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ABSTRACT
Forward shocks caused by the interaction between a relativistic blast wave and the circumburst
medium are thought to be responsible for the afterglow emission in gamma-ray bursts (GRBs).
We consider the hydrodynamics of a spherical relativistic blast wave expanding into the
surrounding medium and we generalize the standard theory in order to account for several
effects that are generally ignored. In particular, we consider the role of adiabatic and radiative
losses in the hydrodynamical evolution of the shock, under the assumption that the cooling
losses are fast. Our model can describe adiabatic, fully radiative and semiradiative blast waves,
and can describe the effects of a time-varying radiative efficiency. The equations we present
are valid for arbitrary density profiles, and also for a circumburst medium enriched with
electron–positron pairs. The presence of pairs enhances the fraction of shock energy gained
by the leptons, thus increasing the importance of radiative losses. Our model allows us to
study whether the high-energy (>0.1 GeV) emission in GRBs may originate from afterglow
radiation. In particular, it is suitable to test whether the fast decay of the high-energy light
curve observed in several Fermi Large Area Telescope GRBs can be ascribed to an initial
radiative phase, followed by the standard adiabatic evolution.

Key words: gamma-ray burst: general – X-rays: general.

1 IN T RO D U C T I O N

Afterglow radiation in gamma-ray bursts (GRBs) is attributed to
external shocks produced by the interaction between the ultrarela-
tivistic ejecta and the circumburst medium (CBM). As the collision
evolves, a relativistic forward shock propagates into the surround-
ing medium, sweeping up and accelerating the ambient matter. Syn-
chrotron emission from the shocked electrons powers the observed
afterglow, which is usually detected in the X-ray, optical and some-
times radio bands.

Recent observations by the Fermi/Large Area Telescope (LAT;
Atwood et al. 2009) and AGILE/Gamma-Ray Imaging Detector
(Barbiellini et al. 2002; Tavani et al. 2009) telescopes have revealed
that a few per cent of GRBs, both long and short, are detected in
the MeV–GeV energy range, confirming previous findings by the
Energetic Gamma Ray Experiment Telescope (EGRET onboard the
Compton Gamma-Ray Observatory). By inspecting the temporal
and spectral behaviour above 0.1 GeV, some generic properties of
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the high-energy emission have been inferred (Omodei et al. 2009;
Ghisellini et al. 2010): (i) the high-energy radiation typically starts
at early times, during the prompt phase, with a delay up to a few
seconds after the beginning of the sub-MeV prompt emission; (ii)
it lasts longer than the prompt keV–MeV emission detected by the
Fermi/gamma-burst monitor; (iii) the high-energy flux decays as a
power law in time, typically steeper than t−1.

The emission mechanism remains controversial. A promising
possibility, investigated by several authors, is that the high-energy
emission has the same origin as the afterglow, at least when the
MeV–GeV emission appears as a spectral component separate from
the prompt, and it persists after the prompt has faded out (Gao
et al. 2009; Kumar & Barniol Duran 2009, 2010; Corsi, Guetta
& Piro 2010; Ghirlanda, Ghisellini & Nava 2010; Ghisellini et al.
2010, but see Piran & Nakar 2010; Maxham, Zhang & Zhang 2011
for caveats). The brightest bursts detected by LAT show a peak in
their >0.1 GeV light curve at early times. If interpreted as the onset
of the afterglow emission, the peak time can be used to estimate
the initial bulk Lorentz factor �0 of the blast wave. The typical
values obtained for the LAT bursts are quite large, around �0 ∼ 103

(Ghirlanda et al. 2010; Ghisellini et al. 2010). Beyond the peak,
the >0.1 GeV light curves decay with a temporal slope steeper than
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t−1, which can be easily explained if at these times radiative losses
affect the dynamical evolution of the blast wave, as suggested by
Ghisellini et al. (2010).

Models where the energy lost to radiation is a sizeable fraction
of the blast wave energy are referred to as radiative. Radiative evo-
lution sets in if the following two conditions are both satisfied: (i)
a considerable fraction of the energy dissipated in external shocks
is given to leptons (εe � 1) and (ii) leptons are in the fast-cooling
regime, i.e. εrad is close to unity. Here, εrad is defined as the frac-
tion of the energy gained by electrons which is promptly radiated.
Estimates derived from modelling the X-ray and optical afterglow
suggest that εe may be roughly distributed around 0.1 (Panaitescu
& Kumar 2001), which has been often adopted as a typical value.
Even if our knowledge of particle acceleration in relativistic shocks
is poor, it is reasonable to imagine that higher values of εe could
be achieved if the pre-shock medium is enriched with electron–
positron pairs. Ghisellini et al. (2010) considered the presence of
pairs in the CBM to explain why the fireball may be radiative at early
times, when the GeV emission takes place. A process that produces
pairs in the ambient medium (invoking prompt photons scattered
by the circumburst electrons) has been considered by Thompson
& Madau (2000) and Beloborodov (2002). This process is efficient
up to some radius Rload, beyond which the probability for an am-
bient electron to intercept a prompt photon becomes smaller than
unity.

Even when the fireball is highly radiative in its early evolution,
a transition to the standard adiabatic regime should occur when: (i)
the radiative process switches from fast to slow cooling (i.e. εrad

decreases from ∼1 to εrad � 1); or (ii) the physical conditions mo-
tivating large εe cease to hold. For example, in the pair enrichment
model described above, at radii larger than Rload the pair loading gets
inefficient, the pair-to-proton ratio drops and εe decreases, driving
the transition from the radiative to the adiabatic regime.

At present, nearly 30 GRBs have been detected by LAT and the
relation between the high-energy emission and the afterglow radia-
tion can now be investigated in more detail. To probe the presence
of an initially radiative epoch and to follow the transition to the
adiabatic regime as the pairs-to-proton ratio in the CBM decreases,
we need to generalize the standard model for the hydrodynamical
evolution of GRB external shocks.

Blandford & McKee (1976) found a self-similar solution that
describes the deceleration stage of adiabatic blast waves (i.e. in the
case of negligible radiative losses), valid as long as the velocities
are relativistic. Simpler analytical models based on the thin homo-
geneous shell approximation (where the hydrodynamical properties
of the fluid behind the shock are taken to be uniform inside the shell)
allow us to describe the whole evolution of the shell Lorentz factor,
from the coasting to the non-relativistic epoch, but they suffer from
some limitations. During the relativistic deceleration stage of adia-
batic blast waves, they differ from the Blandford–McKee solution
by a numerical factor (Panaitescu & Kumar 2000). Also, some im-
portant ingredients are often missing, such as the role of adiabatic
expansion losses (Dermer & Humi 2001) or a proper description
of the non-relativistic phase (Huang, Dai & Lu 1999). In all these
approaches, the external medium density is usually considered to
have a power-law radial profile and negligible pair loading. The im-
pact of a pair-loaded medium on the observed afterglow radiation
is exhaustively addressed by Beloborodov (2005). In that work, the
author developed a Lagrangian formalism for afterglow calculations
and showed that the radiation from the shocked pairs is likely to
dominate the emission in the IR, optical and UV bands during the
first few minutes.

In this paper, we develop a theoretical model able to describe:

(i) the whole blast wave evolution, starting from the initial coast-
ing phase (� = �0 = const) down to non-relativistic speeds;

(ii) adiabatic, fully radiative and semiradiative regimes;
(iii) the transition from the radiative to the adiabatic regime, due

to the change from fast to slow cooling or to the decrease in εe;
(iv) adiabatic expansion losses;
(v) a CBM characterized by an arbitrary density profile, possibly

enriched with electron–positron pairs and pre-accelerated by the
prompt radiation;

(vi) the evolution of the reverse shock.

Our model is based on the simple homogeneous shell approxima-
tion (see Piran 1999 for an exhaustive treatment of this approach).
However, we obtain a more realistic description (i) by recovering
the Blandford & McKee (1976) self-similar solution during the rela-
tivistic deceleration phase of adiabatic blast waves; and (ii) by prop-
erly accounting for the adiabatic losses. By including the adiabatic
losses in a self-consistent way, we can capture the re-acceleration of
the blast wave when the CBM density drops faster than R−3, and the
internal energy accumulated at earlier times is converted back into
bulk kinetic energy. Also, we correctly recover the Sedov–Taylor
solution (Sedov 1946; von Neumann 1947; Taylor 1950) during the
non-relativistic regime.

Our model allows us to investigate more general issues, not nec-
essarily related to the GeV emission. In particular, in this work we
use our model to study:

(i) the importance of radiative losses for arbitrary values of εe;
(ii) the impact of an initial radiative phase on the energy content

of the blast wave, and its effect on the subsequent adiabatic epoch
(and then on the X-ray and optical emission);

(iii) the relation between the initial bulk Lorentz factor �0 and
the peak time of the afterglow light curve.

In a follow-up paper (Nava et al., in preparation), we will test
the external shock origin of the MeV–GeV emission, by simulta-
neously fitting the GeV, X-ray and optical light curves and spec-
tra of the GRBs detected by LAT. We will adopt the dynamical
model developed in this work and we will consider both the syn-
chrotron and the synchrotron self-Compton processes, in order to
predict light curves and spectra at different frequencies. This study
will probe whether an initial radiative phase is needed to explain
the steep GeV light curves, and if the pair enrichment model de-
scribed above can be a viable explanation for this early radiative
epoch.

The presence of such a radiative phase could also affect the time
when the blast wave becomes non-relativistic (which should occur
earlier if the fireball efficiently loses energy in its early evolution).
A detailed description of the transition to the non-relativistic phase,
accounting for the effects of lateral spreading in the realistic case
of a collimated outflow, will be the subject of a follow-up paper
(Sironi et al., in preparation).

In the following, primed quantities are measured in the frame
comoving with the fireball, unprimed quantities are measured in
the frame of the progenitor star. This will be true for all quantities
except the particle momentum p and the particles random Lorentz
factor γ , which are comoving quantities, but that we leave unprimed
for the ease of notation.
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2 A F T E R G L OW E M I S S I O N : T H E S TA N DA R D
M O D E L

It is possible to identify different stages in the evolution of a spher-
ical relativistic blast wave. After the acceleration phase, the ejecta
freely expand with constant Lorentz factor �0 (coasting phase).
When the internal energy of the shocked swept-up matter ap-
proaches the explosion energy (i.e. �2

0mc2 ∼ E0), the blast wave
enters a second stage, where both the shock wave and the shocked
material decelerate, and the kinetic energy is gradually transformed
into random internal energy and partially radiated. In the third stage
of the evolution, the blast wave decelerates down to non-relativistic
velocities. Most of the detected afterglow radiation is emitted dur-
ing the relativistic deceleration stage, via synchrotron cooling of the
shocked electrons.

In this section, we briefly revise the methods that are commonly
used to describe the evolution of external shocks in GRBs, and we
emphasize the limitations of the different approaches. In Section 2.1,
we review the self-similar solutions presented by Blandford &
McKee (1976) for adiabatic blast waves and by Cohen, Piran &
Sari (1998) for semiradiative shells. These models describe the
complete radial profile of the hydrodynamical quantities inside the
shell. In this context, Beloborodov & Uhm (2006) developed a me-
chanical model for relativistic blast waves and included the effects
of the reverse shock. Specifically, they made use of the jump con-
ditions across both the reverse and the forward shock and applied
the conservation of the mass, energy and momentum fluxes across
the shocks. The reverse shock vanishes as it crosses the end of the
ejecta, and the blast wave then enters the self-similar stage where the
forward shock dynamics is described by the solution of Blandford
& McKee (1976).

The validity of the Blandford & McKee (1976) solution is lim-
ited to the relativistic deceleration phase. In contrast, in the so-called
homogeneous shell approximation, the whole blast wave evolution
can be followed, from the coasting to the non-relativistic epoch, by
considering a series of inelastic collisions between the shell and the
external medium and by solving the equations for the energy and
momentum conservation of the system. However, the hydrodynam-
ical properties of the fluid behind the shock are taken to be uniform
inside the shell. In Sections 2.2 and 2.3, we present two common
approaches based on the homogeneous shell approximation.

2.1 Blandford & McKee 1976 (BM76)

Blandford & McKee (1976, hereafter BM76) presented a fluid dy-
namical treatment of a relativistic spherical blast wave enclosed by
a strong shock, under the assumption of adiabatic evolution. They
considered the relativistic jump conditions across the shock and
solved the continuity equations to derive the radial profile of the hy-
drodynamic quantities inside the shell. They derived a self-similar
solution describing the deceleration stage of an adiabatic relativistic
shock wave propagating into a medium with a power-law density
profile ρ(R) = A0R−s, where R is the distance of the shock from
the centre of the explosion. Their result represents the ultrarela-
tivistic version of the Sedov–Taylor solution, which describes the
non-relativistic stage of adiabatic shocks.

By definition, in the adiabatic regime the blast wave energy is
constant and equal to the initial value E0. By integrating the energy
density of the shocked fluid over the shell volume, BM76 found

E0 = 12 − 4s

17 − 4s
�2 mc2 = 16πA0c

2

17 − 4s
R3−s�2, (1)

where m is the ambient mass swept up at radius R, and � is the
bulk Lorentz factor of the fluid just behind the shock. This relation
prescribes the dependence of � on R, giving � ∝ R−(3 − s)/2. In the
two common cases (homogeneous density, s = 0; and wind-like
profile, s = 2), it gives � ∝ R−3/2 and � ∝ R−1/2, respectively. Even
if this approach provides a reliable description of the deceleration
epoch for adiabatic blast waves, both the coasting and the non-
relativistic phases (and the transition between different stages of
the evolution) cannot be properly described.

BM76 also investigated the case of fully radiative blast waves.
In this regime, they considered all the shocked matter to be con-
centrated in a cold, thin and homogeneous shell. From energy and
momentum conservation, they found that the evolution of the shell
Lorentz factor � satisfies

� − 1 = 2

[
(m + M0)2(�0 + 1)

M2
0 (�0 − 1)

− 1

]−1

, (2)

where M0 is the initial mass of the ejecta. Contrary to the BM76
adiabatic solution in equation (1), this equation (based on the homo-
geneous shell approximation) is also valid in the coasting epoch and
for non-relativistic velocities. It is the ultrarelativistic generalization
of the momentum-conserving snowplow (Ostriker & McKee 1988),
characterized by a thin shell where all of the matter is concentrated,
with an empty cold interior. As pointed out by Cohen et al. (1998),
the solution in equation (2) has been derived without accounting for
the factor 4/3 that comes from the Lorentz transformation of the
energy density in a relativistically hot fluid.

Cohen et al. (1998) have looked for self-similar solutions to
describe the relativistic deceleration stage of semiradiative blast
waves, i.e. the generalization of the BM76 solution (equation 1),
which only holds for adiabatic shells. They consider an adiabatic
shock followed by a narrow radiative region and a self-similar adi-
abatic interior. In their approach, the shell cavity is hot and pres-
surized, as opposite to the empty and cold interior of the radiative
solution by BM76 in equation (2). In the fully radiative regime, their
solution does not reduce to the momentum-conserving snowplow
of BM76, but it rather represents the ultrarelativistic generaliza-
tion of the pressure-driven snowplow solution (Ostriker & McKee
1988).

2.2 Piran 1999 (P99)

Piran (1999, hereafter P99) solved for the evolution of spherical
blast waves in the homogeneous shell approximation, with a generic
radiative efficiency. The evolution of the blast wave Lorentz factor
is derived by imposing energy and momentum conservation in the
collision between the blast wave and the external matter. An analytic
equation for �(R) (from the coasting to the non-relativistic phase)
can be derived. This method suffers from some limitations. In the
adiabatic regime, the predicted scaling law between � and R during
the relativistic deceleration stage is the same as derived by BM76,
but the two solutions differ by a numerical factor (Panaitescu &
Kumar 2000). Moreover, adiabatic expansion losses are not con-
sidered. For non-relativistic velocities, Piran’s solution gives β ∝
R−3. As Huang et al. (1999) pointed out, this scaling does not agree
with the Sedov–Taylor solution (β ∝ R−3/2), which is expected to
describe the final non-relativistic stages of the fireball evolution.
In the fully radiative case, P99 recovers the same solution derived
by BM76 (equation 2), which describes a momentum-conserving
snowplow.
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2.3 Huang et al. 1999 (H99)

In order to derive a relation between � and R valid also in the non-
relativistic regime, Huang et al. (1999, hereafter H99) considered the
homogeneous shell model of P99 but imposed a different equation
to describe the internal energy of the fireball. Their assumption
states that the comoving internal energy of adiabatic blast waves
should be E′

int = (� − 1) m c2.1

This prescription for the internal energy mimics the role of adi-
abatic losses. The Rankine–Hugoniot jump conditions state that
the average kinetic energy per unit mass is constant across a rel-
ativistic shock (as measured in the post-shock frame), meaning
that the random Lorentz factor of an element dm of shocked ma-
terial equals the shell Lorentz factor �(m) at that time. At early
times, when the shell Lorentz factor was larger, the material was
shocked to hotter temperatures. It follows that, in the absence of adi-
abatic and radiative losses, the internal energy of the shell should be
E′

int = ∫
[�(m) − 1] dm c2. By imposing E′

int = (� − 1) m c2, H99
implicitly mean that the effect of adiabatic losses is to keep the ran-
dom Lorentz factor of all the swept-up matter equal to the current
bulk Lorentz factor of the shell, regardless of the hotter temperatures
of the material accreted at earlier times. Although this treatment of
the adiabatic losses relies on an ad hoc prescription, it allows us
to recover the correct scaling between β and R predicted by the
Sedov–Taylor solution, β ∝ R−3/2.

A more accurate treatment of the adiabatic losses, giving the cor-
rect scaling of β(R) in the non-relativistic regime without any ad hoc
assumption, has been considered by Panaitescu, Meszaros & Rees
(1998) and Dermer & Humi (2001), but only for adiabatic shocks
in power-law density profiles. In our model, which we describe be-
low, we generalize their formalism to the case of semiradiative blast
waves propagating in a medium with an arbitrary density profile.

3 O U R M O D E L

In this section, we propose a novel method to describe the evolu-
tion of spherical relativistic blast waves, in the homogeneous shell
approximation. Our model overcomes the problems and limitations
present in other approaches, which we have summarized in Sec-
tion 2. In particular, our method is able to describe the following.

(i) The coasting, deceleration and non-relativistic phases, and
the transition between these regimes. For adiabatic blast waves, the
relativistic deceleration phase reproduces the BM76 solution, and
in the non-relativistic regime the shell velocity scales as β ∝ R−3/2,
as predicted by the Sedov–Taylor solution.

(ii) Adiabatic, semiradiative and fully radiative blast waves.
(iii) The case of a time-varying radiative efficiency, either result-

ing from a change in the shock microphysics (i.e. in the fraction εe

of shock energy transferred to the emitting leptons, or due to the
transition from fast to slow cooling, which determines a decrease in
the electron radiative efficiency εrad).

(iv) Arbitrary density profiles (e.g. resulting from the interac-
tion of the progenitor stellar wind with the surrounding interstellar
medium, ISM), including the case of a CBM enriched with electron–
positron pairs.

(v) Possible re-acceleration phases, caused by the conversion
of part of the internal energy back into bulk kinetic energy. Re-
acceleration is expected to occur if the blast wave encounters a

1 For fully radiative blast waves, E′
int = 0, and their solution coincides with

the momentum-conserving snowplow of BM76 and P99.

sudden drop in the density of the external matter (i.e. the density
profile becomes steeper than ρ ∝ R−3).

The model presented in this section does not account for the re-
verse shock nor for the pre-acceleration of the external medium.
However, both processes might produce relevant effects on the
early light curve of the afterglow emission (Beloborodov 2005;
Beloborodov & Uhm 2006). For this reason, in Appendix B, we
modify the equations presented in this section in order to include
the effects of the reverse shock, while, in Appendix C, we show
how it is possible to account for an external medium which has
been pre-accelerated by the prompt radiation.

We now derive the equations describing the evolution of the shell
bulk Lorentz factor � as a function of the shock radius R.

Total energy. The energy density in the progenitor frame can
be obtained from the Lorentz transformation: e = (e′ + P′)�2 −
P′, where the pressure P′ is connected to the comoving energy
density e′ and the comoving mass density ρ ′ by the equation of
state P ′ = (γ̂ − 1)(e′ − ρ ′c2). Here, γ̂ is the adiabatic index of the
shocked plasma, which we parametrize as γ̂ = (4 + �−1)/3 for the
sake of simplicity, obtaining the expected limits γ̂ � 4/3 for � �
1 and γ̂ � 5/3 for � → 1 (see Pe’er 2012 for a more accurate
prescription). The total energy in the progenitor frame will be E =
eV = eV′/�, where V is the shell volume in the progenitor frame,
and V ′ = �V in the comoving frame. The total energy of the shell
in the progenitor frame is the sum of the bulk kinetic energy and
the internal energy:

Etot = �(M0 + m) c2 + �effE
′
int, (3)

where we have defined

�eff ≡ γ̂ �2 − γ̂ + 1

�
, (4)

to properly describe the Lorentz transformation of the internal en-
ergy. Here, M0 + m = ρ ′V ′ is the sum of the ejecta mass M0 =
E0/�0c2 and of the swept-up mass m(R), and E′

int = (e′ − ρ ′c2)V ′

is the comoving internal energy. As pointed out by Pe’er (2012), the
majority of current models use � instead of �eff, with an error up
to a factor of 4/3 in the ultrarelativistic limit, when �eff → (4/3)�.
Note that when accounting for the reverse shock the equation ex-
pressing the total energy of the shell must be modified as described
in Appendix B. In particular, at early times only a fraction of the
ejecta mass has been shocked and travels with bulk Lorentz factor
�, while the remaining fraction moves with �0. When the reverse
shock has crossed the ejecta, all the ejecta mass has been deceler-
ated and equation (3) can be applied. In addition, the reverse shock
will heat the ejecta, and the internal energy of the shocked ejecta
must be considered. The changes to our dynamical model in the
presence of a reverse shock are given in Appendix B.

Formal equation for �(R). The blast wave energy Etot in equa-
tion (3) can change due to (i) the rest-mass energy dm c2 ac-
creted from the CBM and (ii) the energy lost to radiation dErad =
�eff dE′

rad. If the external medium has been pre-accelerated by the
interaction with the prompt radiation, the mass swept up by the for-
ward shock is not at rest in the progenitor frame. In this section, we
neglect the possible motion of the CBM in the progenitor frame and
defer to Appendix C the description of how this effect can easily be
included in the model. The equation of energy conservation in the
progenitor frame then reads

d
[
�(M0 + m)c2 + �effE

′
int

] = dm c2 + �effdE′
rad. (5)
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The overall change in the comoving internal energy dE′
int results

from the sum of three contributions:

dE′
int = dE′

sh + dE′
ad + dE′

rad. (6)

The first contribution, dE′
sh = (� − 1) dm c2, is the random kinetic

energy produced at the shock as a result of the inelastic collision
with an element dm of circumburst material.2 The second term,
dE′

ad, is the energy lost due to adiabatic expansion. The adiabatic
losses lead to a conversion of random energy back to bulk kinetic
energy. This contribution is generally negligible, but it may become
important when the CBM density decreases faster than ρ ∝ R−3, as
shown in Section 3.2. The third term, dE′

rad, accounts for radiative
losses.

From equation (5), we derive the equation for the evolution of
the shell Lorentz factor:

d�

dR
= − (�eff + 1)(� − 1) c2 dm

dR
+ �eff

dE′
ad

dR

(M0 + m) c2 + E′
int

d�eff
d�

, (7)

which reduces to equation 5 of Dermer & Humi (2001) if we replace
�eff with �. For a spherical shell, dm/dR = 4πR2ρ, where ρ(R)
is the circumburst mass density. The term �effdE′

ad/dR, accounting
for adiabatic losses, allows us to describe the re-acceleration of the
fireball when the density of the CBM is a fast decreasing function
of R (see Section 3.2 and the Appendix A).

Specifying dE′
ad and E′

int. Equation (7) is the formal equation
giving �(R). To solve it, we need to specify dE′

ad and E′
int. To

this aim, we adopt the approach proposed by Dermer & Humi
(2001) and we generalize their method to account for (i) arbitrary
profiles of the circumburst density ρ(R), and (ii) a time-varying
overall radiative efficiency ε(R). The efficiency ε is defined as fol-
lows: a fraction εe of the energy dissipated by the shock dE′

sh

is gained by the leptons, which then radiate a fraction εrad of
their internal energy. It follows that the energy lost to radiation is
dE′

rad = −εradεe dE′
sh = −ε dE′

sh, with ε ≡ εradεe. In other words, ε
is the overall fraction of the shock-dissipated energy that goes into
radiation.

After gaining a fraction εe of the shock energy, the mean ran-
dom Lorentz factor of post-shock leptons becomes γacc,e − 1 =
(� − 1)εe/μe. Here, μe = ρe/ρ is the ratio between the mass den-
sity ρe of shocked electrons and positrons (simply ‘electrons’ from
now on) and the total mass density of the shocked matter ρ. In the
absence of electron–positron pairs, electrons and protons have the
same number density and the same radial profile, and μe is simply
the ratio between the electron and proton mass: μe = me/(me +
mp) � me/mp. We assume that, right behind the shock, the freshly
shocked electrons instantaneously radiate a fraction εrad of their in-
ternal energy, so that their mean random Lorentz factor decreases
down to

γrad,e − 1 = (1 − εrad)(γacc,e − 1) = (1 − εrad)(� − 1)
εe

μe
. (8)

Following this transient, electrons cool only due to adiabatic losses.
The assumption of instantaneous radiative losses is verified in the
fast-cooling regime (εrad ∼ 1), which is required (but not sufficient)
to have ε ∼ 1 (i.e. a fully radiative blast wave). In the opposite case
εrad � 1, the evolution is nearly adiabatic (ε � 1), regardless of
the value of εe, and the details of the radiative cooling processes
are likely to be unimportant for the shell dynamics. The case with

2 As pointed out by BM76, in the post-shock frame, the average kinetic
energy per unit mass is constant across the shock, and equal to (� − 1) c2.

intermediate values of εrad and ε is harder to treat analytically, since
the electrons shocked at radius R may continue to emit copiously
also at larger distances, affecting the blast wave dynamics. In the
following, we implicitly assume either that the emitting electrons
are in the fast-cooling regime (εrad ∼ 1) or that the radiative losses
are unimportant for the shell dynamics (i.e. ε � 1).

Assuming that protons gain a fraction εp of the energy dissipated
by the shock (with εp = 1 − εe − εB � 1 − εe, if the fraction εB

converted into magnetic fields is negligible), their mean post-shock
Lorentz factor will be

γacc,p − 1 = (� − 1)
εp

μp
, (9)

where μp = ρp/ρ is the ratio between the mass density of shocked
protons ρp and the total shocked mass density ρ. In the standard
case, when pairs are absent, μp � 1. Since the proton radiative losses
are negligible, the shocked protons will lose their energy only due
to adiabatic cooling.

Comoving volume and adiabatic losses. To estimate the adia-
batic losses, we assume that the shell comoving volume scales
as V ′ ∝ R3/�, corresponding to a shell thickness in the progeni-
tor frame ∼R/�2. This scaling is correct for both relativistic and
non-relativistic shocks, in the decelerating phase (BM76). For re-
accelerating relativistic shocks, Shapiro (1980) showed that the
thickness of the region containing most of the blast wave energy is
still ∼R/�2. For the sake of simplicity, we neglect changes in the
comoving volume due to a time-varying adiabatic index or radiative
efficiency.

The radial change of the comoving momentum p of a shocked
particle, as a result of expansion losses, will be governed by(

dp

dr

)
ad

= −p

3

d ln V ′

dr
= −p

3

(
3

r
− d ln �

dr

)
, (10)

which is valid both in the relativistic and non-relativistic limits
(Dermer & Humi 2001). The comoving momentum at radius R, for
a particle injected with momentum p(r) when the shock radius was
r, will be

pad(R, r) = r

R

[
�(R)

�(r)

]1/3

p(r). (11)

The comoving momentum p(r) is given by p = (γ 2 − 1)1/2, where
for electrons γ = γ rad, e(r) (equation 8), and for protons γ = γ acc, p(r)
(equation 9). We remind that, by assuming that the shocked electrons
promptly radiate at the shock, and then they evolve adiabatically,
we are implicitly considering only the fast-cooling regime εrad ∼ 1.
Of course, our treatment is also valid in the quasi-adiabatic regime
ε � 1, when the radiative losses do not affect the shell dynamics.

Internal energy and adiabatic losses. Considering the proton and
lepton energy densities separately, the comoving internal energy at
radius R will be

E′
int(R) = 4πc2

∫ R

0
drr2

{
ρp(r)[γad,p(R, r) − 1]

+ ρe(r)[γad,e(R, r) − 1]
}

, (12)

where γad = (p2
ad + 1)1/2. With the help of equation (11), we can

explicitly find E′
int(R) and insert it in equation (7).

The other term needed in equation (7) is dE′
ad/dR. First, we

derive (dγ /dR)ad for a single particle, using γ = (p2 + 1)1/2 and
equation (10). Then, we integrate over the total number of particles,
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again considering protons and leptons separately. Finally, we have

dE′
ad(R)

dR
= −4πc2

(
1

R
− 1

3

d log �

dR

) ∫ R

0
drr2

×
{

ρp(r)
p2

ad,p(R, r)

γad,p(R, r)
+ ρe(r)

p2
ad,e(R, r)

γad,e(R, r)

}
. (13)

In equations (12) and (13), we have assumed that only the swept-up
matter is subject to adiabatic cooling, i.e. that the ejecta particles
are cold.

Relativistic phase. As long as the shocked particles remain rela-
tivistic (i.e. γ ad � pad � 1), the equations for the comoving inter-
nal energy and for the adiabatic expansion losses assume simpler
forms:

E′
int(R) = 4πc2

∫ R

0
drr2 r

R

[
�(R)

�(r)

]1/3

× �(r)

{
εp

μp
ρp + (1 − εrad)

εe

μe
ρe

}

= 4πc2
∫ R

0
drr2 r

R

[
�(R)

�(r)

]1/3

�(r) ρ(r)
(
εp + εe − ε

)
(14)

dE′
ad(R)

dR
= −E′

int(R)

(
1

R
− 1

3

d log �

dR

)
. (15)

In the second line of equation (14), we have used that ε = εeεrad. In
the absence of significant magnetic field amplification, εp + εe � 1
so that εp + εe − ε � 1 − ε, and the radiative processes of the blast
wave are entirely captured by the single efficiency parameter ε. In
the fast-cooling regime, εrad ∼ 1 and ε � εe. In this case, the term
εp + εe − ε reduces to εp, meaning that, regardless of the amount
of energy gained by the electrons, in the fast-cooling regime the
adiabatic losses are dominated by the protons, since the electrons
lose all their energy to radiation.

Adiabatic regime. Evaluating these expressions for adiabatic blast
waves in a power-law density profile ρ ∝ R−s, we obtain

E′
int(R) = 9 − 3s

9 − 2s
�mc2;

dE′
ad(R)

dR
= − (9 − s)(3 − s)

2(9 − 2s)

�mc2

R
,

(16)

where we have used that � ∝ R−(3 − s)/2 as in the adiabatic BM76
solution.

Fully radiative regime. In the fully radiative regime ε = 1, which
implies E′

int = 0 and dE′
ad = 0, equation (7) reduces to

d�

dm
= − (�eff + 1)(� − 1)

M0 + m
, (17)

which describes the evolution of a momentum-conserving (rather
than pressure-driven) snowplow. If we replace �eff → �, the so-
lution of this equation coincides with the result by BM76 (i.e. our
equation 2) and also with the equations derived by P99 and H99,
since for fully radiative solutions the specific treatment of the adia-
batic losses is unimportant.

Correction factor. Since our model is based on the homogeneous
shell approximation, our adiabatic solution does not recover the
correct normalization of the BM76 solution (see equation 1). In our
treatment, the total energy of a relativistic decelerating adiabatic

blast wave in a power-law density profile ρ(R) ∝ R−s is

E0 � �effE
′
int � 4

3
�E′

int � 12 − 4s

9 − 2s
�2 mc2, (18)

so that the BM76 normalization can be recovered if we multiply
the density of external matter in equations (7), (12) and (13) by the
factor (9 − 2s)/(17 − 4s).3 To smoothly interpolate between the
adiabatic regime (where we want to recover the BM76 solution) and
the radiative regime, we suggest a correction factor:

CBM76,ε ≡ ε + 9 − 2s

17 − 4s
(1 − ε). (19)

No analytic model exists that properly captures the transition be-
tween an adiabatic relativistic blast wave and the momentum-
conserving snowplow, as ε increases from zero to unity (instead, the
model by Cohen et al. 1998 approaches the pressure-driven snow-
plow in the limit ε → 1). For this reason, we decide to employ the
simple interpolation in equation (19), in order to join the fully adia-
batic BM76 solution with the fully radiative momentum-conserving
snowplow.

In summary, equations (7), (12) and (13), complemented with
the correction in equation (19) (which should be applied to every
occurrence of external density and external matter) completely de-
termine the evolution of the shell Lorentz factor � as a function of
the shock radius R.

In our model, it is easy to recover the solutions by P99 and
H99. First of all, we should replace �eff → � and CBM76,ε → 1.
The approach described by P99 can be recovered for dE′

ad = 0, so
dE′

int = (1 − ε)(� − 1)dm c2, while the equation given by H99 can
be obtained for E′

int = (1 − ε)(� − 1)mc2, which implies dE′
ad =

(1 − ε)d�mc2, at odds with respect to our equation (13).

3.1 Testing the model

Before applying our model to the physics of GRB afterglows, it is
healthy to compare it with previous studies and to understand the
differences.

Momentum of the blast wave: adiabatic and fully radiative cases.
Fig. 1 shows the evolution of the shell momentum �β for a CBM
density profile ρ = A0 R−s. We compare our model (solid curves)
with the predictions by P99 (dotted) and H99 (dashed), for adiabatic
and fully radiative blast waves, for homogeneous (s = 0, top panel)
or wind (s = 2, bottom panel) density profiles. The shock radius
is normalized to the deceleration radius, which is defined such that
the swept-up mass is mdec ≡ m(Rdec) = M0/�0, so

Rdec ≡
[

(3 − s)M0

4πA0�0

]1/(3−s)

. (20)

In the relativistic adiabatic regime, Fig. 1 shows that our solution re-
produces the adiabatic relativistic solution of BM76 (yellow straight
lines) for both the uniform and the wind density profile. P99 and
H99 underestimate the shell momentum with respect to the BM76
solution. Moreover, the approach by P99 does not correctly repro-
duce the Sedov–Taylor solution (with β ∝ R−3/2), since it gives β ∝
R−3 (as anticipated in Section 2). For fully radiative blast waves,
the solutions by P99 and H99 coincide and differ from our solution
only because they use � instead of �eff in equation (17).

As long as we are in the relativistic regime, Fig. 1 shows that all
models agree on the slope of �β as a function of R, both for the
adiabatic and for the fully radiative case.

3 This correction is only appropriate for a power-law density profile.
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Figure 1. Evolution of the shell momentum �β as a function of the shock
radius R, normalized to the deceleration radius Rdec, in the case of homoge-
neous ISM density (s = 0, upper panel) and wind-like profile (s = 2, bottom
panel). The solid curves show the prediction of our model for the fully adia-
batic and fully radiative solutions. The dotted (dashed) curves show instead
the P99 (H99) solution. The straight (yellow) line represents the prediction
by BM76, which is valid after the deceleration started and till the velocities
are relativistic. The grey area indicates the non-relativistic regime.

Momentum of the blast wave: semiradiative case. Fig. 2 shows
the slopes α ≡ −d ln �/d ln R as a function of the overall radiative
efficiency ε. All three methods give α = (3 − s)/2 for ε = 0 and
α = 3 − s for ε = 1, but they differ for intermediate values of ε

(i.e. they predict different slopes in the case of semiradiative blast
waves). In this case, the value of α in the model by P99 can be
derived analytically, and it gives α = (3 − s)/(2 − ε). In our model,
an analytic expression for α can only be obtained for ε � 1, and
it yields α = (9 − 3s + 3ε)/(6 − 4ε). The same is true for the
approach by H99, which results in α = (3 − s)/(2 − 2ε) for ε �
1. From Fig. 2, it is clear that the model by P99, which neglects
the adiabatic expansion losses, always gives the flattest slopes (i.e.
the shell evolution remains close to the adiabatic case, everything
else being fixed). Comparing our model with H99, we see that our
model yields flatter slopes for a homogeneous medium (top panel),
whereas the opposite holds for a wind profile (bottom panel).

Partition of energy. Fig. 3 shows the partition of energy among
different components (red for kinetic energy, green for internal
energy, purple for radiated energy), during the evolution of the blast
wave. The results of our model are plotted with solid and long
dashed lines, whereas the predictions by P99 and H99 are shown
with dotted and dashed lines, respectively. In the coasting phase
(R � Rdec), the blast wave energy is still dominated by the bulk
kinetic energy of the ejecta (red curves). At R ∼ Rdec, bulk and
internal energies are comparable by definition. For R � Rdec, the
ejecta decelerate, and the contribution of the bulk motion to the
overall energy budget decreases.

Figure 2. Comparison of the slope α (such that � ∝ R−α) in our model
(solid lines) with the predictions by P99 (dotted) and H99 (dashed) for
different values of the radiative efficiency ε. The slope is measured during
the relativistic deceleration phase of evolution. The top panel refers to the
case of a homogeneous ISM, the bottom panel to a wind density profile. We
remark that the slopes in our model do not depend on the correction factor
CBM76,ε in equation (19).

Figure 3. Evolution of the different contributions to the blast wave energy,
normalized to the initial energy E0. The solid (long dashed) lines refer to our
model in the case of s = 0 (s = 2). The dotted and dashed curves refer to P99
and H99, respectively. The top panel shows the adiabatic case ε = 0, and
the bottom panel presents the fully radiative case ε = 1. The contribution
of the bulk kinetic energy Ekin = (� − 1)(M0 + m)c2 is shown in red,
the internal energy Eint = �effE

′
int in green, the energy lost to radiation

Erad = ∫
�eff dE′

rad in purple. The sum of the different contributions is
the cyan curve, demonstrating the conservation of energy. The grey area
indicates the non-relativistic regime.
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For adiabatic blast waves (top panel), the decrease in kinetic
energy (red lines) is balanced by an increase in internal energy
(green lines). After the shell has accreted a mass m ∼ M0, the blast
wave kinetic energy becomes dominated by the swept-up material,
rather than by the initial ejecta mass. This leads Ekin to increase as
Ekin ∼ �mc2 ∝ m1/2. In the non-relativistic regime (shaded area),
the internal energy Eint = �(� − 1)mc2 ∼ (� − 1)mc2 and the bulk
kinetic energy Ekin = (� − 1)(M0 + m)c2 ∼ (� − 1)mc2 asymptote
to the same value in the model by H99 (dashed lines). In our model,
the internal energy dominates over the kinetic energy for a uniform
medium (solid lines), whereas the opposite holds for a wind-like
density profile (long dashed lines). Finally, we remark that in the
model by P99 (dotted lines), that neglects the adiabatic expansion
losses, most of the energy at late times is still in the form of internal
energy, with a negligible contribution by the bulk kinetic energy.

For radiative blast waves (bottom panel), the kinetic energy (red
line) is lost to radiation (purple line). The blast wave is cold (i.e. the
contribution by the internal energy is negligible), since the random
energy generated at the shock is promptly radiated.

3.2 Complex density profiles and re-acceleration

The formalism described in this paper is valid for any spherically
symmetric profile of the external density. If the blast wave encoun-
ters a change in the CBM profile during the deceleration phase,
with density decreasing faster than ρ ∝ R−3 beyond some radius,
the conversion of the accumulated internal energy back into bulk
kinetic energy can lead to a re-acceleration of the blast wave. As
shown by Shapiro (1980), the Lorentz factor of re-accelerating blast
waves should scale as � ∝ R(s − 3)/2. Of course, the re-acceleration
happens only for adiabatic blast waves; if the shell is fully radia-
tive, all the internal energy is promptly radiated away, and it cannot
produce any re-acceleration.

We consider the case of an adiabatic blast wave propagating in a
medium where the external density is constant up to Rb = 15Rdec

and then it decreases as ρ ∝ R−7/2. Fig. 4 shows the evolution of
the shell momentum. Our model (red solid line) shows that the
evolution of the shell momentum departs from the result expected
for a homogeneous medium (red dashed line) at radii R � Rb, where
the shell starts to re-accelerate. Its momentum increases as � ∝ R1/4

(red dotted line), as expected for a density profile with s = 7/2. At
large radii, the shell Lorentz factor asymptotes to a value which is
lower than �0 (we find � ∼ 102 in the example in Fig. 4). This is
just a consequence of energy conservation. Only the internal energy
stored in the shell at the end of the deceleration phase (R = Rb)
can be used to re-accelerate the blast wave. If mb ≡ m(Rb) is the
mass accreted at Rb, the asymptotic value of the shell Lorentz factor
can be obtained directly from the conservation of the bulk kinetic
energy:

� − 1 = (�0 − 1)
M0

M0 + 9−2s
17−4s

mb
, (21)

where the factor (9 − 2s)/(17 − 4s) comes from the correction we
adopt to recover the normalization of BM76 for adiabatic deceler-
ating blast waves (see equation 19). The capability to capture the
blast wave re-acceleration is peculiar to our model and it requires a
proper description of the adiabatic expansion losses. In contrast, the
methods by P99 or H99 cannot describe the re-acceleration phase
(dashed and dotted black curves in Fig. 4, respectively).

We find that the evolution of � with radius in the re-accelerating
phase departs from the scaling predicted by Shapiro (1980) for large
values of s, and it approaches � ∝ R3/4 in the limit s � 1, which is

Figure 4. Evolution of the momentum �β for an adiabatic blast wave
propagating in a structured density profile, which passes from a uniform
medium to a ρ ∝ R−7/2 profile at Rb = 15 Rdec. The solution of our model
is shown with the red solid line, whereas the predictions by P99 and H99
are plotted with a dotted and a dashed line, respectively. It is apparent that
the models by P99 and H99 cannot capture the re-acceleration of the blast
wave occurring at R � 15 Rdec. We also show the solution corresponding to
uniform density everywhere (red dashed line), the scaling � ∝ R1/4 predicted
by Shapiro (1980) for the re-acceleration phase (red dotted line), and the
expected saturation at late times (red dot–dashed line).

the expected behaviour for a fireball expanding in the vacuum, as
we demonstrate in Appendix A.

In summary, our model can be used to follow the dynamics of
blast waves that propagate in a structured CBM, with density en-
hancements (or ‘clumps’) and troughs, as it is often considered
to explain flares and rebrightenings in the optical and X-ray light
curves of many GRB afterglows (Nakar & Granot 2007; Hascoët,
Daigne & Mochkovitch 2012; Mesler et al. 2012). However, we
remark that our results, being derived in the homogeneous shell
approximation, cannot describe properly the role played by reverse
shocks and rarefaction waves created when the shell interacts with a
sudden density jump or drop. For this, one needs specific analytical
treatments (e.g. Nakar & Granot 2007) or numerical simulations
(e.g. Mimica & Giannios 2011). Also, in this work, we only con-
sider a spherical shell, and we defer the discussion of jetted outflows
(and their associated lateral expansion) to a follow-up paper (Sironi
et al., in preparation).

4 R ESULTS

4.1 Bolometric light curves

To predict the afterglow light curves, we need to estimate how the
observed luminosity evolves as a function of the observer’s time.
We only focus on the bolometric light curve, so we do not need
to specify the emission mechanism. We proceed in two steps: first,
we estimate the luminosity as a function of the shock radius R, and
then, we introduce the relation between R and the observer’s time t.

The luminosity observed from a parcel of shocked fluid moving at
an angle θ with respect to the line of sight will be Lθ (θ ) = δ4L′, where
δ = [�(1 − βcos θ )]−1 is the Doppler factor of the shocked fluid,
and L′ is the comoving luminosity. Assuming L′ to be isotropic in
the comoving frame, the observed (isotropic equivalent) luminosity
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L is calculated by averaging δ4 over the angle θ (Ghirlanda et al.
2012):

L = L′

2

∫ π

0
δ4 sin θ dθ = �2 β2 + 3

3
L′. (22)

In our formalism, the comoving luminosity is L′ = dE′
rad/dt ′, where

dE′
rad = ε (� − 1) dm c2 is the energy lost to radiation in the fluid

comoving frame, and for spherical explosions dm = 4πR2ρdR. By
employing this expression for dE′

rad, we are implicitly saying that
the emission at any given time only comes from the mass element
dm just passed through the shock. In other words, we are assuming
that the electrons radiate right behind the shock, and then they
evolve adiabatically. It follows that the expression we find below
for the observed luminosity is valid only in the fast-cooling regime.

We then need to compute the distance dR travelled by the shock
during a comoving time interval dt′, which turns out to be

dR = βsh

�(1 − ββsh)
c dt ′, (23)

where βsh is the shock velocity in the progenitor frame.4 This expres-
sion can be simplified by employing the convenient parametriza-
tion βsh = 4�2β/(4�2 − 1), which is valid both in the ultrarela-
tivistic phase (giving �2

sh � 2�2) and in the non-relativistic limit
(βsh � 4/3 β). In this relation for βsh, the speed β should be in-
terpreted as the fluid velocity right behind the shock, before the
radiative cooling losses have appreciably changed the dynamics
of the post-shock flow (see Cohen et al. 1998). It follows that
(1 − ββsh)−1 = �2(β2 + 3)/3, and the comoving luminosity is

L′ = ε(� − 1)�
β2 + 3

3
βsh

dm

dR
c3, (24)

so that the observed bolometric luminosity as a function of the shock
radius will be

L = ε(� − 1)�3

(
β2 + 3

3

)2

βsh
dm

dR
c3. (25)

The linear dependence on the shock velocity is expected, since in
our model the luminosity is proportional to the rate at which the
shock picks up matter from the CBM. In the non-relativistic limit,
the observed luminosity reduces to L = ε(1/2 β2) βsh dm/dR c3, as
expected from a shock with velocity βsh that converts a fraction
ε of the post-shock internal energy per unit mass (1/2) β2c2 into
radiation.

Finally, to obtain the luminosity as a function of the observer’s
time, we need to relate the shock radius R to the observer’s time
t. For the sake of simplicity, we do not consider the formalism of
equitemporal surfaces discussed by Bianco & Ruffini (2005), but
following Waxman (1997), we use the relation

t(R) = tR + tθ =
∫ R

0

1 − βsh

βshc
dr + R

�2(1 + β)c
, (26)

which consists of the sum of a radial delay tR, i.e. the difference
between light travel time to radius R and shock expansion time to
the same radius, and an angular delay tθ for photons emitted from
the same radius R but at different angles with respect to the line of

4 One could naively expect that dR = βsh�c dt ′. The difference with respect
to the expression we employ comes from the fact that, in our approach, a
given fluid element radiates only right after passing through the shock, so
two subsequent emitting events are spatially coincident in the shock frame,
rather than in the fluid comoving frame (as implicit in dR = βsh�c dt ′).

sight. The angular term tθ dominates in the ultrarelativistic limit,
whereas the radial term tR prevails in the non-relativistic phase.

We point out that the expression for the observed luminosity
in equation (25) and the relation t(R) in equation (26) are valid
both in the ultrarelativistic and non-relativistic phases. From their
combination, one could estimate the asymptotic scaling of the ob-
served luminosity with time, as the blast wave decelerates. For
adiabatic blast waves, we find L ∝ ε(t)E0 t−1 both in the relativis-
tic and non-relativistic regimes (provided ε(t) � 1 at all times).
Note that in both regimes the bolometric luminosity does not de-
pend on the value of the CBM density. For radiative blast waves,
we find L ∝ [M8−2s

0 t−(10−3s)/A0]1/(7−2s) in the relativistic phase and
L ∝ [M5−s

0 t−(7−2s)/A0]1/(4−s) in the non-relativistic limit (assuming
ε(t) ∼ 1 at all times).

4.2 From the radiative to the adiabatic regime

One of the crucial parameters that could help to unveil the nature
of the progenitor of GRBs is the total energy output of the central
engine Etot. This quantity can be estimated from the sum of the
energy emitted during the prompt phase (Eγ ) and the energy of
the blast wave that powers the afterglow emission (E0). Moreover,
from these two quantities one can derive the efficiency of energy
dissipation in the prompt phase η = Eγ /Etot, which could help to
constrain the uncertain mechanism that produces the prompt γ -rays.

Estimates of E0 require observations of the afterglow over a broad
range in time and frequency (e.g. Panaitescu & Kumar 2002; Yost
et al. 2003). An alternative method is based on observations at
frequencies above the synchrotron cooling frequency νc, since they
give a robust proxy for the total blast wave energy E0 (Kumar 2000;
Freedman & Waxman 2001). For typical parameters, the X-ray data
at late times lie above νc, so the X-ray flux can be used to constrain
the blast wave energy E0 and the efficiency of the prompt emission
η = Eγ /(Eγ + E0). Several authors have applied this method to
different samples of both long and short GRBs (Lloyd-Ronning &
Zhang 2004; Berger 2007; Zhang et al. 2007; Racusin et al. 2011),
finding similar results: η reaches values of 10 per cent or higher,
challenging the simplest version of the internal shock model, where
only a few per cent of the jet energy can be dissipated (Kumar 1999;
Panaitescu, Spada & Mészáros 1999). Swift observations make the
situation even worse, raising some of the inferred GRB prompt
efficiencies up to >90 per cent (Zhang et al. 2007).

The problem can be alleviated if the afterglow energetics is un-
derestimated. The adiabatic model cannot be strictly correct, since
radiation takes away some energy from the blast wave. The X-ray
flux is a proxy for the energy content of the blast wave at late times,
but this is smaller than the initial energy E0, if the evolution is not
perfectly adiabatic. By neglecting the radiative losses, one may un-
derestimate E0 and then overestimate η. Radiative corrections based
on the equation proposed by Sari (1997) have been considered by
Lloyd-Ronning & Zhang (2004). Even in this case, the inferred ef-
ficiencies η are relatively high (between 40 and 100 per cent). The
validity of the equation derived by Sari (1997) has been questioned,
since it employs the relation R = 16�2ct between shock radius and
observer’s time, instead of the correct expression in equation (26)
(see Waxman 1997). So, the importance of radiative corrections in
the afterglow energetics at late times is still unclear. In Fig. 5, we
use our model to estimate, for constant values of ε ranging from
10−2 to 1, the energy content of the fireball E(t) as a function of the
observer’s time, normalized to t0 = Rdec/(�2

0c). As an example, for
a fireball with E0 = 1053 erg and �0 = 103 propagating in a medium
with uniform density n0 = 1 cm−3, the deceleration time is t0 ∼ 1 s.
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Figure 5. Blast wave energy content (normalized to its initial value) as a
function of the observer’s time for a blast wave with constant efficiency ε.
Different values of ε (from 0.01 to 1) are considered, both for s = 0 (solid
lines) and s = 2 (dashed lines). For comparison, the solution proposed by
Sari (1997) for ε = 0.1 and s = 0 is also shown (dotted black line).

The plot in Fig. 5 shows that, for a constant radiative efficiency ε =
0.1, the energy content of the blast wave decreases by a factor of
2 in the first 104 s. For higher values of ε, the fraction of fireball
energy lost to radiation will be even larger. For comparison, we also
plot the solution proposed by Sari (1997) for ε = 0.1, which tends
to overestimate the radiative losses.

The results presented in Fig. 5 rely on the assumption that the effi-
ciency ε remains constant in time. The results significantly change if
GRB afterglows experience an early fully radiative phase followed
by the standard adiabatic evolution at later times. To address this
case, in Fig. 6 we study the evolution of the blast wave momentum
�β when ε decreases from ε = 1 to ε = 10−2 (green and purple
solid lines), and we compare it to the cases with constant ε = 1 and
constant ε = 10−2 (dashed lines). We consider two possible choices
for the time evolution of ε, as shown in the inset of Fig. 6: (i) a step
function where ε = 1 up to a few Rdec and ε = 10−2 at larger radii
(purple line); or (ii) ε = 1 for R ≤ Rdec and ε ∝ R−0.7 for R > Rdec

(green line). In the latter case (green solid line), the blast wave mo-

Figure 6. Blast wave momentum �β as a function of R for a shell with
radiative efficiency ε that evolves in radius as shown in the inset. Two
different cases for ε(R) are considered (purple and green lines). The dashed
grey curves refer to the standard adiabatic and radiative cases with ε constant
and equal to 10−2 and 1, respectively. The dotted and dot–dashed purple
curves show the adiabatic solutions with ε = const = 10−2 having the same
late-time energy as the purple solid curve, and either the same �0 (purple
dotted line) or the same M0 (purple dot–dashed line).

mentum �β initially follows the radiative solution (dashed line with
ε = const = 1), and then smoothly approaches the scaling R−3/2

expected for adiabatic blast waves. At large radii, the difference in
normalization with respect to the solution having ε = const = 10−2

(dashed line) comes from the fact that the fireball with evolving
ε has lost some of its energy during the early radiative phase.

Consider now the case of a step function for the evolution of ε(R)
(purple solid line in Fig. 6). The blast wave momentum initially
follows the radiative solution, but at radii larger than 4Rdec we have
ε(R) = 10−2 and the energy content remains nearly constant E(R >

4Rdec) ∼ const = E0,f . At large radii, the blast wave evolves as a
fireball with ε = const = 10−2 and initial energy E0 = E0, f. This
is demonstrated in Fig. 6 for two different cases: (i) a fireball with
E0 = E0, f and the same ejecta mass M0 as the shell with evolving ε

(purple dot–dashed curve); and (ii) the case of a fireball with E0 =
E0, f and the same initial Lorentz factor �0 as the shell with evolving
ε (purple dotted curve).

Let us now compute the bolometric light curve in the case of a
time-evolving ε. We are interested in reproducing the observations
at GeV energies in the scenario of an early radiative phase of the
GRB external shock. At the same time, we want to be consistent
with the standard adiabatic evolution at later times. The light curve
in the initial radiative regime (lasting a few tens of seconds) will be
characterized by a steep temporal decay similar to that observed in
the GeV emission (Ghisellini et al. 2010), which will be followed
by the standard adiabatic scaling L ∝ t−1 seen in the X-ray and
optical bands. In this simple scenario, we do not attempt to explain
the plateaus and flares often present in the X-ray and/or optical data.
Although bolometric light curves cannot be directly compared to
the observations in a given frequency band, they are still useful to
estimate how much energy can be radiated and lost by the blast
wave before the adiabatic regime sets in. Consider the evolution
of ε shown in the inset of Fig. 7. At early times, the blast wave
is fully radiative [i.e. ε(t) = 1]. After a few seconds, the radiative
efficiency decreases, reaching at t ∼ 102 s the final value ε = 0.1,
which is the typical value inferred from late afterglow data. The
resulting light curve is shown with the solid curve in Fig. 7. We also
present, for comparison, the light curve of a fireball with the same
initial values of E0 and �0, but with ε = const = 0.1 (dashed grey

Figure 7. Solid line: light curve of a blast wave with time-dependent ε.
The evolution of ε(t) is shown in the inset. The grey dashed line shows the
light curve of a blast wave with the same values of E0 and �0, but ε = const
and equal to the value reached by the time-dependent ε(t) at late times (i.e.
ε = 0.1). Dot–dashed and dotted lines show the light curves of two blast
waves with constant ε = 0.1 that have an initial energy equal to the late-time
energy content of the blast wave with time-dependent ε. In particular, the
dotted curve refers to the case of identical initial Lorentz factor �0, while
the dot–dashed line refers to the case of identical initial mass M0.
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line). After 102 s, the two light curves have the same slope L ∝ t−1,
and the difference in their normalizations gives the ratio between
the initial energy E0 and the late-time energy content of the fireball
with time-varying ε. In the case shown in Fig. 7, this ratio is ∼6,
implying that ∼83 per cent of the initial energy E0 has been radiated
in the first 102 s. By using observations after 102 s, as it is usually
the case for optical and X-ray data, one would underestimate the
blast wave energy E0, and so overestimate the prompt efficiency η.
Broad-band fits of GeV, X-ray and optical data are needed in order
to understand if an early radiative phase is required to fit the GeV
light curves and, if this is the case, to estimate how much energy
is radiated before the afterglow brightens in the X-ray and optical
bands (Nava et al., in preparation).

4.3 Estimate of the initial bulk Lorentz factor �0

During the initial coasting phase, when the swept-up matter is neg-
ligible and the shell Lorentz factor is constant, the bolometric lu-
minosity scales with time as t2 − s (i.e. it is rising for s < 2). When
the deceleration starts (approximately at Rdec), the Lorentz factor
decreases, producing a feature in the light curve: a peak (if s < 2)
or a change in the power-law decay slope (if s > 2). The transition
between the two regimes occurs approximately at t0 = Rdec/(�2

0c)
(Rees & Meszaros 1992), where Rdec has been defined in equation
(20). Since t0 depends on the initial Lorentz factor (and it is nearly
insensitive to all other parameters), the measurement of this time
can be used to infer �0 (Rees & Meszaros 1992; Sari & Piran 1999).
Since the peak time tpeak of the afterglow light curve is a good proxy
for t0, we focus in this section on the relation between the peak time
and �0. We consider both adiabatic and semiradiative regimes.

Adiabatic case. Both before and after the peak time tpeak, the
luminosity scales in time as a power law. From equation (25), by
setting � = �0 we derive L(t < tpeak), while using �(R) given by the
BM76 solution we derive L(t > tpeak) (in both epochs we also use
the relativistic approximation β ∼ βsh ∼ 1). Following Ghirlanda
et al. (2012), we extrapolate the two power-law segments of L(t)
and find their intersection time, t∧. The initial bulk Lorentz factor
�0 is related to the intersection time t∧ by

�0(ε=0, s)=
[

(17 − 4s)(9 − 2s)32−s

210−2s(4 − s)π c5−s

] 1
8−2s

(
E0

A0t
3−s∧

) 1
8−2s

. (27)

Even if t∧ does not coincide with tpeak, for adiabatic models and s =
0 it is possible to find numerically that t∧ = 0.9 tpeak. Based on our
model, the relation between tpeak and �0 for an adiabatic blast wave
expanding in a homogeneous medium is then

�0(ε = 0, s = 0) = 190

[
Eγ,53

n0 t3
peak,2 η0.2

]1/8

, (28)

where n0 is defined by ρ = mp n0R
−s , Eγ,53 = Eγ /1053 erg, η0.2 =

η/0.2 and tpeak,2 = tpeak/100 s. We have replaced E0 by considering
the relation E0 � Eγ /η, where Eγ is the energy emitted in the
prompt phase and η is the radiative efficiency of internal shocks.
We now compare our formula with those proposed in the literature
for the adiabatic regime and s = 0. The equations most frequently
used to estimate �0 from tpeak are those derived by Molinari et al.
(2007, hereafter M07) (Rykoff et al. 2009; Liang et al. 2010; Evans
et al. 2011; Gruber et al. 2011) and by Sari & Piran (1999, hereafter
SP99). SP99 suggest the formula

�0 =
(

3E0

32πA0c5t3
peak

)1/8

= 160

[
Eγ,53

n0 t3
peak,2 η0.2

]1/8

, (29)

Figure 8. Light curve as a function of R/Rdec (where Rdec is defined as in
equation 20). The red solid curve is obtained by using our model, while the
blue dashed curve is based on the P99 model. The vertical dashed and dotted
lines mark the peak of the light curves for the two models. The dot–dashed
line marks, instead, the deceleration radius as defined by M07.

while for M07 this expression represents �dec (the Lorentz factor
at the deceleration radius Rdec), and to derive �0 they arbitrarily
assume �0 = 2�dec. Note that our formula differs from the existing
ones only by a numerical factor, since the dependences of �0 on
E0, A0 and tpeak are exactly the same. We estimate both numerically
and analytically the discrepancies between our formula and those
proposed by M07 and SP99. We find that our estimate of �0 is a
factor of 1.64 systematically lower than the estimate by M07 and a
factor of 1.20 larger than the estimate by SP99. These numbers are
quite insensitive to the choice of E0 and A0.

We conclude that the equation proposed by M07 leads to a sig-
nificant overestimate of �0 (by a factor of 1.64), while the equation
presented by SP99 gives a lower estimate of �0, in better agree-
ment with our result. The main source of disagreement between our
model and the approach by M07 is in their definition of the decel-
eration radius. In their model, the peak time tpeak of the light curve
is assumed to correspond to the deceleration time, when the fireball
reaches the deceleration radius. While SP99 define the decelera-
tion radius as the radius where the swept-up matter is m(Rdec) =
M0/�0= E0/(�2

0c
2) (i.e. the same definition adopted in this work),

M07 use the relation m(Rdec,M07) = E0/(�2
decc

2) (see also Lü et al.
2012). Fig. 8 shows that the luminosity peaks close to Rdec, which
is then a good proxy for the onset of the deceleration epoch. The
deceleration radius Rdec, M07 defined by M07, instead, overestimates
the radius at which the luminosity reaches its maximum by a factor
of ∼2. This difference becomes even larger when considering the
light curve derived with the P99 model (dashed blue line).

Semiradiative case. The same approach can be applied to generic
values of ε, but in this case it is not possible to find an analytic
formula that describes the Lorentz factor after the peak time (and
then an analytic equation for L(t > tpeak)). We then define

�0(ε, s) = K(ε, s)

(
E0

n0t
3−s∧

) 1
8−2s

= K ′(ε, s)

(
E0

n0t
3−s
peak

) 1
8−2s

(30)

and we list in Table 1 the values of K and K′ numerically estimated
for different choices of ε and s.

5 C O N C L U S I O N S

We consider the interaction of a spherical relativistic blast wave
with the surrounding medium and we describe its dynamical
evolution by taking into account radiative and adiabatic losses.
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Table 1. Normalization factors for the estimate of �0 as a function of t∧ (K)
and tpeak (K′), calculated for different values of ε and s (see equation 30).

Density ε < 10−2 ε = 0.1 ε = 0.5 ε = 1
profile

s = 0 K 1.95 × 10−4 1.94 × 10−4 1.86 × 10−4 1.74 × 10−4

K′ 2.08 × 10−4 2.03 × 10−4 1.88 × 10−4 1.75 × 10−4

s = 2 K 6.70 × 10−3 6.60 × 10−3 5.90 × 10−3 4.95 × 10−3

We derive the equation that governs the evolution of the blast wave
Lorentz factor as a function of the shock radius (equation 7). This
equation is general and independent of the composition of the ex-
ternal medium and of the nature and efficiency of the emission
processes. To present a simple solution of this equation, however,
we restrict ourselves to the case where radiative losses are important
only for the freshly shocked matter (which is strictly true only in the
fast-cooling regime), or to the case where radiative losses are not
important at all (quasi-adiabatic regime). The equations we derive
are valid for any generic (spherically symmetric) density profile.
We also give the correction factor that should be employed, in our
homogeneous thin shell approximation, to match the Blandford &
McKee (1976) solution in the relativistic deceleration stage.

(i) Radiative losses. Our model is valid for any value of the
overall radiative efficiency ε = εeεrad, where εe, as usual, is
the fraction of shock-dissipated energy gained by the electrons,
while εrad is the fraction of this energy which is lost to radiation.
The value of ε can evolve with time, thus varying the impact of the
radiative energy losses on the shell dynamics. The decrease in
the blast wave energy content due to the radiative losses is taken
into account self-consistently in our approach.

We study models where the value of ε is kept constant in time
and we derive, for each value of ε, the evolution with time of the
energy content of the blast wave (Fig. 5). For ε � 0.1, the radiative
losses can decrease the energy content of the fireball within t ∼ 104 s
by more than a factor of 2. In the extreme limit ε � 1, the energy
content decreases by an order of magnitude in the first ∼102 s. As
shown in Fig. 2, radiative losses change the slope α of the scaling
in radius of the blast wave Lorentz factor (such that �(R) ∝ R−α),
from the classical α = (3 − s)/2 of the adiabatic BM76 solution to
the steeper α = (3 − s) of the fully radiative solution.

We have also considered the realistic case where ε varies in time
from ε � 1 (fully radiative) down to ε � 1 (quasi-adiabatic). The
corresponding blast wave Lorentz factor is shown in Fig. 6, and the
expected bolometric light curve is presented in Fig. 7. In this case,
the luminosity after the peak initially decreases as a steep function
of time, and then it follows a flatter decay.

(ii) Adiabatic losses. Both electrons and protons suffer from adia-
batic losses due to the fireball expansion. Adiabatic losses describe
the re-conversion of the internal random energy generated at the
shock into bulk kinetic energy. A proper treatment of the adia-
batic losses is important in two ways. First, when the velocities
are non-relativistic we can recover the correct scaling β ∝ R−3/2

between the fluid velocity and the shock radius predicted by the
Sedov–Taylor self-similar solution. Models that do not account for
the adiabatic losses (P99) predict instead a steeper scaling, as β ∝
R−3 (see the dotted line in the grey area of Fig. 1). Secondly, a
proper description of the adiabatic losses allows us to capture the
blast wave re-acceleration in the case of an ambient medium where
the density decreases faster than R−3, which cannot be properly
described neither by P99 nor by H99 (Fig. 4).

The model we present is particularly suitable to study the initial
expansion of GRB external shocks, when a peak (or a change of
slope) in the light curve is expected to arise. We propose an equation
to derive the initial Lorentz factor �0 from the peak time of the light
curve. Our formula is valid for any value of ε and s (see equation 30
and the normalization factors listed in Table 1). In the adiabatic (ε <

10−2) and homogeneous (s = 0) case, we compare our formula in
equation (28) with the equations proposed in the existing literature
(e.g. M07 and SP99, which differ from each other by a factor of
2). We predict a value for �0 which is intermediate between M07
and SP99, yet showing a better agreement with the formula of
SP99. The equation by M07, often adopted in the literature, tends
to overestimate �0 by a factor of ∼1.6. As an example, for the two
GRBs studied in M07, we find �0 ∼ 250 instead of �0 ∼ 400.
The formula derived in this paper is consistent with that used in
Ghirlanda et al. (2012) for the estimate of �0 for GRBs with a peak
in their optical light curve.

However, some caveats should be pointed out. Our estimate of
�0, similarly to the formulae by SP99 and M07, is based on the
bolometric light curve, while the observations are performed in a
given frequency band. Moreover, our estimate for the photon arrival
time (see equation 26, which is used to compute the luminosity)
relies on the simplifying assumption of emission from a spheri-
cal shell. Effects related to the shape of the radiation spectrum,
the geometry of the emitting material and the viewing angle (in the
case of a collimated outflow) can affect the relation between the peak
time of the light curve observed at a given frequency and �0. How-
ever, we point out that the approach by M07 (commonly adopted
in the literature) tends to overestimate �0, independently from the
caveats listed above, since the difference mostly arises from their
overestimate of the deceleration radius, as shown in Fig. 8.

A complete modelling of the afterglow flux in a given frequency
band cannot be presented here, since it requires a description of the
radiative processes responsible for the observed emission, which
we have not considered in this work. The dynamical model pre-
sented here coupled to a radiative model accounting for synchrotron
and inverse Compton losses will allow us to compute spectra and
light curves at different frequencies and to investigate several issues
related to the afterglow physics. Moreover, the introduction of a
radiative model will allow us to overcome some of the simplifica-
tions adopted in this work, such as the requirement of fast cooling,
implicitly assumed in deriving the formula for the luminosity in
Section 4.1. In particular, we suggest that our dynamical model will
be particularly suitable to study the following.

(i) The relation between GeV emission and external shocks. In a
forthcoming paper, we plan to investigate whether the high-energy
GeV emission in GRBs can originate from afterglow radiation in
external shocks. In particular, thanks to the formalism developed in
this work, we will be able to account for the presence of electron–
positron pairs, the role of radiative losses and the temporal evolution
of the radiative efficiency from a highly radiative phase to the stan-
dard adiabatic regime.

(ii) Complex circumburst density profiles and their effect on the
light curve, in order to explain the rebrightenings, plateaus and
bumps sometimes detected in the optical and X-ray data.
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APPENDI X A : R E-ACCELERATI ON
I N TO VAC U U M

We show that the Lorentz factor of an adiabatic blast wave scales
as � ∝ R3/4 as the shock reaccelerates into the vacuum. We assume
that the circumburst mass density has some profile ρ(R) up to a
radius Rvac (where the blast wave is still ultrarelativistic), and after
that the density drops to zero. For R > Rvac, equation (7) reduces
to

d�

dR
= − �eff

dE′
ad

dR

(M0 + mvac) c2 + E′
int

d�eff
d�

, (A1)

where mvac = 4π
∫ Rvac

0 ρ(r)r2dr is the swept-up mass up to radius
Rvac. For an ultrarelativistic adiabatic blast wave in the deceleration
phase, the comoving internal energy satisfies E′

int � (M0 + m)c2,
and the same will hold at the early stages of the subsequent re-
acceleration phase. In addition, we assume that for R � Rvac, most
of the post-shock plasma is still highly relativistic (i.e. γ ′

ad � p′
ad �

1), despite the adiabatic losses. From equations (12) and (13), we
obtain

dE′
ad

dR
= −E′

int(R)

(
1

R
− 1

3

d log �

dR

)
, (A2)

which relies on the assumption that the comoving shell thickness
is ∼R/� also in the re-acceleration phase, so that the comoving
volume is V ′ ∝ R3/� (see Shapiro 1980). In the limit E′

int � (M0 +
mvac) c2, equation (A1) then reduces to

d�

dR
= �

(
1

R
− 1

3

d log �

dR

)
, (A3)

whose solution is � ∝ R3/4.
One can wonder why we obtain � ∝ R3/4, while the initial ac-

celeration of the fireball follows � ∝ R (e.g. Mészáros 2006). The
difference is due to different choices for the comoving volume V ′.
During the initial acceleration phase V ′ ∝ R3 (i.e. a filled sphere),
while in the case we are considering here (i.e. forward shocks giving
rise to the afterglow) we assume V ′ ∝ R3/�, which corresponds to
a shell of thickness ∼R/�2 in the progenitor frame. If we were to
assume V ′ ∝ R3, we would recover � ∝ R.

APPENDI X B: R EVERSE SHOCK

The description of the reverse shock (RS) can be easily included in
our model. When the RS is considered, four regions can be identified
(see Fig. B1): the unshocked CBM (region 1), the shocked CBM
(region 2), the shocked ejecta (region 3) and the unshocked ejecta
(region 4). We assume that the unshocked CBM is at rest in the
progenitor frame and that regions 3 and 2 (the blast wave) move
with the same bulk Lorentz factor, which is a reasonable assumption
(Beloborodov & Uhm 2006). Regions 2 and 3, however, can be
characterized by different adiabatic indices, which we call γ̂2 and γ̂3.
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Figure B1. Sketch of the model considered when the reverse shock is in-
cluded in the dynamics. In this case, four regions can be identified, separated
by the reverse shock (RS), the contact discontinuity (CD) and the forward
shock (FS). Each row shows the notation adopted in different frames, high-
lighted by the shaded regions: the progenitor frame (which coincides with
region 1), the RS frame and the blast wave frame (regions 2 and 3).

This implies that their effective Lorentz factors (defined according
to equation 4) may also be different. Following the notation in
Fig. B1, the total energy in the progenitor frame now becomes

Etot = �0M0,4 c2 + �M0,3 c2 + �m c2 + �eff,3E
′
int,3 + �eff,2E

′
int,2.

(B1)

As before, this total energy changes due to the rest mass energy
dm c2 accreted from the CBM and due to the energy lost to radiation
by the shocked CBM. In addition, in the scenario considered in this
section, energy losses from the fraction of the ejecta shocked by the
RS should also be considered:

dEtot = dm c2 + �eff,2dE′
rad,2 + �eff,3dE′

rad,3. (B2)

In analogy with the description, we adopted for the shocked CBM,
we use the following equations for the shocked ejecta:

dE′
int,3 = dE′

sh,3 + dE′
ad,3 + dE′

rad,3 (B3)

dE′
sh,3 = (γ34 − 1) dM0,3 c2. (B4)

Here, γ 34 is the Lorentz factor of the unshocked ejecta relative to
the blast wave (see Fig. B1), which can be expressed in terms of �

and �0 (which is the Lorentz factor of the unshocked ejecta in the
progenitor frame):

γ34 = �0�(1 − β0β), (B5)

Using the equations from B1 to B4 and dM0,4 = −dM0,3, we can
generalize equation (7), the formal equation, giving �(R):

d�

dR
= − (�eff,2 + 1)(� − 1) dmc2

dR
+ �eff,2dE′

ad,2

(M0,3 + m)c2 + E′
int,2

d�eff,2
d�

+ E′
int,3

d�eff,3
d�

− (� − �0 − �eff,3 + �eff,3γ34) dM0,3c2

dR
+ �eff,3dE′

ad,3

(M0,3 + m)c2 + E′
int,2

d�eff,2
d�

+ E′
int,3

d�eff,3
d�

. (B6)

As before, we need to specify dE′
ad and E′

int, but now we have
adiabatic losses and internal energy both in region 2 and in region
3. In addition, we need to derive dM0,3.

Derivation of dM0,3. To derive the mass dM0,3 that crosses the RS
in a given time interval (corresponding to the time during which the

forward shock (FS) travels a distance dR), we consider the frame at
rest with the shocked ejecta (region 3):

dM0,3 = 4πR2
RS(β34 + β3) ρ ′

4 c dt ′, (B7)

where ρ ′
4 is the mass density of the unshocked ejecta measured in

the frame of the shocked ejecta. If ρ ′′
4 is the density measured in

the frame 4 (i.e. the proper density) and ρ4 is the density in the
progenitor frame (see Fig. B1), then

ρ ′
4 = γ34 ρ ′′

4 = γ34
ρ4

�0
= ��0(1 − ββ0)

ρ4

�0
= �(1 − ββ0)ρ4. (B8)

If the unshocked ejecta are cold (i.e. in their rest frame the energy
density is e4 = ρ ′′

4 c2 and the pressure is zero), the jump conditions
across the RS give

β3 = β34

3
= β0 − β

3(1 − ββ0)
. (B9)

The relation between dt ′ and dR can be derived from equa-
tion (23). Similarly to equation (B9) we can write β2 = β12

3 . In our
notation β12 = β and β2 = βFS−β

1−βFSβ
. After some simple algebra, we

obtain dt ′ = 3dR/(4β�c).
While the FS travels a distance dR, the mass of the unshocked

ejecta which crosses the RS is

dM0,3

dR
= 4πR2

RSρ4
β0 − β

β
. (B10)

If the initial width of the shell in the progenitor frame is �0 = ctd

(where td is the prompt duration in the progenitor frame) and the
radius of the shell is Rshell, then the density ρ4 of the unshocked
ejecta, measured in the observer frame is

ρ4 = M0

4πR2
shell�0

. (B11)

Assuming R ∼ RRS ∼ Rshell, we finally find

dM0,3

dR
= M0

ctd

β0 − β

β
. (B12)

Derivation of dE′
ad,3 and E′

int,3. The equations given in Section 3
to estimate adiabatic losses, radiative losses and internal energy are
still valid and describe the evolution of the FS and region 2. To derive
the internal energy content of region 3 (and how it changes due to
radiative and adiabatic losses and to the mass flux of the unshocked
ejecta entering the RS), we follow a very similar approach. For the
ejecta, we assume equal number densities of electrons and protons,
and thus μe = me/mp, μp = 1 and ρ4,p = ρ4,emp/me � ρ4,e. In
general, the microphysical parameters εe, εp and the radiative effi-
ciency εrad of the RS can differ from those characterizing the FS.
We introduce the subscript ‘3’ to refer to parameters of region 3.
Following the same approach adopted for the shocked CBM, we
derive the following equation for the Lorentz factor of the electrons
shocked by the RS:

γacc,e,3 − 1 = εe,3(γ34 − 1)
mp

me
. (B13)

After being heated, the electrons radiate a fraction εrad, 3 of their
energy. Their random Lorentz factor decreases to γ rad, e, 3 − 1 =
(1 − εrad, 3)(γ acc, e, 3 − 1). The post-shock random Lorentz factor of
protons is instead given by

γacc,p,3 − 1 = εp,3(γ34 − 1). (B14)

Due to adiabatic losses, these post-shock Lorentz factors of protons
and electrons decrease down to γ ad, p, 3 and γ ad, e, 3. The comoving

volume of the shocked ejecta is V ′ ∼ R3

�

β34
β

, which reduces, for
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relativistic blast waves (i.e. β ∼ 1), to V ′ ∼ R3β34
�

. The largest
contribution to the internal energy and adiabatic losses from the
shocked ejecta comes from the relativistic phase of the RS, i.e. when
γ 34 � 1. In this case, the comoving volume is well approximated
by V ′ ∼ R3

�
, and the equations (10) and (11) derived in Section 3

can still be applied to the shocked ejecta and used to estimate its
internal energy and the adiabatic losses:

E′
int,3(R) = 4πc2

∫ R

0
drr2 β0 − β

β

× {
ρ4,p[γad,p,3(R, r) − 1] + ρ4,e[γad,e,3(R, r) − 1]

}
dE′

ad,3(R)

dR
= −4πc2

(
1

R
− 1

3

d log �

dR

) ∫ R

0
drr2 β0 − β

β

×
{

ρ4,p

p2
ad,p,3(R, r)

γad,p,3(R, r)
+ ρ4,e

p2
ad,e,3(R, r)

γad,e,3(R, r)

}
. (B15)

APP ENDIX C : PRE-ACCELERATION

Beloborodov (2002) studied the interaction between the prompt
γ -ray radiation and the ambient medium and showed that pair load-
ing and pre-acceleration of the CBM may produce noticeable effects
both on the dynamics of the blast wave and on the observed after-
glow emission. According to his model, when the pre-acceleration
of the medium is not negligible, the ejecta initially move into a cav-
ity until they reach a radius Rgap. At R = Rgap, the blast wave forms
and starts to collect matter enriched by pairs and pre-accelerated. In
our model, developed in Section 3, we consider the possibility that

the CBM is enriched by pairs, but we assume that it is at rest in the
progenitor frame. Instead, if the medium has a radial motion char-
acterized by a bulk Lorentz factor �CBM (which can depend on the
radius), some of the equations previously proposed should be mod-
ified. First, energy conservation (equation 5) now reads (assuming
a cold CBM)

d
[
�(M0 + m)c2 + �effE

′
int

] = �CBM dm c2 + �eff dE′
rad, (C1)

where m(R < Rgap) = 0. Secondly, the energy dissipated at the shock
depends on the relative Lorentz factor between the blast wave and
the mass dm, which is no longer � but �rel = ��CBM(1 − ββCBM):

dE′
sh = (�rel − 1) dm c2. (C2)

The equations for the internal energy and for radiative and adiabatic
losses can be derived as before, noting that the relative Lorentz
factor �rel enters the definition of the post-shock Lorentz factor of
electrons and protons and the definition of the comoving volume,
which is given by V ′ ∼ R3�CBM

�rel
.

A physical model that aims to estimate Rgap and the properties
of the accelerated medium (its pair loading, its bulk Lorentz factor
and their dependence on the radius) is described in Beloborodov
(2002), where the observational impacts on the afterglow emission
are also discussed. In general, the early emission is expected to be
softer, both due to the pair loading and to the pre-acceleration of the
CBM. Light curves and spectra of the pair radiation are discussed
in Beloborodov (2005).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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