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A UNIQUENESS RESULT FOR THE CONTINUITY
EQUATION IN TWO DIMENSIONS

GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA

Dedicated to Constantine Dafermos on the occasion of his 70th birthday

Abstract. We characterize the autonomous, divergence-free vector fields b on the
plane such that the Cauchy problem for the continuity equation ∂tu+div (bu) = 0
admits a unique bounded solution (in the weak sense) for every bounded initial
datum; the characterization is given in terms of a property of Sard type for the
potential f associated to b. As a corollary we obtain uniqueness under the as-
sumption that the curl of b is a measure. This result can be extended to certain
non-autonomous vector fields b with bounded divergence.

Keywords: continuity equation, transport equation, uniqueness of weak solu-
tions, weak Sard property, disintegration of measures, coarea formula.
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1. Introduction

In this paper we consider the continuity equation

∂tu+ div (bu) = 0 , (1.1)

where b : [0, T ) × Rd → Rd is a bounded, time-dependent vector field on Rd

(with T possibly equal to +∞). We recall that (1.1) is the equation satisfied
by the density u of a continuous distribution of particles moving according to
the velocity field b, that is, u(t, x) is the number of particles per unit volume at
time t and position x, and the trajectory of each particle satisfies the ordinary
differential equation

ẋ = b(t, x) . (1.2)
Through this paper, the vector field b will not be any more regular than

bounded and with bounded (distributional) divergence.1 Accordingly, solutions
of the Cauchy problem for (1.1) are intended in the weak (or distributional)
sense: a function u : [0, T ) × Rd → R solves (1.1) with the initial condition
u(0, ·) = u0 if∫ T

0

∫
Rd

(
∂tϕ+ b · ∇ϕ

)
u dx dt+

∫
Rd

ϕ(0, ·)u0 dx = 0

∀ϕ ∈ C∞c
(
[0, T )× Rd

)
.

(1.3)

1 In particular b is far from being Lipschitz in the space variable, which is the minimal
regularity required to apply the method of characteristics to (1.1).

1



2 G. ALBERTI, S. BIANCHINI, AND G. CRIPPA

Concerning the existence of solutions, it can be shown that if the divergence
of b is bounded from below then, for every bounded initial datum u0, a solution
of the Cauchy problem for (1.1) exists for all times in the future and is bounded
for finite times.2

We focus therefore on the problem of uniqueness, and precisely on the fol-
lowing question:

Under which assumption on b does the Cauchy problem for (1.1) admit a
unique bounded solution for every bounded initial datum u0?

In the fundamental paper [13], R.J. DiPerna and P.-L. Lions have proved
this uniqueness result under the assumption that b is in the Sobolev class W 1,1

(locally in space), and later L. Ambrosio [4] generalized this result to vector
fields b of class BV (locally in space).3 4

When b is a divergence-free autonomous vector field on the plane (d = 2),
uniqueness has been proved replacing the BV or Sobolev regularity of b by
various assumptions on the direction of b ([7, 17], see also [10, 8] for the bounded
divergence case). In the opposite direction, N. Depauw [11] gave an example of
time-dependent, divergence-free, bounded vector field b on the plane for which
there is no uniqueness (see also [1, 9]).

We can now turn to the main result of this paper. Let b : R2 → R2 be a
bounded, divergence-free, autonomous vector field on the plane; then b admits
a Lipschitz potential f : R2 → R, that is, b = ∇⊥f , where ∇⊥ := (−∂2, ∂1).
In Theorem 4.7 we prove that the Cauchy problem for (1.1) admits a unique
bounded solution for every bounded initial datum if and only if the potential
f satisfies what we call weak Sard property.

We recall that a differentiable function f : R2 → R satisfies the (strong) Sard
property if the image according to f of the critical set S (the set of all x where
∇f(x) = 0) is negligible, that is, L 1(f(S)) = 0.5 The weak Sard property is a
measure theoretic version of the Sard property; the precise formulation requires
a few additional definitions, and will be given in §2.13. Conditions on f (and
therefore on b) that imply the weak Sard property are discussed in detail in

2 The bound div b ≥ −m implies that the Jacobian determinant J of the flux associated
to (1.2) satisfies J ≥ e−mt, and therefore, according to the mechanical interpretation given
above, the particle density u should satisfy ‖u(t, ·)‖∞ ≤ emt‖u0‖∞. This estimate can indeed
be proved for smooth b, and then used to obtain solutions for non-smooth b by approximation.

3 Both uniqueness results, besides being deeply interesting per se, had relevant applications
to other problems, among which we mention the Boltzmann [14] and Vlasov-Poisson equations
[15], and the Keyfitz-Kranzer system [5].

4 The mechanical interpretation given above suggests that uniqueness for (1.1) should be
connected to the uniqueness of solutions of (1.2) with initial condition x(0) = x0 for a generic
initial point x0, but not necessarily for every x0. This relation can be made rigorous in terms
of uniqueness of the regular Lagrangian flow associated to (1.2) (see [4]), and explains why
the regularity assumption on b in the theorems of DiPerna-Lions and Ambrosio are distinctly
weaker than those typically required for the uniqueness for (1.2) for every initial point.

5 Sard theorem states that functions of class C2 have the Sard property (see [20], or [18,
Chapter 3, Theorem 1.3]); while this is not always the case for functions of class C1.
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§2.15; here we just recall that this property holds whenever b is different than
0 a.e. (§2.15(i)), or is of class BV ;6 indeed it suffices that the curl of b is a
measure (§2.15(vi)).

We stress once again that while the results in the literature give only suf-
ficient conditions for uniqueness, Theorem 4.7 gives a necessary and sufficient
condition. Accordingly, the examples of functions without the weak Sard prop-
erty constructed in the companion paper [2] immediately yield examples of
divergence-free autonomous vector fields in the plane for which there is no
uniqueness (Corollary 4.8). Note that the weak Sard property, like the Sard
property, is completely nonlinear in character, and is satisfied by a generic
divergence-free vector field (in the category sense, see §2.15(i)).

We conclude this introduction with an outline of the proof of Theorem 4.7.
An essential ingredient is the description of (generic) level sets of Lipschitz
functions on the plane given in [2]; we refer to this paper for a detailed discussion
of all related measure-theoretic and real analytic issues, and in particular for
counterexamples.

The first step is a dimension-reduction argument (Theorem 3.10) that can
be summarized as follows: a bounded function u solves the continuity equation
(1.1) if and only if it solves a suitable one-dimensional variant of the same
equation on every nontrivial connected component of the level set Ey := f−1(y)
for almost every y.7 In other words, the problem of uniqueness for equation (1.1)
is reduced to the uniqueness for the corresponding equations on the nontrivial
connected components of a (generic) level set Ey.

The proof of Theorem 3.10 relies on the notion of disintegration of a measure
with respect to the level sets of a function, and on the coarea formula for
Lipschitz functions, and holds in every space dimension. The rest of the proof
of Theorem 4.7 is strictly two-dimensional.

The next key fact is that for a.e. y every connected component C of Ey is
a rectifiable simple curve (as shown in [2]), and more precisely it is possible to
choose an interval I and a Lipschitz parametrization γ : I → C so that, under
the change of variable x = γ(s), the equation on C becomes

∂t(u(1 + λ)) + ∂su = 0 , (1.4)

where λ is a suitable singular measure on I.8 Note that, due to the particular
choice of γ, the vector field b no longer appears in the equation.

6 Thus we recover the uniqueness results in [7, 17] in full generality, and those in [13, 4]
limited to our particular class of b.

7 The notion of “solving the equation on (a subset of) a level set” is properly defined in
§3.6; a connected component is nontrivial if it contains more than one point. Note that this
statement is a close relative of the method of characteristics: indeed the vector field b, being
orthogonal to ∇f , is tangent to the level set Ey at a.e. point (with respect to the length
measure) and for a.e. y. Hence these level sets are the proper replacement for characteristic
curves.

8 The precise definition of λ and the weak formulation of (1.4) are given in Lemma 4.4.
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Next we note that the Cauchy problem for (1.4) admits a unique bounded
solution for every bounded initial datum if and only if the measure λ is trivial.
Indeed, if λ = 0 equation (1.4) reduces to ∂tu+ ∂su = 0, for which uniqueness
is well-known. To understand why the converse holds, assume that I is the real
line and λ is a Dirac mass at 0; if u represents the density of a distribution of
particles, then equation (1.4) means that each particle moves at constant speed
1 from left to right, except when it reaches the point 0, where it may stop for
any given amount of time. Therefore, if u0 is an initial datum with support
contained in (−∞, 0), a solution of (1.4) with initial condition u(0, s) = u0(s)
is the function u : [0,+∞)× R→ R defined by

u(t, s) :=

{
u0(s− t) if s 6= 0
0 if s = 0

(no particle stops at 0), while another solution is

ũ(t, s) :=


u0(s− t) if s < 0∫ 0

−t
u0(s) ds if s = 0

0 if s > 0

(all particles stop at 0).
We conclude that uniqueness for the (1.1) holds if and only if λ = 0 for

every nontrivial connected component C of a.e. level set Ey, which in turn is
equivalent to the weak Sard property (Lemma 2.14). Without entering into
details, we just mention that the connection between the weak Sard property,
which is related to the critical set S, and the measures λ lies in the fact that
these measures are given by the disintegration (with respect to the level sets of
f) of the restriction of Lebesgue measure to S ∩ E∗, where E∗ is the union of
all nontrivial connected components of all levels sets of f .

As one might expect, Theorem 4.7 can be extended in many different ways.
In Theorem 5.2 we consider the case of a vector field on the plane of the form
b = a∇⊥f , where f is a Lipschitz function as above and a a scalar function
depending also on time. Further extensions are mentioned in §6.1. It is indeed
conceivable to apply the strategy outlined above even in higher space dimension
(see §6.2).

This paper is organized as follows: Section 2 contains the measure-theoretic
and real analysis results used in the rest of the paper: the disintegration of
a measure with respect to the level sets of a function, the coarea formula for
Lipschitz functions, the description of connected components of the level sets
of a Lipschitz function on the plane, the definition of weak Sard property and
some related results. Section 3 is devoted to the dimension-reduction argument
(Theorem 3.10); Section 4 and Section 5 contain the proof of the main result
(Theorem 4.7) and of the generalization mentioned above (Theorem 5.2). Sec-
tion 6 contains some additional remarks, and finally the Appendix contains a
measurable selection lemma used in the proof of Theorem 3.10.
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2. Measure theoretic preliminaries

We begin this section by recalling the notion of disintegration of a measure,
focusing in particular on the disintegration of the Lebesgue measure with re-
spect to Lipschitz maps (§2.7 and Lemma 2.8). We then restrict our attention
to Lipschitz functions on the plane (Lemma 2.11); in this setting we introduce
the notion of weak Sard property (§2.13), prove a characterization of this prop-
erty in terms of disintegration of the Lebesgue measure (Lemma 2.14), and list
some conditions which imply it (§2.15). We conclude with a change-of-variable
formula used in the proof of Lemma 4.5.

2.1. Basic notation. In this paper we follow the standard notation of measure
theory. Sets and functions are always assumed to be Borel measurable, and
measures are always defined on the Borel σ-algebra of some locally compact,
separable metric space X. Unless otherwise stated, a measure on X is assumed
to be positive and locally finite. We write λ � µ when the measure λ is
absolutely continuous with respect to the measure µ, and λ ⊥ µ when λ is
singular with respect to µ.9 We say that the measure µ is supported on the set
E if µ(X \ E) = 0.10

Given a function ρ : X → [0,+∞], we denote by ρ · µ the measure on X
defined by

(ρ · µ)(E) :=
∫
E
ρ dµ

for every Borel set E contained in X. Given a set A contained in X, we write
1A : X → {0, 1} for the characteristic function of A, and therefore 1A · µ is the
restriction of µ to A.

Given a metric space Y and a map f : X → Y , the push-forward of µ
according to f is the measure f#µ on Y defined by

[f#µ](E) := µ(f−1(E))

for every Borel set E contained in Y . Thus∫
Y
ϕd(f#µ) =

∫
X
ϕ ◦ f dµ

9 Recall that λ � µ if λ(E) = 0 whenever µ(E) = 0, or equivalently (in the context of
this paper) when λ can be written as λ = ρ · µ for a suitable density ρ; λ is singular with
respect to µ if it is supported on a µ-negligible set, or equivalently if λ and µ are supported
on disjoint sets.

10 Note that E does not need to be closed, and does not necessarily contain the support of
µ (defined in the usual distributional sense).
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for every function ϕ : Y → [0,+∞], and therefore also for every possibly vector-
valued ϕ in L1(f#µ).

As usual, L d is the Lebesgue measure on (domains in) Rd while H d is the d-
dimensional Hausdorff measure on every metric space—the usual d-dimensional
volume for d-dimensional surfaces of class C1 in some Euclidean space. When
the measure is not specified, it is assumed to be the Lebesgue measure; along
this line we often write

∫
g(x) dx instead of

∫
g dL d.

2.2. Borel family of measures. Let Y be a metric space and {µy : y ∈ Y }
a family of measures on a locally compact, separable metric space X. We say
that such family, or more precisely the map y 7→ µy, is Borel if the function

y 7→
∫
X
ϕdµy (2.1)

is Borel for every test function ϕ : X → R which is continuous and compactly
supported.11 It then follows that the function in (2.1) is Borel measurable also
for every Borel test function ϕ : X × Y → [−∞,+∞] which is either positive
or such that ϕ(·, y) belongs to L1(µy) for every y.

2.3. Disintegration of measures. LetX and Y be locally compact, separable
metric spaces, µ a measure on X, f : X → Y a Borel map, and ν a measure
on Y such that f#µ � ν. Then there exists a Borel family {µy : y ∈ Y } of
measures on X such that

(i) µy is supported on the level set Ey := f−1(y) for every y ∈ Y ;
(ii) µ can be decomposed as µ =

∫
Y µy dν(y), which means that

µ(A) =
∫
Y
µy(A) dν(y) (2.2)

for every Borel set A contained in X.
Any family {µy} satisfying (i) and (ii) is called a disintegration of µ with

respect to f and ν. The disintegration is unique in the following sense: for any
other disintegration {µ̃y} there holds µy = µ̃y for ν-a.e. y ∈ Y .

The existence and uniqueness of the disintegration is a standard result in case
X is compact, µ is finite, and ν := f#µ (see for instance [12, Chapter III, §70
and §71]). The statement given above can be easily derived from this particular
case.

2.4. Properties of disintegration. We list here some general properties of
the disintegration that will be used (often tacitly) through the paper.

(i) Formula (2.2) implies that∫
X
ϕdµ =

∫
Y

[ ∫
Ey

ϕdµy

]
dν(y) (2.3)

11 This is equivalent to the notion of Borel measurability for maps with values in the space
of locally finite measures on X, when the latter has been endowed with the weak* topology
as dual of the space of continuous functions with compact support.
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for every Borel function ϕ : X → [0,+∞].
If ϕ is a real- or vector-valued function in L1(µ), by applying identity (2.3)

with |ϕ| in place of ϕ we obtain that ϕ belongs to L1(µy) for ν-a.e. y, and the
function y 7→

∫
|ϕ| dµy is in L1(ν). Thus both sides of (2.3) make sense, and

the equality holds even for such ϕ.
(ii) If A is a set in X with µ(A) < +∞, formula (2.2) implies that µy(A) is

finite for ν-a.e. y. In particular, if µ is finite then µy is finite for ν-a.e. y.
(iii) Formula (2.2) shows that a set A in X is µ-negligible if and only if it is

µy-negligible for ν-a.e. y. We infer the following: (a) µ(f−1(N)) = 0 for every
set N such that ν(N) = 0; (b) µ is supported on a set F if and only if µy
is supported on F ∩ Ey for ν-a.e. y; (c) if P (x) is a proposition that depends
on the variable x ∈ X, then P (x) holds for µ-a.e. x if and only if it holds for
µy-a.e. x and ν-a.e. y.

(iv) If µ′ is a measure on the metric space X ′, we write µ⊗µ′ for the product
measure on X ×X ′ and we consider the function f̃ : X ×X ′ → Y defined by
f̃(x, x′) = f(x). Then, the disintegration of µ ⊗ µ′ with respect to f̃ and ν is
{µy ⊗ µ′}.

2.5. Lipschitz maps. For the rest of this section d, k are integers such that
0 ≤ k < d, and f : Rd → Rd−k is a Lipschitz map.

For every y ∈ Rd−k we write Ey for the level set f−1(y).
By Rademacher theorem f is differentiable at almost every point in Rd, and

in all such points we define the Jacobian

J := [det(∇f · ∇tf)]1/2 .

We call critical set of f the set S of all points in Rd where either f is not
differentiable or J = 0, that is, the rank of ∇f is strictly less than d− k.

A connected component C of Ey is a connected subset of Ey which is maximal
with respect to inclusion. Notice that every such connected component is a
closed set.

For every y ∈ Rd−k we denote by Cy the family of all connected components
C of Ey such that H k(C) > 0; we then define E∗y as the union of all C in Cy,
and E∗ as the union of all E∗y with y ∈ Rd−k. Note that the sets E∗ and E∗y
are Borel (see [2, Proposition 6.1]).

2.6. Lemma. In the context of the previous paragraph, the following statements
hold:

(i) if µ := J ·L d then f#µ is absolutely continuous with respect to L d−k

and its disintegration with respect to f and L d−k is µy := 1Ey ·H k;

(ii) for a.e. y ∈ Rd−k there holds H k(Ey ∩ S) = 0, and for every bounded
set A in Rd we have H k(A ∩ Ey) < +∞ and∫

A∩Ey

1
J
dH k < +∞ ;
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(iii) if µ̃ := 1Rd\S · L d then f#µ̃ is absolutely continuous with respect
to L d−k, and its disintegration with respect to f and L d−k is given
by µ̃y := (1/J) 1Ey ·H k;

(iv) the family Cy is countable and H k(Ey \ E∗y) = 0 for L d−k-a.e. y;

(v) L d(Rd \ (E∗ ∪ S)) = 0.

Proof. Statement (i) is just a reformulation of the coarea formula for Lipschitz
maps, see for instance [16, §3.2.11], [21, §10], or [19, Corollary 5.2.6].

Using statement (i) and formula (2.2) we obtain

0 = µ(S) =
∫

Rd−k

µy(S) dy =
∫

Rd−k

H k(Ey ∩ S) dy ,

and therefore H k(Ey ∩ S) = 0 for a.e. y. Similarly,

+∞ > µ(A) =
∫

Rd−k

µy(A) dy =
∫

Rd−k

H k(A ∩ Ey) dy

implies that H k(Ey ∩ A) is finite for a.e. y. The last part of the statement
follows by applying (2.3) with ϕ := (1/J) 1A\S :

+∞ > L d(A \ S) =
∫
ϕdµ =

∫
Rd−k

[ ∫
Ey

ϕdµy

]
dy

=
∫

Rd−k

[ ∫
A∩Ey

1
J
dH k

]
dy .

Similarly, statement (iii) follows by applying (2.3) with ϕ := (1/J) 1A\S and
A an arbitrary Borel set in Rd.

Statement (iv) is proved in [2, Theorem 2.5(iii)].

Statement (v) follows from statements (iii) and (iv):

L d(Rd \ (E∗ ∪ S)) = µ̃(Rd \ E∗) =
∫

Rd−k

µ̃y(Rd \ E∗) dy

=
∫

Rd−k

[ ∫
Ey\E∗y

1
J
dH k

]
dy = 0 .

�

2.7. Disintegration of Lebesgue measure. We take f as above and choose a
measure νs on Rd−k so that νs is singular with respect to L d−k and f#L d � ν

with ν := L d−k + νs. For the rest of this section we denote by {µy} the
disintegration of L d with respect to f and ν.

2.8. Lemma. In the context of the previous paragraph, the following statements
hold:

(i) for νs-a.e. y the measure µy is supported on S ∩ Ey;
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(ii) for L d−k-a.e. y the measure µy can be decomposed as

µy = (1/J) 1Ey\S ·H
k + µsy

with µsy a measure supported on Ey ∩ S; moreover µsy is singular
with respect to (1/J) 1Ey\S · H k, and the latter measure agrees with
(1/J) 1Ey ·H k.

Proof. Note that L d can be written as the sum of µ1 := 1S · L d and µ2 :=
1Rd\S ·L d, and therefore its disintegration (with respect to f and ν) is obtained
by summing the disintegrations of µ1 and µ2.

Now µ1 is supported on S and then µ1
y is supported on S ∩ Ey for ν-a.e. y;

on the other hand, Lemma 2.6(iii) implies that µ2
y = 0 for νs-a.e. y and µ2

y =
(1Ey/J) ·H k for L d−k-a.e. y. Putting together these facts we immediately
obtain statement (i) and the first part of (ii).

We have that µsy is singular with respect to (1Ey\S/J) ·H k because these
measures are supported on the disjoint sets Ey\S and Ey∩S. The latter measure
agrees with (1Ey/J) ·H k because H k(Ey ∩ S) = 0 (Lemma 2.6(ii)). �

2.9. Lipschitz functions on the plane. For the rest of this section we assume
d = 2 and k = 1, that is, f is a Lipschitz function on R2. Therefore J = |∇f |,
S is the set of all points where either f is not differentiable or ∇f = 0, and Cy
is the family of all nontrivial connected components of the level set Ey, namely
those which contain more than one point.

2.10. Simple curves. We denote by [0, L]∗ the space obtained by identifying
the endpoints of the interval [0, L], endowed with the distance

d(x, y) := |x− y| ∧ (L− |x− y|) .

The canonical measure on [0, L]∗ is the Lebesgue measure, which we denote
simply by L .

We say that a set C in Rd is a closed, simple curve with finite length if there
exist L > 0 and a Lipschitz bijection γ : [0, L]∗ → C. We call any such γ a
parametrization of C.

2.11. Lemma. Assume that f has compact support, and take µy, µsy as in
Lemma 2.8. The following statements hold for L 1-a.e. y ∈ R and every con-
nected component C ∈ Cy:

(i) C is a closed simple curve with finite length;
(ii) C admits a parametrization γ such that γ̇ = ∇⊥f(γ) 6= 0 a.e. (recall

that ∇⊥ := (−∂2, ∂1));
(iii) the push-forward of L according to γ is (1/J) 1C ·H 1;
(iv) there exists a measure λ on [0, L]∗ such that λ is singular with respect

to L , and the push-forward of λ according to γ is the restriction of µsy
to C;

(v) the push-forward of L + λ according to γ is the restriction of µy to C.
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2.12. Remark. (i) The assumption that f has compact support was made for
the sake of simplicity, and it can be easily removed. In that case statement (i)
should be modified, allowing for connected component that are simple curves
with end points at infinity.

(ii) It is always possible to choose the parametrization γ in such a way that
the measure λ has no atom at 0, that is, λ({0}) = 0. This assumption makes
certain proofs much simpler, and will be always tacitly made in the following.

Proof. By Lemma 2.8(ii) we can assume that H 1(S ∩ C) = 0 and∫
C

1
J
dH 1 < +∞ . (2.4)

Statement (i) is proved in [2, Theorem 2.5(iv)].

The same theorem shows that C admits a parametrization ϕ : [0, L′]∗ → C
such that

J(ϕ) 6= 0 and ϕ̇ =
∇⊥f(ϕ)
|∇f(ϕ)|

=
∇⊥f(ϕ)
J(ϕ)

a.e. (2.5)

Thus the parametrization in statement (ii) is given by γ := ϕ ◦ σ−1 where
σ : [0, L′]→ [0, L] is the function defined by

σ(s) :=
∫ s

0

1
J(ϕ(s′))

ds′ and L :=
∫ L′

0

1
J(ϕ(s′))

ds′ . (2.6)

Using (2.4) and the fact that the push-forward of the Lebesgue measure accord-
ing to ϕ is the restriction of H 1 to C (note that |ϕ̇| = 1 a.e.) we obtain that
L < +∞, which implies that the function σ is well-defined, continuous, strictly
increasing, and surjective because of the choice of L. Since J ≤ m (where m is
the Lipschitz constant of f) we also have that

σ(s2)− σ(s1) ≥ 1
m

(s2 − s1)

whenever s1 < s2, which implies that σ−1 is a Lipschitz function, and therefore
so is γ.

Moreover σ is of class W 1,1 and σ̇ = 1/J(γ) 6= 0 a.e., and since σ maps
(Lebesgue-) negligible sets in negligible sets, the image of the set of points
where either σ is not differentiable or σ̇ = 0 is negligible. Thus

(σ−1)′ = J(γ) = |∇f(γ)| a.e.

This equation and (2.5) yields γ̇ = ∇⊥f(γ) a.e., concluding the proof of state-
ment (ii).

Statement (iii) follows by the fact that |γ̇| = |∇f(γ)| = J(γ) a.e.

To prove statement (iv), let λ be the push-forward according to γ−1 of 1C ·µsy.
In order to prove that λ ⊥ L , note that µsy is supported on S∩C, and therefore
λ is supported on γ−1(S ∩C). Moreover S ∩C is H 1-negligible, and therefore
γ−1(S ∩ C) = σ(ϕ−1(S ∩ C)) is L -negligible because both ϕ−1 and σ maps
negligible sets in negligible sets.
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Statement (v) follows from statements (iii) and (iv). �

2.13. The weak Sard property. Let f : R2 → R be a Lipschitz function.12

We say that f has the weak Sard property if the push-forward according to f of
the restriction of the Lebesgue measure to S ∩ E∗ (where S and E∗ have been
defined in §2.5) is singular, that is

f#

(
1S∩E∗ ·L 2

)
⊥ L 1 . (2.7)

2.14. Lemma. The following statements are equivalent:
(a) f satisfies the weak Sard property;
(b) µsy(E

∗
y) = 0 for L 1-a.e. y ∈ R;

(c) µsy(C) = 0 for L 1-a.e. y ∈ R and every C ∈ Cy.

Proof. Take ν as in §2.7 and µsy as Lemma 2.8. Set µ̃ := 1S∩E∗ ·L 2, and let
{µ̃y} be the disintegration of µ̃ with respect to f and ν. Thus (2.7) can be
restated as

µ̃y = 0 for L 1-a.e. y.
On the other hand Lemma 2.8(ii) implies that µ̃y = 1S∩E∗ · µsy for L 1-a.e. y,
and therefore µ̃y = 0 if and only if 0 = µsy(S ∩ E∗) = µsy(E

∗
y) (for the second

equality use that µsy is supported on Ey ∩ S and Ey ∩ E∗ = E∗y).
We have thus proved that (2.7) holds if and only if µsy(E

∗
y) = 0 for L 1-a.e. y,

that is, statements (a) and (b) are equivalent.

The equivalence of (b) and (c) is immediate because E∗y is the union of all
C ∈ Cy, and Cy is countable for a.e. y (Lemma 2.6(iv)). �

2.15. About the weak Sard property. We list here some conditions on f
which imply the weak Sard property. Indeed all of them imply the slightly
stronger property

f#

(
1S ·L 2

)
⊥ L 1 . (2.8)

Since in Theorem 4.7 the function f is the potential associated to a given vector
field b by the relation ∇⊥f = b, we will express the following conditions also in
terms of b.

(i) The weak Sard property is implied by the condition L 2(S ∩ E∗) = 0,
which in turn is implied by ∇f 6= 0 a.e., or, equivalently, b 6= 0 a.e. Note that
the set of all vector fields b that verify the last condition is residual 13 in the
Banach space X of divergence-free, bounded vector fields endowed with the L∞

norm (this is a reformulation of [2, Proposition 4.10]). In particular the set of
all b whose potential f has the weak Sard property is residual in X .

(ii) The (strong) Sard property implies the weak Sard property. Indeed the
measure f#(1S∩E∗ ·L 2) is supported on the set f(S), and if this set is negligible
(Sard property), then the measure must be singular (weak Sard property).

12 The weak Sard property can be defined in the more general context of Lipschitz maps
from Rd into Rd−k, but only the case d = 2, k = 1 is relevant to this paper.

13 A set in a topological space is residual if it contains a countable intersection of open
dense sets.
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(iii) A function f on R2 is said to have the Lusin property of order k if there
exists a sequence of functions fn of class Ck on R2 and Borel sets An such that
f = fn on An, and the sets An cover almost all of R2.14 A Lipschitz function
with the Lusin property of order 2 satisfies (2.8) and therefore has the weak
Sard property.

Let indeed Sn be the critical set of fn. Then S ∩An is contained in Sn ∩An
up to a negligible set, and S is contained in the union of Sn ∩ An up to a
negligible set. Hence the measure 1S∩E∗ · L 2 is supported on the union of
Sn ∩ An, and its push-forward according to f is supported on the union of all
f(Sn ∩ An) = fn(Sn ∩ An), which is negligible because it is contained in the
union of the negligible sets fn(Sn).

(iv) Following [23, §3.5.5] we say that f admits an L1-Taylor expansion of
order 2 at x if f(x+ h) = Px(h) +Rx(h) for every h, where Px is a polynomial
of degree 2, and the remainder Rx satisfies∫

B(r)
|Rx(h)| dh = o(r2)

(the barred integral stands for the average over the ball B(r) with center 0 and
radius r). If f admits an L1-Taylor expansion of order 2 at a.e. point, then it
has the Lusin property of order 2 [23, Theorem 3.6.3], and therefore also the
weak Sard property.

(v) If f is locally in the Sobolev class W 2,1 (or, equivalently, b is locally in
the class W 1,1) then f admits an L1-Taylor expansion of order 2 at a.e. point
[23, Theorem 3.4.2], and therefore it has the weak Sard property.

(vi) The proof of [23, Theorem 3.4.2] can be easily modified to show that
f admits an L1-Taylor expansion of order 2 at a.e. point—which implies the
weak Sard property—even when the second order distributional derivative of f
is locally a vector-valued measure (that is, when b is locally of class BV ). In [3]
we prove that the same conclusion holds under the weaker assumption that the
distributional Laplacian of f (that is, the curl of b) is locally a signed measure.

(vii) In [2, Section 4] we construct a function on the plane without the weak
Sard property and of class C1,α for every α < 1.

We conclude this section with a particular change of variable that will be
used in the proof of Lemma 4.5.

2.16. The functions σ and σ̂. In what follows I is the interval [0, L], L is
the Lebesgue measure on I, λ is a measure on I which is singular with respect
to L , and J is the set of atoms of λ (points with positive measure). We set

L̂ := (L + λ)(I) and Î := [0, L̂] ,

and denote by L̂ the Lebesgue measure on Î.

14 Thus Lusin’s theorem states that every Borel function has the Lusin property of order
0.
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We denote by σ̂ the multi-valued function from I to Î that to every s ∈ I
associates the interval

σ̂(s) := [σ−(s), σ+(s)]
where

σ̂−(s) := (L + λ)([0, s)) and σ̂+(s) := (L + λ)([0, s]) ,
and define σ : Î → I as the inverse of σ.

Then σ̂ is surjective on Î, strictly increasing, and uni-valued for every s /∈ J
because σ̂− and σ̂+ are strictly increasing, and σ̂−(s) = σ̂+(s) whenever s /∈ J .
Moreover

s2 − s1 ≤ ŝ2 − ŝ1 (2.9)
for every s1, s2 ∈ I with s1 < s2, and every ŝ1 ∈ σ̂(s1), ŝ2 ∈ σ̂(s2).

Accordingly σ is surjective from Î onto I, uni-valued and 1-Lipschitz because
of (2.9), constant on the interval σ(s) for every s ∈ J and strictly increasing at
every point outside σ(J).

2.17. Lemma. Let F be an L -negligible set in I which supports the measure
λ, and set F̂ := σ̂(F ). Then

(i) the push-forward of the measure L̂ according to σ is L + λ, and this
means that for every function g : I → [−∞,+∞] which is either positive
or belongs to L1(L + λ) there holds∫

I
g d(L + λ) =

∫
bI g ◦ σ dL̂ ; (2.10)

(ii) the derivative of σ agrees with 1bI\ bF a.e. in Î.

Proof. Let E := (s1, s2) be an open interval in I. By the definition of σ and σ̂
we have that

σ−1(E) = σ̂(E) = (σ+(s1), σ−(s2))
and therefore

L̂ (σ−1(E)) = σ−(s2)− σ+(s1) = (L + λ)(E) .

Then a standard argument shows that the identity L̂ (σ−1(E)) = (L + λ)(E)
holds for every open set E, and hence also for every Borel set E. Thus (i) is
proved.

In order to prove statement (ii), we first notice that by the choice of F we
have that 1F · (L + λ) = λ and 1I\F · (L + λ) = L , and therefore statement
(i) yields

σ#(1 bF · L̂ ) = L and σ#(1bI\ bF · L̂ ) = λ . (2.11)
Since λ is singular with respect to L , it is well known that the density of

λ with respect to L is equal to 0 at L -a.e. point, and equal to +∞ at λ-a.e.
point. This means that the derivative of the monotone functions σ− and σ+ are
equal to 1 at L -a.e. point, and equal to +∞ at λ-a.e. point. Therefore, taking
into account (2.11), we obtain that the derivative of σ is equal to 1 at L̂ -a.e.
point in Î \ F̂ , and equal to 0 at L̂ -a.e. point in F̂ . �
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2.18. Remark. The definitions of σ and σ̂ and Lemma 2.17 can be extended
with few obvious modification to the case where the intervals [0, L] and [0, L̂]
are replaced by the quotients [0, L]∗ and [0, L̂]∗, see §2.10.

3. Dimension reduction

We now begin to consider the question of the uniqueness for the Cauchy
problem for the continuity equation (1.1). In this section, we still work in
general space dimension. The existence of a Lipschitz function associated to
the vector field as in §3.1 gives the possibility to relate the uniqueness for the
Cauchy problem in Rd with the uniqueness for suitably defined Cauchy problems
on the level sets of such Lipschitz function (Theorem 3.10).

3.1. Assumptions on the vector field. In this section b : [0, T )× Rd → Rd

is a bounded vector field and we assume that there exists a Lipschitz function
f : Rd → Rd−k with compact support such that

∇f(x) · b(t, x) = 0 for a.e. (t, x) ∈ [0, T )× Rd. (3.1)

The following objects are then defined as in §2.5 and §2.7:

J , S , Ey , E
∗ , ν , νs , µy .

Further assumptions on b and f will be introduced when needed.

3.2. The uniqueness problem. By linearity, the uniqueness for the Cauchy
problem for (1.1) is equivalent to the fact that every solution in the sense of
distributions with initial value u0 = 0 is trivial, that is, a.e. null in [0, T )×Rd.
Therefore, in this and in the following sections, we only consider solutions of
the Cauchy problem {

∂tu+ div (bu) = 0
u(0, ·) = 0 .

(3.2)

We recall that a bounded function u : [0, T )×Rd → R solves (3.2) in the sense
of distributions if∫ T

0

∫
Rd

(
∂tϕ+ b · ∇ϕ

)
u dx dt = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
. (3.3)

3.3. Remark. In the following we will (often tacitly) use that the test functions
in (3.3) can be equivalently taken in any of the following classes:

(i) ϕ : [0, T )× Rd → R Lipschitz with compact support;
(ii) ϕ of the form ϕ1(t)ϕ2(x), with ϕ1 ∈ C∞c ([0, T )) and ϕ2 ∈ C∞c (Rd);

(iii) ϕ of the form ϕ1(t)ϕ2(x), with ϕ1 : [0, T )→ R Lipschitz with compact
support and ϕ2 : Rd → R Lipschitz with compact support.

3.4. Remark. Here and in the rest of the paper u and b are functions defined at
every point of their domain, and not equivalence classes.15 The reason is that it

15 Accordingly, we avoid the notations u ∈ L∞ and b ∈ L∞.
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is way more convenient to use the disintegration formula (2.3) when functions
defined everywhere instead than almost everywhere.

3.5. Measure solutions. For technical reasons it is convenient to introduce
the following notion of generalized solution of (3.2).16 We say that a signed
locally finite measure σ on [0, T )× Rd is a measure solution of (3.2) if∫

[0,T )×Rd

(
∂tϕ+ b · ∇ϕ

)
dσ = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
. (3.4)

3.6. Solutions on level sets. Take y ∈ Rd−k and let C be a subset of the
level set Ey. We say that a bounded function u : [0, T ) × C → R is a solution
of (3.2) on C if the measure σ = u1C ·L 1 ⊗ µy is a measure solution in the
sense of §3.5, that is if∫ T

0

∫
C

(
∂tϕ+ b · ∇ϕ

)
u dµy dt = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
. (3.5)

It is important to keep in mind that this notion of solution does not involve
only the function u and the set C, but also the disintegration measure µy.

The following lemma shows that any bounded solution of (3.2) is also a
solution on a generic level set.

3.7. Lemma. Let u : [0, T ) × Rd → R be a bounded solution of (3.2). Then u
solves (3.2) on the level set Ey for ν-a.e. y ∈ Rd−k.

Proof. Fix a function ρ ∈ C∞c (Rd−k). We consider in (3.3) Lipschitz test func-
tions of the form ϕ(t, x)ρ(f(x)), where f : Rd → Rd−k is the Lipschitz function
introduced in §3.1 (recall Remark 3.3(i)). After immediate computations we
obtain

0 =
∫ T

0

∫
Rd

[
ρ(f) ∂tϕ+ ρ(f) b · ∇ϕ+ ϕ 〈∇f · b ; ∇ρ(f)〉

]
u dx dt

=
∫ T

0

∫
Rd

ρ(f)
(
∂tϕ+ b · ∇ϕ

)
u dx dt = 0 ,

where the last equality follows from (3.1).
Using (2.3), the above integral rewrites as

0 =
∫

Rd−k

∫ T

0

∫
Ey

ρ(f)
(
∂tϕ+ b · ∇ϕ

)
u dµy(x) dt dν(y)

=
∫

Rd−k

ρ(y)

[∫ T

0

∫
Ey

(
∂tϕ+ b · ∇ϕ

)
u dµy(x) dt

]
dν(y) = 0 .

16 This notion is similar but not equivalent to that of measure solution considered for
instance in [6].
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The arbitrariness of ρ gives the existence of a ν-negligible set Nϕ ⊂ Rd−k

with the property that∫ T

0

∫
Ey

(
∂tϕ+ b · ∇ϕ

)
u dµy(x) dt = 0 for all y 6∈ Nϕ.

Finally, we consider a countable dense set D ⊂ C∞c
(
[0, T ) × Rd

)
and set

N = ∪ϕ∈DNϕ. Since D is countable the set N is ν-negligible. Moreover, for all
ϕ ∈ D there holds∫ T

0

∫
Ey

(
∂tϕ+ b · ∇ϕ

)
u dµy(x) dt = 0 for all y 6∈ N ;

this fact and the density of D in C∞c
(
[0, T )× Rd

)
imply the thesis. �

3.8. Lemma. Take y ∈ Rd−k with y 6= 0 and let u : [0, T )×Ey → R be a bounded
solution of (3.2) on Ey. Then u solves (3.2) on every connected component C
of Ey.

Proof. The fact that u is a solution of (3.2) on Ey means that (recall §3.6)∫ T

0

∫
Ey

(
∂tϕ+ b · ∇ϕ

)
u dµy dt = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
. (3.6)

Given a connected component C of Ey, it is possible to find a decreasing
sequence of bounded open sets Un contained in Rd such that the boundaries
∂Un do not intersect Ey, and the intersection of the closures Un is C (a proof
of this fact is briefly sketched in [2, §2.8]).

Let εn be the distance between the sets ∂Un and Ey (it is positive because
these sets are closed and disjoint). Given a smooth convolution kernel ρ sup-
ported in the unit ball of Rd we define

χn := 1Un ∗ ρεn/2 .

Considering in (3.6) test functions of the form ϕ(t, x)χn(x), after standard
computations we obtain∫ T

0

∫
Ey

χn
(
∂tϕ+ b · ∇ϕ

)
u dµy dt+

∫ T

0

∫
Ey

ϕ b · ∇χn u dµy dt = 0 . (3.7)

Now we pass to the limit as n → +∞ in this equality. The definition of χn
and the properties of the sets Un give that ∇χn = 0 on Ey for every n, so
that the second integral in (3.7) vanishes; concerning the first integral, we have
that χn converge to 1C everywhere in Ey, and therefore, using the dominated
convergence theorem, ∫ T

0

∫
C

(
∂tϕ+ b · ∇ϕ

)
u dµy dt = 0

for all ϕ ∈ C∞c ([0, T )× Rd), that is, u solves (3.2) on C. �

3.9. Lemma. Given a bounded function u : [0, T ) × Rd → R, the following
statements are equivalent:
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(a) u solves (3.2);

(b) there exists an L d−k-negligible set N ⊂ Rd−k such that N supports νs,
and setting F := f−1(N) ∪

(
Rd \E∗

)
with E∗ given in §2.5 there holds

(b1) u solves (3.2) on C for every C ∈ Cy and every y 6∈ N ;
(b2) 1F u solves (3.2).

Proof. Step 1: (a) implies (b). By Lemma 3.7 and Lemma 2.6(ii) we can
choose an L d−k-negligible set N so that

(i) 0 ∈ N ;
(ii) N supports νs;

(iii) u solves (3.2) on Ey for every y 6∈ N ;
(iv) H k(Ey) < +∞ for every y 6∈ N .

Then, (b1) follows from Lemma 3.8. It remains to prove (b2).
Let y 6∈ N be fixed for the time being. Because of (iv), Cy is countable, and

therefore, by summing (3.5) over all C ∈ Cy and recalling that their union is
E∗y , we obtain∫ T

0

[ ∫
E∗y

(
∂tϕ+ b · ∇ϕ

)
u dµy

]
dt = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
, (3.8)

that is, u solves (3.2) on E∗y . By integrating (3.8) over all y 6∈ N with respect
to ν we obtain

0 =
∫ T

0

[ ∫
Rd−k\N

∫
E∗y

(
∂tϕ+ b · ∇ϕ

)
u dµy dν(y)

]
dt

=
∫ T

0

[ ∫
Rd\F

(
∂tϕ+ b · ∇ϕ

)
u dx

]
dt .

The second equality in the previous formula follows by the fact that {µy} is the
disintegration of L d with respect to f and ν, and by the fact that E∗y is equal
to (Rd \ F ) ∩ Ey for all y 6∈ N .

Thus we have proved that u1Rd\F solves (3.2), and by linearity we obtain
that also u1F = u− u1Rd\F solves (3.2), that is, we obtain (b2).

Step 2: (b) implies (a). Let N ′ be the set of all y 6∈ N such that H k(Ey) =
+∞. We know by Lemma 2.6(ii) that L d−k(N ′) = 0, and therefore ν(N ′) = 0
(because νs is supported on N).

Fix y 6∈ N ∪N ′. By (b1), u solves (3.2) on every C ∈ Cy, and since H k(Ey)
is finite there are only countably many such C. Hence, proceeding as in Step 1,
we obtain that u solves (3.2) on E∗y and u1Rd\F solves (3.2). Finally (b2) and
the linearity of (3.2) imply that u = u1F + u1Rd\F solves (3.2). �

We can now state the main result of this section, namely that, under the
additional assumption (3.9), uniqueness for the Cauchy problem (3.2) in Rd is
equivalent to uniqueness on the connected components C in Cy for a.e. y.
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3.10. Theorem. Take b and f as in §3.1 and assume that

b(t, x) = 0 for a.e. (t, x) ∈ [0, T )× S. (3.9)

Then the following statements are equivalent:
(a) if u : [0, T ) × Rd → R is a bounded solution of (3.2) then u = 0 for

a.e. (t, x) ∈ [0, T )× Rd;
(b) for L d−k-a.e. y ∈ Rd−k and every C ∈ Cy the following implication

holds: if u : [0, T ) × C → R is a bounded solution of (3.2) on C, then
u = 0 for L 1-a.e. t ∈ [0, T ) and µy-a.e. x ∈ C.

Proof. Step 1: (b) implies (a). Let u : [0, T )×Rd → R be a bounded solution
of (3.2). We want to show that u = 0 a.e.

From Lemma 3.9 we deduce the existence of an L d−k-negligible set N such
that νs is supported in N and u solves (3.2) on C for every C ∈ Cy and every
y 6∈ N . By assumption (b) we can find an L d−k-negligible set N ′ such that
u = 0 for L 1-a.e. t ∈ [0, T ) and µy-a.e. x ∈ C, for every C ∈ Cy and every
y 6∈ N ∪N ′. By Lemma 2.6(ii) we can also find an L d−k-negligible set N ′′ such
that y 6∈ N ′′ we have H k(Ey) < +∞ and therefore Cy is countable.

The previous considerations imply that u = 0 for L 1-a.e. t ∈ [0, T ) and
µy-a.e. x ∈ E∗y for every y 6∈ N ∪ N ′ ∪ N ′′. Recalling that N support νs we
obtain that

u = 0 a.e. in [0, T )×
(
E∗ \ f−1(N ∪N ′ ∪N ′′)

)
. (3.10)

By Lemma 3.9 that u1F solves (3.2), where F := f−1(N) ∪ (Rd \ E∗).
Lemma 2.8(i) together with the fact thatN is an L d−k-negligible set supporting
νs implies that f−1(N) ⊂ S up to negligible sets. Using Lemma 2.6(v) we
deduce that F ⊂ S up to negligible sets, thus assumption (3.9) implies that
b = 0 for a.e. (t, x) ∈ [0, T ) × F . Therefore, the fact that u1F solves (3.2)
rewrites as ∫ T

0

∫
F
∂tϕudx dt = 0 ∀ϕ ∈ C∞c

(
[0, T )× Rd

)
. (3.11)

Now, since every φ ∈ C∞c
(
(0, T ) × Rd

)
can be written as φ = ∂tϕ for some

ϕ ∈ C∞c
(
[0, T )× Rd

)
, we see that (3.11) implies that

u = 0 a.e. in [0, T )× F . (3.12)

Taking into account (3.10) and (3.12), to complete the proof it suffices to
show that f−1

(
(N ′ ∪ N ′′) \ N

)
is negligible. This follows from the fact that

ν
(
(N ′ ∪N ′′) \N

)
= 0 (recall §2.4(iii)), which in turn follows from the fact that

N ′ and N ′′ are L d−k-negligible and νs is supported on N .

Step 2: (a) implies (b). Let H be the set of all y ∈ Rd−k such that there
exist Cy ∈ Cy and uy : [0, T ) × Cy → R a nontrivial bounded solution of (3.2)
on Cy.

We have to show that L d−k(H) = 0.
Assume by contradiction that L d−k(H) > 0. Then we can find a constant

m < +∞ and a subset H ′ ⊂ H with L d−k(H ′) > 0 for which the functions uy
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above satisfy |uy| ≤ m on [0, T )×Cy for every y ∈ H ′. At this point we would
like to claim that the function u defined by

u(t, x) :=

{
uy(t, x) if x ∈ Cy for some y ∈ H ′

0 otherwise

is a nontrivial bounded solution of (3.2), in contradiction with assumption (a)
of the present theorem.

Indeed, if the function u were Borel, we could use the implication (b) ⇒ (a)
in Lemma 3.9 to prove such claim. Unfortunately this is not the case, and
therefore we proceed in a (slightly) different way.

We takem as above and consider the set C ∗ of all couples (y, σ) with y ∈ Rd−k

and σ a nontrivial signed measure on [0, T )× Rd of the form

σ = u ·L 1 ⊗ µy
where u solves (3.2) on Ey, satisfies |u| ≤ m everywhere.

By construction, the projection G of C on Rd−k contains H ′ (because for
every y ∈ H ′ the couple (y, σy) with σy := uy 1Cy ·L 1 ⊗ µy. belongs to C ∗.
Hence L d−k(G) > 0, and by Corollary 7.2 we can find a Borel set G′ ⊂ G with

ν(G′) ≥ L d−k(G′) = L d−k(G) > 0

and a Borel family of measure {σy : y ∈ G′} so that (y, σy) ∈ C ∗ for every
y ∈ G′. We denote by uy the bounded solution of (3.2) on Ey associated to σy.

Now we set

σ :=
∫
G′
σy dν(y) =

∫
G′
uy ·L 1 ⊗ µy dν(y) .

It is clear that σ is a nontrivial measure solution of (3.2), and we deduce from
§2.4(iii), (iv) that σ is absolutely continuous with respect to L 1 ⊗L d,

Therefore we can find a function u : [0, T )×Rd → R such that σ = u·L 1⊗L d.
Moreover, passing through the disintegration of σ with respect to f , we recover
that for L d−k-a.e. y ∈ G′ there holds u = uy a.e. with respect to L 1×µy, and
u = 0 a.e. in [0, T )×A, where A is the complement of the union of Ey over all
y ∈ G′.

Since |uy| ≤ m everywhere for every y ∈ G′ we conclude that u is a nontrivial
solution of (3.2) which satisfies |u| ≤ m a.e., and this contradicts (a). �

3.11. Remark. (i) The converse of Lemma 3.7 also holds: if a bounded function
u : [0, T )× Rd → R solves (3.2) on the level set Ey for ν-a.e. y ∈ Rd−k, then u
is a bounded solution of (3.2). This is an immediate consequence of (2.3).

(ii) The converse of Lemma 3.8 does not hold. It is not true in general that
a bounded function u : [0, T )× Ey → R which solves (3.2) on every connected
component of the level set Ey is also a solution of (3.2) on the level set Ey.
This is related to the fact that the connected components of a level set which
are H k-negligible can in principle be more than countable.
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(iii) Assumption (3.9) in Theorem 3.10 is used in the proof to show that
every solution of (3.2) is a.e. null on the set F defined in Lemma 3.9 of must
be trivial. Presumably we could dispense with assumption (3.9); however, a
proof of the corresponding variant of Theorem 3.10 would require a more refined
disintegration formula, to take into account all the connected components of the
level sets, including those which are H k-negligible (see the previous remark).
We decided not to pursue this refinement because we did not see any specific use
for it (in the two dimensional context considered in Sections 4 and 5 assumption
(3.9) is always verified).

4. Uniqueness in the autonomous, divergence-free case

4.1. Assumptions on the vector field. Through this section we assume that
d = 2 and b : R2 → R2 is a bounded, autonomous, divergence-free vector field
with compact support.

It follows that there exists a Lipschitz function f : R2 → R with compact
support such that

b = ∇⊥f a.e. in R2. 17 (4.1)
Such f is unique and is called the potential associated to b. Note that b and f
satisfy the assumptions of Theorem 3.10, namely (3.1) and (3.9).

Theorem 3.10 shows that uniqueness for the Cauchy problem (3.2) is equiva-
lent to uniqueness for the same problem on every nontrivial connected compo-
nent C of a generic level set Ey of f . Using the parametrization of C given in
Lemma 2.11, we show that solving (3.2) on C is equivalent to solve the Cauchy
problem with zero initial datum for the equation ∂t(u(1 + λ)) + ∂su = 0 on
the parametrization domain [0, L]∗ (Lemma 4.4), and for such problem there is
uniqueness if and only if λ = 0 (Lemma 4.5). In Theorem 4.7 we put together
these results and prove that if b is taken as above then uniqueness for (3.2) is
equivalent to the weak Sard property for the potential f .

4.2. Assumptions on the set C. In the following C is a nontrivial connected
component of a level set Ey of f , and µy and µsy are the measures on Ey given in
§2.7 and Lemma 2.8. Taking Lemma 2.11 into account, we assume in addition
that

(i) C is a simple curve with finite length;
(ii) γ : [0, L]∗ → C is a one-to-one Lipschitz parametrization of C such that

γ̇ 6= 0 a.e. with respect to L (the Lebesgue measure on [0, L]∗);
(iii) the restriction of µsy to C agrees with the push-forward according to γ

of some measure λ on [0, L]∗ which is the singular with respect to L .

The next lemma is a particular case of [2, Corollary 7.3], and states that the
test functions of the form ϕ := φ ◦ γ with φ ∈ C∞c (R2) are dense (in a suitable
sense) in the class of Lipschitz functions on [0, L]∗.

17 Since div b = 0, by rotating b by 90◦ clockwise we obtain a curl-free vector field, which
can be rewritten as the gradient of a Lipschitz scalar function.
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4.3. Lemma (see [2], Corollary 7.3). Let a be a function in L1([0, L]) and µ a
signed measure on [0, L] such that the functional

Λ(ϕ) :=
∫ L

0
ϕ̇ a dL +

∫ L

0
ϕdµ

satisfies Λ(ϕ) = 0 for every ϕ of the form ϕ := φ ◦ γ with φ ∈ C∞c (R2).
Then Λ(ϕ) = 0 for every Lipschitz function ϕ on [0, L]∗.

4.4. Lemma. Given a bounded function u : [0, T ) × C → R, the following
statements are equivalent:

(a) u solves (3.2) on C;
(b) the function ũ(t, s) := u(t, γ(s)) solves{

∂t
(
ũ(1 + λ)

)
+ ∂sũ = 0

ũ(0, ·) = 0
(4.2)

in the sense of distributions on [0, T )× [0, L]∗, that is∫ T

0

[ ∫ L

0

(
∂tϕ+ ∂sϕ

)
ũ ds+

∫ L

0
∂tϕ ũ dλ

]
dt = 0 . (4.3)

for every ϕ ∈ C∞c
(
[0, T )× [0, L]∗

)
.18

Proof. Step 1: (a) implies (b). Since µy = γ#(L + λ) and b = 0 for γ#λ a.e.
point of C, the fact that u solves (3.2) on C amounts to∫ T

0

∫
C

(
ϕ̇1ϕ2 + ϕ1b · ∇ϕ2

)
u d
(
γ#L

)
dt+

∫ T

0

∫
C
ϕ̇1ϕ2 u d(γ#λ) dt = 0 (4.4)

for all ϕ1 ∈ C∞c ([0, T )) and all ϕ2 ∈ C∞c (R2).
We set ϕ̃2(s) = ϕ2(γ(s)) and compute

˙̃ϕ2(s) = ∇ϕ2(γ(s)) · γ̇(s) = ∇ϕ2(γ(s)) · ∇⊥f(γ(s))

for L -a.e. s ∈ [0, L]∗.
(4.5)

Using (4.5) and the change of variable x = γ(s), identity (4.4) can be rewritten
as ∫ L

0

[ ∫ T

0
ϕ1 ũ dt

]
˙̃ϕ2 ds+

∫ L

0

[ ∫ T

0
ϕ̇1 ũ dt

]
ϕ̃2

(
ds+ dλ

)
= 0 (4.6)

for all ϕ1 ∈ C∞c ([0, T )) and all ϕ̃2 of the form ϕ̃2 = ϕ2 ◦ γ with ϕ2 ∈ C∞c (Rd).
Then Lemma 4.3 implies that (4.6) holds also for all Lipschitz functions ϕ̃2

on [0, L]∗, which is enough to deduce (4.3) and obtain (b).

Step 2: (b) implies (a). To show that u solves (3.2) on C—that is, it satisfies
(3.5)—it suffices to observe that (4.3) holds also for all test functions of the form
ϕ(t, γ(s)) with ϕ : [0, T )× C → R a Lipschitz function with compact support,
and then apply the change of variable x = γ(s) to the integral at the left-hand
side as in the previous step. �

18C∞c
`
[0, T ) × [0, L]∗

´
corresponds to the space of smooth functions on [0, T ) × R which

are L-periodic in the second variable and compactly supported in the first variable.
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4.5. Lemma. Take L > 0 and let λ be any measure on [0, L]∗ which is singular
with respect to L . Then the following statements are equivalent:

(a) if v : [0, T )× [0, L]∗ → R is a bounded solution of (4.2) then v = 0 for
L 1-a.e. t ∈ [0, T ) and (L + λ)-a.e. s ∈ [0, L]∗;

(b) λ = 0.

Proof. Step 1: (b) implies (a). If λ = 0, then (4.2) reduces to{
∂tv + ∂sv = 0
v(0, ·) = 0 ,

which has only the trivial solution.19

Step 2: (a) implies (b). We show that for λ 6= 0 the problem (4.2) has a
nontrivial bounded solution. More precisely, we construct two distinct bounded
solutions of the equation

∂t
(
v(1 + λ)

)
+ ∂sv = 0 (4.7)

with initial condition v(0, ·) = 1A, where A is a L -negligible compact set
contained in (0, L) with λ(I0) > 0.20

It is immediate to check that v(t, s) := 1A(s) is a stationary solution of (4.7)
with initial condition v(0, ·) = 1A.

We construct a second solution by exploiting the fact that (formally) the
change of variable s = σ(ŝ), where σ : [0, L̂]→ [0, L] is given in §2.16 (see also
Remark 2.18), reduces the equation

∂tw + ∂ŝw = 0 (4.8)

to (4.7).
More precisely, we consider the function 21

v(t, s) :=

w(t, σ̂(s)) for s 6∈ J∫
σ̂(s)

w(t, ŝ) dŝ for s ∈ J , (4.9)

where w : [0, T ) × [0, L̂]∗ → R is the (unique) bounded solution of (4.8) with
initial condition w(0, ·) = 1σ̂(A), that is∫ T

0

∫ bL
0

(
∂tϕ+ ∂ŝϕ

)
w dŝ dt =

∫ bL
0
ϕ(0, ·) 1σ̂(A) dŝ (4.10)

for every ϕ ∈ C∞c ([0, T )× [0, L̂]∗). It remains to show that v is truly a solution
of (4.7) with initial condition v(0, ·) = 1A, and that it is different from the
stationary solution 1A, that is, it is not stationary.

19 This is well-known with [0, L]∗ replaced by R; the same proof works also for [0, L]∗.
20 Such A can be found because the measure λ is supported in (0, L), cf. §2.12(ii).
21 Recall that σ̂ is uni-valued for s /∈ J , and σ̂(s) is the interval [σ̂−(s), σ̂+(s)] for s ∈ J ,

cf. §2.16.
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Step 3: v solves (4.7) with initial condition v(0, ·) = 1A. The weak formula-
tion of this claim can be rewritten as follows (cf. (4.3)): for every test function
ϕ ∈ C∞c ([0, T )× [0, L]∗) there holds∫ T

0

∫ L

0

(
∂tϕ+ 1I\F ∂sϕ

)
v d(L + λ) dt =

∫ L

0
ϕ(0, ·) 1A d(L + λ) . (4.11)

We apply the change of variable s = σ(ŝ): letting v̂(t, ŝ) := v
(
t, σ(ŝ)

)
and

ϕ̂(t, ŝ) := ϕ
(
t, σ(ŝ)

)
, and using (2.10), identity (4.11) becomes∫ T

0

∫ bL
0

(
∂tϕ̂+ ∂ŝϕ̂

)
v̂ dŝ dt =

∫ bL
0
ϕ̂(0, ·) 1σ̂(A) dŝ , (4.12)

where we have used that ∂tϕ̂ = ∂tϕ and ∂ŝϕ̂ = ∂sϕ1bI\σ̂(F ).
If v̂ were equal to w, then (4.12) would follow by writing (4.10) with the test

function ϕ̂ (recall Remark 3.3). Unfortunately, v̂ agrees with w only on the
complement of σ̂(J). However, we can recover (4.12) from (4.10) by showing
that for every t ∈ [0, T ) there holds∫

σ̂(J)

(
∂tϕ̂+ ∂ŝϕ̂

)
v̂ dŝ =

∫
σ̂(J)

(
∂tϕ̂+ ∂ŝϕ̂

)
w dŝ .

Indeed∫
σ̂(J)

(
∂tϕ̂∂ŝϕ̂

)
v̂ dŝ

=
∑
s∈J

∫
σ̂(s)

(
∂tϕ̂+ ∂ŝϕ̂

)
v̂ dŝ

=
∑
s∈J

∂tϕ(t, s)
∫
σ̂(s)

v̂ dŝ

=
∑
s∈J

∂tϕ(t, s)
∫
σ̂(s)

w dŝ =
∫
σ̂(J)

(
∂tϕ̂+ ∂ŝϕ̂

)
w dŝ , (4.13)

where the second and the last equalities follow from the fact that ∂ŝϕ̂(t, ŝ) = 0
and ∂tϕ̂(t, ŝ) = ∂tϕ(t, s) for all ŝ in the interval σ̂(s), while the third equality
follows from that fact that in each of these intervals the function v̂(t, ŝ) coincides
with the average of w(t, ŝ) over the same interval (see (4.9)).

Step 4: v is not stationary. This claim can be proved in many ways. We
choose to look at the maximum of the a(t) of the support of the function v(t, ·)
(computed with respect to the measure L + λ), and show that this function is
strictly increasing at t = 0.

Let â(t) be the maximum of the support of the function w(t, ·) (with respect
to the measure L̂ ). Since w solves (4.8), a continuity equation with a regular
(in fact, constant) vector field, then it is propagated along characteristics, and
therefore â is strictly increasing in t, at least as long as it does not reach the
value L.
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Moreover a = σ(â). Therefore, recalling the properties of σ (see §2.16), we
obtain that a is strictly increasing at t = 0 provided that â(0) does not belong
to any of the intervals σ(s) with s ∈ J , or, if it does, then it agrees with the
supremum of such interval. Finally, one can check that this condition is always
verified because we assumed A closed. �

4.6. Remark. Concerning the previous proof, it should be noted that the change
of variable s = σ(ŝ) reduces to (4.7) every equation of the form

∂tv + ∂ŝ(g1v + g2) = 0 (4.14)

where the functions g1 and g2 satisfy the following conditions: g1 is constant
a.e. in σ̂(F ), g1 = 1 and g2 = 0 a.e. outside σ̂(F ). More precisely, if w is a
solution of (4.14), then the function v defined by (4.9) is a solution of (4.7).
In particular, taking g1 := 1 and g2 := −1A we recover the stationary solution
v(t, s) := 1A(s).

4.7. Theorem. Take b and f as in §4.1. Then the following statements are
equivalent:

(a) if u : [0, T ) × R2 → R is a bounded solution of (3.2) then u = 0 for
a.e. (t, x) ∈ [0, T )× R2;

(b) the potential f satisfies the weak Sard property (defined in §2.13).

Proof. Since b and f satisfy the assumptions of Theorem 3.10, the uniqueness
for the Cauchy problem (3.2) (statement (a)) is equivalent to uniqueness for
the same problem on every C ∈ Cy for a.e. y.

By Lemma 2.11, for a.e. y, every connected component C ∈ Cy satisfies the
assumptions in §4.2, and therefore Lemma 4.4 and Lemma 4.5 imply that the
uniqueness of (3.2) on C is equivalent to λ = 0, which means that the restriction
of µsy to C vanishes.

Finally Lemma 2.14 states that 1C · µsy = 0 for every C ∈ Cy and a.e. y if
and only if f satisfies the weak Sard property. �

4.8. Corollary. There exists a divergence-free autonomous vector field b on the
plane which belongs to C0,α for every α < 1, and for which the Cauchy problem
(3.2) has nontrivial bounded solutions.

Proof. In [2, §4.8] we construct a function f ′ : R2 → R of class C1,α for every
α < 1 which does not have the weak Sard property. We modify f ′ so to make
it compactly supported, and set b := ∇⊥f ′. Then Theorem 4.7 shows that for
such b the Cauchy problem (3.2) admits nontrivial bounded solutions. �

5. Uniqueness in the bounded divergence case

5.1. Assumptions on the vector field. In this section we consider a
bounded, time-dependent vector field b : [0, T )× R2 → R2 of the form

b(t, x) = a(t, x)∇⊥f(x) a.e. in [0, T )× R2, (5.1)

where f : R2 → R is a Lipschitz function with compact support and a : [0, T )×
R2 → R is a bounded function.
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We assume moreover that b has bounded divergence in the sense of distri-
butions, that is, there exists a bounded function g : [0, T ) × R2 → R such
that ∫ T

0

∫
R2

(
b · ∇ϕ+ g ϕ

)
dx dt = 0 ∀ϕ ∈ C∞c ((0, T )× R2) . (5.2)

The next result extends Theorem 4.7 and provides a characterization of
uniqueness within the special class of bounded vector fields considered in the
previous paragraph.

5.2. Theorem. Take b, f and a as in §5.1. The following statements hold:
(i) If f satisfies the weak Sard property then there is uniqueness for the

Cauchy problem (3.2), that is, every bounded solution u : [0, T )×R2 → R
of (3.2) satisfies u = 0 for a.e. (t, x) ∈ [0, T )× R2.

(ii) Conversely, if f does not satisfy the weak Sard property and there exists
δ > 0 such that a ≥ δ a.e. on [0, T )×R2, then (3.2) admits a nontrivial
bounded solution.

5.3. Remark. (i) Observe that, for given b and f , the value of a is determined
(a.e.) in [0, T )×(R2\S) by equation (5.1), but can be freely chosen on [0, T )×S.

(ii) The class of vector fields considered in this section clearly includes the
one considered in Section 4. The structural assumption (5.1) is however very
rigid, in that it allows only for vector fields whose direction does not depend
on time, and does not even include all autonomous vector fields with bounded
divergence.22

(iii) The inequality a ≥ δ in Theorem 5.2(ii) can be obviously replaced by
a ≤ −δ.23 Indeed it will be clear from the proof that these two conditions are
far from being optimal, but we could not find a weaker one that could be easily
expressed in terms of a and f . Note that some non-degeneracy assumption on
a is needed: if b (or equivalently a) vanishes on a neighbourhood of the critical
set S, then uniqueness for (3.2) holds even if f does not satisfy the weak Sard
property.

(iv) Consider two different couples f1, a1 and f2, a2 that decompose b as in
(5.1), that is

b = a1∇⊥f1 = a2∇⊥f2 .

Under the assumption that both a1 and a2 are uniformly strictly positive, then
f1 satisfies the weak Sard property if and only if f2 does (because by The-
orem 5.2 both conditions are equivalent to the uniqueness for (3.2)). More
generally, if a2 is uniformly strictly positive then the weak Sard property for f1

implies that for f2.

22 The vector field b(x) := x cannot be written in the form (5.1) in any neighbourhood of
0: if it were, all level sets of f would contain the point 0, which is clearly impossible for a
non-constant Lipschitz function.

23 Just apply the result with a and f replaced by −a and −f .
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We first prove a lemma that characterizes the derivative of a along a non-
trivial connected component C of a generic level set Ey. The rest of the proof
of Theorem 5.2 is a more or less straightforward modification of the proof of
Theorem 4.7, and we will only summarize the main steps.

5.4. Lemma. For a.e. y ∈ R, every C ∈ Cy satisfies the assumptions in §4.2,
and

∂sã = g̃ (1 + λ) (5.3)

in the sense of the distributions on (0, T )× [0, L]∗, where we have set ã(t, s) :=
a(t, γ(s)) and g̃(t, s) := g(t, γ(s)) and γ, λ, L are taken as in §4.2.

Moreover there exists a function α : [0, T ) × [0, L̂]∗ → R which is bounded,
uniformly Lipschitz in the second variable, and satisfies ã(t, s) = α(t, σ̂(s))
for a.e. (t, s), where L̂ and σ̂ : [0, L]∗ → [0, L̂]∗ are given in §2.16 (see also
Remark 2.18). In particular when λ = 0 we have L̂ = L, σ̂(s) = s, and
therefore ã = α a.e.

Sketch of proof. Step 1: proof of (5.3). Following the proofs of Lemmas 3.7
and 3.8 we obtain that for every C ∈ Cy and a.e. y there holds∫ T

0

∫
C
b · ∇ϕ+ g ϕ dµy dt = 0 ∀ϕ ∈ C∞c ((0, T )× R2) . (5.4)

Moreover C satisfies the requirements in §4.2 (Lemma 2.11) and therefore,
arguing as in the proof of Lemma 4.4, equation (5.4) translates into∫ T

0

[ ∫ L

0
ã ∂sϕ+ g ϕ dL +

∫ L

0
g̃ ϕ dλ

]
dt = 0 ∀ϕ ∈ C∞c ((0, T )× [0, L]∗) ,

which is precisely the weak formulation of (5.3).

Step 2: construction of α. For every t ∈ [0, T ) and ŝ ∈ [0, L̂] we set

α(t, ŝ) := c(t) +
∫ ŝ

0
g̃(t, σ(·)) dL ,

and we choose c(t) so that the integrals of ã(t, ·) and α(t, σ̂(·)) over [0, L] are
the same.

The function α is clearly well-defined on [0, T )×[0, L̂], bounded, and Lipschitz
in the second variable. Moreover (5.3) and formula (2.10) imply that for a.e. t

0 =
∫ L

0
g̃(t, ·) d(L + λ) =

∫ bL
0
g̃(t, σ(·)) dL

and therefore α(t, 0) = α(t, L̂). Hence α(t, ·) is well-defined and Lipschitz also
as a function on [0, L̂]∗.

Step 3. Formula (2.10) yields

α(t, σ̂(s)) = c(t) +
∫ s

0
g̃(t, ·) d(L + λ)
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for every t and every s such that σ̂ is uni-valued at s. This identity and (5.3)
imply that

∂sα(t, σ̂(s)) = g̃(1 + λ) = ∂sã (5.5)

in the sense of distribution on (0, T )× [0, L]∗. In turn, (5.5) and the choice of
c(t) imply that α(t, σ̂(s)) = ã(t, s) for a.e. (t, s). �

Sketch of proof of Theorem 5.2. Step 1. Since b and f satisfy the assumptions
of Theorem 3.10, the uniqueness for the Cauchy problem (3.2) is equivalent to
uniqueness for the same problem on every C ∈ Cy for a.e. y. Moreover, in view
of Lemma 5.4, we can restrict ourselves to those C which satisfy the assumptions
in §4.2 and in Lemma 5.4.

Step 2. A straightforward modification of Lemma 4.4 shows that the unique-
ness for the Cauchy problem (3.2) on C is equivalent to the uniqueness for{

∂t
(
ũ(1 + λ)

)
+ ∂s(ãũ) = 0

ũ(0, ·) = 0
(5.6)

on [0, T )× [0, L]∗, where ã is defined as in Lemma 5.4.

Step 3: proof of statement (i). Since f satisfies the weak Sard condition,
by Lemma 2.14 we can assume that the restriction of µsy to C vanishes, which
means that λ vanishes.

By the previous steps, it suffices to show that for λ = 0 the only bounded
solution of (5.6) is the trivial one. Indeed (5.6) reduces to Cauchy problem for
the standard continuity equation{

∂tũ+ ∂s(ãũ) = 0
ũ(0, ·) = 0 ,

(5.7)

and since ã agrees a.e. with the function α given in Lemma 5.4, which is Lips-
chitz in the second variable, then ũ is trivial.

Step 4: proof of statement (ii). In view of the first two steps, it suffices to
show that if λ 6= 0 then the problem (5.6) admits a nontrivial bounded solution.

To do this, we strictly follow the second part of the proof of Lemma 4.5 and
construct two distinct bounded solutions of the equation

∂t
(
v(1 + λ)

)
+ ∂s(ãv) = 0 , (5.8)

with the same initial condition v(0, ·) = 1A, where A is chosen as in the proof
of Lemma 4.5.

One solution is the stationary one, and the other one is the function v given
by formula (4.9) by taking as w the (unique) bounded solution of

∂tw + ∂ŝ(αw) = 0 (5.9)

on [0, T )× [0, L̂]∗ with initial condition w(0, ·) = 1σ̂(A), where α is the function
constructed in Lemma 5.4.
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The fact that v solves (5.8) and is different from the stationary solution can
be proved as in Lemma 4.5. �

6. Additional remarks

6.1. Extensions of Theorems 4.7 and 5.2. (i) In both statements, the as-
sumption that b has compact support is made for the sake of simplicity, and can
be easily removed. In that case, one should also consider nontrivial connected
components C of the level sets of f which are simple curves with the end points
at infinity.

(ii) The continuity equation (1.1) can be modified so to include a (possibly
nonlinear) source term at the right-hand side, that is

∂tu+ div (bu) = h(t, x, u) ,

where the function h : [0, T )×R2×R→ R is bounded. The key point is clearly
that uniqueness holds for the corresponding one-dimensional equation

∂tv + ∂s(ãv) = h̃(t, s, v)

on [0, T )× [0, L]∗.

(iii) Uniqueness can be shown in the class of weak solutions that are integrable
in space and time (instead of bounded). The key point is that uniqueness
holds for the corresponding one-dimensional equation ∂tv + ∂s(ãv) = 0 among
solutions which are integrable in space and time.

6.2. Extension to higher dimension. It is possible to extend Theorem 5.2
to higher dimension, and more precisely to bounded, time-dependent vector
fields b on Rd with bounded divergence which satisfy the following (quite rigid)
structural assumption: there exists a Lipschitz map f : Rd → Rd−1 such that
∇f · b = 0 a.e., and b = 0 at a.e. point where the rank of ∇f is not maximal.

In this case, the uniqueness for the Cauchy problem (3.2) should be proved
under the following assumptions: (i) f satisfies a suitable version of the weak
Sard property, and (ii) for a.e. y the level set Ey of f does not contains triods,
and therefore its nontrivial connected components are simple curves.

It seems that both assumptions are not only sufficient for uniqueness, but
also necessary. Note that assumption (ii) is automatically satisfied when d = 2
(Lemma 2.11(i)), while for d > 2 it is satisfied when f is of class C1,1/2 (see [2,
Lemma 2.16]), but may fail when f is of class C1,α with α < 1/(d− 1) (see [2,
Section 3]).

Since also in this case the uniqueness for the Cauchy problem (3.2) turns out
to be equivalent to the uniqueness for the same problem on the nontrivial con-
nected components of a generic level set of f , the lack of triods is (presumably)
also necessary for uniqueness.
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6.3. The renormalization property. The key step in the uniqueness proof
by DiPerna and Lions [13] is proving the renormalization property for weak
solutions.

In this paper we completely avoid the use of the renormalization property.
However, it is an easy consequence of our dimension-reduction technique.

Let us assume for simplicity that b is divergence-free and autonomous: in
this case the renormalization property for a weak solution u of the continuity
equation (1.1) simply means that β(u) is a weak solution the same equation
for every smooth function β : R → R.24 Therefore, when the potential f
of b satisfies the weak Sard property, this property can be deduced from the
renormalization property for the one-dimensional equation ∂tv + ∂sv = 0.

6.4. The regular Lagrangian flow. Under the weak regularity assumptions
on b considered in this paper, the meaningful notion flow for the ordinary
differential equation ẋ = b(t, x) is that of regular Lagrangian flow (see [4]):
we say that a Borel map Φ : [0, T ) × R2 → R2 is a regular Lagrangian flow
associated to b if

(i) for a.e. x ∈ R2 the map t 7→ Φ(t, x) solves ẋ = b(t, x) in the integral
sense;

(ii) there exists a constant c such that for every t the push-forward of L 2

according to Φt := Φ(t, ·) satisfies (Φt)#L 2 ≤ cL 2.
Theorems 4.7 and 5.2, together with the abstract theory of regular La-

grangian flows developed in [6], give the following result: if b is taken as in
§4.1 or §5.1, and the corresponding function f satisfies the weak Sard property,
then there exists a unique regular Lagrangian flow for b.

6.5. Strong locality of the divergence operator. It is well-known that the
(distributional) gradient is strongly local for Sobolev functions, in the sense that
the following implication holds for every Sobolev function u and every Borel
set A in the domain of u:

u = const. a.e. on A ⇒ ∇u = 0 a.e. on A.

It follows immediately that also every first-order differential operator is strongly
local on Sobolev spaces.

However, this is no longer true on larger spaces; in particular the divergence
operator is not strongly local on the space of vector fields with bounded diver-
gence. Indeed, for vector fields b on R2 of the form

b = a∇⊥f , (6.1)

where f is a Lipschitz function on R2 and a a bounded function on R2, the
strong locality of the divergence is strictly related to the weak Sard property
of f . More precisely:

6.6. Proposition. Let b, f and a be given as above, and assume that b has
bounded divergence. Then the following statements hold for every v ∈ R2:

24 If u is of class C1, this follows by a straightforward computation.
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(i) If the function f(x) − v · x has the weak Sard property, then for every
Borel set A in R2 there holds:

b = v a.e. on A ⇒ div b = 0 a.e. on A. (6.2)

(ii) Conversely, if f(x)− v · x does not satisfy the weak Sard property then
there exist b as above and a Borel set A such that implication 6.2 fails.

In [2, Section 5] we construct an explicit example of bounded vector field b
on the plane whose divergence is bounded, nontrivial, and supported in the set
where b = 0, and then use such b to construct a Lipschitz function without the
weak Sard property.

Sketch of proof. With no loss of generality we can assume v = 0. We first prove
statement (i). Let g be the divergence of b, that is,∫

R2

b · ∇ϕ+ g ϕ dx = 0 ∀ϕ ∈ C∞c (R2) .

Starting from this identity and arguing as in the proof of Lemma 3.9 we find an
L 1-negligible set N in R such that the following hold: the singular measure νs

defined in §2.7 is supported on N , for every y 6∈ N and every C ∈ Cy we have∫
C
b · ∇ϕ+ g ϕ dµy = 0 ∀ϕ ∈ C∞c (R2) , (6.3)

and setting F := f−1(N) ∪ (R2 \ E∗) we have∫
F
b · ∇ϕ+ g ϕ dx = 0 ∀ϕ ∈ C∞c (R2) . (6.4)

Since F is contained (up to a negligible subset) in the critical set S, we have
that b = 0 a.e. on F , and therefore (6.4) implies that

g = 0 a.e. in F . (6.5)

Moreover, choosing a parametrization γ of C as in §4.2 and recalling that
the measure λ which appears there is null because of the weak Sard property
(Lemma 2.14), we can rewrite (6.3) as∫ L

0
ã ϕ̇+ g̃ ϕ ds = 0 ∀ϕ ∈ C∞([0, L]∗) , (6.6)

where we have set ã(s) := a(γ(s)) and g̃(s) := g(γ(s)). This means that g̃ is
the distributional derivative of ã.

Now, the assumption b = 0 a.e. on A implies that ã = 0 a.e. on γ−1(A), and
therefore the strong locality of derivatives of Sobolev functions yields g̃ = 0 a.e.
in γ−1(A), that is,

g = 0 µy-a.e. in A ∩ C. (6.7)
Since (6.7) holds for every C ∈ Cy and for ν-a.e. y, the disintegration formula

for the Lebesgue measure (cf. §2.7) yields

g = 0 a.e. in A \ F ,
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and together with (6.5) gives that g = 0 a.e. in A, which concludes the proof of
statement (i).

We now prove statement (ii). Since f does not satisfy the weak Sard property,
there exists a set G in R with positive measure such that for every y ∈ G there
exists C ∈ Cy for which the measure λ is nontrivial (recall Lemma 2.14).

For every such C, consider the usual parametrization γ and choose two
bounded functions ã and g̃ on [0, L]∗ so that

∂sã = g̃(1 + λ)

in the sense of distributions on [0, L]∗, and g̃ is not λ-a.e. null.
Now define the functions g and a on R2 so that g = a = 0 out of the union

of all C given above, and a(γ(s)) = ã(s) and g(γ(s)) = g̃(s) for (L + λ)-a.e. s
and every C given above.

It can be verified that g is the distributional divergence of b := a∇⊥f , and
the restriction of g to the singular set S is not a.e. null. Hence implication (6.2)
fails for A := S. �

7. Appendix: a measurable selection lemma

In this appendix we prove a measurable selection lemma used in the proof
of Theorem 3.10. For the notation we refer to Section 2. Given m, T > 0,
we denote by C the set of all couples (y, σ) such that y ∈ Rd−k and σ is a
real-valued measure on [0, T )× Rd of the form

σ = u ·L 1 ⊗ µy ,

where u : [0, T )× Ey → R satisfies |u| ≤ m everywhere and solves (3.2) on Ey,
or equivalently σ is a measure solution of (3.2) in the sense of cf. §3.5.

We denote by M the Banach space of real-valued measures on [0, T ) × Rd.
In the measure theoretic issues that will be considered below, the word “Borel”
in relation to M refers to the σ-algebra generated by the weak* topology of M
(that is, the one induced by the standard duality with the space of continuous
functions on [0, T )×Rd vanishing at infinity). The key point is that the restric-
tion of the weak* topology to any closed ball of M is compact and metrizable,
and therefore Polish (separable and completely metrizable).

7.1. Proposition. The set C defined above is a Borel subset of Rd−k ×M .

Proof. Step 1. We rewrite C as the set of all (y, σ) such that

|σ|(E) ≤ mL 1 ⊗ µy(E) ∀E ⊂ [0, T )× Rd , (7.1)

where |σ| denotes the variation of a real-valued measure σ, and∫
∂tϕ+ b · ∇ϕdσ = 0 ∀ϕ ∈ C∞c ([0, T )× Rd) . (7.2)

Indeed (7.1) means that the measure σ is absolutely continuous with respect to
L 1⊗µy and that the density u of the former measure with respect to the latter
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satisfies |u| ≤ m almost everywhere, while (7.2) means that σ is a measure
solution of (3.2).

Step 2: the set of all (y, σ) which satisfy (7.1) is a Borel subset of Rd−k×M .
Note that (7.1) can be rewritten as∫

ϕdσ ≤ m
∫
|ϕ| dt dµy ∀ϕ ∈ C0([0, T )× Rd) . (7.3)

Moreover it suffices that the inequality in (7.3) is satisfied for all ϕ ∈ D , where
D is a given countable dense subset of Cc([0, T ) × Rd). In other words (7.3),
and therefore also (7.1), can be rewritten as Λϕ(y, σ) ≤ 0 for all ϕ ∈ D , where

Λϕ(y, σ) :=
∫
ϕdσ −m

∫
|ϕ| dt dµy . (7.4)

Now, the first integral in (7.4) is a continuous function of σ (by the definition
of the topology on M ) while the second integral is a Borel function of y (because
the family {µy} is Borel, cf. §2.2 and §2.3), and therefore Λϕ is a Borel function
on Rd−k ×M .

Hence the set of all (y, σ) satisfying Λϕ(y, σ) ≤ 0 is Borel for every given ϕ,
and so is the set of all (y, σ) satisfying Λϕ(y, σ) ≤ 0 for all ϕ ∈ D .

Step 3: the set of all (y, σ) which satisfy (7.2) is a Borel subset of Rd−k×M .
Note that in (7.2) we can equivalently require that the equality holds just
for the test function ϕ ∈ D ′, where D ′ is a given countable dense subset of
C∞c ([0, T ) × Rd). Therefore, arguing as in Step 2, we only need to show that
for every ϕ ∈ C∞c ([0, T ) × Rd) the integral at the left-hand side of (7.2) is a
Borel function of σ.

We actually prove that for every bounded Borel function a : [0, T )×Rd → R
the integral

∫
a dσ is a Borel function of σ.

Let indeed F be the class of all bounded Borel real functions a on [0, T )×Rd

such that this is true. One easily checks the following:
(i) F is a vector space;
(ii) if f is the pointwise limit of an (increasing) sequence of uniformly

bounded functions in F , then f belongs to F ;
(iii) F contains all functions in C0([0, T )×Rd) and therefore also all bounded

continuous functions on [0, T )× Rd by statement (ii).
Then the functional version of the monotone class theorem (see for instance

[12, Chapter I, Theorem 21]) implies that F contains all bounded Borel func-
tions. �

7.2. Corollary. Let C ∗ be the set of all (y, σ) ∈ C with σ 6= 0, and let G be the
projection of C ∗ on Rd−k. Then G is Lebesgue measurable, and there exist a
Borel set G′ ⊂ G such that L d−k(G \G′) = 0 and a Borel family {σy : y ∈ G′}
such that (y, σy) ∈ C ∗ for every y ∈ G′.

Proof. Since C is a Borel set in Rd−k ×M , and so is (obviously) the set I of
all couples (y, 0) with y ∈ Rd−k, then also C ∗ = C \I is Borel.
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In particular C ∗ belongs to the product σ-algebra generated by the σ-algebra
of Lebesgue measurable sets on Rd−k times the Borel σ-algebra on M . There-
fore, by von Neumann’s selection theorem (cf. [22, Corollary 5.5.8]), the pro-
jection G is Lebesgue measurable, and there exists a Lebesgue measurable map
that to every y ∈ G associates σy such that (y, σy) ∈ C ∗.

To conclude, we choose a Borel subset G′ of G such that the restriction of
this selection map to G′ is Borel, and L d−k(G \G′) = 0. �
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