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INTRODUCTION

The dual string models are today seriously regarded as reali
é;ic éénéiéééeé for unified theory of all interactions. This is
due to the problems encountered in constituing unified theories
based on supergravity models and to the proof that the type I
superstrirﬂtheory is anomaly free if the gauge group ié S0(32).
The lenght scale of the théory is 10_33 cm and the energy scale
is the Planck mass 1019 GeV. So there is a problem for the con
nection of the string theories with high energy physics experi-
ments that are performed at energies 102 GeV. The other main
problem for this connection is that the superstring theories are
valid in a ten dimensional world; the compactification of the
Six extra dimensions has been postulated but it can occur in ma
ny possible ways and therefore one looses the predictivity of
the original theory.3zBut, apart from these problems, there are
very interesting aspects in the string theories. They provide,
in fact, a quite unique and probably finite quantum theory uni-
fying the gauge theories with general relativity. Furthermore,
unlike gauge theories or general relativity, where the gauge bo
sons can be eliminated by switching off the gauge interaction,
in the string theories one gets the gauge symmetries for free
and in an absolutely natural way. This makes the string theories
very interesting.

In this thesis we consider the theory of bosonic strings in
26 dimensions; the attention has been over all devoted to the
methods of constructing the vertey Operators and hence of com-

puting scattering amplitudes for open and closed strings. This



is'performed in an operatorvformalism. The basic ingredient is
the representation theory of Virasoro algebra,vwhich is a manife
station of the conformal symmeﬁry of the theory. The vertex ope-
rators, through which the scattering amplitude are constructed,
are determined , in fact, by requiring definite conformal tran-
sformation properties on the interaction action operatpr.

The thesis is organized as follows:
- the first éhapter deals with the free bosonic string theory
and:d its quantization in the light-cone gauge;
- the subject of the second chapter is essentially about the ge
neral properties of a two dimensional conformal invariant theo-
ry, the machinary of which can be applied}to the string theory.
In this chapter, moreover, is also considered the covariant quan
tization procedure comparing it with the light-cone oné;
~ the general results of the second chapter are utilized in
the third chapter, where the problem of the interacting string
is faced. After having discussed the problem of determining the
vertex operators for a bosonic string, it is considered the pro
blem of constructing scattering amplitudes for open and closed
strings;
- in the last Chapter are reported some explicit examples of

calculations, by using the results of the chapter III.

- I1 -



Chapter I

FREE BOSONIC STRING AND ITS QUANTIZATION IN THE LIGHT-CONE GAUGE

§ I.1 - FREE BOSONIC STRING

A bosonic string is described by the following action [1]

ee
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2 s

xh (T , 6 ) describes the position in the space-time of the string;
the variables & and T are arbitrary variables that parametrize the

world-sheet of the string: the spatial coordinate & labels points

along the string and it is conveniently restricted to the interval

O £6<¢ W , while T is a time-like evolution parameter; = _j~,,~
AL IE
(in the following we will use units where Ti=<=4) is the string

tension with the parameter oL ; ldentified as a Regge slope, having
dimensions of lenght squared; NI{AV is a space-time metric that is
conveniently chosen in the D-dimensional flat Minkowski space:
NU*V = (1, 1, «v. , 1, -1) ; (1.1.2)

gd$>(6‘ » T ) is a two-dimensional auxiliary metric defined on the
world-sheet of the string and g and gd(B represent respectively the
determinant and the inverse of gd‘{.s . The indices & and @> take
the values O and 1 referring to the T and 6 directions. Corre-
spondingly, derivatives 9, stand for 2/9T and QyQDc“ .

The action (I.1.1) can be regarded as describing a two-dimensio-
nal field theory with a set of D massless fields interacting with
an external gravitational field. In this case the D-dimensional Lo

rentz index plays the role of a flavour index.



The fact that (T , 6 )= (€°, ¥*) are arbitrary variables cha-
racterizing the world-sheet of the string is reflected in the inva-
riance of the action (I.1.1) under an arbitrary reparametrization

of them, that is to say, under the following transformations:
B(E) = € (F) o (%) (I.1.3a)

- &% I.1.3b
ol . . - . . ol
where & ( § ) are arbitrary infinitesimal functions of §' . Vary-
ing (I.1.1) with respect to g“@ gives its classical equation of mo

tion:
f\}cé‘wa = 9,\7(-’5@*4.—%6}%(5%53 @K‘,& (’)81: o (I.1.4)

which exprimes, therefore, the vanishing of the two-dimensional ener
gy-momentum tensor. This is a consequence of the fact that, because
of the reparametrization invariance, there is no physical degree of
freedom in the two-dimensional space of the world-sheet of the string.
Taking the square root of the determinant of each side of (I.1.4)
shows that g“ﬁ may be eliminated algebraically via its equation of

motion leaving the Nambu- Goto action [27] :

{
H

5(«,&*\) = -1 jqf&dd \ —A&Y(‘Doﬁm)@&x (I.1.5)
So the two class$icadl actions (I.1.1) and (I.1.5) are completely equi
valent. The action (I.1.1) has the advantage to be guadratic in the
"matter field" x!* and therefore the functional integration over
in the quantum theory can be easily performed.
The action (I.1.5) has the physical meaning of being proportional
to the area spanned by the string: it is the most natural extension

to the string of the action describing a spinless free point particle:

S = —wme &\J—u‘& 4T (1.1.6)



that is proportional to the lenght of its world line. T is an
arbitrary parameter describing the motion of the particle; it does
not have any physical meaning since (I.l.6) is invariant under an
arbitrary reparametrization T —p» f£f(7T) and the identification of
T with some physical parameter corresponds to a gauge choice for
(I.1.6). For example, in this case, a possible gauge corresponds to
taking T proportional to time. Hence also in the case of the string
one can introduce the notion of a gauge invariance, identifying the
latter with as precisely reparametrization invariance of (I.1.1).
Using this property one can choose for (I.1.1) the conformal gauge
characterized by:

Yep = Mot p(¥) (1.1.7)
with

Moo = = Maa= -4 (1.1.8)
The justification of this choice lies in the fact that, although the
action (I.l.l) describes a string moving in a D-dimensional Minko-
wski séace, it can also be regarded as a general invariant two-di-
mensional theory so one can apply all the machinery of the two-dimen
sional field theories to the string theories. In the conformal gauge
the vanishing of the two-dimensional energy-momentum tensor implies

the conditions [3] :

W r Den= O (1.1.9a)

Ux Ugw + Vg x O x = O : (1.1.9b)

This is equivalent to choose an orthonormal system of coordinates on
the world-sheet of the string and this is the reason why the confor-
mal gauge is also called the orthonormal gauge. In this gauge the La

grangian in (I.1.1) linearizes, defining a conformal invariant theory:

= - T g, xM ot n (1.1.10)
— d - Ll e
9 "



From this Lagrangian one can derive the equation of motion:

(ﬁ—ZLBJ‘:O

L (1.1.11)
with the following boundary conditions:
Q M : —
T =0 QG T=Tr
for an open string and
(T, 0) = W (T, ) (1.1.13)

for a closed string.

The boundary conditions (I.1.12) and (I.1.13) are necessary in order
to drop surface terms in obtaining the equation of motion.

Let us introduce now the notation:

W
) = %g (O de (I.1.14)

O

for the "centre of mass" coordinates of the string and let pﬁ be
be the total D-momentum of the string. Then, the most general solu
tion of the equation of motion with the previous boundary conditions

can be written in terms of the string normal mode expansion:

el AT T
. A ¥ X . \,“ Iyl -\
(@)= QM LT - k(&‘)‘g Lunﬁm?r — LS\AQ‘(I.LB)
2

for an open string and

, A2 - L (TH6) o - Lin ()
e 4 ¥ (o —awto +
WHE T = C\‘*—k—«?;a& pr z(&\)LE‘ﬁLq“ (e antole (I].l.lG)
. T 2.\ w — sz-\ T
~£ @t T A [aWe e O Foy &
W3 N

for a closed string. It is possible to introduce some new variables

which allow a certain simplification of the notation:

LAy
ok \
() . wy, L w>o

. (I.1.17a)
oLy = 2o’ P if w=o0 (1.1.17b)
(,2@‘53\1 \V\\% oj‘“\,\ v weo (I.1.17c)

In terms of these variables and putting L' =% , one gets:



; d ] —uT cosw 6§
W(ETY = qF P4 ¢ VEO%; 2 " (I.1.18)

for an open string and

- s P -2in G ~
Xk(qt\:qb*' ?\* L‘\'.‘.’E —,ltdne. " )'bd

| A -
Fwion we (1.1.19)
w

for a closed string, where the quantities clﬁﬁ are defined in ana-

logous way to the xt\ones:

32
(2" ) T o,

" if nyoO (I.1.20a)
:(. -
w Vo
ol P if n= 0 (I.1.20b)
. S
(G )2 0T a¥f if n<o0 (1.1.20¢)

The choice of the conformal gaucsz joes not fix uniquely the gauge:

one can indeed still perform gauze

transformations preserving the

conformal gauge. These are the conformal transformations which ha-

ve the same form of (I.1.3), but are characterized by a parameter

é"‘(%) satisfying the conditions:

et abe* - Pl epz 0

(1.1.21)
By introducing light-cone coordirz:-as
- = (1.1.22a)
<= e®xet
(I.1.22b)
Do AR s
:— C>‘53_ ‘7?_4_3 (I.l.ZZC)
©g L \ax L3

the conditions (I.1.20) can be written in the following way:

€t = o - = G

0
- (1.1.23)
QE’ qﬁg"’\‘

This shows clearly that the transformations that preserve the con-

formal gauge are characterized by two arbitrary functions é*(}ﬁ)

and €7(¥7) , that transfobm the variables £ as follows:

S?S—*%: et (-%T\) (I 1.24a)

-5 -



537 = ¢ (¥) (I.1.24b)

In the case of an open string further restrictions must be imposed
on these functions. The end points of an open string are indeed pa
rametrized by the values G:I%TT and therefore one requires that

this parametrization is not changed by a reparameﬁrization. Since:

S(T+s)= 3+ 3(e) = e+ (%) (I.1.25a)
§(T-a) = 3(TY-3() = € (%) (1.1.25B)
it follows:
5q = é‘t’:‘\‘ct-\-c‘)_ e (T-5) ] (11.26)
Requiring the condition:
o =0 (1.1.27)

§=0x

implies that the two functions €Y and €~ are restricted by:

€ (T)= € (T) = €(X)

(1.1.28)
and
-t = €Y (T+T\ =
€ (R-my = €7 (T4 =D (1.1.29)
=b O €CT-T) R (T W)

The generators of the conformal transformations that leave unchanged
the parametrization of the end points of the string can be written
in terms of the two independent components of the two-dimensional
energy-momentum tensori}
Le= Aﬂg do {(%%‘\-%K) (Tra) e (T+q) +
(2. ?b;t) (v-s)ect-¢)}

@
One must observe thaLC;? *‘3W5L are only functions of TI& respe-
A

(I.1.30)

ctively: in fact the equation of motion (I.1.11) implies:

CRENP)
S -
el muﬁﬁmﬁ Q&B“D (I.1.31a)

(cf ‘b‘t} o0 @L)‘ (1.1.31b)

Hence:



(B+2)(&- 20

ot AT A (1.1.32a)
2 _ DN . By 2 _ 0
2T, 6&) ch“'(a“oz) - (I.1.32b)

These equations express the conservation of the two-dimensional ener

gy-momentum tensor. They imply also that I,e is indepent of T .

Since: o= - . '
o' L3 Z\Y\—/\{q‘;e -LCEN\:\Q,‘“T} Cosn @
QT M=y (I.1.33a)
and ™ = S Y y (wf .
(}1_ : : \/\{C\,“Q 'C\*V\Q ES\\AV\G
o= - = ‘ (I.1.33b)
20 W=
one gets:
(+ 2P (T oY= (n-xYo (T, - )
e f t (1.1.34)
where
% = o Wz (I.1.35)
T— G v
©C
The generators Lé can therefore be written in the following way:
X 2
Le= &’X ge«um‘\ (T+s) €CTr6) (I.1.36)
S5

Since there is complete symmetry between T and ¢ , it is possi-

ble to integrate over U instead of § and put 6=0 . Furthermore

Mo~
using the boundary conditions % 8 =o ;, one has:
_— o5 —
\ 3 . g=o,1
Lea 1( ST 1T (YT (1.1.37)
AN )
-1

By using now the expression (I.1.33a) written for §= O and choosing

T = eVt | it ‘s -oesible to write:

\-+oo " W
' ,
L= 5 MZ:,-AO&“-W\. oL | (1.1.38)
(T
Finally in terms of the variable z =2 one has:
A wa o' On
Lw= & %Ai% {—l OR OAn
W - 2, %1 21 (I.1.39)

The confeormal invariance is a residual gauge invariance correspon
ding to the reparametrizations leaving in the conformal gauge. In

other words, by fixing the conformal gauge, one still has a partial



freedom in performing parametrizations of the world-sheet. These pa
rametrizations correspond to conformal transformations. The genera-
tors of this residual invariance are identically vanishing, as it

can be deduces from the condirions (I.1.9). Therefore one has:
L—v\: O : (I.1.40)

for any integer n.'

For the closed string it is possible to make analogous considerg
tions. In this case the generators of the conformal transformations
are characterized by two independent functions é#(x*ﬁﬁf'GCT*%$> and
& (T Fs%tv«?nd they have the following expression:

Le= S}Kg}@(wwﬁ (Txs) £(Tra) 1 a)

AN . 2, -

Le= -5-& da (% -w) U—cyecc—cr) (1.1.41b)
gnlo

The previous generators can be written, in terms of the variables

2\§"' - Z,CE—-

Z = 2 and z = g  in the following way:

A L SWRL T L7
L\r\:—z-ﬁ\,%c\xttv\ L—Z(%"% j

(1.1.42a)
Lus= ‘%é" - ‘DM\‘ (I.1.42b)
" 2 \
where the relations:
U L DU 2 /%
e +<bk -46% ( %3 (I.1.43a)
-~ A~ z“
(?;; 2;) = -~ 462 (%) (I.1.43b)

have been used and it has been putéCHG): 2" and‘Z(T—G): R
In terms of the harmonic oscillators introduced in the explicit so

lution of the equations of the motion for a closed string, one has:

Eoz o
L\"" meTnem (I.1.44a)

7z ™
T ~—;J Loy - m

307

(I.1.44Db)
h_osw
where the zero mode is given by oo = %o = PV /g

Finally also for a closed string the conformal generators are



vanishing quantities:
L =L =0 (I.1.45)

for any integer n.

§ I.2 - CLASSICAL MOTIONS OF OPEN AND CLOSEb STRINGS

An allowed motion for an open string is described in the following
example. Let us consider a straight open string of lenght 2a rigidly
rotating in the plane 12 around its centre. The coordinates of the

string are given by:

a cosg cos % X =20
1 3 (1.2.1)

a cosg sin T X =ct = aT
2 0

where r = a cos@ 1is the coordinate along the string that ranges from

X

X

r = -a tor =a if D454 .

The end points of the string move at the speed of light since:

daly (Bt mel 2
Ndv ER, R if r =a (I1.2.2)

The equations (I.2.1) satisfy the equations of motion (I.l.11) and
the boundary conditions (I.1.12) together with the orthonormal gau-
ge constraints (I.1.9). It follows that the motion described by
(I.2.1) are allowed for a string.

The energy per unit lenght of the rotating string is given by:

<

—-afd r< a (1.2.3;
ﬁ" \{L/‘x =
d sal

=

corresponding to a mass:

\ O — \ —_—
m = ES T2z Wa (I.2.4)

-
On the other hand the angular momrntum of a rigidly rotating string

is given by: N
Y T (xYa)dr

_ 2
32( = &T T ¢ (1.2.5)
B R
SVeET

- 9 -



By comparing (I.2.4) with (I.2.5) one gets the following relation
between mass and angular momentum:

J=ol'f " n : (1.2.6)
with

L= A/gmTRS | (1.2.7)
These relations have a general validity impiying that the states of
a string lie on linearly rising Regge trajectories. (I.2.7) gives
the relation between the Regge slope and the stfing tension. When
one exprimes T versus o from (I.2.7) and substitutes the obtained
relations in the original action (I.1.1), then it is possible to no
te that the Planck's constant ‘A already appears in the classical mo
tion.

Anothér interesting feature of a string is that, if one puts a
charge g at one end point and computes the gyromagnetic ratio G one
finds the result that G = 2. The string has therefore no anomalous
magnetic moment. This property can be checked for a rigidly rotating

string, that generates a current given by:
j =g = (1.2.8)

corresponding to a dipole magnetic moment:

= A
\4 = (1.2.9)

_— 2
where A = W\ a is the area spanned by the string.

Inserting (I.2.7) in (I.2.8) one obtains:

3 61= 42

t.\ vac Z

Hl

(1.2.10)

Substituting the prevoius formulas for m and J, (I.2.4) and (I.2.5),
one gets the final result:

G =2 (I.2.11)
This result holds for an arbitrary motion of the string. Finally it

is possible to show the following relation between the slopes of o-

- 10 -



pen and closed strings:

\ - A o(‘
clesed ~ 5  okrw (1.2.12)

By following the same argument used for an open string one can easi
ly see that an allowed motion for a clésed string is the one consi-
sting of two straight open étrings attached at the end points and
rotating together around their common centre. Since ?he energy den-
sity for such a closed string is twice the one of an open string,
its mass will be four times the mass of an open string:

2 2

= 4m 1.2.13
closed open ( )

On the other hand, its angular momentum is twice of that of an open
string:
= 24 (I.2.14)
closed open

Combining these two relations gives:

o = (I.2.15)

Lo\
closed o open
As for the open string, these motions correspond to states lying on

linearly rising Regge trajectories.

§ T.3 - QUANTIZATION OF THE FREE BOSONIC STRING IN THE LIGHT-CONE

GAUGE

It has been already shown that the choice of the conformal gauge
does not fix uniquely the gauge. In fact it is still possible to per
form conformal transformations remaining in the conformal gauge. A
possibility of quantizing the string theory is to first fix comple-
tely the gauge in the classical theory: this procedure reduces the
number of degrees of freedom and eliminates all redundant variables
Then one has only to assume canonical Poisson brackets for the inde-

pendent variables. This leads, when quantized, to a positive metric

- 11 -



space, but the procedure is not explicitly covariant - A conve
nient way of fixing completely the gauge is choosing the light-cone

gauge characterized by the condition:

+ vt
X =24p (I.3.1)
where .
+ D + -1 ’ '
X- =X - xD ' (1.3.2)

This is a possible gauge choice 2inside the conformal gauge both for
.the open and for the closed string.
Let us show this first for a closed string. For a closed string
the most general solution of the equation of motion (I.1.11) with

the boundary conditions (I.1.13) can be written as follows:
ﬁ%xpj:¢“Uacy+¢“tvc)+%?VCD%%+59“QT~G§ (1.3.3)

where c‘;V‘ (T+ag ) and ‘{EV (T~ & ) are periodic functions of
with a period equal to 2W . Under a conformal transformation'&“CTAS)

transforms as follows:

S = €T (Tre) L M em (r-ay 2 (1.3.4)
FT %"

whereéXIﬁGjare also periodic functions with a period equal to 2.
Therefore by performing a suitable conformal transformation with pe
riodic functions ei (T + § ), it is possible to put one component
of xU (T /S ), for example x+, in a form where &' =%% =0, obtaining
so the form proposed in (I.3.1). In tne case of an open string the
two functions appearing in (I.3.3) and (I.3.4) are not independent:
they are both periodic with a period equal to 2T and they must’be
identified so ¢Cf)=:£Ct>and EYK}ZE"(Y). Therefore it is possible to
choose the gauge {(I.3.1.) also for an open string.

In the light-cone gaugz the only independent degrees of freedom
are the transverse ones, which can be assumed therefore as the only
dynamical variables. This is so because through the constraints (I.
1.9) and the choice (I.3.1) it is possible to fix X as a function

1 R
of the transverse components x (i =1, ... , D-2), that are ortho

- 12 -



+
gonal to both - directions, in the following wayv:
- 2 2

X = 1 {(x. + x') (I.3.5a)
-— i i
+
2p
- - 1
x' = 1 . x! (I.3.5b)
1 .
+

Hence when the xi(U',T) are known, also x 's are known up to an
integration constant.

Since the Hamiltonian of a system is the conjugate variable to
the evolution parameter, in the light-cone gauge, where the evolu
tion parameter T is proportional to x+, the Hamiltonian will be pro

+
portional to p , being the latter the conjugate variable to x .

From the flagrangian (I.1.10) one gets:

P = k_ (1.3.6)
o
Hence, considering (I.3) gives:
A (N T2 v
ﬁ?_=¥ﬂ=-—\ éGLX;+‘x;1 ‘ (I.3.7)
3T g
" This Hamiltonian can be obtained from the action:
< = T( 4~ L Lo YRS o N
= - ES@LX <5 T g W (1.3.8)
<~ c

that is equal to the action in the conformal gauge written only for
the transverse degrees of freedom. By using the gauge choice (I.3.1)
in the general solutions (I.1.14) and (I.1.15) and remembering the
definition of &ﬁq(l.l.l6), one gets:
120 wnzo (1.3.9)

for an open string and

°£+v\:‘;¢'+v\:() N (1.3.10)
for a closed string.

Furthermore the oscillators il\ can be written in terms of the

transverse ones by (I.3.5) in the following way:

-+ oo
~ - \ ! [y ;
J\,\_ ‘—2-—+v)“;:_>g°¢n-m°lm ; nio (1.3.11)
¥

- 13 -



for an open string and

+ 00
- A \ 1 .
dnz = O Lo (1:3.12a)
4 po . “#D .
w2 .2_1 L L Zm (I.3.12b)
pr M- p

for a close string.
Furthermore the equations (I.1.39) and (1.1.44) will determine
p— as a function of p+ and of the transverse degrees of freedom.

All this shows that the only independent oscillators are the tran
sverse ones and therefore, in the 1ight—cone gauge, the only indepen_
dent degrees of freedom are the transverse oscillators supplemented
by the centre of mass variables qb and pk . At this point one can
proceed to quantize the string theory keeping only the physical degrees
of freedom d; ,C61and ?V .

The open string can be quantized by imposing the following commuta
tion relations:

\ ) 0
[, o = n SM\M;O (1.3.13a)
T . v
[a") ®¥ = ool (1.3.13b)
In the case of the closed string the following commutation relations
must be added for the oscillators ;‘Q:
= =0 ey < . 3.
Lolh\ Li\=z n§ Ontm o (I.3.14)
The spectrum of the open strin is obtained from the Hamiltonian (1.3.7),

that in terms of the oscillators is given by :

00
-~ AT Vot \ *\'\' \
P*? - 2 LP ? + Z z;-\\h‘:\ V\O“V\*' ('] (1.3.15)
or, equivalently, from the condition:
z = 4 \
LQ: _E— e E\Y\C& \(\C\.\y\: - C (I1.3.16)
2 \

where an arbitrary constant ¢ has been introduced in order to take
care of the normal ordering of the harmonic oscillators and, hence,

of the quantum definition of LO. The value of the constant ¢ is gi-

- 14 -



ven, as the usual theory of the harmonic oscillator suggests, by

the zero pint energy. For the string this value is given by

e}

: po
c= D-2 )n (1.3.17)
2 i
and therefore it is formally infinite; it rises out the problem

of regularizing it. A useful reqularization scheme is the one
that makes use of the S'—function regularization. This amounts
to replace (I.3.17) with

s -5
c=D-2 1lim I n "=

2 Ss=-4!
= béz JSL_\;,L?P«(SB (I.3.18)

where EEQ(S) is the Riemann S—function, that is an analytic
function for s= -1. Its value is given by [&7] :
gcl;\k -1/12 (I.3.19)
Inserting this value in (I.3.18) gives, for the zero point ener
gy, the following value:
c=- (D~ 2)/24 (1.3.20)

and therefore one can rewrite (I.3.15) in the following form:

V‘
2 . oo
(M) = Lonaf,al, (1.3.21)
where
2 vul
(M )= Lo+ M (1.3.22)
with
2 2
o/lf =D-2 M = -p (1.3.23)

o
24
In the light-cone gauge the theory is not anymore manifestly
Lorentz covariant and therefore one must write the Lorentz ge
nerators in terms of the transverse oscillators and check that

they satisfy the Lorentz algebra.

The quantum Lorentz operators are given by:

oo B .
ij ij \ S y 8
Jj=1j—iZT‘q(°‘—v\°‘v\-°‘_V\°¢m (I.3.24a)

— +—
572 (1.3.24b)
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J = 1 (I.3.24q)
. . (4_\“{\«-'4;\&‘.\,\) (I.3.24d)
where
1“vgq“p”— g pt (I.3.25)
and %y, is given by (I.3.11). The algebra of these operators co-
incides with the Lorentz one olny if:
oL, = 1 (1.3.26)
and
D = 26 (1.3.27)
These are therefore the only values of cio and D that permit
to preserve the Lorentz invariance in the quantum theory. Ta-

king into account these values, the spectrum of the string sta

tes masses is given by:
2

o'y =N -1 (1.3.28)
where
2 +1
N L na a (I.3.29)
n=. n n
The lowest state N = 0 is given by the vacuum \ Of;of the oscil
2
lators and corresponds to a tachyon with M = -1/o' . The follo

2
wing level N = 1, corresponding to M = 0, is given by the state
*
al ,IO) ; this describes the transverse components of a massless
;1
spin 1 particle {("photon").
At the level N = 2 there are two states:
+ +
a a_ .10 (1.3:30a)
1i ljt >
and
al | o> (I.3.30b)
21 5
that describe a massive spin 2 particle with M = 1/o2' .
Because of the disappearance of the time component the space of

the vectors
\

oo - Y
T ( LY\‘_“B \o> (1.3.31)

n=,y
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has definite positive metric. The states of the string are hence
described by purely transverse oscillators.

Since Lorentz invariance holds in the centre of mass frame, the

states of the various levels must be classified according to the
representations of SO(D-1). The number of states appearing at the

level N = 2 is given by:
- - -2 +
(D-2) W,opno9 =0 ) (D)

( 1.3.32)
2
and this coincides with the number of components of a spin 2 in
-\
SO(D-1) given by gﬁﬁé—) - 1.

The degeneracy of the states at an arbitrary level can be obtai

ned from the partition function:

P A >-2
fx) = A T ( ) (1.3.33)
x N= A=

that is obtained from 4 o
t \
- EMKM%%)
fix) = v (! (I.3.34)
where the term -1 is associated to the zero point energy. From

(I.3.34) it follows that, if the level N is fixed, the degeneracy

Td(N) of the states at that level is the coefficient of the power

X in the expansion of (I.3.33) in power series around x=0:
o
foy= 2 T Tagey o™ (1.3.35)
A w0

where d = D - 2. The function f(x) is the so called "partitio nu-
merorum”.

In the quantum theory of a closed string one can proceed ana-
logously as in the case of an open string, getting the spectrum
from the conditions (1.1.45) that imply:

L -1=1L =1=0 (1.3.36)
o] o
where the arbitrary constant ¢ and the space-time dimension D have

been chosen as for the open string in order to have a Lorentz in-

variant theory.



By summing and subtracting between themselves the relations (I.3.36)

and taking into account that

t - d\ - &
dc\osn.é - ‘Z - :\ : (1.3.37)

one gets the following equations Characterizing the spectrum of a

closed string:

2
2+, m” = 2n (1.3.38a)
N = ¥ (I.3.38b)
where
= +C a0
V= Zinat, aly, (1.3.39a)
and
Do .
N=2Dwa* 3 (I.3.39b)
1
2
The lowest state of the spectrum is a tachyon with mass m" = -ézﬂiz

described by the vacuum |O>
The first excited level containing massless states is described
by the states:
+ -+
211 215 D) (1.3.40)
The symmetrlc and traceless state corresponds to the graviton, the
state Z: aﬁdJ i\ Ot)corresponds to a dilaton and finally the an
\—I
tisymmetric state describes an antisymmetric tensor.
In this case the degeneracy of an arbitrary level can be obtai
ned from the "partition function"-

{ lu D-2
Fiys — (a9 = X
2w o t—z\ n \ [4 2" (1.3.41)
S

where z = ee. .
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Chapter II

TWO~DIMENSIONAL CONFORMAL INVARIANT THEORIES

§ IT.1 - CONFORMAL INVARIANT THEORIES

A D-dimensional conformal invariant’ quantum field theory is cha
racterized by the existence of a conserved symmetric and traceless
energy-momentum tensor [ 4] :

Qyiﬁ = Ghe
v o
st) P = 'S w= O

(11.1.1a)
(I1.1.1b)

. [~ .
Denoting by ‘§ ,a=1, 2, ... , D, the coordinates, one can show
that the theory, under the conditions (II.1.1), is invariant under

the coordinate transformations

T (¥)

(171.1.2)
having the property that the metric tensor transforms as:
al 9 Lt
_p 9FT 9% Yot = (¥ )9ay (11.1.3)
ab oQn > Qw&

where eﬁf)is a certain function. Coordinate transformations of this
type constitute the conformal group. For two-dimensional theories,
the conformal group is infinite-dimensional and it consists of the
conformal analytical transformations. To describe this group it is

convenient to introduce the complex coordinates:

it ' (11.1.4a)

V4 =
- A w2
z =% 1'% (II.1.4b)
the metric having the form:
2 —
ds = dz dz (11.1.5)

The conformal group of the two-dimensional space consists of all
substitutions of the form:

z —b 3§ (z) (II.1.6a)
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Z —Db E('z‘) (II.1.6b)
wherej; andfg are arbitrary analitical functions. In the complex
case the conformal group G is therefore a direct product:

G=P@f (I1.1.7)
where [ (fS) is a group of the analytical substitutions of the va
riable z(z). The properties holding for the group I also hold
foriﬁ  therefore one can consider only the properties of the group
1" . Infinitesimal transformations of the group 1' are:

z =% z +€(2) (11.1.8)

where €(2z) is an infinitesimal analytic function. It can be repre

sented as an infinite Lourant series:
Do

~‘.
€@)= z

e A
Lt (11.1.9)
- ¢o

Therefore the Lie algebra of the group I' coincides with the alge-
bra of differential operators:
1 =12z d n=0,+ 1, + 2, ... (Ir1.1.10)

dz

the commutation relations having the form
[1 ;1= (n-m 1l (I1.1.11)
n m n+m

The generatorsli of the group I satisfy the same commutation re

n =

lations, the operators 1 and 1 being commutative. Letof denote
n m o

the algebra (II.1.11). The generators 1 X 1, l+l form the subal

— 0 —

gebra sl(2,C)Ci;. The corresponding subgroup SL(Z,C)QI7 consists

of the projective transformations:

z—b% = (az + b)/(cz + d) (I11.1.12)
ad - bc =1
The projective transformations are uniquely invertible mappings of
the whole z-plane on itself and these are the only conformal tran-

sformations with this property.
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It is possible to show that the components of the energy-momen
tum tensor represent the generators of the conformal group G in the
gquantum field theory and the algebra of these generators is the cen
tral extension of the algebra ofo and coincides with the Virasoro
algebra. For this aim, let us consider the energy-momentum tensor

d%¢P . Since it is symmetric and traceless it has only two inde-

pendent components. By introducing the light-cone coordinates
5 . © + 1
‘E - ‘E = Eg (I1.1.13)

the two independent components can be conveniently chosen to be:

@-}--\_: \90+\‘O+\ 22(\90\-\- goo)

(II.1.14a)
7T = Demhett L g (geo L OO (II.1.14b)
while
'8+- = 'S-”‘\_ = 0O
(I1.1.15)

The conservation equation (II.l.lb) implies the two equations for
(9+* and L9’_-:

0 9% < 2 5= o
Q% c;%_ B (I1.1.16)

Therefore O (&) [3"‘ (et )Kis only a function off’[?‘f]. The
symmetry cﬁfsiﬁand the equations (II.1l.1) imply that

P Ve 3Py zo
ogd \ 3

if %Lsatisfies the condition characterizing a conformal transforma

(1I1.1.17)

tion (I.1.21). Since (II.1.17) holds, one can construct the follo-

wing constants of motion:

- o S
Le= &dce %0 (I1.1.18)

depending on a function e~ satisfying (I.1.21). In terms of the

light-cone variables (II.1.18) becomes:
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Le=£jé6{€+*9°+ " &%} (11.1.19)

where G is chosen to vary in the interval 0<0<dWand the functions
appearing are periodic functions of period 27 .

In string theories it is convenient to introduce the new varia

bles: +
\E —_ \‘E
zZ = 2 z =R (I1.1.20)
FrxTxg
related to the original ones by a conformal transformation. In the
euclidean space where T-dLT z becomes the complex conjugate of
Z.

At this point we want to introduce the notion of a primary
field. This is defined as a field that transforms in the following

way under a finite conformal transformation:

- A W)L —
$2,2)—> (%) :;—L:) Hlw W) (IT.1.21)

where w = w(z) and w = w(Z). Here A and Z; are real non-negative
parameters. in fact the combinations d =A+Z and s = D~— B are
the anomalous scale dimension and the dimension of the field <b ;
respectively. The quantities A and Z;are often called left and

right conformal dimensions of the field. The simplest example of
a primary field is the identity operator. The following infinite-

simal transformations are implied by (II.1.21):
62 = [e(%)% + D' b T) +
R N\, ~ —

+ Le(ﬂ%Jr €' @) e %) © (II.1.22)
where w=z+ €(z) and w= z+€ (2z), with €(z) and €(Z) infinitesimal
guantities.

The transformation (II.1.22) can be written in terms of the ope

rator product expansion of the energy-momentum tensor withdﬂi,%) .

First of all one can rewrite the first term in (I1.1.19) as a fun-
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ction of the variables z and z:

L ‘% ‘I\‘r\ \(:ﬂé"t

&Tﬁ (11.1.23)
n -
where € (T46) = z° andV (T+5) = 2 TE)3L
ay
Let us introduce now the notion of radially ordered o.p.e. of two

fields in the euclidean space:

f: t(z) B(Z) if\z\>(X|
—z=iB(§) a(z) if |T1>(2 )

R ( A(z) B(Z) (IT.1.24)

where the minus sign holds only if both fields are fermions. R can
be omitted if one assumes, as we will do in the following, that
kI >|&l -

The o.p.e. of a primary field and the energy-momentum tensor T(z)

is given by:

?
TGV A;‘gj;@'hr D Zi?‘ + v29  Ferms

This implies the transformation (I1.1.22). In fact, since:

5§&>S [Lg\ép(})} (I1.1.26)

. N+1
L ¢ can be rewritten as in (II.1.23) with €(z) = z ; getting

(II.1.25)

@A% €T - §dre@)p(H TN =
>3] 121 <\3 |

= A <§ dr €@ T@H(F)
(11.1.27)

where the integral is performed in the complex plane z around the

point 3: . Therefore only the singular terms in the o.p.e. contri

bute reproducing the first term in the transformations (II.1.22).

Hence the singular terms in the o.p.e. of T(z) and a primary field
c} are completely fixed by the conformal invariance of the the-

ory. The energy-momentum tensor is also a primary field with .con-
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formal dimension A = 2, implying the following o.p.e.:

TR)YT(T) = %3 TE) 49 T3y, <2
EES Q-3¢ Q-3)4

(IT.1.28)

where the last term containing an arbitrary parameter c is allo
wed for a primary field with conformal dimension /\ = 2 being
consistent with the closure of the conformal algebra. From

(I1.1.28) one gets:

STE)E [Le TC= éé%é(%){ éﬂmg ), <R
@-3) (- S) (I1.1.29)

and performing the integral gives:

(e, TGRY]= V’m’g 26 @ TE)+ & 5 €N (T)

(1I1.1.30)

that implies the Virasoro algebra C&}

\(.V\‘LW:S: (n- W\\)Lv\,&_m*/(z“(“"ﬁgwm\ ° (I1.1.31)

The value of the central charge c¢ is the parameter of the theory.

For a free massless bosonic theory described by the action:

?,u
S= -2 &ét'g s ¥ d P
& ° d? C\) (11.1.32)
the two independent components of the energy-momentum tensor are:
S¥h s A b=\ 9o A (ha a4t o
7T (Ck) ¢\ ' ~§T\"(¢+43.

(I1.1.33)

and

T ( \ (II.1.34)

§ I1.2 - COVARIANT QUANTIZATION

The treatment of a conformal invariant theory given in the pre
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vious section is very useful for the covariant quantization of
the bosonic string.

Differently from the light-cone quantization, in the covariant
quantization one does not reduce the number of degrees of freedom
but the constraints are disregarded, all commutators for the oscil
lators are considered and then the constraints on the dynamical
system are imposed. This procedure is covariant, but leads to an

indefinite metric space. In this case, therefore, one imposes the

following covariant commutation relations for the oscillators:
+ -
(2ap, Tz v S (I1.2.1)
and for the centre of mass variables
T oan V'&_ \- ‘.‘\J
\q WP C% (11.2.2)

These commutation relations follow from requiring the canonical

commutation relations:

ey, 2 (re V)= tafvE(a-c) (1r-2:3)

where the four momentum density can be obtained starting from the

Lagrangian (I.1.10):

~ o\ = oL :
Pritio) = %—7&: %"'r (1T.2.4)

The commutatio between (II.2.1) and (I1.2.3) is obtained by using

the following definition of the B - function:

4 0o
L. coang cetwma! = T o(e-6") (11.2.5)
W2~ po

valid for functions expandable in a Fourier series of cos(n@).

The generators L of the conformal transformations given in the
n

classical theory by (I.1.38) can be also defined in the gquantum

theory by introducing the normal ordered expression:

A ' WL
Lw=s — &322 TG (11.2.6 )
AP éy
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where

—T(%B: _ , ( BN .

\
9, a;i ‘ (I1.2.7 )
The Virasoro denerators satisfy the Virasoro algebra with c=D,

where D is the dimension of theuspace-time. In terms of the harmo

nic oscillators they assume the following form:
oo
Lin= \W\P‘C\v\ 4 MZ'. dm(mm) A K +
20
A ey (I1.2.8a)
2 ?\ LA Ay Imln-m)  wyo

-

Low= LJ’\,\ (I1.2.8b)
2 (24
1

Lo = Pt V.\Z;\v\ @y, A, (II.2.8¢)

Because of the Lorentz covariance of the commutation relations
(I1.2.1), as in the Gupta-Bleuler quantization of Q.E.D., the spa
ce spanned by the oscillators in (II.2.1) contains negative norm
states. The space of the on-shell physical states is a subspace
of the entire linear space defined by (II.2.1). It is characteri-

zed by the conditions Eﬂl :

(L_-1)|Phys) =0 (II.2.9a)
LH[Phys> =0 n59d (I1.2.9b)
Like in the quantization in the light-.cone gauge, an arbitrary
constant can be added to LO, that in the covariant gauge must be
chosen to be equal to 1 if one requires the same spectrum as in
the light-cone gauge. The value 1 can be obtained only if one in
troduces the coordinates associated to the ghosts as a consequen
ce of having fixed the conformal gauge: therefore this would be
the correct way to proceed. But since our interest is devoted to
constructing tree diagrams for strings, we can neglect the ghost

coordinates. Furthermore, zero norm states that satisfy the con-

ditions (II.2.9) and that are decoupled from the physical spectrum
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must be eliminated by hand from the solutions of (II.2.9). The spe
ctrum is determined by the mass-shell condition (II.2.9%a) and it is

given by:

o
(Ao M- “‘L:a\“ & al) [Pluysd = O (11.2.10)
This time all Lorentz components of the oscillators are present
and not only the transverse oscillators. In order to eliminate the
negative norm states present among the solutions of (II.2.10) one
needs to impose the additional constraints (II.2.9b). The state with
lowest mass is the vacuum state |0 that satisfies (II.2.9b) for any
positive n and (II.2.10) if M2 =_1/c¢\ . Therefore | O)corresponds
to a tachyon. The following level is spanned by the states Cf;r\of)
corresponding to a massless photon-like particle. the only non‘tri—
vial condition that one gets from (II.2.9b) on a combination of pho

ton states comes from Ll and reduces to:
v at -
L'LQ{ a/.x\«\0>— (?-‘\4501\‘ q+4*(~\o> (11.2.11)

where dr are arbitrary coefficients and pr is the four-momentum
of the photon. (II.2.11) is the Gorentz condition imposed on the
physical states in the Gupta-Bleuler quantization of Q.E.D. It re

quires a restriction of the parameters %r:
\y —
P oo = O (11.2.12)

If one chooses a refernce frame where the momentum of the photon
is given by pr = (0, 0, ..., 0, P, P), then (II.2.12) implies that

the only physical states are:
\ A +
ol AN oYt (A pa - & )\.53\0> (11.2.13)

where %' and ~ are arbitrary parameters. This is the most general
state of the level N = 1, satisfying the conditions (II.2.9).

The first term contains states with positive norm, while the last

- 27 -



term corresponds to a state with zero norm, that is orthogonal to

all other physical states since it can be written as follows:
Ap-\~ A4 oD 3 . 10D (I1.2.14)

in the reference frame where pT = (0, O, ..., P, P). Because of

the previous property it is decoupled from the physical states

together with its conjugate:
A A :
(a/\ﬁ:s\ - QA,D§\0> (I1.2.15)

Therefore only transverse physical states survive and these are
the same found at the level N = 1 in the light-cone gauge.
2
For the level N = 2 the most general state with M = 1/

is given by:
l\‘g) - (d\\v &-\IAY‘ C\+AV 4 &1‘* q*zr\\o> (II‘.2.16)

v

with&r and GV arbitrary parameters. In the centre of mass frame
~n
(0,

where pt* = M) , the most general physical state satisfying

the conditions (II1.2.9) is given by:

iy~ . -1
Py = o Wiy~ G T aln @haflo) +
. D-1 N
+ o Cahev oty gat (T1o> +

D~
AT ot ok, o DV
'\(E_\‘O(\ \)LZ&QQ‘\Q41\+ _g__ (O\*;\D" 20\.+2D§-Sto> (11.2.17)

=

where the indices i,Jj run over the D - 1 space components. The
first term corresponds to a spin 2 in D - 1 dimensional space and
has a positive norm. The second term has zero norm and it is or-
thogonal to the other physical state since it can be written in
the form Lj¢ afﬁi \O‘) . It must be therefore eliminated
from the physical spectrum together with its conjugate. Finally

the last state is spinless and has a norm given by:

2(>-4) (26-1)

(IT1.2.18)
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If p< 26 [dal U«\]it corresponds to a physical spin zero particle
with positive norm. If D>26 it is a ghost. Finally if D % 26[A%]
it has a zero norm and is also orthogonal to the other physical

states since it can be written in the form:

(ZLJ}J + 3o (11.2.19)
It does not belong to the physical spectrum. In conclusion if
D=26 one finds at the level N = 2 the same number of physical
states as in the light-cone gauge. If instead D¢ 26 the tran
sverse oscillators are not sufficient to reproduce the full de
generacy; one has also to add the so-called Brower's states.

By following a similar procedure, it is possible to gquantize
the closed string. One gets in this case two sets of harmonic
oscillators and of conformal generators. The on-shell physical
states are characterized by the following conditions:

LV\\P\’\\jS> = I—V\\P\"‘33>:O n>o (I1.2.20a)

(Lot -2)\ Py = (Lo-Lo) \PlysD =0 (II.2.20b)

and for D = 26 one gets the same number of physical states as in
the light-cone gauge.

In conclusion, for D = 26 the covariant and the light-cone
quantization give the same spectrum of states. If D¢ 26 it is
not possible to quantize the string in the light-cone gauge kee
ping Lorentz invariance. On the other hand the covariant procedu
re developed in this section seems to work also for D¢ 26 and
one needs also non transverse oscillators (Brower's state) in or

der to describe the full spectrum.
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The apparent disagreement between the covariant and light-co
ne quantization is due to the fact that the procedure followed
in this section is not quite correct because, fixing the confor
mal gauge,.we have neglected the contribution of the ghosts, that
is an important ingredient anytime one quantizes a gauge theory
covariantly. One can show that the inc}usion of the ghosts eli-
minates any contradiction between covariant and light-cone quan

tization.
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Chapter ITII

INTERACTING BOSONIC STRING: TREE DIAGRAMS

§ III.1 - VERTEX OPERATORS FOR OPEN STRINGS

The interaction among strings can be constructed by adding to
the free action, discussed in the chapter I, a term describing

the interaction of a string with an external field (i3] :

Siut = &ADS wbhﬂxu(ﬂ)

(I11.1.1)

wherez¢b(%) is the external field and]Lkg)is the current genera-
ted by the string. The index L stands for possible Lorentz indi
ces that are saturated in order to have a Lorentz invariant ac-
tion.

SINT will describe the interaction among strings because the
only external fields that can consistently interact with a string
are exactly those that correspond to the various states of the
string, as it will be shown later. This follows from the fact
that, for the sake of consistency, the following restrictions
on SINT must be required:

1) after quantizing the theory, it must be a well defined opera
tor in the space spanned by the string oscillators;

2) it must preserve the invariances of the free string theory and,
in particular, in the conformal gauge it must be conformal in

variant;
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3) in the case of an open string the interaction occurs at the
end points of a string, say at & = 0; this follows from the
fact that two open strings interact attaching to each other
at the end points.

Let us first consider the open string interaction.

The simplest scalar current generated by the motion of a
string can be written as follows:

J(9)= fat{ds §(@) ¥ Ty - W]

(I11.1.2)

where SQT) has been introduced according the requirement 3). In
(III.1.2) a coupling constant g has been omitted for the sake of
simplicity. Let us suppose that the external field is a plane wa
ve, &Qj}: qukﬁ . Then inserting (III.1.2) in (III.l.1) gives:

: MR (T, 0)
S\MT: &dT TR LR

(1171.1.3)
where the normal ordering has been introduced in order to have
a well defined operator according to 1). Another requirement is
that S must be conformal invariant, that is to say, S

INT INT
must be invariant under a conformal transformation W—bT= {(W)
This implies the following relation is satisfied

: Wb yt T

WA (T ) R (W, 0)

fs\kff: gc¥t ‘e SRR &éh&CQ, B :)
(I171.1.4)

LR - .
i NS xv(u\o) 5 k\d“xr (:C‘O\'
where L . denotes the transformed of . € :

under the previous transformation. By considering the jacobian

f‘(u&) of the latter, one can write (III.1.4) as follows:
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: T ML (T o
(52 ey ST

(I11.1.5)

Taking into account the transformation properties (II.1.21) un-
der a conformal transformation, the requirement (III.1.5) im-

AR (T 0
. a\l P ) . must transform

plies that the vertex operator
as a conformal field characterized by A = 1.
By introducing the variable z= @'"% and considering the ver

tex operator as a function of it, (III.1.5) becomes:

. < \ M (2 0) \T
:QL\L ’Lr(.“x‘)\::\%(te' v :)

(ITII.1.6)

In the following we will omit to write explicitely the dependen
ce on & , putting xr (T, = x‘.\(j) .

As already seen in the chapter III, the transformation proper
ties of a conformal field can be deduced from its o.p.e. with
the energy-momentum tensor characterizing the theory. Hence the

Q\"V)‘K‘«(%) .

transformation properties of are determined by
its o.p.e. with the energy-momentum tensor (II.2.7).

By using the propagator:

QPE (3= - g Lea (7 5)

(I11.1.7)
and its derivatives, one has:
. ), o Ty S,
e ST M N (I11.1.8)
-3 (2-3)

+-Vem.*QXW\S

Inserting in (II1I1.1.8) the definition of L. in terms of T(z)
n
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(ITI.2.6) gives:
By eml(s):) = lw,: BN T -
- [vai *_\fL(V\M)S“}‘- Q{\(X(S):(III.L%
g 4
from which one can deduce that A= l}/z.

U
:efK (%%is a conformal field

Having previously shown that
with A = 1, one can conclude that SINT in (III.1.3) is confor
mal invariant only if the external field is on shell with k2 =
= 2, corresponding to the tachyonic lowest state of the bosonic
string.

The tachyonic state can be obtained from the vertex operator

in the following way:

. Mn (@)
Low 1 e oY) = \O,\W> (I11.1.10)

1-DO

and by using the following explicit formula in terms of the har

monic oscillators:

oo o°

-+ wi 1 A

(2 WL dw Y (g wpleqr WL &g
e P S AP

. e

-—

9

(IT11.1.11)

where lO‘) is the vacuum of the oscillators and of the zero mo
.“'.

de p ' , while [O,K5‘2 A \0> . The latter represents a

state with momentum k for the zero mode and the vacuum of modes

n=1, 2, ..., i.e. it satisfies:

PV\O,K§: e Ok (IT1.1.12)

&m‘«\o‘\m:o nz4,2..-.
(I11.1.13)
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Furthermore the vertex operator (III.1.11) satisfies the follo

wing hermicity property:

Ak
SR (A 7L o e Y
4 T 1 = e .
[«‘Q ] ¢ (I11.1.14)
It holds the following relation:
. W ¥
ke <o) [ ™77 o
-0 0 (I11.1.15)

As a function of U , the vertex operator can be written in the

following way:

ey
2, .

IH

A (3 e (R) {\L“QY(«~)(%)(III.1.16)
T e v 3 v e

+
In terms of the creation and annihilation operators Q (z), Q (z)
o
and Q (z) are given by:
oo o -\
QYQR\= L v\ Q@)= L 4y %
=N

M= Wk (IIT1.1.17)

Qfo)@c\: C\-C?Q"%’C (I11.1.18)

and therefore they can be interpreted as the terms with positi

ve, negative and zero frequencies of the fiel Q. (z) introduced

: |y
by Fubini and Veneziano Cd?] :
= — QAG j_ Mgt av 1.
Qr(ﬂ ‘\\4 \Pv%oawr -[\:l\fc‘(avﬂ X, 21) (I11.1.19)

Another simple current generated by the string is given by:

T (9= v o 80) % ) BV (T g
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Inserting this in (III.1.1) gives[}ﬂ]:

~ — Ll\'(.. (tv,o
Sior= [dTanre) € et k (III.1.21)

W
if one chooses a plane wave for ¢v0j\2 Eref 9 . In order to
check the conformal invariance of (III.1.21) the following o.p.e.

must be computed:

TEv(s = BEBL, (Lt uEw

- -3y (117.1.22)
S T3, ol
+(EeW e T4 YRe. Xerm g
where (%“§§3
. NS EY
\/(Z,M: e"‘mr () e (s) (IT1.1.23)
and

oo
Wpys She = -2 [P Tl (o e )]

I11.1.24
4 ( )

The requirement 2) of conformal invariance implies:
W= ¢Ww= 0 (ITI.1.25)

This shows that the external vector must be the massless pho-
ton state of the string. The photonic state can be obtained

from the vertex operator in the following limits:

M ()
IOV éfere oY= (V) € af L0k
1-vo =X (I11.1.26)

W .
Lua (ol L,éf_h ére l({)1+: L(O.\(’\f‘c&,l
DO * (ITII.1.27)

The photon vertex operator (III.1.23) satisfies the following
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hermicity property:

[V(%/.AHI*_: -2V (k) (1T1.1.28)

From these examples one can deduce that an open string can in-
teract with an external field in a consistent way only if it
corresponds to an on shell state of the string.
It is possible to write the most general current generated
by the string as a combination of terms of the type [&41'[45};
S(") ) %) @)
t‘ B / r“”-\'\l/

T
T (et oy [ s “’\*“] “\'* LM
= &A\. 504 | \)Y. =1 o (b%" __Q?t;_ (111.1.29)

S () =

The corresponding vertex operator is a combination of terms of

the type: .
Au) h,.(” vl
Vg Gy = )( L 2w >
% o
(M (4) W
et"* ..\,‘V\A‘ K"C:)"'t"“(z)"' S (III.1.30)

with the same amount of Lorentz indices and with the restric-
tion ZZLV\Lt Nin order to describe states at the same level.
In (III.1.30) the normal ordering has been inserted in order to
have a well defined operator and the polarization tensor
ébtﬁ"ri:)V?\"V:t)kffj”‘rJ:)“' must be chosen to be ortho-
gonal to Mr\ for those indices that are not saturated.

The requirement of the conformal invariance implies the fol

lowing o.p.e.:

v,
@) V(T W)= 23V, M R M & Yea, Xeym g
1-X (q; 3\ (I11.1.31)

In general for a term of the type (III.1.30) higher singulari-
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ties will be present and they must be cancelled by taking sui-
table combinations of terms of the type (III.1.30). The coeffi

. z ) .
cient of the term C%-SS 1s the same for each term and is gi

ven by:

v o L
Ly Teny = Ko N
9 2, (I11.1.32)

Conformal invariance then implies that:

L
é‘ +N =4 (IT1.1.33)

This is the mass-shell condition for an arbitrary state of the
string. In addition (III.1.31) implies that:

[LW'\IQL(_%',KB—& = i [‘t““ Ver (%"Kf& (I11.1.34)

and therefore the state:

D = -\E’i‘;‘; \10&(%',\()[0> (I11.1.35)

satisfies the conditions (II.2.9) for an on-shell physical sta
te of the string.

We can conclude by saying that the requirements 1), 2) and
3) imply that the external field must be one of the on-shell
physical states of the string, the interaction of which with

the string is described by a vertex operator V

o (z;k) satisfy-

ing the following conditions:

U Y, (3 o> = :
%.?o 20105 = 1 (111.1.36a)

Liua {o\ (\J&(%'I\L)‘y‘“:— <°¢'/\(_\
t-Ho ‘ (I11.1.36b)

YA v (N ot
Vet (:’t" k}‘ G972 \]‘X(%IK) (I11.1.36c)
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[ln, e (2 00] = f_} " v G o] (IT1.1.364)

In the preyious chapters it has been shown that for D = 26 the
physical states are given by an infinite set of transverse har
monic oscillators. It is possible to construct explicitly a com
plete and orthoneormal set of oscillaters that generate all the
physical transverse states at the critical dimension D = 26. At
these dimensions, in fact, it is possible to write explicitly
the vertex operator for an arbitrary physical state by using on
ly the tachyon and the photon vertex operators. It is given by

the following expression:

v ' ) = oA e N -QNSK'K(%;)]
{U\}‘S\} (%A“\— %’(})Sﬂii 'X\ ‘?.TL'\'{ %3%57&‘4({_)‘)6{32’

N(:p) (II1.1.37)

where the integrals over the variables Zz_. are evaluated along
j i

a curve of the complex plane zj containing the point z. In or-

der to have only pole singularities this condition must be sa-

tisfied:

Zod! pe=4 (I17.1.38)

V(z;p) is the tachyon vertex and the momentum T of the opera-
tor (II1.1.37) is:

W= p- %ij‘ (III.1.39)
This satisfies the properties (III.1.36c) and {(I11.1.364) and

it reproduces the transverse states:

oa N e - TA
o5 Sy AT TAG 0010, 1
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where
) BN w(@)
2T T
The operators (III.1.41) satisfy the algebra of the non relati

vistic harmonic oscillators(}<§:

LAV\.\: / Am,'\‘&:‘(\%fiﬁ\,u,m}o (I11.1.42)
and they commute with the gauge operators L
n

[Lm‘ An:l= 0O (III1.1.43)

The transverse states (III.1.40) form a complete and orthogonal
basis in the subspace of the physical states if D = 26. They are
also orthonormal if one chooses the normalization in front of

(IT1.1.37) as follows:

£ m.‘ m (ITI.1.44)

where X&‘is the multiplicity of the operator Ah in the product

e e SR R
%ng}* L\ |

in (III.1.40).

In conclusion it has been constructed acomplete and orthonor
mal basis in the space of the physical states and the correspon
ding vertex operators Uglj}qlﬁolthat can be used to compute

scattering amplitudes for any physical state of the string.

§ III.2 - VERTEX OPERATORS FOR CLOSED STRINGS

For a closed string one can follow the same procedure as in
the case of an open string with the only difference that the
property 3) of the section I does not hold. The properties 1)
and 2) keep on being valid.

As in the case of the open string, let us introduce the sim
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plest scalar current generated by the closed string:
- - (M) & A
HC\S Sék (e 3770y -2 (viay) (I11.2.1)

Inserting XIII.Z”I) in (IIT.1.1) gives the following vertex ope

rator:

(I11.2.2)

Also here it has been introduced the normal ordering prescrition
in order to have a well definegd operator. By considering (I.1.16)

one can write xr (T , 6 ) as follows:
Ll ) = X (Y) + () (III.2.3)

where

(B2 4 (A prEr 4 Db SENE]

\
3 nko W (I11.2.4)

and

~ IS VA LN ~
(el g e T &4 o2 E]
wio (II1.2.5)

- No A
%PCEB' E
‘\‘ -~
with §~: Cx¥g .
The zero modes in (III.2.4) and (III.2.5) are the same, but the

non zero modes are completely independent. The decomposition

(II1.2.3) implies that (III.2.2) can be written as follows:

wh N = -
Stet= SA§+Z * %‘«ﬁ”&éik RN

¢ (II1.2.6)

Conformal invariance requires that the vertex operator transforms
as a primary field with both right and left dimensions A=z A> 4

These conditions imply:

in
- (111.2.7)

[
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. . |
or, by introducing o/ that has been considered equal to k:
| L i
oL W= 2 ;o oole= ot A (II1.2.8)

This shows that the external field must have the same mass as
the tachyonlc state of a closco string. Introducing the two va

§+ - e

riables ¥z e and 2= e, the tachyon of a closed string is

described by the following vertex operator:
dew@®@Y Tk X (E)

3 e ‘ (I11.2.9)
where the normal ordering for the zero modes is defined with
the g-operator on the left of the p-operator as in (III.l.ll).
Hence the vertex of a tachyon of the closed string is the pro
duct of two vertices of the tachyon of the open string, that
are functions of the variables z and E‘respectively;

Let us consider now the possibility to have the following
currént generated by the string:

G O = (s fax Z%: (b«;:; T R T

K
from which, by using a plane wave cbva{) € %%r the exter-

e
nal field, one gets the following interaction action:
. N \K-X( + -
St géf* C AN A $E)
QET 0% (III.2.11)

v : ,
where 6“ is the polarization tensor of the external field. From

the decomposition (III.2.3) one has:

\\L 1 (¥7)
= BV gt Txp XVCE* ) v v
S\pT € X’:k? Q§+ S E- E- : (111.2.12)

2
This is conformal invariant if k = 0. Therefore the external

field corresponds to a state of the massless level of a closed

- 42 -



string. If eﬁﬂ is symmetric, then one gets the interaction of a
string with an external gravitational field, while if e"w is
antisymmetric one gets the interaction with an external antisym
metric tensor field. The conformal invariance, however, implies
\LHQ\,N: KVE‘W‘»D . If, finally, ™z 'V\rvone gets the inter-
action of a string with an external dilaton field. It is possi
ble to express the vertex for a massless state of a closed string
in terms of the variables z and z:
L My LMY AT (E) Q;V;wci) :
a3 42 (I11.2.13)

The examples just considered show that the most general ver
tex operator for a closed string is, in general, a product of

two vertex operators of an open string:
V°‘(’>®ﬁ%\= l\foz(’c',K)\J(\}(i"k) (I11.2.14)

Also in this case, the normal ordering is defined so that the

g-operator always appears on the left of the p-operator.
Furthermore, the condition (I.3.38b) implies that the two

open string states ol and(B must be chosen to belong to the

same level.

§ IIT.3 - SCATTERING AMPLITUDES FOR OPEN STRINGS

Our interest is now devoted to compute the ?robability am
plitude for the emission of N-2 external fields from a string.
In the perturbation theory the S-matrix for the emission of the
external field from the string is given by:

S): tkk* —r [EL{SMJT—S:
Ty -~ 0o

Te—-D+
T 43



= R T[Q p

Ty -D~o0
LD+ oo (II1I1.3.1)
where
A g -
S AT S dody = Sq\r M, (et W)
T o < (IT1.3.2)

Vo is the vertex operator corresponding to a certain external
field. The amplitude for the emission of N-2 external fields
is given by a sum of (N-2)! terms corresponding to the diffe
rent terms of the T-ordered product in (III.3.1). A single
term is given by:

Alsta May -0 ol =
po -2 Nt T
ST AR S E T @ T e )l
= =2

ot (1I1.3.3)
where the variable'ta’ has been put equal to zero because of
the translational invariance of the matrix element in (III.3.3).
The integral in@V. is performed along the positive real axis.

“ N

But the vertex operator depends on ¢ " and the integral in
(ITI.3.3) is not well defined. In order to make it convergent
a Wick rotation"(~b§'t must be performed. Introducing the Ko

~

. . - L . .
ba-Nielsen variables z =¢ " (III.3.3) can be rewritten as
i

A(dA.K/\'/ .. -}olplv\N\ =

i L
S g T_‘S [ SGe-Be ) Tt wa | TV Vg (30 00 oo 0D
ot= = (II1.3.4)
where
Vo () = TN (e 50
, (I1I1.3.5)

Performing the Wick rotation makes the integral well defined.

The scattering amplitude (I11.3.4) can be written in a mo-

re symmetric way by introducing the Koba-Nielsen variables zl,
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22 and ZN for the states 041 , L. and dLJ[Zd}as:

2

ALy oo o) =
&~

oe B ‘ —= .
- g (Lxléh‘ Y (210 .S Run,-te) CO‘,“V“"(*“‘““)%%PI.3H6)

1=

- po R
where > C

c‘l \,a\’ = é%a A%\a é%c.

(ra-1) G~y (y-2c) (I11.3.7)

The three variables Za' zb, Zz can be fixed arbitrarily becau-
C

se the expression under the integral in (III.3.6) is invariant

under the projective transformations, already introduced in the

section II.1l:

2o, = At+ B . AD-BC= 4
34D (I11.3.8)
av is left invariant under (III.3.8); the vertex operator is

abc

a primary field with A= i and therefore its transformation is:

\Io(\\ (Ab"”s "\(,\‘): (CSL-{—\ oY Note (R "KC)

In addition one has also:

d%‘\‘ = C\%

(Ca+Dd)* (111.3.10)

Hence Vd’(z;k) dz 1is projective invariant. It is possible to
have again the expression (III.3.3) fixing za = zl =toe , zb=
=2 =1 and z =2z = 0.

2 c N

For identical particles the scattering amplitude (III.3.6)is

invariant under a cyclic permutation of the external legs:
A<4'2/“‘/M\: A(“):A;zl-ﬂ“'i) (111.3.11)

and under an anticyclic permutation :
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AL2 8 = A V=4, 4 (I11.3.12)

Therefore in order to get a crossing symmetric amplitude one
must sum only over the (N - 1)!/2 permutations that are not cy-

clic or anticyclic:

= A oLy St 4 " .
A {\‘A.Z.. (Y ( A ’OLL“'KN) (I11.3.13)
how chQQ oY

awd cyclc
This sum restaures the symmetry between the first and the last

particle and the other N - 2 particles, since they have been
treated differently. In fact the first and the last particles
in (ITI1.3.3) have been treated as states of the string, while
the others as external fields. (III.3.13) restaures so this
symmetry.

Furthermore, until now, it has not been considered an inter
nal symmetry. This can be done by aséociating a matrix (li)ak
with the i-th external string state and by defining a so-cal

led Chan-~Paton factor&d]rmﬂiiplying the amplitude (III.3.6):
be (Ao, 2, oo i) (ITI.3.14)

This factor provides an invariant coupling that shares the cy-
clic symmetry properties of the amplitudes that they multiply.
After having introduced in the theory internal symmetries, the
string theory reduces to a Yang-Mills theory in the low energy

{(or "zero slope") limit in D = 26 dimensions.

§III1.4 - SCATTERING AMPLITUDES FOR CLOSED STRINGS

The amplitude for the emission of N-2 external fields from
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a closed string can be obtained by using the general formula
(ITI.3.1), getting:

A(d4!ﬁ‘»k43d2aﬁl1xz}"‘/ d“tﬁ“\K“):
S M- Toa M- CE

= g ‘.\ d.'\c“ -( n C‘!G\ <O'[4'(LA 'kdl—r( ‘n VOL;' ‘3\. (Q N\
O\:$ o\:} =2 !

we.’”
& E° / K.‘) )\Oﬁp\ (L"‘\u”>

(II1.4.1)

where the variables t@ andGi have been taken equal to zero
because of the translational invariance of the matrix element.
As in the case of an open string, also here a Wick rotation
T—> U must be performed. So doing, the two variables z and
Z become one the complex conjugate of the other:

~-27T 1.g
zZ< o e

1t ~lig
:Z':QL&‘Q‘

(I111.4.23a)
(II1.4.2b)

In terms of the variables z and z (III.4.1) becomes:

A(B4J&HK4}dL‘pL'KL;.,‘)du\ﬁm‘kw) =

[ S (NP -
:S T‘ éll-\' (dA.(LA‘KA\R(ﬂ \Jozg(.’;(%.‘,%;,\(;))ldp,(Lu.ku>
t=1 =2 (II1.4.3)

where the T-ordering becomes now an ordering on the modulus
of z and the integrals are performed over the entire complex

plane of variables z .
i

§ITI.5 - SCATTERING AMPLITUDES FOR OPEN AND CLOSED STRINGS

In this section our interest is devoted to processes involving
the emission of a closed string from an open one [253‘[14} .Ac

cording to the approach until now followed in order to describe
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the interacting string, one can regard the closed string as an

external field. This implies therefore that one must add to the
free string action an interaction term similar to (I11.3.2), in
which the vertex operator is given by (III.2.14).

Our aim is now the write down the amplitude for a process in
which an initial open string state{dA\?A> emits at the time TJ
a state of open string ol of momentum pi and at the time Tj
a state of closed string of momentum kj, and finally, after the
emission of N-1 states of open string and M of closed string ,
jumps in the open string state h+:?u>- The total amplitude for
this process is, unifying the results obtained separately for
open and closed strings:

o=
CTEN T\Z T Aéx\«é‘%\ Sheyi=n0) oty pa) T (Vo (ro o0 )
(22 3=z,°°

’ \A)(),) (%\ 'i ')‘K'))'V“N \(F“L)-\ .Pu-\yld“o Pu
N (III.5.1)

where UJ@\ denotes the vertex operator of closed string. Fur-
N =Lt Lig

thermore x =g and %X:Q 2

1

with Ej being its complex
conjugate. The open string variables xi gre integrated over the
real axis, while the closed string variables zj are integrated
over the upper half complex plane. The T* prescrition now refers
to the ordering of the vertex operators of open string among
themselves and with respect to the ones of closed string accor
ding to the moduli of their variables z and x. (III.5.1) can be
written , as already done in the previous sections, in a more
symmetric form introducing the Koba-Nielsen variables, obtaining:
Al
&—C}i O T (T Ty, On Wiy (L3 )10
Nl =)= :
(I11.5.2)

where M

dv=T T clx;c\Lt'\&(ﬂkm-M)
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The X, are integrated over the real axis: the T~} means that
1

the x., are ordered in the projective sense. The volume dv
i

depends on what variables are kept fixed.
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Chapter IV

SCATTERING AMPLITUDES FOR OPEN AND CLOSED STRINGS: EXAMPLES

In this chapter we give some results coming from explicit calcu

lations of scattering amplitudes for open and closed strings.

§ IV.1"- SCATTERING AMPLITUDE FOR FOUR TACHYONS OF OPEN STRING

The scattering amplitude involving an arbitrary state of open
string is given by the Koba-Nielsen formula (ITI.3.6), that in

the case of four tachyons becomes:

4
: 4
IAPEN _— e (&
AU K W Xa )2 8__,_ B2 9 (at) Fay-t) 1 T e 0 11 0Y
(=Y

ANab ¢ (IV.1.1)

The invariance of the theory under the three-— parameter pro-
Jective group transformations (III.3.8) allows one to fix any

three variables. Let us perform the following choice:

= = 1 p B = ¢ ° -
zl +t 0 22 z3ﬁ Z 24 0 (Iv.1.2)
Since:
Mg n(agy
Lbow e P10y = [da, Wed
%4~b0 (Iv.1l.3a)
. \K 1(%,\}
T, A
Lua Colrx i e = (ola,-Wa| (IV.1.3b)
PP~Dr oo

the amplitude (IV.1.1) becomes, after having put uk:quiz 0 :

K1) Uy w (R4)

Al i gyl coqug e e HOMaY(1V.1. 1)
hw@)
By using the explicit expression (III.1.11) ofg in terms of
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the harmonic oscillators and the Baker-Hausdorf formula:

A B B 2 [A,B
ee=eee[']

one gets the following:
NS *A.('h,) M n(2y) (\le(%b) N ERUECIN Kl'“}
t e s LT LR e L (3-1)
(Iv.1.5)
This allows to compute the expectation value in (IV.1.1), obtai

ning:

AU(MK'L‘K%\{“\: X St o (i—%) he (Iv.1.6)
5 .1

In terms of the Regge trajectories in the s- and t- channel:

\ ' ¢
oLz A-ol (Kyf\(q\z ol = A= et (i) (IV.1.7)

one gets:
A(Xz\,\(ll\(s,\(‘;): T Cas) )
T (elg-d o) (IV.1.8)

By summing over the permutations that are not cyclic or anti

cyclic, one has:

Al M My W) = T Mty P () D=t ), T ()
j\(”ds ~—cl-e3 S\(—ds-alu\} -S’('Oig-du,) (Iv.1.9)

This is just the famous Veneziano amplitude relative to the

scattering of four scalar particles

§ IV.2 - SCATTERING AMPLITUDE FOR FOUR TACHYONS OF CLOSED STRING

The scattering ampliutde for arbitrary closed string states
is given by (III.4.3), that for four tachyions becomes:
4

4
1, .
AR Wy Ky Mg = s o\R WV (370 DY (1V.2.1)
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_ 2 (Txg) NG D
where the variables z and Z are given by z =& = _ and 3= ¢

respectively. After a Wick rotation v Tz becomes the complex
conjugate of z. In terms of the variables z and Z the tachyon

vertex is given by:

ey R (Y
& ¢ ' (IV.2.2)
where
- , M
Ry 2 gt Leteqi 4 T % ““‘S
w 3 [0\ z? L L\\xo"ﬁ t (Iv.2.3a)
— . — 1 \(‘1 - ~\A
e A gttt aial T tw 3
@) 9 L‘t i? L Uuzo w 1 (IV.2.3b)
By fixing
zl = 4+ oo | %l:/k_ , %3:% . %4':0 (Iv.2.4)

and by using the properties (III.1.36) the amplitude (IV.2.1)

can be written as follows:
T - — —
&OL 1 €O -l Ny (R 30 Kay Vet (B3 3y M2 I\O 0> (1v.2:5)

where

V&L(%HQL,KQBde(%Bﬁﬁ,Kﬁ)S

- \I ~ \] — :E\KTKS %‘,Kl'ks
VR KON Ca R 0 (-t Gy (72O
The condition 22 = 1 allows one to write:
AW, Ma AU
L PR > q
ACK Ky Ky, Ka) = (d% 1441 r* (Iv.2.7)

In terms of the Regge trajectories

OZS: -2, - %K4\LZ

(IV.2.8a)
- W, U
Le= -2 - 5, Y (IV.2.8Db)
- _ 0 %L
oLu = - 9 Ka Ky (1V.2.8¢)
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and using the formula:
[d (2% o *b = Tl Py
F=) FERD T(erprad (IV.2.9)

finally one gets:

A(k":)(l,)(}/kq,) =N P(_%s>f(‘—%*) X"(\%u)

T ($44)0 (Fy T s+ 1)

(IV.2.10)

that reproduces the scattering amplitude proposed by Shapiro

and Virasoro [ZQX‘E&KB .

§ IV.3 - SCATTERING AMPLITUDE FOR THREE TACHYONS OF OPEN STRING

AND ONE TACHYONE OF CLOSED STRING

The scattering amplitude for mixed states is given by (III.5.2).

For three tachyons of open string and one of caosed string one

has: 2
A= g_é_\', o\TF (T Vo ) Wy, (3,3 D10
é\fa\,\.,(., L= (SA ‘
(1Iv.3.1)
By fixing:
Wastoe | W=d 3,21, %Az O (IV.3.2)

one can write (IV.3.1) in the following way:

1 -
&é T <O» “Ra) Ve (4'?1)\”(‘.4(%M14\Ka)\01?3> (I1V.3.3)

where

leclll?L)bd (PR

- A
(‘,z_\(t’l .'?A,K/‘\: : VdL(“l,PL)w(Ld(h,iA‘KA) 3(’“1“}-4)?’

\
~ vt thf ey S Ay
'h;a"b\\ ‘“?, )&11 %44 * 23 APy

a (Iv.3.4)
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Taking into account (IV.3.4), the amplitude (IV.3.3) becomes:

A ?l. \(4 l%\% K4~ ?‘5

A= [da -2l -1

(IV.3.5)

that cén be written in the following way
1 A A \
TE5es) T g o) D)

T(-ﬁozg-%oé e)?@:‘z%t-zioau\f (_E\dwé 2g) (1V-3.6)

in terms of the Regge trajectories:

olg = 4»“‘% (P PL}L

A= 4T

(Iv.3.7a)

\ 2
de= A-5 (Pot ) (1V.3.7b)
du= A- %(?1 ‘\'?A)z (Iv.3.7¢c)

We want to observe that (IV.3.6) has been obtained conside-
ring the on-mass shell condition for the tachyon of closed
string:

k =8 (Iv.3.8)
This leads to an absence of poles in k2 in (IV.3.6), that is
to say that under the condition (IV.3.8) one is considering

the following picture:

5

If (IV.3.8) had not been fixed, then we would have found in

2
(Iv.3.6) a jj function containing the poles in k , correspon
ding to the closed string tachyon - open string tachyon tran

sition.
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§ IV.4 - SCATTERING AMPLITUDE FOR THREE PHOTONS

The starting point for this computation is again (III.3.6)

For three photons, fixing:

7. = z =4 z =0 IV.4.1)
1 teer 5 "3 (

the amplitude reduces simply to:

, 2 =
Lo T O Vg (3¢ ki )0

%,\-")*‘ o N

24 —5 O (IV.4.2)

where .
Vo (23 = €v G Qtw .
z

(IV.4.3)

o

1

oo
~ ] L?r\ 4+ Z;\F/\ (O\\nt«"t"v‘ +O~*V\\A%—u)} (IV.4.5)
Since:

2
\,,‘\_,u %4 (O\ \jo?,\ ({4 l\{A\ pod \‘<O ,“'KAl G,A' QA4

%A'D+DO (IV.4.6)

Lo \IGLBL%B‘KFQ\OB = =< (63.0\*4)\0,\(3> (IV.4.7

)
%1~b0

one has for (IV.4.2) the following expression:

el el ef e (- ) (1v.4.8)

A
where the terHlE(Kyp“ﬂv)follows from the hermicity of the

operator d.
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By adding to the symmetrized vertex just now computed the

Chan-Paton factor:
—_ a\L Yy ¢
e (A% 2> <) (IV.4.9)

one gets:

. aybyc - .

i‘ﬂ(x XA.)QQUN qu)%r€+(u3t‘Klr§%NQ‘+ %Vv'
'(KLQ-KAQ)}' %(“4+KL+)&3}

(IV.4.10)

that, apart from a constant facto;, reproduces the three-gluon

vertex in Q.C.D.

§ IV.5 - SCATTERING AMPLITUDE FOR FOUR PHOTONS

Starting from (III.3.6), one has for this case:
o0 4

A(\h ‘V\L‘K‘s'\(4): S \_‘E\Iél" \9(%«-%&) \9(%1_ %53\9({3_14) .
—QJANALC
Lol Vot (B4 Ka) Vo, G Mo - (IV.5.1)
oty Gy, 1) Vet g (R W o)10
Fixing, as usual, z_ = z_ = 4 p
a 1
z2 =z =1
b 2
zZ =2z =9
c N

and considering the relations (IV.4.6), one has:

A
| da <o, Ve (i) Ve G 1) 101
Q (IV.5.2)

The photon vertex is defined by (Iv.4.3) with

- °‘+\4r T (1v.5.3a)

Q= T (&‘?VQ’%{ “E“;%\:‘(a“\‘t
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= ¢ A T, -\ + w
PV' [?F‘J*E‘Z'(ﬁ(a“t‘t A )](IV.S.B‘b)

. 1
Let us choose unit of mass such that&l:iand let us define:

Q@Y= q_ -y 0
Ly ) Ay ?\‘ ot (IV.5.4a)
(&\ - A 1;& O
= L " “\*% (1V.5.4b)
g A W
(—1\ = ( L 2 Gupt (IV.5.4c)
V { gh V
and
00
(G C__}: —_ _,L ﬂ 6-\;\ O\\.\ i_“
E\" ) ‘ v (IV.5.5a)
saol N “
\9\ ()= - Z‘ﬁ"““r{ (IV.5.5b)
By using the following commutation relations:
m oG M@ Tk Wy ()
LET (3‘\) e ! (SS—S' ; (’%"g—) ¢ (IV.5.6a)
S PHONED) _,Ev(ﬂ(g) R i Q1)
Le S B 1-% ¢ (IV.5.6b)

one has the following result about the product of two photon

vertices:

€4hf @c) (\(4' a2y '*l 2(3) \M &(3)

+ W, Q-+ N X ™H
_ (K,\Gl () + W (S)l (Marky q Hl. _zl"* RT GA ‘.«% es

_&m«g (- g\hh ng\ah v [’\fy 3&’(3) NGO

_ 3 5 3
4 CMK QLER‘Q(%)M‘Q (35] (1V.5.7)
-3
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Using this result we get finally the following expression for

the amplitude:

é}‘* e: ése Gg {w) KZ\* K}()KQ@'“&\) +T(_°IS-H>T(-D2€) (_%‘4\‘ K,‘ekqg +
T latgotey T(ebgotet 1)

-U(z.r \(49\&45 Wy + Klr K/\Q\&gv\(ur +Kzr\&4€ \(1&\(3\) 4 )Az,r K4Q\L¢6 Wi~ fgcg}(zrkgv) 14

4 T (“"zs*z)y (~ete) (Klr K,«Q\MGKW A4 k"t* ko(e s Kav + V.L\w K4€ Ky g +
§(otg -2 +2)

+ Ry tag Ky v ¥ ap Ko Mg ag + Ky Kap g Hyy - Upv (Kaptlas thakag ) +

~ Ups U&lr« Kov 4+ Klt« ‘K;v)-)— 0(\1(,\\; %{,633*‘ I (o253 3) T (=edey (}(lr KQ?KAGKLV‘\'
-S\(~°Ls~o!g—+ 3)

+ Koy o Waa Ky 4 K WapNag Wy 4 Ko Kap Uyy Vg - Kap Hag =+

%Q6K5\“KD’>+ NGRS BX(XEXKE\,\KQQKM,KW.} TEets+0) D (ot 1)

— o 1, U
l\( s —oli 4+ 4 ) S\(_eés_d& v2) (65\ § Fap Myv +
~ OM‘*? (Mg Uay + Kag ) + %?v Ko Rao - A v (KLtA qu t Ky K«g})—r

1 N (—dg-&Z)P(*dt"’ D
D(""’zs 'O{Q_-‘\-})

(%rif (Kap¥av 4 KapKav) - Bre e Xavt Gov (Kep Kye +

A+ \Lz\«‘f\accs\ = %sV K%y \L4e)+ M‘ﬁi\)(o&vg RI(QKW + OBQ\’V‘?’Y‘ Kag)
S\(“’{S -O(%+ 4)

1 T ot Y D=+ ) (_. C}ve\kdmfxl“’ - Yav KL\A KA(JE t
Pmetg oty 44)

;T T (e 2y Ao dov + BT L2
Tt - A+ 2) T (-t —ate +4)

(IV.5.8)

TG %QV

e
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For this amplitude we have performed a limit a\-—b O :
in this limit one would find the co-responding amplitude in
Yang-Mills theories, after having introduced a Chan-Paton

factor. In this limit the following terms survive:
Bev baghew (£ 2) o (20 4Ry (418 Y2 es”
- A A _(AyA +
OXY‘\J K4QK4Q’ L - %QGKB\‘\{D’E -(t-\-,s\odrq\r(/\(klv
AL
+ (24 3) e (skav+ Kag Kav)- (24 2) 900 Kap Kaa +

* (& 2) B (pkag+or i) - Fes (g ey + eap ks
thpp s v 2 - a |, (Wep e + Yaptag ) o

+ A Ks\«\ \vtq.e '-t, ;\t "5\,5 KQQKLV - ,é CEQ\, \Ls\r‘ Yi¢ +
AL A
F LB 5) e Kaw Koy (24 4y dnn i +

- (}H %3 ve dev + Qs AN

(IvV.5.9)
Symmetrizing this expression leads to a complete vanishing
of the amplitude, as it must be, since in the limit o '—D &
and without introducing some other internal symmetry, (IV.5.9)
corresponds to the tree scattering amplitude of four photons.
Let us introduce now a Chan-Paton factor:

Te (Mo de xe xa)

and let us concentrate, for the sake of simplicity, on the
terms coinvolving two metric tensors. After having symmetri

zed also on theindices a, b, ¢ and d one has:

(Bs %y - (A )40 4gv TR )Y Aa) T (e dde) 4

+ (,OAVQ d&o‘\l- ()L'R'E)(ﬁ\NJ' &‘\QV’ (4""'%) %t-\’ ﬂgé)’\—\( C/\G\ >‘$I\L>c\>+
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+ v Ges - (A B)ApeAve - (A3 1) % %ev )
T (& dee M)

(1V.5.10)

For example, (IV.5.10) can be computed considering an internal

symmetry SU(2). In this case one ha;:
4};‘?10'\’ L 280k 3ca* Bac Spa + Badden)+ B%b (348 Toc = Bac fua ) Y+

+ og‘vgéqc‘ [("23acl 5\.‘,5-&- Jab §cat Jac 5\9:3\-\- ‘ﬁés (Sa‘c dcd- Jac &,d)—_\ +

i ohvcf 4t [(-23c Soa+ Bak Seat Sug Siuc)4 %(ﬁaé&aw dak cch)]

(IV.5.11)

On the other hand, in a Yang-Mills theory the invariant amplitg

de for four gluons is given by the sum of the following terms:

Mt: “Q— ’gqeé{e\,; C}t‘ (~q,\)q)‘~c\4 ) ({43 ‘3;;3»‘

c (IV.5.12a)
. C,_(- Py (QL;QB),QQ'QBB
XX )
F@u‘:,,quae;4;gé<: V(‘Q*IWA'ﬂx,qEB %ES\ (IV.5.12b)
U,
T g
C, T\ QC\L‘q.q.)—qliq4>
MS = ‘a\:‘-‘&a.‘.t. ’&9.:3 C)‘k‘i (_C“) “\LIC{,‘—*C\L)%TE’ (IVv.5.12¢)
\ - -
A A ("C\S‘QQ)‘Q‘q(‘)
Moz~ q e o, SIEE Pqt) (IV.5.12d)

+face fuie (‘I\Mﬂ%wr' 4T4T) +¥“‘M{°¥< (-%Iw %b“'s 4 %GV)]

where

NV T v ~ .
CP™ (40,4, 49\ = [(4-q,) >y (qf%)“?f + (C(;-ng“](IV-S-U)

Taking, for the sake of simplicity, the eXpressions (IV.5.12) for

SU(2) and isolating the terms coinvolving two metric tensors, it
is possible to See that these terms give exactly (IV.5.11). More

Over it has been checked that also the complete amplitudes coin-

cide.
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The plain of our work foresees the extension of these computatlon
techniques to other examples still involving bosonic strings, as,
for example, the amplitude scattering between two photons and

two gravitons, quite ultimated, but our final aim is essentially
to apply this analysis to the spinning strings and superstrings.
It will be also interesting to compare the amplitudes sé obtai-
ned with the ones computed through effective action tecniques,

following the works by E.S. Fradkin and A.A. Tseytlin .
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