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SBV-LIKE REGULARITY FOR HAMILTON-JACOBI EQUATIONS WITH A

CONVEX HAMILTONIAN

STEFANO BIANCHINI AND DANIELA TONON

Abstract. In this paper we consider a viscosity solution u of the Hamilton-Jacobi equation

∂tu + H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,

where H is smooth and convex. We prove that when d(t, ·) := Hp(Dxu(t, ·)), Hp := ∇H, is BV for
all t ∈ [0, T ] and suitable hypotheses on the Lagrangian L hold, the Radon measure divd(t, ·) can have

Cantor part only for a countable number of t’s in [0, T ]. This result extends a result of Robyr for

genuinely nonlinear scalar balance laws and a result of Bianchini, De Lellis and Robyr for uniformly
convex Hamiltonians.

1. Introduction

We consider the Hamilton-Jacobi equation

∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,
where H is a smooth convex Hamiltonian and Ω an open set of [0, T ]×Rn. A viscosity solution of such an
equation is locally Lipschitz but in general it doesn’t have any additional regularity. The structure of the
non-differentiability set of viscosity solutions has been studied by several authors, see for example Fleming
[14], Cannarsa and Soner [10]. The majority of the existing results are in the case of a strictly convex
Hamiltonian. Under this assumption the viscosity solution u is semiconcave, this implies in particular
that Du belongs to BV and D2u is a matrix of Radon measures. It is therefore of interest to see when Du
belongs to SBV. The first result in this direction was proven by Cannarsa, Mennucci and Sinestrari in [8].
There, the authors were able to prove the SBV regularity of Du as a corollary to a more general result
on the rectifiability of the singular set of Du. Therefore they needed a strongly regular initial datum
u(0, x) = u0(x) in W 1,∞(Rn)∩CR+1(Rn), R ≥ 1. Less regularity can be asked to the initial datum when
attempting directly to the Cantor part of D2u. In [5], Bianchini, De Lellis and Robyr proved that, when
the Hamiltonian is uniformly convex and the initial datum is bounded Lipschitz, Dxu(t, ·) belongs to
[SBV (Ωt)]

n, Ωt := {x ∈ R
n| (t, x) ∈ Ω}, out of a countable number of t’s in [0, T ]. This means that

D2
xu(t, ·) can have Cantor part only for a countable number of t’s in [0, T ]. In particular Du belongs to

[SBV (Ω)]n+1. This result was first obtained in the one-dimensional case by Ambrosio and De Lellis in
[2].

When H is just convex, Dxu(t, ·) looses in general its BV regularity, an example can be found in
Remark 3.7 in Bianchini [4]. However, in this paper, we show that an SBV-like regularity result can be
proven for the vector field

d(t, x) := Hp(Dxu(t, x)),

defined on the set U of points (t, x) where u(t, x) is differentiable in x. Here Hp is the gradient of the
Hamiltonian H(p). Indeed, the divergence divd(t, ·) is in general a locally finite Radon measure. Moreover
when the vector field d(t, ·) is BV and suitable hypotheses are made on the Lagrangian L, the Legendre
transform of H, the measure divd(t, ·) has Cantor part only for a countable number of t’s in [0, T ].

More precisely let H be C2(Rn), convex and superlinear, i.e. such that lim|p|→∞
H(p)
|p| = +∞.

(HYP(0)) Suppose the vector field d(t, ·) belongs to [BV (Ωt)]
n for every t ∈ [0, T ].

Define Vπn as
Vπn := {v ∈ Rn| L(·) is not twice differentiable in v},

and
Σπn := {(t, x) ∈ U | d(t, x) ∈ Vπn} and Σcπn := U \ Σπn .
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2 STEFANO BIANCHINI AND DANIELA TONON

(HYP(n)) We suppose Vπn to be contained in a finite union of hyperplanes Ππn .
For j = n, . . . , 3 for every (j − 1)-dimensional plane πj−1 in Ππj , let Lπj−1

: Rj−1 → R be the
(j − 1)-dimensional restriction of L to πj−1 and

Vπj−1 := {v ∈ Rj−1| Lπj−1(·) is not twice differentiable in v}.

Define

Σπj−1 := {(t, x) ∈ Σπj | d(t, x) ∈ Vπj} and Σcπj−1
:= Σπj \ Σπj−1 .

(HYP(j-1)) We suppose Vπj−1
to be contained in a finite union of (j − 2)-dimensional planes Ππj−1

, for
every πj−1 ∈ Ππj .

Let us note that the BV regularity of the vector field d(t, ·) is automatically satisfied by a viscosity
solution whose initial datum is semiconcave, as a consequence of Proposition 2.16. However, Remark 3.7
in [4] shows an example of an Hamilton-Jacobi equation with a convex Hamiltonian in which the related
vector field d(t, ·) does not belong to BV. Therefore the BV regularity is a property which is not always
satisfied by the vector field d(t, ·).

In Example 5.6 we show an Hamilton-Jacobi equation for which the hypoteses (HYP(n)),...,(HYP(2))
are satisfied.

Theorem 1.1. Under the assumptions (HYP(0)),(HYP(n)),...,(HYP(2)), the Radon measure divd(t, ·)
has Cantor part on Ωt only for a countable number of t’s in [0, T ].

The theorem above can be seen as the multi-dimensional version of a result proven by Robyr in [18].
In that paper Robyr studied entropy solutions of the genuinely nonlinear scalar balance laws

∂tv(t, x) +Dx(f(t, x, v(t, x))) + g(t, x, v(t, x)) = 0 in an open set Ω ⊂ R
2,

where the source term g belongs to C1(R+ × R × R), f belongs to C2(R+ × R × R) and f is such that
the set {pi ∈ R| fpp(t, x, pi) = 0} is at most countable for every fixed (t, x) ∈ Ω. His main result states
that BV entropy solutions of such equations belong to SBVloc(Ω). In the one-dimensional case genuinely
nonlinear scalar balance laws and Hamilton-Jacobi equations are equivalent when f(t, x, p) = H(p) and
g(t, x, p) = 0. The entropy solution of the first can be seen as the gradient of the viscosity solution of
the second, v(t, x) = Dxu(t, x). With this consideration our result is a kind of generalization of Robyr’s
result to the multi-dimensional case. Furthermore, we prove that, in the one-dimensional case, when the
Hamiltonian is convex and smooth, the BV regularity of d(t, x) follows automatically and there is no
need to add further hypotheses to prove its SBV regularity out of a countable number of t’s. Since the
BV regularity of d(t, x) does not imply in general the same regularity for ∂

∂xu(t, ·), the BV regularity of
∂
∂xu(t, ·) has yet to be required to prove the SBV regularity, see Remark 4.3.

Remark 1.2. Theorem 1.1 is sharp. Indeed Remark 3.3 in [2] shows an example of a viscosity solution of
the Hamilton-Jacobi equation

∂tu+
(Dxu)2

2
= 0 in (−∞, 1)× R

whose related vector field d(t, x) = Dxu(t, x) belongs to W 1,∞
loc ((−∞, 1) × R) and on the optimal rays

is constantly equal to a continuous non decreasing function v : R → [0, 1] which does not belong to
SBVloc(R): i.e. for any x ∈ R, for any s ∈ (−∞, 1)

d(s, x− (1− s)v(x)) = v(x).

In the multi-dimensional case the question on the SBV regularity of d(t, ·) without any additional
hypothesis is still open.

The paper is organized as follows. In Section 2 we recall preliminary results on Hamilton-Jacobi
equations and viscosity solutions. In Section 3 we extend the definition of the vector field d to the all
Ω, we prove that divd(t, ·) is a locally finite Radon measure on Ωt, for all t ∈ [0, T ], and present the
general strategy used to prove that divd(t, ·) has a Cantor part only for a countable number of t′s in
[0, T ]. In Section 4 we study the one-dimensional case and we prove that divd(t, ·) belongs to SBV (Ωt),
out of a countable number of t’s in [0, T ], without any additional hypothesis. In Section 5 we study the
multi-dimensional case and prove Theorem 1.1. We also state some easy corollaries.
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2. Preliminaries

2.1. Generalized differentials. We begin with the definition of generalized differential, see Cannarsa
and Sinestrari [9] and Cannarsa and Soner [10].

Let Ω be an open subset of Rn.

Definition 2.1. Let u : Ω→ R, for any x ∈ Ω the sets

D−u(x) =

{
p ∈ Rn| lim inf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0

}
,

D+u(x) =

{
p ∈ Rn| lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0

}
,

are called, respectively, the subdifferential and superdifferential of u at x.

2.2. Decomposition of a Radon measure. Given an [L∞(Rn)]n vector field d(x) such that divd(x) =:
µ(x) is a Radon measure on R

n, we can decompose µ into three mutually singular measures:

µ = µa + µc + µj .

µa is the absolutely continuous part with respect to the Lebesgue measure. µj is the singular part of the
measure which is concentrated on a Hn−1-rectifiable set. µc, the Cantor part, is the remaining part.

2.3. BV and SBV functions. A detailed description of the spaces BV and SBV can be found in
Ambrosio, Fusco and Pallara [3], Chapters 3 and 4. For the reader convenience, we briefly recall that,
given u ∈ BV (Rn), the distributional derivative of u, which by definition must be a measure with bounded
total variation, is decomposable into three mutually singular measures:

Du = Dau+Dcu+Dju.

Dau is the absolutely continuous part with respect to the Lebesgue measure. Dju is the part of the
measure which is concentrated on the rectifiable (n − 1)-dimensional set J , where the function u has
jump discontinuities, thus for this reason it is called jump part. Dcu, the Cantor part, is the singular
part which satisfies Dcu(E) = 0 for every Borel set E with Hn−1(E) < ∞. If this part vanishes, i.e.
Dcu = 0, we say that u ∈ SBV (Rn). When u ∈ [BV (Rn)]k the distributional derivative Du is a matrix
of Radon measures and the decomposition can be applied to every component of the matrix.

We recall here some properties of BV functions which will be useful later on.

Definition 2.2. Let u in [L1
loc(R

n)]k, we say that u has an approximate limit at x ∈ Rn if there exists
z ∈ Rk such that

lim
ρ→0

 
Bρ(x)

|u(y)− z|dy = 0.

The set Su of points where this property does not hold is called the approximate discontinuity set. For
any x ∈ Rn \ Su the vector z is called approximate limit of u at x and is denoted by ũ(x).

Proposition 2.3. Let u and v belong to [BV (Rn)]k. Let

L := {x ∈ Rn \ (Su ∪ Sv)| ũ(x) = ṽ(x)}.
Then Du and Dv are equal when restricted to L.

Proof. See Remark 3.93 in [3]. �

Proposition 2.4. Let u belongs to [BV (Rn)]k. Then Dcu vanishes on sets which are σ-finite with respect
to Hn−1 and on sets of the form ũ−1(E) with E ⊂ R

k and H1(E) = 0.

Proof. See Proposition 3.92 in [3]. �

Proposition 2.5. Let u belongs to [BV (Rn)]k. For j = 1, . . . , n − 1 define the (n − j)-dimensional
restriction ux1,...,xj (·) : Rn−j → R

k as ux1,...,xj (x̂) = u(x1, . . . , xj , x̂) for fixed (x1, . . . , xj) ∈ R
j. Then

ux1,...,xj (·) is [BV (Rn−j)]k for Hj-a.e. (x1, . . . , xj) in R
j.

Proof. This is a well known result. The proof in the case j = n − 1 can be found in [3] Section 3.11, in
the other cases is similar. �
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2.4. Semiconcave functions. For a complete introduction to the theory of semiconcave functions we
refer to Cannarsa and Sinestrari [9], Chapter 2 and 3 and Lions [17]. For our purpose we define semi-
concave functions with a linear modulus of semiconcavity. In general this class is considered only as a
particular subspace of the class of semiconcave functions with general semiconcavity modulus. The proofs
of the following statements can be found in the mentioned references.

Definition 2.6. We say that a function u : Ω→ R is semiconcave and we denote with SC(Ω) the space
of functions with such a property, if ∃C > 0 such that for any x, z ∈ Ω such that the segment [x−z, x+z]
is contained in Ω

u(x+ z) + u(x− z)− 2u(x) ≤ C|z|2.

Proposition 2.7. Let u : Ω → R belongs to SC(Ω) with semiconcavity constant C ≥ 0. Then the
function

w : x 7→ u(x)− C

2
|x|2

is concave, i.e. for any x, y in Ω such that the whole segment [x, y] is contained in Ω, λ ∈ [0, 1]

w(λx+ (1− λ)y) ≥ λw(x) + (1− λ)w(y).

Within all the properties of a semiconcave function let us recall that when u is semiconcave Du is a
BV map, hence its distributional Hessian D2u is a symmetric matrix of Radon measures and can be split
into the three mutually singular parts D2

au,D
2
ju,D

2
cu. Moreover the following proposition holds.

Proposition 2.8. Let u be a semiconcave function. If D denotes the set of points where D+u is not
single-valued, then |D2

cu|(D) = 0.

Proof. Indeed, the set of points where D+u is not single-valued, i.e. the set of singular points, is a
Hn−1-rectifiable set. �

Definition 2.9. We say that a function v : Ω→ R is semiconvex if u := −v is semiconcave.

2.5. Viscosity solutions. A concept of generalized solution to the equation

(2.1) ∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,

was found to be necessary since classical solutions break down and solutions which satisfy (2.1) almost
everywhere are not unique. Crandall and Lions introduced in [12] the notion of viscosity solution to solve
both these problems, see also Crandall, Evans and Lions [11].

Definition 2.10. A bounded uniformly continuous function u : Ω → R is called a viscosity solution of
(2.1) provided that

i) u is a viscosity subsolution of (2.1): for each v ∈ C∞(Ω) such that u − v has a maximum at
(t0, x0) ∈ Ω,

∂tv(t0, x0) +H(Dxv(t0, x0)) ≤ 0;

ii) u is a viscosity supersolution of (2.1): for each v ∈ C∞(Ω) such that u − v has a minimum at
(t0, x0) ∈ Ω,

∂tv(t0, x0) +H(Dxv(t0, x0)) ≥ 0.

2.6. Properties of the viscosity solution of Hamilton-Jacobi equations. We introduce a locality
property, whose proof can be found in [5].

Proposition 2.11. Let u be a viscosity solution of (2.1) in Ω. Then u is locally Lipschitz. Moreover for
any (t0, x0) ∈ Ω, there exists a neighborhood U of (t0, x0), a positive number δ and a Lipschitz function
v0 on R

n such that
(Loc) u coincides on U with the viscosity solution of{

∂tv +H(Dxv) = 0 in [t0 − δ,∞)× Rn
v(t0 − δ, x) = v0(x).
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Motivated by the above proposition, let us consider the Cauchy problem

(2.2)

{
∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,
u(0, x) = u0(x) for all x ∈ Ω0,

where u0(x) is a bounded Lipschitz function on Ω0.
The proofs of the following statements can be found in Evans [13], Section 3.3 and Chapter 10. See

also Cannarsa and Sinestrari [9], Fleming [14], Fleming and Rishel [15], Fleming and Soner [16] and Lions
[17].

The convexity of the Hamiltonian in the p-variable relates Hamilton-Jacobi equations to variational
problems.

Let L be the Lagrangian of our system, i.e. the Legendre transform of the Hamiltonian H

L(v) = sup
p
{〈v, p〉 −H(p)}.

When we consider a smooth convex Hamiltonian the corresponding Lagrangian is strictly convex but
non smooth in general. In the case of a smooth uniformly convex Hamiltonian instead, the Lagrangian
inherits the same properties of H, i.e. L is itself smooth and uniformly convex.

Theorem 2.12. The unique viscosity solution of the Cauchy problem (2.2) is the Lipschitz continuous
function u(t, x) defined for (t, x) ∈ Ω as

(2.3) u(t, x) = min
y∈Ω0

{
u(0, y) + tL

(
x− y
t

)}
.

Theorem 2.13. Let u(t, x) be a viscosity solution of the Cauchy problem (2.2).

i) The minimum point y for (t, x) ∈ Ω in (2.3) is unique if and only if u(t, x) is differentiable in x.
Moreover in this case y = x− tHp(Dxu(t, x)).

ii) (Dynamic Programming Principle) Fix (t, x) ∈ Ω, then for all t′ ∈ [0, t]

(2.4) u(t, x) = min
z∈Ωt′

{
u(t′, z) + (t− t′)L

(
x− z
t− t′

)}
.

iii) Let 0 < s < t, let (t, x) ∈ Ω and y be a minimum point in (2.3). Let z = s
tx+

(
1− s

t

)
y. Then y

is the unique minimum point for

u(s, z) = min
w∈Ω0

{
u(0, y) + sL

(
z − w
s

)}
.

Definition 2.14. Let y ∈ Ω0 be a minimizer for u(t, x). We call optimal ray the segment [(t, x), (0, y)]
defined in [0, t].

Proposition 2.15. Let [(t, x), (0, y)] and [(t, x)′, (0, y′)] be two optimal rays in [0, t], for x, x′ ∈ Ωt
y, y′ ∈ Ω0 then they cannot intersect except at time 0 or t.

Proof. It follows from Theorem 2.13-(iii). �

Proposition 2.16. Let u0 be a semiconcave function. Then the unique viscosity solution u(t, x) of (2.2)
is semiconcave in x, for all t ∈ [0, T ].

Theorem 2.17 (Semiconcavity Theorem). Suppose H is locally uniformly convex. Then for any t in
(0, T ], u(t, ·) is locally semiconcave with semiconcavity constant C(t) = C

t . Thus for any fixed τ > 0 there
exists a constant C = C(τ) such that u(t, ·) is semiconcave with constant less than C for any t ≥ τ .

Moreover u is also locally semiconcave in both the variables (t, x) in (0, T ]× Rn.

2.7. Duality solutions. We consider a fixed interval of time [0, 1], and we define duality solutions in
this time interval.

Definition 2.18. Setting u+(1, z) := u(1, z), we define duality solutions for s ∈ [0, 1] and z ∈ Ωs, the
backward solution

(2.5) u−(s, z) := max
x∈Ω1

{
u+(1, x)− (1− s)L

(
x− z
1− s

)}
,
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and the forward solution

(2.6) u+(s, z) := min
y∈Ω0

{
u−(0, y) + sL

(
z − y
s

)}
.

Remark 2.19. Note that the function v(τ, y) := u−(1− τ, y) is a viscosity solution of

(2.7)

{
∂τv −H(Dyv) = 0 in Ω ⊂ [0, T ]× Rn
v(0, y) = u(1, y) for all y ∈ Ω1.

Moreover the forward solution is the viscosity solution of

(2.8)

{
∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,
u(0, x) = u−(0, x) for all x ∈ Ω0.

Thanks to the previous remark Theorems 2.13, 2.17 and Propositions 2.15, 2.16 hold for v and the
forward solution u+.

Proposition 2.20. From the definitions above, u+ and u− satisfy the following properties for x ∈ Ω1,
y ∈ Ω0 and z ∈ Ωs for s ∈ (0, 1)

u−(1, x) = u+(1, x) = u(1, x), u+(0, y) = u−(0, y) ≤ u(0, y), u−(s, z) ≤ u+(s, z) ≤ u(s, z).

Proof. The first two equalities are a consequence of the fact that u0 and u1, defined as follows, are L(x−y)
conjugate functions. First, for x ∈ Ω1, set

u1(x) := min
y∈Ω0

{u(0, y) + L(x− y)},

i.e. u1(x) = u(1, x).
Then, for y ∈ Ω0, set

u0(y) := max
x∈Ω1

{u1(x)− L(x− y)},

i.e. u0(y) = u−(0, y).
From these definitions it follows u0(y) ≤ u(0, y) and

u1(x) = min
y∈Ω0

{u0(y) + L(x− y)}.

Indeed, let x̃ ∈ Ω1 a maximizer for u0(y) then

u0(y) = u1(x̃)− L(x̃− y) ≤ u(0, y) + L(x̃− y)− L(x̃− y) = u(0, y).

Nevertheless, from u0(y) ≤ u(0, y), it follows

min
y∈Ω0

{u0(y) + L(x− y)} ≤ min
y∈Ω0

{u(0, y) + L(x− y)} = u1(x).

On the other hand, let ỹ be a minimizer for miny∈Ω0
{u0(y) + L(x− y)}, then we have

min
y∈Ω0

{u0(y) + L(x− y)} = u0(ỹ) + L(x− ỹ)

≥ u1(x)− L(x− ỹ) + L(x− ỹ)

= u1(x).

Note that the definition of u−(s, z) and u+(s, z) implies that u−(1, x) = u1(x) and u+(0, y) = u0(y).
For s in (0, 1) ,the last inequality follows by

u−(s, z) = max
x∈Ω1

{
u1(x)− (1− s)L

(
x− z
1− s

)}
= max

x∈Ω1

{
min
y∈Ω0

{
u0(y) + L(x− y)− (1− s)L

(
x− z
1− s

)}}
≤ min

y∈Ω0

{
u0(y) + sL

(
z − y
s

)}
= u+(s, z),

where the inequality is given by the convexity of L

L(x− y) ≤ sL
(
z − y
s

)
+ (1− s)L

(
x− z
1− s

)
.
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Note that, from the strict convexity of L, the equality holds if and only if x−z1−s = z−y
s , i.e. z = sx+(1−s)y.

That is z belongs to the segment joining the maximizer x to the minimizer y.
Furthermore, due to the fact that u−(0, y) ≤ u(0, y), we have u+(s, z) ≤ u(s, z). �

Proposition 2.21. Suppose H is a smooth uniformly convex Hamiltonian. Then a C1,1-estimate holds
in the regions where u−(s, z) = u+(s, z), for s ∈ (0, 1).

Proof. Fix s in (0, 1) and z such that u−(s, z) = u+(s, z), then as observed in the previous proof there is a
unique segment, connecting the unique minimizer y(z) in (2.6) to the unique maximizer x(z) in (2.5) and
passing through z. Hence z = (1− s)y(z) + sx(z). Moreover both u+(s, ·) and u−(s, ·) are differentiable
in z since the minimizer and the maximizer are unique.
Note that neither u−(s, z) = u+(s, z) implies necessarily that u−(s, z) = u+(s, z) = u(s, z), nor u+(s, z) =
u(s, z) implies that u−(s, z) = u+(s, z) = u(s, z). However, if for a z̃ u−(s, z̃) = u(s, z̃) then u−(s, z̃) =
u+(s, z̃) = u(s, z̃).

From the definition of u+ and u− for z′ ∈ Ωt

u1(x(z))− (1− s)L
(
x(z)− z′

1− s

)
≤ u−(s, z′) ≤ u+(s, z′) ≤ u0(y(z)) + sL

(
z′ − y(z)

s

)
.

Since z = (1− s)y(z) + sx(z) and

u−(s, z) = u1(x(z))− (1− s)L
(
x(z)− z

1− s

)
= u0(y(z)) + sL

(
z − y(z)

s

)
= u+(s, z),

we obtain

−(1− s)
(
L

(
x(z)− y(z)− z′ − z

1− s

)
− L

(
x(z)− y(z)

))
≤ u−(s, z′)− u−(s, z)

≤ u+(s, z′)− u+(s, z) ≤ s
(
L

(
x(z)− y(z) +

z′ − z
s

)
− L

(
x(z)− y(z)

))
.

In particular, recalling the fact that both u+(s, ·) and u−(s, ·) are differentiable in z, and that L is C1

Dxu
−(s, z) = Dxu

+(s, z) = Lv
(
x(z)− y(z)

)
.

Moreover, thanks to the fact that we are considering the region where u+(s, z) = u−(s, z), they are both
semiconvex and semiconcave in this region, thus we can recover a Lipschitz estimate for Dxu

+ and Dxu
−.

− C

1− s
|z|2 ≤ u−(s, x+ z) + u−(s, x− z)− u−(s, x) = u+(s, x+ z) + u+(s, x− z)− u+(s, x) ≤ C

s
|z|2.

Hence we have proved that in the region where u− = u+ the duality solutions are C1,1. �

Remark 2.22. In the proof of the above proposition we used the semiconcavity of u+(s, ·) and the semi-
convexity of u−(s, ·) thus the hypothesis of uniform convexity of the Hamiltonian is necessary.

The definition of backward and forward solutions can be easily generalized for every time interval
[τ, t] ⊂ [0, T ]. Propositions 2.20 and 2.21 hold even in this case.

Definition 2.23. Setting u+
t,τ (t, z) := u(t, z), we define duality solutions for s ∈ [τ, t] and z ∈ Ωs, the

backward solution

u−t,τ (s, z) := max
x∈Ωt

{
u+
t,τ (t, x)− (t− s)L

(
x− z
t− s

)}
,

and the forward solution

u+
t,τ (s, z) := min

y∈Ωτ

{
u−t,τ (τ, y) + (s− τ)L

(
z − y
s− τ

)}
.
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3. Extension and preliminary properties of the vector field d

We consider a viscosity solution u of the Hamilton-Jacobi equation

(3.1) ∂tu+H(Dxu) = 0 in an open set Ω ⊂ R
+ × Rn,

where H is C2(Rn) convex and

lim
|p|→∞

H(p)

|p|
= +∞.

As already noticed, thanks to the time invariance of the equation and to Proposition 2.11, it is enough
to consider the unique viscosity solution of the following Cauchy problem

(3.2)

{
∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,
u(0, x) = u0(x) for all x ∈ Ω0,

where u0(x) is a bounded Lipschitz function on Ω0.
The vector field d(t, x) := Hp(Dxu(t, x)) is well defined where u(t, x) is differentiable in x, i.e. Hn-a.e.

on Ωt, for every t ∈ [0, T ].
Thanks to the Lipschitz regularity of u(t, ·) and the fact that H is smooth, the vector field d(t, ·)

belongs to [L∞(Ωt)]
n.

Moreover d is constant along optimal rays. Indeed, thanks to Theorem 2.13-(iii), we have

d(t, x) = d(s, x− (t− s)d(t, x))

for all 0 ≤ s ≤ t.
A natural extension of d to Ω is D(·) : Ω→ R

n

D(t, x) :=

{
x− y
t
| y is a minimum for u+

t,0(t, z)

}
.

D(t, x) is a multi-valued function which coincides with d(t, x) in the points (t, x) where u(t, x) is differ-
entiable in x. Indeed, where u(t, ·) is differentiable, u(t, x) = u+

t,0(t, x) and they both admit as unique

minimizer y = x− tHp(Dxu(t, x)) in Ω0.
Following the results of Bianchini and Gloyer in [6], we can prove that D(t, x) has closed graph and

thanks to the fact that D(t, x) is closed. For all x′ ∈ Ωt, for all ε > 0, there exists δ > 0 such that

D(t, x) ⊂ D(t, x′) +B(0, ε)

for x ∈ B(x′, δ) ⊂ Ωt. Moreover D(t, x) is a Borel measurable function and divd(t, ·) a locally finite
Radon measure. We repeat the proof for the reader’s convenience.

Theorem 3.1. For every t ∈ (0, T ], the divergence divd(t, ·) is a locally finite Radon measure with
negative singular part.

Proof. Consider an approximation of our vector field done by taking a dense sequence of points {yi}∞i=1

in Ω0. Fix an integer I > 0, call ΩI0 := {yi| i = 1, . . . , I} and define for any x ∈ Ωt

u+
I (t, x) := min

i∈I

{
u−t,0(0, yi) + tL

(
x− yi
t

)}
.

Through this approximation the set Ωt is split into at most I open regions Ωit, i = 1, . . . , I, defined by

Ωit := interior of {x ∈ Ωt| ∃yi minimizer for u+
I (t, x)},

together with the set

JIt :=
⋃
i 6=j

(
Ω
i

t ∩ Ω
j

t

)
of negligible Hn-measure. Indeed, even for u+

I (t, ·) the set of points with more than one minimum is the

set of points of non differentiability of u+
I (t, ·) and this set has Hn-measure zero. We define the vector

field dI on Ω so that on each open set Ωit

dI(t, x) :=
x− yi
t

.
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Using explicitly the definition of dI and the fact that Hn(JIt ) = 0,

divdI(t, x) ≤ n

t
.

Thanks to the pointwise convergence of dI to d

divd(t, ·)− n

t
Hn ≤ 0,

i.e. divd(t, ·)− n
tH

n is a negative definite distribution, hence it is a locally finite Radon measure. Thus
divd(t, ·) is itself a locally finite Radon measure.

Moreover

divd(t, ·) ≤ n

t
Hn,

implies that the singular part of this measure can be only negative. �

From now on we will denote µ(t, ·) := divd(t, ·).
Since we have proven that µ(t, ·) is a locally finite Radon measure, it makes sense to ask whether is

possible or not that µ(t, ·) has Cantor part for all t in [0, T ]. Note that if a Cantor part is different from
zero then it must be negative for Theorem 3.1.

3.1. General strategy. In order to prove that µ(t, ·) has Cantor part only for a countable number of
t’s, the general idea is now standard, see [2], [5].

We reduce to a smaller interval [τ, T ], for a fixed τ > 0, and we construct, on this interval, a monotone
bounded functional F (t). Then, we relate the presence of a Cantor part for the measure µ(t, ·), for a
certain t in [τ, T ], with a jump of the functional F in t. Since this functional is bounded monotone it can
have only a countable number of jumps. Thus, the Cantor part of µ(t, ·) can be different from zero only
for a countable number of t’s.

To define F we consider the following maps: Xt,τ (x) : Ωt → Ωτ

Xt,τ (x) := x− (t− τ)D(t, x),

and its restriction to the set Ut of points where D(t, x) is single-valued, χt,τ (x) : Ut → Uτ

χt,τ (x) := x− (t− τ)d(t, x).

We will sometimes write χt,τ (Ωt) for χt,τ (Ut).
We define the functional F : (τ, T ]→ R

F (t) := Hn(χt,τ (Ut)).

The functional F is bounded, and, due to the fact that optimal rays do not intersect except at time t
or 0, F is a monotone decreasing functional.

In order to apply the strategy above we need two estimates of the following type:

i) For any Borel set A ⊂ Ut for t in (τ, T ]

(3.3) Hn(Xt,τ (A)) ≥ C1Hn(A)− (t− τ)C2µ(t, A),

where C1, C2 are fixed positive constants.
ii) For any Borel set A ⊂ Ωt, for t in (τ, T ] and for every 0 ≤ δ ≤ t− τ

(3.4) Hn(Xt,τ+δ(A)) ≥
(
t− (τ + δ)

t− τ

)m
Hn(Xt,τ (A)),

where m ∈ N,m > 0 is fixed.

Indeed with the estimates above we can prove the following lemma.

Lemma 3.2. For any t in (τ, T ] such that µc(t,Ωt) < 0 there exists a Borel set A ⊂ Ut such that

i) Hn(A) = 0, µc(t, A) < 0 and µc(t,Ωt \A) = 0;
ii) Xt,τ is single-valued on A;
iii) and for any δ in (0, T − t]

χt,τ (A) ∩ χt+δ,τ (Ωt+δ) = ∅.
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Proof. The set of points where d(t, ·) is not single-valued, which coincides with the set of points where
u(t, ·) is not differentiable, is a Hn−1-rectifiable set, due to the Lipschitz regularity of u(t, ·). Hence, the
Radon measure µ(t, ·) has null Cantor part on it. This and the definition of Cantor part of a measure
imply the existence of a Borel set A such that

• d(t, x) is single-valued for every x ∈ A,
• Hn(A) = 0,
• µc(Ωt \A) = 0 and µc(A) < 0.

By contradiction suppose there exists a compact set K ⊂ A such that

µc(t,K) < 0

and

Xt,τ (K) = χt,τ (K) ⊂ χt+δ,τ (Ωt+δ).

Then there exists a Borel set K̃ ⊂ Ωt+δ such that χt,τ (K) = χt+δ,τ (K̃). Moreover, thanks to the fact

that we are considering optimal rays starting from K̃, we have

χt+δ,t(K̃) = K and χt+δ,τ (K̃) = χt,τ (K).

Using the estimate (3.4),

Hn(K) = Hn(Xt+δ,t(K̃)) ≥
(

δ

t+ δ − τ

)m
Hn(Xt+δ,τ (K̃)) =

(
δ

t+ δ − τ

)m
Hn(Xt,τ (K)).

Hence

Hn(K) ≥
(

δ

t+ δ − τ

)m
Hn(Xt,τ (K)).

Moreover applying estimate (3.3)

Hn(K) ≥
(

δ

t+ δ − τ

)m
(C1Hn(K)− (t− τ)C2µ(t, A)) .

Since Hn(K) = 0 we obtain µ(t, A) ≥ 0 in contrast with the fact that µc(t, A) < 0. �

The estimate (3.3) and Lemma 3.2 lead us to the expected conclusion.
Suppose there exists a t in (τ, T ) such that

µc(t,Ωt) < 0,

then, for any δ > 0, let A be the set of Lemma 3.2. According to Lemma 3.2-(iii) we have

F (t+ δ) ≤ F (t)−Hn(Xt,τ (A)).

Moreover, the estimate (3.3) gives

F (t+ δ) ≤ F (t) + (t− τ)C2µc(t, A).

Hence, letting δ → 0, we obtain

lim sup
δ→0

F (t+ δ) < F (t).

Therefore t is a point of discontinuity for F , as we wanted to prove.

4. One-dimensional case

We first consider the one-dimensional case. In this case we don’t need any further assumption on d or
L to prove the following theorem.

Theorem 4.1. The vector field d(t, ·) belongs to SBV (Ωt), out of a countable number of t ∈ [0, T ].

In the uniformly convex case, Theorem 4.1 is a corollary of Ambrosio and De Lellis’s result in [2].
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Proof. Since we are in the one-dimensional case, divd(t, x) = ∂
∂xd(t, x). Hence, Theorem 3.1 implies that

d(t, x) belongs to BV (Ωt), for every t ∈ (0, T ].
Moreover, D(t, ·) is semimonotone. Indeed, since we are following optimal rays for u+

t,0, they do not

intersect except at time 0 or t. Thus for x1, x2 ∈ Ωt, x1 < x2 and d1 ∈ D(t, x1), d2 ∈ D(t, x2), it must
hold

x1 − td1 ≤ x2 − td2,

otherwise the rays cross each other at a time s ∈ (0, t). Hence the function 1
tx − D(t, x) is monotone

increasing and D(t, x) is semimonotone with constant C = 1
t .

Let us consider the map Xt,τ for any t ∈ (τ, T ], τ > 0 fixed. The fact that we are in the one-dimensional
case implies that for t, x, such that D(t, x) is multi-valued,

D(t, x) = [d1, d2],

where d1, d2 ∈ R are the speeds of the optimal rays for u(t, x). Indeed, for every d̄, d̃ ∈ [d1, d2], the ray

[(t, x), (τ, x−(t−τ)d̄)] cannot cross [(t, x), (τ, x−(t−τ)d̃)], since they are straight lines starting in the same
point. So they fill the triangle delimited by [(t, x), (τ, x− (t− τ)d1)], [(t, x), (τ, x− (t− τ)d2]. Moreover,
optimal rays starting in other points cannot cross [(t, x), (τ, x− (t−τ)d1)] and [(t, x), (τ, x− (t−τ)d2)], at
intermediate time, since they are optimal. Thus they cannot cross any other ray [(t, x), (τ, x− (t− τ)d)],
where d ∈ [d1, d2]. For this reason these rays are optimal for u+

t,0(t, x). Thus optimal rays for the forward

solution completely fill the set {Ωs | s ∈ [0, t]}.

Remark 4.2. This argument holds also in the multi-dimensional case but only for a set of points of
non differentiability of zero-dimension. The argument is not true in general when the points of non
differentiability lie on a surface of dimension greater than zero, since rays starting in two different points
of this surface can intersect even at intermediate times.

The above consideration ensures that the map Xt,τ is injective for τ > 0, however this map is multi-
valued. To recover the Lipschitzianity we use the Hille-Yosida transformation as seen in [1] and [7].

For any Borel set A ⊂ Ωt, let z ∈ B := A + T (A), T (x) := (Cx − D(t, x)) and w(z) := (Id1 +
(T )−1)−1(z). Then the following 1-Lipschitz transformations

(4.1)

{
x(z) = z − w(z)
p(z) = Cz − (C + 1)w(z),

transform our graph

{(x, p)| x ∈ A, p ∈ D(t, x)}
into the equivalent graph of a maximal monotone function

{(z − w(z), Cz − (C + 1)w(z))| z ∈ B}.
Recall that C is the semimonotonicity constant of D(t, ·).

Following optimal rays starting in A with speed in D(t, A), we can now pass from Xt,τ (x) to a Lipschitz
map defined on B

ξ(τ, z) := z − w(z)− (t− τ)(Cz − (C + 1)w(z)).

Note that

{(Cz − (C + 1)w(z))| z ∈ x+ T (x)} = D(t, x)

so that Xt,τ (x) = {ξ(τ, z)| z ∈ x+ T (x)} and Xt,τ (A) = ξ(τ,B).
We can now apply the Area Formula to ξ(τ, ·)

(4.2)

ˆ
ξ(τ,B)

H0(ξ(τ, ·)−1(w))dw =

ˆ
B

|ξz(τ, z)|dz.

Thanks to the injectivity of the mapXt,τ , which is preserved when passing to the Lipschitz parametriza-
tion, the left term of (4.2) is precisely the measure of the set ξ(τ,B). Hence, we haveˆ

ξ(τ,B)

H0(ξ(τ, ·)−1(w))dw = H1(ξ(τ,B)) = H1(Xt,τ (A)).

Moreover, differentiating ξ we respect to z we denote

ξz(τ, z) = ξz(t, z)− (t− τ)ξ̇z(t, z),
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where ξz(t, z) := ∂
∂z (z − w(z)) and ξ̇z(t, z) := ∂

∂z (Cz − (C + 1)w(z)).
Thus we have

H1(Xt,τ (A)) =

ˆ
B

|ξz(t, z)− (t− τ)ξ̇z(t, z)|dz ≥
ˆ
B

ξz(t, z)dz − (t− τ)

ˆ
B

ξ̇z(t, z)dz.

Observing that ˆ
B

ξ̇z(t, z)dz =

ˆ
B

∂

∂z
(Cz − (C + 1)w(z))dz = µ(t, A),

we have proven the following estimate: given a Borel set A ⊂ Ωt for t in (τ, T ], we have

(4.3) H1(Xt,τ (A)) ≥ H1(A)− (t− τ)µ(t, A).

Moreover, since for every 0 ≤ δ ≤ t− τ

ξz(t, z)− (t− (τ + δ))ξ̇z(t, z) =
δ

t− τ
ξz(t, z) +

t− (τ + δ)

t− τ
(ξz(t, z)− (t− τ)ξ̇z(t, z)),

and ξz(t, z) > 0, we have

ξz(t, z)− (t− (τ + δ))ξ̇z(t, z) ≥
t− (τ + δ)

t− τ
(ξz(t, z)− (t− τ)ξ̇z(t, z)).

Thus, integrating the last equation over B, we obtain the following estimate: given a Borel set A ⊂ Ωt
for t in (τ, T ], then for every 0 ≤ δ ≤ t− τ we have

(4.4) H1(Xt,τ+δ(A)) ≥ t− (τ + δ)

t− τ
H1(Xt,τ (A)).

The estimates (4.3) and (4.4) are of type (3.3) and (3.4) respectively, thus they are enough to prove
the SBV regularity of d, as seen in Subsection 3.1.

�

Remark 4.3. The SBV regularity of d(t, ·) does not necessarily implies the one of ∂
∂xu(t, ·) as well as the

BV regularity of d(t, ·) does not necessarily implies the one of ∂
∂xu(t, ·). However, in the one-dimensional

case when H is strictly convex, the divergence of d(t, ·) controls ∂2

∂x2u(t, ·) when ∂
∂xu(t, ·) is BV. Therefore,

this result can be seen as an extension of the one in [18].

5. The multi-dimensional case

In [5] Bianchini, De Lellis and Robyr proved that the estimates (3.3) and (3.4) hold for the uniformly
convex Hamiltonian Hε(p) := H(p) + ε

2 |p|
2 for every ε > 0 in a small interval of time and with constants

strictly depending on ε. Thus, the two estimates cannot pass to the limit.
Nevertheless, we can prove that the divergence divd(t, ·) has Cantor part only for a countable number

of t’s, adding some hypothesis on the regularity of d and on the structure of the the set of points where
L is not twice differentiable.

As already noticed, the Lagrangian corresponding to a smooth convex Hamiltonian is strictly convex
but non smooth in general. Particular conditions on the set of points where L is not twice differentiable
will allow us to reduce iteratively our problem to a problem of lower dimension, down to the one-
dimensional case, where, as we have seen, SBV regularity can be proven without additional assumptions.

Before going on with the proof we set some notations. We will denote with (x1, x2, . . . , xn) the
components of the vector x ∈ R

n and, to contract the notation, for a fixed j = 1, . . . , n − 1 we call
x̂ ∈ Rn−j the vector defined so that

(x1, . . . , xj , x̂) = (x1, x2, . . . , xn).

Given a set E ⊂ [0, T ]× Rn we will denote with

Et := {x ∈ Rn| (t, x) ∈ E}
and for j = 1, . . . , n− 1

Ex1,...,xj :=
{

(t, xj+1, . . . , xn)| (t, x1, . . . , xj , xj+1, . . . xn) ∈ E
}
.

As before we will sometimes denote with µ(t, ·) the Radon measure divd(t, ·) defined on Ωt.
(HYP(0)) Suppose that the vector field d(t, ·) belongs to [BV (Ωt)]

n for any t ∈ [0, T ].
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Remark 5.1. This hypothesis is certainly satisfied when the initial datum in semiconcave, as a consequence
of Proposition 2.16. However it is not true in general, see Remark 3.7. in [4] for an example of an
Hamilton-Jacobi equation with convex Hamiltonian whose vector field d is not BV.

The measure divd can have Cantor part only on a subset of the points of differentiability in x of u(t, x),
i.e. the points where D(t, x) is single-valued. Thus we can reduce to the study of our measure on the set

U := Ω \ {(t, x)| D(t, x) is multi-valued}.

Call V the set of points where L is not twice differentiable:

V := {v ∈ Rn| L(·) is not twice differentiable in v}.

Then the set U can be split into two subsets:

Σ := {(t, x) ∈ U | d(t, x) ∈ V } and Σc := U \ Σ.

(HYP(n)) Suppose V is contained in a finite union of hyperplanes.

Remark 5.2. The set V c := U \ V , of points where L is twice differentiable, is clearly open because of
(HYP(n)). Moreover, since d is continuous, Σc, the pre-image of V c through d, is relatively open in U .

Claim 1.(n) The vector field d(t, ·) belongs to [SBV (Σct)]
n out of a countable number of t’s in [0, T ].

Claim 2.(n) The Radon measure divd(t, ·), restricted to Σt, can have Cantor part only for a countable
number of t’s in [0, T ].

The regularity of divd will follow from the previous claims and the fact that U = Σ ∪ Σc.

Proof of Claim 1.(n). For a fixed (t̄, x̄) ∈ Σc, the Hessian of L exists and is continuous in v̄ := d(t̄, x̄).
Thus there exist r > 0 and a (n+ 1)-dimensional ball Bn+1

r (t̄, x̄) ⊂ Ω \ Σ where L and H are uniformly
convex.

We can also find an open cone Cn+1(t̄, x̄) ⊂ Bn+1
r (t̄, x̄), properly containing (t̄, x̄), over which an

Hamilton-Jacobi equation can be solved. Indeed, we take an n-dimensional ball as base,

Bn ⊂ (Bn+1
r (t̄, x̄))t̄−σ ⊂ (Ω \ Σ)t̄−σ,

for a certain 0 < σ < r, and we fix the height of length l ∈ R, 0 < l < 2r. The height must be chosen
according to the speed of propagation of the solution and such that t̄ < t̄− σ + l.

Consider now the viscosity solution ū of the Cauchy problem{
∂tū+H(Dxū) = 0 in Cn+1(t̄, x̄),
ū(t− σ, x) = u(t− σ, x)1Bn(x),

where 1E(x) is the indicator function of the set E. Note that u(t, x) = ū(t, x) on Cn+1(t̄, x̄).
Thanks to the uniform convexity of H over Cn+1(t̄, x̄), the main theorem of [5] ensures that the vector

field

d̄(t, ·) := Hp(Dxū(t, ·))

is SBV out of a countable number of t’s in [t̄− σ, t̄− σ + l].
The vector fields d(t, ·) and d̄(t, ·) are both BV and coincide on (Cn+1(t̄, x̄))t, thus, for Proposition 2.3,

Dxd(t, ·) = Dxd̄(t, ·).

Therefore d(t, ·) belongs to SBV ((Cn+1(t̄, x̄))t) out of a countable number of t’s in [t̄− σ, t̄− σ + l].
Finally, using the fact that Rn is a countable union of bounded sets, we can apply Besicovitch covering

Theorem, see [3], to prove that the set Σc can be fully covered by a countable number of cones Cin+1, for
i ∈ N, with the property stated above. Thus d(t, ·) belongs to [SBV (Σct)]

n out of a countable number of
t’s in [0, T ]. �

We consider now the behavior of divd on the set Σ. In order to prove Claim 2.(n), in the n-dimensional
case, n > 2, we need some other hypothesis on L and its restriction to the set of points where L is not
twice differentiable. No additional hypotheses are needed in the case n = 2.
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Proof of Claim 2.(n). 2-dimensional case. First, suppose V is a single straight line. Without loss of
generality we can fix V = {v ∈ R2| v1 = 0}.

Call LV : R→ R the restriction of the Lagrangian L to V ,

LV (v2) := L(0, v2)

for any v2 ∈ R. Call I ⊂ R the set of every x1 in R such that Σx1
is non empty. Note that if (t, x2) ∈ Σx1

then (0, x2 − td2(t, (x1, x2))) belongs to Σx1
because d(t, (x1, x2)) = (0, d2(t, (x1, x2))).

For every x1 ∈ I, we consider the one-dimensional Hamilton-Jacobi equation for the function ux1(t, x2).{
∂tux1 +HV (Dx2ux1) = 0 in Σx1 ,
ux1

(0, x2) = u(0, (x1, x2)) ∀x2 ∈ (Σx1
)0,

where HV (p) is the Hamiltonian associated to LV (v).
The viscosity solution ux1(t, x2) is equal to u(t, (x1, x2)) for every (t, (x1, x2)) ∈ Σ. Indeed

ux1
(t, x2) = min

y2∈R

{
u(0, x1, y2) + tLV

(
x2 − y2

t

)}
= min
y2∈R

{
u(0, x1, y2) + tL

(
0,
x2 − y2

t

)}
= u(t, (x1, x2)),

where the last equality follows from the fact that, for (t, x) in Σ, the unique minimizer in the representation
formula (2.3) is y = (x1 − td1(t, x), x2 − td2(t, x)) and d(t, x) = (0, d2(t, x)).

Let us define as usual

dx1
(t, x2) := (HV )p2(Dx2

ux1
(t, x2))

and

µx1
(t, ·) :=

∂

∂x2
dx1

(t, ·).

The vector field dx1
(t, ·) is one-dimensional. Hence, for Theorem 3.1, dx1

(t, ·) belongs to BV ((Σx1
)t)

for any x1 ∈ I, for any t ∈ [0, T ].
On the set Σ ⊂ U , the matrix of Radon measures Dxd has no jump part. Moreover, since Σt is

contained on the set {x| d1(t, x) = 0} and d(t, ·) is BV, Proposition 2.4 implies

∂

∂x1
d1(t,Σt) = 0 and

∂

∂x2
d1(t,Σt) = 0.

Therefore

divd(t, ·) =
∂

∂x2
d2(t, ·) on Σt.

For every (t, x) ∈ Σ, ux1(t, x2) = u(t, (x1, x2)) implies

d2(t, x) = dx1(t, x2).

The vector field d2(t, (x1, ·)) is a one-dimensional restriction of d2(t, ·) thus, for Proposition 2.5, belongs
to BV ((Σx1)t) for H1-a.e. x1 ∈ I. Since even dx1(t, ·) is BV on (Σx1)t, Proposition 2.3 implies

∂

∂x2
d2(t, (x1, ·)) =

∂

∂x2
dx1

(t, ·)

for H1-a.e. x1 ∈ I. Therefore taken a Borel set A ⊂ Σt and any φ ∈ C∞c (Σt),ˆ
A

φ(x)dµ(t, x) =

ˆ
I

ˆ
Ax1

φ(x)dµx1
(t, x2)dx1.

Thanks to the convexity of LV , we can apply Theorem 4.1 to µx1(t, ·) and obtain the following esti-
mates.

For any τ > 0, let A be a Borel set in Σt, for t ∈ (τ, T ]. Then for any 0 ≤ δ ≤ t− τ , and every section
Ax1

, for x1 ∈ I, we have

H1(Xx1
t,τ (Ax1

)) ≥ H1(Ax1
)− (t− τ)µx1

(t, Ax1
),

H1(Xx1

t,τ+δ(Ax1)) ≥ t− (τ + δ)

t− τ
H1(Xx1

t,τ (Ax1)).

Here we denote with Xx1
t,τ (x2) the one-dimensional map defined on (Σx1

)t

Xx1
t,τ (x2) := x2 − (t− τ)dx1

(t, x2).
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The corresponding 2-dimensional map

Xt,τ (x) := x− (t− τ)d(t, x),

reduces to

Xt,τ (x) = (x1, X
x1
t,τ (x2))

for every x ∈ Σt.
We can integrate the previous estimates with respect to H1 on I ⊂ R to recover estimates of type (3.3)

and (3.4).
For any τ > 0, given a Borel set A ⊂ Σt, for t in (τ, T ], we have

(5.1) H2(Xt,τ (A)) ≥ H2(A)− (t− τ)µ(t, A).

For any τ > 0, given a Borel set A ⊂ Σt, for t in [τ, T ] and 0 ≤ δ ≤ t− τ we have

(5.2) H2(Xt,τ+δ(A)) ≥ t− (τ + δ)

t− τ
H2(Xt,τ (A)).

Thus the strategy seen in the Subsection 3.1 can be easily applied to prove that µ(t, ·), restricted to
Σt, can have Cantor part only for a countable number of t’s in [0, T ].

Remark 5.3. Note that in this case nothing can be said about the Cantor part of ∂
∂x1

d2(t, ·). Thus we

cannot say that d(t, ·) belongs to [SBV (Ωt)]
2.

Consider now the case in which V consists of a finite number of straight lines. When we consider µ(·, ·)
restricted to the points of Σ such that d(t, x) belongs only to a part of one of the straight lines, we can
apply the considerations done in the case where V consists only of a single straight line. On the other
hand, when we consider µ(·, ·) restricted to the points of Σ such that d(t, x) belongs to an intersection
point (v1, v2) of two, or more, straight lines, the divergence divd(t, ·) must be zero on every Borel subset
of {x| d1(t, x) = v1, d2(t, x) = v2}, for Proposition 2.4. Thus the measure µ(t, ·), restricted to Σt, can
have Cantor part only for a countable number of t’s in [0, T ] even when V consists of a finite number of
straight lines. The case in which V is contained in a finite number of straight lines is analogous.
n-dimensional case. We prove the claim iterating a subdivision of Σ down to the dimension one.
Call Vn := V . At the step n − j, for j = n, . . . , 3, we first suppose that Vj consists of a single

(j − 1)-dimensional plane, without loss of generality we can fix

Vj = {v ∈ Rn| v1 = 0, . . . , vn+1−j = 0}.
Call LVj : Rj−1 → R the restriction of LVj+1

to Vj ,

LVj (v̂) := LVj+1
(0, v̂) = L(0, . . . , 0, v̂)

for any v̂ ∈ Rj−1.
(HYP(j-1)) We require that the restriction LVj is twice (j − 1)-differentiable out of the set Vj−1,

Vj−1 := {v̂ ∈ Rj−1| LVj (·) is not twice differentiable in v̂},
and Vj−1 is contained in a finite number of (j − 2)-dimensional planes.

Then we can subdivide Σj into two set:

Σj−1 := {(t, x) ∈ Σj | d(t, x) ∈ Vj−1} and Σcj−1 := Σj \ Σj−1.

Thus, at every step, we have to prove the following claims.
Claim 1.(j-1) The Radon measure divd(t, ·), restricted to (Σcj−1)t, can have Cantor part only for a

countable number of t’s in [0, T ].
Claim 2.(j-1) The Radon measure divd(t, ·), restricted to (Σj−1)t, can have Cantor part only for a

countable number of t’s in [0, T ].

Proof of Claim 1.(j-1) . We will prove it for j = n, in the other cases the proof is similar.
For a fixed (t̄, x̄) ∈ Σcn−1, the Hessian of LV exists and is continuous in v̂ := (d2(t̄, x̄), . . . , dn(t̄, x̄)) ∈

R
n−1. Thus there exist r > 0 and a (n + 1)-dimensional ball Bn+1

r (t̄, x̄) ⊂ Ω \ Σn−1 where LV and HV

are uniformly convex.
We can also find, as we did in the proof of Claim 1.(n), an open cone Cn+1(t̄, x̄) ⊂ Bn+1

r (t̄, x̄) of height
[t̄ − σ, t̄ − σ + l], for a certain 0 < σ < r, t̄ < t̄ − σ + l and base Bn, which contains properly (t̄, x̄). On
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every section (Cn+1(t̄, x̄))x1
, for every x1 ∈ I := {z ∈ R| (Cn+1(t̄, x̄))z 6= ∅}, we can consider the viscosity

solution ūx1
of the (n− 1)-dimensional Hamilton-Jacobi equation{

∂tūx1 +HV (Dx̂ūx1) = 0 in (Cn+1(t̄, x̄))x1 ,
ūx1(t̄− σ, x̂) = u(t̄− σ, x)1Bn(x).

As usual we define
d̄x1

(t, x̂) := (HV )p̂(Dx̂ūx1
(t, x̂)).

and
µ̄x1

(t, ·) := divn−1d̄x1
(t, ·).

The vector field d̄x1(t, ·) belongs to [BV (((Cn+1(t̄, x̄))x1)t)]
n−1 for any x1 ∈ I, for any t ∈ [t̄−σ, t̄−σ+l].

Indeed in every (Cn+1(t̄, x̄))x1
HV is uniformly convex.

Since we have a uniform convexity constant for HV , which holds on every (Cn+1(t̄, x̄))x1
, for x1 ∈ I,

we can arrange l small enough, eventually subdividing the cone, so that the following two estimates hold
with uniform constants C1, C2 > 0, which do not depend on x1.

Let t̄ − σ < τ < t̄ − σ + l, let A be a Borel set in (Cn+1(t̄, x̄))t, for t in [τ, t̄ − σ + l]. Then, for any
0 ≤ δ ≤ t− τ and every set Ax1 , for x1 ∈ I, we have

Hn−1(X̄x1
t,τ (Ax1

)) ≥ C1Hn−1(Ax1
)− (t− τ)C2µ̄x1

(t, Ax1
),

Hn−1(X̄x1

t,τ+δ(Ax1
)) ≥

(
t− (τ + δ)

t− τ

)n−1

Hn−1(X̄x1
t,τ (Ax1)).

Here the (n− 1)-dimensional map X̄x1
t,τ (x̂) is defined

X̄x1
t,τ (x̂) := x̂− (t− τ)d̄x1

(t, x̂).

Consider now the vector field d.
On the set Cn+1(t̄, x̄) ⊂ U , the matrix of Radon measures Dxd has no jump part. Moreover, since

(Cn+1(t̄, x̄))t is contained on the set {x| d1(t, x) = 0} and d(t, ·) is BV, Proposition 2.4 implies

∂

∂xj
d1(t, (Cn+1(t̄, x̄))t) = 0 for j = 1, . . . , n.

Therefore
divd(t, ·) = divn−1d̂(t, ·) on (Cn+1(t̄, x̄))t,

d̂(t, x) := (d2(t, x), . . . , dn(t, x)).
For every (t, x) ∈ Cn+1(t̄, x̄), ux1

(t, x2) = u(t, (x1, x2)) implies

d̂(t, x) = dx1
(t, x̂).

The vector field d̂(t, x1, ·), being a (n − 1)-dimensional section of the BV vector field d(t, ·), belongs,
for Proposition 2.5, to [BV ((Σn−1)x1

)]n−1 for H1-a.e. x1 such that (Σn−1)x1
is non empty.

Since even d̄x1
(t, ·) is BV on (Cn+1(t̄, x̄))t, Proposition 2.3 implies

divn−1d̂(t, (x1, ·)) = divn−1d̄x1
(t, ·)

for almost every x1 such that (Σn−1)x1 is non empty. Therefore taken a Borel set A ⊂ (Cn+1(t̄, x̄))t and
any φ ∈ C∞c ((Cn+1(t̄, x̄))t), ˆ

A

φ(x)dµ(t, x) =

ˆ
I

ˆ
Ax1

φ(x)dµ̄x1(t, x̂)dx1.

Moreover, for every x ∈ (Cn+1(t̄, x̄))t

Xt,τ (x) = x− (t− τ)d(t, x) = (x1, X̄
x1
t,τ (x̂)).

The uniformity on every Ax1
allow us to integrate with respect to H1, over the set I, to obtain the

following estimates.
Let t̄ − σ < τ < t, let A be a Borel set in (Cn+1(t̄, x̄))t, for t in [t̄ − σ, t̄ − σ + l]. Then for any

0 ≤ δ ≤ t− τ , it holds
Hn(Xt,τ (A)) ≥ C1Hn(A)− (t− τ)C2µ(t, A),

Hn(Xt,τ+δ(A)) ≥
(
t− (τ + δ)

t− τ

)n−1

Hn(Xt,τ (A).
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Therefore, repeating the standard procedure seen in Subsection 3.1, we can prove that µ(t, ·) :=
divd(t, ·) has Cantor part only for a countable number of t’s in [t̄− σ, t̄− σ + l].

Finally, using again Besicovitch Theorem, the set Σcn−1 can be fully covered by a countable number

of cones Cin+1 for i ∈ N with the property stated above. Thus the Radon measure divd(t, ·) can have
Cantor part on (Σcn−1)t only for a countable number of t’s in [0, T ]. �

We iterate the procedure subdividing Σj−1 in Σj−2 and Σcj−2. Hence to prove Claim 2.(j-1) is enough
to prove Claim 2.(2), i.e. for j = 3.

Claim 2.(2) The Radon measure divd(t, ·), restricted to (Σ2)t, can have Cantor part only for a
countable number of t’s in [0, T ].

Proof. The proof is equal to the one done in the 2-dimensional case. We rewrite it with the notation
which applies in this case.

First, suppose V2 is a single straight line. Without loss of generality we can fix

V2 = {v ∈ Rn| v1 = 0, . . . , vn−1 = 0}.

Recall that V2 is a straight line in V3 = {v ∈ Rn| v1 = 0, . . . , vn−2 = 0}.
Call LV2

: R→ R the restriction of the Lagrangian LV3
to V2,

LV2
(vn) := LV3

(0, vn) = L(0, . . . , 0, vn)

for any vn ∈ R. For i = 1 . . . , n − 1, call Ii ⊂ R the set of every xi in R such that (Σ2)xi is non empty
and I := I1 × · · · × In−1 ⊂ R

n−1.
For every (x1, . . . , xn−1) ∈ I, we consider the one-dimensional Hamilton-Jacobi equation for the func-

tion ux1,...,xn−1
(t, xn).{

∂tux1,...,xn−1
+HV2

(Dxnux1,...,xn−1
) = 0 in (Σ2)x1,...,xn−1

,
ux1,...,xn−1(0, xn) = u(0, (x1, . . . , xn)) ∀xn ∈ ((Σ2)x1,...,xn−1)0,

where HV2
(pn) is the Hamiltonian associated to LV2

(vn).
The viscosity solution ux1,...,xn−1

(t, xn) is equal to u(t, (x1, . . . , xn)) for (t, (x1, . . . , xn)) ∈ Σ2. Indeed

ux1,...,xn−1(t, xn) = min
yn∈R

{
u(0, (x1, . . . , xn−1, yn)) + tLV2

(
xn − yn

t

)}
= u(t, (x1, . . . , xn)),

where the last equality follows from the fact that, for (t, x) in Σ2, the unique minimizer in (2.3) is
y = (x1 − td1(t, x), . . . , xn − tdn(t, x)) and d(t, x) = (0, . . . , 0, dn(t, x)) on Σ2.

Let us define as usual

dx1,...,xn−1(t, xn) := (HV2)pn(Dxnux1,...,xn−1(t, xn)),

and

µx1,...,xn−1(t, ·) :=
∂

∂xn
dx1,...,xn−1(t, ·).

The vector field dx1,...,xn−1(t, ·) is one-dimensional. Hence, for Theorem 3.1, dx1,...,xn−1(t, ·) belongs to
BV (((Σ2)x1,...,xn−1)t) for any (x1, . . . , xn−1) ∈ I, for any t ∈ [0, T ].

On the set Σ2 ⊂ U , the matrix of Radon measures Dxd has no jump part. Moreover, since (Σ2)t is
contained on the set {x| d1(t, x) = 0, . . . , dn−1(t, x) = 0} and d(t, ·) is BV, Proposition 2.4 implies

∂

∂xl
di(t, (Σ2)t) = 0 for i = 1, . . . , n− 1 and l = 1, . . . , n.

Therefore

divd(t, ·) =
∂

∂xn
dn(t, ·) on (Σ2)t.

For every (t, x) ∈ Σ2, ux1,...,xn−1(t, xn) = u(t, (x1, . . . , xn)) implies

dn(t, x) = dx1,...,xn−1
(t, xn).
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The vector field dn(t, (x1, . . . , xn−1, ·)) is a one-dimensional restriction of dn(t, ·) thus, for Proposition
2.5, belongs to BV (((Σ2)x1,...,xn−1

)t) for almost every (x1, . . . , xn−1) ∈ I. Since even dx1,...,xn−1
(t, ·) is

BV on ((Σ2)x1,...,xn−1)t, Proposition 2.3 implies

∂

∂xn
dn(t, (x1, . . . , xn−1, ·)) =

∂

∂xn
dx1,...,xn−1

(t, ·)

for Hn−1-a.e. (x1, . . . , xn−1) ∈ I . Therefore taken a Borel set A ⊂ (Σ2)t and any φ ∈ C∞c ((Σ2)t),ˆ
A

φ(x)dµ(t, x) =

ˆ
I

ˆ
Ax1,...,xn−1

φ(x)dµx1,...,xn−1(t, xn)d(x1, . . . , xn−1).

Thanks to the convexity of LV2 , we can apply Theorem 4.1 to µx1,...,xn−1(t, ·) and obtain the following
estimates.

For any τ > 0, let A be a Borel set in (Σ2)t, t ∈ (τ, T ]. Then for any 0 ≤ δ ≤ t− τ and every section
Ax1,...,xn−1

, for (x1, . . . , xn−1) ∈ I, we have

H1(X
x1,...,xn−1

t,τ (Ax1,...,xn−1
)) ≥ H1(Ax1,...,xn−1

)− (t− τ)µx1,...,xn−1
(t, Ax1,...,xn−1

),

H1(X
x1,...,xn−1

t,τ+δ (Ax1,...,xn−1
)) ≥ t− (τ + δ)

t− τ
H1(X

x1,...,xn−1

t,τ (Ax1,...,xn−1
)).

Here we denote with X
x1,...,xn−1

t,τ (xn) the one-dimensional map defined on ((Σ2)x1,...,xn−1
)t

X
x1,...,xn−1

t,τ (xn) := xn − (t− τ)dx1,...,xn−1
(t, xn).

The corresponding n-dimensional map defined on (Σ2)t

Xt,τ (x) := x− (t− τ)d(t, x),

reduces to

Xt,τ (x) = (x1, . . . , xn−1, X
x1,...,xn−1

t,τ (xn))

for every x ∈ (Σ2)t.
We can integrate the previous estimates with respect to Hn−1 over I to recover estimates of type (3.3)

and (3.4). For any τ > 0, given a Borel set A ⊂ (Σ2)t, for t in [τ, T ], we have

(5.3) Hn(Xt,τ (A)) ≥ Hn(A)− (t− τ)µ(t, A).

For any τ > 0, given a Borel set A ⊂ Σt, for t in [τ, T ] and 0 ≤ δ ≤ t− τ we have

(5.4) Hn(Xt,τ+δ(A)) ≥ t− (τ + δ)

t− τ
Hn(Xt,τ (A)).

Thus the strategy seen in the Subsection 3.1 can be easily applied to prove that µ(t, ·), restricted to
(Σ2)t, can have Cantor part only for a countable number of t’s in [0, T ].

Consider now the case in which V2 consists of a finite number of straight lines. When we consider µ(·, ·)
restricted to the points of Σ2 such that d(t, x) belongs only to a part of one of the straight lines, we can
apply the considerations done in the case where V2 consists only of a single straight line. On the other
hand, when we consider µ(·, ·) restricted to the points of Σ2 such that d(t, x) belongs to an intersection
point of two, or more, straight lines, the divergence divd(t, ·) = µ(t, ·) must be zero on every Borel set,
as seen in the 2-dimensional case. The case in which V2 is contained in a finite number of straight lines
is analogous.

Thus the measure µ(t, ·) can have Cantor part only for a countable number of t’s in [0, T ] even when
V2 consists of a finite number of straight lines. �

Once Claim 2.(2) is proved, we can iteratively prove all the others Claims 2.(j-1) for j = 4, · · · , n
just by repeating the same considerations for the general case in which Vj consists of a finite union of
(j − 1)-dimensional planes. This case can be treated as usual distinguishing the two cases. When we
consider µ(·, ·) restricted to the points of Σj such that d(t, x) belongs only to a part of one of the (j− 1)-
dimensional planes, we can apply the considerations done in the case where Vj consists only of a single
(j − 1)-dimensional plane. On the other hand, when we consider µ(·, ·) restricted to the points of Σj
such that d(t, x) belongs to a (j − 2)-dimensional plane intersection of two, or more, (j − 1)-dimensional
planes, we can reduce the problem to the (j−2)-dimensional case. Indeed in this case we can apply again
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the iterative proof. The case in which Vj is contained in a finite number of (j − 1)-dimensional planes is
analogous.

The considerations above done for j = n+ 1 concludes even the proof of Claim 2.(n). �

Let us recall all the necessary assumptions.
Suppose H is C2(Rn) convex and

lim
|p|→∞

H(p)

|p|
= +∞.

(HYP(0)) The vector field d(t, ·) belongs to [BV (Ωt)]
n for every t ∈ [0, T ].

Define Vπn as

Vπn := {v ∈ Rn| L(·) is not twice differentiable in v},
and

Σπn := {(t, x) ∈ U | d(t, x) ∈ Vπn} and Σcπn := U \ Σπn .

(HYP(n)) We suppose Vπn to be contained in a finite union of hyperplanes Ππn .
For j = n, . . . , 3 for any (j − 1)-dimensional plane πj−1 in Ππj , let Lπj−1

: Rj−1 → R be the (j − 1)-
dimensional restriction of L to πj−1 and

Vπj−1
:= {v ∈ Rj−1| Lπj−1

(·) is not twice differentiable in v}.

Define

Σπj−1 := {(t, x) ∈ Σπj | d(t, x) ∈ Vπj} and Σcπj−1
:= Σπj \ Σπj−1 .

(HYP(j-1)) We suppose Vπj−1
to be contained in a finite union of (j − 2)-dimensional planes Ππj−1

, for
every πj−1 ∈ Ππj .

Remark 5.4. There is no need to ask any assumption on the one-dimensional restriction of L to a straight
line in any of the Vπ2 for a plane π2, since in the one-dimensional case the SBV regularity is proven
without any other assumptions on L.

Theorem 5.5. With the above assumptions (HYP(0)),(HYP(n)),...,(HYP(2)), the Radon measure divd(t, ·)
has Cantor part on Ωt only for a countable number of t’s in [0, T ].

The following corollaries are easily obtained from Theorem 5.5.

Example 5.6. The Hamiltonian

H(p) :=

n−1∑
i=1

(pi)
4

12
+

(pn)2

2

is such that the hypothesis (HYP(n)),..., (HYP(2)) are satisfied. Indeed the corresponding Lagrangian

L(v) =

n−1∑
i=1

11

12
vi(3vi)

1
3 +

(vn)2

2

is not twice differentiable on the set V = {v ∈ Rn| v1 = 0} ∪ · · · ∪ {v ∈ Rn| vn−1 = 0} which is a finite
union of hyperplanes. Every restriction on one of these hyperplanes is not twice differentiable on a finite
union of (n− 2)-planes and so on.

Corollary 5.7. Let Dxu(t, ·) belongs to [BV (Ωt)]
n for every t ∈ [0, T ] and let L satisfy (HYP(n)),. . . ,

(HYP(2)), then the Radon measure divd(t, ·) has Cantor part on Ωt only for a countable number of t’s
in [0, T ].

Proof. If Dxu(t, ·) belongs to [BV (Ωt)]
n for every t ∈ [0, T ], then d(t, ·) = Hp(Dxu(t, ·)) belongs to

[BV (Ωt)]
n for every t ∈ [0, T ]. �

Corollary 5.8. Let u(0, ·) be semiconcave and let L satisfy (HYP(n)),. . . , (HYP(2)), then the Radon
measure divd(t, ·) has Cantor part on Ωt only for a countable number of t’s in [0, T ].

Proof. It follows from Proposition 2.16. �



20 STEFANO BIANCHINI AND DANIELA TONON

References

[1] G. Alberti and L. Ambrosio. A geometrical approach to monotone functions in R
n. Math. Z., 2:259–316, 1999.

[2] L. Ambrosio and C. De Lellis. A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi

equations. J. Hyperbolic Differ. Equ., 31 (4):813–826, 2004.
[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Uni-

versity Press, 2000.

[4] S. Bianchini. On the Euler-Lagrance equation for a variational problem. DCDS-A, 17:449–480, 2007.
[5] S. Bianchini, C. De Lellis, and R. Robyr. SBV regularity for Hamilton-Jacobi equations in R

n. Preprint, 2010.

[6] S. Bianchini and M. Gloyer. On the Euler-Lagrange equation for a variational problem: the general case ii. Math. Z.,

265:889–923, 2010.
[7] S. Bianchini and D. Tonon. Sbv regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t, x). Sub-

mitted to SIAM-SIMA, 2011.

[8] P. Cannarsa, A. Mennucci, and C. Sinestrari. Regularity results for solutions of a class of Hamilton-Jacobi equations.
Arch. Ration. Mech. Anal., 140:197–223, 1997.

[9] P. Cannarsa and C. Sinestrari. Viscosity solutions of Hamilton-Jacobi equations and optimal control problems.
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