

• the perimeter of the iterated curve is P (Tk) = 3 ·
(
4
3

)k
,

• the area of the iterated curve is

|Tk| =
[
1 +

1

3

k∑
j=1

(
4

9

)j ]
·
√
3

2
.

Denote with B the ball

B = {x ∈ R2| ∥x∥ < R},
which contains the unitary triangle T centered in the origin: hence Ti ⊆ B for all
i ∈ N.

Let Ek := B \ Tk for k ∈ N and define f : B → R in this way

f(x) :=
∑
k

(
3

4

)k

χEk
(x).

Clearly 0 ≤ f < 4, therefore f belongs to L1(B) and coarea formula can be used to
obtain its variation.

Let us note which are the super-level sets and their perimeter:

• for t < 0 the set {f > t} = B and P (B,B) = 0,
• for t = 0 the set {f > t} = E0 and P (E0, B) = 3,

• for 0 < t < 4 the set {f > t} = Ek̄ for the first k̄ such that
∑k̄

k=0

(
3
4

)k
> t

and P (Ek̄, B) = 3 ·
(
4
3

)k̄
,
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• for t ≥ 4 the set {f > t} = ∅ and P (∅, B) = 0.

Thus this function is monotone and computing its variation one has

|Df |(B) =

∫ +∞

−∞
P ({f > t}, B)dt

=

∫ 4

0

P ({f > t}, B)dt

=
+∞∑
k=0

3 ·
(
4

3

)k

·
(
3

4

)k

= +∞

which implies that f does not belong to BV (B).

In the case of Lipschitz functions Definition 1.1 and Definition 1.4 are equivalent.

Proposition 3.1. Let f : RN → R be a Lipschitz function, then f is monotone in
the sense of Definition 1.1 if and only if f is monotone in the sense of Definition
1.4.

Proof. (⇒) Let f : RN → R be a Lipschitz function which is monotone in the sense
of Definition 1.1, then for all t in R the set {f = t} is connected.

We claim that {f > t} and {f < t} are open connected sets. Indeed, let us
concentrate on {f > t}, the other case is similar.
By contradiction suppose {f > t} disconnected, then {f > t} must have at least
two connected components. For t′ > t, such that t′ − t is sufficiently small, the
set {f = t′} is contained at least in two of the connected components of {f > t}.
Thus we have a connected set {f = t′} contained in two connected components of
a disconnected set, absurd.

Since for L1-a.e. t in R the sets {f > t} and {f < t} are of finite perimeter
Proposition 2 in [2] gives that the open and connected sets {f > t} and {f < t} are
indecomposable for L1-a.e. t in R.

Therefore f is monotone in the sense of Definition 1.4.
(⇐) Let f : RN → R be a Lipschitz function which is not monotone in the sense

of Definition 1.1, then there exists a t in R such that the set {f = t} is disconnected.
For Theorem 6.1.23 in [4], every connected components of {f = t} coincides with

a quasi-connected component of {f = t}, because {f = t} is compact.
This implies that there exists an open set G in RN such that

∂G ∩ {f = t} = ∅, G ∩ {f = t} ≠ ∅

and

(RN \G) ∩ {f = t} ̸= ∅.
From its continuity, f must be greater than t or lower than t over the all ∂G. Let
us fix f |∂G < t.

The compactness of {f = t} gives the existence of a δ > 0 such that f |∂G ≤ t−δ.
Thus, for all ε ∈ (0, δ),

∂G ∩ {f > t− ε} = ∅ and {f = t} ⊆ {f > t− ε}.

Therefore

G ∩ {f > t− ε} ≠ ∅, (RN \G) ∩ {f > t− ε} ≠ ∅.



16 STEFANO BIANCHINI AND DANIELA TONON

In addiction, defining L the Lipschitz constant of f ,

d({f ≥ t− ε}, ∂G) ≥ δ − ε

L
.

It follows that the open set {f > t − ϵ} can be decomposed into two open sets
with positive distance, in particular it is decomposable.

In the case

f |∂G > t,

one can similarly show that, for all ε in (0, δ), the set {f < t− ε} is decomposable.
Therefore f is not monotone in the sense of Definition 1.4.

The Decomposition Theorem for real valued BV functions of RN is in some sense
optimal. Considering BV functions from R2 to R2 one can find counterexamples
to this theorem, i.e. BV functions which cannot be decomposed in sum of BV
monotone functions preserving total variation.

The crucial point is that we require to our decomposition, besides being the sum
of BV monotone functions, to preserve the the total variation, i.e.

|Df | =
∑
i∈I

|Dfi|.

Remark 3. For example, let us generalize as follows our definition of BV monotone
function to functions with values in a space of a greater dimension.

Definition 3.2. A function f : RN → Rm, which belongs to [BV (RN )]m, is said
to be monotone if the super-level sets

{f > t} := {x ∈ RN | fi(x) > ti i = 1, ...,m}

and the sub-level sets

{f < t} := {x ∈ RN | fi(x) < ti i = 1, ...,m},

are indecomposable, for Lm-a.e. t ∈ Rm.

Let f : RN → Rm a BV function f =

 f1
...
fm

.

For i = 1, ...,m, every fi is a BV function from RN to R so that Theorem 1.5 ap-
plies. Therefore, for every i = 1, ...,m, one has the decomposition in BV monotone
functions fi =

∑
j∈Ji

f j
i .

Note that, if g : RN → R is a BV monotone function, the function


0
...
g
...
0

 is a

BV monotone function too, from RN to Rm, in the sense of Definition 3.2.
It follows that we can decompose f in that way

f =
∑
j∈J1


f j
1

0
...
0

+ ...+
∑
j∈Jm


0
...
0
f j
m

 .
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However, this decomposition does not preserve the total variation of f and one can
only say that

|Df | ≤
∑
j∈J1


|Df j

1 |
0
...
0

+ ...+
∑
j∈Jm


0
...
0

|Df j
m|

 .

We give now a counterexample in the case of Lipschitz function from R2 to R2.
In this situation we extend the Definition 1.1.

Definition 3.3. A function f : R2 → R2, which belongs to [Lip(R2)]2, is said to
be monotone if the level sets {f = t} = {x ∈ R2| f(x) = t} are connected for every
t ∈ R2.

We observe that if f : RN → RN Lipschitz is a monotone operator, then its level
sets are closed convex. Hence the requirement to preserve the connectedness of the
level sets is weaker than being a monotone operator.

Example 3. Let f : R2 7→ R2 be a Lipschitz function: in this particular case, by
area formula it follows that f is monotone if and only if for L1-a.e. t ∈ R2 f−1(t)
is a singleton.

Using Lipschitz continuity, it is simple to verify that if f1 : R2 7→ R2 is a Lipschitz
function such that

|Df | = |Df1|+ |D(f − f1)|,
then either f = f1 or there exists a set with positive length where f = f1 is constant.

However, not all Lipschitz functions from R2 to R2 have this particular property.
For example consider

f : R2 → R2, f(x) =

(
1− cos(πx1

2 )
1− cos(πx2

2 )

)
.

For this function the level sets {f = t} have zero length for every t ∈ R2. Thus
any decomposition with the properties desired is impossible.

4. Notations.

HK K-dimensional Hausdorff measure
LN N-dimensional Lebesgue measure
R+ set of all non negative real number
[L1(RN )]m Lebesgue space of functions from RN to Rm

L1
loc(RN ) space of functions from RN to R which are locally L1(RN )

[Lipc(RN )]m space of c-Lipschitz functions from RN to Rm

[BV (RN )]m space of bounded variation functions from RN to Rm

∇f gradient of the Lipschitz function f
Df distributional derivative of the BV function f
|Df | total variation of the function f
P (E) perimeter of the set E
|E| Lebesgue measure of the set E

E̊M essential interior of the set E
E closure of the set E
χE characteristic function of the set E
(mod LN ) up to LN -negligible sets
δx Dirac measure
∂E topological boundary of a set E
d(A,B) distance between the sets A and B
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