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Introduction

The general features of the synchrotron self Compton
(55C) model and its relevance for active galactic nuclei
(AGNs) have been well established soon after the discovery
of quasars and the conviction of their extragalactic nature.
Now the SSC is one of the most popular non thermal model to
interpret the overall emission of AGNs. Synchrotron
radiation can in fact easily produce power law spectra,
radio emission, and polarization, frequently observed in
these objects. Furthermore, their compactness, as deduced
from time variability or directly measured by VLBI
techniques, makes the inverse Compton process a very
éfficient radiation mechanism. Thus, photons produced from
radio to optical frequencies by relativistic electrons via
the synchrotron process can be boosted at X and ¥-ray
energies by the same electrons via the inverse Compton
mechanism.

In this thesis, I will present some new results
concerning the SSC model when applied to compact sources.
Here compact means a luminosity to size ratio L/R exceeding
1048 erg s"tem™ . 1n this case, the cooling time of the
radiating electrons is shorter than any other relevant
timescale. New relativistic electrons are assumed to be
continuously injected throughout the source without being
reaccelerated. The consequences of the two main opacity
processes: synchrotron self absorption and ¥-ray absorption,
are investigated, finding in several cases analytical
solutions for the emitted spectrum.

In Chapter 1 the standard S3SC model is reviewed, as
formalized in the classical paper of Jones, O'Dell and Stein
(1974), but using a different notation. The main results
derived in the past using this model are then briefly'
discussed.

In Chapter 2, some of the simplifying hypotheses of the



standard model are relaxed. In fact, the steady energy
density of the relativistic electrons is not assumed, but
derived, taking into account synchrotron self-absorption and
the decreased cooling of the electrons radiating in the
Klein Nishina regime. A clear distinction between flat and
steep power law injection is made, where flat here means
that the bulk of the injected power is in high energy
electrons. Since the opposite case requires a different
approach, it is discussed separately in the second part of
the chapter. Contrary to what derived in the standard model,
it is found that synchrotron and inverse Compton spectra can
have different slopes in both (steep and flat) injection
Cases. Furthermore, in the case of steep injection, the
spectral index of the emission spectrum is no more related
to the electron injection slope, and cannot be steeper than
unity.

In Chapters 3 and 4, I examine the importance of ¥ray
absorption and electron positron pair production. They have
been recently studied by many authors in the context of a
non thermal, although not SSC, model. Their main results are
reviewed in Chapter 3, since they can have important
application also in the SSC model.

Finally, a simplified and analytical SSC model including
pair production is presented in Chapter 4, where its
possible relevance for the interpretation of variability in

AGNs is discussed.




1. The standard synchrotron self Compton model

A relativistic electron of energy ~6mc2 and Lorentz
factor ¥ spiraling in a magnetic field B emits a power

B i
P, = (4/3) 650 Uy 1.1

where GT is the Thomson cross section, U. is the magnetic

B
energy density, and where an isotropic electron distribution
is assumed. This power peaks at an energy (in units of ch)

x_ = h»g/(mcz) = (4/3)%2xB 1.2

13 G) is the Larmor

where szB/Bc (Bc=m203/(ﬁe)34.4x10
dimensionless energy.

One can think of the synchrotron process in terms of a
scattering between the electrons and the virtual magnetic
photons of energy Xp (Blumenthal and Gould 1970). Indeed, if
we replace UB with the photon energy density Ur and Xg with
Xy we obtain the power emitted by the IC process in the

Thomson regime

_ 2
P, = (4/3)6TC7S-Ur 1.3

and the energy where this power peaks

xo = (4/3)§°x_ 1.4
This 1is strictly true only for 5x8<<3/4, where the Thomson
Cross section can be used. For 5xs>3/4, in the rest frame of
the electron the incoming photon has more energy than the
electron rest mass, and recoil is important. The energy of
the scattered photon is then of the same order of the
electron, independently of the incoming photon energy. The
process becomes less and less probable as 5xs increases, due

to the decline of the Klein Nishina cross section, which




must be used in this case. So, despite the high energy
transfer in each interaction, the IC radiation in the Klein
Nishina regime (yx>3/4) can usually be neglected. This means
that if the synchrotron spectrum of a source is broad
enough, not all its radiation energy density is available
for scattering, but only that part below the Klein Nishina
limit. In eq. 1.3 Ur becomes function of ¥ and the emitted
power is no more proportional to the square of the energy.
As we shall see in the next chapter, this can have important
consequences when deriving the steady distribution of the

relativistic electrons.

1.1 Cooling timescale

Defining ool =1K/3¢ we have
X
tcoo1”
4 G, z
§';f%fw,(uﬁ+bky

where Ur can be related to the luminosity and the size of

1.5

the source

U = (3/4)(R/c)3L/(4TR7) 1.6

r

where R/c is the light crossing time, and the factor 3/4
15

accounts for spherical symmetry. Defining R=10 RlS'
L=10%"1
45 .
5165 s
tcool = > 1.7
o bes[Va )y, ]

which is extremely short, compared to the crossi% time,

tcrossg3X104R15 s, even for electrons of ¥=1.




1.2 The continuity equation

A continuously injected distribution of relativistic
electrons will reach a steady density distribution in a time

tcool’ following the continuity equation

INGE) _d o -0
- 5 (x (zf)) (x) 1.8

where the source function Q(y%) is the injection rate of

electrons with energy zmcz. Solving for steady state we have

4 Ymax
N(Y) = - F /Q(wf')dv‘ 1.9
¥
For power law injection Q(5)=AX—S, s>1, complete Thomson
cooling, and neglecting synchrotron selfabsorption (to be

discussed later) the distribution N(%) becomes

N(y) = Iiz{_(s+l), Y o | 1.10

while, in the case of monoenergetic injection, Q(Y)=

RO(f-y )

max
N(y) = K«(2 , ¥ S pax 1.11

and, in general, this is the flattest slope we can obtaine
in this simple model (but see next chapter). This slope can
be obtained also for s<1 and large Kﬁax' The constant K is
the total number density of relativistic electrons (apart a

factor of order unity) and can be shown to be

U 4
z-s ~ 5>4 542
3 } 1.12a
K - 1 S-4 Us + Ur ‘o’w?\'ay -4 !
TR Ur 4 s <4 1.12b
Vp+Upr  Funax !

Large Kﬁax (for s<2) means low K, since the the bulk of the

energy is carried by few electrons. For s>2, all the energy




is in low energy particles, and K does not depend on Ymax
Note that we can define a Compton optical depth
q% = &, KR 1.13

As can be seen, TE is always smaller than unity, and
represents the fraction of photons that can be scattered by
the relativistic electrons. Scattering of the virtual quanta
of the magnetic field by power law electrons will originate
a power law synchrotron spectrum proportional to T%, while
the first order IC spectrum will depend on ’ti, the second
o;der onqg, and so on, until the Klein Nishina regime is
reached.

It is important to stress that eqs. 1.11, 1.12 are the
self-consistent solution of eg. 1.9, in the case of complete
Thomson cooling and negligible selfabsorption effects. 1In
this case Ur can be expressed in terms of the luminosity and
size only, and eq. 1.9, in general an integral equation, (Ur
depends on the integral of N(y)., N2({), and so on, over Yy)
becomes linear. A similar result was obtained by Zdziarski
and Lightman (1985) who considered the radiation energy
density of only the synchrotron photons, deriving a
quadratic equation for Ui.

From eq.l.12a, with s>2, we have

k2 A s-z Vv 1.14
61-{{ S-4 L),,~+L)g

so that equal sized, weakly magnetized, steep spectrum

sources have the same  number density  of electrons,
irrespective of Khax and of the injection rate of electrons
(or, equivalently, of luminosity). It follows that for these
sources, also the ratio between the synchrotron and first
order Compton flux density at a given frequency is fixed,
and close to unity. It is worth noting, from eqg. 1.12a, that
K is limited. In fact, fixing R, and s>2, the relativistic

electron density is initially proportional to the injection



rate. As Ur becomes greater than UB' the term Ur/(Ur+UB)
approaches the limiting value of unity, so the electron
density becomes independent on the number of electrons
injected in the source, since in this case the enhanced
cooling balances the increased injection. Taking into
account synchrotron self absorption will strengthen this
statement, making it valid for any value of UB/Ur’ as will

be shown in the next chapter,

1.3 Emissivities

Assuming that all the power emitted by the single
electron is concentrated at the peak of the emission
( g;function approximation) it is straightforward to derive
the synchrotron and the IC emissivities, for a power law
distribution of relativistic electrons.

For synchrotron

of  _4-o oA+l ol
£(x ) = &€ (A) BT KT 1.15a
58 16w \3
P J -
= eyt T o B X, /y 1.15b
(%) 2 Rjc Xp ( s/ ‘5>

where the spectral index A=s/2. In the latter expression,
(UB/XB)/(R/C) can be interpreted as the production rate of
virtual magnetic photons.

For the first order Compton scattering emissivity we
have

ol
Eolx,) = —B—(ﬂ_) Te b g, (xc) 1.16
¢ 3 2
where A is function of X, nhear the extremes of the possible
. 2
values of X.» and is constant and equal to (ﬁmax/xl)
otherwise. Here Vi 1s the Lorentz factor of electrons

radiating at the selfabsorption frequency Xy and 1is given



by (Zdziarski 1986, Ghisellini 1986)

itd

4
¥p 2 3 /3 T )/(sz&) 1.17

2’3Q,o<><

where Q% is the fine structure constant, while xt=(4/3){EXB

is

IR

1.18

21133 ¢ x:+3/z) se2)

t 232 ol

S50, in this simple theory, the synchrotron and the first
order Compton spectra have the same slope and this allows to
predict X-ray spectral shapes in sources where only the
fadio and/or the IR-optical flux is observed.

Unfortunately, the hypothesis of a smooth power law in
the electron distribution, which is responsible for the same
spectral index for synchrotron and IC spectra, is, in
general, not self consistent, as will be shown in the next
chapter. However, the model in the form described above has
been widely applied in the past deriving a number of results

which I will summarize below.

1.4 Diagnostic

Combining eqgs. 1.15 and 1.17 we can derive the magnetic
field B and the relativistic electron density K (or Q: ) as
pr Flxg), and the

angular size © of the source. Although this procedure is

functions of the observable quantities x

widely used, there is no general agreement on the numerical
factors relating the magnetic field with the observable
quantities. This is because of different definitions of X
(which can correspond to the peak in the synchrotron
spectrum or the energy of unit absorption optical depth),
and different geometries used (sphere or slab). See Urry
(1984) for an exhaustive analysis and discussion of this

problem.



1.5 Predictions

a) Beaming

Knowing the electron density and the magnetic field from
the synchrotron spectrum, we can compute the expected IC
flux. If the source has been observed in X-rays, where
presumably the IC emission contributes, we can compare the
predicted with the observed flux. If we make the hypothesis
that the source is moving relativistically at an angle 19
from the line of sigth, the ratio of the predicted to the
observed flux is é measure of the Doppler factor S-defined

S - [1‘“ (re1)” cOSLf]—i 1.19

where [ is the Lorentz factor associated with the source
velocity. This procedure has been followed by many authors,
discussing either specific objects or classes of objects
(i.e. BL Lacs, OVVs, superluminal sources) thought to be the
best candidates to show relativistic bulk motion (see, e.qg.
Madejski and Schwarlz 1983, Madau, Ghisellini and Persic
1986). Note that g¥values derived from the SSC model are
independent from those derived by models of superluminal

motion.

b) Variability

An obvious expectation of the homogeneous SSC model is
that vafiability in different bands should be related, both
in amplitude and timescales. Note however that the first
order IC flux depends on the square of the electron density,
thus allowing bigger variability in the X-rays (if IC) than

in the radio to optical (if synchrotron) range.

C) The LX—LO relation
The IC flux should increase more than the synchrotron

one for increasing TE, while both depend on the same power
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of B. Thus we expect a correlation between the optical (LO)
and the X-ray (LX) monochromatic luminosities of the kind
Lx=const.Lg, with a between 1 and 2 (see Tucker 1983 for a
more detailed analysis), contrary to observations of various
samples of (QSOs and BL Lacs (Zamorani et al. 1984, Maraschi
et al. 1983), for which a is less than unity. In QSOs, the
presence of a presumably thermal component in the optical-UV
(the UV bump), increasingly contributing with increasing
luminosity, can account for the above correlation, but this
explanation is ruled out for BL Lacs, where no bump is

observed.

d) Spectral breaks

The tipical spectrum of a BL Lac object is flat (<u§>50)
in the radio, relatively steep in the IR (<0&R>§l), and
generally breaks between the IR and the UV, where <Q%V>§l.5
(Ghisellini et al. 1986). While the break at mm frequencies
is generally interpreted as the transition between the
partially opaque and the completely thin emission, the break
at optical frequencies can be interpreted in the framework
of inhomogeneous models, as due to emission from different
regions of the sburce (Ghisellini et al. 1985). An other,
and more popular, explanation, is to ascribe this break to
the radiative losses of the electrons. If a continuous
injection starts at time to' after a time t—tO radiation
losses will produce a break in the N(¥) distribution at an
enerdgy . to be calculated using eq. 1.7. This break will
appear 1in the synchrotron spectrum at xb=(4/3){§XB. Above
Xyyr the spectrum is steepened by a factor A« =0.5. But as we
have seen, the cooling time is severely limited by the IC
losses even for electrons with ¥=1, and in compact sources
the break should move below the selfabsorption frequency
after few hours (if not minutes) after the beginning of the
injection. However, both suggestions do not explain why the

break preferentially is at optically frequencies.
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e) Spectral indices

The simple SSC model requires the same spectral index
both for synchrotron and IC radiation. In steady state, this
index can never be smaller than 0.5, corresponding to s<1l
(Rees 1967, cfr eg. 1.11). Flatter spectra must be due to
inhomogeneous sources by superposition of emissions from
different regions. Alternatévely, they are possible for
weakly magnetized sources (UB<<Ur) in which the IC cooling,
although dominant, is limited by the prescription x¥<3/4

(see Rees 1967 and next chapter).

1.6 Prescriptions

As early as 1966, Hoyle, Burbidge and Sargent pointed
out that compact sources should be characterized by a ratio
UB/U§>1, where Ui 'is the synchrotron energy density,
otherwise they would catastrophically cool by the Compton
process. This is known as "the Compton limit" or "Cbmpton
catastrophe". This 1limit corresponds to a brightness
temperature Tb<1012 °K, where szI(»%)cz/Qi/(Zk) (Kellerman
and P.Toth 1969). When U§>UB, the first order IC luminosity
is larger than the synchrotron one by the factor Ui/Ub, the
second order IC is larger than the first by the same factor,
and so on, originating the "catastrophe". But as Rees (1967)
pointed out, no more than a few orders IC can be in the
Thomson regime, and emission in the Klein Nishina regime is
greatly reduced, halting the runaway of emitted energy.

Even 1if UB can be smaller than Ur’ the maximum
brightness temperature is naturally constrained in a little
range. Using eqgs. 1.15 and 1.18, and
since I, =¢&,R
14 )47(5@ o)

of
T ¥ 1.74x1070(4/9)7 (5.74x10 T /B

b 1.20

3 11

For TE/leO— » Ty ranges from 1012 to 3.5x10 °K as o
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increases from 0.5 to 1. Thus, the fact that most radio

sources obey the limit Tb<lO12 °K, does not imply the
constraint UB>Ui, but simply reflects the narrow range
possible for Tb.

It can be concluded that the usual prescription UB>U§

has no special meaning, and apparent violations of this
inequality are not evidences of relativistic beaming (which
would increase the observed Ur)' On the other hand, beaming
can Dbe responsible for brightness temperatures largely

different from those in the narrow range of eq. 1.20.
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2. The SSC model revisited

In this chapter I will relax some of the simplifying
assumptions made in the standard SSC model, namely I will
take into account the effects of synchrotron selfabsorption
and constrain the IC cooling to be effective only when

¥x<3/4, As already noted before, this corresponds to
neglecting the cooling in the Klein Nishina regime. This is
reasonable, as the IC emissivity in the Klein Nishina regime
carries little power compared to that in the Thomson regime,
due to the decline of the Cross section with energy. Both
these effects have been noted and stressed as early as 1967
by Rees, but only very recently they have been discussed
again (zZdziarski and Lightman 1985, Zdziarski 1986), while a
complete discussion of their effects on the spectrum is
still lacking. Since the case of steep injection requires a
different treatment, it is discussed separately in the
second part of the chapter, where some recent results
obtained by Zdziarski and Lamb (1986) in the case of a pure

Compton model are extended to the SSC model.

2.1 The continuity equation

It is well known that the selfabsorbed synchrotron
spectrum emitted by a power law distribution of electrons is
proportional tO'vz'S. Thus electrons with 1?5£ practically
do not loose energy by the synchrotron process, but only via
IC scatterings. On the other hand, we make the assumption
that electrons of a given <Y can scatter only photons with
X<3/(4%). Thus these electrons Compton cool on only a
fraction of the total radiation energy density. Taking into
account both effects, the continuity equation will be

rewritten as
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Wimax
Qrg') dy!
N(g) = 2DC o ¥ Ty s 2.1
4 6x UQ, HCT—’(c)—v _/ A

A . xg Y00 4%
where H is a step function,

Likely enough, the selfabsorption effect is effective
when UB>Ur’ while the "Klein Nishina dimming" 1is important
when the opposite is true. Thus we can guess solutions of
eq. 2.1 in the two limiting cases, while the general

solution has to be found numerically.

2.2 The "X-ray excess"

Consider the case UB>Ur and suppose that the bulk of U,

is at energies smaller than l/gmax' For power law injection
Q)= Ay~ ®

4-5
c -2 Q -
N(¢) = 227 il 2.2

d6r 5-4 Vo, H¥-%e) + U,
so that
e A 7{-—(6&-1) _

n(y) = =2 j <%, 2.3
4 Gy S-4 Ur
Zane A v (5¥4) )

N = > 2.4

() rr ; e

Upérk.’@

The N(yY) distribution has a discontinuity at Y while

retaining the same slope on both sides of U%- The "jump"
- + .

between y = ¥ .-& and y = g tE is

(NCY ) =N(y+) ) /N(g+) = Ug/U, 2.5

Obviously, no jump can be obtained in the synchrotron
spectrum, but this can be observed in the IC one. We can
easily compute the first order IC emissivity and compare it
to that derived previously. In fact the"new"emissivity will
be equal to the "01d” one at high energies, where electrons

with X<‘{t do not contribute, while for low photon energies
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we have an extra contribution described by the term enclosed

in the square parentheses in the following equation

o '
x ) = 3(4VT ¢ x) £ A [wm___u'*“] 2.6
£, (x,) 4(3)2 s (Xe) TR

Care must be taken for the possible values of A=x2/xl and
A= 2/x The energies X, and X (and the corresponding
primed gquantities) are the extremes of the energies of
synchrotron photons that can contribute to a given X+ Their
evaluation is tedious, but straightforward. As fig. 1

illustrates, it is convenient to define four characteristic

energies
Xop = (4/3)x ,
Xc2 = (4/3)min(x max’ thgax)
¥c3 = (4/3)max(x max’ txmax)
Xcq = YnWL((¢ﬁgyﬁax smax'xhax) 2.7

We can define also the corresponding primed energies,

replacing ¥ nax with ¥, . Thus we have

c2Zx 2 cl A = xc/X

cl
Xc3;xczxc2 N = min(3xc/4, Xsmax)/maxéxt’ 3Xc/(4xﬁax))
Xeg?Xo¥oy N = min(xq /%, Ymax/¥e) ) 2.8

and the same for A', with Kt replacing Vmax+ For Xo>Xog0

InA'=0

It is interesting to derive the spectral index d of the
IC spectrum and compare it to the canonical index 4 —5/2 of
the standard SSC model. wWe have

Jg BaN
d G [ x4 Ba N [ A BN )]
v [ ( Ur & /A
4 X Lid/\+is_iél\.] 2.9
PoAs Ve BN [N dX T Yo N dx

U,
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Fig.

1

Schematic diagram for computing the Compton characteristic
energies. For a given X s only a fraction of incident photons

is available.
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In Fig. 2 a self consistent spectrum is shown, for L=lO45

erqg/s, R=1015 cm, B=l§ G and assuming a monoenergetic

3. The dashed lined is the spectrum

injection at Bﬁax=lo
calculated without the selfabsorption effect. For this
choice of parameters UB/Ur=6‘7' As can be seen, the X~ray
spectrum (><:~——lO"3 corresponds to 0.5 keV) is steeper than the
synchrotron one. In the interesting range 0.5-5 kev, the
average spectral index is 0.83. Note that above 30 keV the
spectrum flattens, since at these energies only electrons
above 1£ contribute, and the usual emissivity (eq. 1.16) can
be used.

It must be noted that this "extra emission" increases
the values of the beaming factor ziderived in the framework
of SSC models neglecting the selfabsorption effect. However,
the weak dependence of S from the X-ray flux (Madau et al.

1986), makes this difference negligible.

2.3 The "Klein Nishina dimming"®

For Ur>UB’ Compton cooling is dominant and we have to

evaluate the integral
3/(ex%)
Ur(ﬁ) =J/Ur(x)dx | 2.10
e

For illustrative purposes, suppose that Ur(x) is a smooth
power law: Ur(x)zUx_q. Thus the integral will not depend on
¥ for g>1, since in this case the bulk of the enerqgy density
Is concentrated near Xt' Consequently, if Xt<3/(45ﬁax)’ all
electrons Compton cool in the Thomson regime. On the other

hand, for g<l, we have
u )+ y971 2.11

Thus, neglecting UB, eq. 2.1 yields



Lo{j x

Fig. 2 SSC spectra computed with (solid line) and without (dashed
line) selfabsorption effects. The input parameters are:
R=10150m, L:1045erg/s, B=1O3G, corresponding to UB/Ur=6.7.

C s . 3 .
A monocenergetic injection at 3/ =107 is assumed.
max

- 18 -
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N(%) -+ g ~(s+q) for s>1
N(¥)=- y-(1+q) for s<1 2,12

From the relation g=(p-1)/2, where p is the slope of N(¥),

we have

g = s=~1 for 2>s>1
qg =20 for s<1 2.13

Comparing these slopes with those derived for complete
Thomson cooling (q=s/2 for s>1 and g=0.5 for s<l), we see
that the spectrum is flatter, with g ranging from 0 to 1.

It is important to stress that this derivation is only
qualitative, since we neglected synchrotron cooling, which
always affects all electrons, and in particular those that
practically cannot Compton cool, due to their large energy.
However, this solution is exact in models, different from
S5SC, where the radiation energy density is dominant and
external, namely, not produced by the electrons we are

~(s+q) and there is no

considering. In this case N(¢)+
relation between s and q.

In general, for UB<Ur and s<2, the SSC spectrum will be
flatter than that derived in the wusual way, possibly
vielding spectral indices A smaller than 0.5. As higher
energy electrons loose less energy than low energy ones, the
distribution N(v) can be concave, and consequently also the
synchrotron spectrum should be flatter at higher energies.

In Fig. 3 an example of sgelf consistent, numerically

-
computed SSC spectrum is shown, for L—1043 erg/s, R=lO15 cm,

B=100 G, and a monoenergetic injection with 3‘ —104 Note
that the synchrotron spectrum flattens at high energles. The

second order Compton luminosity is also shown (dashed line).



Loﬁ <

Fig. 3 SSC spectrum for L=1O45erg/s, R=1015cm, B=100 G, and mono-
energetic injection at Kﬁax=104: For these parameters,
Ur/UB=15. The flattening at high synchrotron energies is
due to the Klein Nishina dimming. The lower dashed line is

nd
the 2 order Compton spectrum.
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2.4 The case of steep injection

Consider to inject a power law of relativistic
electrons, Q(¥)=A%¥"°, with s>2. TIn this case most of the
power is injected at low energies, where the synchrotron
emission is inhibited by selfabsorption. Consequently, the
Compton process is the dominant cooling mechanism, even for
U >>Ur' provided that reacceleration is negligible, and that
the cooling timescale is shorter than those of other
competing processes, for all relativistic electron energies.,

If the injected particles are electrons escaping from
thc Source in a timescale ¢ esc with velocity CPESC’ the

COndlthH t Ool<teSC (for any y¥) reads

g S 4T Besc_

2.14
3 A+ T,
where e’is the dimensionless compactness parameter
L e
e - T 2.15
g mnc3

and Cqp is the Thomson optical depth of the cool electrons.
It can be estimated balancing the injection and the escape

rate

47w s-4 /3£5c

Combining egs. 2.14 and 2.16 the minimum value of’T& is

‘tT,min =2 LC* i)M% i] | 2.17

which is close to, but smaller than unity. If we want to
neglect all the effects associated with cool particles such
as downscattering, thermal Comptonization, and photon
diffusion, we must require T&<l For 1>T'>T% min the
possible values of £ are limited in a narrow range of the

order 4.2ﬁ s >0>1. Sﬁ (for s=3),
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On the other hand, if the injected particles are pairs,
and assuming that they cannot escape, but only annihilate in

a timescale tA’ we always have t (see chapter 4 for

cool<tA

definition of t since the annihilation cross section is

)
A
small at high energies. The optical depth of cool pairs can
now be derived balancing the pair injection and annihilation
rate

Al2
L[4 3-% e)
TT=(ET“"?:"I 2.18

and the condition T <l yields (<(s-1)/(s-2)(T/4)~1.

If Compton losses were absent, the electrons below 'XL
would tend to form a Maxwellian distribution at some
relativistic temperature © (Rees 1967), through Coulomb
collisions. The relaxation té;LE}me for this process at

relativistic temperatures is given by Stepney (1983)

too = 892 /1n N\ ; o5 1 2.18a

where 1n/\ is the Coulomb logarithm. Comparing tee with

tcool (eq. 1.7) we derive the minimum compactness above
which t.e is longer than teooy for any ¥
€ > I T 6N 2.18b

6

which gives, for 1nA =20 and s=3, 4?)1.7.

FFor steep injection the ratio of the Compton to the

synchrotron luminosity is

Ye Fin
/ Ye /\fmd\wé e Nesd dy
4

LC/LS = 2.19
T >
s Nw) 9%

e
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If UB>>Ur this expression simplifies into

Y
/ > RE) Ay th-z_ 4
L./L, = 'Y - — 2.20
/x v )y 1= (o)
¢

which is indipendent on the Compton cooling regime

(Klein-Nishina or Thomson). For Ur>U this ratio will

B
approximately increase by the factor Ur/UB' Using eq. 1.17

we have
5-z
s-2 - _?is-zt 3 52 L—)f_ .@.‘:. S+5 2.21
Bt 2 22dp -4y, B

so that Lc/Ls increases for steeper injections.

All the power injected below X% has to be released
through many orders IC scatterings, as can be realized
computing the ratio of the first order to the total Compton
luminosity

-5+ 2

1st _ S _
L /L = Ur/Ur —\gt

. . << 1, (UB>>Ur) 2.22

The Klein Nishina limit will play a double important
role: first, it constraints the number of IC orders that
contribute to the overall spectrum to be finite, and,
second, it fixes the slope of the y-ray spectrum, which will
be greater than unity, as shown in the following.

To derive the final spectrum analytically, without
computing each contribution, I will assume that the overall
spectrum is a power law with index dc from X, to 1, and with
index dxfrom 1 to rxmax' I will take X, as the energy where
the synchrotron and the first order IC emissions are equal.

With these assumptions it is easy to realize that o €1,
since for photon conservation the overall IC spectrum cannot
be greater than the synchrotron one at energies close to X
while the integrated IC luminosity greatly exceeds the

synchrotron one.
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2.4a Determination of dg

The continuity equation gives for the steady density

energy distribution, in the case of T&<l

~(s+d)
S.RN(f) = —& * 2.23
T -1 Ve Hi-we) + Fir)
Vr

where f(g) takes into account the Klein Nishina limit to the

cooling and is given by

A
IR E - o ! K=
4%eT  Luthe, v (-3 /(A=)
f _ 2.24
-{-dQ A~
2/ g~ — %o €
< F4

A=xE L (e k) (A5 ) J (A1)
Depending on the ratio UB/Ur' N(«) can have a very different
normalization on the opposite sides of e - Thus it is very
important to know if photons of energy x>l result from the
scattering of low energy photons by high energy electrons,
or vice-versa. The latter case is always favourite if
downscattering is absent, as can be seen directly computing

the Compton emissivity at energies x>1 (Zdziarski 1986)

3 axe A
&sC z
E.(x )= & /m@)r\/@—‘;ydx; Yz(ﬁ) ; Xexd 2.25
2 Yy, &~
. . _ . _ = (14
where n(x) is the monochromatic photon density, n(x)=x
The limits of the integral are the possible energy range of
incident photons. From eq. 2.23 with c%c<l, N({)%“(—(S+q),
where g can be &, or 1, depending on 7 and on the ratio
UB/Ur‘ Then the integrand of eq. 2.25 is
S+Q-2oLc -3
n(x)N(4)y =+~ x 2 2.26

Since (s+q~2a%—3)/2>—l in any case, the upper limit of the
integral is important, meaning that Y-rays are mainly
produced by low energy electrons scattering high energy

photons.




- 24 -

Furthermore, we can now calculate the Y-ray slope clK '
considering that only electrons with '{<Xt contribute. In
this case q=oé, and eq. 2.25 gives

£.(x) + x 57H % 31 2.27
independently of “&‘ Thus a sharp break is expected to occur
at x=1, and since s>2, the ¥-ray luminosity will be only a
small fraction of the total. Note that this break has
nothing to do with the break caused by Y-¥ absorption and
pair production, which in some case can seem very similar to
the one discussed here (see next chapters). With the
éarticular slope of the ¥-ray spectrum of eq. 2.27, it is
also very easy to qualitatively account for pair production.
At most, in fact, all <x-ray photon can be converted into
pairs colliding with X-ray photons. Since n(x)zx ° for x>1,
and since the energy of the created particles are
approximately half of the y-ray photon, the pair production
rate P(~ )+ ¥ °. Then, primary injected particles and
injected pairs have the same slope, leaving unaltered the
shape of the spectrum below x=1. Note, however, that we are
neglecting the influence of cool electrons (or pairs) that

will introduce other effects, as will be shown below.
2.4b Determination of dc

At energies close to x only the synchrotron and the

tl
first order Compton emission are important, and they are

equal at the energy X,

s_4
X (4/3)xtexp[z (4 = 2.28

At this energy the total emission is approximately twice the

synchrotron one. Above x=1, the spectrum steepens with

cﬂ;s—l, and luminosity balance (LinzLout) requires
° Yo n
/dx “colx-{—i x‘[x %d Xblc X-““o’ d)(
= ° - — X
L = 2L_(x_) (x) 7 (‘xc) + Xo 2.29
Xo A

e




- 25 -

The monoenergetic synchrotron luminosity can be related to

the total synchrotron one, and eq. 2.29 becomes

S .4~ ) s_4 _
Ei(f_‘i)‘ L"L)sj\»i-(.’i&f (h’e )32
‘><¢"l LS e Y2 *e Tmax
X —
© A+ (5-2) F(ole)
Do (/%) | Lo=4
fF(eol ) = d- e 2.30
C 4—-Xo
-, e # 4

in the case UB>>Ur and vﬁax>>ﬁ£’ eq. 2.30 simplifies into

£.4
z -2
Xo /X e -4
x K=l _ (eate)” (de7-1) 2.31
© A+ (5-2) Flte)

2.4c Effects of cool particles

In the case of optical depth T& greater than unity, we
have to take into account photon diffusion, Comptonization
of soft photons by thermal subrelativistic particles, and
downscattering of hard photons.

Photon diffusion enhances the photon density by a factor
P = 14T /a 2.32

where a is of order unity and depends on geometry (=3 for a
sphere) . The first order Compton emissivity will be
increased by a factor ¢, the second order by a factor ¢2,
and so on.

Thermal Comptonization will be important between x, and

x¥€}=kT/mc2, while downscattering will steepen the speztrum
between x=l/¢f% and x=1 by a factor dependent on the spatial
distribution of the photon sources (Sunyaev and Titarchuk
1980). We will assume A% =0.5, appropriate for an uniform

distribution.
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All these effects can be simply estimated changing our
luminosity balance equation and the equation for X - Since

the first order IC emission is increased by a factor ¢

4

S -
a s-1 (3/4)*
x_ = (4/3)Xtexp[ 20 J 2.33

Neglecting the y-ray luminosity, the luminosity balance

equation is now

’{/rf: Ko < 4 ole
ZLS(XO) /<‘§:)dcdx+ %/(%)?dx—k/ r—‘-{j;(?;i) K-’i/L dK} 2.34
.,-‘xo X

[ 2

-
e

’ The derived o, would in general be flatter than that
derived before, since most of the luminosity is now emitted
in a restricted range of energies, while the normalization
of the spectrum at X remains almost constant, due to the
opposite effects that Comptonization and increased cooling
(reducing N(¥)) have on the low energy synchrotron emission.
The resulting spectrum will be a broken power law, with
slope dc up to x=lﬁ®é and o%+l/2 between l/¢% and 1. In the

latter range the photon number density will be n(x)- x 2 %
(Svensson 1986), and eq. 2.26 now reads
n(x)N(f)y +x(STA7372) /2 2.35

the upper limit of the integral will now be important if
s > 3+2dc—q 2.36

where g can be 1 cni<ic. This condition is not always
satisfied. When it is, the slope of the y-ray spectrum will
be cKK= s-2, different from what derived before, but steeper
than unity in any case, as s must satisfy eq. 2.36.

If s<3+2dc—q, the y-rays are produced by low energy

photons scattering high energy electrons and the slope is

o% = Lfdc : >> x > 1 2.37

Kmax
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so that a further steepening of a factor As(=0.5 occurs at
x=1, with respect to the downscattered spectrum between 1 >
X >l/¢§.

2.4d Comparison with numerical results

This approximate, but simple, analytical treatment
describes numerical results quite accurately, as can be seen
from the fig. 4, 5, 6, 7. All the figures refer to the same
luminosity and size, corresponding to €¥27, and value of the
injection slope s=3. The spectra in fig. 4 and 5 are
computed without cool particle effects for two different
values of the magnetic field, corresponding to UB/Ur=l.67
and 107, respectively. The synchrotron and several orders IC
spectra are also shown. Labels correspond to spectral index
of the total emission. Using eq. 1.18 for Xy and eqgs. 2.29
and 2.31, one obtains dc = 0.89 for both cases, 1in
excellent agreement with the spectra obtained numerically.
Moreover,<ﬁx~l.9~'s—l, as predicted. Numerical results {(not
shown here) computed with s=2.5 (all the other parameters
being the same) are also in agreement with the analytic
results discussed above. In particular, it is confirmed that
flatter injections, and thus smaller ratios LC/LS, make the
spectrum steeper.

Fig. 6 and 7 show spectra calculated including the
effects of cool particles, for the same parameters of fig. 4
and 5, respectively. Thermal Comptonization is computed
assuming that a monoenergetic radiation transforms in a

power law of index (Sunyaev and Titarchuk 1980)

9 Trl A/z 2
D( = (_, ) - = °

with a cutoff at x=%. Compton balance fixes the temperature

A

/ X L)‘,(X)c‘x
A “e

- A
i / Uy (x) dx
¥

&

o

e
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In this approximate treatment of Comptonization we neglect
the exponential tail ‘which should be present in the
Comptonized spectrum above x= Y. The kinks at energies x¥ &~
in figs. 6 and 7 are due to this approximation. Dashed lines
correspond to the spectra of figs. 4 and 5, reported for an
easy comparison. Labels correspond to spectral indices of
the continuous line.

Note that <,is effectively well described by eq. 2.37,
and that dc is flatter than the correspondent case without

cool particles.
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Fig. 4 SSC numerically computed for L=1045, R=1015cm, B=500 G

3
and power law injection with index s=3, up to Kmaleo .

For these parameters UB/U£§1.65, and P=27. cool particle
effects are neglected. Spectral indices in different bands

are reported.
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i 1 1 | ! 1

Fig.

e -4 -2 g 2 4

LQ? >

SSC spectrum numerically computed for the same parameters
of Fig. 4, but with B=4x103G, yielding UB/UrglO7. Cool
particle effects are neglected. Spectral indices in different

bands are reported.
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Fig. 6.

Lo? X

SSC spectrum numerically computed for the same parameters
of Fig. 4, but including cool particles effects. The
injected particles are assumed to be pairs. The Thomson
optical depth T% =4.15, the Compton temperature 938.6x10_3.
The overall spectrum of fig. 4 is reported (dashed line)
Labels indicate spectral indices in different bands, and

refer to the continuous line.
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Fig.

7.

LM(:Dc X

SSC spectrum numerically computed for the same parameters
of Fig. 5, but including cool particle effects. The
injected particles are assumed to be pairs. The Thomson
optical depth T # 4.15, the Compton temperature 9‘%"6){10—3.
The overall spegtrum of Fig. 5 is reported (dashed line).
Labels indicate spectral indices in different bands, and

refer to the continuous line.
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3. The importance of pair production in non-thermal models

Even if this thesis is mainly concerned with the S55C
model, it will be instructive to review some recent results
in a simple Compton model, where no magnetic field is
considered. These results have been obtained Dby Fabian
(1984), zdziarsi and Lightman (1985), Fabian et al. (1986),
and Svensson (1986a, b).

Due to high photon densities in compact sources, the
main process yielding pairs is photon-photon collision,
which has a threshold Xin

2

X = 3.1
th X, (4- coser)

where © is the angle between the two photons of energies
Xin and Xq. Due to the peak of the cross section around
2Xth’ collisions preferentially take place between photons
of reciprocal energies x and 1/x as long as a constant or
decreasing (with energy) distribution of photons is
involved. Since the peak value of the cross section
approaches the Thomson cross section, it is convenient to

define a dimensionless luminosity € in this way

p . L o

3.2
£ ~"»mc?

which is a measure of the optical depth for photon-photon

interactions

Kmmax

"C“(x) = /Gb/x(x,x') R mX(X)clx' 3.3

Xel,
where n(x) is the photon number density of energy xX. A very
accurate expression for Ty,(x) has been derived by Svensson

(1986b) in the case of power law distributions n(x)_;x_o("l

Q%K(X) = fﬂ(d)éTRn(l/x)/x 3.4
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M (k) = (7/6) (14+e) 273 (24a) ™1 3.5

where o must be evaluated at the energy x-l. From eqgs. 3.2
and 3.4 one can see that if the bulk of the luminosity is
emitted at MeV energies (x=1), we have, apart from factors

of order unity

£ ~ T )
4 al(l) 3.6
So that ~-ray absorption and pair production are important
for € 24w  in hard X-rays, or for the compactness parameter

-1 -1
m

LX/R > 4.6x1029 erqg s c . However, pairs start to affect

the emitted spectrum if T%x(xmax)%l, while pair production
saturates when T (1)31.

¥y
Assuming that the source is powered by accretion onto a
black hole, we can write € in terms of the Eddington
luminosity LE and the Schwarzshild radius R . For non

rotating black holes
£ - 27C/3(m/m) (L/Ly) 3R /R 3.7

and this gives the upper limit < €E ~ 4000. Note that if
the source is pair dominated, its Eddington luminosity is a
factor mp/me lower than the usual one, as pairs are lighter
than protons. Combining eq. 3.7 with 3.6, we have that pairs
are important for sources emitting more than 1% of their
Eddington luminosity in hard X~rays, which seems to be a
fairly tipical value for AGNs (i.e. Wandel and Mushotzky
1986), assuming no relativistic beaming. If this is present,
and calculating T“.from the observed luminosity and the

observed variability timescale

! ' — J = T [ 4+t
C(x") q%K(x /) S (x ) S 3.8

where primed quantities are in the observer frame and S‘is

the Doppler factor defined by eq. 1.19. If the beaming of
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the radiation is not due to relativistic motion, but only to
collimation (by e.g. a thich disk funnel) in the observer
direction, than T;K(x')fi(4v7$l)‘tu(x'), where L is the

solid angle of the beam.

In the remaining of this section, we will consider the
Case in which the injected electrons only make inverse
Compton scatterings on a fixed and independent soft photon
source, without making synchrotron photons. We will call the
Xt” It Uext
the energy density produced by the electrons, we can neglect

>U
B” "r
and flat injection in the SSC model. Furthermore in this

soft photon energy density as Ue is greater than

the higher order IC scatterings, as was the case for U

case the IC spectrum becomes independent of Uext: increasing
Uext we 1increase the number of the photon that can be
scattered, but at the same time we decrease the number
density of the electrons (they cool more) by the same factor
(Zdziarski and Lightman 1985). Thus we do not expect, in
this case, correlated variability between the soft photon
emission and the Comptonized spectrum.

Pairs will be produced by ¥-ray photons colliding with

X-ray photons: they will share the available energy

Y-+ Ve = x+1/x ‘ 3.9

‘ - of
and it turns out that for power law spectra g(x)% b4 it is

a good approximation to assume

¥+ ¥ x/2 3.10
as long as o>0.5 (Bonometto and Rees 1971, Svensson 1986b).
The created pairs will radiate and cool, and they can be
thougth as an extra injection P(Y%), besides the injection of
primary particles Qo(j). Eventually, the energy of the pairs
is large enough to Compton scatter soft photons above

thresheld for pair production, thus yielding a new
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generation of pairs, and so on.

The non linearity of the process does not allow a
general analytic solution for the emergent spectrum, even if
only the first order Compton scattering is considered,
because:

i) The pair production rate depends on the photon production
rates at the two energies x and 1/x (incident and target
photons);

1i) This rates depend on the pair production rate (pairs
make photons);

1ii) The density of the cool pairs can be large enough to
change the photon energy density, through photon diffusion;
i§) Cool pairs will be heated by hard photons undergoing
downscattering, and cooled by soft photons by upscattering,
thus changing the spectrum both in the soft and high energy
bands.

Despite all these complications, a general statement is
possible even at this stage: pairs will steepen the primary
spectrum. In fact high energy radiation will be absorbed and
redistributed towards smaller energies by both the
relativistic (1lst reprocessing) and cool (2nd reprocessing)
pairs.

For power law spectra of index o, of=1 is a particular
value, because for flatter slopes most of the power is
emitted at high energies, and for large compactnesses the
reprocessing will be strong, while for steeper spectra the
reprocessed power will be only a small fraction of the
bolometric luminosity, and the spectrum will not be greatly
affected even for large conpactnesses.

A very simplified treatment of the problem was first
done by Bonometto and Rees (1971) who obtained o ~1 as the
self consistent slope of the spectrum in the case of
saturated pair production, this result being confirmed by
Razanas (1984) using a slightly different approach. In both

papers cool particles were neglected.
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Zdziarki and Lightman (1985) found analytical and
semi-analytical solutions for the emergent luminosity when
’QH(X) is less than unity for all photon energies x. In this
case pair production can be handled as a perturbation to the
primary injection and the pair plasma does not become
optically thick to Thomson scattering. If moreover only one
generation of pairs is possible, only the primary particles
are emitting above the threshold for pair production. Then
the pair production rate will only depend on the density of
target photons which is found analytically. In order to have
T;r(xmax)él’ low compactnesses € must be considered, and
thus pair effects are small. Nevertheless, for monoenergetic
electron injection (which yields o =0.5 without pairs) the
X-ray spectrum steepens with increasing luminosity, reaching
slopes of od~0.7 for the largest luminosity compatible with

the previous assumptions.

The opposite case was considered by Svensson (1986b).
When Tir(x)>l for all energies x>1, we can approximate the
¥-ray absorption with a step function, being 0 for x<1 and 1
for x>1. Thus the pair production rate does not depend on
the target photon density, but only on the ¥-ray production

rate. In the case of large U when only the first order

'
Compton scattering is imporQZEE, analytical solutions are
possible even taking into account thermal pair effects.
These in fact influences the spectrum only at energies below
threshold, because downscattering or diffusion are
unimportant for hard photons, due to Klein Nishina decline
of the scattering cross section. In this case the self
consistent solution for the emergent spectrum can Dbe
understood in a very simple way .

Suppose to inject monoenergetic primary particles.
Without pairs, N(¥y)* K“z, yielding a photon production rate
ﬁ(x)4-x~3/2 (

corresponding to ﬁ(x)%—x_l/z). If all photons

above threshold make pairs, P(¥)L 3’3/2. The steady energy

density distribution will now be I(K)é-x_3/2_l, in the range
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of energies where pairs outnumber primary particles. Thus
the new ﬁ(x)e—x_7/4, yielding P(y)+ X—7/4 , and so on.
Continuing the argument, for the ith generation we have
P.(y)+ “;f'r'“, N6y TP, Ci(x)ex” T, where [[=2-1/2%,
pi=3~l/2l, and o(i=l--l/2l+l (Svensson 1985). Thus this simple
argument explains why the final spectrum tends to approach
the limiting value «=1 for a large number of generations,
and gives insights for other features: ,

i) For a given maximum energy of primary particles ¥ax and
soft photon Xyr only a finite number N of generations exist,

and in general N will be small (Svensson 1986bh)

éé ZXo/3
nt %{ Gg(2xofimsx /3) )
%z

N.—_

3.11

ii) Different generations of pairs will dominate the
emission at different energies, producing bends and kinks in
the power law spectrum.

iii) The second reprocessing would further steepen the
spectrum, producing breaks and tails.

Thus, even if the expected steepening by pairs effectively
takes place, the final spectrum will not be a completely
smooth power law and indistinguishable from i.e. that
produced by a relatively steep injection distribution of
primary particles.

It is important to note a general feature that pair
dominated and non thermal sources should exhibit, resembling
the case of steep injection in SSC models, due to the
downscattering of hard photons. As shown by Sunyaev and
Titarchuk (1980), this effect causes the spectrum to steepen
between x:l/T% and x=1, by an amount that depends on the
spatial distribution of the cool particles and photons. If
both are uniform, the steepening is A«=0.5, and increases if
photons are more concentrated in the center of the source.
Thus the emergent spectrum, already steepened by the

emission of the relativistic pairs, further steepens,
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reaching a slope larger than unity for x > l/fC As a
consequence, l/TT is the energy where most of the lum1n051ty

comes out. It is easy to realize that T, increases with

injected luminosity, so that non thermall plasma resemble
thermal ones for what concerns the relation between the
injected luminosity and the energy where most of it is
emitted (which is of the order of kT/m02 for thermal
radiation processes). In fact, for high 2, thermal plasmas
in pair equilibrium have lower temperatures for higher
luminosity (Svensson 1983), since the increased heating is

shared by many more created pairs.

A different approach to the problem was chosen by Fabian
(1984) and Fabian et al. (1986). They assume to inject
monoenergetic electrons and soft photons and find the self
consistent final spectrum numerically, including thermal
pair effects. Their code is also used to follow the spectral
changes of the source following istantaneous changes of the
input parameters. While the results for steady state well
agree with those of the previous authors, it is worth
mentioning an interesting effect in the time dependent case.

Evaluating the annihilation timescale ¢t from the

A
annihilation rate gives tA = n / (n ~R/(c T), which is, for

T&>l, shorter than the light crossﬁg time R/c or the escape
time R(1+T')/c.ffhen a decrease in pair density, following a
decrease in the primary particle injection (injected
luminosity) can let the source become thin. Photons
previously stored by diffusion can escape freely from the
source producing an increasing flux, followed by the
decrease corresponding to the lower injected luminosity. The
reversed situation is similar: an increase in injected
luminosity will correspond to an initial decrease in
observed flux, as the photon trapping becomes more
efficient. This situation can be the best opportunity to see
the annihilation line, since hard photons are not trapped by

diffusion, and can always escape.
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4. Pair production in SSC models

When a magnetic field is present, relativistic electrons
cool not only on a given, independent radiation energy
density by the IC process, but also producing synchrotron
photons. Thus, once pairs are created, their radiation
contributes also to the soft radiation which in the models
reviewed in the last chapter was fixed. We can estimate a
minimum value of the magnetic field above which the energy
density of synchrotron photons exceeds a given, external,
radiation energy density

Bxt,1/2

2 L 2
B“/8m> Ue ==> B > 387(QL45 ) /R15 4.1

Xt
where @ is a dilution factor (1>0>0), to take into account
that LEXt is generally produced in a different region of the
source. For instance, we can think to the thermal radiation
produced by an accretion disk, interacting with non-thermal
electrons in a magnetized region at a distance d. In this
case Q will approximately be (R/d)z.

In the following, we restrict ourselves to cases in
which QLEXt can be neglected, and concentrate to the effects
that pair production can have on the SSC model as I
described in chapters 1 and 2.

A general consideration is in order. As pairs will
contribute to the synchrotron emission and, 1in general, to
the establishment of the steady energy distribution N(Y),
they will have important effects on the observed spectrum as
a whole, not only in the X and Y-ray bands. Unfortunately,
55C models with pair production are more difficult to treat
than the pure Compton models, because, in SSC, soft
radiation is not fixed, and, moreover, cannot be
approximated with a S:function, as 1is the case for any
peaked emission. We will show, however, that in some limited

cases an analytical solution is possible.
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4.1 The problem

Due to the high photon density in compact sources, the
only important pair production process is photon photon
interaction, with threshold and cross section given by egs.
3.1 and 3.4. Photons above threshold are absorbed, and pairs

created, at a rate

4.2

~-Ty, 2%
P(Y) = 4ﬁ<2x>[4- e T J

’tn@’b’)

where the factor 4 arises because two particles are produced

in a pair production event and we assume ¥=x/2 to be the

energy of both particles. Here n(x) is the photon production
rate at the energy x.

The inverse process, pair annihilation, occurs at a rate

(n

Wa = n.n_(3/8)6cE(8) 4.3

where n, is the positron (electron) density and f£(®) is a

+
function of the dimensionless temperature 9’:kT/mc2
1 1
z.,0.6 2= z -
£(9) = E+i(4._‘*._°‘.F) N wo‘ch[u o ] 4.4
cle g € (44284 4.3)

(Svensson 1986b), which has the asymptotic behaviours

z ot
E(&) —s zo{c(rrr/g,)“z) B <cd 4.5b

For temperatures of interest here, f(9) is of order unity. A
thermal distribution is assumed, since the slowing down
timescale for an energetic particle to reach the temperature
T and thermalize is shorter than the annihilation time ta
(Svensson 1986b)
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S

4.6

6 R A
2FE) < Ty

where T, = 2n+6TR is the pair Thomson optical depth,

I’I\
computed balancing pair production and annihilation rates

(Zdziarski 1986)

[ et Bimax 2
y
3c F(e) v

The fate of a typical positron created with an energy ygmc2

is to radiatively cool down to subrelativistic energies,
where it thermalizes through Coulomb collisions before
annihilating.

’ The pair production rate acts as a continuous injection
of secondary particles, and the continuity equation takes

the form

¥ ar

3amic X’Z j?f [Qo@")*Pn")] dy'

B 4%
4GTLUI5 H(X'Xt)-kj ¥ L)\.(_x)dx:l
X4
Note that, for¢&>l, photon diffusion takes place, enhancing

N(y) = 4.8

the radiation energy density up to x=1 by the factor ~1+T&.

4.2 The case of one generation of pairs
4.2a The model

General solutions of eqg. 4.8 must be worked out
numerically, but a number of approximations are possible in
limited cases, which allows for an analytical solution. Here
I will follow the procedure of Ghisellini (1986).

i) we will take into account only the first order Compton

scattering, requiring U >U§, and flat injections.

B
ii) We will consider sources compact enough to absorb all
photons of energy =x>2 through collisions with photons of
energy x'=2/x. We assume that the electrons and positrons

thus created both have Y¥=x/2. This requires T 1)>1, and

wy
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makes the pair production rate independent on the target

photon density:
P(¥) £ 4n(2y) 4.9

iii) We will consider cases in which only one generation of
pairs is produced, requiring that pairs cannot scatter
synchrotron photons above threshold. This condition reads

-3/10

< 1.27x10%B 4.10

\Kmax
Even if this condition is violated, the emission by the
pairs above x=2 is not important as long as it is smaller
than the emission by the primary particles, and this occurs
for a much larger value of Whax' On the other hand, primary
particles produce photons above threshold by the first order

IC process if

3,-1/4

> 2.65x10°B 4.11

{max
iv) We assume complete Thomson cooling, which requires

4.-1/3

¥max < 2.91x10%B” 4,12

but since we already assumed UB>Ur’ the effect of neglecting

the Klein Nishina cooling is not important, and larger value
Kﬁax can be considered.

v) For simplicity, we assume a monoenergetic injection of

primary particles at Xmax

0fF) = A (-y ) 4.13

max

Similar results should be obtained for flat (s<1l) power law

injections.

Since we consider cases in which the synchrotron .process

dominates the cooling, the power absorbed at x>2 (which
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derives from IC) is small compared to the synchrotron one.
The absorbed power will be redistributed at all energies,
but will not largely affect the total synchrotron energy
density. In other words, pairs will not contribute to the

emission close to the maximum energy of the primary

synchrotron spectrum, X max Taking into account only
synchrotron and first order IC cooling we have
2 ]{‘1 Yra>
N(Y) =  — Ae | Eyydy' 4.14
4G, J s (
TU6 HG-ve) + Ve /U, ¥
s e —
ul o= A Jd [ get 4.15
r Z '5[ et L_]
o= a4 U (4+7) 4.16
T
g
U. = 3L 4,17

3

¥ qwR2c

where Li is the injected luminosity in relativistic
electrons. Above threshold, emission by pairs does not
contribute. Thus, in calculating the Compton photon
production rate for x>2, we can neglect the term involving

pairs in eq. 4.14 and then find P(Y) analytically. The
solution 1is

VZ'c ¥ &% (44 T ) Ui \2 a2 2z ,

- (__ ) Plf) ¥ ‘&A(EL) 4.18
oGy R T ax Wn 7

(e’ =4

P

where a_ is the Bohr radius, ao=5.29x10~9 cm. Note that P ()

is approximately a power law. The logarythmic term enters

P(y) =

£(y)

4.19

here because pairs are created in the tail of the 1IC
spectrum, where we do not have a pure power law. The steady

state energy distribution for the secondary pairs only is

<p
NP (g) + ws‘f/ (g’)_3/2ln(a/p/x')d( 4.20
~



- 44 -

where '{p is the maximum Lorentz factor of the pairs. Since
our conditions prevent Xb to be very large, the upper limit
cannot be neglected, introducing another correction to a

pure power law for Np(jﬁ, making it steeper than 5—5/2 for
approachin
¥ app g Xp

4.2b Effects of thermal pairs

High optical depth for Y- interactions necessary imply
high scattering optical depths TT of the cool pairs. To
derive in a simple way the equilibrium Compton temperature
at which they thermalize, we balance energy losses and gain.
As discussed in chapter 2, downscattering will heat the
pairs, while they cool upscattering synchrotron photons

producing a tail above x with a spectral index dth

smax’
defined by eq. 2.38. Taking into account that downscattering
steepen @(x) by a factor A4 =0.5 and Ur(x) by a factor Dd=]

between l/m% and 1, we have

I

NXsymmax
(e¥-1) [{(x)ax /€(x)(1—x"l)dx 4.21
®e 4&3
where the Comptonization parameter y=49T€“ In the case in
which the IC radiation by primary particles dominates the
emission above l/@% we have

o= 2 eﬂl“ ____rﬁ*"i b S"“"‘) -4 )2] 4.22

T2 T}
T3

Another interesting parameter is the pair yield § which is
defined as the ratio of the energy in rest mass of pairs to
the injected energy. Measuring the efficiency of converting
into pairs the injected luminosity, ﬁ.is directly related to
the annihilation 1line luminosity. For monoenergetic
injections

j‘wf’w)dx
| v

dl
A

i

14

L)
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where Ci is the dimensionless injected luminosity. It is
interesting to note that, for a given QL,‘TT and,f have a

maximum when

15 4

B = 1.2x10 ¥ max 4,24
Using this relation, we find that the maximum"franges from

8.2% to 1.5% as Ur/UB decreases from 1 to 0.1.

4.2c An example

Our model is completely specified by four parameters:
the radius of the source R, the magnetic field strength B,
the energy of the injected primary electrons Tnax and the
injected luminosity Li’ or equivalently, €i.

In fig. 8, #(x) 1is plotted separately for each
contribution to the final spectrum for the following choise
of parameters: L51047erg/s, B=4000 G, =1000, and
R=3x1012

From the figure is apparent that pair production effects

¥ max
cm, corresponding to @=900.

strongly influence the shape of the spectrum, even if most
of the luminosity comes from emission produced by the
primary electrons. Pairs are marginally important in the
lower energy part of the synchrotron spectrum, due to the
fact that radiation is heavily self-absorbed in the energy
range where synchrotron emission by the pairs could
dominate. For the IC spectrum we have four contributions,
corresponding to the scattering between primary electrons or
pairs with their synchrotron photons. For the chosen values
of fig. 8, the scattering of pairs off primary electron
synchrotron photons is dominant up to x=lO~2. In fig. 8 we
plot also the comptonized spectrum calculated using eqgs.
2.38 and 4.22. The optical depth for scattering is T@¥7.8,
while the equilibrium Compton temperature is © %9,8x10”%,

giving dth~5. At x=l/¢%¥l.6xlo_2, the spectrum steepens due
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Fig. 8 SSC spectrum corresponding to monoenergetic injection

of electron with ¥=1000. R=3x1015cm., L=1047erg/s,

B=4000 G. x is the dimensionless photon energy

measured in units of mc2. The labels correspond to:

@2=primary synchrotron and Comptonized spectrum made
by the thermal pairs.

6p=synchrotron made by pairs

gCO=IC from primary electrons scattering primary
" synchrotron

gOp=IC from pairs scattering primary synchrotron
é’EO=IC from primary electrons scattering pair

synchrotron
€§p=IC from pairs scattering pair synchrotron
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to downscattering. Even if we assumed that each photon above
x=2 makes pairs, a high energy tail is present, due to the
emission from the surface layers of the source. For energies
X greater than 2, the emerging radiation has a slope o(x)=2
A(2/x) (Svensson 1984). Further absorption is expected for
this high energy radiation passing the X-ray photosphere,

but it is not shown.

In fig. 9 the sum of all the contributions to €(x) of
the previous case is compared with the SSC spectrum deriving
from a source with the same size and magnetic field, but
With %Rax=333 and L=3.3x1046 erg/s (i.e. same number of
primary electrons are injected as in the previous example).
In the latter case, no photons can be emitted in the first
order IC above x=2, and no pair can be produced. Note that
the IC spectrum has not the same shape as the synchrotron
one, due to the discontinuity of N( ¥y ) caused Dby
selfabsorption.

Supposing that in the source T{max istantaneously
increases from 333 to 1000, all other quantities remaining
the same, the observed spectrum changes as in fig. 9. At 1
keV, an increase of a factor of ~4 in the monochromatic flux
density will be observed, in a time that is the escape time

from the source: At%(1+T, )R/c*10 days. At the same energy,

the spectral index steepeés from d%=0.85 to dx=l.l. A larger
increase both in intensity and spectral index is expected in
the comptonized region of the spectrum, that in fig. 9
dominates the emission between xsmax=l.2x10_4 and x=3x10“4.
It is important to note that further effects can occur
on timescales shorter than the escape time. In fact the
enhanced photon trapping can initially decrease the observed
lunminosity in the example made, as shown by Fabian et al.
(1986). On the other hand, since pairs annihilate in the
timescale shorter than the crossing time R/c for T&>l, more
rapid variability is expected when the source switches from

a pair dominated to a pairfree state. The minimum observable
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Log x

9 Curve A is the sum of all contributions shown in

fig.1l.
Curve B is the SSC spectrum corresponding to

monoenergetic injection of electrons with §=333.

L=3.3x1046erg/s, and B and R as in fig. 1.
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variability timescale is however R/c.
4.2d Discussion
In fig. 10 the region of the parameter space allowed for

47erg/s (€i§900),

and for monoenergetic injections at Ymax: Lt is constrained

our model is shown for R=3x10150m and Lizlo

by the requirements: 1) Ui/UB<l (thick 1line), 1ii) the
maximum energy of the first order IC spectrum is greater
than 2 (dotted line), and iii) the optical depth for Y-y
interactions, fvu(x% is greater than unity at the threshold
x=2 (dashed line). Also shown is the function corresponding
ﬁo the maximum pair yield Eﬁax (dash-dotted line) and the
line corresponding to 7Gmxxsmax=3/4’ that is the limit for
complete Thomson cooling (thin line). Note that Ui is
increased by the trapping pairs, so that the limit Ui/UB = 1
does not correspond to a straight line in fig. 10.

In general, for any given Y

max’
increases lowering the value of magnetic field, as a larger

the importance of pairs

fraction of the injected luminosity comes out at high

energies. In particular, for Ui/UB<l and low very few

7fmax’
pairs should be present in the source, produced by the
second and higher orders IC scatterings, that becomes
important only for Ui/UB>l.

On the other hand, for high ¥ max and U?/UB<1, Ty x)
becomes greater than unity only at x>>2. Furthermore, Klein
Nishina effects start depressing the radiation emitted at
high energies, even for the first order IC process. Both
these effects decrease the number and the importance of the
produced pairs compared to the injected particles.

The region of parameter space in which pairs are more
imnportant is the one between the 'threshold line' and the
line beyond which Klein Nishina effects becomes to affect
the emission of the first order IC. Part of this region
fulfills the requirements to derive the final self

consistent spectrum analytically, and we have seen in the
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Fig.
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Lod Ymax
_n47 _ 215
10 The parameter space for Li~10 erg/s and R=10 cm,
corresponding tc»%f@OO. Monoenergetic injection at
Zmax is assumed

. . . }=3 _ .
thick line: Ur/UB = 1;
dotted line: j% = 1
dashed line:ﬂ%x(2) 1;
dash dotted line: izfmax;

thin llne:‘xmaxxsmax = 3/4.
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example of fig. 8 how pairs modify the emergent radiation
from the source.

For Ui/UB<l’ pairs do not affect the region of the
spectrum where most of the luminosity comes from, but have a
great influence on the whole X-ray band. For Ui/UB>l, we
expect pairs to play an even greater role in reprocessing
radiation from higher to lower energies, eventually leading
to a spectrum characterized by the spectral index «%1 in all
bands, as suggested first by Bonometto and Rees (1971).
Here, with only one generation of pairs, the spectral index
in particular bands (i.e. X-rays) can be steeper than 1,
either because of logarithmic dependences of P(x), or
Because of up- and down-scattering.

In fig. 10, the 'threshold line' marks the boundary
between a region in which the source is almost pair free,
and a region in which high densities of pairs can be
reached, with all the effects described above. Starting from

this pairfree region, a small change in - can produce

dramatic effects in the X-ray band. We woul£M§1ke to stress
the possible relevance of this threshold crossing effect as
a cause of large observed variability in AGNs, present in
both soft and hard X-ray bands. As can be seen in fig. 10,
for particular values of the magnetic field a change in
Yoax can even change the dominant cooling mechanism,
producing large variability also in the  synchrotron
spectrum, besides the changes induced by the synchrotron
radiation emitted by the pairs.

The derived analytic solution is valid for a small
region of the parameter space, due to the requirement of
having Ui/UB less than, but close to, unity, in order to
have high enough X-ray compactness to absorb all photons
above threshold, still neglecting higher order Compton
scatterings. However this solution can be useful 1in
understanding numerical results in the other regions of the
parameter space, and particularly those correspondent to
Ui/UB>l' where pairs are expected to play an even greater

role.
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Conclusions
In this study, it is found:

i) Assuming no reacceleration, and considering only
synchrotron and Compton cooling, an injected distribution of
relativistic particles reaches steady state in a time tcodﬂ
that in compact sources is shorter than the escape or the
annihilation time. The optical depth T% of the relativistic
particles cannot be larger than unity, independent of the
number of injected particles, and approaches unity in the

case of steep injections (s>2).

ii) In the case of flat injections and dominant magnetic
field,(UB/Ur>l), the 1IC spectrum is steeper than the

synchrotron one in a large range of energies.

iii) The spectral index of a steady, uniform, compact source
without reacceleration can be flatter than 0.5 only if the
Klein Nishina dimming is important, requiring U, /Ugp>1 and
large Wﬁax'
iv) In the case of steep injections (s>2), Compton losses
always dominate the cooling, independently on the ratio
UB/Ur’ provided that the cooling time is shorter than the
escape or the annihilation time, and that no reacceleration
is present. In this case the spectral index of the emitted
spectrum is always flatter than unity below x=lﬂt§, and
steeper injections correspond to flatter spectra. In these
conditions cool particles are always important as their

Thomson optical depth T, _>0.3. Even for large dimensionless

T

compactnesses ¢ » Ppair photoproduction is not important in

this case, as the y-ray spectrum is steep

v) Including pair production in SSC models requires, in

general, a numerical approach, but in a restricted range of
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parameters analytical solutions are posSible. In this range,
the effects of both relativistic and thermal pairs have been
shown. It is found than in particular cases the source can
switch from a pairfree state to another state in which
copious pair production takes place, with  important

consequences on the intensity and spectral shape
variability.
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