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1 Introduction

The traditional search for Dark Matter (DM) at the LHC is based on specific theoretical

models that are motivated by solving the naturalness problem. Supersymmetry is the pro-

totypical example. The lack of evidence for new physics in the first phase of the LHC,

together with the negative results from direct and indirect searches of galactic halo DM,

have cast some doubts on the paradigm linking DM to natural electroweak (EW) theo-

ries. This has motivated new and more model-independent strategies for DM searches at

colliders, and led to a vast literature on the subject [1–88].

A common approach used to describe the unknown interactions between DM and SM

particles is resorting to a set of effective operators [3–5, 7–10, 13, 14, 16, 20, 23, 28, 30,

35, 36, 39, 40, 42–46, 48, 50, 62, 88]. An example is a four-fermion interaction between a

spin-1/2 DM particle (χ) and quarks of the kind (q̄γµq)(χγµχ)/Λ2, where Λ is an effective

energy scale. At first sight, this approach appears to be fully model-independent, although

in practice it has limited validity [24, 26, 49, 51, 57, 64]. At the LHC, the signature is

missing energy (from DM) accompanied by a single jet, photon, or Z (required for tagging

the event). The signal rate, after the cuts necessary to reduce the SM background, is

rather small. This implies that the scales Λ of the effective operators probed by the

LHC are often smaller than the energy of the partons involved in the collision (
√
ŝ), thus

invalidating the use of an effective field theory. As a result, the interpretation of LHC

data in terms of effective operators can lead to erroneous conclusions. It can deceptively
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overestimate the DM signal, because of spurious enhancements proportional to powers of√
ŝ/Λ. Or it can underestimate the actual reach of the LHC search, when the particle

that mediates the effective operator is within the kinematical range and gives a much

better collider signal than the “model-independent” DM particle production. Also, the

effective-operator approach leads to LHC bounds on the cross sections relevant for direct

DM detection that seem very competitive, but are often only illusory. While the effective-

operator approximation can be trusted for the low momentum transfers involved in direct

detection, an operator with large dimensionality can misleadingly reward LHC for its high

energy.

An alternative approach is to classify possible mediators of the interactions between

DM and SM particles [6, 19, 22, 24, 29, 32, 34, 38, 41, 52–56, 87]. One class of mediators is

given by particles exchanged in the s-channel of the DM annihilation process (or, inversely,

in the DM production process at colliders). These mediators must be electrically neutral

and can have spin 0 or 1. The most popular example is a new vector boson Z ′. A second

class of mediators consists of particles exchanged in the t-channel. An interesting possibility

for the LHC is that the dominant DM annihilation channel is into a quark-antiquark pair

and that the t-channel mediator is a colour triplet, which is a scalar or vector (if DM has

spin 1/2) or a spinor (if DM has spin 0). Direct DM searches give strong constraints on the

mediator interactions, but there are still certain windows of mediator mass and couplings

that lead to a correct thermal relic abundance and that can be explored by future LHC

runs.

The importance of the hunt for DM and our ignorance of its nature entail that the LHC

must pursue a diversified, complete, and model-independent program searching for DM.

With this paper, we want to contribute to the subject by proposing alternative approaches

for strategies that experiments at the LHC can follow in the investigation of DM. In

section 2, we consider a situation in which the DM thermal relic abundance is determined

by co-annihilation with a coloured particle. In section 3, we study the case in which the

DM abundance is determined by the coupling with the Z or Higgs boson. In section 4

we analyse the case in which the DM abundance is determined by thermal freeze-out of

decays, and apply our results to invisible Z and Higgs decays. Finally, section 5 contains

a summary of our results.

2 DM co-annihilating with a coloured partner

We consider the possibility that the DM particle, stabilized by a discrete symmetry, is

accompanied by a nearby coloured state χ′, either in the triplet or octet representation of

SU(3)c, which can be either a scalar or a fermion. These four situations are summarised

in the following table:

χ′ Colour triplet Colour octet

Scalar S3 S8

Fermion F3 F8

– 2 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
1

Since we neglect any interaction between the SM and dark sectors, other than strong

interactions, there are only two parameters relevant for our analysis: the DM mass MDM

and the mass splitting ∆M of χ′ with respect to the DM.

2.1 DM relic density

The relic abundance follows from the standard freeze-out mechanism described by the

Boltzmann equation for the total number density of the dark system normalised to the

entropy density Y = n/s, as a function of z = MDM/T

dY

dz
= −f(z)(Y 2 − Y 2

eq) , (2.1)

where Yeq is the thermal equilibrium value of Y and

f(z) ≡
(
1 +

1

3

d ln g∗S
d lnT

)
s〈σv〉
zH

≈ 1

z2

√
πg∗
45

MPlMDM〈σv〉 , (2.2)

g∗ (g∗S) being the number of degrees of freedom that describes the total energy (entropy)

of the thermal system. As well known, by solving the Boltzmann equations one finds that

the observed DM abundance is reproduced for

〈σv〉cosmo = (2.3± 0.1)× 10−26 cm3 s−1 (2.3)

at T ≈ MDM/25. In the following we give explicit results for 〈σv〉 keeping only the dominant

s-wave annihilations, while subleading p-wave annihilations are included in our numerical

final result.

The dark system is composed by the DM particle χ, which negligibly annihilates, and

by the coloured partner χ′ which efficiently self-annihilates via QCD interactions. The two

dark particles are kept in thermal equilibrium among themselves by dark interactions. The

same interactions will be responsible for the decay of χ′ into χ. We assume for simplicity

that one χ particle is produced in each χ′ decay. One can describe this system by a single

Boltzmann equation of the form (2.1) for the quantity Y = gχYχ + gχ′Yχ′ , and effective

cross section

〈σv〉 = σ(χ′χ′ → SM particles)v ×R2, (2.4)

where

R =
gχ′Y eq

χ′

gχY
eq
χ + gχ′Y eq

χ′
=

[
1 +

gχ

gχ′

exp(∆M/T )

(1 + ∆M/MDM)3/2

]−1

. (2.5)

The annihilation channels for the self-conjugate colour octet and for the colour triplet-

antitriplet pair are two gluons (gg) and SM quarks (qq̄). The number of degrees of freedom

is gχ′ = {6, 8, 12, 16} for {S3, S8, F3, F8} respectively. In terms of the quadratic Casimir

invariant C(R) and the Dynkin index T (R) of a generic irreducible representation R with

generators T a,

δijC(R) = (T aT a)ij , δabT (R) = Tr(T aT b) , (2.6)
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we can express the quartic invariants as

K1(R) ≡ Tr(T aT aT bT b) = d(R)C2(R) (2.7)

K2(R) ≡ Tr(T aT bT aT b) = K1(R)− d(A)C(A)T (R)

2
. (2.8)

Here d(R) is the dimensionality of the irreducible representation R, and A refers to the

adjoint representation. For the fundamental and adjoint of SU(N), one has

R d T C K1 K2

fundamental N 1
2

N2−1
2N

(N2−1)2

4N −N2−1
4N

adjoint N2 − 1 N N N2(N2 − 1) N2(N2−1)
2

. (2.9)

Thus, in the case of interest, we find

χ′ d T C K1 K2

S3, F3 3 1
2

4
3

16
3 −2

3

S8, F8 8 3 3 72 36

. (2.10)

In the non-relativistic limit, the annihilation cross sections into gluons is given by1

σ(χ′χ′ → gg)v =
(K1 +K2)

16πgχ′d

g43
M2

χ′
, (2.11)

where g3 is the QCD coupling and Mχ′ is the mass of χ′. The annihilation cross section

into the six SM quarks (taken to be massless) is

σ(χ′χ′ → qq̄)v =
3T (R)

πgχ′d

g43
M2

χ′
×
{
1 if χ′ is a fermion

0 if χ′ is a boson
. (2.12)

We neglected the electroweak contributions to the annihilation cross sections with respect

to the dominant QCD effects. If χ′ is a scalar (S3, S8), its annihilations into fermions are

p-wave suppressed.

Summarising, in the four cases of interest, the total χ′ annihilation cross sections are

σ(χ′χ′ → gg, qq̄)v =
g43
M2

χ′
×






7

432π
(scalar triplet)

27

256π
(scalar octet)

7

864π
+

1

24π
(fermion triplet)

27

512π
+

9

128π
(fermion octet)

, (2.13)

where we have kept separated the contributions from annihilations into gluons and quarks.

The nature of the DM particle enters only in the factor R of eq. (2.5). If ∆M = 0,

1These formulæ agree with those of [89] taking into account that the parameter 〈σAv〉 there defined

equals 2 times the conventional 〈σv〉cosmo here employed.
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Figure 1. Thermal abundance of DM that co-annihilates with various coloured multiplets (scalar
or fermion, triplet or octet) in the limit of mass degeneracy (∆M = 0). Red dashed line: Sommerfeld
corrections neglected. Green dashed line: Sommerfeld corrections included analytically. Green solid
line: Sommerfeld corrections and gluon thermal mass included numerically. The horizontal band is
the 3σ experimental range for the DM thermal abundance.

then R = (1 + gχ/gχ′)−1 is about equal to one, as long as the DM number of degrees of

freedom is smaller than the one of the coloured χ′ dark state. For definiteness, we assume

that the DM particle is a Majorana fermion, such as the supersymmetric neutralino, or a

complex scalar: gχ = 2 in both cases. From the analytic expression in eq. (2.13) and the

approximate solution in eq. (2.3), one can easily derive a good first estimate of the relic

abundance.

We have used a numerical solution to the Boltzmann equations, including also p-wave

annihilations, to obtain the DM thermal relic abundance shown by the red curves in figure 1

(DM abundance as a function of MDM for ∆M = 0) and the red bands in the (MDM,∆M)

plane in figure 2 (values of MDM and of ∆M that correspond to a thermal DM density

equal to the observed cosmological density).

However, the tree level annihilation cross sections discussed so far get substantial

Sommerfeld corrections due to soft-gluon exchanges between the non-relativistic initial

states, as we are now going to describe. After including these corrections, the red curves

and bands will shift to the green curves and bands.
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2.2 QCD Sommerfeld corrections to DM annihilations

The annihilation of two coloured particles, in the non-relativistic limit, is strongly affected

by non-perturbative Sommerfeld QCD corrections [90] (see also [91–96]), which describe

initial state attraction or repulsion due the strong force. Such corrections have been con-

sidered in previous works for gluino annihilation [91] and for stop co-annihilation [97, 98];

however we will find a different result and we will not restrict our attention to the super-

symmetric context.

We recall that for a single abelian massless vector with potential V = α/r, the Som-

merfeld correction σSommerfeld = Sσperturbative is given by [90]

S(x) =
−πx

1− eπx
x =

α

β
, (2.14)

where β is the velocity of the incoming particle. Here α < 0 describes an attractive

potential that leads to an enhancement S > 1, and α > 0 describes a repulsive potential

that leads to S < 1. At higher orders, the QCD potential is roughly given by the tree level

potential with the strong coupling renormalised at the RGE scale µ̄ ≈ 1/r [99, 100]

V (r) = C
α3(µ̄)

r

[
1 +

α3

4π

(
11

7
+ 14(γE + ln µ̄r)

)]
≈ C

α3(µ̄ ≈ 1/r)

r
. (2.15)

The constant C is related to the quadratic Casimir of the two particles involved in the

interaction. Using a matrix notation, the QCD potential between two particles (scalar or

fermions) in the representation R,R′ of colour SU(3)c with generators T a
R and T a

R′ is

V =
α3

r

∑

a

T a
R ⊗ T a

R′ . (2.16)

Following ref. [94], the non-abelian Sommerfeld effect can be reduced to a combination of

abelian-like Sommerfeld corrections, using group theory decompositions. The non-abelian

matrix potential is diagonalised by decomposing the product representation into a sum of

irreducible representations Q as R⊗R′ =
∑

QQ:

V =
α3

2r




∑

Q

CQ1Q − CR1− CR′1



 , (2.17)

where Ci is the quadratic Casimir of the representation i. The relevant Casimir for our

purposes are C1 = 0, C3 = 4/3, C8 = 3, C10 = C10 = 6, C27 = 8.

Colour triplet

Annihilations of two colour triplets are decomposed as 3⊗3 = 1⊕8 and the QCD potential

becomes

V =
α3

r
×
{
−4

3 (1)

+1
6 (8)

, (2.18)

which is attractive for the singlet two-body state and repulsive for the octet. Next, we

need to decompose the total annihilation cross-sections computed in the previous sections

into partial cross sections relative to the two-body states.

– 6 –
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The perturbative triplet + triplet → gg cross section decomposes into the various

sub-channels as: 2/7 in the 1 state, 5/7 in the 8 state (see appendix A). Thereby, the

Sommerfeld-corrected cross section is

σ(triplet + triplet → gg)Sommerfeld

σ(triplet + triplet → gg)perturbative
=

2

7
S

(
−4α3

3β

)
+

5

7
S

(
α3

6β

)
. (2.19)

Furthermore, if the state χ′ is a fermion, it also has s-wave annihilations into two SM

quarks, such that
σ(F3 + F3 → qq̄)Sommerfeld

σ(F3 + F3 → qq̄)perturbative
= S

(
α3

6β

)
. (2.20)

Indeed, an ultra-relativistic qq̄ pair necessarily has spin S = 1, so that all the cross section

corresponds to the 8 initial state.

Colour octet

The product of two colour octets decomposes as 8⊗8 = 1S⊕8A⊕8S⊕10A⊕10A⊕27S , where

subscripts indicate Antisymmetric and Symmetric combinations. The QCD potential can

be written as

V =
α3

r
×






−3 (1S)

−3
2 (8S , 8A)

0 (10A, 10A)

+1 (27S)

, (2.21)

which is attractive for the singlet and octet two-particle states. The possible two-body

states are classified according to

(C, S, L) = (colour, spin, angular momentum). (2.22)

We are interested only in the dominant s-wave annihilations with L = 0. For initial scalar

octets the anti-symmetric states cannot be in s-wave (L = 0), so

(8, 0)⊗(8, 0) = (1S , 0)⊕(8S , 0)⊕(27S , 0)⊕(states with angular momentum L += 0). (2.23)

For initial fermion octets (such as the supersymmetric gluinos) one has
(
8,

1

2

)
⊗

(
8,

1

2

)
= (1S , 0)⊕ (8S , 0)⊕ (8A, 1)⊕ (10A, 1)⊕ (10A, 1)⊕ (27S , 0) . (2.24)

With the group-theoretical algebra outlined in appendix A, we find that the perturba-

tive octet + octet → gg cross section decomposes into the various sub-channels as: 1/6 in

the 1S state, 1/3 in the 8S state and 1/2 in the 27S state, while the antisymmetric 8A, 10A
and 10A states do not contribute. Since C is conserved by QCD interactions, an s-wave

(L = 0) initial state of two fermions (C = (−1)L+S) can annihilate into NV = 2 vectors

(C = (−1)NV = +1) only if S = 0. Therefore, a scalar and fermion colour octet have the

same Sommerfeld-corrected cross section into gluons:

σ(octet + octet → gg)Sommerfeld

σ(octet + octet → gg)perturbative
=

1

6
S

(
−3α3

β

)
+

1

3
S

(
−3α3

2β

)
+

1

2
S

(
α3

β

)
. (2.25)
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Figure 2. The coloured bands show the region in the MDM–∆M plane where the correct relic
abundance is achieved for DM co-annihilating with a scalar/fermion colour-triplet/octet partner.
Red: Sommerfeld corrections neglected. Light green: Sommerfeld corrections included analytically.
Dark green: Sommerfeld corrections and gluon thermal mass included numerically. The LHC
90%CL exclusion is also shown as a vertical grey band. The DM is assumed to be a Majorana
fermion. The case of scalar DM is very similar.

Furthermore, fermion octets also have s-wave annihilations into SM quarks, which for

ultra-relativistic quarks form a (8A, 1) initial state, so that one simply has

σ(F8 + F8 → qq̄)Sommerfeld

σ(F8 + F8 → qq̄)perturbative
= S

(
−3α3

2β

)
. (2.26)

2.3 Results for DM co-annihilations with a coloured partner

By approximating the QCD potential as proportional to 1/r (i.e. by renormalising α3 at

some fixed relevant scale in eq. (2.15)), the above equations provide a simple analytical

approximation for the Sommerfeld corrections S. In figure 2 we show in light green the

– 8 –
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bands in the (MDM,∆M) plane where the DM thermal abundance reproduces the observed

value within ±3 standard deviations.

We also compute the Sommerfeld correction in a more accurate way, by accounting for

two more effects:

• The full QCD potential taking into account the scale dependence of the QCD coupling

constant, as in eq. (2.15);

• Finite-temperature effects, which provide a zero-momentum thermal mass m3 =√
2g3T to the gluon, transforming the QCD potential into a Yukawa potential.

The Coulomb approximation of eq. (2.14) no longer holds, and the Sommerfeld factor S

needs to be computed numerically by finding the relevant wave-functions with the full

potential, after solving the associated Schrödinger equation.

Our full computation leads to the solid green line in figure 1 (relic abundance as a

function of MDM for ∆M = 0) and to the bands in dark green in figure 2 (relation between

MDM and ∆M that corresponds to DM density). The irregular peak structure, especially

visible in figure 1, corresponds to the appearance of two-body bound states with zero

binding energy. Note also that from the results in figure 1 one can easily extract the

Sommerfeld-corrected thermal relic abundance of a stable LSP gluino. This is obtained by

multiplying the lines shown in the bottom-right panel (fermion colour octet) of figure 1 by

the factor R = 8/9.

For vanishing mass splitting in the dark sector, ∆M = 0, the Sommerfeld corrections

significantly increase the particle mass needed to reproduce the observed DM abundance:

Scalar Fermion Scalar Fermion

triplet triplet octet octet

MDM (Sommerfeld neglected) 1.3TeV 2.4TeV 3.2TeV 3.7TeV

MDM (Sommerfeld included) 1.7TeV 4− 5TeV 5− 6TeV 7− 8TeV

LHC lower bound at 90% CL 0.35TeV 0.62TeV 0.56TeV 0.77TeV

(2.27)

The lower row shows the present bounds from searches at the LHC, computed as follows.

Once produced at the LHC, the coloured χ′ decays into DM (escaping the detector as

missing energy) with the emission of a jet. We focus on the case where ∆M is so low that

the radiated jet is too soft to be triggered. For larger ∆M , it would be possible to use other

search channels with multiple jets and missing energy. The constraints on χ′ production

are extracted from the mono-jet DM searches relying on QCD radiation to trigger the

event [101].

We simulated with MadGraph [102] the tree-level process pp → χ′χ′+jet (at
√
s =

8TeV), requiring the leading jet to have pT > 110GeV, |η| < 2.4, to reproduce the analysis

in [103, 104], corresponding to data with integrated luminosity of L = 19.5 fb−1. Then we

used the number of observed and background events reported for the region with Emiss
T >

400GeV, and placed the observed 90% CL exclusion limit on Mχ′ = MDM + ∆M by

requiring

χ2 =

[
Nobs −Nbkg −Nχ′(MDM +∆M)

]2

Nχ′(MDM +∆M) +Nbkg + σ2
bkg

= 2.71 , (2.28)

– 9 –
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where σbkg is the uncertainty on the background estimation. We computed the number of

signal events Nχ′ simply as the integrated luminosity L times the signal cross section (with

unit efficiency and acceptance).

Future searches at the LHC will be able to extend the reach for testing DM that co-

annihilates with a coloured partner. However, figure 2 shows that the LHC will not be able

to probe the entire parameter space allowed by thermal freeze-out. The full exploration of

DM co-annihilating with a coloured partner requires higher energies. It is interesting that

a future pp collider with
√
s ∼ 100TeV will play an important role in the exploration of

the mass range favoured by DM thermal abundance [105].

3 DM annihilating through a SM mediator

In this section we consider situations in which the mediator of interactions between DM

and quarks is a SM particle, rather than a speculative particle from the dark sector. Given

that DM is neutral and has no colour, the candidates for the role of mediator are the Z

(considered in section 3.1) and the Higgs boson (considered in section 3.2).

3.1 DM coupled to the Z

We start by assuming that the DM particle is coupled to the Z boson. At low energies,

the Lagrangian interaction of the Z boson to a current of fermions f and scalars s is

L = −ZµJ
µ
Z , JZ

µ =
g2

cos θW

[∑

f

[f̄γµ(g
f
V + γ5g

f
A)f ] +

∑

s

gs[s
∗(i∂µs)− (i∂µs

∗)s]

]
, (3.1)

where g2 and θW are the SU(2)L gauge coupling and weak angle. For the SM fermions

one has the well-known result gV = 1
4 − 2

3 sin
2 θW and gA = −1

4 for up-type quarks and

gV = −1
4 + 1

3 sin
2 θW and gA = 1

4 for down-type quarks. Since the coupling of each

chiral fermion to the Z is proportional to T3 − Q sin2 θW = Q cos2 θW − Y , the coupling

of the DM particle, which is neutral (Q = 0), is proportional to its hypercharge. In our

effective Lagrangian, we consider gDM
V , gDM

A or gDM
s as free parameters that describe the

DM couplings. Small values of the DM couplings to Z can be obtained if the DM is a

mixture between a state with Y = 0 and a state with Y += 0, or if DM does not couple

directly to Z, but only to a Z ′ boson that mixes with the Z.

At energies larger thanMZ , we need to complete in a gauge-invariant way the couplings

in eq. (3.1). This is obtained by observing that, on the Higgs vacuum,

− 4i cos θW
g2 v2

H†DµH
∣∣∣
H=〈H〉

= Zµ , (3.2)

where H is the full Higgs doublet and v = 246GeV. Thus, the simplest gauge invariant

completion of the coupling between the Z boson and fermonic or scalar DM is

L =
4i

v2
(H†DµH)

[
ψ̄DMγµ(g

DM
V + γ5g

DM
A )ψDM + gDM

s

(
s∗DM(i∂µsDM)− (i∂µs

∗
DM)sDM

)]
.

(3.3)

Indeed, these are the lowest-dimension operators leading to the interactions in eq. (3.1).
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Direct detection

Concerning direct detection, by integrating out the Z at tree level one obtains the ef-

fective Lagrangian Leff = −J2
Z/2M

2
Z . By taking the nucleon matrix element and the

non-relativistic limit we obtain the Lagrangian

Lnon rel =
n,p∑

N

12∑

i=1

cNi ON
i , (3.4)

where the first sum runs over N = {n, p} and the second sum over the 12 most general

DM/nucleon non-relativistic operators [9, 31]. Only a few of them are generated in our

case.

• Scalar DM and fermion DM with vector interactions produces the dominant spin-

independent operator ON
1 = 1 with coefficients

cn1 = 0.27gDMMDMmN

M2
Z

, cp1 = −0.03gDMMDMmN

M2
Z

, (3.5)

where g is either gDM
V or gDM

s . All other operators give negligible corrections.

• Fermion DM with axial interactions produces, as main effect, the dominant spin-

dependent operator ON
4 = ,SDM × ,sN :

cn4 = cp4 = 0.38gDM
A

MDMmN

M2
Z

. (3.6)

It also produces ON
8 = ,SDM · ,v⊥, which is spin-independent but suppressed by the

DM transverse velocity ,v⊥. In view of the coefficients

cn8 = 0.54gDM
A

MDMmN

M2
Z

, cp8 = 0.06gDM
A

MDMmN

M2
Z

(3.7)

such operator is somehow less relevant than ON
4 , but not irrelevant.2

We derive the bound from all direct detection experiments by employing the public

code of ref. [106]. The bounds are dominated by the LUX experiment [107]. The effect

of loop corrections that transform spin-dependent interactions into spin-independent cross

section is irrelevant, since it can affect our bound on gDM
A only if DM is lighter than a few

GeV [108].

Thermal abundance

We compute the relic abundance using the interaction between DM and SM particles given

in eq. (3.3). This interaction contributes to DM annihilation via s-channel Z exchange

and also to direct annihilation into a pair of Higgs and/or gauge bosons. We perform

2Fermion DM with axial interactions also produces other operators, ON
7 = "sN · "v⊥ and ON

9 = i"SDM ·
("sN × "q), which have a negligible effect because spin-dependent and suppressed.
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Figure 3. DM coupled to the Z. Regions of DM mass MDM and Z couplings (gDM
s , gDM

V , gDM
A ):

the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast for
LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches; the
blue region is excluded by the Z-invisible width constraint ΓZ,inv < 2 MeV. The green solid curve
corresponds to a thermal relic abundance via Z-coupling annihilation equal to the observed DM
density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

a full calculation of the relic abundance, including all annihilation channels. The ap-

proximation of retaining only the dimension-6 interaction in eq. (3.3) is valid as long as

the effective energy scale (v/
√

gDM
V,A,s) is much larger than the DM mass. This implies

gDM
V,A,s - 0.24 (500GeV/MDM)2, which is valid in the region of interest. However, if new

physics is not far from MDM, new interactions and new annihilation channels open up,

presumably reducing the thermal relic abundance. These effects are completely model-

dependent.

The computation of the thermal relic DM abundance becomes model-independent in

the kinematic region MDM ≈ MZ/2, since the annihilation cross section is dominated by

the Z-resonance. We postpone the discussion of this interesting case to section 4, where

we will show that the DM abundance can be simply computed in terms of the Z decay

width rather than in terms of DM annihilations.

Results

In figure 3 we compare the LHC sensitivity with the current bounds. In the plane (DM

mass, DM coupling to Z) we show:

1. The bounds from direct detection, dominated by the LUX experiments (regions

shaded in grey). The bounds on gDM
V and gDM

s are quite strong (around 10−3 for

DM mass around 100GeV), while gDM
A , which leads to spin-dependent interactions,

is less constrained (typically gDM
A

<∼ 0.3 for MDM ≈ 100GeV). We see that direct

detection experiments severely constrain the vector coupling gDM
V and the scalar cou-

pling gDM
s , and are presently probing the region gDM

A ∼ 1.

2. The LEP bounds from the invisible Z width, ΓZ,inv < 2MeV. This bound, shown in

light blue, implies gDM
V,A

<∼ 0.04, gDM
s <∼ 0.08 if MDM < MZ/2.
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3. The present bound from LHC mono-jet searches, extracted with the procedure de-

scribed in section 2.3. We see that such bounds can never be competitive with the

combined limits from LUX and LEP.

4. Our estimate on the future sensitivity of LHC at
√
s = 14TeV with an integrated

luminosity of 300 fb−1. By simulating the sample and rescaling the corresponding

statistical error with the square-root of the number of events we find that only a

modest improvement is possible. New strategies for reducing the systematic error

and improving background rejection are necessary for the LHC to give competitive

results.

5. The curve that corresponds to a thermal DM density equal to the cosmological den-

sity (green curve). We observe that a thermal abundance from pure Z coupling is

ruled out for scalar DM, while some regions are still allowed for fermion DM, most

notably for axial couplings and in the window around the near-resonant region (that

will be discussed in section 4). However, we stress that the relic abundance, com-

puted here using the effective interaction in eq. (3.3), is very sensitive to new-physics

effects, especially in the high-mass region. In particular, the decrease of the green

line with the DM mass is only a consequence of the non-renormalisable contact inter-

actions. New particles and new interactions can completely modify the behaviour of

the thermal-abundance constraint. Hence, the green curve in figure 3 is only meant

to be indicative of the effective-theory regime.

3.2 DM coupled to the Higgs

The case of DM that couples to the SM sector only though interactions with the Higgs

boson has been discussed extensively in the literature [65–86]. Here we assume that DM

is either a real scalar (sDM) or a Majorana fermion (ψDM) coupled to the physical Higgs

field h at low energies as

L = −hJh , Jh =
1√
2

[∑

f

yf f̄f + ψ̄DM(yDM + iyPDMγ5)ψDM +
λDMv

2
s2DM

]
. (3.8)

The SM fermions f have the usual Yukawa couplings yf and we parameterise the DM

couplings to the Higgs as λDM, yDM, yPDM.

We can complete the effective interaction in eq. (3.8) in a straightforward way, since

H†H/v =
√
2h + . . . . Hence, the simplest recipe to express the DM coupling to Higgs

boson in terms of gauge-invariant quantities is

L = −H†H

[
ψ̄DM

(yDM + iyPDMγ5)

2v
ψDM +

λDM

4
s2DM

]
. (3.9)

Note that the coupling of scalar DM to the Higgs doublet can be expressed in terms of

a renormalisable interaction, while the coupling of fermonic DM involves a dimension-5

operator.
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Direct detection

By integrating out the Higgs boson, one obtains the effective Lagrangian Leff = J2
h/2M

2
h

that describes direct detection. Employing again the non-relativistic nucleon Lagrangian

of eq. (3.4) we find:

• The λDM coupling of scalar DM generates the dominant spin-independent effective

non-relativistic operator ON
1 = 1 with coefficients

cn1 ≈ cp1 = −0.45λDM
mNv

M2
h

. (3.10)

• The yDM coupling of fermion DM also generates ON
1 with

cn1 ≈ cp1 = −1.8yDM
mNMDM

M2
h

. (3.11)

• The pseudo-scalar coupling yPDM only produces the operator ON
11 = i,SDM · ,q, which is

spin-dependent and suppressed by the transferred momentum ,q:

cn10 ≈ cp10 ≈ 0.26
yPDMmN

M2
h

. (3.12)

As a consequence, there are no limits on perturbative values of yPDM.

Thermal abundance

The relic abundance is computed using the interaction in eq. (3.9), which contributes to

DM annihilation through s-channel Higgs exchange and through processes with two Higgs

or longitudinal gauge bosons in the final state. We include these annihilation channels

in our computation. In the case of fermionic DM, the approximation of keeping only the

dimension-5 operator in eq. (3.9) is justified as long as yDM - 0.5 (500GeV/MDM).

Results

In figure 4 we compare the LHC sensitivity with current bounds, in the plane (DM mass,

DM coupling to h), finding the following results.

1. The bounds from direct detection are dominated by the LUX experiments (regions

shaded in grey). We see that direct detection experiments are severely constraining

the scalar couplings λDM, yDM, while the pseudo-scalar interaction is completely out

of reach at the moment.

2. If MDM < Mh/2, the main constraint is due to the Higgs invisible width, Γh,inv/Γh !
20%, which gives λDM, yDM, yPDM

<∼ 10−2, taking Γh = 4.2MeV for Mh = 125.6GeV.

3. In the opposite regime, MDM > Mh/2, one can consider different Higgs produc-

tion mechanisms at the LHC: gluon fusion accompanied by mono-jet, VBF, Higgs-

strahlung from W/Z. We considered the first case (gluon fusion) and assumed

Mh = 125.6GeV. However, the parameter space region accessible by LHC mono-

jet searches is either already excluded by direct detection (λDM, yDM) or involves

unreasonably large couplings (yPDM).
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Figure 4. DM coupled to the Higgs. Regions of DM mass MDM and Higgs couplings (λDM, yDM,
yPDM): the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast
for LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;
the blue region is excluded by the Higgs invisible width constraint Γh,inv/Γh < 20%. The green
solid curve corresponds to a thermal relic abundance via Higgs-coupling annihilation equal to the
observed DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell
computation).

4. As for the case of DM coupling to the Z, the present bound from LHC mono-jet

searches, extracted with the procedure described in section 2.3, are not competitive

with the combined limits from LUX and Higgs invisible width, not even projecting

the sensitivity of LHC14 with 300 fb−1.

5. The case of a DM coupling to the Higgs responsible for the correct relic abundance

is ruled out for fermionic DM (but allowed for pseudoscalar coupling when MDM >

Mh/2). For scalar DM, this possibility is still viable for MDM>∼ 100GeV. A small

mass window around the resonant Higgs exchange is allowed, and this case will be

discussed in section 4. However, we recall again that the thermal abundance lines

in figure 4 bear a dependence on the completion of the theory and our calculation is

based on an effective-theory regime with couplings defined by eq. (3.9). In particular,

for fermonic DM, the green line in figure 4 is approximately independent of the DM

mass in the high-mass region; this result is characteristic of dimension-5 interactions.

New particles and new interactions can easily reduce the cosmological abundance of

the DM particle coupled to the Higgs.

4 DM freeze-out via decays

A special case occurs when the DM annihilation cross section relevant for the thermal relic

abundance is resonantly enhanced by the mediator exchange in the s-channel. This applies

when the DM mass is about MZ/2 = 45.6GeV or Mh/2 = 63GeV, but our considerations

apply to the case of a generic mediator M (such as extra Higgses present in supersymmetric

models or Z ′ gauge bosons). We will consider a mediator M with gM degrees of freedom,

with mass MM slightly larger than 2MDM, with branching ratio BRDM into a pair of DM
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Figure 5. DM freeze-out via decays of a generic mediator particle M . The dashed curves em-
phasise the special cases where the mediator is the Z (red) or the Higgs boson (blue). Left panel:
value of (gM/g2DM)ΓM→DM/MDM such that decays into DM particles reproduce the observed DM
abundance. Right panel: the order-one factor r that gives the precise normalisation of the DM
thermal abundance via decays, as defined in eq. (4.4).

particles and 1 − BRDM into light SM particles. The DM particle has gDM degrees of

freedom. If the DM mass differs from half of the mediator mass by less than its width,

then the cross section becomes fairly model-independent and is approximated by the Breit-

Wigner formula. The thermal average γA of a resonant annihilation cross section can be

simplified as follows.

The total thermally averaged DM annihilation rate γA can be decomposed as the

contribution of the on-shell resonant term plus the remaining off-shell contribution γsubA :

γA = γon−shell
A + γoff−shell

A . (4.1)

Formally, γon−shell
A can be computed by approximating the Breit-Wigner as a Dirac δ func-

tion. As expected, the scattering rate reduces to a much simpler object: the thermal

average γD of the decay rate of the mediator,

γon−shell
A = BRDM(1− BRDM)γD. (4.2)

The term γoff−shell
A can be computed using a subtracted propagator for the mediator particle

M , as described in [109]. However, in the context of section 3, the off-shell contribution is

model-dependent.

We focus on the model-independent on-shell term, which is described by the decay

rate. In this approximation one has the simple result

γA ≈ BRDMγD = neq
M

K1(MM/T )

K2(MM/T )
ΓM→DM

T(MDM. gMΓM→DM

(
MMT

2π

)3/2

e−MM/T .

(4.3)
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We considered the relevant non-relativistic limit, and we notice that γD has a different de-

pendence on T than the standard annihilation rate (proportional to e−2MDM/T ), so the usual

approximation in terms of the non-relativistic parameter σv is not appropriate. Rather,

the DM abundance is determined in terms of the width ΓM→DM , such that the final DM

number abundance is roughly given by nDM/s ∼ H/ΓM→DM where H is the Hubble con-

stant at T ∼ MDM. By solving the Boltzmann equation for the DM abundance keeping

only the on-shell term we find the precise result

ΩDMh2

0.1187
= r

g2DM10−12GeV

gMΓM→DM

(
MDM

GeV

)3

e−2zf∆M/MDM . (4.4)

We have defined ∆M = MM − 2MDM and fixed zf ≡ 25. Then r is an order-one factor

plotted in figure 5 (right panel), obtained from the numerical solution of the Boltzmann

equations. As in the annihilation case, the relevant rate is averaged over the DM compo-

nents and summed over the SM components. In the left panel of figure 5, we show the

invisible width of the mediator, in units of its mass, that corresponds to the correct DM

abundance via decays.

We can now apply our results to the case in which the mediator M is either the Z or

the Higgs boson. For the various couplings considered in section 3, the decay widths into

DM particles are

ΓZ→DM =
g22MZ

12π cos2 θW

√

1−
4M2

DM

M2
Z






gDM2
V (1 + 2M2

DM/M2
Z)

gDM2
A (1− 4M2

DM/M2
Z)

g2s(1/4−M2
DM/M2

Z)

, (4.5)

Γh→DM =
Mh

16π

√

1−
4M2

DM

M2
h






y2DM(1− 4M2
DM/M2

h)

yP2
DM

1
2λ

2
DM(v/Mh)2

. (4.6)

The values of the invisible branching ratios needed to reproduce the DM abundance are

shown in figure 6. This result holds as long as the on-shell contribution that we are

considering dominates over the neglected off-shell contribution, which occurs typically for

∆M <∼ 0.2MDM. As shown in figure 6, a broad range of experimentally unexplored Z

or Higgs invisible widths could account for DM via thermal freeze-out of decays. This

result gives good motivations for improved measurements of the invisible width of the Z

boson (e.g. in GigaZ) and of the Higgs boson (in upcoming LHC data and in future Higgs

factories).

5 Summary

The search for DM is one of the most exciting goals of the LHC. However, the path that

DM hunters should follow is not obvious because of our ignorance about the nature of

the DM and the lack of experimental evidence for new particles beyond the SM. In this

situation, experiments at the LHC must pursue a diversified strategy of searches. In this

paper we have considered some benchmark cases that offer prospects for DM discovery and

that can guide experimental searches without full commitment to specific models.
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Figure 6. Values of the invisible Z and h branching ratio into DM particles needed to reproduce
the DM abundance via thermal freeze-out of decays. We consider DM with gDM = 1 (black curve),
2 (blue), 3 (magenta), 4 (red) degrees of freedom.

DM co-annihilating with a coloured partner. As a first benchmark case, we have

considered a situation in which the DM thermal relic abundance is determined by co-

annihilation with a coloured particle. This possibility is very favourable for the LHC,

because of the large QCD cross section for producing the DM partner. However, the

near mass degeneracy with the DM particle makes this search at the LHC experimentally

challenging, requiring either extra jets to tag the event and/or the identification of soft

decay products. Co-annihilation with coloured partners can occur in many models with new

particles at the weak scale, including supersymmetry. Interesting examples are the cases

of near-degenerate neutralino-stop, neutralino-sbottom, or neutralino-gluino. However,

even without making any model-dependent assumption, the case of DM co-annihilating

with a coloured partner can be fully characterised by: the quantum numbers of the DM

partner (spin and colour representation), its mass, and its mass difference with the DM

particle. In terms of these parameters, one can determine the DM relic abundance and the

signals at the LHC. An important result of our study is the calculation of the Sommerfeld

corrections to the annihilation rates, taking into account the colour decomposition of the

various initial states. As a byproduct, we obtain the correct expression of the Sommerfeld

factor for gluino LSP annihilation. Our results for the DM relic abundance are summarised

in figures 1 and 2. We find that future LHC searches will be able to probe a large region

of parameters that is still unexplored and that leads to a correct DM density. However,

LHC cannot give a conclusive answer to the viability of DM co-annihilating with coloured

partners. Indeed, a correct thermal relic density can be achieved even for DM masses as

large as 5TeV (for a fermion colour triplet partner) or 10TeV (for a fermion colour octet

partner). Future hadron colliders operating at 100TeV energies are necessary to complete

the exploration of these models.

DM annihilating through a SM mediator. In a large class of models the DM particle

is coupled to the SM sector only through the Z or Higgs boson. In this case, the mass
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of the mediator is known, but we treat the couplings between the DM particle and the

Z or Higgs boson as free parameters. Although the thermal DM abundance is somehow

model-dependent, we can compare the reach of the different experimental strategies. We

find that, taking into account the LEP bound on the Z invisible width and the LUX 2013

data, searches at the LHC for DM coupled to the Z are not sufficiently competitive. The

situation is more promising for DM coupled to the Higgs because, for MDM < Mh/2,

searches for invisible Higgs decays are competitive with direct searches in underground

experiments. Our findings are illustrated in figures 3 and 4. In spite of the negative results

for DM coupled to the Z, improvements at the LHC in all missing-energy channels are

motivated, independently of the relic density prediction and the LUX 2013 results. Indeed,

DM could have a non-thermal origin (evading the relic abundance constraint) or could

have a clumped distribution in the galactic halo (weakening the constraints from direct

DM searches).

DM freeze-out via decays. An especially interesting situation occurs when DM anni-

hilates through a near-resonant mediator. We have shown that, for a DM mass slightly

smaller than half the mediator mass, the relic abundance is determined in a model-

independent way by the invisible width of the mediator. The cases of Z or Higgs as

mediators offer interesting applications to our results. As shown in figure 6, Z and Higgs

invisible widths below their experimental limits are compatible with DM thermal abun-

dance and with the LUX constraint. Thus, the search for invisible Higgs decays that can

be performed at the LHC and at future facilities (and, possibly, improvements in the mea-

surement of the Z invisible width at GigaZ) offer very interesting ways to probe the nature

of the DM.

Acknowledgments

We thank E. del Nobile, P. Panci and A. Urbano for useful discussions. ADS acknowl-

edges partial support from the European Union FP7 ITN INVISIBLES (Marie Curie Ac-

tions, PITN-GA-2011-289442). This work was supported by the ESF grant MTT8 and

by the SF0690030s09 project and by the European Programme PITN-GA-2009-237920

(UNILHC).

A Colour tensor products

We give here some details about the decomposition of the χ̄′
Iχ

′
J → gagb scattering rate

into two-body channels with given colour. The total scattering amplitude is proportional

to Aab
IJ = {T a, T b}IJ , for both fermion and scalar particles χ′. Here (T a)IJ are the colour

generators in the desired representation: (T a)ij = λaij/2 for triplets and (T a)bc = −ifa
bc for

octets.

When χ′ is a colour triplet, the rate has to be decomposed into the 3⊗3̄ = 1⊕8 channels.

The total amplitude Aab|ki can be split into singlet and octet amplitudes according to

Aab|ki = [1]ab|ki + [8]ab|ki , (A.1)

[1]ab |ki =
1

3
δki A

ab|mm , [8]ab|ki = Aab|ki −
1

3
δki A

ab|mm . (A.2)
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When we take the modulus squared of the amplitude in eq. (A.1) and sum over colour

indices, the interference terms vanish and we are left with the squares of the individual

amplitudes, which are given by

7

2

∑

abik

∣∣∣[1]ab|ki
∣∣∣
2
=

7

5

∑

abik

∣∣∣[8]ab|ki
∣∣∣
2
=

∑

abik

∣∣∣Aab|ki
∣∣∣
2
. (A.3)

This result explains the factors in eq. (2.19).

When χ′ is a color octet, the rate has to be decomposed into the 8 ⊗ 8 = 1S ⊕ 8A ⊕
8S ⊕ 10A ⊕ 10A ⊕ 27S channels. The total amplitude can be written as Alk

ij . The pair of

fundamental and anti-fundamental indices (i, l), subject to a traceless condition (Amk
mj = 0),

describe one octet; the pair of indices (j, k) under the traceless condition (Alm
im = 0) describe

the second octet; for the sake of readability, we drop the indices a and b of the final-state

gluons. The total amplitude can be decomposed as

Alk
ij = [1S]

lk
ij + [8A]lkij + [8S]

lk
ij + [10A]lkij + [10A]lkij + [27S]

lk
ij , (A.4)

[1S]
lk
ij =

1

8
Anm

mn

(
δki δ

l
j −

1

3
δliδ

k
j

)
(A.5)

[8A]lkij =
1

6

[
δlj(A

mk
im −Akm

mi )− δki (A
ml
jm −Alm

mj)
]

(A.6)

[8S]
lk
ij =

1

20

[
δki (A

lm
mj +Aml

jm) + δkj (A
lm
mi +Aml

im) + δli(A
km
mj +Amk

jm) + δlj(A
km
mi +Amk

im )
]
+

+
1

4
(Alk

ij −Alk
ji −Akl

ij +Akl
ji) +

1

60
(δliδ

k
j − 9δki δ

l
j)A

nm
mn (A.7)

[10A]lkij =
1

4
(Alk

ij −Alk
ji +Akl

ij −Akl
ji)−

1

12

[
δlj(A

mk
im −Akm

mi )+

−δli(Amk
jm −Akm

mj ) + δkj (A
ml
im −Alm

mi)− δki (A
ml
jm −Alm

mj)
]

(A.8)

[10A]
lk
ij =

1

4
(Alk

ij +Alk
ji −Akl

ij −Akl
ji)−

1

12

[
δlj(A

mk
im −Akm

mi )+

+δli(A
mk
jm −Akm

mj )− δkj (A
ml
im −Alm

mi)− δki (A
ml
jm −Alm

mj)
]

(A.9)

[27S]
lk
ij =

1

4
(Alk

ij +Alk
ji +Akl

ij +Akl
ji)−

1

20
[δki (A

lm
mj +Aml

jm) + δkj (A
lm
mi +Aml

im) +

+δli(A
km
mj +Amk

jm) + δlj(A
km
mi +Amk

im )] +
1

40
(δliδ

k
j + δki δ

l
j)A

nm
mn . (A.10)

In the modulus squared of the amplitude in eq. (A.4) summed over colour indices, there

are no interference terms and the only non-vanishing terms are

6
∑

|[1S]|2 = 3
∑

|[8S]|2 = 2
∑

|[27S]|2 =
∑

|A|2 . (A.11)

This explains the factors in eq. (2.25).
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