
J
H
E
P
0
1
(
2
0
1
4
)
0
3
8

Published for SISSA by Springer

Received: July 26, 2013

Revised: November 21, 2013

Accepted: December 16, 2013

Published: January 9, 2014

The stringy instanton partition function

Giulio Bonelli,a,b,c Antonio Sciarappa,a,b Alessandro Tanzinia,b and Petr Vaskoa,b

aInternational School of Advanced Studies (SISSA),

via Bonomea 265, 34136 Trieste, Italy
bINFN, Sezione di Trieste,

Trieste, Italy
cI.C.T.P.,

Strada Costiera 11, 34014 Trieste, Italy

E-mail: bonelli@sissa.it, asciara@sissa.it, tanzini@sissa.it,

vaskop@sissa.it

Abstract: We perform an exact computation of the gauged linear sigma model asso-

ciated to a D1-D5 brane system on a resolved A1 singularity. This is accomplished via

supersymmetric localization on the blown-up two-sphere. We show that in the blow-down

limit C2/Z2 the partition function reduces to the Nekrasov partition function evaluating

the equivariant volume of the instanton moduli space. For finite radius we obtain a tower

of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten

invariants of the ADHM moduli space. We show that these corrections can be encoded

in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint,

the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint cap-

tures the equivariant quantum cohomology of the ADHM instanton moduli space in the

Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant

Donaldson-Thomas invariants of P1 × C2.

Keywords: Nonperturbative Effects, Topological Strings

ArXiv ePrint: 1306.0432

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2014)038

mailto:bonelli@sissa.it
mailto:asciara@sissa.it
mailto:tanzini@sissa.it
mailto:vaskop@sissa.it
http://arxiv.org/abs/1306.0432
http://dx.doi.org/10.1007/JHEP01(2014)038


J
H
E
P
0
1
(
2
0
1
4
)
0
3
8

Contents

1 Introduction 1

2 ADHM gauged linear sigma model from the D1-D5 system 3

2.1 Reduction to the Nekrasov partition function 6

2.2 Classification of the poles 7

3 Equivariant Gromov-Witten invariants of the instanton moduli space 9

3.1 Cotangent bundle of the projective space 13

3.2 Hilbert scheme of points 15

4 Donaldson-Thomas theory and stringy corrections to the Seiberg-Witten

prepotential 18

5 Conclusions 20

A Equivariant quantum cohomology of Mk,1 in the oscillator formalism 23

B Multi-instantons in the higher rank case 24

C Perturbative sector of the D5-brane theory 25

1 Introduction

Superstring theory proved to be a really powerful tool to engineer supersymmetric gauge

theories and to study via D-branes their properties at a deeper level than the one pro-

vided by the perturbative quantum field theoretic definition. Actually, D-branes theory is

richer than its gauge theory low energy limit and provides a larger arena to probe quantum

space-time geometry as seen by superstrings.

A particularly important step in the study of non perturbative phenomena in four di-

mensional supersymmetric gauge theories with eight supercharges was taken by Nekrasov

in [1] paving the way to a microscopic derivation of the celebrated Seiberg-Witten (SW)

solution [2]. The Nekrasov partition function indeed provides an extension of the SW pre-

potential including an infinite tower of gravitational corrections coupled to the parameters

of the so called Ω-background. The ability to resum the multi-instanton series crucially

depends on the use of equivariant localization technique, which lastly became a commonly

used technique for the exact evaluation of supersymmetric path integrals. In most cases

this technique allows to reduce the path integration over the infinite dimensional space of

field configurations to a localized sum over the points in the moduli space of BPS configu-

rations which are fixed under the maximal torus of the global symmetries of the theory. In
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the case of N = 2 theories in four dimensions the supersymmetric partition function actu-

ally computes the equivariant volume of the instanton moduli space. From a mathematical

viewpoint the Nekrasov partition function encodes the data of the classical equivariant co-

homology of the ADHM instanton moduli space and computes, in presence of observables,

equivariant Donaldson polynomials [3].

A D-brane engineering of the pure SU(N) gauge theory is provided by a system of

N D3-branes at the singular point of the orbifold geometry C2/Z2. The non-perturbative

contributions to this theory are then encoded by D(-1)-branes which provide the corre-

sponding instanton contributions [4–6]. The Nekrasov partition function can indeed be

computed from the D(-1)-branes point of view as a supersymmetric D = 0 path integral

whose fields realize the open string sectors of the D(-1)-D3 system [1, 7]. A particularly

relevant point to us is that the open string sectors correspond to the ADHM data and the

super-potential of the system imposes the ADHM constraints on the vacua.

A richer description of the construction above, which avoids the introduction of frac-

tional D-brane charges, is obtained by resolving the orbifold A1 singularity to a smooth

ALE space obtained by blowing up the singular point to a two-sphere [8, 9]. The resolution

generates a local K3 smooth geometry, namely the Eguchi-Hanson space, given by the total

space of the cotangent bundle to the 2-sphere. The N = 2 D = 4 gauge theory is then

obtained by considering the system of D1-D5 branes wrapping the blown-up 2-sphere in

the zero radius limit.

The aim of this paper is to study the D1-D5 system on the Eguchi-Hanson space at

finite radius by defining and computing exactly its partition function and to analyse some

mathematical properties of the latter. From the D1-branes perspective, the theory describ-

ing the D1-D5 brane system on the resolved space is a gauged linear sigma model (GLSM)

on the blown-up two-sphere describing the corresponding open string sectors with a super-

potential interaction which imposes the ADHM constraints. The S2 partition function of

supersymmetric GLSMs can be exactly computed by equivariant localization on the two-

sphere along the general analysis proposed in [10, 11]. We will specify their analysis to

our case to compute the partition function of the D1-D5 system. The infrared dynamics of

the GLSM describes a non-linear (2, 2) sigma model with target space the ADHM moduli

space itself. Therefore, the D1-D5 system probes the ADHM geometry from a stringy

point of view. The supersymmetric sigma model contains stringy instanton corrections

corresponding to the topological sectors with non trivial magnetic flux on the two-sphere.1

The trivial sector, i.e. the sector of constant maps, is the only one surviving the zero radius

(i.e. point particle) limit; we will show that it reproduces the Nekrasov partition function.

The supersymmetric partition function we define extends the Nekrasov partition func-

tion by including stringy instanton corrections to the equivariant volume of the ADHM

moduli space. This follows as a natural extension of the interpretation of the S2 partition

function of the GLSM in terms of the quantum Kahler potential of the NLSM geometry to

which it flows to in the infrared. From the mathematical view point the stringy instantons

1These are effective stringy instantons in the ADHM moduli space which compute the KK corrections

due to the finite size of the blown-up P1. For the sake of clarity, gravity is decoupled from the D-branes

and α′ is scaled away as usual.
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are therefore deforming the classical cohomology of the ADHM moduli space to a quantum

one. As we will briefly discuss in this paper, the supersymmetric localization results have

a direct link with Givental’s formalism for equivariant quantum cohomology. Actually,

this is a much more general subject encompassing both compact and non-compact Kähler

manifolds; we elaborate on this topic in a separate publication [12]. The central object of

Givental formalism is given by the so-called J -function which encodes the Gromov-Witten

invariants and gravitational descendants of the target space. In the following we will discuss

how our results provide a conjectural expression for Givental’s J -function of the ADHM

moduli space, and provide explicit checks of this conjecture for abelian instantons, whose

moduli spaceMk,1 is described by the Hilbert scheme of points Hilbk(C2), and for one in-

stanton in U(N) gauge theory, whose moduli spaceM1,N reduces to the cotangent bundle

of the N − 1 dimensional complex projective space T ∗PN−1.

In section 2 we discuss the ADHM gauged linear sigma model from the D1-D5 system

perspective and the calculation of the partition function via supersymmetric localization on

the sphere. In particular we discuss how this reproduces the Nekrasov instanton partition

function in the point particle limit. In section 3 we study the relation between the spherical

partition function and the quantum Kahler potential on the ADHM moduli space. We

compare its structure with the Givental formalism, identify the vortex partition functions

as the Givental’s function and discuss how to compute out of it the quantum cohomology

of the ADHM moduli space. We will check our results to reproduce already known results

in some cases, namely the case Mk,1 of k D1s and a single D5-brane and the case of a

single D1 and N D5-branesM1,N . In section 4 we explore the system from the D5-brane

perspective and propose a relation with higher rank equivariant Donaldson-Thomas theory

on P1 × C2. We show that the free-energy of the D5-brane theory is a deformation of the

Seiberg-Witten prepotential in the Ω-background containing the whole tower of effective

world-sheet instanton corrections. Finally in section 5 we present our conclusions and

discussions on further directions, and collect some useful identities in the appendices.

2 ADHM gauged linear sigma model from the D1-D5 system

In this section we describe the dynamics of a system of k D1 and N D5-branes wrapping

the blown-up sphere of a resolved A1 singularity. Specifically, we consider the type IIB

background R1,3 × T ∗P1 × R2 with the D1-branes wrapping the P1 and space-time filling

D5-branes wrapped on P1. We focus on the D1-branes, whose dynamics is described by

a two-dimensional N = (2, 2) gauged linear sigma model flowing in the infrared to a non-

linear sigma model with target space the ADHM moduli space of instantons Mk,N . The

field content is reported in the table below.

The superpotential of our model is W = Trk {χ ([B1, B2] + IJ)}. It implements as a

constraint the fact that an infinitesimal open string plaquette in the D1-D1 sector can be

undone as a couple of open strings stretching from the D1 to a D5 and back. We also

consider twisted masses corresponding to the maximal torus in the global symmetry group

U(1)N+2 acting onMk,N which we denote as (aj ,−ǫ1,−ǫ2). The R-charges are assigned as

the most general ones which ensures R(W ) = 2 and full Lorentz symmetry at zero twisted
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χ B1 B2 I J

D-brane sector D1/D1 D1/D1 D1/D1 D1/D5 D5/D1

gauge U(k) Adj Adj Adj k k̄

flavor U(N)×U(1)2 1(−1,−1) 1(1,0) 1(0,1) N̄(0,0) N(1,1)

twisted masses ǫ −ǫ1 −ǫ2 −ai aj − ǫ
R-charge 2− 2q q q q + p q − p

Table 1. ADHM gauged linear sigma model.

masses. These provide an imaginary part to the twisted masses via the redefinition

ai − i
p+ q

2
−→ ai , ǫ1,2 − i

q

2
−→ ǫ1,2 (2.1)

The computation of the partition function of the gauged linear sigma model on the

two-sphere can be performed via equivariant localization [10, 11]. Here we follow the

notation of [10]. The path integral localization is performed with respect to the super-

charge Q = Q + Q†, where Q = ǫαQα and Q† = −(ǫ†C)αQ†
α with C being the charge

conjugation matrix. ǫ is a particular solution to the Killing spinor equation chosen as

ǫ = ei
φ
2 (cos θ2 , i sin

θ
2). The supercharges Q,Q† form a su(1|1) subalgebra of the full super-

algebra, up to a gauge transformation G,
{

Q,Q†
}

=M +
R

2
+ iG, Q2 =

(

Q†
)2

= 0, (2.2)

where M is the generator of isometries of the sphere infinitesimally represented by the

Killing vector v =
(

ǫ†γaǫ
)

ea = 1
r
∂
∂φ and R is the generator of the U(1)R symmetry. The

Killing vector field generates SO(2) rotations around the axis fixed by the North and South

pole. Finally, the localizing supercharge Q satisfies

Q2 =M +
R

2
+ iG. (2.3)

The fact that M generates a U(1) isometry with the North and South poles as fixed points

will play a rôle in section 3. For convenience we briefly summarize the field content and

the action of the N = (2, 2) GLSM on S2. By dimensional reduction of N = 1 multiplets

in four dimensions we get

vector multiplet:
(

Aµ, σ, η, λ, λ̄,D
)

chiral multiplet:
(

φ, φ̄, ψ, ψ̄, F, F̄
)

.
(2.4)

The action is

S =

∫

{d2x} (LYM + LFI+top + Lmatter + LW ) , (2.5)

The expressions for the Lagrange densities are

LYM =
1

g2
Tr

{

1

2

(

F12 −
η

r

)2
+

1

2

(

D +
σ

r

)2
+

1

2
DµσD

µσ +
1

2
DµηD

µη − 1

2
[σ, η]2

+
i

2
λ̄γµDµλ+

i

2
λ̄[σ, λ] +

1

2
λ̄γ3[η, λ]

}

(2.6)
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Lmatter = Dµφ̄D
µφ+ φ̄σ2φ+ φ̄η2φ+ iφ̄Dφ+ F̄F +

iq

r
φ̄σφ+

q(2− q)
4r2

φ̄φ

− iψ̄γµDµψ + iψ̄σψ − ψ̄γ3ηψ + iψ̄λφ− iφ̄λ̄ψ − q

2r
ψ̄ψ (2.7)

LFI+top = −iξD + i
θ

2π
F12 (2.8)

LW =
∑

j

∂W

∂φj
Fj −

∑

j,k

1

2

∂2W

∂φj∂φk
ψjψk (2.9)

with r the radius of the sphere and q the R-charge of the chiral multiplet. To localize on field

configurations corresponding to the Coulomb branch the following Q exact deformation of

the action was chosen

δS =

∫

{d2x} (LYM + Lψ) , (2.10)

where

LYM = TrQ (Qλ)λ+ λ†(Qλ†)
4

, Lψ = Q (Qψ)ψ + ψ†(Qψ†)

2
. (2.11)

This procedure reduces the path integral to an ordinary integral over the constant modes of

the scalar field σ and a sum over the non trivial fluxes of the gauge field on the two-sphere.

The master formula for the partition function on S2 in terms of a contour integral was

obtained from this setting in [10] and from a similar one in [11]. We apply it to our specific

model.

Our computations are valid for q > p > 0 , q < 1, so that the integration contour in σ

is along the real line; the case with negative values for the R-charges can be obtained by

analytic continuation, deforming the contour. The S2 partition function reads

ZS
2

k,N =
1

k!

∑

~m∈Zk

∫

Rk

k
∏

s=1

d(rσs)

2π
e−4πiξrσs−iθmsZgaugeZIJ Zadj (2.12)

where

Zgauge =
k
∏

s<t

(

m2
st

4
+ r2σ2st

)

(2.13)

and the one-loop determinants of the matter contributions are given by

ZIJ =

k
∏

s=1

N
∏

j=1

Γ
(

−irσs + iraj − ms
2

)

Γ
(

1 + irσs − iraj − ms
2

)

Γ
(

irσs − ir (aj − ǫ) + ms
2

)

Γ
(

1− irσs + ir (aj − ǫ) + ms
2

) (2.14)

Zadj =
k
∏

s,t=1

Γ
(

1− irσst − irǫ− mst
2

)

Γ
(

irσst + irǫ− mst
2

)

Γ
(

−irσst + irǫ1 − mst
2

)

Γ
(

1 + irσst − irǫ1 − mst
2

)

Γ
(

−irσst + irǫ2 − mst
2

)

Γ
(

1 + irσst − irǫ2 − mst
2

)

with ǫ = ǫ1+ ǫ2, σst = σs−σt and mst = ms−mt. ZIJ contains the contributions from the

chirals in the fundamental and antifundamental I, J , while Zadj the ones corresponding to

the adjoint chirals χ,B1, B2. The partition function (2.12) is the central character of this

paper and we will refer to it as the stringy instanton partition function. Before closing this
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section, since this will play a rôle later in the paper, let us comment on the renormalization

scheme used to define the infinite products in the 1-loop determinant in the computation

of the spherical partition function. In [10, 11] the ζ-function renormalization scheme is

chosen. Indeed this is a reference one, while others can be obtained by a shift in the finite

part of the resulting effective action. These determinants appear in the form of ratios

of Gamma-functions. The ambiguity amounts to shift the Euler-Mascheroni constant γ

appearing in the Weierstrass form of the Gamma-function

1

Γ(x)
= xeγx

∞
∏

n=1

(

1 +
x

n

)

e−
x
n (2.15)

with a finite function of the parameters. Due to supersymmetry, this function has to be

encoded in terms of a holomorphic function f(z), namely γ → Ref(z). A more detailed

discussion on this point will be performed in section 3.

2.1 Reduction to the Nekrasov partition function

A first expected property of ZS
2

k,N is its reduction to the Nekrasov partition function in the

limit of zero radius of the blown-up sphere. Because of that, in (2.12) we kept explicit the

expression on the radius r. It can easily be shown that in the limit r → 0 our spherical par-

tition function reduces to the integral representation of the instanton part of the Nekrasov

partition function ZN =
∑

k Λ
2NkZNek

k,N , where ZNek
k,N is given by

ZNek
k,N =

1

k!

ǫk

(2πiǫ1ǫ2)k

∮ k
∏

s=1

dσs
P (σs)P (σs + ǫ)

k
∏

s<t

σ2st(σ
2
st − ǫ2)

(σ2st − ǫ21)(σ2st − ǫ22)
(2.16)

with P (σs) =
∏N
j=1(σs − aj) and Λ the RGE invariant scale.

In order to prove this, let’s start by considering (2.14); because of the identity Γ(z) =

Γ(1 + z)/z, ZIJ and ZgaugeZadj can be rewritten as

ZIJ =
k∏

s=1

N∏

j=1

1

(rσs − raj − ims

2
)(rσs − raj + rǫ− ims

2
)

(2.17)

k∏

s=1

N∏

j=1

Γ
(
1− irσs + iraj −

ms

2

)

Γ
(
1 + irσs − iraj −

ms

2

) Γ
(
1 + irσs − ir (aj − ǫ) + ms

2

)

Γ
(
1− irσs + ir (aj − ǫ) + ms

2

)

ZgaugeZadj =
k∏

s<t

(
rσst + imst

2

) (
rσst − imst

2

) (
rσst + rǫ+ imst

2

) (
rσst − rǫ+ imst

2

)
(
rσst − rǫ1 − imst

2

) (
rσst + rǫ1 − imst

2

) (
rσst − rǫ2 − imst

2

) (
rσst + rǫ2 − imst

2

) (2.18)

(
ǫ

irǫ1ǫ2

)k k∏

s 6=t

Γ
(
1− irσst − irǫ− mst

2

)

Γ
(
1 + irσst + irǫ− mst

2

) Γ
(
1− irσst + irǫ1 −

mst

2

)

Γ
(
1 + irσst − irǫ1 −

mst

2

) Γ
(
1− irσst + irǫ2 −

mst

2

)

Γ
(
1 + irσst − irǫ2 −

mst

2

)

The lowest term in the expansion around r = 0 of (2.17) comes from the ~m = ~0 sector, and

is given by

1

r2kN

k
∏

s=1

N
∏

j=1

1

(σs − aj)(σs − aj + ǫ)
(2.19)

On the other hand, (2.18) starts as

(

ǫ

irǫ1ǫ2

)k

(f(~m) + o(r)) (2.20)
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with f(~m) ratio of Gamma functions independent on r. With this, we can conclude that

the first term in the expansion originates from the ~m = ~0 contribution, and (2.12) reduces

to (2.16), with Λ = qr−1 with q being the classical instanton action contribution.

2.2 Classification of the poles

The explicit evaluation of the partition function (2.12) given above passes by the classi-

fication of the poles in the integrand. We now show that these are classified by Young

tableaux, just like for the Nekrasov partition function [1]. More precisely, we find a tower

of poles for each box of the Young tableaux labelling the tower of Kaluza-Klein modes due

to the string corrections.

The geometric phase of the GLSM is encoded in the choice of the contour of integration

of (2.12), which implements the suitable stability condition for the hyper-Kähler quotient.

In our case the ADHM phase corresponds to take ξ > 0 and this imposes to close the

contour integral in the lower half plane. Following the discussion of [10], let us summarize

the possible poles and zeros of the integrand (n > 0):

poles (σ(p)) zeros (σ(z))

I σ
(p)
s = aj − i

r (n+ |ms|
2 ) σ

(z)
s = aj +

i
r (1 + n+ |ms|

2 )

J σ
(p)
s = aj − ǫ+ i

r (n+ |ms|
2 ) σ

(z)
s = aj − ǫ− i

r (1 + n+ |ms|
2 )

χ σ
(p)
st = −ǫ− i

r (1 + n+ |mst|
2 ) σ

(z)
st = −ǫ+ i

r (n+ |mst|
2 )

B1 σ
(p)
st = ǫ1 − i

r (n+ |mst|
2 ) σ

(z)
st = ǫ1 +

i
r (1 + n+ |mst|

2 )

B2 σ
(p)
st = ǫ2 − i

r (n+ |mst|
2 ) σ

(z)
st = ǫ2 +

i
r (1 + n+ |mst|

2 )

Poles from J do not contribute, being in the upper half plane. Consider now a pole for

I, say σ
(p)
1 ; the next pole σ

(p)
2 can arise from I, B1 or B2, but not from χ, because in this

case it would be cancelled by a zero from J . Moreover, if it comes from I, σ
(p)
2 should

correspond to a twisted mass aj different from the one for σ
(p)
1 , or the partition function

would vanish (as explained in full detail in [10]). In the case σ
(p)
2 comes from B1, consider

σ
(p)
3 : again, this can be a pole from I, B1 or B2, but not from χ, or it would be cancelled by

a zero of B2. This reasoning takes into account all the possibilities, so we can conclude that

the poles are classified by N Young tableaux {~Y }k = (Y1, . . . , YN ) such that
∑N

j=1 |Yj | = k,

which describe coloured partitions of the instanton number k. These are the same as the

ones used in the pole classification of the Nekrasov partition function, with the difference

that to every box is associated not just a pole, but an infinite tower of poles, labelled by a

positive integer n; i.e., we are dealing with three-dimensional Young tableaux.

These towers of poles can be dealt with by rewriting near each pole

σs = −
i

r

(

ns +
|ms|
2

)

+ iλs (2.21)

In this way we resum the contributions coming from the “third direction” of the Young

tableaux, and the poles for λs are now given in terms of usual two-dimensional partitions.

As we will discuss later, this procedure allows for a clearer geometrical interpretation of

– 7 –
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the spherical partition function. Defining z = e−2πξ+iθ and ds = ns+
ms+|ms|

2 , d̃s = ds−ms

so that
∑

ms∈Z

∑

ns>0 =
∑

d̃s>0

∑

ds>0 we obtain the following expression:

ZS
2

k,N =
1

k!

∮ k
∏

s=1

d(rλs)

2πi
(zz̄)−rλsZ1lZvZav (2.22)

where2

Z1l =

(
Γ(1− irǫ)Γ(irǫ1)Γ(irǫ2)

Γ(irǫ)Γ(1− irǫ1)Γ(1− irǫ2)

)k k∏

s=1

N∏

j=1

Γ(rλs + iraj)Γ(−rλs − iraj + irǫ)

Γ(1− rλs − iraj)Γ(1 + rλs + iraj − irǫ)

k∏

s 6=t

(rλs − rλt)
Γ(1 + rλs − rλt − irǫ)Γ(rλs − rλt + irǫ1)Γ(rλs − rλt + irǫ2)

Γ(−rλs + rλt + irǫ)Γ(1− rλs + rλt − irǫ1)Γ(1− rλs + rλt − irǫ2)
(2.23)

Zv =
∑

d̃1,...,d̃k ≥ 0

((−1)Nz)d̃1+...+d̃k

k∏

s=1

N∏

j=1

(−rλs − iraj + irǫ)d̃s
(1− rλs − iraj)d̃s

k∏

s<t

d̃t − d̃s − rλt + rλs

−rλt + rλs

(1 + rλs − rλt − irǫ)d̃t−d̃s

(rλs − rλt + irǫ)d̃t−d̃s

(rλs − rλt + irǫ1)d̃t−d̃s

(1 + rλs − rλt − irǫ1)d̃t−d̃s

(rλs − rλt + irǫ2)d̃t−d̃s

(1 + rλs − rλt − irǫ2)d̃t−d̃s

(2.24)

Zav =
∑

d1,...,dk ≥ 0

((−1)N z̄)d1+...+dk

k∏

s=1

N∏

j=1

(−rλs − iraj + irǫ)ds
(1− rλs − iraj)ds

k∏

s<t

dt − ds − rλt + rλs

−rλt + rλs

(1 + rλs − rλt − irǫ)dt−ds

(rλs − rλt + irǫ)dt−ds

(rλs − rλt + irǫ1)dt−ds

(1 + rλs − rλt − irǫ1)dt−ds

(rλs − rλt + irǫ2)dt−ds

(1 + rλs − rλt − irǫ2)dt−ds

(2.25)

The Pochhammer symbol (a)d is defined as

(a)d =



















∏d−1
i=0 (a+ i) for d > 0

1 for d = 0
∏|d|
i=1

1

a− i for d < 0

(2.26)

Notice that this definition implies the identity

(a)−d =
(−1)d
(1− a)d

(2.27)

We observe that the 1
k! in (2.22) is cancelled by the k! possible orderings of the λs, so in

the rest of this paper we will always choose an ordering and remove the factorial.

Let us remark that Zv appearing in (2.24) is the vortex partition function of the GLSM

on equivariant R2 with equivariant parameter ~ = 1/r. This was originally computed in [13]

and recently discussed in the context of AGT correspondence in [11, 14–16].

As a final comment, let us consider the interesting limit ǫ1 → −ǫ2, which implies ǫ→ 0.

In this limit we can show that all the world-sheet instanton corrections to ZS
2

k,N vanish and

this is in agreement with the results of [17] about equivariant Gromov-Witten invariants

of the ADHM moduli space.

First of all, consider (2.23). The prefactor gives the usual coefficient ( ǫ
iǫ1ǫ2

)k, while

the Gamma functions simplify drastically, and we recover (2.16) with ǫ small, where the

2Here and in the following, we will always be shifting θ → θ+(k−1)π. This is needed in the non-abelian

case in order to match Zv with the Givental I-functions known in the mathematical literature: we have in

mind Grassmannians, flag manifolds [12] and the Hilbert scheme of points in section3.2 later on.
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classical factor (zz̄)−rλr plays the rôle of the usual regulator in the contour integral repre-

sentation of the Nekrasov partition function. Let us now turn to (2.24); for every Young

tableau, we have Zv = 1+ o(ǫ), where the 1 comes from the sector d̃s = 0. Indeed one can

show by explicit computation on the Young tableaux that for any d̃s 6= 0 Zv gets a positive

power of ǫ and therefore does not contribute in the ǫ→ 0 limit.

To clarify this point, let us consider a few examples. We will restrict to N = 1 for the

sake of simplicity.

• The easiest tableau is ( ); in this case λ = −ia and

Zv =
∑

d̃≥ 0

(−z)d̃ (irǫ)d̃
d̃!

= 1 +
∑

d̃≥ 1

(−z)d̃ (irǫ)d̃
d̃!

= 1 + o(ǫ) (2.28)

• Next are the tableaux ( ) and ( ). The expression of Zv for ( ) is given in (3.27);

there you can easily see from the two Pochhammers (irǫ)d̃ at the numerator that the

limit ǫ→ 0 forces the d̃s to be zero, leaving Zv = 1 + o(ǫ); similarly for ( ).

• The tableaux for k = 3 work as before. A more complicated case is ( ). One should

first consider the Pochhammers of type (irǫ)d̃ and (1)d̃; in this case, we have

(irǫ)d̃1(2irǫ)d̃4

(irǫ)d̃2−d̃1(irǫ)d̃3−d̃1(irǫ)d̃4−d̃2(irǫ)d̃4−d̃3(1)d̃4−d̃1
(2irǫ)d̃4−d̃1(1)d̃2−d̃1(1)d̃3−d̃1(1)d̃4−d̃2(1)d̃4−d̃3

d̃4 − d̃1 + irǫ

irǫ
(2.29)

Then one can easily see that this combination either starts with something which is

of order ǫ or higher, or is zero (i.e the contribution d̃1 6= 0, d̃2 = d̃3 = d̃4 = 0), unless

every d̃s = 0, in which case we get 1.

These examples contain all the possible issues that can arise in the general case.

3 Equivariant Gromov-Witten invariants of the instanton moduli space

We now turn to discuss the exact partition function (2.22) of the D1-D5 system on the

resolved A1 singularity. As discussed in the previous section, this contains a tower of

non-perturbative corrections to the prepotential of the four-dimensional gauge theory cor-

responding to the effective world-sheet instantons contributions. We will show in this

section that these corrections compute the Gromov-Witten invariants and gravitational

descendants of the ADHM moduli space. It has been argued in [18] and shown in [19] that

the spherical partition function computes the vacuum amplitude of the non-linear σ-model

(NLSM) in the infrared

〈0̄|0〉 = e−K (3.1)

where K is the quantum Kähler potential of the target space X. Let us rewrite the above

vacuum amplitude in a way which is more suitable for our purposes. Following [20, 21], let

us introduce the flat sections spanning the vacuum bundle satisfying

(~Daδ
c
b + Ccab)Vc = 0. (3.2)
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where Da is the covariant derivative on the vacuum line bundle and Ccab are the coefficients

of the OPE in the chiral ring of observables φaφb = Ccabφc. The observables {φa} provide a
basis for the vector space of chiral ring operators H0(X)⊕H2(X) with a = 0, 1, . . . , b2(X),

φ0 being the identity operator. The parameter ~ is the spectral parameter of the Gauss-

Manin connection. Specifying the case b = 0 in (3.2), we find that

Va = −~DaV0

this means that the flat sections are all generated by the fundamental solution J := V0 of

the equation

(~DaDb + CcabDc)J = 0 (3.3)

The metric on the vacuum bundle is given by a symplectic pairing of the flat sections

gāb = 〈ā|b〉 = V t
āEVb

and in particular the vacuum-vacuum amplitude, that is the spherical partition function,

can be written as the symplectic pairing

〈0̄|0〉 = J tEJ (3.4)

for a suitable symplectic form E [20] that will be specified later for our case. We remark

that since the ADHM moduli space is a non-compact holomorphic symplectic manifold,

the world-sheet instanton corrections are non-trivial only in presence of a non-vanishing

Ω-background. From the mathematical viewpoint, this amounts to work in the context of

equivariant cohomology of the target space H•
T (X) where T is the torus acting on X [24].

For example, for local P1 geometries this has interesting connections with integrable sys-

tems [22].

We point out that there is a natural correspondence of the results of supersymmet-

ric localization with the formalism developed by Givental for the computation of the flat

section J . Indeed, as we have discussed in section2, the computation of the spherical

partition function via localization makes use of a supersymmetric charge which closes on

a U(1) isometry of the sphere. This is precisely the setting considered by Givental in [23]

to describe S1-equivariant Gromov-Witten invariants. Indeed, in this approach one con-

siders holomorphic maps which are equivariant with respect to the maximal torus of the

sphere automorphisms S1 ⊂ PSL(2,C). This is to be identified with the U(1) isometry on

which the supersymmetry algebra closes. As a consequence, the equivariant parameter ~

of Givental’s S1 action gets identified with the one of the vortex partition functions arising

in the localization of the spherical partition function.

Since Givental’s formalism plays a major rôle in the subsequent discussion, let us

first describe it briefly, see [24] for details. Givental’s small J -function is given by the

H0
T (X)⊕H2

T (X) valued generating function

JX(τ, ~) = eτ/~

(

1 +
∑

d

Qdedτ
〈

φa

~(~− ψ1)

〉

X0,1,d

φa

)

(3.5)
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where τ = τaφa, ψ1 is the gravitational descendant insertion at the marked point and

the sigma model expectation value localizes on the moduli space X0,1,d of holomorphic

maps of degree d ∈ N>0 from the sphere with one marked point to the target space X.

The world-sheet instanton corrections are labelled by the parameter Qd =
∏b2(X)
i=1 Qdii with

Qi = e−t
i
, ti being the complexified Kähler parameters.

Givental has shown how to reconstruct the J -function from a set of oscillatory inte-

grals, the so called “I-functions” which are generating functions of hypergeometric type

in the variables ~ and Q. We observe that Givental’s formalism has been developed orig-

inally for abelian quotients, more precisely for complete intersections in quasi-projective

toric varieties. In this case, the I function is the generating function of solutions of the

Picard-Fuchs equations for the mirror manifold X̌ of X and as such can be expressed in

terms of periods on X̌.

This formalism has been extended to non-abelian GLSM in [25, 26]. The Gromov-

Witten invariants for the non-abelian quotient M//G are conjectured to be expressible in

terms of the ones of the corresponding abelian quotient M//T , T being the maximal torus

of G, twisted by the Euler class of a vector bundle over it. The corresponding I-function
is obtained from the one associated to the abelian quotients multiplied by a suitable factor

depending on the Chern roots of the vector bundle. The first example of this kind was the

quantum cohomology of the Grassmanian discussed in [27]. This was rigorously proved

and extended to flag manifolds in [25]. As we will see, our results give evidence of the

above conjecture in full generality, though a rigorous mathematical proof of this result is

not available at the moment, see [12] for a more detailed discussion.3

In order to calculate the equivariant Gromov-Witten invariants from the above func-

tions, one has to consider their asymptotic expansion in ~. It is clear from (3.5) that up

to the exponential prefactor, the J function expands as

1 +
J (2)

~2
+
J (3)

~3
+ . . . (3.6)

such that each coefficient is a cohomology-valued formal power series in the Q-variables.

We observe that the coefficient of the ~−2 term in the expansion is directly related to the

Gromov-Witten prepotential F . Indeed from (3.5) we deduce that J (2)a = ηab∂bF where

ηab is the inverse topological metric. Higher order terms in (3.6) are related to gravitational

descendant insertions.

The analogous expansion for IX(q, ~) reads

I(0) +
I(1)

~
+
I(2)

~2
+ . . . (3.7)

and the coefficients I(0), I(1) provide the change of variables which transforms I into J
defining the equivariant mirror map. If I(1) = 0 the equivariant mirror map is trivial and

the two functions coincide.4

3A related issue concerning the equivalence of symplectic quotients and GIT quotients via the analysis

of vortex moduli space has been also discussed in [28].
4Usually, one splits I(1) =

∑
s psg

s(z) +
∑

i p̃ih
i(z), with ps cohomology generators and p̃i equivariant
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We are now ready to state the dictionary between Givental’s formalism and the spher-

ical partition function

ZS
2
=

∮

dλZ1l

(

z−r|λ|Zv

)(

z̄−r|λ|Zav

)

(3.8)

with dλ =
∏rank
α=1 dλα and |λ| = ∑

α λα. Our claim is that Zv is to be identified with

Givental I function upon identifying the vortex counting parameter z with Q, λα with the

generators of the equivariant cohomology and r = 1/~. To extract the Gromov-Witten

invariants from the spherical partition function one has then to implement the procedure

outlined above to compute the J function. This is obtained by choosing a suitable normal-

ization factor Nv such that the resulting vortex partition function has the same expansion

as (3.6). From the viewpoint of the quantum Kähler potential, this normalization fixes the

proper Kähler frame in which (3.4) holds, thus

J tEJ =
ZS

2

|Ntot|2
(3.9)

and J = I/Nv. Notice that the normalization factor Nv is λ independent and that the

symplectic pairing E is provided by the contour integral in the λs with measure given by

the one-loop partition function Z1l as appearing in (3.8). Actually, also the symplectic

pairing has to be properly normalized to give the classical equivariant intersection of the

target space. Henceforth the overall normalization Ntot = N1lNv appears in (3.9). This

amounts to a suitable choice of the renormalization scheme for the one-loop determinants

appearing in ZS
2
which ensures the spherical partition function to reproduce the correct

classical (equivariant) intersection pairing of the cohomology of the target space in the

r → 0 limit. This has to be found in a case by case analysis and will be specified further

in the examples discussed in the following subsections.

From the above discussion we deduce that the spherical partition function of the D1-

D5 GLSM provide conjectural formulae for Givental’s I and J -functions of the ADHM

instanton moduli space as follows

Ik,N =
∑

d1,...,dk ≥ 0

((−1)Nz)d1+...+dk

k∏

s=1

N∏

j=1

(−rλs − iraj + irǫ)ds
(1− rλs − iraj)ds

k∏

s<t

dt − ds − rλt + rλs

−rλt + rλs

(1 + rλs − rλt − irǫ)dt−ds

(rλs − rλt + irǫ)dt−ds

(rλs − rλt + irǫ1)dt−ds

(1 + rλs − rλt − irǫ1)dt−ds

(rλs − rλt + irǫ2)dt−ds

(1 + rλs − rλt − irǫ2)dt−ds

(3.10)

where λs are the Chern roots of the tautological bundle of the ADHM moduli space.

From the above expression we find that the asymptotic behaviour in ~ is

Ik,N = 1 +
I(N)

~N
+ . . . (3.11)

parameters of H2
T (X). The functions I and J are related by J (~, q) = e−f0(z)/~e−

∑
i
p̃ih

i(z)/~I(~, z(q));

comparing with our notation, we identify f0(z)/~ = ln I(0). The mirror map is given by (in the simple

example with just one p and p̃) q = ln z + g(z)

I(0)(z)
, because of a normalization for I slightly different from

the standard one; in our case, g(z) = 0 since p = 0 in the fully equivariant case. The factor e−
∑

i
p̃ih

i(z)/~

is the so-called equivariant mirror map, and has to be identified with what we call Nv.
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Therefore, I(0) = 1 for every k,N , while I(1) = 0 when N > 1; this implies that the

equivariant mirror map is trivial, namely Ik,N = Jk,N , for N > 1. The N = 1 case will

be discussed in detail in the following subsection. The structure of (3.10) supports the

abelian/non-abelian correspondence conjecture of [29]; indeed the first factor in the first

line corresponds to the abelian quotient by the Cartan torus (C∗)k while the remaining

factors express the twisting due to the non-abelian nature of the quotient.

Finally, let us notice5 that for GIT quotients, and in particular for Nakajima quiver

varieties, the notion of quasimaps and of the corresponding I-function were introduced

in [30]. We notice that our Ik,N as in (3.10) should match the quasi-map I-function and

therefore, as a consequence of [17], should compute the J -function of the instanton mod-

uli space. Let us underline that the supersymmetric localization approach applies also to

other classical groups and then can be applied to study the quantum cohomology of general

Kähler quotients.

3.1 Cotangent bundle of the projective space

As a first example, let us consider the case M1,N ≃ C2 × T ∗CPN−1. The integrated

spherical partition function has the form:

Z1,N =
N
∑

j=1

(zz̄)irajZ
(j)
1l Z

(j)
v Z(j)

av (3.12)

The j-th contribution comes from the Young tableau (• , . . . , , . . . , •), where the box is

in the j-th position; this means we have to consider the pole λ1 = −iaj . Explicitly:

Z
(j)
1l =

Γ (irǫ1) Γ (irǫ2)

Γ (1− irǫ1) Γ (1− irǫ2)
N
∏

l=1
l 6=j

Γ (iralj) Γ (−iralj + irǫ)

Γ (1− iralj) Γ (1 + iralj − irǫ)

Z(j)
v = NFN−1









{

irǫ, (−iralj + irǫ)Nl=1
l 6=j

}

{

(1− iralj)Nl=1
l 6=j

} ; (−1)N z









Z(j)
av = NFN−1









{

irǫ, (−iralj + irǫ)Nl=1
l 6=j

}

{

(1− iralj)Nl=1
l 6=j

} ; (−1)N z̄









(3.13)

Let us consider in more detail the case N = 2. In this case the instanton moduli space

reduces to C2 × T ∗P1 and is the same as the moduli space of the Hilbert scheme of two

pointsM1,2 ≃M2,1. In order to match the equivariant actions on the two moduli spaces,

we identify

a1 = ǫ1 + 2a , a2 = ǫ2 + 2a (3.14)

so that a12 = ǫ1 − ǫ2. Then we have

Z1,2 = (zz̄)ir(2a+ǫ1)Z
(1)
1l Z

(1)
v Z(1)

av + (zz̄)ir(2a+ǫ2)Z
(2)
1l Z

(2)
v Z(2)

av (3.15)

5We thank D.E. Diaconescu, A. Okounkov and D. Maulik for clarifying discussions on this issue.
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where

Z
(1)
1l =

Γ (irǫ1) Γ (irǫ2)

Γ (1− irǫ1) Γ (1− irǫ2)
Γ (−irǫ1 + irǫ2) Γ (2irǫ1)

Γ (1 + irǫ1 − irǫ2) Γ (1− 2irǫ1)

Z(1)
v = 2F1

(

{irǫ, 2irǫ1}
{1 + irǫ1 − irǫ2}

; z

)

Z(1)
av = 2F1

(

{irǫ, 2irǫ1}
{1 + irǫ1 − irǫ2}

; z̄

)

(3.16)

The other contribution is obtained by exchanging ǫ1 ←→ ǫ2. By identifying Z
(1)
v as the

Givental I-function, we expand it in r = 1
ℏ
in order to find the equivariant mirror map;

this gives

Z(1)
v = 1 + o(r2), (3.17)

which means there is no equivariant mirror map and I = J . The same applies to Z
(2)
v .

Therefore, the only normalization to be dealt with is the one of the symplectic pairing,

namely Z1l. As discussed in section2, there is a finite term ambiguity related to the choice of

the renormalization scheme of the one-loop determinants. In general the implementation of

ζ-function regularization induces the presence of terms in the Euler-Mascheroni constant

γ. In particular, as it follows immediately from (2.15), this happens if the sum of the

arguments of the Gamma-functions in Z1l is different from zero. In order to compensate

these terms, we multiply by an appropriate ratio of Gamma functions which starts with 1

in the r expansion and makes the overall argument zero; this sets γ to zero. Moreover, a

renormalization scheme exists such that the expansion of the spherical partition function

reproduces the classical intersection pairing of equivariant cohomology.6 In order to get

the correct result we then multiply by a further factor of zz̄ to the suitable power.

Let us see how this works in our example. In (3.15), Z
(1)
1l and Z

(2)
1l contain an excess

of 4ir(ǫ1 + ǫ2) in the argument of the Gamma functions (2ir(ǫ1 + ǫ2) from the numerator

and another 2ir(ǫ1 + ǫ2) from the denominator); this would imply

Z
(1)
1l = − 1

2ǫ12ǫ2(ǫ1 − ǫ2)r4
+

2iγǫ

ǫ12ǫ2(ǫ1 − ǫ2)r3
+ o(r−2) (3.18)

and similarly for Z
(2)
1l . To eliminate the Euler-Mascheroni constant, we normalize the

partition function multiplying it by7

(zz̄)−2ira

(

Γ(1− irǫ1)Γ(1− irǫ2)
Γ(1 + irǫ1)Γ(1 + irǫ2)

)2

(3.19)

so that now we have

(

Γ(1− irǫ1)Γ(1− irǫ2)
Γ(1 + irǫ1)Γ(1 + irǫ2)

)2

Z
(1)
1l = − 1

2ǫ12ǫ2(ǫ1 − ǫ2)r4
+ o(r−2) (3.20)

6Similar arguments appeared also in [32].
7The normalization here has been chosen having in mind the M2,1 case; see the next paragraph.
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Expanding the normalized partition function in r up to order r−1, we obtain8

Znorm
1,2 =

1

r2ǫ1ǫ2

[

1

2r2ǫ1ǫ2
+

1

4
ln2(zz̄)− ir(ǫ1 + ǫ2)

(

− 1

12
ln3(zz̄)− ln(zz̄)(Li2(z) + Li2(z̄))

+2(Li3(z) + Li3(z̄)) + 3ζ(3)

)]

(3.21)

The first term in (3.21) correctly reproduces the Nekrasov partition function of M1,2 as

expected, while the other terms compute the H2
T (X) part of the genus zero Gromov-Witten

potential in agreement with [31]. We remark that the quantum part of the Gromov-Witten

potential turns out to be linear in the equivariant parameter ǫ1 + ǫ2 as inferred in section2

from general arguments.

We can also compute it with the Givental formalism: expanding the J function up to

order r2, one finds

J = 1 + r2(−ǫ1ǫ2 − i(ǫ1 + ǫ2)λ1 + λ21)Li2(z) + o(r3) (3.22)

and the coefficient of −λ1 — which is the cohomology generator — at order r2 will give

the first z derivative of the prepotential.

3.2 Hilbert scheme of points

Let us now turn to the Mk,1 case, which corresponds to the Hilbert scheme of k points.

This case was analysed in terms of Givental formalism in [33]. It is easy to see that (3.10)

reduces for N = 1 to their results. As remarked after equation (3.10) in the N = 1 case

there is a non-trivial equivariant mirror map to be implemented. As we will discuss in a

moment, this is done by defining the J function as J = (1 + z)irkǫI, which corresponds

to invert the equivariant mirror map; in other words, we have to normalize the vortex part

by multiplying it with (1+ z)irkǫ, and similarly for the antivortex. In the following we will

describe in detail some examples and extract the relevant Gromov-Witten invariants for

them. As we will see, these are in agreement with the results of [34].

For k = 1, the only Young tableau ( ) corresponds to the pole λ1 = −ia. This case is

simple enough to be written in a closed form; we find

ZS
2

1,1 = (zz̄)ira
Γ(irǫ1)Γ(irǫ2)

Γ(1− irǫ1)Γ(1− irǫ2)
(1 + z)−irǫ(1 + z̄)−irǫ (3.23)

From this expression, it is clear that the Gromov-Witten invariants are vanishing.

Actually, we should multiply (3.23) by (1+z)irǫ(1+ z̄)irǫ in order to recover the J -function.
Instead of doing this, we propose to use Z1,1 as a normalization for Zk,1 as

Znorm
k,1 =

ZS
2

k,1

(−r2ǫ1ǫ2ZS2

1,1)
k

(3.24)

8Notice that the procedure outlined above does not fix a remnant dependence on the coefficient of the

ζ(3) term in ZS2

. In fact, one can always multiply by a ratio of Gamma functions whose overall argument

is zero; this will have an effect only on the ζ(3) coefficient. This ambiguity does not affect the calculation

of the Gromov-Witten invariants.
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In this way, we go from I to J functions and at the same time we normalize the 1-loop

factor in such a way to erase the Euler-Mascheroni constant. The factor (−r2ǫ1ǫ2)k is to

make the normalization factor to start with 1 in the r expansion. In summary, we obtain

Znorm
1,1 = − 1

r2ǫ1ǫ2
(3.25)

Let us make a comment on the above normalization procedure. From the general arguments

discussed in the opening part of this section we expect the normalization to be independent

on λs. Moreover, from the field theory viewpoint, the normalization (3.24) is natural since

amounts to remove from the free energy the contribution of k free particles. On the other

hand, this is non trivial at all from the explicit expression of the I-function (3.10). Actually

a remarkable combinatorial identity proved in [33] ensures that e−I
(1)/~ = (1+ z)ik(ǫ1+ǫ2)/~

and then makes this procedure consistent.

Let us now turn to theM2,1 case. There are two contributions, ( ) and ( ), coming

respectively from the poles λ1 = −ia, λ2 = −ia− iǫ1 and λ1 = −ia, λ2 = −ia− iǫ2. Notice
once more that the permutations of the λ’s are cancelled against the 1

k! in front of the

partition function (2.12). We thus have

ZS
2

2,1 = (zz̄)ir(2a+ǫ1)Z
(col)
1l Z(col)

v Z(col)
av + (zz̄)ir(2a+ǫ2)Z

(row)
1l Z(row)

v Z(row)
av (3.26)

where, explicitly,

Z
(col)
1l =

Γ(irǫ1)Γ(irǫ2)

Γ(1− irǫ1)Γ(1− irǫ2)
Γ(2irǫ1)Γ(irǫ2 − irǫ1)

Γ(1− 2irǫ1)Γ(1 + irǫ1 − irǫ2)

Z(col)
v =

∑

d̃>0

(−z)d̃
d̃/2
∑

d̃1=0

(1 + irǫ1)d̃−2d̃1

(irǫ1)d̃−2d̃1

(irǫ)d̃1
d̃1!

(irǫ1 + irǫ)d̃−d̃1
(1 + irǫ1)d̃−d̃1

(2irǫ1)d̃−2d̃1

(d̃− 2d̃1)!

(1− irǫ2)d̃−2d̃1

(irǫ1 + irǫ)d̃−2d̃1

(irǫ)d̃−2d̃1

(1 + irǫ1 − irǫ2)d̃−2d̃1

Z(col)
av =

∑

d>0

(−z̄)d
d/2
∑

d1=0

(1 + irǫ1)d−2d1

(irǫ1)d−2d1

(irǫ)d1
d1!

(irǫ1 + irǫ)d−d1
(1 + irǫ1)d−d1

(2irǫ1)d−2d1

(d− 2d1)!

(1− irǫ2)d−2d1

(irǫ1 + irǫ)d−2d1

(irǫ)d−2d1

(1 + irǫ1 − irǫ2)d−2d1

(3.27)

Here we defined d = d1 + d2 and changed the sums accordingly. The row contribution can

be obtained from the column one by exchanging ǫ1 ←→ ǫ2. We then have

Z(col, row)
v = 1 + 2irǫLi1(−z) + o(r2) (3.28)

Finally, we invert the equivariant mirror map by replacing

Z(col, row)
v −→ e−2irǫLi1(−z)Z(col, row)

v = (1 + z)2irǫZ(col, row)
v

Z(col, row)
av −→ e−2irǫLi1(−z̄)Z(col, row)

av = (1 + z̄)2irǫZ(col, row)
av (3.29)

Now we can prove the equivalenceM1,2 ≃M2,1: by expanding in z, it can be shown that

Z
(1)
v (z) = (1 + z)2irǫZ

(col)
v (z) and similarly for the antivortex part; since Z

(1)
1l = Z

(col)
1l we
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conclude that Z(1)(z, z̄) = (1 + z)2irǫ(1 + z̄)2irǫZ(col)(z, z̄). The same is valid for Z(2) and

Z(row), so in the end we obtain

ZS
2

1,2(z, z̄) = (1 + z)2irǫ(1 + z̄)2irǫZS
2

2,1(z, z̄) (3.30)

Taking into account the appropriate normalizations, this implies

Znorm
1,2 (z, z̄) = Znorm

2,1 (z, z̄) . (3.31)

As further example, we will briefly comment about the M3,1 and M4,1 cases. For M3,1

there are three contributions to the partition function:

from the poles λ1 = −ia, λ2 = −ia− iǫ1, λ3 = −ia− 2iǫ1

from the poles λ1 = −ia, λ2 = −ia− iǫ1, λ3 = −ia− iǫ1 − iǫ2
from the poles λ1 = −ia, λ2 = −ia− iǫ2, λ3 = −ia− 2iǫ2

The study of the vortex contributions tells us that there is an equivariant mirror map,

which has to be inverted; however, this is taken into account by the normalization factor.

Then, the r expansion gives

Znorm

3,1 =
1

r4(ǫ1ǫ2)2

[

− 1

6r2ǫ1ǫ2
− 1

4
ln2(zz̄) + ir(ǫ1 + ǫ2)

(

− 1

12
ln3(zz̄)− ln(zz̄)(Li2(z) + Li2(z̄))

+2(Li3(z) + Li3(z̄)) + 3ζ(3)

)]

(3.32)

ForM4,1 we have five contributions:

from λ1 = −ia, λ2 = −ia− iǫ1, λ3 = −ia− 2iǫ1, λ4 = −ia− 3iǫ1

from λ1 = −ia, λ2 = −ia− iǫ1, λ3 = −ia− 2iǫ1, λ4 = −ia− iǫ2
from λ1 = −ia, λ2 = −ia− iǫ1, λ3 = −ia− iǫ2, λ4 = −ia− iǫ1 − iǫ2
from λ1 = −ia, λ2 = −ia− iǫ2, λ3 = −ia− 2iǫ2, λ4 = −ia− iǫ1
from λ1 = −ia, λ2 = −ia− iǫ2, λ3 = −ia− 2iǫ2, λ4 = −ia− 3iǫ2

Again, we normalize and expand in r to obtain

Znorm
4,1 = −

1

r6(ǫ1ǫ2)3

[
−

1

24r2ǫ1ǫ2
−

1

8
ln2(zz̄) + ir(ǫ1 + ǫ2)

(
−

1

24
ln3(zz̄)− ln(zz̄)

(
1

2
Li2(z) +

1

2
Li2(z̄)

)

+2

(
1

2
Li3(z) +

1

2
Li3(z̄)

)
+

3

2
ζ(3)

)]
(3.33)

As we will discuss in the appendix the resulting Gromov-Witten potentials for these cases

are in agreement with the quantum multiplication in the Hilbert scheme of points obtained

in [34].
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4 Donaldson-Thomas theory and stringy corrections to the Seiberg-Wit-

ten prepotential

It is very interesting to analyse our system also from the D5-brane dynamics viwepoint.

This is a six-dimensional theory which should be related to higher rank equivariant

Donaldson-Thomas theory on C2 × P1. Indeed an interesting and promising aspect is

that for N > 1 the D1 contributions to the D5 gauge theory dynamics do not factor in

abelian N = 1 terms and thus keep an intrinsic non-abelian nature, contrary to what

happens for the D(−1) contributions in the Coulomb phase [35].

To clarify this connection, let us notice that a suitable framework to compactify the

Donaldson-Thomas moduli space was introduced in [36] via ADHM moduli sheaves. In this

context one can show that Ik,1 = IDT . Moreover the Ik,1-function reproduces the 1-legged

Pandharipande-Thomas vertex as in [37] for the case of the Hilbert scheme of points of

C2, while the more general ADHM case should follow as the generalization to higher rank.

The case of the Hilbert scheme of points is simpler and follows by [38].

The partition function of the D1-branes computed in the previous sections provides non

perturbative corrections to the D5-brane dynamics. The vortices represent the contribution

of D(-1)-branes located at the North and South pole of the blown-up two-sphere. It is then

natural to resum the D(-1)-D1-brane contributions as

ZDTN =
∑

k

q2kNZholk,N =
∑

k,β

Nk,βq
2kNzβ (4.1)

where q = e2πiτ is the D1-brane counting parameter and z the D(-1)-brane one. In the

second equality we considered the expansion z of the holomorphic part of the spherical

partition function, where β ∈ H2(Mk,N ,Z).

It is interesting to study the free-energy of the above defined partition function and

its reductions in the four dimensional blow-down limit r → 0. Indeed, let us observe

that the D5 brane theory in this limit is described by an effective four-dimensional N = 2

supersymmetric gauge theory at energies below the UV cutoff provided by the inverse radius

of the blown-up sphere 1/r [39]. Comparing the expansion (4.1) to the results of section2.1,

we obtain that the former reduces to the standard Nekrasov instanton partition function

upon the identification q = Λr. Moreover, keeping into account the limiting behaviour as

ǫi ∼ 0 we have just discussed in the previous subsection, namely that ZS
2

k,N has the same

divergent behaviour as ZNekk,N due to the equivariant regularization of the R4 volume 1
ǫ1ǫ2

,

one can present the resummed partition function (4.1) in the form

ZDTN = exp

{

− 1

ǫ1ǫ2
E(a, ǫi,Λ; r, z)

}

(4.2)

where E is the total free energy of the system and is a regular function as ǫi ∼ 0. The

effective geometry arising in the semiclassical limit ǫ1, ǫ2 → 0 of (4.2) would provide infor-

mations about the mirror variety encoding the enumerative invariants in (4.1).

In order to pursue this program it is crucial to complement our analysis by including

the perturbative sector of the N D5-brane theory in the geometry C2 × T ∗P1 × C

– 18 –



J
H
E
P
0
1
(
2
0
1
4
)
0
3
8

whose world-volume theory is described at low-energy by a N = 1 super Yang-Mills

theory in six dimensions on C2 × P1. Its perturbative contribution can be computed

by considering the dimensional reduction down to the two-sphere. This gives rise to a

N = (4, 4) supersymmetric gauge theory, containing three chiral multiplets in the adjoint

representation with lowest components (Zi,Φ), i = 1, 2, where Z1, Z2 and Φ describe

the fluctuations along C2 and C respectively. Around the flat connection, the vacua are

described by covariantly constant fields Dadj(Φ)Zi = 0 satisfying

[Z1, Z2] = 0 (4.3)

The Cartan torus of the rotation group acts as (Z1, Z2)→ (e−ǫ1Z1, e
−ǫ2Z2) preserving the

above constraints. The one-loop fluctuation determinants for this theory are given by

det(Dadj(Φ)) det(Dadj(Φ) + ǫ1 + ǫ2)

det(Dadj(Φ) + ǫ1) det(Dadj(Φ) + ǫ2)
. (4.4)

The zeta function regularization of the above ratio of determinants reads

exp

[

− d

ds

1

Γ(s)

∫ ∞

0

dt

t1−s
tr etDadj(Φ)(1− eǫ1t)(1− eǫ2t)

]

s=0

(4.5)

which can be seen as the regularization of the infinite product

∞
∏

j,k

∏

l 6=m

(

Γ (1− ir(alm − jǫ1 − kǫ2))
irΓ (ir(alm − jǫ1 − kǫ2))

)−1

(4.6)

The above formula is a deformation of the standard formula expressing the perturbative

part of the Nekrasov partition function

ZPertNek =
∏

l 6=m

∏

j,k≥1

X−1
lm,j,k =

∏

l 6=m

Γ2(alm; ǫ1, ǫ2) (4.7)

with Xlm,j,k = alm − jǫ1 − kǫ2, in terms of Barnes double Γ-function [40] (see also [41]).

Eq.(4.6) is obtained by resumming the Kaluza-Klein modes on the two-sphere over each

four dimensional gauge theory mode organized in spherical harmonic SU(2) multiplets.

This can be done by applying the methods in [10] to each tower before boson/fermion

cancellation. More details on the derivation can be found in appendix C. Summarizing,

the D5-D5 partition function is then given by

ZS
2

D5−D5 =
∏

l 6=m

Γ2(alm; ǫ1, ǫ2)
Γ3

(

alm; ǫ1, ǫ2,
1
ir

)

Γ3

(

alm; ǫ1, ǫ2,− 1
ir

) (4.8)

and implements the finite r corrections to the perturbative Nekrasov partition function.

The equality in (4.8) follows by regularizing the infinite set of poles of the ratio of Γ func-

tions. Indeed by using the standard properties of the Γ-function is it easy to see that (4.8)

reduces in the r → 0 limit to (4.7) plus corrections expressible in power series in r and ǫ1, ǫ2.

More detailed calculations of the first terms of this expansion are presented in appendix C.
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We thus conclude that in the limit r → 0, E → FNek the Nekrasov prepotential of

the N = 2 gauge theory in the Ω-background. Therefore for r → 0 the effective geometry

arising in the semiclassical limit of (4.2) is the Seiberg-Witten curve of pure N = 2 super

Yang-Mills [40]. Higher order corrections in r to this geometry encode the effect of stringy

corrections. Indeed, the total free energy contains additional world-sheet corrections in z

and therefore

E = FNek(a, ǫi,Λ) + Fstringy(a, ǫi,Λ; r, z)

These are genuine string corrections to the N = 2 gauge theory in the Ω-background

describing the finite radius effects of the blown-up sphere resolving the A1 orbifold singu-

larity. Let us notice that Fstringy is higher order in the ǫi expansion with respect to FNek,
therefore, in this scaling scheme, the resulting Seiberg-Witten limit limǫi→0 E = FSW is

unchanged.

As we discussed in the previous section, the stringy contributions are given by a classi-

cal term describing the equivariant classical intersection theory in the ADHM moduli space

and a world-sheet instanton contribution describing its quantum deformation, that is

Fstringy(a, ǫi,Λ; r, z) = Fstringycl (ǫi; r, z) + ǫFstringyws (a, ǫi,Λ; r, z). (4.9)

Following [42] we can consider the effect of a partial Ω-background by studying the

limit ǫ2 → 0 in the complete free energy. Defining

V = limǫ2→0
1

ǫ2
lnZDTN (4.10)

we find that

V =WNS +Wstringy (4.11)

where WNS is the Nekrasov-Shatashvili twisted superpotential of the reduced two dimen-

sional gauge theory and Wstringy are its stringy corrections. According to [42], WNS can

be interpreted as the Yang-Yang function of the quantum integrable Hitchin system on the

M-theory curve (the sphere with two maximal punctures for the pure N = 2 gauge the-

ory). The superpotential V should be related to the quantum deformation of the relevant

integrable system underlying the classical Seiberg-Witten geometry [17].

5 Conclusions

In this paper we considered the dynamics of a D1-D5 system on a resolved A1 singularity.

We calculated exactly the partition function of the GLSM describing the D1 dynamics and

found that this provides finite S2-size corrections to the Nekrasov instanton partition func-

tion. We showed that these corrections describe the quantum cohomology of the ADHM

moduli space by identifying the vortex partition functions appearing in the supersymmet-

ric localization of the D1 partition function with Givental’s I-function. A more detailed

account on the identification between vortices and equivariant Gromov-Witten invariants

will be presented in [12]. By using these results, we proposed a contour integral formula

for the Givental I-function of the ADHM moduli space. This provide a conjectural explicit
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formula for the quasi-map I-function defined in [30]. In the case of the Hilbert scheme of

points our results match those of [33, 34]. This suggests to push further the comparison

between our approach and that of [17] based on quantum deformed integrable systems.

In particular, the Yangian action on the quantum cohomology should be also realized on

the Ik,N -function. This analysis would also be relevant in order to gain insights on a

possible AGT counterpart [43] of our results. We observe that the finite size corrections

vanish in the limit ǫ = ǫ1 + ǫ2 → 0; this is consistent with the results of [17]. From the

string-theoretic viewpoint, we notice that this limit leads to an anti-self-dual Ω-background

and corresponds to a supersymmetry enhancement whose mark point is complete boson-

fermion cancellation of the one-loop determinants. More precisely, for ǫ = 0 the Nekrasov

partition function we compute is interpreted in terms of type IIB superstring amplitudes in

graviphoton background. These are known to decouple from the Kähler modulus of the re-

solved two-sphere which sits in a hypermultiplet. The fact that for ǫ 6= 0 we find non trivial

corrections indicates that a world-sheet interpretation of the Nekrasov partition function

should be given in terms of (IIB) superstring amplitudes that couple also to hypermultiplet

moduli. Our results should also follow from more traditional world-sheet techniques. The

first finite r corrections to the D = 4 gauge theory should be computed by the disk ampli-

tudes with insertions of the string vertex corresponding to the blow-up mode. At finite r

one should be able to treat the open string computation on the resolved geometry.

We discussed also the D5-brane viewpoint and its relation to higher rank equivariant

Donaldson-Thomas (DT) on C2 × P1. Vortex counting on the D1-branes amount to con-

sider a full D5−D1−D(−1) system with D(−1) located at the North and South pole of the

two-sphere. We observe that for the rank one case a direct relationship with the quantum

cohomology of the Hilbert scheme of points of C2 was pointed out in [34, 37, 38]. A proposal

for the description of higher rank DT was formulated in [36] in terms of ADHM moduli

sheaves. This is strictly related to our approach and it would be interesting to further anal-

yse the relation between the two. Indeed, the mathematical counterpart of our approach to

the D1-D5 system corresponds to study the representations of the associated ADHM quiver

in the abelian category of coherent sheaves over P1 corresponding to a particular case of [36].

Let us remark that our results point toward the existence of an effective geometry

encoding these enumerative invariants. Indeed, we observed that the finite size corrections

do not affect the qualitative asymptotic behaviour as ǫ1, ǫ2 → 0 of the D1-D5 partition

function; this allowed us to define a generalization of the Seiberg-Witten prepotential

including effective world-sheet instantons. It would be interesting to further analyse the

effective geometry arising from this deformed prepotential and its modular properties.

This should be related to a suitable deformation of the quantum Hitchin integrable system

associated to the four-dimensional gauge theory [44–50].

Our approach can be extended in further directions:

• one can enlarge the D-brane construction to include matter sectors by considering

D5 branes multicovering the P1. These correspond to the regular branes of the

orbifold construction.

• one can replace A1 by a general ADE singularity. The D1-D5 system in the

corresponding resolved space provide a brane engineering of ADE quiver gauge
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theories. Our approach gives an alternative route to obtain the results of [55] and

the quantum deformation [56] and extend them by including finite-size corrections.

• one can also consider the resolution of the geometry C2/Γ×T ∗P1×C with D5-branes

along C2/Γ × P1 and D1s wrapping the exceptional divisors. The D1-branes in this

setting engineer the moduli space of instantons in supersymmetric gauge theory on

ALE space [57]. The D1 partition function computes the quantum cohomology of

Nakajima quiver varietes and the D1-D5 system probes DT invariant on ADE × P1.

This amounts to study the corresponding moduli space of sheaves over P1 [54]. This

system would compute finite size corrections to a quiver N = 2 gauge theory on

the ALE space [58–60] in terms of local DT theory on C2/Γ × P1. The case of the

Hilbert scheme of points was studied in [53].

• one can consider D5 branes wrapping more general (resolved) Calabi-Yau singular-

ities. The D1-D5 system would compute higher rank DT invariants for these spaces.

One interesting class is given by the non-commutative resolutions and their moduli

space of quivers [35, 61].

• a more general system of intersecting D5-branes can be considered where some of

the D5 branes fill the whole resolved ADE singularity and a transverse complex line.

This introduces surface operators in the gauge theory [62] and provides a set-up

to compute the quantum cohomology of their moduli spaces, such as for example

Laumon spaces [65] and partial flag varieties [66]. Our approach should be compared

with the results of [67]. Furthermore, we remark that the above constitutes a useful

set-up to study the AGT correspondence [49, 63, 64].

• one can promote our calculations at the K-theoretic level by considering an uplift

to M-theory. We expect in this case a direct link to the K-theoretic Givental func-

tions [51] as discussed in [14, 52] for the P1 target space case. This has applications to

the algebra of Wilson loop operators in Chern-Simons theory [68], as we will discuss

in [12], and provide moreover a direct link to K-theoretic DT theory. An interesting

observation [10, 52, 69, 70] is that gauge theories on squashed S3
b or S2 × S1 can be

computed via different gluings of K-theoretic vortex partition functions. We expect

that these could be interpreted in terms of topological membrane theory [71–73].

• another challenging direction concerns the higher genus extension of supersymmetric

localization to describe D-branes wrapping general Riemann surfaces. We expect

this to provide a cohomological field theory approach to compute the higher genus

quasi-maps of the relevant quiver [30].

• we remark finally that although we focused in this paper on unitary groups, our

approach can be applied to other classical gauge groups.
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A Equivariant quantum cohomology of Mk,1 in the oscillator formalism

Following the notation of [31] and [34], the Fock space description of the equivariant co-

homology of the Hilbert scheme of points of C2 is given in terms of creation-annihilation

operators αk, k ∈ Z obeying the Heisenberg algebra

[αp, αq] = pδp+q (A.1)

The vacuum is annihilated by the positive modes

αp|∅〉 = 0 , p > 0 (A.2)

and the natural basis of the Fock space is given by

|Y 〉 = 1

|Aut(Y )|∏i Yi

∏

i

αYi |∅〉 (A.3)

where |Aut(Y )| is the order of the automorphism group of the partition and Yi are the

lengths of the columns of the Young tableau Y . The total number of boxes of the Young

tableau is counted by the eigenvalue of the energy K =
∑

p>0 α−pαp. Fix now the subspace

Ker(K − k) for k ∈ Z+ and allow linear combinations with coefficients being rational

functions of the equivariant weights. This space is then identified with the equivariant

cohomology H∗
T (Mk,1,Q). More specifically

|Y 〉 ∈ H2n−2ℓ(Y )
T (Mk,1,Q) , (A.4)

where ℓ(Y ) denotes the number of parts of the partition Y .

The generator of the small quantum cohomology is then given by the state

|D〉 = −|2, 1k−2〉 which describes the divisor corresponding to the collision of two

point-like instantons.

The operator generating the quantum product by |D〉 is given by the quantum de-

formed Calogero-Sutherland Hamiltonian

HD≡(ǫ1+ǫ2)
∑

p>0

p

2

(−q)p+1

(−q)p−1α−pαp+
∑

p,q>0

[ǫ1ǫ2αp+qα−pα−q−α−p−qαpαq]−
ǫ1+ǫ2

2

(−q)+1

(−q)−1K

(A.5)
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We can then compute the basic three point function as 〈D|HD|D〉, where the inner product
is normalized to be

〈Y |Y ′〉 = (−1)K−ℓ(Y )

(ǫ1ǫ2)
ℓ(Y ) |Aut(Y )|∏i Yi

δY Y ′ (A.6)

The computation gives

〈D|HD|D〉 = (ǫ1+ǫ2)

(

(−q)2 + 1

(−q)2 − 1
− 1

2

(−q) + 1

(−q)− 1

)

〈D|α−2α2|D〉 = (−1)(ǫ1+ǫ2)
1 + q

1− q 〈D|D〉,

where we have used 〈D|α−2α2|D〉 = 2〈D|D〉. By (A.6), we finally get

〈D|HD|D〉 =
ǫ1 + ǫ2

(ǫ1ǫ2)
k−1

1

2(k − 2)!

(

1 + 2
q

1− q

)

(A.7)

Rewriting 1+2 q
1−q = (q∂q)

3
[

(lnq)3

3! + 2Li3(q)
]

, we obtain that the genus zero prepotential is

F 0 = F 0
cl +

ǫ1 + ǫ2

(ǫ1ǫ2)
k−1

1

2(k − 2)!

[

(lnq)3

3!
+ 2Li3(q)

]

(A.8)

The above formula precisely agrees with the results of section3, see (3.32) and (3.33) for

the cases k = 3, 4 respectively.

B Multi-instantons in the higher rank case

Let us considerM2,2. In this case, five Young tableaux are contributing:

( , •) from the poles λ1 = −ia1, λ2 = −ia1 − iǫ1
( , •) from the poles λ1 = −ia1, λ2 = −ia1 − iǫ2
(• , ) from the poles λ1 = −ia2, λ2 = −ia2 − iǫ1
(• , ) from the poles λ1 = −ia2, λ2 = −ia2 − iǫ2
( , ) from the poles λ1 = −ia1, λ2 = −ia2

The order r coefficient in the expansion of the various vortex functions is zero, so there is

no equivariant mirror map to be inverted. As normalization, we will choose the simplest

one, that is we multiply by a factor

(zz̄)ir(ǫ1+ǫ2−a1−a2)
(

Γ(1− irǫ1)Γ(1− irǫ2)
Γ(1 + irǫ1)Γ(1 + irǫ2)

)4

(B.1)

The expansion then gives

Znorm
2,2 =

1

r6(ǫ1ǫ2)2((ǫ1 + ǫ2)2 − (a1 − a2)2)

[
8(ǫ1 + ǫ2)

2 + ǫ1ǫ2 − 2(a1 − a2)
2

r2((2ǫ1 + ǫ2)2 − (a1 − a2)2)((ǫ1 + 2ǫ2)2 − (a1 − a2)2)

+
1

2
ln2(zz̄)− ir(ǫ1 + ǫ2)

(
−

1

6
ln3(zz̄)− ln(zz̄)(2Li2(z) + 2Li2(z̄))

+2(2Li3(z) + 2Li3(z̄)) + c(ǫi, ai)ζ(3)

)]
(B.2)

where

c(ǫi, ai) = 8− 4ǫ1ǫ2(ǫ1ǫ2 + 2(ǫ1 + ǫ2)
2 + 4(a1 − a2)2)

((2ǫ1 + ǫ2)2 − (a1 − a2)2)((ǫ1 + 2ǫ2)2 − (a1 − a2)2)
(B.3)
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C Perturbative sector of the D5-brane theory

The one-loop contribution of the D5-D5 partition function on Ω-background can be calcu-

lated by making use of the equivariant index theorem for the linearized kinetic operator

of the quantum fluctuations in six dimensions. The low-energy field theory on the D5-

branes is given by (twisted) maximally supersymmetric Yang-Mills theory on C2×S2. The

relevant complex is the ∂̄ Dolbeaux complex [74]

0→ Ω(0,0) → Ω(0,1) → Ω(0,2) → 0 (C.1)

The equivariant index of the above complex is given by

(1− t−1
1 − t−1

2 + t−1
1 t−1

2 )

(1− t−1
1 )(1− t−1

2 )(1− t1)(1− t2)

(

− t3
(1− t3)

)

∑

l,m

eialm (C.2)

where we used Künneth decomposition of the cohomology groups of C2 × S2. The first

factor computes the equivariant index of the ∂̄ operator on C2, the second that of S2, while

the third factor the twisting by the gauge bundle in the adjoint representation. From (C.2)

one can easily compute the ratio of determinants of the one-loop fluctuations via the

substitution rûle relating the equivariant index with the equivariant Euler characteristic

of the complex:
∑

α

cαe
wα →

∏

α

wcαα (C.3)

where wα are the weights of the equivariant action and cα their multiplicities. Here

t1 = eiǫ1 , t2 = eiǫ2 t3 = eiǫ3 with ǫ3 =
√
−1/r.

In order to extract the above data from eq. (C.2), we expand the C2 factor as

∞
∑

i,j,̄i,j̄=0

(

1− t−1
1 − t−1

2 + t−1
1 t−1

2

)

ti−ī1 tj−j̄2 (C.4)

and the S2 factor in the two patches as

−
∞
∑

k=0

t1+k3 (C.5)

at the north pole and as
∞
∑

k=0

(

t−1
3

)k
(C.6)

at the south pole. Then the product of the eigenvalues is given by
∞∏

i,j,̄i,j̄=0

Γ(alm + ǫ1(i− ī) + ǫ2(j − j̄) + ǫ3)

Γ(1− alm − ǫ1(i− ī)− ǫ2(j − j̄) + ǫ3)

(
Γ(alm + ǫ1(i− ī− 1) + ǫ2(j − j̄) + ǫ3)

Γ(1− alm − ǫ1(i− ī− 1)− ǫ2(j − j̄) + ǫ3)

)−1

(C.7)

(
Γ(alm + ǫ1(i− ī) + ǫ2(j − j̄ − 1) + ǫ3)

Γ(1− alm − ǫ1(i− ī)− ǫ2(j − j̄ − 1) + ǫ3)

)−1
Γ(alm + ǫ1(i− ī− 1) + ǫ2(j − j̄ − 1) + ǫ3)

Γ(1− alm − ǫ1(i− ī− 1)− ǫ2(j − j̄ − 1) + ǫ3)

where we used the Weierstrass formula for the Γ function performing the product over the

index k in (C.5), (C.6). The above product simplifies then to eq. (4.6) in the text.
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The leading order term in the small r expansion of (4.8) is (4.7). The first non vanishing

correction in the expansion can be computed by expanding

ln

[

Γ (1− irX)

Γ (1 + irX)

]

= 2γiXr − 2

3
iX3ζ(3)r3 +O(r5) (C.8)

in (4.6), where γ is the Euler-Mascheroni constant. Carrying the product to a sum at the

exponent and using zeta-function regularization for the infinite sums, one gets

ln

[

ZS
2

D5−D5

ZPertNek

]

=−γirN(N−1)
12

ǫ+
1

12
iζ(3)r3





∑

l 6=n

a2ln−
N(N−1)

30
(ǫ1

2−ǫ1ǫ2+ǫ22)



ǫ+O(r5)

where the first term is a regularization scheme dependent constant. We see that the first

correction affects the quadratic part of the prepotential implying a modification of the

beta function of the theory which keeps into account the contributions of the KK-momenta

on the P1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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