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On Stokes Matrices in terms of Connection Coefficients
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Abstract. We study the classical problem of the computation of a complete system of
Stokes matrices in terms of connection coefficients. Stokes matrices refer to a linear
system of ODEs with Poincaré rank one and semi-simple leading matrix, while the
connection coeflicients connect solutions of the associated hypergeometric system of
ODEs. The problem here is solved with no assumptions on the residue matrix at zero
of the system of Poincaré rank one, so extending method and results of [4].
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1. Introduction

We consider an n x n linear system of ODEs of Poincaré rank one at
z= o0

dy A
(1) g—A(z)Y, where A(z) = Ao +7.

Here Ay, A4; € GL(n,C), and Ay has distinct eigenvalues. Up to a constant
gauge, we assume that Ag is already diagonal, namely:
(2) Ay = diag(4y, ..., ), Ai#dpfori#j 4ieC,1<i<n.

The following Fuchsian system

'
(3) (4o — /1)% =41 +1)Y, I := n x n identity matrix,

is associated to (1) by Laplace transformation, as it is well known [6], [14].
Vector solutions ¥(z) of (1) can be expressed in terms of convergent Laplace-
type integrals of vector solutions ¥(1) of (3):

4) Y(z) = J P (A)d),
)

where 7 is a suitable path such that e*(A — 4g)¥(1)], = 0.

7:
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By means of Laplace transform, in [4] a complete system of Stokes
multipliers for (1) is computed in terms of connection coefficients, connecting
selected vector solutions of (3) (called associated functions) at different Fuchsian
singularities. The definition of associated functions, connection coefficients, and
the results of [4] depend upon the assumption that the diagonal entries of A4; are
not integers (this is called assumption (i) in [4]).

Special systems of the form (1) appear in the analytic theory of semisimple
Frobenius manifolds [8], [9], where A4y has distinct eigenvalues as in (2). The
matrix 4; has special form V' + ¢l, where V' is skew symmetric and c € C. The
analytic description of Frobenius manifolds in terms of isomonodromic defor-
mations of (1), with the above special 4;, requires to consider all possible values
of ¢. Therefore assumption (i) of [4] may fail, depending on the value of ¢. In
[10] all possible values of ¢ are analysed, obtaining the relation between Stokes
matrices and connection coefficients, by means of Laplace transformation. See
also [21].

Other applications to integrable systems involve systems (1) and (3): an
example is the isomonodromic approach to the sixth Painlevé equation in
terms of a 3 x 3 system of type (1) (see [18]). The computation of the
relation between Stokes matrices of (1) and monodromy data of (3) may
have important applications in this case, such as the understanding of the
monodromy data associated to special solutions of the sixth Painlevé equa-
tion, including the solution associated to the quantum cohomology of CP2.
Monodromy data can be computed in terms of Stokes matrices, once the
relation with the latter and connection coefficients is known (see Corollary 6
in this paper). Since matrix 4; may violate assumption (i), the results of [4]
are not enough to study this example. And indeed such study has not been
done yet.

The above are motivations for our paper. Accordingly, our purpose is to
extend the results of [4] when no assumptions on A, are made, by extending the
same technique of [4], namely Laplace transformation. When no assumptions
on A; are made, new types of logarithmic behaviours occur among vector
solutions of (3), which come from resonances. They are not studied in [4].
As a first step, we construct selected vector solutions of (3), which include the
new logarithmic behaviours (Section 3). This class of solutions extends that of
[4]. As a second step, we define the connection coefficients for the selected
solutions. Finally, we obtain fundamental solutions of (1) in terms of suitable
Laplace integrals of the selected solutions (or their modifications). As a result,
in Theorem 1 of Section 7, we obtain the explicit relation between a complete
system of Stokes multipliers of (1) and connection coefficients, which holds for
any A;. Conversely, in Corollary 6 we express traces of products of mono-
dromy matrices of system (3) in terms of Stokes multipliers of (1). These traces
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are invariant monodromy data of (3), and Corollary 6 allows their comput-
ability in terms of Stokes matrices, independently of the knowledge of connec-
tion coeflicients. In order to prove Theorem 1, higher order primitives of the
selected solutions need to be studied. This requires a non trivial extension of
the technique of [4], and a consistent technical effort. As a side result of
Theorem 1, the monodromy and connection relations of higher order primitives
are obtained (see Section 8).

We stress that our purpose is to use and extend the classical technique of
Laplace transformation of [4]. A more refined technique, namely the theory of
summation and resurgence [12], was developed years later. In [16], this theory
is applied to obtain the explicit relation between Stokes-Ramis matrices and
connection constants for a general system of rank one with the assumptions of
a single level equal to one (this includes the case of diagonalizable A, with
possibly coinciding eigenvalues). The same is done in [19] with the assumptions
of an arbitrary single level. To our knowledge, the case when no assumptions
at all are made on Ay, possibly involving a ramified singularity at infinity (and
the system of rank one may not be in Birkhoff normal form), has yet to be
studied.

Finally, we remark two facts. First, that the results of the paper can be
generalized to those systems of Poincaré rank r > 1 (namely A(z) =z""'A(z),
A(z) analytic in a neighborhood of infinity), that are formally meromorphically
equivalent to (1) in the sense of [3]. This can be done as in section 4 of [4] by
a generalization of the definition of associated functions to include functions in
the form of the ¥ (4)’s or i’,fk)(i)’s as in our Section 6.2, points 1), 2), 3) and
4). Secondly, that any system of Poincaré rank r can be reduced to a system of
Poicaré rank one by enlarging the size of the system to r-n (see [15], and also
[20], [17], [5]). In [15] the explicit relation between Stokes matrices of the initial
and the reduced systems is given. In this sense, results obtained for rank one
can be extended to any rank r. (I thank M. Loday-Richaud for drawing my
attention to the papers [15], [16], [19]).

1.1. Organization of the paper

Section 2: We state the problem and give the main results. The example
in the end of the section shows how the general result applies to the case of
Frobenius manifolds.

Section 3: We construct selected vector solutions ¥ (1), 1 <k <n, to
system (3)—(5), and define the connection coefficient, with no assumptions
on A.

Section 4: We construct two matrix solutions ¥(1) and ¥*(1) of system
(3)—(5), with no assumptions on A4;. They generalize the matrices Y(¢) and
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Y*(f) of [4]. We establish when they are fundamental, and compute their
monodromy in terms of connection coefficients.

Section 5: We discuss the dependence of ¥ and ¥* on the choice of the
branch cuts.

Section 6:  We recall the definition of complete set of Stokes multipliers for
(1). We write a fundamental matrix of system (1), having canonical asymp-
totics in a wide sector, as Laplace integrals of the Y7k(/1)’s, 1 <k <n (or their
modifications including singular contributions—see formula (44)). We also
express the ¥ (4)’s in terms of the coefficients of the former asymptotics.

Section 7: We state the main theorem (Theorem 1), which gives Stokes
matrices and Stokes factors of (1) in terms of connection coefficients of (3), and
express the first monodromy invariants of system (3) in terms of Stokes matrices
(Corollary 6).

Section 8: We prove Theorem 1, and find relations and monodromy for
g-primitives of vector solutions of (3)—(5). It is in this section that the most
technical effort is required in order to generalize the results and method of [4]
when no assumptions on 4; are made.

2. Setting and results
Let us denote the diagonal entries of A4; as follows
diag(A41) = (A, -, 4,).

In [4] it is assumed that Zj,...,4, are not integers (assumption (i), page
693). In this paper, we allow any values of (Ai,...,A)) € C". Therefore, in

»

order to generalize the method and the results of [4], we need to characterize the
solutions of (3) for any (4{,...,4,) € C". System (3) can be rewritten as

i " B
5 — = 'd B, =—E (A +1),1 <k<
() i ;}.—/ﬂbk ) k k( 1+ ), < <n,

where Ej is a n x n matrix with entries (Ej)y =1 and (Ey); = 0 otherwise. A
vector, or a matrix solution of (5) is multivalued in C\{4y,...,4,}, with regular
singularities in 4j,...,4,. Let % be the universal covering of C\{4,...,4,}.
Following [4], we fix parallel branch cuts L, oriented from A; to co. Choose
a real number # such that

(6) n # arg(A; — Ax) mod 2, for all 1 <j, k<n.
The cuts are defined as follows

Ly :={AeU|arg(A — ) = n}, l<k<n
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Condition (6) means that a cut L; does not contain other poles 4;, j # k. See
figure 1. Such values of # are called admissible in [4]. We fix the branch of
any In(4 — A) by considering the following sheet of %, C %, obtained with the
above cuts:

Py={AeU|n—2n <arg(A— ) <n,1 <k <n}.
We prove in Section 3 that system (3) admits a matrix solution of the form:
YOy =[Pi(D)|--- | (D),  reP,

whose columns ¥y (1), k=1,...,n, are the selected vector solutions we are
interested in. This matrix generalizes matrix Y(¢) of [4]. The Wi(4)’s are
uniquely characterized by their behaviours for 1 in a neighbourhood of A, as
follows:

P (2)

(T + 18+ ST B (= 20 )= 2) 4, if i ¢Z,

1>1
(=™ (k) 1 B
- (,Nk71)|ek+ (A= k)" | (A= ) , if 4, =NreZ_,
’ I>1
a3 d"M - ), if 2 =Ny eN.
I>1

Here N=1{0,1,2,...} and Z_={-1,-2,-3,...} are the non negative and
negative integers respectively, and &; is the k-th unit column vector of C”.
The Taylor series in (41— /;) converge in a neighbourhood of A;. The
coefficients l;[(k) € C" are uniquely determined by the choice of the normaliza-
tions I'(A; + 1)& and ((—1)™/(=N; — 1))é. The coefficients c?l(k) e C" are
uniquely determined by the existence of a singular vector solution at A; with
behaviour

- Nile, + 0(/1 — /lk)
lpk()») In(A — Az) + - ik)NkH

y Nk:)L]/(GN.

We show in Section 3 that for any j there always exist n — 1 vector solutions
which are locally analytic at 4 = 4;, and there exists at most one solution which
is singular at A = /; (see expression (16), with k replaced with j). Therefore, a
solution ‘f’k(/l) has in general a singular contribution close to a 4;, with j # k,
which behaves as a multiple of the singular solution at 4;. The corresponding
multiplicative constant allows to define the connection coefficients, as follows.
Let P (/) denote a vector function with polynomial entries in (A—4;) of

J

degree N; e N, and let reg(1 — 4;) be a vector function analytic (regular) in a
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neighbourhood of 4;, We will show (Definition 1, Section 3) that there exist
unique connection coefficients cj € C such that, in a neighbourhood of any
Aj # Ak, Pi(A) behaves as follows:

Pi(A)cy + reg(h — 4y), M¢Z,
B P;(2) In(2 — A)ei + reg(h — ), MeZ.,
URZCE 0
<‘Pj(/1) In(4 — 4;) + W) cik +reg(2— %), 4 =N;eN.

The connection coefficients multiply, in the above formula, the singular con-
tribution at 4;. Note that they depend on the choice of the branch cuts, namely
on 5 (see Section 5). In particular,

Ckkzl 1f/1,’(¢Z, Ckkzo lf/l;(EZ

The connection coefficients determine the monodromy of the matrix ¥(1), as
follows:

Proposition I (Proposition 2). Let the branch cuts Ly, ..., L, be fixed. Let
Ay be any matrix. The monodromy matrix of W(.) for a small loop in
anticlockwise direction around Ay, not encircling all the other points A; # A,

j=1,...,n is the matrix My = (m;k>)i7j:1mn with entries:
(k) _ ; i . (k) _ —2midy.
my’ =1 1<j<n j#k my =e ks
m,(éf) =ogey, 1<j<n, j#k mfjk) =0 otherwise.

i

Fig. 1. The poles 4;, 1 < j <n of system (3), and branch cuts L;.
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where

o = (e — 1), if A ¢Z,
oy := 2, if 1 eZ.

Equivalently, the effect of the loop around 1 is
Fr(2) o e THE();  F(A) - B+ ey Bi(h),  J#k

The matrix solution ¥(1) is not necessarily fundamental. The following
gives a sufficient condition:

Proposition II (Propositions 3 and 4). If A| has no integer eigenvalues, then
Y () is a fundamental matrix and M\, ..., M, generate the monodromy group of
system (3). Moreover, the matrix C := (cj) is invertible if and only if Ay has
no integer eigenvalues.

Remark 1. There are cases when A; has integer eigenvalues and ¥ is
fundamental. We prove that in these cases, necessarily, some A, € Z.

To explain the relation between connection coefficients and Stokes multi-
pliers of (1), recall that solutions of the latter are characterized by the Stokes
phenomenon. Let 7=3%/2—#5. According to [2], there are three unique
fundamental matrices of (1), say Y;(z), Yu(z) and Yyy(z), with canonical
asymptotic behaviour (I + O(1/z)) exp{A4oz+ A1 Inz} in the three sectors
{zlt—n<argz<t}, {z|r<argz<t+7n} and {z|t+n<argz <t+2n}
respectively. They are related by two Stokes matrices S, and S_ such that

Yiu(z) = Yi(z)Sy, argz=r1; Yiu(z) = Yyu(z)S-, argz=rt+m.
Introduce in {1,2,...,n} the partial ordering < given by
J<keR(z(4—4) <0 for argz=r1,i+# j,i,je{l,...,n}.
We prove the following main result:

Theorem I (Theorem 1). The Stokes matrices of system (1), without
assumptions on Ay, and the connection coefficients cy, 1 < j,k <n, of system
(3)—(5) are related by the formulae

Ezm/l/iakcjk, for j<k, 0, for j<k,
[Sile =1 1, for j=k, ~ [S7'p=41 o for j=k,
0, for j -k, ¥ gy, for j- k.

Corollary I (Corollary 6). Let A; be any matrix. The following equalities
hold for the monodromy matrices of W(2):
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Tr(Mk) =n-—1 + e—27zi/l,i7
=2 e g e e [S-F]jk[S:l]kﬂ if j<k,
n—2 _’_e—znuj/ n e~ 2mity _ o=2mily [Sil]jk[SJr]kjv if j= k.

Tr(M;My) :{

Example. The general results above apply to semisimple Frobenius mani-
folds, where A4, has distinct eigenvalues. In this case, the relation between
Stokes matrices and connection coefficients was computed in [8] and [9] when
Ay does satisfy assumption (i), and in [10] when it does not. The matrix 4,
has a special form, namely it is expressed in terms of a skew symmetric matrix
V' as follows:

1
A = V(EJrv)I, veC, Vi =—y.
We show how our general results above apply to this case. Since 1, =
—v—1/2, 1 <k <n, it follows that

—(1+e*™) if v¢ Z+1/2,

=0 = =0y =0 here o := .
nem = v * {2711' if veZ+1/2.

From Theorem I above (and the fact that the cx = 0 when /1,'( e Z), we deduce
that
S+ 87 = —aC, where C := (¢j).
Since V is an n x n skew symmetric matrix, it can be easily verified that
sT=s-1
Thus
(8) ™S, + ST = —aC.
The above, and Proposition II, allow us to conclude that if e*"S, +S+T is

invertible, then A4; has no integer eigenvalues and so ¥(4) is invertible. This is
part of the first assertion of Theorem 4.3 of [10], namely if

det(e”™S, + ST) #0,

—

then system (3) has # linearly independent solutions ¥, ..., ¥,. From (8) and
Proposition I, it follows that for an anticlockwise loop around 4;, the mono-
dromy of the above solutions is

—
1]

s 762”"?/[', q]] — Ylj o einv(einvsjL +€7im}S$)inI‘ J#IL

The above is formula (4.11) in Theorem 4.3 of [10].
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Note. After this paper was completed, the works [13] and [23] appeared,
showing that for the Frobenius manifold given by the Quantum Cohomology
of Grassmannians, there may be cases (depending on the dimension) when A is
still diagonalizable, but with some coinciding eigenvalues.

3. Local solutions of system (5) (i.e. (3))

The matrix By in system (5) has zero entries, except for the k-th row.
Indeed, letting A; = (4;) a straightforward computation yields

i,j=1,...,n>
0 0 0
B.=| —An - —Arxr —Ap—1 —Arixsr - —Aw | — k-th row.
0 0 0
A fundamental matrix solution of (5) is multivalued in C\{4,...,4,} and

single-valued in Z,, for any admissible direction #. If A is in a neighbourhood
of a A; not containing other poles, there exists a fundamental matrix solution

O ) =B 0] | EP Q)

which can be computed in a standard way, depending on the value of A
(see [22]). 1In [4], only the case 4, ¢ Z is considered (point 1) below). Here we
need to analyse also the case 4, € Z (points 2), 3) and 4) below).

1) [Generic Case, as in [4]] If A, ¢ Z, then By is diagonalizable, with
diagonal form

70 = [6W] 1B, G® = diag(0,...,0,—4, —1,0,...,0),

where the non zero entry —Z; — 1 is at k-th position. The k-th column of the
diagonalizing matrix G%*) can be chosen to be a multiple of the k-th vector &
of the canonical basis of C". As in [4] we choose normalization I"(4; + 1)&.
A fundamental matrix is then

(k)

PO =GRI+ 00— M) (A= )"
=W @ OG-
=W D PR = ) G ) |- B ),

where O(4 — Jx) is a matrix valued Taylor series, converging in the neigh-
bourhood of /4, and vanishing as 1 — 4. Here | l(k)(/l)\---h//ff)(/l)] =
GY (I + 0(L—J)) is analytic in a neighbourhood of ;. The columns of
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w®) form n independent vector solutions, n — | being analytic. The k-th is
singular and we denote it

—

©) P(h) = (2) = 00 ()0 = ) A,

where

UO0) = T+ D&+ > b (= ).
I>1

The vector coefficients 1;,(1‘) can be computed rationally from the matrix
coefficients B,’s of system (5). See [22]. The above ¥, is called associated
Sfunction in [4].

2) [Jordan Case] If 4, = —1, then By has Jordan form

0

J®O =160 'B.GM =

o O
O =

0

The entry 1 is at row (k— 1) and column k. The (k — 1)-th column of G
can be normalized to be —&,. There exists a fundamental matrix solution with
local representation

p® () =GR+ 00— ) — )"
=D PG )"
- Mf’“u>|--~|lﬁ,5"1< ) 19 (2) In( = )
DG 10 ),

where the columns J}k are analytic in a neighbourhood of ;. The columns
are n independent vector solutions, n — | being analytic and the k-th singular.
We assign the symbol ¥ to the non-singular factor of In(1— A;), as follows

(10) Fr(2) =Y () = —&c+ > by (= A’

1>1
Note that this is a solution of (5). Then, the k-th column of ¥®
(11) PN (2) = Bi(2) In(2 — &) + reg(h — ),

where reg(1 — Ax) means an analytic (vector) function in a neighbourhood of 7.
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3) [First Resonant Case] If 1, = Ny >0 is integer, then By is diagonaliz-
able as in case 1), but now a fundamental solution has the form

p® () =GR+ 00— ) — )T = 2R,

where R is a matrix with zero entries expect for R;,?, j=1,...,n and j #k,

because (Eigen(By)); — Eigen(By)), = N+ 1> 0. Thus, only the k-th column
of R® may be non zero. Let rj(") — R},@, so that the k-th column is
7(k) = (rik)w .. 771((1?170,71({/21, .- '7rr(zk))T7

where 7 means transposition. The entries r;k) are computed as rational func-
tions of the entries of the matrices B;, / =1,...,n (see [22]). From the above,

it follows that

O ) =) [ PO = 20" T+ R In(h - &)

=D GO @ LD |- 190 ().
where
90) = { r,-‘k’%“‘)(z)} i~ )+ P B
7k (A= 2™
U (2) = Ny + 0% — ),
the factor Ni! coming from a chosen normalization of G* The columns are n

independent vector solutions, n — 1 being analytlc (ie. the x// , J # k) and the
k-th singular (i.e. ‘P( )). We assign the symbol ¥, to the non-singular factor of
In(Z — ) as follows

Zr l/_; Z - /Lk

j#k 1>0

Note that this is a solution of (5), being a linear combination of regular
solutions W( Special cases can occur when 78 = 0, so that ¥,(1) =0. We
conclude that the k-th column of Y% is

Py (2)

(12) T () = Br(2) In(h— ) + FERL

+ reg(4 — &),

where

PY(2) = Nlg+ > b (-4,
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represents the first Ny + 1 terms in the expansion of lﬁk . The vector
coeflicients b are computed rationally from the coefficients of (5). The
solution (12) is not uniquely determined, because we can add a linear com-
bination of regular solutions l;j(k>, but the singular part is uniquely deter-
mined by the normalization of P*)(1). Consequently, also ¥ (1) is uniquely
determined.

4) [Second Resonant Case] If 1, = Ny < -2 is integer, then By is
diagonalizable as in case 1), but now a fundamental solution has the form

p® () =GR+ 00— ) A — )T (4= 2R

where R is a matrix with zero entries expect for R,gf), j=1,...,n,and j #k,
because (Eigen(By)), — Eigen(By)); = —Ni — 1 > 0. Thus, only the k-th row of
R™ may be non zero. Let r ( ). R,E]), so that the k-th row is
; k
r) = [rl(> r,(C 1,0, rkﬁl,...,rnk)],

where the entries rj(k> are computed as rational functions of the entries of the

matrices B, /[ =1,...,n (see [22]). Thus,

w® ) = 00 [ P~ 40T (0 + RO In(i - ),

where the tﬁ ( ) are analytic and Taylor expanded in a neighbourhood of
Ak. The columns of the above matrix are

W) =GO — )™ - )+ 80, = 1en, £k,
B0 () =90 ()= a) N

There are at most n — 1 independent singular solutions at Az, and at least one

analytic solution %", In special cases, it may happen that r®) =0, so that

there are n independent solutions analytic at 4. We show below (Lemma 1)
that in fact we can always find n — 1 independent solutions analytic at A,
whatever r®) is. We assign the symbol ¥, to the k” column:

() =P 0) =gP )2 - )™,
with normalization
7,y _ (= )N _
(13) B0 = Sy e+ o= i)'
! I>1

where the convergent Taylor series has coefficients determined rationally by the
matrices B;’s of (5). The logarithmic solutions are rewritten as

PO0) =) G- 2) + 40 (), Ak T<j<n
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It follows that if at least one rj(k> # 0, we can pick up the singular solutions
(14) Py (2) In(L — ) + reg(2 — Ax).
The regular part is an arbitrary linear combination of the zp k)’s, 1 <j<n,

j # k. The singular part is determined uniquely by the normahzatlon (13).

Lemma 1. Let J; be an integer Ny < —2. If r®) =0, system (5) has n
independent solutions analytic at 2. 1If v #0, system (5) has n independent
solutions, of which n — 1 are analytic and one is log-singular at Jy.

Proof. Let 0 <s <n—1 be the number of non zero values r;,...,r;. If

s

r®) =0, then s = 0 and by the preceding construction there exist 7 independent
solutions

—

7 (k) 77 k
| I k 17¥Ik7¢k+17 ‘//,5)
If s >0, there are s singular (at ;) solutions

gl el el

i > i 9 iy 7
and the remaining analytic (at ;) solutions

7 (k) (k) 7 (k)

wj] 7¢j2 a"'7lpj, .

Note that {ij,i,...,itU{j1,j2,-..,/i} 18 a partition of {1,2,... k—1,
k+1,...,n}. We construct another set of s — 1 independent analytic (at A)
solutions:

w._ 1 gw_ 1 gmw

O = T L
1 ,1 ) 1 ri(: )
w._ L gw 1 g

LIRS v, a Vi

k l =k l =
o = i~ P

It follows that there always exist n — 1 linearly independent vector solutions
which are analytic at A, namely

(k) (k) MOR 7
Giy 5 Pi s l///l 7‘#/2 PR & ) Y.

Moreover, there also exists the singular solution ¥y (4) In(4 — Ax) + reg(4 — ).
This proves the lemma. |
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Conclusion. The four cases above are summarized below (letting 0! = 1):

(I'(2, + 1)ek + 004 — 2)) (A — 2g) 41 Case 1): | ¢ Z,
. + 00— m) (4 —2) ™M1 Case 2), 4):
= — | k ’ ’
(15) ¥(4) ( Ny —1) W= NeeZ.,
Z )y i =reg(A — A), Case 3): A, €N.
j#k
Moreover, there exists a singular solution given by
P(4), M¢Z, ie (9),
P (A) In(A — ) +reg(h— ), A, =—1, ie. (11),

(k)
) PO ()
e i (A) In(A — Ag) + —
(16) T}Eélng)()v) — k( ) ( k) (/L _ /Ahk)NkJrl

+ reg(A — ),

g_;k(;u) h’l(/l — )Vk) + reg(;{ _ /lk), ) .
{y‘)lgsiﬂg) = 07 if K<k> _ 07 lk e —N — 27 1.€. (14)

JLeN, ie. (12),

The singular part of Y/S’"" (1) is uniquely determined. In logarithmic case
of (11), (12) and (14), ‘P,ES’"")(/I) is defined modulo the addition of a linear
combination of regular solutions.

3.1. Connection coefficients—definition

Definition 1. The connection coefficients cy, 1 < j, k <n, are uniquely
defined by

Pi(2) = B (Z)e + reg(4 — ),
ci:=0, 1<k<n, when !f/j(mg)(A) =0 for lj{ e —N-2.

Observe that:

a) cu=1"for A ¢ Z, cip =0 for A e Z.

b) In case 4, €N, it may happen that ¥, =0. This occurs when
7% = 0. In this case ¢k =0 for any j=1,...,n, namely the k-th column
of the matrix C = (cp) is zero.

c) In case A;e —N —2, it may happen that there is no logarithmic
singularity, namely 7(“"" =0. This occurs if r(/) =0. In such a case, we
need to define cy := 0, for any k, so that the matrix C = (cj) has zero j-th row.

d) Letting ¢y := 0, for any k, when r/) = 0, a more explicit way to write
the definition of connection coefficients is (7).
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4. Matrix solutions ¥ and ¥* of system (3)-(5), monodromy
and invertibility

In the previous section, we have constructed a matrix solution
(17) ¥ (2) = [Pr(4) |- | ul(A)-

This generalizes matrix Y(¢) of [4]. In Section 4.2 we will establish under
which conditions it is fundamental.

Remark 2. System (3), (5) may have vector solutions that are analytic
at all Ay,...,4,. Such solutions must be polynomials in A, because oo is a
Fuchsian singularity.

The following holds:

Lemma 2. System (3), (5) has no polynomial vector solution if and only if
Ay has no negative integer eigenvalues. Equivalently (see Remark 2), System (3),
(5) has a singular solution at any Ji, 1 <k < n, if and only if A\ has no negative
integer eigenvalues.

Proof. This Lemma is proved in remark 1.1 of [4]. O

In [4] it is proved, under the assumption (i) of non integer 4;’s, that (3)
admits a matrix solution ¥*(A), whose k" column, k = 1,...,n, is analytic at
all poles 4; # Ar. This matrix is called Y*(¢) in [4]. The existence of ¥* can
be proved without any assumption on 2, ...,A). It has new type of logarithmic
behaviours when compared to Y*(¢).

Proposition 1. Let the matrix A, be any (no assumptions). Then

i) There exists a matrix solution ¥* = [T (A)]-- | Sf’n* (A)] such that
(18) B0) —regh— ) WAk

i) Y*(4) is a fundamental matrix solution if and only if none of the
eigenvalues of Ay is a negative integer. In this case, Y’,Esm“’)(/l) # 0 for any k,
and lf’k* (A) has the following behaviour for A close to

( 9 (2) + reg(Z — )

19) %) =9,
i (2) + reg(A — ), if ¢Z,
Py (2) In(4 — ) + reg(A — Ax), if \eZ._,
Py ()

!Pk(/w 11’1(/1 — }vk) + W

+reg(A— ), if 4. €N.



398 Davide GUZZETTI

Y*(2) is uniquely defined by (18) and (19), and
(20) Y1) =¥"(A)C, C = (ci).

Proof. We have proved in Section 3 that at any 4; there exist at least
n—1 regular solutions, whatever are 1;,...,4 . This is enough to apply the
same procedure of proof of proposition 1 in [4]. The singular behaviour of
¥/ (1) is directly obtained from Sf’ﬁxm‘q)(/l). O

Remark 3. From the above proposition it follows that ‘17,: is always
singular at 4. This implies that if none of the eigenvalues of 4; is a negative
integer and A, € —N — 2, then r®) # 0, namely S”,E‘””g) #0.

4.1. Monodromy of ¥ and ¥* associated to a loop around 2

Consider a small loop in 2, around a pole A; in counter-clockwise
direction, not encircling the other poles; for example 4 — i — (4 — Ax)e?™,
4 — Jx| small. Monodromy of ¥ = [¥, |---|¥,] is easily computed from (15),
which immediately implies

N . (1) ,—2mil, /1/ VA
(7)o 4 DR, 2,
Syk(/l), lk e”Z.

and from (7), which implies (note that j and k are exchanged here):

00) e sr:(j(x) + (e*zﬂfii_ 1) Pi(A), /1,} ¢Z
Y’,(l) + 27‘[1'(?](]-5”]((1), ‘EZ

These formulae make sense also when ¢;; =0 for any k in the special case
S?’_,» =0, possibly occurring when 4, € N, and when ¢; =0 for any j in the
special case f’,ESi"g) = 0, possibly occurring when 4, € —N — 2.

Next, we compute the monodromy of ¥* = [971* |~~|s?/; ], which exists
when A4; has no negative integer eigenvalues. We consider again a small loop
around A; as above. From (18) we have

Pr(A) = B(),  Vi=1,...n j#k

Then, from the above and (20),
e (A) + (e H - 1) B (L), M ¢ Z,
I j#k

Vi) —q -
Pi(A) +2mi > e (2), MeZ.
Jj#k

Summarizing:
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Proposition 2. The monodromy matrices representing the monodromy of ¥
and V" for a small counter-clockwise loop around Ay in P, are as follows.
a) The matrix ¥ is always defined. The monodromy is

0 0 -~ 0 --- 0
Y — ¥YMy, Me=IT+o |t e - Gk - Cm |, 1 <k<n,
0 0 -~ 0 --- 0

where I is the n X n identity matrix, only the k-th row in the second matrix is non
zero, and

o = (e — 1), if A ¢Z,
oy := 2, if 1 eZ.

b) If A has no negative integer eigenvalues, then W™ exists. The mono-
dromy is

00 -+ ¢ -+ 0
0 0 Coe 0

Y YR MY M =1+ 0 0 Cl;k 0 ,
00 -+ ¢ - 0

where only the k-th column in the second matrix is non zero.

(k)

Remark 4. The matrix M is the matrix (m;’) in Proposition I of

Section 2. For a clockwise loop, we analogously find that
My = Breewss T # kK [M;"],; =0 otherwise;

[Mfl]jj =1, j#k (M 1y = 7%

and
[(sz)_l]jk =Bk, J#k; [(M;f)_l]ﬁ =0 otherwise;
[(Ml:)_l]jj =1, j#k (M) e = M e
where f3, = —eX gy

Corollary 1. The first invariants of the monodromy matrices in Proposi-
tion 2 are
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Tr(My) =n— 1+ e 2k,
Tr(MiMy) =n—2+ e 4o M 4 0L 0Lk Cjk Chj
—n—2+ o~ 27ih + o~ 2k + 672m(}'//+;”’i)ﬂ;ﬁkcjkckj-
If Ay has no negative integer eigenvalues, then
Tr(M}) = Tr(My), Tr(M; M) = Tr(M;My).

From Proposition 1 we know that ¥* is fundamental if and only if 4; has no
negative integer eigenvalues. Thus:

Corollary 2. Suppose that A; has no negative integer eigenvalues; then
M, ..., M} generate the monodromy group of equation (3-5).

4.2. On the invertibility of C and ¥(4)

We establish necessary and sufficient conditions for the matrices ¥ (1) and
C = (cjx) to be invertible. Let 1€ 2.

Remark 5. 1f 7#¥) = 0 (case A, € N) then C has zero k-th column and also
¥ (J) has zero k-th column, so it is not a fundamental matrix. If ) = 0 (case
Ji € =N —2), then C has zero k-th row. In both cases, C is not invertible.

Lemma 3. 1) If A, has no negative integer eigenvalues and W (1) is funda-
mental, then C is invertible.

i) Conversely, if C is invertible, then:

— Ay has no negative integer eigenvalues,

- Y(A) is fundamental,

— the matrix defined by W*(A):= ¥Y(A)C™', is the unique fundamental
solution ¥* of Proposition 1,

— in case J; € N then #¥) #£0, in case i, € —N —2, then r® # 0.

Proof. 1) If A; has no negative integer eigenvalues, then the fundamental
matrix ¥*(1) exists form Proposition 1. If ¥(4) is invertible, then C =
w(2)~" - w(A) is invertible.

ii) C invertible implies that #¥) 0 and r®) # 0, when defined (Remark 5),
thus in any row and any column of C there is a ¢; # 0 for some 7 # j. Write
Y1) at Jg:

=[Py | B = [P err || B en] + reg(h— )

={[0]---[0] (0] -] 0] + reg(2 — A)}C.



On Stokes Matrices in terms of Connection Coefficients 401

The last step is possible because existence of C~! allows to write
reg(l — A) = reg(L — ) C1C = reg(A — X)C.
Thus
wC =10 [0 BL"|0]--- | 0] + reg(h — A).

This is equivalent to (18) and (19), which implies that there exist the unique
fundamental matrix ¥* = ¥ C~'. From Proposition 1 we conclude that 4, has
no negative integer eigenvalues. Obviously, it follows also that ¥ = ¥*C is
invertible. |

Proposition 3. C is invertible < Ay has no integer eigenvalues.

Proof. The “=" is proved in the previous lemma, point ii). The proof
of “«<” is the following generalization of that of proposition 2 in [4]. Since
Ay has no negative integer eigenvalues, the monodromy group is generated by
M{,...,M;. Enumerate the poles in such a way that the ray L, is to the left
of the ray L;, which implies that the monodromy at infinity for an anticlockwise
loop encircling all the poles is M = M, ... M. The behaviour of system (5)
at oo implies that 4; has no integer eigenvalues if and only if M} has no
eigenvalue = 1. This is equivalent to the fact that C is invertible. Indeed,
existence of an eigenvalue equal to 1 means that there exists a non zero row
vector w = [wy,...,w,], such that wM* =w. Using the explicit expression of
the M} in terms of the oxcy’s, we compute

n
w M;Ml* ZW—Fijéj,
=

where the é;’s are the basis rows, and

by = a,(WC),,

bi:OC,'

W)+ > cj,-b,-}, i=1,2,...,n— 1

j=itl

Since all the o;, for 1 <i<n, are not zero (this is the crucial point), we
conclude that wM? =w if and only if wC = 0. O

Proposition 4. 1) If A, has no integer eigenvalues, then ¥ (1) is a funda-
mental matrix solution.

ii) With the additional assumption that 2, ¢ Z, Yk =1,...,n, also the
converse holds: if W(A) is a fundamental matrix solution, then A, has no integer
eigenvalues.
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Proof. 1) If A has no integer eigenvalues, C is invertible (Proposition 3).
Therefore, the statement follows from Lemma 3, point ii).

i) Let ¥=[% | --|%,] be fundamental. Observe that under the
hypothesis that 4; ¢ Z for any k, the columns are singular. Namely:

() = P (0) = (TOf + 18+ 00— W) (A—A) 7, 1<k<n

The monodromy of ¥(1) at infinity is M., = M,M,_, ... M,. Suppose that
there is an integer eigenvalue of A;. It follows that there exists a non zero
column vector T = (vy,...,0,)" (T means transpose) such that M, 5 =7. As in
the proof of Proposition 3, making use of the explicit form of the M;’s in terms
of the cy’s, we see that MU =7 is equivalent to Cv = 0. Take the vector
Y(2) =0, u¥()). At every J it behaves like

Z orPrew + reg(h — i) = (Z Ckzli/) P + reg(d — ).
=1 =1
But >, ¢y = 0, thus

J(X) =reg(A — A), close to any A, k=1,....,n

This 1mp11es that l,b( )isa polynomial solution. This contradicts the fact that
Pi(2),...,¥,(2) is a basis, each ¥y (1) being singular at A, 1 <k <n. [J

Corollary 3. If A\ has no integer eigenvalues, then M, ..., M, of Prop-
osition 2 generate the monodromy group of system (3).

Corollary 4. Suppose Ay has some integer eigenvalues and ¥ (1) is a funda-
mental matrix solution (consequently, M,..., M, generate the monodromy
group). In such cases, at least some A is necessarily integer.

5. Dependence of matrix solutions and connection coefficients on #
Following [4], we call critical values the inadmissible values for #, namely
arg(4; — Ax) mod 27.

We numerate them as in [4], as follows. In the angular interval (—7n/2,37/2]
there is an even number m = 2u, u integer, of critical values, ordered as

3 7
5 =19 > 1 > ">’7m71>7§'

All the possible critical values are then

Wy =1, — 2hm, v=0,...,m—1; heZ.
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In each interval (6 — 2z, 0] lie m successive values belonging to the set of critical
values {#,|ve Z}. There is an ordering of the poles with respect to an
admissible #, given by the dominance relation < below:

Definition 2 (as in [4]). Let # be admissible. We say that j < k, whenever
in the plane Z, the cut L; lies to the right of the cut L;. Equivalently, choose
the determinations

Ny := determination of arg(4; — Ak) s.t. 7 — 27 <ny <7,

J#Ek 1< k<n.

(21) J<k & —mt+n<mn<n.

The reason for the nomenclature “dominance” will be explained in section
6.1.

Remark. i,...,2, are in lexicographical order with respect to the admis-
sible n when the labelling order j < k coincides with the dominance order j < k.

The matrices ¥ (1), ¥(2) and ¥*(1) defined in the plane #,, with 7
admissible, and the connection matrix C, depend on 7. Therefore we write

gy =w® ), PO) =Py,
V() =¥ (4n), C=C.

For two values # < 7, we consider the plane with both the cuts of %, and
Z;. We denote by %, N #; the simply connected set of reference points w.r.t.
P, and #; (nomenclature as in [4]), namely the points in the doubly cut plane
such that arg(A — i) ¢ [,7], Yk =1,...,n. A pole J; is called accessible if it is
on the boundary of #, N #;. See figure 2. The following generalizes prop-
ositions 3 of [4] without any assumptions on the values of A[,..., 7.

Proposition 5. 1) Let J; be accessible w.r.t. some admissible 1 and 7.
Then

f’,ﬁk)(/l, n) = Y7,£k>(i, 7) and Pr(An) = Pi(4 1), Vie NPy

i) Let n and 7 lie between two consecutive critical values: namely n,. , <
n<n<mn, Then

iii) Let again n,., <y <fi<mn, Then
(A n) =¥ (A7), Vie NPy,
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Fig. 2. Picture of #,N%;.

whenever W™ is uniquely defined (namely, when Ay has no negative integer
eigenvalues).

Proof. 1) is immediate, because Ay is accessible and 1€ #,NZ;. ii) is
proved noticing that 4,..., 4, are all accessible from %, N %;, therefore i) holds
for any k. iii) follows from i) and ii), noticing that ¥* is uniquely defined by
the ¥,’s and C (Proposition 1). Il

The above implies that the dependence on # is discrete, changing only when
a critical value is crossed. Therefore, if #,,; < # <1#,, we follow [4] and write

V() =Py, PI() =P (), Co=(cy) = Cy).

Vv

Change of ¥ when a critical value is crossed is given by the following gener-
alization, without assumptions on 4,...,4 , of proposition 4 of [4]

s ps

Proposition 6. Suppose that A, has no negative integer eigenvalues (but
no assumptions on 1y,...,2), so that the W:(1)'s exist, for any ve Z. Let
Myyr <n <n, <n <1, Then

(22) v (D)= ()W, VieZ,NPy,

v
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where the invertible matrix W, = (WA(V)) is

Jk
(23) ng(v) = 70!/(6;1:), for j =k such that arg(l; — Ax) = n,,
(24) W/;‘) =1, j=1,...,m ng(v) =0 otherwise,

where < is the dominance relation w.r.t. n. In the same way,

Y =Y (OW Yie 2, NP,

v

where W' has zero entries except for

,1 . .
W, ;=1 j=1...,n,
— —1 . 5
W = By ™", for jmk stoarg(l — X)) =1,

Proof. The proof is as for proposition 4 in [4]. Just observe that now we
are using monodromy matrices (Proposition 2) and ¥* which are defined in
more general terms. The detailed proof is in the arXiv version of this paper

[11]. O

Recall that in an angular interval (6 — 2=, 0], there are m = 2u critical
values. Let #,,, <# <, and introduce, as in [4], the matrices C, and C,
such that

(25) V() =¥ NC,  AePN Dy,
(26) Wl*tu(i) = yl;:rm (l) Cv_ﬂ j’ € g’?*” N 9’7*2”'

Immediately it follows that

(27) Cf =Wy W)™, Cy = Wi Wi

v v

Remark 6. #,N%,_, is the half plane to the left hand side of all lines
whose positive parts are the cuts of direction #, while #,_, N %, >, is the half
plane to the right hand side of all lines whose positive parts are the cuts of
direction 7 — 27.

The following is a restatement of remark 3.3 of [4] with no assumptions
on Aj:

Lemma 4. Let A':=diag(l,...,A)), 4, € C, 1 <k <n. Then

yIerm()v) = ylv(i)eznm,a
for any L in the universal covering of C\{A,...,2,}. Moreover

_ 2mid’ —2mid’ . _ 2mid! —27iA’
v — v+m ) . - - .
C,=e™ Cype (namely: C(n) =e™" C(n —2n)e )
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Proof. We write /4, for A€ %,. Then A, — Ak = (Ay_2, — e, Tt fol-
lows from the definition of ¥ that ¥(A,n —2r) = ¥(4,n)e*™’, whatever the
values 4[,...,4, are. From the above and the connection relations we find two
expressions for ‘I’k(l7 n):

(28) B (2,n) = B (A n)en(n) + reg(Z — 1),
and
(29) Py (A n) = e TP (A — 27)

e 2 S’_)j(smg)(/l, n = 2m)ci(n — 2m) + reg(4 — 4;).

When /) ¢ Z we substitute in the above Y’”"“ (An —271) = ¥;(A, — 2m) =

—

¥ (4, n) = e¥i ?’<S"’g) (Z,m). Otherwise, we observe that

\

7 (sing)
PO (1, — 2m)

Pz(\'//,) (}077271)

= ‘f/j(l, n —2n) lln(ﬂvnzn — )+ + reg(Ay—2z — 4j)

(4= ap) ™!
2nm Y’ l In(J y) i P/(Vj])(/“’?) A A
i(Z,m)q In(4y — &) — m]"’m + reg(4y — 4)

= F PO (5 ) + reg(i — ).
Therefore, confronting (28) and (29), we obtain
P (e (n) + reg(2 — 4y) = DB (G p)ei(n — 27) + reg(h - 4y).

Finally, since Yf(""‘)(/l, n) is singular at 4;, the statement of the lemma for C,
follows. |

We generalize proposition 5 of [4], with no assumptions on diag(4;) =
(Aree 2D,

Proposition 7. Let u,., <#n <m,, and let c<kv) = cjk(n). Consider the rela-
tion (25) and (26). The connection matrices Cj , C; are
_ﬂkcj/(k - ZﬂllA o€ (k)a fOV J < ka
(30) [Cﬂ,‘k =191, for j=k
0, for j =k,
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0, SJor j<k,
(31) =11 for j =k,
e—zm;ﬁkcj(kv) _ _ezm(i/i—/lj’)ak(j](/:)’ Sfor j =k,

Iy o S Y
where oy = e ™ — 1 0f 4 ¢ Z, g =2mi if A € Z, B = —e ™oy

Proof.  One proceeds as in the proof of proposition 5 of [4], with the more
general monodromy matrices of Proposition 2 and Remark 4. The detailed
proof is in the arXiv version of this paper [11]. O

The matrices C,; and C, can be defined by formulae (30) and (31),
independently of the fact that A; has no negative integer eigenvalues,
namely independently of (25) and (26). The following corollary is a direct
computation.

Corollary 5. Let the matrices C; and C, be defined by formulae (30) and

(31). Then
Tr(My) = n— 1 +e 2,
n_z_i_e—zmj’ +e—2m‘),,§ _e—zmzj’ Cv+ ' Cv_ Cif <k
Tr(Mij): B N 4,[ ]jk[ ]k_/ if J
n— 24 e 4 e M — e HHCT)(CHyy i - K

If moreover Ay has no integer eigenvalues, then

Tr(M}) = Tr(My), Tr(M; M) = Tr(M;My).

6. Fundamental solutions of (1) as laplace integrals
6.1. Fundamental solutions of (1) and stokes matrices

The basic definitions of Stokes rays and matrices are well known [22], 2],
so we just recall them

Definition 3. Stokes rays are the oriented rays from 0 to oo contained
in the universal covering of C\{0} (denoted C\{0}) defined by the condition
R(z(4 — M) =0, S(z(4 — 4x)) <0 for j#k.

Let # € R be admissible. We choose the Stokes rays
) (3n . .
Fxi=4ze€C|z=pexp i\ 5 — i ,p>05 J#k 1< jk<n,

where

1y = determination of arg(4; — Ax) s.t. ny € (1 — 27, 5]
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If follows that R(z(4; — Ax)) <0 for z in the half plane to the right of rj.
According to the definition, all the Stokes rays are characterized by argz =
3n/2 —ny mod 2z For any (j,k) such that ny <n <mny +n

R(z(4—4)) <0 if argz= 3; — 5 mod 27.

This means that when an admissible n for system (3)—(5) is fixed, then
(32) R(z(A4—A)) <0 for argz = 377[ —npmod2rn & j <k,

where < is the partial ordering previously defined, which therefore coincides
with the dominance relation in the sense of the theory of ODE with singularity
of the second kind. All the Stokes rays can be represented as argz =1,
with 7, :=3n/2 —#,, ve Z. It is easily seen that all Stokes rays are generated
by

O<tmo<t< - <11 <13 Ty = Ty + Th, heZ.
Introduce the following notations for sectors of C\A{/O}:
S(o, f) = {ZGCQY)}|OC<31‘g(Z)<ﬁ}, o< feR,
= 8S(ty — 7, Tyt1), veZ.
For any ve Z, equation (1) has a fundamental matrix solution
(33) Y,(z) = Y, (2)edort A s s e

where A’ = diag(4,), and Y,(z) is an invertible matrix, analytic in a neighbour-
hood of oo, with asymptotic expansion

8

|

. F F
(34) N ~I+2 S+ =1
z z =

, for z — o0 in .

The sector %, is the maximal sector where the asymptotic behavior holds, and
Y,y(z) is unique, namely it is uniquely determined by its asymptotic behavior.
The n x n matrices F; are determined as rational functions of 4y and A;, by
formal substitution into (1) (see [22], [2]).

Definition 4 (Stokes Matrices). Given two fundamental matrices Y, and
Y, as above, whose maximal sectors .%, and %, intersect in such a way that no
Stokes rays are contained in %, N %, then the connection matrix S such that
Yy (z) = Y\ (2)S, ze /,N Sy, is called a Stokes matrix.
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It is easy to see that v/ = v + u, therefore Stokes matrices are the matrices
Sy, ve Z, such that

Yiiu(z) = Yo(2)Sy, z2€ KNS = S(1y,Ty11).

Since R(z(4 — A)) <0 for j<k when ze S(7,,7,41), where the dominance
relation is referred to any # € (,,,7,), then from the asymptotic behaviours of
Y,1u(z) and Y,(z), it follows that Jy ~ e(if‘i")z(Sv)jk and thus

(Sy); =1, (Sy)y =0 for j> k.

Definition 5 (Stokes Factors). The Stokes factors are the connection
matrices V, such that

Y,_1(z) = Y, (2)V,, ze KNS =S, — 7w, 1)

Asymptotic behaviours and dominance relations in S(z, — 7, 7,) yield:
(Vy); =1, and (V,), =0 for all j+#k, except possibly for (j,k) s.t.
arg(4; — k) =3n/2 — 1, and j > k with respect to ne (4,.,,%,). From the
definitions above, it follows that

(35) Sy =Veu- - Vor1) .

The monodromy of Y,(z) is completely described by S,, S,:, and A',
because the following holds

(36) Y, (ze¥) = Y, (2)e™™ ' (8,8,1,) ", ze

Definition 6. S, and S,,, are a complete set of Stokes multipliers, because
any other Stokes matrix can be expressed in terms of entries of S,, S,., and A’
(see [2], [3]), by iterations of S, = e 274'S, >4,

6.2. Solutions of (1) as laplace integrals

We consider a path y,(r) which comes from infinity along the left side of
the cut L; of direction #, encircles 4, with a small loop excluding all the other
poles, and goes back to infinity along the right side of L; (where L is oriented
from A to o). See figure 3.

1) Case of 4, ¢ Z We define
(37) Yel(z,n) = LJ B (A, n)di = LJ e TX (5 n)da

s = " s = N k by .
27 ), n) 27 )y, ()
Since 4 = oo is a regular singularity of ‘f’k(i, 7), the exponential ensures that the
integral converges in the sector

38 S0)= (e OO} RE <0} = Tp<amz<ioy
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Y (M)
by K

Fig. 3. The path y, (7).

The asymptotic behaviour of (37) can be computed by expanding the integrand
Sﬁk(i) in series at 4, and then formally exchanging integration and series (see
[7]). Namely, for any 4" > 0 integer,

1

Now write Y ., = Zfii +>~,- The known formula fyk(n)
= z%1e#7 T (a) yields

LB 1 ,
(39) () = (ek + ZW + @(Z)) ez,

where #(z) is the integral of >, . It is standard computation to show that
#(z) = O(z""). Thus, formula (39) allows us to write the asymptotic expansion

+ 1@+ > b4 ](A—Ak)iildz:(*).

I>1

(4 — Jx) “e™ di

. y : p® 1
—Z =2, = !
Yi(z,n)e "z ’<~ek+zm;, z— 00, z€ L (n).
Lemma 5. Assume A, ¢ Z.  Let ne (n,.,n,), and t, :=3n/2 —n,. Then,
Yk(z, n) defined by (37) is the k-th column of the unique fundamental solution of
(1) identified by the asymptotic behavior (33), (34) in the sector

S =8S(ty — 7, 1y41).

Proof. If n,,, <n<#f<mn, then Yi(z,n) = Yi(z,77). This defines the
analytic continuation of (37) to

S(ty — 7w, 711) = U L (n),

Myp1<N<1],
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with the required asymptotic behaviour. It remains to prove that Yi(z,7) is a
vector solution of (1). This follows from integration by parts, as shown in the
Introduction, since 7,(y7) is such that e**(1 — Ao) ¥ (4)],, = 0. O

If we write coefficients in (34) as

—»k —»(
Fe=[f"]1 7%,

then, for #,,, <# <p,, solution (9) reads

P (4 n) = =30 +1-0FP0 -0 Y =g
1>0

2) Case of 4, = —1 We define

(40) Yi(z,n) = J WL (A n)di = —J e (A n)dJ,
L;\» Lk

along the cut L; from A, to infinity. This is convergent in () as before. Its
asymptotic behaviour is obtained as before by expanding ¥, in the convergent
series (10), and then exchanging integration and series:

Yk(z,iy)~é'kJ L= b J (A= 2) e da

—L/c I>1

e)kZ . © 1 _’(k)l
== ek+;(—l) " |,

where we have used the fact that

A
ez

0 Az
! Jz _ l,¢ 7(:‘ l
JLk(xxk)e d/121+]LMl_¢ée de =S50, S<g<T

The same proof of Lemma 5 yields the following

Lemma 6. Assume i, =—1. Let ne(y,..n), and t,:=3n/2—n,
Then, Yi(z,n) defined by (40) is the k-th column of the unique fundamental
solution of (1) identified by the asymptotic behavior (33), (34) in the sector

S =8S(ty — 7, 1y41).
By virtue of the lemma, we rewrite (10), for #,,; <# <p,, as follows

(L Z

1>1

l+1
— )"
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Lemma 7. In case 2, = —1, the solution (40) has also the represen-
tation
v _ 220, () — 1 77 (k) z2
(41) Yk(Za ’7) — e Wk(’%’?)di = 5 _- k (;»)(i‘ dlv
L, 27 Jy )

where vy, (n) is the same as (37).

Proof. Recall  that ¥ = ¥(2) In(2 — A) + reg(4 — 4). Since
J,, reg(% — Jx)e** di.= 0, we have

J FY (1)e di = J P (2) In(A — Jx)e™ dJ.
k() 7 (1)

Indicate with L7 and L{ the left and right sides of L, (oriented from
to o), and with (41— Zk)g/, the branch of (41— Ax) to the right/left of Ly.

Then
[ R
wy J-rf Ik Jok Ik

k

Moreover (4 — Ax); = e (% — Jx)p, where arg((A — A)g) =#. Therefore

(%) = LR @i (2) In(A — ) ge™ di

+ {mf Py (A)e* di — J P (A) In(L — Jg) ge™ di}
Ly LR
_ 2niJ B (Mo d). 0
Ly

3) Case of 2, € N Define the convergent in ¥(y) integral

= 1 AT "
42) Ve = | PG,
i 7 (n)

where ‘f’,((k) (4) is (12). For z — oo, the logarithmic part yields

1

. 2 _ _ ZA " - 1\t (k)i L7
zm.Lme B (1) In(h — J)dJ J ()R~ S () e

Ly 1=0

On the other hand, by Cauchy theorem, the terms with poles yield
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2 oy (= )™
LodY oy,
= Nk' d}.NA ( ( >(/1)6’ )‘/:}A
N G 50 3
= oM Z A;k'*q z9= €.+ + z% zNkeh b(()k) = Nilé.
¢=0 7

We conclude that Yi(z,7) has the correct asymptotics. The same proof of
Lemma 5 yields the following

Lemma 8. Assume i, € N. Let ne (n,,,,n,), and t, :=3n/2 —n,. Then,
Y, (z,n) defined by (42) is the k-th column of the unique fundamental solution of
(1) identified by the asymptotic behavior (33), (34) in the sector

=8ty — 7, Tye1)-
Accordingly, we rewrite for 5, <5 <#,:

Nk
W,f")u,n): (N,C_1)1fl<k)u/—/vk—1Jr
=0

w (_1\H+1£K)
Z—( D fNﬁ”lu’] In(u) + reg(u),

= /!

where u := 1 — A.
4) Case of A, = Nye —N —2 We define

—

(43) Yi(z,n) ;:J e ()da.
Ly
The asymptotic behaviour of the above is readily computed:

| ermai=| S B0 2N
Ly L

k >0

= (=D = N = 115"
ey SR

>0

o 1 _
e+ (=DM (=D - Ny - 1)!b,<’f>; Nk

I>1

Here we have used the normalization Eék) = (-1)™&/(~Ny —1)!. We con-
clude that f’k(z, n) has the correct asymptotics. The same proof of Lemma 5
yields the following

Lemma 9. Assume J;, =Nye—N-—2 Let ne(n.,n,), and t,:=
3n/2 —1,. Then, Yi(z,n) defined by (43) is the k-th column of the unique
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Sfundamental solution of (1) identified by the asymptotic behaviour (33), (34) in the
sector

= S(TV -7, Tv+1)-
Accordingly:
; (-

P()) = ® )= a) Nt
K4) lzo(z—zvk_n!ff (=4

Also in this case we have

W (A) In(h — A )d) = J e (A)d.

2mi J?’k(’?) Ly

Therefore, when the singular solution ¥y(2) In(i — J) + reg(A — Jx) exists, we
have

Ye(z,n) = J e (P (2) In(A — Ag) + reg(A — Ax))dA.
7 ()

Proposition 8. The following are the fundamental matrix solutions of (1)
uniquely identified by the asymptotic behaviour (33), (34) in %, ve Z:

(44) Y,(2) = [Yilz,m) |- | Yalz,m),
s 1 P
Yk(Z,i’]) = —J eJTIESIng)(;Lvn)d}'7 1 < k < n, n, < n < 771!-0—17
27}y )

where U™ s defined in (16). In case B™ =0, for 4; € =N — 2, then (44) is
replaced by (43).

Proof. The above is a consequence of the preceding discussion. Linear
independence of the columns of Y,(z) follows from the independence of the first
term of the asymptotic behaviour of each column. Uniqueness follows from
the maximality of the sector. O

Lemma 10. If A, has no negative integer eigenvalues, then, ‘I_),ES""“’) in the

integral (44) can be replaced by ‘i’,f Namely:

1

Folzn) = _,J T Gm)di, L <k<ng,<n <.
27i J,, )

Proof. Recall that if A; has no negative integer eigenvalues, then
") 20 also for A e —N —2. Since ¥\*™ — ¥} = reg(i — i), we have

J (B (2) — B (A))e dA =0 0
()
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7. Stokes factors and matrices in terms of C—main theorem (Th. 1)

In this section we state the main result of the paper, which is Theorem 1
and Corollary 6. Consider as in [4] a new path of integration y() homotopic
to the product y () ...y, (), k1 <ky <--- <k,, namely a path coming from
oo in direction # to the left of all the poles Ay,...,4,, encircling all the poles,
and going back to oo in direction # to the right of all the poles. The following
Proposition is the generalization of Theorem 2’ of [4] when no assumptions are
made on Aj,..., 4.

Proposition 9. If' Ay has no negative integer eigenvalues (but no assumptions

on Ay,...,A) the fundamental matrix of Proposition 8 is

»

1 Z. *
Y,(z) J( )e“"‘l’ (A,m)dA, Nys1 <1 <1y,
'(n

2mi ),
and
Yo-1(z) = Yi(2) W, ze KNS =S, —7n, 1),
where the W,’s are given in Proposition 6. The Stokes factors and matrices are

V=W,  S=Cf sl =c;.

v vt+u

Proof. The proof is technically as in Theorem 2’ of [4], so for brevity we
do not repeat it. The crucial point is that now the matrices ¥, ¥*, W,, and
C* have been defined—as in the construction of previous sections—for any
My---y2p. So the proof holds for any Aj,...,A. O

With much more technical effort—which requires a non trivial generaliza-
tion of the technique of [4]—we are now going to prove that the statement of
the above Proposition holds without any assumptions on A4;, namely:

Theorem 1. Let A; be any n x n matrix. The (complete set of) Stokes
multipliers and matrices of system (1) are given in terms of the connection

coefficients cj(,:) of system (3) according to the formulae

V,=W,, S, =C/, s

vtu

where W, is defined by formulae (23), (24), and C) and C, are defined by
Sformulae (30) and (31).

=C,, Yve Z,

Remark. Here formulae (23), (24), (30) and (31) are taken as the defini-
tions of W,, C,/ and C,, independently of the existence of ¥*(1).

)

Corollary 6. Let Ay be any n x n matrix. The following equalities hold for
the monodromy matrices of W(A) of system (3)—(5), defined in (17):
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v ()
y ()

x”w

Fig. 4. The paths y(5) and »(7).

Tr(My) =n — 1 + e 2%,
n—2+ 6—2711‘/1; + e 2midy _ e—2m‘i/-’ [S"]jk[Serlﬂ]kj i i<k,

Tr(M;My) = il | dmikl o 2miil o1 o

n—2+e M +e T — e TS L[S i Tk

The corollary above is a restatement of Corollary 5. We prove Theorem 1
in a few steps.

8. Proof of Theorem 1
We define
Y () ==Y (),
which yields a gauge transformation of the linear systems (1):

(45) %(yY):<AO+AIZ_V)yY.

The fundamental solutions ,Y,(z) =z 7Y,(z), have the same Stokes multiplier
and Stokes matrices than Y,(z), and their columns are obtained as Laplace
transforms of solutions of

(46) (A= 1) () = (A =7+ 1),
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If A; has diagonal entries A,...,4 , some of which may be integers, then we
can always find a sufficiently small y, > 0 such that, for any 0 <y <y, 41 —y
has diagonal entries 1 —7,...,4, —y which are not integers, and moreover has

no integer eigenvalues, so that ¥* exists. In the following, we assume that y
has this property.

For system (3), the matrix C, = (cj;,?) is defined by (7). The matrices C,'
and C,; can always be defined by the formulae of Proposition 7, independently
of the existence of ¥* and formulae (25) and (26). On the other hand, for
system (46) the matrices C,f and C, (which depend on y, so we write C,f[y] and
C, [7]), are well defined by formulae (25) and (26). According to Proposition 7,
their entries are again given in terms of y-dependent connection coefficients
c},:) = ;,? [y]is. The latter are defined by the first equality of (7) applied to the
solutions , ¥, namely:

(47) V(2) = B (D) ] + reg(h — 4y).

The following Proposition is the key step to prove Theorem 1

Proposition 10. Let y, > 0 be small enough such that the diagonal part
of Ay —yI has no integer entries and A\ has no integer eigenvalues for any
0<y<vyy Letn,, <n<mn, be fixed Let c;,:) be the corresponding connec-

tion coefficients of system (3), defined by (7), and c}kv)[y] be the connection
coefficients of (46), defined by (47). Finally, let

e—ZnMAf —1 )“l/r ¢ VA 2mi(]
o — ; ] ) o — o2 =) 1.
¢ { 2, dez MU

Then, the following equalities hold

ey = e alylel) b, if k-,

weely) = o [ylely 7], if k<,
where the partial ordering < refers to 1.

Corollary 7. Let y be as in Proposition 10. Let C}[y| and C;[y] be the
connection matrices defined in (25) and (26) for system (46). Let C, and C; be
the matrices for system (3) defined by (30) and (31), where the c;,:) are defined by
(7). Then

G =C0, 6 =C1hL  WweZ

Also, let W, be defined by (23) and (24) for system (3), and W,[y] be the matrix
defined by (22) for system (46). Then

W, = W,[yl, YveZ.
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Proof of Corollary 7. 1t is enough to compare the formulae of Proposition
10 with those of Propositions 7 and 6. |
Before proving Proposition 10, we give the proof of Theorem 1.

Proof of Theorem 1. The S,’s are unchanged by the gauge ,Y(z) =
z77Y(z). Moreover, Proposition 9 applies to the system (46), therefore

S=Cl SL=Clhl V=Wl
Thus, Corollary 7 implies Theorem 1. O

8.1. Proof of Proposition 10, by steps

Proposition 10 is the analogous of Lemma 2’ in [4], but it requires much
more technical efforts. The proof is based on the properties of higher order
primitives of vector solutions of (3)—(5). Since 4,...,4, are any complex
numbers, including integers, the description and the proof of these properties
require a highly non trivial extension of the classical techniques used in [4].
We proceed in a few steps, namely Proposition 11, Lemmas 11, 12, and
Proposition 12. First, we introduce higher order primitives of vector solutions
of system (5).

For 4, € C\N, we recall that there are solutions

o0

B ()= T +1-DfP0—u)""" itz
=0

e )M 7@ ) \I—Nj—1 ;o
= i 1 (l—/nk) s )»k—NkEZ_.
Z] _ _

We define the ¢ primitive of ¥. This is the function (f’k)[fq](/l), q € N, given
by analytic continuation of the series obtained by g-fold term wise integration of
the corresponding term in ¥y (). Namely:

48) (P 1) = (1) T+ 1= DM o) ez,
I=q
- o0 1 Nj ~(k
(49) (F)0(2) = "Z Z_Nk_l, TG =)™ A= Ne< -1

=q

They above converge in a neighbourhood of /, contained in #,, where ¥, has
convergent series. Indeed, if Ay # Ax is in the neighbourhood, then

2 s1 Sg-1 . .
(50) J dslj dsz...J ds, B (s,) = (F)() = 01 (1= o),

A Ao Ao
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where
Q412 = Ao) = (P (ho) + (Fi) " (3) (2. — Jo)

(%) (o) ()" ()

2! (g—1)
is a polynomial in (41— A¢) of degree ¢ — 1. The path of integration is any in
Z,, such that |4 — | is small enough for the series of ¥ to converge. Once
(‘f’k)[_q}(/l) is defined by the convergent series, then it is analytically continued
to Z,.

For J;, = Ny € N integer, we recall that we have the solution

k

Py ()

(/1 o /'Lk)Nk+l

+ (=20 4+ (= 20) """,

+ reg(A — Ax),

Ni
PYG) =Y Ve = D100 - ),

N o0 (71)/+1 0 ;
Pi(h) = i I (2= )
The series is convergent in a neighbourhood of /; contained in %,. Let Zg
belong to the neighbourhood. Let ¢ >0 integer, and compute ¢ times the
integral of f’,ik)(l). Due to convergence of the series, we can take integration
term by term. We obtain:

1) For g < Ni:
A S1 Sq—1 .
J ds; J dsy. .. J ds, Y’,Ek) (84)
Jo Jo 1
© (1) , PO () A
- %fz\ﬁmw(ﬂv — ) (A — i) + Nk—qNM + reg(A — ),
= (2 — Jx)
(k) = 2(k) i
Py ()= (=)' (Ne 1=, = ).
1=0

ii) For ¢ =N+ 1:

JA ds, J dss... J st B (sw1) = P (2) In(i— Jg) + reg(h — ),

40 40 40

where we defined

(s1) AT g S My
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The function ‘f'k(l) is defined by the series, that converges in the neighbourhood
of A in %,, where the series of ‘P,Ek) converges. Then it is analytically
continued in . Note that if all r](k) =0, Vj, namely when there is no
logarithmic term in gk , then the sum in ¥, (/) is truncated to Z,N:‘b, giving
a polynomial of degree Nj.

ili) For ¢ =Ny +1+¢, with g > 0:

A N Sq—1 .
J ds, J dsy . J dsq‘P,E] (s,) = (Z)2(2) In(2 — &) + reg(A — ),

Ao Ao %0

R 0 l+Nk =
(Pl Z 0= )

I=q

The function (%)% (4) is the ¢ primitive of ¥ (2), and the same computation
of (50) yields

A K Sq-1 R .
(52) J dS] J dSQ...JA dsqylk(sq) = (Tk)[_q](l) _ Qq—l(l_lo),

where Q,_; is as in (50) with substitution P — V.

Remark 7. Let

o dr . < (- -
(#)2) = 7 (P(2) =Y [l i)', 0<r<Net L.

In particular, (Sf’k)[N"“](/l) = ¥ (7). Then

% (Pr(2) In(h — A) +reg(A — X))
(k)
= (P InGi = da) + 0+ e = ),
with P (2) = (=DM S = 1= 0P (- 2

We summarize (50) and (52) and the computations involving logarithmic
solutions in the following

Proposition 11. Let Ao # A; for any j=1,2,....n
For a given ke {l,...,n} define

_ | ®(2), if i eC\N,
(53) M”’{mw,y%em

A 81 Sg—-1
(3, Jo) ::J ds, J dsz...JA ds, b (s,),
0

A /10 40
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where Wy are defined in (15), and ¥ is defined in (51). Then
(54) @ (2 0) = () 1(A) — Q% (2~ o).

where Q;li)l is a polynomial of degree q— 1 in (A— o). It follows from the
definition that

(55) J ds DL (s, 20) = D4, 4g).

Ao
For A, € Z, consider the singular solutions f’k(‘vmg) of system (3):

e Pr(A) In(A — Jg) +reg(h— ), A eZ_,

p(@(g)

e (A) In(A— ) + ——2—
k( ) n( k) (i—}vk)Nk+l

+reg(A — k), Jj = NieN.
In the above, ¢, =0 if ﬁimg) =0, otherwise ¢, = 1. Then, for )v,’( e”Z_:

A N Sg—1 =
(56) J ds, J dsz...J ds, (e P (5,) In(s, — 20) + reg(s, — i)

20 A0 /10
= e (T)T(2) In(2 — Ax) + reg(h — Ag), q=>0,

and for ;. = Ny € N:

yi s Syt . P(k)(s)
(57) J dSIJ dsz...J dsy | Pi(s,) In(s, — Ap) + —21

Ao Ao Ao (Sq - j'k)NkJrl

+reg(sy — ik))

o \[Ne+1-4] Pf(\lfck)fq(i)
(qlk) (i) ln()v—lk)-FW OSQSNk,
+reg(A — A),

(P N2) In(— Ae) +reg(h—A), g = N+ L.
The above expressions hold by analytic continuation for A€ %

Corollary 8. Letr 4, = NyeN. Let cie denote cy(n) = c}(,(v). The vector
function Py (2) in (51), L€ P, has the following behaviours at 2; # Jy.
For ) ¢ Z:

(58) ¥o(2) = B (Do + reg(h — 4y).

For 4, = Nj € N:
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PN/*NA»*I (}')

2 [N;j—Ny] ,
v A)log(A — 4j) + —————~
( J ( ) g( j) (/L ;Lj)Nj_Nk

)cjk ]\GZNA+17

(59) ¥Yi(4) = + reg(A — /1_/‘)7

PN log( — 4)ex +reg(h—4),  Ng= N,

For Jj=N;eZ :

(60) P(2) = PN In(z - A)ep + reg(h — ).
Note that (60) always makes sense, because cjx =0 for any k=1,...,n

when Y_}j(mm =0.

Proof of Corollary 8. We use the formulae of Proposition 11. We
observe that

(61) j dex jé . jdél P

A

R Ni (_1 [+ Ny H(}() / . R
=¥ () — ZTf, (A=) = Ow (A = 2) = Pr(L) + reg(2),
1=0 :
where Qy, is a polynomiaAl in S}v—/_lp) of degree N and reg(A) is analytic of
A€ C. Now recall that ?’E{N"H = ¥. Using (7), we have

P& )i + reg(é) — 4y), ¢z,
PU(&))

B e
J

yAI][(IVk+1](fl) _ (f’](fl) log(¢&; — ij) +

+reg(é) — 4),
P(&)) log(éy — )ep +reg(é — &), A eZ_.

When J; ¢ Z, from (7) and (61), we have

N ‘ N -
W (2) = reg(2) + L dven | o [aa B+ et - 4)

Ao
— reg(2) + DV (e, yyy
reg(4) + @ (A)ei + reg(h— 4))

=reg(2) + (B " (2) — On (2 — 20)) i+ reg(2 — 4y)

—

= B Dy + reg(h — 7).

When /; = N; e N,
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Yi(4) = reg(4) + J) dSy, 1 Jj:k -del
Ve

x l(f’j(f]) In(&; — /) +W

Jo st 3

o Py (i
(%[N’ MI03) loglh - 1) + 2NNl )>c;k Nj = Ni+1,

(= 2y) NN

+reg(i— 4,

Sijj[—NkJrNj](/l) log(A — e + reg( — 4), Ny = N,

where the last step follows form Proposition 11.
When )3; = N; e Z_, again from Proposition 11 we have:

A <Ny
sf'ku):reg(ﬂ»ﬂ; déMHJ ...jdm (&) In(é) — Ay)e + reg(é — 1))

A0

—»

‘P el ln(/l Aj)cii + reg(A — 4;). O

Next, we introduce the “y deformed” series corresponding to ,‘f’k. For
7o > 0 sufficiently small and 0 < y < y,, 4; — » has non integer diagonal entries
and no integer eigenvalues, therefore:

()9 ) Zr M=y 1=DFR =2 g >0,
I=q

and in particular (, ¥, )02 = ¥ (4). Recall that the coefficients f,(f; are the
same for any ye C.

Lemma 11. Let 0 <y <y, be such that (A; —y) has no integer diagonal
entries and no integer eigenvalues. Let qi,q> € N. Then

R AR

_T(qi+y)sin 7l —7)
sin 7l

(y ai}k)[*qqu] (), A/L ¢ Z,

[RCERER AR
A
_ (g1 +y)sinmy

DR ()0, g = NeeZ
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The branch of (L —s)" in the integrals, for Ae P, is given by n—2n <
arg(A — )|, s <1, and the continuous change along the path of integration. The
integrals are well defined for 0 <y <7y, q1 =0 and q, sufficiently big.

Proof. If J; ¢ Z the statement is proved in [4], Lemma 2’. Analogous
computations bring the result for A, = Ny e Z_. It is enough to integrate
expressions (48) and (49) term by term (where |1 — ;| is small enough to make
the series converge). In each term, the following integral appears

J (= )07 (5 — A) A s = ().
Ak

Since one can integrate along a line from /J; to A, we parametrize the line with
parameter x € [0,1] as follows: s =/ + x(4— /). This yealds the integral
representation of the Beta function B(a,b) = I'(a)I'(b)/I'(a+b). Indeed

1
(x) = (A— /lk)qlﬂ“—%—‘ J (1- X)L A g
0

(/1 ) )q1+v+l Jp— lr(ql +V) (1_}12)
T +y+1-74)°

The formula holds for any value of )Lk. Note that /> ¢, thus if ¢; and
¢>» are big enough, the integrals converge. Note also that for 4, = Ny < —1,
the integrals converge for ¢, > 0. Moreover, since we have assumed y > 0,
the integrals converge for any ¢; > 0. Finally, some manipulations using
I'(x)I'(1 — x) = n/sin(nx), yield the result. For example, in case A, = Ny <
—1, we have

y
J ds(i. — )‘II‘H I(Wk)[w] (s)

Ak

DY P I'(qy + )I°(I — Nk)
= (—1)¢ ( < qiy+H—Ni—1 — (%),
SN ey (A I PIEE Ra)
We use I'(I — Ni) = (I — Ny — 1),
1 TNk +1—y—1l—qi)sin(q1 + 71— Ni+7)
T'(gr+y+1—Ny) n ’

and change /—[—¢q;. We get

I'(q1 +y)sinzy (Ne—y)—
(**) — ( 1)’11+f]2T Z Nk — 9 — 1)]} o q2< . j-k)l (Ne—y)—1
I2qi+q>

_ I'(q1 +7y)sinmy
T

()= (). 0
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Lemma 12. Let 0 <y <y, be such that (A) —y) has no integer diagonal
entries and no integer eigenvalues. Then

A .
J ds( — 5 () s) = LULSINED oMoy g e,
i T

The integral is well defined for 0 <y <7y, and q >0 integer. The branch of
(A —s)" is defined in the same way as in Lemma 11.

Proof. Integration term by term yields
() (s) = N””‘fz ﬁ ) (=),
/>q
()

_ (_l)Nk+l+q Z F(Nk _ y+ 1— l)f] N1 q(/{_ /lk)lfN/chV*l.
1> Ni+1+q

As in the previous lemma, we compute
4 o r(y)ri+1)
ds(i— 5)" (s — ) = (A= a2 T
J, st =97 = G T
and use 1/I'(y+ 1+ 1) = (=1)"" sin(zy)I(=y — I)/=. This implies that

f ds(i— )7 (B (s) = (1) Nt re LD SIS g 0y

i n I>q

After redefining /[’ =/+ Ny + 1 we obtain the final result. N
We establish the monodromy of Yﬂ’,[;q] and S?’Lf”] in the following

Proposition 12. Let 1€ %, Let q >0 be an integer. Let o; = 2ni when
/ ]' €Z, and aj =e 2wl | when { ¢ Z.  The following transformations hold for
a loop y; around a pole J;.

a) If A ¢Z or JeZ_:

ocjcjki’[_q](“), A_;¢Z or /l_;eZ,,

Otjc]/cﬁ”[ 51+N/+1](}')7 A; =N,;eN.

Py - B0 +

b) If /, eN:

oc_,'cjkﬁ?’[qulfN"](/l), W¢Z or AeZ.,

YA’[_q](/l) s YA’[_q](/l) +
k , oc,c,k?’[ o+ NA](/I)7 i]{ = N;eN.
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Proof. We consider the function @,Efq](/l, o) defined in (53) for 4,4 € 2.
For simplicity of notation, we omit Ay, namely we write

p g 3
¢,L—Q](;L) — J dqu dfq,l ... L dé¢(&r),

j.() ﬂo
@ (1) = g(2), if g=0.

In the cut-plane #,, we consider 4 close to 4; # 4 in such a way that the series
representations of (¢j)[_q](i) converge. We also consider a loop y; around /;
in counter-clockwise direction, represented by (4 — 4;) — (4 — 4;)e*™. The new
path of integration from Ay to A is represented in figure 5. We have the

following transformation after the loop

&, &
qb};‘f](z)Hch*‘”(iHjﬁ déqj dfq—l---J. AC19(C1)-
by

/10 A0

By formula (54) it follows that the analytic continuation of (qﬁk)[*‘/] (4) along the
loop y; is

P

fq Q2
ag, | “dgr | aaoie) vezo

A

($0)71(2) — ($079(2) +§%

Vi

Next, we express ¢, (&) in terms of the solutions ¢; at 4;. We distinguish the
two cases in the proposition.

Fig. 5. The paths of integration after the analytic continuation, starting from Ay, going around a
loop y; around /; and ending in A.
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Case a). A, ¢ Z or A, e Z_ We have ¢,(¢)) = Pi(&,), therefore we use
(7), namely

(&1 ek + reg(&1 — 4y), Iy
(&) In(&; — 4j)ei +reg(&r — 4), l}eZ,,

P&

(

( (&) (& — 4) + %)%reg(@—w 3 =NjeN.
(& —4)"

a.l) When 4 ¢ Z, we have

¢, & .
ﬁ ag, | ey | de B+ rea - 1)

/i y Ao

= 4; déq(p_/[‘i(qil)] (&) +§; dé reg(&y — 4j) = % diq 1>](éq)cjk +0,
7

J Vi

because the loop integral of regular terms at A; vanishes. Now, by (55) and
(54), we have

(iiy)e™

ff déq R (fq)cjk —CJkCD q](fq)h P
i

2ni —

=i T[ q] (éq) (A= ﬂ/)” — qjj[*‘]](;h)(e—Zni/lj _ l)Cjk, q> 0.

The last step follows from the series representation (48). This proves the
Proposition in case a.l).
a.2) When /1]{ € Z_, we use (56) and compute

& .
fﬁ dé, L dSq-1 - J d&i(¥)(&1) In(&y — A + reg(Sr — 4)

'j 40

= i (P)] (&) In(&, = I = 2micy(F)71(2), g0

This implies the Proposition in case a.2).
a.3) When /1]{ = N;eN, we use (57) and compute

(&)
(& — )N

i 40

& .
§ ac, [ e, 1 jdaK%@nma—m+ >%+ma@ >]
Y 40

— P ) In(g, — AU = dmicg BEU(), g = N+ 1

J 4j

This proves the Proposition in case a.3).
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Case b) when 4, = Ny € N, we need to compute

/10 A0

(62) i a2, r . r R

b.1) In the case of /ljf ¢ Z, we use (58), and find
¢ ¢

(62) = % dé, Lq déy y... Lz dé (BN E e+ reg(é) — 4y)
Vi 0 0

7= Ni—1-4]

SN, ] e2m‘ }'7;'/ i /
= (BN, +reg(Ey — )5y = (e — 1)) (4).
b.2) In the case of /1; e N, we use (59) and Proposition 11, and find

Py n—1(&1) )
ik

¢, &
_ ! 77 [N;—Ni] .
€)= d&, | "z | d&[(% @) )+ 2 )

o

where Py,_y,-1 =0 for Ny > N;.
For 0 < g < N; — N; — 1, the integral is

pY
N -N-1-¢(E) > +reg(¢, — '1./‘)]

ez”i().fﬂ/-)

(&= i)V

Cjk (@N"Nk’q](fq) In(Cy — 4) +
(2=%)
For ¢ > N; — N; > 0, the integral is
— N,*N _ 2mi ”7/1,'
e BTN, In(e, = Ay) + reg(é, — ]Iy
In both cases, the above expressions yield
(62) = 2micy BN (7).
b.3) In case /1; e Z_, we use (60) and Proposition 11, and find

¢

q S )
(62) = jﬁ dé, J dé,y .. J dé (BNNE) InE - 4 + reg(E) — 4y)
7 %o 2o

—Ni—1— e (J—; . =Ne=1—
=[]0, Ine, — A)ep + rea(E, — Al = 2micy BTN (2),

The above computations prove the Proposition in case b). |

Proof of Proposition 10. Given a function f(1), 1€ %,, we denote with
Sf+(A) the value on the left side of L;, where arg(4 — 4;) =y —2n. We denote
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with (1) the value on the right side, where arg(A — 4;) =#. By Lemmas 11
and 12 we have:

A

Aj

. / %
(2L 0) = F(zp{j (=5 sy + |

ke

(2—s)"" <¢L‘”>i<s>ds},

where
, q, if ,¢Z or dpeZ_,
(%) = o
g+ N+1, if 2, =NreNl,
b P, if i, ¢Z or JeZ_,
“T\ W, if i eN,
. !
. S}nnl}k, A eZ,
FOL) = () sin (4 — )
v
_— if 4, eZ.
I'(y)sinzy’ b€

In the integral, arg(A—s), s€ %,, has the value obtained by the continuous
change along the path of integration from A; up to s belonging to L;. Change
from f_ to f; is obtained along a small loop encircling only 4;. Therefore,
Proposition 12 yields

(63) G0 () — (B0 (2) = g bleak) () (7).

By Lemmas 11 and 12 we write

[:q(/bi)] (l) _ (7 f’k)&:q(d)](i)

(64) (;¥)
A

= P | = 0 = 0, s

4
We need to distinguish two cases.

1), ¢ Z, or A, € Z_ In this case (63), (64) and Proposition 12 applied to
the integrand yield the following equalities.

La) for 2 ¢ Z or A eZ :

Y,

(65) o [er 1)L N(A) = F(3) j ds(i— )" oyese (B (s).

Aj

1.b) for Z; e N:

Y,

(66)  m[ylewlA)(; )Y (1) = F(%) J ds(i— ) () ).
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We apply again Lemmas 11 and 12 to express the r.h.s. of the above equalities.
To this end, we need (A —s), in the integrand. Observe that

(=)' =[e*™(2—s),]""", when k> j,
(A — s)fl, when k < j.
Indeed, when / belongs to the left side of L; and se %, then y—2n<
arg(4Z —s) <n. When s reaches L; from the left, then arg(4 —s) — # if L is to
the left of L;, namely k > j: in this case we obtain (1—s)_. On the other
hand, arg(A —s) — n — 2n if L is to the right of L;, namely k < j: in this case
we obtain (4 —s),. See figure 6. Applying Lemmas 11 and 12 we find

+

(A—5)""" in the integrand = {

F() » 7\ [~d)
F(/llj) e oe(; W) M(A), k-,
r.hs. of (65) and (66) = F(j,)
F(/l_?) e, 5) 5 (2), k<j
Namely:
F(2) o
( Ij) eZ”"’ot,c,k, k - 7,
F(2)
(67) %[yleily] = /
Fizy) 0k k<j
F(j) " '

Finally, we compute the ratio F(4;)/F(;). For A ¢ Z:

F(ig) sinmigsina(i—y) (1 —e )1 — e 24y o]
F()  sinmad/sin (i, —p) (1 — e 24)(1 — e~ 200l oyou[y]’

arg(h—s)

Fig. 6. The figure shows arg(l—s) as s — A;.
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For /1; eZ:
F(J;) sinmysinml, ™™ —1 i ol o
F(2)) msinm(i,—y)  2mi e — 1 oy ogly]

where we have used the fact that o; = 27 and o[y] = €*™ — 1.

The above computations imply the statement of Proposition 10 when
0l 0l
¢ Z and A e Z_.

2) J,eN In this case (63), (64) and Proposition 12 applied to the
integrand yield the following equalities.

2.a) For A/ ¢Z or JjeZ :

(68)  o[ylexl1 (BN M) = F(2y) L ds(2 — 5)" ayeq (F) 1N (g),

2.b) For i€ N:

7
o g Nj— , — o\ [—g—Ne—1+N+1
(69)  aylylenly](, ) ”m:m;)j ds(— s)7 ogep ()T N ),
4
We apply again Lemmas 11 and 12 to express the r.h.s. of the above equalities,
keeping into account the branch of (4 —s)’"' as before. We find

!
Fi;:k) ey () V), ko
r.hs. of (68) and (69) = (
e GB)TTNG), k<

Namely, we obtain again

27y o P
e™ocp, k= J,

(70) o [yleiy] =

D2
&

n %Gk k<.
F(Z)

Finally, we compute the ratio F(4;)/F(4;). For A ¢ Z:

F()  m osinn(Z—1) 2@ e ET) 1 g o))
F(/lj{) Csinmy  sin nijf Tk — 1 i 1 o[y o
where we have used the fact that oy = 27i and oy[y] = > — 1.
For lj{ A
F(A)

In this last case, observe that o = o; =27 and ox[y] = oy[y] = > — 1.
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The above computations imply the statement of Proposition 10 when

/. €N. O
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