SCUOLA INTERNAZIONALE SUPERIORE
DI STUDI AVANZATI

Mathematics Area

Master in High Performance Computing

5\ n\HPc
Master in High Performance Computing

Isogeometric Analysis in HPC:
Object Oriented Design and Open Source
Massively Parallel Implementation

Advisor:

Dott. Luca HELTAI

Co-Advisor:
Dott. Nicola CAVALLINI

Author:
Marco TEZZELE

2014-2015

Contents

[Acknowledgements|

Intreductionl

(1 Isogeometric Analysis|

(1.1 ~ Bernstein polynomials and B-splines|

(1.2 Bézier extraction operator|

(1.3 Localizing the extraction operator]

D I

res for IGA

[2.1 Existing approaches|. . .

3 Application|

(3.1 TTest problem|

3.2 Semnal versionl

3.3 Parallel versionl

Domain decomposition|

[3.3.1

[3.3.2 IgaHandler| . . .

[3.3.3 Strong scalability|

[3.3.4 Weak scalability|
Conclusions|

13
14

17
17
19

27
27
29
32
32
34
37
38

47

55

CONTENTS

Acknowledgements

This work was partially supported by the project OpenViewSHIP, “Sviluppo di un
ecosistema computazionale per la progettazione idrodinamica del sistema elica-
carena”, supported by Regione FVG - PAR FSC 2007-2013, Fondo per lo Sviluppo
e la Coesione and by the project “TRIM Tecnologia e Ricerca Industriale per la
Mobilit Marina”, CTNO1-00176-163601, supported by MIUR, the italian Min-
istry of Instruction, University and Research. The work was also supported by
NVIDIA Corporation.

CONTENTS

Introduction

Isogeometric analysis, commonly addressed as IGA, is a technique that has be-
come popular since [54]. In a broad sense it refers to computational mechanics ap-
plications that encapsulate computational geometry techniques or vice versa. The
direct application of this concept is to use the shape functions describing the ge-
ometry as a discrete space for a Galerkin method. Numerous computational tech-
niques benefit from this encapsulation. One of the major outcomes of IGA is a vig-
orous cooperation between computational mechanics and computational geometry
communities. The result is a combination of techniques that was unknown to each
community for decades. The number of successful applications is great and most
modern computational mechanics aspects are covered. Worth mentioning are fluid
dynamics applications in turbulent flows [69, 52], divergence conforming type of
spaces [38] and fluid structure interaction applications [S3} [19]. Structural me-
chanics IGA applications include shell theory [57, [15], vibration analysis [62],
contact mechanics [31) 28, 32] and biomechanic applications [61]. Application
of the isogeometric concept to potential flows and Stokes flows through boundary
element techniques have also seen recent advances [50} 59]].

Several different implementations of the IGA concept are available, both closed
source (LSDYNA [47]) and opensource (GeoPDEs [30], igatools [21} 163],
G+Smo [56] and PetIGA [23] to cite a few).

While closed source implementations usually offer a better user experience,
they may be limited in development beyond built-in features, making their use
not suitable for the implementation of new concepts, or experimental numerical
features.

Opensource softwares, on the other hand, have the underlying goal of address-
ing a broader range of applications with less implementation restrictions, usually
at the cost of not providing such a friendly environment, and having a somewhat
steeper learning curve. A big advantage behind the use of opensource software
comes from the possibility to count on a wide community of expert users and
developers which makes it the ideal choice in academic communities (see, e.g.,
(5, 161).

A very succesful model of opensource development is given by the deal.IT

7

8 CONTENTS

library ([I8, 9, 110, [7]) which shortens the separation between developers and users
at a minimum. This is accomplished thanks to a very well documented library, an
extensive test suite which ensures quality code, together with a centralised peer
reviewed contribution system. We present an implementation of the IGA concept
in the deal . IT library, which exploits all those characteristics.

In Chapter |1} we review isogeometric type of shape functions, and introduce
our notation. We also recall Bézier extraction technique, that is at the heart of
our implementation. In Chapter 2] we explore the IGA specific data structures that
are currently available in literature and we present, the way we encapsulated IGA
concepts into deal.IT data structures. We conclude the thesis with numerical
applications, and software performances presented at Chapter 3]

Chapter 1

Isogeometric Analysis

Isogeometric analysis aims at incorporating the basis functions used to describe
the geometry domain as basis functions for the mathematical modelling of me-
chanical phenomena. Since its introduction in [54], the scientific community has
put a great effort in developing better and better shape functions that suite ge-
ometrical description and numerical modelling. Among others we mention the
hierarchical approach [71} 58 160]], T-Splines basis functions [20, 12,37, 168]], and
LR-Splines [33, 34].

In our implementation, we focus firstly on Bernstein polynomials and B-splines
that, together with NURBS, are the most common choice in IGA analysis.

1.1 Bernstein polynomials and B-splines

The n + 1 Bernstein basis polynomials of degree n are defined as

Bin(€) = (?)8(1 —O", =0, (1.1)

where ¢ € [0, 1]. It is possible to write any Bernstein polynomial of degree n in
terms of the power basis {1,&,&2,...,£"} as follow (see for example [33]])

n . . n - In 7)
B.(§)=1|. |z"Q1=-¢" "= =177))€ 1.2
o6 =(1)ea-0 > (e a2
It is also possible to define the Bernstein polynomials recursively for £ € [0, 1]
as
Bin(§) = (1 = &§)Bin-1(§) + EBi—1,n-1(8). (1.3)
In Figure [I.T] we can see them for four different degrees on the unit element of
dimension one.

10

CHAPTER 1. ISOGEOMETRIC ANALYSIS

1 1
0.8 1 0.8} 1
0.6 1 0.6 1
0.4 1 0.4 |
0.2 3 0.2 N :
00025 05 0 1 %0 025 0.5\0.7? 1
@p=1 b)p=3
1 ‘ 1 ‘
0.8 . 0.8 .
0.6 1 0.6 1
0.4 |
0.2 |
00025 05 01 1
©p=5 dp="7

Figure 1.1: Bernstein basis polynomials of degree 1, 3, 5 and 7 on the unit ele-

ment.

1.1. BERNSTEIN POLYNOMIALS AND B-SPLINES 11

A Bézier curve is a linear combination of Bernstein polynomials and control
points,
n+1

C() = ZPiBi,n(@ =P'B(¢), ¢€lo,1]. (1.4)

Here B(¢) = {B;.,(£)}74] is the set of basis functions in &, and P = {P;}!'1/ is
the corresponding set of vector-valued control points, where P; € R?, d the spatial
dimension.

B-splines are defined through knot vectors: a finite nondecreasing sequence of
coordinates in the parametric space, identified withaset = = {1, &, ..., &nipi }-
Here &; € R, n is the number of basis functions and p is the degree of the piecewise
polynomials that constitute the B-spline. It is usual to split = into the vector
{C1, ..., (n} of knots without repetitions, and the vector {ry,...,r,,} of their
corresponding multiplicities, such that

E= {C17"'7C17C27"'7<27"'7Cm7"'7CWL}7
—— ——— —_——
r1 times ro times Tm times

with > r; = n + p + 1. The maximum multiplicity allowed is p + 1. Knot
vectors without repetitions divide the parametric space into intervals called knot
spans. A knot vector is said open if the first and the last knots are repeated p + 1
times, i.e. r1 =71, = p + L.

We denote by k = {ky,...,kn,}, where k; := p — r; + 1, the vector that
measures the smoothness of the spline functions at (;. k; represents the number of
matching constraints associated to ;. The maximum multiplicity allowed, r; =
p + 1, gives no matching conditions (k; = 0) which means a discontinuity at (;. k
collects the regularity of the basis functions at the knots.

B-spline basis functions are usually denoted as N; ,(£), where i corresponds to
the ¢-th knot span and p corresponds with the order of the basis function. The def-
inition of these functions is recursive in p. The degree-0 functions N, (are piece-
wise constants which are one on the corresponding knot span and zero elsewhere.
N; p 18 a linear interpolation of N;,_; and ;i1 ,-;. The latter two functions are
non-zero for p knot spans, overlapping for p — 1 knot spans. In detail, the so called
Cox-de Boor recursion formula ([25, 29]]) reads

N;o(€) = {1 if § <& <&ivs (1.5)

0 otherwise.

Nip(§) = %Ni,p—l(f) + %Niﬂ,p—l(f)» (1.6)

12 CHAPTER 1. ISOGEOMETRIC ANALYSIS

where the coefficient is defined to be zero whenever the denominator is zero. In
Figure we can see an example of cubic B-spline basis functions with an open
knot vector.

1

0.8 Ne |

0.6
0.4

0.2

0 1 2 3 A 5 6

Figure 1.2: The seven cubic B-spline basis functions for the open knot vector
=={0,0,0,0,1,2.5,5,6,6,6,6}.

A B-spline curve in R? is defined as the linear combination of B-spline basis
functions scaled with control points F;. They can be loosely interpreted as the
nodal coordinates in the frame of finite element analysis. We remark that control
points are in general non interpolatory. Given n basis functions V; , and n control
points P; € R¢, a piecewise-polynomial B-spline curve reads

C() =D _ Nip(&)P.. (1.7)
=1

The control polygon is given by the piecewise linear interpolation of the control
points. Given two knot vectors = = {&;, o, ..., {naprrfand o = {1, M2, . . ., Mg
and a control net {P, ;}, withi =1,...,nand j = 1,...,m, it is possible to de-

fine a tensor product B-spline surface as follows:

n m

F(&n) =YY Nip(©)Nig(n)Pij, (1.8)

i=1 j=1
where N;, and N; , are B-spline basis functions of degree p and ¢ respectively.
We define the tensor product B-spline basis functions as

T%’j = Ni,p ® N

e di=1...m j=1,...m. (1.9)

1.2. BEZIER EXTRACTION OPERATOR 13

where, for notation convenience, we dropped the indices p and ¢ from 7; ;. The
corresponding tensor product B-spline space is defined as the space spanned by
these basis functions, namely

P,q — CP9q .— QP q __ n,m
Skl,kz = Skl,kz(Qh) T Skl ® Sk2 - Span{ﬂyj}i=1,j:17

where Q) is the mesh composed by rectangles in the parametric space Q, k
and ks, the vectors associated to = and H respectively. This can be generalized
analogously in three dimensions as we will see in the following.

1.2 Bézier extraction operator

The isogeometric approach does not rely on the definition of a reference element,
this is the major difficulty in adapting finite element oriented software to IGA
applications. The Bézier extraction operation can be seen as a technique that
restores the reference element concept typical of finite element softwares. Bézier
extraction in fact maps B-splines and NURBS into Berstein polynomials on a
reference element [24]]. Here we briefly recall the technique and we will highlight
its role in software development in the next section.

The principal idea behind the Bézier extraction operation is to exploit a prop-
erty of B-spline curves that allows the insertion of new control points without
changing the shape of the resulting curve, and to iterate such insertion by simply
adding new knots at the same location of the old ones until each knot has been
repeated p times.

Such operation results in a collection of basis functions which span a max-
imum of two knot spans, as in the finite element method. The process of knot
insertion adds new degrees of freedom, and then it constraints them to be linear
combination of the existing ones.

In particular, let = = {&,&s,...,&1p+1} be a given knot vector and P =
{P;}"_, aset of control points, defining a B-spline curve. Let {&;, &, ..., &, ..., &}
be the set of knots inserted to produce the Bézier decomposition of the B-spline.
Define a{, 1 = 1,2,...,n 4+ 7, to be the i-th « to the j-th knot inserted. Then
defining

aq 1-@2 0 0

4 0 (6] 1—&3 0 0
CJ

0 ce 0 On4j—1 1-— Optj |

14 CHAPTER 1. ISOGEOMETRIC ANALYSIS

we can write in matrix form the sequence of control points formed from the knot
insertion process (see [16]),

P = (Cj)TI_’j where P =P.

Defining
C’ = (Cc™T(C™ YT .. (CY

the relation between the new Bézier control points and the original B-spline con-
trol points is

P — P = CTP. (1.10)

Now we can write the B-spline curve representation C(&) in matrix form,

C(&) =D Niy(P; =P'N() (1.11)

and given that the knot insertion causes no geometric nor parametric changes to
the curve, we obtain

C(¢&) = (P")"B(¢) = (C"P)"B(¢) = PTCB(¢) = PN(¢).

This gives the relation between the B-spline basis functions and the Bernstein
polynomials,

N(¢) = CB(¢), (1.12)

where C is the so-called Bézier extraction operator.

1.3 Localizing the extraction operator

Bézier decomposition creates a Bézier element over each knot interval. This is
shown in Figure for the knot span [0, 1) of the previous example. It may be
seen that the B-spline basis functions with support on a given knot span can be
represented as linear combinations of the Bézier basis functions over the same
interval. This way it is possible to obtain the localized element form of equation
(T.12), i.e.

N°(§) = CB*(¢). (1.13)

Note that C* € M(p+ 1, R), this means that the global extraction operator C does
not need to be established, only the localized extraction operators C° for each
element.

1.3. LOCALIZING THE EXTRACTION OPERATOR 15

1 1
Ny B By
0.8} 0.8} .
Ny
0.6 N3 | 0.6 .
B2 B3
0.4 | 0.4 |
0.2] 0.2} :
Ny
% 1 % 1

Figure 1.3: Bézier decomposition over the knot interval [0,1). N; denotes the
B-spline basis functions, while B; indicates the corresponding Bernstein basis
functions.

The localized bivariate extraction operator is defined as the tensor product
of the univariate extraction operators. Let C, C] be the i-th and j-th univariate
element extraction operators in the £,) direction. Then we have for a surface,

¢’ ®C C,,®Ch

C=CaC=|CneC C)naC (1.14)

where ® is the Kronecker product, and e the index of the corresponding element
associated to the tensor product between element ¢ and ;.

For the localized trivariate extraction operator we proceed similarly as above.
Let Cé, C%, C’Z be the ¢-th, j-th and k-th univariate element extraction operators in
the &, n, direction. Then we have for a solid,

C°=C;®C)®C;. (1.15)

16

CHAPTER 1. ISOGEOMETRIC ANALYSIS

Chapter 2

Data structures for IGA

Different approaches are possible in order to either integrate IGA structures in
existing FEM codes or build them from scratch. We are going to illustrate some
of those possibilities focusing on why we made our choice and how it is going to
be effective.

2.1 Existing approaches

Existing implementations of IGA data structures are very diverse and depend heav-
ily on the specific implementation framework. One of the earliest and most com-
plete examples is given by GeoPDEs [30], which is a Matlab toolkit that imple-
ments basic tools to manipulate isogeometric domains and to solve partial dif-
ferential equations. Its data structures are heavily dependent on the high level
scripting language chosen by the authors, which is compatible with either Mat-
lab [46] or Octave [48], and makes this tool ideal for educational and prototyping
purposes but suffers sever limitations in terms of performances.

On the other side of the spectrum, we find the approach proposed in PetIGA [23]],
which is an extension of PETSc [4], adding NURBS discretization capabilities and
the integration of forms into a framework which is specialized for linear algebra
and high performance computing. The successful idea of PetIGA is to rely on
PETSc for its internal data structures. This design choice inherits the pros and
cons of PETSc data structures [4], and it represents a step towards high perfor-
mance IGA computing.

Recent works on opensource C++ libraries also include G+SIMO [56], which
is a tool that aims at bringing together mathematical tools for geometric design
and numerical simulation. The goal of such a library is to serve a broad range
of applications ranging from applied geometry, computational mathematics, and
numerical simulation, although its development is still at an early stage, and its

17

18 CHAPTER 2. DATA STRUCTURES FOR 1GA

data structures are still under evolution.

igatools [63, 21] is one of the few softwares that specifically addresses
IGA data structures, using modern software development techniques. igatools
aims at building a modern IGA environment for scientific computing. All the
developed data structures can be seen as grid like iterator that encapsulate specific
mathematical concepts at the base of IGA, and can be summarised in the following
table:

Reference Space In igatools the set of basis functions defined on the para-
metric domain is encapsulated in the object ReferenceSpace. Recalling the nota-
tion at the previous section, fixing ideas in two dimension for sake of clearness,
the reference space can be addressed as 7; ; defined at equation ((1.9).

Mapping The mathematical mapping maps the reference space into the physical
one. We introduced it as the deformation from 2 := Z ® H to Q C R%. In our
notation it corresponds to the operator F' defined in equation (1.8§).

Push Forward This object combines the map and the transformation type. The
transformation type is a concept borrowed from discrete differential geometry [3],
defines the way functions are transformed from the reference to the physical do-
main. Different operators can be preserved throughout the transformation itself.
Example transformations are H (grad,), H(div,), H(curl, Q) and L*(Q).

Physical Space This class combines ReferenceSpace and PushForward. It con-
tains all the information useful to recover point values of functions and derivatives
on the physical domain.

Although there are notable differences between the IGA data structures pre-
sented above and those used in standard finite element libraries, we believe that
it is possible to establish a one-to-one mapping between such data structures and
those already available in the deal.IT library. deal.IT is the ideal candi-
date for an implementation of the IGA concept in a modern and well established
scientific computing environment, which already benefits from high performance
computing design and from two decades of best programming practices.

Implementing IGA oriented software from scratch has the advantage that data
structures can be tailored in a very specific way to accomodate IGA requirements,
as done, for example, in igatools [21,63] and G+SIMO [36].

On the other hand, we were motivated in adapting the IGA requirements in-
side the deal . IT library because we believe that the deal.ITI community and

2.2. DEAL.II DATA STRUCTURES FOR 1GA 19

software are too much of a valuable development framework which comes with
unquestionable benefits:

e arigorous peer review process, ensuring high quality software;

e a systematic testing framework, running over 7.000 tests on more than 15
different system configurations after each commit to the main repository;

e a very large community user base, with more than 40 contributors world-
wide, counting over 30.000 commits, at a rate of about 50 new commits per
week;

e an extensive documentation, with more than 50 tutorial programs;

e direct interface with PETSc and Trilinos linear algebra, enabling massively
parallel high performance computing.

2.2 deal.ll data structures for IGA

deal.IT isa library whose aim is to provide modules and basic building blocks
useful to construct finite elements applications (see [10, 8] for some details). The
rationale behind this choice is addressed as General Purpose code. In this frame-
work, developers refrain from implementing specific applications, and concentrate
their effort in identifying the major building blocks of a typical finite elements
code. The major conceptual difficulty is to isolate abstract mathematical concepts
and encapsulate them into corresponding data structures. The deal.IT library
benefits from a decade of development and has come to a point in which its soft-
ware design is clear and very well tested. We present here a brief overview of the
major classes which are ubiquitous in any finite element application:

Triangulation Triangulations are collections of their own elementary entities:
cells, faces, vertices. Cells are defined as images of the reference hypercube
[0, 1]9™ under a suitable mapping. The triangulation class in deal . I T stores the
topological properties of a mesh together with some minimal information about
the geometry, i.e., how the cells are connected and where their vertices are located.

Finite Element This class describes the reference finite element. It stores how
many degrees of freedom are located at vertices, on lines, or in the interior of
cells, and provides a way to evaluate values and derivatives of individual shape
functions at arbitrary points on the unit cell.

20 CHAPTER 2. DATA STRUCTURES FOR 1GA

DoFHandler A DoFHandler, or Degrees of Freedom Handler object, combines
triangulations and finite elements by distributing and identifying the degrees of
freedom associated with the global vector space generated by the finite element
and by the triangulation. Topological information encapsulated into triangulation
couples with the information on the reference element, and DoFHandler classes
allocate this space so that each vertex, line, or cell of the triangulation has the cor-
rect number of degrees of freedom. It also manages the degrees of freedom global
numbering. We remark the importance of encapsulation noticing that DoFHan-
dler objects are ignorant of the shape functions that correspond to the degrees of
freedom it manages.

Mapping These classes map the discrete space from the unit cell to the current
geometrical configuration. Calculations are not directly performed at this level,
but interfaces are provided to evaluate shape functions, derivatives, quadrature
points etcetera at the actual position. Mapping classes describe how to map points
from unit to real space and back, and provide gradients of this derivative and
Jacobian determinants.

FEValues FEValues classes offer a point-wise view of the finite element func-
tion space, and couple Mapping, FiniteElements, Triangulations and DoFHandler
to provide the user with access to shape functions, gradients and mapped points at
quadrature points on the actual domain.

Given the original deal. IT design, the three major design issues that need
to be addressed are:

IGA radical isoparametric paradigm IGA can be seen as a radical interpre-
tation of isoparametric concepts already known in finite elements techniques. In
particular the main goal is to use geometric basis functions (B-splines or NURBS)
as basis functions for the solution space. In this context, the geometric basis func-
tions play the same role of the deal.II mapping classes, providing a way to
map a reference element into its geometrical shape in real space.

Reference finite element: Berstein polynomials Reference finite elements fit
already the original deal . IT design, and only require the implementation of a
FiniteElement class which adheres to the deal . I T data structures and implement
the evaluation of Bernstein polynomials.

Interelement continuity Bézier extraction complements Berstein reference el-
ement and allows our design to recover IGA interelement continuity.

2.2. DEAL.II DATA STRUCTURES FOR 1GA 21

The development of an enhanced Mapping class that would take into account
the radical IGA isoparametric concept is certainly one of the key issues in im-
plementing IGA techniques. deal.II already has some classes which allow
iso-parametric implementations, but these were limited to tensor products of La-
grangian based polynomials (see the documentation for the MappingQ and Map-
pingQEulerian classes). In the isogeometric paradigm we define a finite dimen-
sional vector space based on geometric basis functions (like Bernstein polynomi-
als), and the geometry is fully defined in terms of linear combinations of these
basis functions (see Section [2.1)). In this context, the Triangulation which is de-
fined in deal. IT takes the role of a reference parametric domain, on which both
the geometry and the basis functions are defined.

Such a reference space is constructed in deal . II by combining a DoFHan-
dler, a Triangulation and a FiniteElement. We created a new Mapping class which
exploits the three combined objects to generate an isogeometric mapping. The
resulting diagram is pictured in Figure [2.1] The only requirement of such com-
bination is the capability to interface to the generic mapping structure that was
already present in deal.II. We named this class MappingFEField, owing to
its capability to interface to arbitrary finite element fields. In this context, isoge-
ometric analysis is only a special case of the isoparametric concept. This class
provides an interface to a geometric finite element class (based on Bernstein poly-
nomials) that uses the triangulation as a source of topological information for the
parametric space, and transform such information into a geometric finite element
field. The information associated with the control points is then taken care of by a
DoFHandler, as is usual for all other finite element field in deal . ITI.

MappingFEField effectively decouples the topology from the geometry, by
relegating all geometrical information to some components of a FiniteElement
vector field. Listing shows how all of these ingredients combine together to
build the MappingFEField.

Taking advantage of the structure of the library we implemented the class
FE_Bernstein based on Bernstein polynomials in the most general way. In fact
it is possible to perform hp adaptive refinement for C° continuity between ele-
ments in two and three dimensions. This would have been extremely difficult
without relying on the existing infrastructure of deal.IT.

Bézier extraction operator is the technique that restores interelement continu-
ity. The Bézier extraction operator depends only on the knot vector and on the
degree of the B-splines as we have seen in Section The IgaHandler class is
in charge of continuity recover. It is constructed passing three arguments: a vec-
tor containing the knots without repetition, a vector with the multiplicity of each
knot and finally the degree. These three elements describe uniquely the set of B-

22 CHAPTER 2. DATA STRUCTURES FOR 1GA

Triangulation Finite Element

(Geometric)

Quadrature

Finite Element
(Solution)

i

DoFHandler
(Geometric)

/
Mapping

y
DoFHandler FEValues
(Solution) (Solution)

\/

Linear Systems

Linear Solvers

Output

Figure 2.1: An outline of how the primary groups of classes in deal.Il interact
after new implementations.

2.2. DEAL.II DATA STRUCTURES FOR 1GA 23

// MappingFEField based on cubic bsplines

const FEBernstein<dim, spacedim> fe (3);

const FESystem<dim, spacedim> fesystem(fe, spacedim);

DoFHandler<dim, spacedim> dh(triangulation);

dh.distribute_dofs (fesystem);

Vector<double> control_points(dh.n_dofs());

// Fills the control points with information from

// the some iges file

read_control_points (dhg, control_points,
"geometry_file.iges");

MappingFEField<dim, spacedim> map (dhg, eulerq);

Code Listing 2.1: Usage of MappingFEField.

spline basis function that construct the operator. The class assembles the global
extraction operator C of Equation and all the local operators C° of Equa-
tion (1.13). In 2 and 3 dimensions we perform the tensor product of the univariate
extraction operators by a Kronecker product as in Equations (I.14)) and (I.15).
We can see an example of declaration and initialization of the IgaHandler class in
Listing[2.2] Notice that all the topological information are carried by the IgaHan-
dler class.

template <int dim>
class Problem
{
public:
Problem(IgaHandler<dim,dim> &iga_handler);

private:
IgaHandler<dim,dim> &iga_handler;
unsigned int degree;
Triangulation<dim> &triangulation;
FE_Bernstein<dim> &fe;
DoFHandler<dim> &dof_handler;

MappingFEField<dim> smappingfe;
}i

template <int dim>
Problem<dim>::Problem (IgaHandler<dim,dim> &iga_handler)

iga_handler (iga_handler),

degree (iga_handler.degree),
triangulation(iga_handler.tria),
fe (iga_handler.fe),

dof_handler (iga_handler.dh),
mappingfe (iga_handler.map_fe)

24 CHAPTER 2. DATA STRUCTURES FOR 1GA

{1

int main (int argc, char xargv[])
{
unsigned int degree = ...;
std: :vector<std::vector<double> > knots = ...;
std::vector<std::vector<unsigned int> > mults = ...;
IgaHandler<2, 2> iga_hd2 (knots, mults, degree);
Problem<2> problem(iga_hd2);

Code Listing 2.2: Initialization of IgaHandler

The combination of these classes will be clear showing the resulting assemble
code. Here we need to change the basis from Berstein polynomials to B-splines.
This is carried out pre- and post-multiply the local stiffness matrix by the change
of basis matrix:

B = C“TACY, (2.1)

A is the usual cell matrix and B as the new B-spline cell matrix. To transform
a vector the operation is analogous: we have to simply multiply by the change
of basis matrix. This is accomplished by the method distribute_local _to_global
presented in Listing We have to calculate in the usual way the cell matrix and
rhs, and the class will assemble the final B-spline system matrix for us.

Applying boundary conditions is not a major difficulty, but deserves the reader’s
attention. Isogeometric shape functions are not interpolatory to degrees of free-
dom. Meaning we cannot assign Dirichlet boundary conditions evaluating the
desired function at the degree of freedom location. Solution to this issue is an L?
projection of the boundary data on the trace space of the original solution space.
IgaHandler is still in charge of this operation. The implemented method is called
project_boundary_values (see Listing [2.3)). We would like to remark that these are
the only lines that have to be changed with respect to existing user codes.

template <int dim>
void Problem<dim>::assemble_system ()

{

iga_handler.distribute_local_to_global (cell_matrix,
cell_rhs,
cell,
bspline_system matrix,
bspline_system_rhs,
bspline_constraints);

iga_handler.project_boundary_values (
dirichlet_boundary_function,

2.2. DEAL.II DATA STRUCTURES FOR 1GA

boundary_quadrature,
bspline_constraints);

25

Code Listing 2.3: Usage of IgaHandler

26

CHAPTER 2. DATA STRUCTURES FOR 1GA

Chapter 3

Application

The classical example we present is the solution of a Poissons problem with man-
ufactured right hand side. We aim at validating the implemented software, and
compare the performances of different approximations varying the continuity and
the degree.

3.1 Test problem

Let us consider the Poisson’s equation with homogenous Dirichlet boundary con-
dition in two dimensions

{—Au: f inQ,)

u=>0 on 0f,

where 2 C R? is a bounded domain with boundary Jf2 Lipschitz continuous,
ue C?*Q)NCNQ) and f € C°(Q). Under these hypotheses the problem admits
existence and uniqueness of the solution (see for example [39]).

To formulate the variational equivalent of (3.1]) we multiply Poisson’s equation
by a suitably smooth test function, integrate over) and then integrate by parts.
Recall the definition of Sobolev spaces and their norms:

Definition 3.1.1 (Sobolev space). Given s € Ny (smoothness) and p € [1,+0),
the Sobolev spaces on an open set () C R"™ are defined as:

WeP(Q) i= {v e LP(Q) :V]a| < s D" € LP(Q)}

27

28 CHAPTER 3. APPLICATION

with the associated norm and seminorm:

3=

[ollwer@) = lollspma = | Y 1Dl 0
jal<s
1
p
[lwes@) = olspa = | D ID°0[f e
jal=s

We will denote H*(Q)) := W*2(Q2) and
H3(Q) :=W2(Q) = {v € WH3(Q) : D]|pq =0, V]a| < s — 1},
in the sense of trace operator.

Let us consider a test function v € H}(Q), f € L?*(Q2) and suppose u €
H}(Q). In addition, let v denote the outward unit normal vector to 9€2, which is
by assumption in L>°(052), and we set

0
a—z =v-Vu.
Application of Green formula for the Laplacian results in
ou
— [AuvdQ= [Vu-Vuvd)— —uvdy= [Vu-Vuvdfl,
Q Q a0 OV Q

where the last equivalence follows from v € H{ (), that is v|sq = 0 in the sense
of trace operator. Taking this into account, we get the following weak formulation
for problem (3.1):

find u € H}(Q) such that

/ Vu- Vo dQ = / fodQ Vo e HY(Q). (3.2)
Q Q

Furthermore we have the following regularity result (see [[18] and [65]):

Theorem 3.1.1. Let be a bounded domain, k € Ny such that 02 € C**2 and
f € H*(Q). Then the solution u of the problem (3.1) is in H*+2(Q).

We want to choose the right hand side in such a way the problem admits the
following exact solution

u(z,y) = sin(arz) sin(bry), (3.3)

3.2. SERIAL VERSION 29

O O solutfion
O O
- - -

0

O O =-0.4
- e e
- -

Figure 3.1: Plot of the approximated solution of the problem (3.1).

hence it reads
f(z,y) = (a* + b*)7? sin(arx) sin(bry) = (a® + b*)7u(z, y), (3.4)

where a = 2, b = 3 and Q = [—1, 1] x [—1, 1]. This particular choice of a and b is
due to avoid symmetry and possible superconvergence effects. The approximated
solution for the problem (3.1)) with these data is illustrated in Figure [3.1]

3.2 Serial version

Our application is composed of three main methods: setup of the problem, as-
sembly of the system matrix and right hand side, and finally solution of the linear
system.

In the setup_system () function we allocate the memory for the system
matrix, the right and side, the constraints matrix for the boundary conditions and
above all we compute the sparsity pattern of the system matrix. That is the set of
all the entries of the matrix that are different from zero.

FEM applications typically result in the solution of linear systems charac-
terised by sparse matrices. The easiest way to identify all the non-zero entries is
to cycle over all the cells and extract the degrees of freedom associated to them.
As we are going to explain there are other possibilities less intense from a com-
putational point of view.

The next step is to compute the entries of the system matrix and right hand side
that form the linear system from which we compute the solution. This is done in
the assemble_system () method. This is the central function of each finite
element program.

The general approach to assemble matrices and vectors is to loop over all cells,
and on each cell to compute the contribution of that cell to the global matrix and

30 CHAPTER 3. APPLICATION

right hand side by quadrature.

Finally we want to solve the the discretized equation by solving the linear
system. This is done in the solve () method.

In Table[3.1]we profiled the serial version of code, to identify the most compu-
tationally intensive operations. In particular we observe that the assembly method
is where we spend most of the time. This is a consequence of the fact that we are
cycling over each cell of the triangulation. The good news is that this operation is
embarrassing parallel because each process will take care of its own set of cells.
The bad news is that the solve function is not embarrassingly parallel. As a solver
we use the preconditioned conjugate gradient, with the hypre implementation of
BoomerAMG provided by PETSc library as a preconditioner. It is an algebraic
multigrid solver.

Table 3.1: Total wallclock time elapsed for the Laplace problem for degree 5,
continuity 4, 409600 cells and 416025 dofs.

Section No. calls Wall time % of time

Setup 1 75.36s 5.28 %
Assembly 1 1899 s 91.10 %
Solve 1 110s 3.62 %
Total 2084.36 s 100 %

It is interesting to extract from Table [3.1] the time spent to actually perform
IGA related calculations. We want to underline the bottlenecks of the IgaHandler
class and to show the differences from a classical FEM implementation.

Let us introduce the methods introduced with IGA implementation:

Compute local extractors The computation of the local Bézier extraction op-
erators exploits the tensor product of the univariate extraction operators by a Kro-
necker product as in Equations (1.14)). We only have to pay attention to the num-
bering of the dofs used internally by the library, but with a simple permutation
everything goes smoothly.

Make sparsity pattern The global system matrix is a sparse matrix, therefore
we need to create its sparsity pattern. That is the set of all the possible non-zero
entries of the matrix. The method make sparsity pattern is the one that takes
care of this action.

We assume that a certain finite element basis function is non-zero on a cell
only if its degree of freedom is associated with the interior, a face, an edge or
a vertex of this cell. As a result, the matrix entry between two basis functions

3.2. SERIAL VERSION 31

can be non-zero only if they correspond to degrees of freedom of at least one
common cell. Therefore, make sparsity pattern just loops over all cells and enters
all couplings local to that cell. Listing shows how the core of the function
works for usual FEM codes.

for (typename DoFHandler<dim>::active_cell_iterator
cell = dh.begin_active(); cell!=dh.end(); ++cell)
for (unsigned int i=0; i<fe.dofs_per_cell; ++1i)
for (unsigned int j=0; j<fe.dofs_per_cell; ++3)
sparsity_pattern.add(cell->dof_indices[i],
cell->dof_indices[J]);

Code Listing 3.1: Core of the make sparsity pattern method.

We adapted this method in order to work with the IGA structures we created.
To do so we access the iga objects vector in order to find the B-spline degrees of
freedom associated the each cell. In Listing [3.2] we can see the serial version of
the method.

for (typename DoFHandler<dim>::active_cell_iterator
cell = dh.begin_active(); cell!=dh.end(); ++cell)
for (unsigned int i=0; i<fe.dofs_per_cell; ++1i)
for (unsigned int 7=0; j<fe.dofs_per_cell; ++7)
sparsity_pattern.add (
iga_objects[cell] .dof_indices[i]
iga_objects[cell] .dof_indices[]j]);

Code Listing 3.2: Core of the make sparsity pattern method in the IgaHandler
class.

Transform cell matrix This method refers to the change of basis operation per-
formed on the local stiffness matrix before adding it to the global system matrix.
It consists in pre- and post-multiply the local stiffness matrix by the local Bézier
extraction operator associated to that cell (see Equation (2.1))).

Transform cell rhs To transform a vector the operation is analogous to the one
described above: we have to simply multiply the local rhs by the change of basis
matrix.

We can see in Table [3.2]that the most expensive operation is the matrix matrix
multiplications of the local cell matrices for the local Bézier extraction operator

32 CHAPTER 3. APPLICATION

(see Equation (2.1))). In fact we have to pre- and post- multiply small but dense
matrices € M(PTUx®+1)_where p is the degree of the B-splines employed.

Table 3.2: Total wallclock time elapsed for the IgaHandler methods for the
Laplace problem above.

Section No. calls Wall time % of time
Compute local extractors 2 0.0004771 s 0.00 %
Make sparsity pattern 1 73.78 s 3.54 %
Transform cell matrix 4.096e+05 904.6 s 43.40 %
Transform cell rhs 4.096e+05 0.4902 s 0.02 %
Total IgaHandler 978.87 s 46.96 %
Total Laplace 2084.36 s

The second most expensive operation is the construction of the sparsity pattern
of the global system matrix. This seems negligible with respect the change of
basis operation but as we will see it affects the behaviour of the parallel solver
implementation.

3.3 Parallel version

Having in mind the behaviour of the IGA data structures implemented we are
going to show in detail the parallelization of each method. The main idea is to
decompose the domain and exploit how the mesh and the local Bézier extraction
operators are generated. This affect in particular the assemble part of the code
since it operates on the single cell resulting in an embarrassing parallel execution.

We also notice that the construction of the sparsity pattern affects the solve part
of the code, so we put much effort in optimizing that method. In computer sci-
ence and mathematics, the term domain decomposition gets two different, in some
cases complementary, meanings. In computer science it refers to the splitting of
a computational domain and process each subdomain on a different processor. In
mathematics it refers to a technique where the domain of a problem is divided in
subdomains and appropriate interface conditions have to be set up. This second
strategy is commonly used in complex multiphysyical problems. In the latter we
are going to refer to the first one.

3.3.1 Domain decomposition

Since we want to exploit the tensor product performed by the library, it is natural to
decompose the domain row-wise. This because we want the degrees of freedom

3.3. PARALLEL VERSION 33

to be contiguous in memory in order to use PETSc. In Figure [3.2] we show an
example of such a decomposition in the case of 4 processes.

Each cell of a triangulation has associated with it a property called the sub-
domain id. While in principle this property can be used in any way application
programs deem useful (it is simply an integer associated with each cell that can
indicate whatever you want), at least for programs that run in parallel it usually
denotes the processor a cell is associated with.

For programs that are parallelized based on MPI but where each processor
stores the entire triangulation (as in this case), subdomain ids are assigned to cells
by partitioning a mesh, and each MPI process then only works on those cells it
“owns”, 1.e. that belong to a subdomain that the processor is associated with (tra-
ditionally, this is the case for the subdomain id whose numerical value coincides
with the rank of the MPI process within the MPI communicator).

Figure 3.2: Example of domain decomposition for 4 processes.

So setting the subdomain id for all the cells means we are decomposing the
domain. This operation is trivial if we pay attention to the reminder of the division
of the rows of cells by the number of MPI processes. In Listing[3.3]we can see how
we cycle over the cells and assign the subdomain id by computing the position of
the cell with respect the patch.

This domain decomposition allows us to perform the parallelization for all the
cycles over the cells of the mesh by checking whether the cell is “owned” or not

(see Listing [3.4).

34 CHAPTER 3. APPLICATION

for (typename DoFHandler<dim, spacedim>::active_cell_iterator

cell = dh.begin_active(); cell != dh.end(); ++cell, ++el)
{
cell_coordinates = compute_cell coordinates(cell->index (),
subdivisions) ;

cell->set_subdomain_id/(
std::min(cell_coordinates|[1l]/rows_per_proc,
n_mpi_processes-1));

}

Code Listing 3.3: Decomposing the domain by setting the subdomain id.

for (typename DoFHandler<dim>::active_cell_iterator
cell = dh.begin_active(); cell!=dh.end(); ++cell)
if (cell->subdomain_id() == this_mpi_process)

Code Listing 3.4: Parallelization of all the cycles over the cells.

3.3.2 IgaHandler
Sparsity pattern creation

To parallelize the make sparsity pattern method we tried different solutions. We
are going to show them in the chronological order in which they were imple-
mented, in order to clearly show the improvements. From now on we will refer
to an index set as the abstract data type that can store indices (dofs) without any
particular order, and no repeated values. Moreover with relevant dofs of a MPI
process we intend all the dofs associated to the cell owned by the process plus the
ones associated to the B-splines that have support on cells owned by two different
processes. In other words we can say that relevant dofs are the dofs owned by
this processor plus some “ghost” ones, which are important to this processor, but
belong to another processor (and for which we exploit library utilities for commu-
nications).

Previously we assigned a subdomain id to each cell. Exploiting this, the spar-
sity pattern is built only on cells that have a subdomain id equal to the rank of
the MPI process (see Listing [3.4). This is useful in parallel contexts where the
matrix and sparsity pattern may be distributed and not every MPI process needs to
build the entire sparsity pattern. In this case, it is sufficient that every process only
builds that part of the sparsity pattern that corresponds to the subdomain id for
which it is responsible. Notice that only for those cells the local Bézier extraction
operators have been computed.

In this way we do not considering the ghost cells. We have to add the dofs

3.3. PARALLEL VERSION 35

associated to the B-splines that have support on cells owned by two different pro-
cesses. The easiest way to do this is to identify the so called ghost dofs by sub-
tracting the dofs owned by each process and the relevant ones. Then add for all
the relevant dofs che corresponding entry in sparsity pattern corresponding to the
ghost dofs (see Listing [3.5)). We will refer to this implementation as the version 1.

IndexSet ghost_dofs = this_cpu_set_relevant_bspline;
ghost_dofs.subtract_set (this_cpu_set_owned_bspline);
for (auto i : this_cpu_set_relevant_bspline)
for (auto j : ghost_dofs)
dsp.add (i, j);

Code Listing 3.5: Adding the ghost dofs to the sparsity pattern - version 1.

This strategy is easy to implement, but inefficient, mainly because we are cy-
cling over index sets. Therefore we are adding a lot of entries not needed. This
affect the behavior of the solver. When we distort the structure of the system
matrix the algebraic multigrid solver simply does not scale at all, resulting in a
useless parallel implementation.

One solution is to avoid cycling over a set exploiting the fact that the dofs are
contiguous in memory. We can calculate the first and the last dof of the two index
sets identifying the two intervals of dofs we have to add (see Listing [3.6). We
will refer to this implementation as the version 2. Since we do not access the sets
anymore we have a significant gain in performances. The problem is that we did
not reduce the number of entries, resulting is a still suboptimal implementation.

for (unsigned int i=lowest_relevant; i<=greatest_relevant; ++i)
{
for (unsigned int j=lowest_relevant; Jj<lowest_owned; ++7j)
dsp.add (i, j);
for (unsigned int Jj=greatest_owned+l; Jj<=greatest_relevant;
++3)
dsp.add (i, j);

}

Code Listing 3.6: Adding the ghost dofs to the sparsity pattern - version 2.

On one hand, we want to be able to add only the entries needed in an optimal
way and on the other hand to do so exploiting the contiguity in memory. By
using this strategy, we exploit all different levels of cache memory, avoiding cache
misses, which results in a great improvement of performances. We have to rethink

36 CHAPTER 3. APPLICATION

the entire method, especially the core (see Listing [3.2)). If we assume the worst-
case scenario, that is, when the continuity is equal to the degree minus one, given
a dof index we can couple it with the p 4 1 dof indices in its neighborhood, where
p is the degree of the B-plines. When we use the maximum continuity, the basis
functions have the largest support, in particular they spans p + 1 intervals. Given
this, we are able to construct the sparsity pattern cycling only over degrees of
freedom and not over cells, which are complex data structures, stored in a non-
contiguous array in memory, making their access rather expensive. In Listing
we can see version 3, the last one, of the method.

unsigned int dpe_bspline = std::sgrt(n_bspline);

for (unsigned int i=lowest_relevant; i<=greatest_relevant; ++1i)
for (unsigned int k=0; k<=degree+l; ++k)
for (int j=-int (degree); Jj<=int (degree); ++7)
{
unsigned int col_id = std::min(std::max(int (i) + 7,
int (lowest_relevant)) + k x dpe_bspline,
greatest_relevant);
dsp.add (i, col_id);
dsp.add(col_id, 1);
}

Code Listing 3.7: Adding the ghost dofs to the sparsity pattern - version 3.

The gain in performance is quite good. As we can see in Figure [3.3| we spend
almost 99% of time less with version 3 with respect to version 1 of the method.
Moreover for version 1 and 2 the solver does not scale at all, while as we will see
with version 3 we have a scaling up to 10 with 32 processes. Having a sparsity
pattern too dense make the parallel algebraic multigrid solver quite ineffective.

Local change of basis

The two methods referred to transform cell matrix and transform cell rhs are
parallelized expoliting the domain decomposition. Each MPI process takes care
of its own cells. While the matrix matrix multiplication and the matrix vector mul-
tiplication are performed by the optimized version of Intel® Math Kernel Library
(Intel® MKL) used internally by the deal.II library. It is the fastest and most used
math library for Intel and compatible processors according to Evans Data Soft-
ware Developer surveys 2011-2013. We will see in Section [3.3.3|how this affects
the scalability with respect to the degree employed.

3.3. PARALLEL VERSION 37

80

' time spent by make sparsity
0L . . o 91.4% 1
60 .
50 N

40 |- 4

time (s)

30 | » i

0L o i

10 | -
1.3%

version 1 version 2 version 3

Figure 3.3: Comparison between different versions of make sparsity pattern. De-
gree equals to 5 and C* continuity between elements for a mesh composed by
640 x 640 cells.

Setup of the index sets

In the setup index sets method we simply construct all the index sets of the dofs
and the ghost dofs associated to the cells owned by each MPI process. It is not
an heavy operation from the computational side. It also saves the first and the last
dof for each index set in order to avoid to cycle over sets. This permits to save lot
of time in the other methods.

3.3.3 Strong scalability

We perform a strong scalability test for different degrees, and for each degree we
test two different continuities. In particular we show results for degree p equals
to 4 and 5. The continuity is set to 0 and p — 1. We use the new Ulysses cluster
facility located at ICTP headquarter. In particular we use 2 nodes per time with
20 cpus each and 20 GB RAM each.

We observe that up to degree 4 the scaling is quite satisfactory (see Figures
[3.4]and [3.5)). For the Laplace problem methods we notice that the solver does not
scale as we would. The reason is that the preconditioner we use with Boomer-
AMG is initialised using the system matrix itself, and this has been shown to be
suboptimal for high degrees of polynomials. We expect better result using a dif-
ferent preconditioner, for instance an AMG preconditioners based on a system
matrix constructed with B-splines of order 1 over the control points. This will be
the subject of a future investigation.

The change of basis operation (identified with cell matrix in Figures [3.5] and

38 CHAPTER 3. APPLICATION

does not scale well for 16 and 32 processes, this could be due to the fact that
all the core assigned to the job are near each other and they cannot exploit the
shared levels of cache. Also the slices of mesh and the matrices are quite small so
the overhead due to the communication is significant.

We notice a not satisfactory behaviour of the setup method in the Laplace
problem class for C* continuity between the elements (see Figure , this is also
do to the way the core are assigned. In fact one process is clearly slower than the
others and the plots are done with that specific time.

From degree p = 5 we start to superscale performing the matrix matrix mul-
tiplication for the change of basis. This is due to the fact that the deal.Il library
uses the optimized version of the Intel® MKL as we have seen.

The degree 5 is the first one that shows the superscaling (see Figures
and [3.11). We think it is because with lower degrees the local cell matri-
ces are not big enough to exploit the optimization. Since the local matrices are
computed in the assemble method of the Laplace problem, also that method su-
perscales.

We underline that despite the assemble method superscales the time spent
solving the system dominates by one or two order of magnitude the time spent
assembling the system, depending on the degree and the continuity. So we assist
to a shift in the percentage of time spent on all the methods.

3.3.4 Weak scalability

We perform weak scalability test for the same combinations of degrees and con-
tinuity as above. We double the number of dofs and accordingly we double the
number of processes.

For degree equals to 4 (Figures [3.12] [3.13] [3.14] and [3.13) the results are quite
unpredictable. We see that the Intel® MKL does not perform well when the ma-

trices are small. Moreover we have the proximity of the cpus problem. If two cpus
share the same L1 and L2 cache the performance are affected.

We experience fluctuating behaviour especially for degree equals to 5 (Figures
3.16 3.17] [3.18] and [3.19). Despite that we have almost parallel lines so we can
affirm the weak scalability is good.

3.3. PARALLEL VERSION 39

o'ptimél — e ' ! ! " ' ' :
30 assembly —s— -
B setup —eo— 7
solve : : :
o 201 .
=]
-8 N N N N . N
s LT i
w
0L T i
5L i
0 T | | | | | L L L
0 2 4 8 12 16 20 24 28 32
procs

Figure 3.4: Strong scalability for Laplace problem with IgaHandler. Degree p =
4, C° continuity, 320 x 320 cells.

optmal —e— ! ! ! ! ! '
30 make sparsity —e
i setup index 7
cell matrix
25 cellrths —e—
. : .
s 20 | PR
=
8
a 15} i
[77]
10 | i
5t 4
0 i ; ; ; i i i i i
0 2 4 8 12 16 20 24 28 32

procs

Figure 3.5: Strong scalability for IgaHandler class. Degree p = 4, C° continuity,
320 x 320 cells.

40 CHAPTER 3. APPLICATION

] 1 1 ! I T 1

o'plima'l ——

30 +

25 |

20 |

speedup

15 |

10 |

procs

Figure 3.6: Strong scalability for Laplace problem with IgaHandler. Degree p =
4, C® continuity, 960 x 960 cells.

loptlmal 1 T 1 T T 1] I
30 make sparsity —e
B setup index —« T
cell matrix i
o5 cellrhs —e— : :
o 20 -
=
=
3
a 15 | .
10 | .
51 i
0 1 1 1 1 1 1 1 1

0 2 4 8 12 16 20 24 28 32
procs

Figure 3.7: Strong scalability for IgaHandler class. Degree p = 4, C® continuity,
960 x 960 cells.

3.3. PARALLEL VERSION

dptimél T T T T T T 1
30 assembly —es—
B setup —»
solve
25 |
a 20}
=]
©
3
a 15} .
w
L. -
5L
0 1 1 1 | 1 1 1 1 1
0 2 4 8 12 16 20 24 28 32
procs

Figure 3.8: Strong scalability for Laplace problem with IgaHandler. Degree p

5, C° continuity, 320 x 320 cells.

41

30 - setup index

cell matrix
25

20 |

15 |

speedup

10 |

optimal —e—
make sparsity —»—

cellths —o—

16
procs

32

Figure 3.9: Strong scalability for IgaHandler class. Degree p = 5, C° continuity,

320 x 320 cells.

42

speedup

30 |

25

20

15

10

CHAPTER 3. APPLICATION

o'ptimél —
assembly e

setup —» /

solve /

16 20 24 28 32
procs

Figure 3.10: Strong scalability for Laplace problem with IgaHandler. Degree

p = 5, C* continuity, 640 x 640 cells.

speedup

30

25

20

15

10

Ioptimal e
make sparsity —s—-
setup index —«

cell matrix

cellrhs —e—

: .
16 20 24 28 32
procs

Figure 3.11: Strong scalability for IgaHandler class. Degree p = 5, C* continuity,
640 x 640 cells.

3.3. PARALLEL VERSION

43

4.5 -

optimal —e— : ' : ' ' '
assembly —e—
4+ setup
solve
35
3]
(=15
3
8 25 L e
73 —
2 b — e -
15 L. ... : _____#‘_..—"’ .
N : :
05 1 I L 1 1 1 1 1 1
0 2 4 8 12 16 20 24 28 32
procs

Figure 3.12: Weak scalability for Laplace problem with IgaHandler. Degree p

4, CY continuity.

14 1 I] I ¥ I ¥ 1
optimal —e— _ _
make sparsity —e : :
12 | setup index —»— : . .
cell matrix : :
cellrhs —e— : :
2 8L . G g

=)

i3] : . .
3 : : :
a 6l S TN e S
4l f f _ f

= = = : 3

0 1 1 | 1 | 1 | 1 |

0 2 4 8 12 16 20 24 28 32

procs

Figure 3.13: Weak scalability for IgaHandler class. Degree p = 4, C° continuity.

44 CHAPTER 3. APPLICATION

10 T : . | | | |

optimal —e— .
g | assembly e -
setup

8 | solve |

7 | —
(=1 6 B - |
3
® 5t |
5]
(=8
? 4 B - |

»

3 | -

2 | _7_________—. -

1 og—o — o ——¢g _ i

0 : ‘ : . - i] i i

0 2 4 8 12 16 20 o4 = -
procs

Figure 3.14: Weak scalability for Laplace problem with IgaHandler. Degree p =

4, C® continuity.

Iop‘fimal

T
—

24 ! i
make sparsity —e—
setup index —
22 cell matrix .
cellths —e—
2L i
o 181 -
=
§ 1.6 |- .
o
7]
141 4
12 - : R -
: : _——
T W *— - o .
0.8 i | ! I] 1 1 1]
0 2 4 8 12 16 20 24 28 32
procs

Figure 3.15: Weak scalability for IgaHandler class. Degree p = 4, C* continuity.

3.3. PARALLEL VERSION

45

35

25

speedup

1.5

05

optimal —e— - ' ; ! ' ' '
assembly —=— :
setup A : J

solve
— 5
. ..'....;____'.. o _
. L -~ —
. .. - — .
o . - o
i i 1 | i] i 1 |
2 4 8 12 16 20 24 28 32
procs

Figure 3.16: Weak scalability for Laplace problem with IgaHandler. Degree p
5, C" continuity.

24

2.2

1.8

1.6

speedup

1.4

1.2

0.8

45

make sparsity —s

setup index -« : —
Ce” ma"ix I LR TRy (TR TP E TP R TR LY ._._._._:_._.._._._._.___._.——..-.‘ T —

cellrths —e— ; -

| =
: -
2 4 8 12 16 20 24 28 32
procs

Figure 3.17: Weak scalability for IgaHandler class. Degree p = 5, C° continuity.

46 CHAPTER 3. APPLICATION

11 L 1 T 1 1 T T T P
optimal —e—
10 _.assemb|y B e DT . IR, i
Setup . -
9 L solve T T . i
S —
8 L . .
7 i
3 st |
3
@ s _
5]
4 L . .
< 3 -
: @
2L . -
Ay . —e
L A A—— S = -
0 1 1 I 1 1 1 L I !
0 2 4 8 12 16 20 24 28 32
procs

Figure 3.18: Weak scalability for Laplace problem with IgaHandler. Degree p =
5, C* continuity.

2 I " 1 T I 1 1 I I
optimal —e—
make sparsity —e :
18 setup index —e 5
2r cell matrix R
cellrhs —o— :
: : . : : e
[7] WORNOY SRV SIVRVIVITON SORUIRNTIVE SNV ARTRS VRNTPNOION SISISPRIING n oot REVITRINE WP
o . . :
— —
® 14 ¥ S
8. - -
2 : :
1.2 | ' R
5 .
1 : ® -
0.8 |] 1 1] 1 1 |]
0 2 4 8 12 16 20 24 28 32

procs

Figure 3.19: Weak scalability for IgaHandler class. Degree p = 5, C* continuity.

Conclusions

In this thesis we establish a one-to-one mapping between classical finite elements
data structures and IGA data structures. The deal.IT library proved to be an
ideal framework to host this implementation. The comparison with existing data
structures highlighted that three major ingredients are required in this process,
respectively: aradical isoparametric concept, coupled with Bernstein polynomials
as reference elements and a technique to restore higher interelement continuity.

We explored and presented our solution for the serial version. Then we ex-
plained in details how we parallelized it.

Our implementation allows to integrate IGA data structures in an easy way also
in a parallel context. Moreover we take advantage of the existing deal.IT in-
frastructure. In this way we benefit from already implemented massively parallel
technologies. The IGA specific methods introduced exploit the Intel® MKL in a
very effective way with a simple domain decomposition.

47

48

CHAPTER 3. APPLICATION

Bibliography

[1]

(2]

[3]

[9]

[10]

B. S. Anmol Goyal. On penalty-free formulations for multipatch isogeomet-
ric kirchhoft-love shells. submitted.

P. F. Antonietti, L. B. da Veiga, and M. Verani. A mimetic discretization of
elliptic obstacle problems. Technical Report 14, MOX, 2010.

D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus,
homological techniques, and applications. Acta numerica, 15:1-155, 2006.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Efficient man-
agement of parallelism in object oriented numerical software libraries. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools in Scientific Computing, pages 163—202. Birkhauser Press, 1997.

W. Bangerth and T. Heister. What makes computational open source

software libraries successful? Computational Science & Discovery,
6:015010/1-18, 2013.

W. Bangerth and T. Heister. Quo vadis, scientific software? Editorial, SIAM
News, January 2014.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
and B. Turcksin. The deal. IT library, version 8.3. preprint, 2015.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and T. Young. The dealii library, version 8.2. Archive of Nu-
merical Software, 3(100), 2015.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and T. D. Young. The deal.ii library, version 8.1. arXiv
preprint http://arxiv.org/abs/1312.2266v4, 2013.

W. Bangerth, T. Heister, and G. Kanschat. deal . IT Differential Equations
Analysis Library, Technical Reference. http://www.dealii.org.

49

http://arxiv.org/abs/1312.2266v4

50

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

Y. Bazilevs, L. Beirao da Veiga, J. Cottrell, T. Hughes, and G. Sangalli.
Isogeometric analysis: approximation, stability and error estimates for h-
refined meshes. Mathematical Models and Methods in Applied Sciences,
16(07):1031-1090, 2006.

Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton,
M. A. Scott, and T. W. Sederberg. Isogeometric analysis using T-splines.
Comput. Methods Appl. Mech. Engrg., 199(5-8):229-263, 2010.

L. Beirdao Da Veiga, A. Buffa, J. Rivas, and G. Sangalli. Some estimates
for h-p-k-refinement in Isogeometric Analysis. Numerische Mathematik,
118(2):271-305, 2011.

L. Beirdo Da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi. Bddc precon-
ditioners for isogeometric analysis. Mathematical Models and Methods in
Applied Sciences, 23(06):1099-1142, 2013.

L. Beirdo Da Veiga, T. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali,
and H. Speleers. A locking-free model for reissner—-mindlin plates: Analysis
and isogeometric implementation via nurbs and triangular nurps. Mathemat-
ical Models and Methods in Applied Sciences, 25(08):1519-1551, 2015.

M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric
finite element data structures based on Bézier extraction of NURBS. (August
2010):15-47, 2011.

S. C. Brenner and R. Scott. The mathematical theory of finite element meth-
ods. Springer, 2008.

H. Brezis. Functional analysis, Sobolev spaces and partial differential equa-
tions. Springer, 2011.

J. Bueno, C. Bona-Casas, Y. Bazilevs, and H. Gomez. Interaction of complex
fluids and solids: theory, algorithms and application to phase-change-driven
implosion. Computational Mechanics, pages 1-14, 2014.

A. Buffa, D. Cho, and G. Sangalli. Linear independence of the T-spline
blending functions associated with some particular T-meshes. Comput.
Methods Appl. Mech. Engrg., 199(23-24):1437-1445, 2010.

N. Cavallini, O. Weeger, M. S. Pauletti, M. Martinelli, and P. Antolin. Ef-
fective integration of sophisticated operators in isogeometric analysis with
igatools. In Isogeometric Analysis and Applications, IGAA 2014, pages 1-8.
Springer, 2015.

BIBLIOGRAPHY 51

[22] P. G. Ciarlet. The finite element method for elliptic problems. Access Online
via Elsevier, 1978.

[23] N. Collier, L. Dalcin, and V. M. Calo. Petiga: high-performance isogeomet-
ric analysis. arXiv preprint arXiv:1305.4452, 2013.

[24] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. John Wiley & Sons, 2009.

[25] M. G. Cox. The numerical evaluation of B-splines. IMA Journal of Applied
Mathematics, 10(2):134-149, 1972.

[26] B. Da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini.
Isogeometric bddc preconditioners with deluxe scaling. SIAM Journal on
Scientific Computing, 36(3):A1118-A1139, 2014.

[27] A.-V. V. Daniela FuBleder, Bernd Simeon. Fundamental aspects of shape
optimization in the context of isogeometric analysis. Computer Methods in
Applied Mechanics and Engineering, 286:313-331, 2015.

[28] L. De, J. Lorenzis, T. Evans, and A. R. Hughes. Isogeometric collocation:
Neumann boundary conditions and contact, ices report 14-06. The Univer-
sity of Texas at Austin, 2014.

[29] C. De Boor. On calculating with B-splines. Journal of Approximation The-
ory, 6(1):50-62, 1972.

[30] C. De Falco, A. Reali, and R. Vazquez. Geopdes: a research tool for isoge-
ometric analysis of pdes. Advances in Engineering Software, 42(12):1020-
1034, 2011.

[31] L. De Lorenzis, P. Wriggers, and T. J. Hughes. Isogeometric contact: a
review. GAMM-Mitteilungen, 37(1):85-123, 2014.

[32] L. De Lorenzis, P. Wriggers, and G. Zavarise. A mortar formulation for
3d large deformation contact using nurbs-based isogeometric analysis and
the augmented lagrangian method. Computational Mechanics, 49(1):1-20,
2012.

[33] T. Dokken, T. Lyche, and K. F. Pettersen. Locally refinable splines over
box-partitions. Technical report, SINTEF, February 2012.

[34] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally
refined box-partitions. Computer Aided Geometric Design, 30(3):331-356,
2013.

52

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers. Ro-
bust and optimal multi-iterative techniques for iga collocation linear systems.
Computer Methods in Applied Mechanics and Engineering, 284(0):1120 —
1146, 2015. Isogeometric Analysis Special Issue.

M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Robust and optimal multi-iterative techniques for iga galerkin linear systems.
Computer Methods in Applied Mechanics and Engineering, 284(0):230 —
264, 2015. Isogeometric Analysis Special Issue.

M. R. Dorfel, B. Jiittler, and B. Simeon. Adaptive isogeometric analysis by
local h-refinement with t-splines. Computer methods in applied mechanics
and engineering, 199(5):264-275, 2010.

J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-
spline for the steady Navier—Stokes equations. Math. Mod. Meth. Appl. S.,
23(08):1421-1478, 2013.

L. C. Evans. Partial differential equations. American Mathematics Society,
1998.

G. E. Farin. Curves and surfaces for CAGD: a practical guide. Morgan
Kaufmann, 2002.

J. Frohne and W. Bangerth. Step 41. http://www.dealii.org/
developer/doxygen/deal .II/step_41.html, 2012.

J. Frohne, W. Bangerth, and T. Heister. Efficient Numerical Methods for
the Large Scale, Parallel Solution of Elastoplastic Contact Problems. Univ.,
2014.

K. Gahalaut, S. Tomar, and J. Kraus. Algebraic multilevel preconditioning
in isogeometric analysis: Construction and numerical studies. Computer
Methods in Applied Mechanics and Engineering, 266(0):40 — 56, 2013.

C. Giannelli, B. Jiittler, S. Kleiss, A. Mantzaflaris, B. Simeon, and J. §peh.
Thb-splines: an effective mathematical technology for adaptive refinement
in geometric design and isogeometric analysis. submitted.

C. Giannelli, B. Jiittler, and H. Speleers. THB—splines: The truncated basis
for hierarchical splines. Compute. Aided Geometric D., 29:485-498, 2012.

M. U. Guide. The mathworks. Inc., Natick, MA, 5:333, 1998.

http://www.dealii.org/developer/doxygen/deal.II/step_41.html
http://www.dealii.org/developer/doxygen/deal.II/step_41.html

BIBLIOGRAPHY 53

[47]

[48]

J. O. Hallquist et al. Ls-dyna theory manual. Livermore software Technology
corporation, 3, 2006.

J. S. Hansen. GNU Octave: Beginner’s Guide: Become a Proficient Octave
User by Learning this High-level Scientific Numerical Tool from the Ground
Up. Packt Publishing Ltd, 2011.

R. Hartmann. Higher order Boundary approximation. http://www.
dealii.orqg/8.0.0/reports/mapping g/index.html) 2001.

L. Heltai, M. Arroyo, and A. DeSimone. Nonsingular isogeometric bound-
ary element method for stokes flows in 3d. Computer Methods in Applied
Mechanics and Engineering, 268:514-539, 2014.

M. Hintermiiller, K. Ito, and K. Kunisch. The primal-dual active set strategy
as a semismooth newton method. SIAM Journal on Optimization, 13(3):865—
888, 2002.

M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. Hughes. Im-
proving stability of stabilized and multiscale formulations in flow simula-
tions at small time steps. Computer Methods in Applied Mechanics and
Engineering, 199(13):828-840, 2010.

M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. Wu, J. Mineroff,
A. Reali, Y. Bazilevs, and M. S. Sacks. Dynamic and fluid—structure interac-
tion simulations of bioprosthetic heart valves using parametric design with

t-splines and fung-type material models. Computational Mechanics, pages
1-15, 2015.

T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer
methods in applied mechanics and engineering, 194(39):4135-4195, 2005.

K. I. Joy. Bernstein polynomials. On-line Geometric Modelling Notes, 2000.

B. Jiittler, U. Langer, A. Mantzaflaris, S. E. Moore, and W. Zulehner. Ge-
ometry+ simulation modules: Implementing isogeometric analysis. PAMM,
14(1):961-962, 2014.

J. Kiendl, M.-C. Hsu, M. C. Wu, and A. Reali. Isogeometric kirchhoff-love
shell formulations for general hyperelastic materials. Computer Methods in
Applied Mechanics and Engineering, 291:280-303, 2015.

http://www.dealii.org/8.0.0/reports/mapping_q/index.html
http://www.dealii.org/8.0.0/reports/mapping_q/index.html

54 BIBLIOGRAPHY

[58] G. Kiss, C. Giannelli, U. Zore, B. lJiittler, D. GroBmann, and J. Barner.
Adaptive cad model (re-) construction with thb-splines. Graphical models,
76(5):273-288, 2014.

[59] A. Manzoni, F. Salmoiraghi, and L. Heltai. Reduced basis isogeomet-
ric methods (rb-iga) for the real-time simulation of potential flows about
parametrized naca airfoils. Computer Methods in Applied Mechanics and
Engineering, 284:1147-1180, 2015.

[60] D. Mokris, B. Jiittler, and C. Giannelli. On the completeness of hierarchical

tensor-product b-splines. Journal of Computational and Applied Mathemat-
ics, 271:53-70, 2014.

[61] S.Morganti, F. Auricchio, D. Benson, F. Gambarin, S. Hartmann, T. Hughes,
and A. Reali. Patient-specific isogeometric structural analysis of aortic

valve closure. Computer Methods in Applied Mechanics and Engineering,
284:508-520, 2015.

[62] B. S. Oliver Weeger, Utz Wever. Nonlinear frequency response analysis of
structural vibrations. Computational Mechanics, 54(6):1477-1495, 2014.

[63] M. S. Pauletti, M. Martinelli, N. Cavallini, and P. Antolin. Igatools: An
1sogeometric analysis library. IM.A.T.I.-C.N.R., pages 1-27, 2014.

[64] L. Piegl and W. Tiller. The NURBS Book. Monograph in Visual Communi-
cation. Springer-Verlag, 1997.

[65] S. Salsa and G. Verzini. Equazioni a derivate parziali. Springer, 2004.

[66] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. Hughes. Isoge-
ometric collocation: Cost comparison with galerkin methods and extension
to adaptive hierarchical {NURBS} discretizations. Computer Methods in
Applied Mechanics and Engineering, 267(0):170 — 232, 2013.

[67] L. Schumaker. Spline Functions: Basic Theory. Cambridge University
Press, Cambridge, 2007.

[68] M. Scott, X. Li, T. Sederberg, and T. Hughes. Local refinement of analysis-

suitable t-splines. Computer Methods in Applied Mechanics and Engineer-
ing, 213:206-222, 2012.

[69] K. Takizawa, B. Henicke, T. E. Tezduyar, M.-C. Hsu, and Y. Bazilevs. Sta-
bilized space—time computation of wind-turbine rotor aerodynamics. Com-
putational Mechanics, 48(3):333-344, 2011.

BIBLIOGRAPHY 55

[70] R. Tremolieres, J.-L. Lions, and R. Glowinski. Numerical analysis of varia-
tional inequalities. Elsevier, 2011.

[71] A. V. Vuong, C. Giannelli, B. Jiittler, and B. Simeon. A hierarchical ap-
proach to adaptive local refinement in isogeometric analysis. Computer
Methods in Applied Mechanics and Engineering, 200(49-52):3554-3567,
2011.

	Acknowledgements
	Introduction
	Isogeometric Analysis
	Bernstein polynomials and B-splines
	Bézier extraction operator
	Localizing the extraction operator

	Data structures for iga
	Existing approaches
	deal.II data structures for iga

	Application
	Test problem
	Serial version
	Parallel version
	Domain decomposition
	IgaHandler
	Strong scalability
	Weak scalability

	Conclusions
	Bibliography

