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INTRODUCTION

A major problem in present - day cosmology is that of understanding the for-
mation of the structures seen at each length-scale on which the universe
is observed. It is a common belief that the main role in this formation is
played by gravity, and the most widely accepted theory of gravitation is
general relativity. On the other hand, the universe shows a great degree
of isotropy in the Cosmic Microwave Background. In the framework of Big
Bang cosmologies, this is interpreted as the remnant of an earlier hot and
very homogeneous stage in the history of our universe, supporting the idea
that Friedmann- Lemaitre - Robertson - Walker (FLRW from now on) models
give a reasonably good description of it. The picture which we have of the
formation of the structures, is then that they originated from small fluctu-
ations in an almost- FLRW universe. Therefore, a basic step towards the
explanation of such processes is the formulation of a relativistic theory of
perturbations of FLRW models:

“This is a key part of the story, since the rules which came

out of this study define the basic problems of galaxy formation.”
M. S. Longair [36]

This task was fulfilled by Lipshits in 1946 [34], and in some respects this
is the end of the story. Indeed, as Lipshits himself pointed out [34,35], his
approach suffers from gauge problems, and much of the succeeding literature
has been devoted either to working- out results in one gauge or another, or
to trying to eliminate these problems. In the usual approach, one starts with
an exact isotropic and homogeneous FLRW s‘pa.ce- time 5, and then perturbs

it to obtain a physical universe S. Then the perturbation in each quantity is
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the difference between the value which it has at given point in the physical
space - time S and the value at the corresponding point in the background S;
by considering all points, the perturbation field is determined. For example,

the energy density perturbation is
bu=p—p4.

However, what we can observe is p, as well as other quantities in the real uni-
verse S, and not i (or other quantities in S5). 1t follows that §u is ill - defined,
because there are many ways of splitting p into a background part i and a
perturbation §u. We cannot recover S by observing S, unless some fitting
procedure is specified [15,16]. In other words, the correspondence between
S and $ is not uniquely defined, because it can be changed by a gauge -

transformation:

“a gauge transformation ... changes the point in the back-
ground space-time corresponding to a point in the physical space-
time. Thus even if a quantity is a scalar under coordinate trans-
formations, the value of the perturbation in the quantity will not
be invariant under gauge transformations if the quantity is non-

zero and position dependent in the background.”
Consequently,

“if the gauge condition imposed to simplify the metric leaves
a residual gauge freedom, the perturbation equations will have
spurious gauge mode solutions which can be completely annulled

by a gauge transformation and have no physical reality”.
J. M. Bardeen 1]

The resulting problem is that the quantity éu, calculated in perturbation
calculations, is completely dependent on the gauge chosen, and unless this
gauge is fully specified the modes found for this quantity maybe spurious
(due to residual gauge freedom); while if it is fully specified, its relation to

what we really want to know (the spatial variation of density in the universe)
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is complicated and difficult to interpret.

A successful attempt to avoid this kind of problem was made by Bardeen
in 1980. Indeed, he introduced a set of gauge - invariant quantities describing
the perturbation in the matter and the geometry and determined evolution
equations for them [1]. Bardeen’s formalism is a theory of some complexity,
which can now be regarded as the standard theory of density perturbations.
However, Bardeen’s variables are related to density perturbations, but are
not those perturbations themselves (they include metric tensor Fourier com-
ponents and other quantities in cunning combinations). Thus they do not

have a simple physical interpretation, unless some gauge is specified. Indeed:

“What the gauge - invariant formalism does do, is take advan-
tage of the homogeneity of the background space- time to make
all quantities explicitly independent of the choice of spatial co-
ordinates. Any spatially gauge-invariant quantity can be made
formally gauge - invariant under changes in the hypersurfaces con-
ditions, but its physical interpretation will refer to one particular
hypersurface condition unless it is a perturbation in something

which is zero or time - independent in the background.”
J. M. Bardeen'

The aim of this thesis is to present a simple alternative approach to cosmolog-
ical inhomogeneities in almost - FLRW universes. This approach, introduced
in two recent papers (Ellis and Bruni [17}; Ellis, Hwang and Bruni [19]; respec-
tively EB and EHB from now on), is both fully covariant and gauge invariant;
thus it avoids the usual problems. The key step for us is contained in the last
sentence of the above quotation: the variables which we introduce are not
perturbations in some non - zero quantities in the background. Instead we use
a set of spatial gradients in the physical universe to describe inhomogeneity,

the most significant being the comoving fractional density gradient D,. Thus

1 Unpublished. I took this quotation from a lecture by Efstathiou at an SUSSP Summer
School (“The Early Universe”, Edinbourgh (1989)). He cited it while arguing against the
use of Bardeen’s formalism, since he is a supporter of the synchronous - gauge.
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these variables are not defined by comparison with the background, as it is for
61, and they have not an unperturbed part. Since these quantities are zero
in the background (an exactly spatially homogeneous and isotropic F LRW),
they are gauge-invariant both in their definitions and in their physical in-
terpretation. We do not need any assumption of “smallness” in defining our
variables: actually they represent spatial variations in a universe which may
be as inhomogeneous as we like. Therefore, in the framework of the covariant
fluid approach to cosmology [11], we derive exact fully non-linear equations
for our variables. When linearized, these equations represent the evolution of
these quantities in an almost - FLRW universe. Thus we proceed in a direction
opposite to that of the usual approach, since we directly obtain equations in
the physical almost - FLRW universe, while the background, an exact FLRW,
appears as the zero- order solutions to these equations. We believe that this
is conceptually more satisfactory, and we hope that it will make it possible to
develop a higher order gauge-invariant analysis of density inhomogeneities.
We obtain standard results, equivalent to those of Bardeen[29], but we be-
lieve that our derivation is simpler and that its physical interpretation is more

transparent.

Chapter 1 is mainly devoted to the discussion of the gauge problem which
arises in the usual approach to cosmological density perturbations. Following
a very brief sketch of the latter, section 1.1 defines what a gauge transforma-
tion is and shows how it changes a generic tensorial quantity; also, definitions
of gauge invariance and gauge freedom are given. Section 1.2 illustrates a
mapping view of the gauge problem, discussing the various features of the
latter. Next the possible solutions to the gauge problem are considered, i.e.,

the choice of a particular gauge and the definition of gauge-invariant vari-

ables.

In the first section of chapter 2 the covariant fluid approach to cosmology is
briefly reviewed. In such an approximation the matter content of the universe
is described as a continuous fluid; this description of matter is complementary

to the particle distribution function representation [9], and we can regard the
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4 -velocity of the fluid element as the average velocity of the particles in that
volume.

Section 2.2 deals with the definition of gauge-invariant quantities which
fit naturally with the covariant fluid description adopted here and which de-
scribe the inhomogeneity of the real universe S. Omne of these variables is
the density gradient X,: this has been considered previously by Hawking
(1966) [26] and Olson (1976) [43], but they did not notice that the density
fluctuation problem in an almost - FLRW can be treated in terms of this vari-
able only. A most significant quantity for describing the time evolution of
density fluctuations (see section 2.2.2) is the comoving fractional density gra-
dient D, introduced in EB [17], because it incorporates the relative evolution
of density between neighbouring comoving volumes of fluid. Thus we identify
D, as the new variable in terms of which the perturbation problem in cos-
mology can be treated in a simple and gauge - invariant way. Other relevant
quantities which we introduce are the expansion gradient Z, and the comouv-
ing ezpansion gradient Z,. The physical interpretation of all of our variables

is straightforward and gauge-independent.

The aim of chapter 3 is to derive a linear system of two first - order equa-
tions from which D, can be determined in the perfect fluid assumption. How-
ever, we shall see that for a general space - time S the various density gradients
which we have introduced (D, and related quantities) are coupled with the
expansion gradients Z, or Z,, as well as with other fluid - variables, through
a set of exact non-linear first - order equations.

Section 7?7 considers a general space-time S, and well - known [26,11]
exact non - linear equations for the various standard variables of the fluid flow
approximation are presented. They are not directly relevant for our discussion
of inhomogeneity in an almost- FLRW universe, but they are introduced in
order to give a complete picture of the general non-linear case. In section
3.1.3, we derive the exact equations of motion (presented in EB [17]) for our
set of gauge-invariant variables.

In section 3.2 we consider an almost- FLRW universe. By this we mean

a universe model in which all of the gauge-invariant quantities are first-
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order with respect to the energy density u, the pressure p and the expansion
© (“zero-order” quantities, i.e., non vanishing in the background FLRW).
We linearize the equations previously derived, obtaining pairs of two coupled
first - order linear equations. In particular we derive a pair of equations cou-
pling D, with Z, (EB[17]). Also, an evolution equation for the comouving
curvature gradient C, is derived in the linear approximation (EHB [19]). An
equivalent system of equations coupling D, with C, is then obtained.
Section 3.3.1 deals with the mapping which we have chosen from the back-
ground exact FLRW model () to the realistic almost- FLRW universe (S),
and section 3.3.2 discusses a technical point arising in the case of rotating

universe models.

In chapter 4 we apply the above mentioned linear equations to some spe-
cific cases. In particular we restrict our analysis to adiabatic (isentropic)
perturbations. We show explicitly how the linear systems of two first - order
equations derived in section 3.2 decouple from the other evolution equations,
by virtue of the assumed equation of state. We consider systems for D, and
Z,, as well as for D, and C,. Also, we introduce a “Bardeen -like” variable
®,, and derive a linear equation for it (section 4.2.1).

In sectionl4.3 we derive second - order linear equations for D, and @, and
analyse some of their properties (EHB [19]). We consider a Jeans instabil-
ity for matter against gravity, giving a correction to a previous result by
Jackson [30]. A first integral is obtained in the long - wavelength limit, corre-
sponding to an analogous well - known [2,38] first integral. Also, we comment
on the isocurvature and scalar modes.

The aim of section 4.4 is to obtain explicit solutions of the second - order
linear equations. We consider the zero - pressure fluid (dust), and the pure ra-
diation case, for which explicit solutions are obtained in the long - wavelength
limit. Since our equations and variables are gauge - invariant, we do not ob-
tain the usual decaying gauge- mode. Also, we briefly consider the case of
a mixture of perfect fluids when those perfect fluids all have the same 4-

velocity.




INTRODUCTION 10

Finally, section 4.5 considers the evolution of density on neighbouring
world - lines. It is shown how we can define scalar quantities closely related

to our gradients, and we derive exact and linear evolution equations for them.




Chapter 1
THE GAUGE PROBLEM

Cosmological observations are very intriguing: on one hand, looking at galaxy

distribution, we can say that

“large structures are a common feature of all surveys large

enough to contain them.”
M. J. Geller and J. P. Huchra [24]

On the other hand, we observe a Cosmic Microwave Background (CMB)

which is

“within the limits of our observations, isotropic, unpolarized,

and free from seasonal variation.”
A. A. Penzias and R. W. Wilson [45]

In the framework of Big Bang cosmologies, CMB is interpreted as the remnant
of an earlier hot and very homogeneous stage in the history of our universe,
supporting the idea that FLRW models give a reasonably good description of
it. More precisely, the high degree of isotropy in the CMB puts severe limits
on the inhomogeneity of the matter distribution at early epochs, therefore it
is a common belief that the structures which we see originated through the
action of gravity from small inhomogeneities in an almost - FLRW universe. A
basic step towards the understanding of such processes is then the formulation
of a relativistic theory of linear perturbations of the expanding, isotropic and
homogeneous Friedmann - Lemaitre - Robertson - Walker models (FLRW from

now on).

11
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Such a theory

“springs into existence virtually full - grown with the work of

Lifshits (1946).”
W. H. Press and E. T. Vishniac [46]

Actually, Lifshits [34] was interested in the dynamical stability of FLRW mod-
els with respect to perturbations. The theory which he developed has become
standard and is presented in many text - books on cosmology (see for exam-
ple Borner[4], and Peebles [44], and Weinberg[58]). However, as we shall
see, such a theory suffers from gauge problems, as Lifshits himself[34,35]
and other authors[48] have pointed out. The usual approach is then to fix
a particular gauge, and work within that; however, gauge ambiguities can
remain citebi:previ.

Another, different approach to the problem was pioneered by Hawk-
ing in 1966 [26]. His approach is fully covariant, but nevertheless gauge-
affected [11,43].

Finally, one can formulate a gauge-invariant theory of cosmological per-
turbations, avoiding the gauge problems. This has been accomplished by
Bardeen in 1980[1], who introduced a set of gauge-invariant quantities de-
scribing perturbations in the matter and in the geometry. As we have men-
tioned in the introduction, the problem with Bardeen’s formalism is that the
physical interpretation of his variables depends on the choice of one particu-
lar hypersurface condition, i.e. Bardeen’s variables acquire a clear physical

meaning only in some particular gauge.

In this chapter, we shall first very briefly introduce the usual approach to
perturbations in cosmology (section 1.1). A discussion of the gauge problem

that arises in this approach follows in section 1.2.

FLRW models are standard in cosmology, and we refer to standard text -
books [4,58] in the subject for an introduction to them. A characterization of
FLRW models in the covariant fluid approach adopted in this thesis is given

in section 2.2.1.
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1.1 Some Features of the Usual Approach to
Perturbations

We outline here only those features of the usual approach to perturbations
in cosmology which are relevant for the subsequent discussion of the gauge

problem. See the above quoted references for a detailed exposition.

We consider an idealised universe model S (usually taken to be a FLRW
universe). Each quantity in this model will be indicated with an overbar, e.g.
the energy density will be denoted by i and the pressure by 5. We perturb
this model to obtain a “realistic” or “lumpy” universe S, where the physical
quantities will be denoted by the same symbols as in § but without overbars
(e.g. the energy density is p and the pressureis p). The perturbation in each
quantity is then the difference between the value which it has at a given point
in the physical space-time S and the value at the corresponding point in the
background S. Considering all points, the perturbation field is determined.

For example, the metric perturbation is
69ab = gab — Gab » (1.1)

while for the perturbation in the energy momentum tensor we have

6Top = Top — Top, - (1.2)
Two assumptions are implicit in writing the above equations: one is obvious,
while the other is obscure (see the discussion in the next section). The first
is that the unperturbed metric is a solution of the Einstein equations with
the unperturbed energy momentum tensor as the source term (we shall call
this the “zero-order” solution). The second is that the perturbations are
“small”. Following these two assumptions one substitutes g., and Tgp in the
Einstein equations, subtracts the zero- order solution, neglects higher - order
terms, and obtains linear equations for the metric perturbation (1.1) with the
energy momentum perturbation as the source term (1.2). Also, one carries
out the same procedure with the energy momentum conservation equations

to obtain equations of motion for the matter.
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1.1.1 Gauge Transformations, Gauge Invariance, Gauge
Freedom

The procedure outlined above suffers from gauge problems. These follow from

the gauge transformations, i.e. , infinitesimal coordinate transformations such
that

=a

z° - ¥ =Z" - (x), (1.3)

where £%(z) is an arbitrary infinitesimal vector field. This induces a change

in any tensor 7 such that, at the same coordinate point

T(z) =T (z)+ LT (=), (1.4)
where L. 7T is the Lie derivative of T along ¢ [50]. For scalars and vectors we
have?

L. f = fag®, (1.5)
LcV.a = Vbsb;a + I/:z;b“:b ) (1.6)

and analogous expressions hold for tensors of any rank (cf. Weinberg [58]).
It is straightforward to verify that g,y = L.Jas is a solution of the linearized
Finstein equations with source term 67,;, = L.T,,, therefore, because of the
linearity of the equations, we can always find other solutions of the form
6gab+ LeGap for any given solution §g,5. Thus the linearized Einstein equations
are said to be gauge - invariant with respect to the transformation (1.3), and
the freedom which we have in choosing coordinates is said to be the gauge
freedom. Again quoting Bardeen [1], it clearly follows from (1.4) and (1.5)
that

“ even if a quantity is a scalar under coordinate transforma-
tions, the value of the perturbation in the quantity will not be
invariant under gauge transformations if the quantity is non- zero

and position dependent in the background.”

1We omit the overbar here, since these definitions of Lie derivatives have nothing to do
with the background. However, in the present context, it is clear from (1.4) that we are
considering Lie derivatives of the background quantities.
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It also follows from (1.4) and (1.6) that the perturbation in a vectorial quan-
tity is gauge - invariant only if the unperturbed quantity vanishes in the back-
ground. In the usual approach, the gauge freedom is then used to fiz the
gauge, i.e., one can choose a particular form for ¢* to impose some restric-
tion, usually on the metric perturbations. For example, ¢* can be chosen so

that
6gp0 = 6900 =0 ’ (17)

fixing the synchronous gauge. However, problems still remain.

1.2 The Gauge Problem

It is very easy to be misled by the “obvious” way of investigating density
perturbations: following the procedure sketched above the energy density
perturbation is
Sp = p— . (1.8)
However this approach obscures the real situation. It suggests that there
is something very special about the way the original model S is related to
the lumpy model, whereas in reality this is not so. Suppose we consider the
lumpy universe model S, not knowing how the model § was used to make the
construction; can we uniquely recover S from S 7 Without further restric-
tion, the answer is No; for without a specific prescription for approximating
the lumpy model by the smooth one, the quantities in the background model
S are not uniquely determined from the lumpy model S (in equation (1.1),
the only restriction relating the two models is that §g. is “small” in some
suitable sense; it is' far from obvious how one can extract g, from gg in a
unique way). In fact the definition of the background model in § is equivalent
to defining a map ® from S to S, mapping the density in S into a background
density i in S (for notational convenience, we use the same symbol for quan-
tities in S and their images in S, e.g. the image ®(j) in S of /i in S is simply
denoted by fz). The perturbations defined are completely dependent on how
that map is chosen (Figure 1.1). This is the gauge freedom in defining the
perturbation.

As delineated in section 1.1.1, the situation is usually expressed in terms
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Figure 1.1: The perturbed density §u is defined by a mapping ®
of an idealised world model S into a more accurate world model S ;
for ® maps surfaces {fi = const} from S into S, where they can be
compared with the actual surfaces {u = const}.

of the coordinate choice in 5, it being understood that the coordinates in §
correspond to coordinates chosen in §, so that a choice of coordinates de-
termines a map from § into S; thus the gauge freedom is represented as a
freedom of coordinate choice in S (see equation 1.3). However, we want here
to specifically consider the map ® from S into S, noting that we have coordi-
nate freedom both in $ and in § which we can usefully adapt to the chosen
map .
i

Thus the actual situation is that what we are given to study is the real
(lumpy) universe S (this is all we can measure), and we define the perturbed
quantities and their evolution by the way we specify a mapping ® of the
(fictitious) idealised space-time S into S. The determination of the best
way to make this correspondence can be called the “Fitting problem” for
cosmology [15,16]; there are various ways to do this, so the answer is not
unique. Once we completely specify the map @, there is no arbitrariness in

ép; insofar as ® is unspecified, that quantity is arbitrary.
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Figure 1.2: The map & has four aspects: (A) choice of a family of
time lines in each space - time; (B) choice of a particular correspon-
dence of time lines in the family in S to particular time lines in
the family in S; (C) choice of a family of spacelike surfaces in each
space-time; (D) choice of a particular correspondence of surfaces
from the family in S to surfaces in the family in S.

1.2.1 Gauge Specification

It is convenient to think of this map as having four aspects (Figure 1.2):

(A) We define a family of world lines ¥ in S and a corresponding family
of world lines 5 in S. This determines the world lines in each space-time
along which we will compare the evolution of density fluctuations. There is
an obvious choice in S, namely the fundamental flow lines; this will often be
the best choice in S also, but others (e.g. normals to a chosen set of surfaces)

may be convenient.

(B) We define a specific correspondence between individual world lines 7; in
S and individual world lines %: in S. This specifies which specific observer’s

observations we shall compare with which. In the case where § is an FLRW
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universe, this choice does not matter because of the spatial homogeneity of

those models.

(C) We define a family of spacelike surfaces £ in S and a corresponding
family ¥ in 9 these are the “time surfaces” in each space-i:ime. There is
an obvious choice in §, namely the surfaces of homogeneity {f = const}; this
means the image of these surfaces in S (that is, the surfaces {{ = const} in
S) are the idealised surfaces of constant density {fi = const} we use to define
the density perturbations. There is a variety of choice for the surfaces ¥ in

S, as discussed in depth by Bardeen [1].

(D) We define a correspondence between particular surfaces ; in the family
¥ in § and particular surfaces &; in the family £ in .S, and so assign particular
time values ? to each event g in §. This is crucial: this specifies which specific
point ¢ in S corresponds to a point § in 5, and completes the specification
of the map ®. In particular, the time evolution of a density perturbation
dp is now defined, because this choice, by assigning particular values [ to
each surface ; in S (the “unperturbed value” of the density) defines §p via

equation (1.8).

If we follow the normal convention, we understand (C) to define the co-
ordinate surfaces {¢ = const} in S (taking them as the same as the surfaces
{t = const}); and (D) to assign particular values to t at each event g in §
by this map: ¢, = {,. However this choice is not forced on us. Note that in

general neither ¢ nor ¢ will measure proper time along the world lines in S.

1.2.2 The Arbitrariness of 6u

The problem is that the definition of §u depends both on the choice of the
surfaces T in S and on the allocation of density values to these surfaces. We
can for example choose ¢ = f and then set the dependence of §u on the spatial
coordinates to zero through the gauge freedom (C), by choosing the surfaces
T as surfaces of constant density u in S; because these surfaces are regarded
as surfaces of constant reference density, we will then have éu constant on

these surfaces (they will be spacelike if the universe S is sufficiently like a
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Figure 1.3: By varying the assignation (D) of particular surfaces in
S to surfaces in S, we can give the density perturbation dp = p—
at the event ¢ in S (where the world line v intersects the surface
{& = const}) any value we like.

FLRW universe), and as they are also surfaces of constant f, we will find
ép = ép(t). In many ways this is an obvious choice for the time surfaces
(the constant density surfaces are covariantly defined in S, and correspond
precisely to the surfaces of homogeneity in the idea.liseci model S, which are

also surfaces of constant density).

Furthermore, given a choice of the family of surfaces ¥ in S, we can
still assign any value we like to u at a particular event through the gauge
freedom (D), by changing the assignation of values fi to the surfaces &. Thus
in particular, given any choice whatever of the time surfaces, we can set du
to zero at an event ¢ at ¢ = ¢o on any world line v, by choosing fi, = 4; this
is a possible assignation of a values of the “ideal” density i to the event ¢
where t = ¢ intersects v (Figure 1.3).

How this propagates along the chosen time lines then depends on the
gauge choice and the fluid equation of state. We can choose a gauge where

dp vanishes at every point of 4 by assigning the mapping of densities to
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b

Figure 1.4: By choosing ® so that the surfaces {#i = const} in S
are the same as the surfaces {y = const}, and then choosing the
correspondence (D) to assign the same numerical values to fi on each
surface as p has on it, we obtain a zero density-perturbation gauge.
Note that the proper time T between any two of these surfaces in
S will vary spatially, in general; the physical density variation is
coded in this spatial variation of dt/dr.

satisfy the condition u(¢) = fi(¢) on 4. This choice is obtained in Bardeen’s
formalism [1] by choosing the arbitrary function T(7) (his notation, see his
equation (3.1)) to be given (in terms of his variables) by
)
3(1+w)(5/5)

on <, where the right hand side will only depend on the conformal time 7

along any chosen world-line 4. Then his equation (3.7) shows § = 0, i.e. the

energy density perturbation vanishes along 7 in the new gauge.

If we combine these two choices, we will have chosen a gauge where §u = 0
identically; we map the FLRW model into the lumpy universes by mapping
surfaces of constant density f into surfaces of constant density ¢ with the
same numerical values (Figure 1.4).

We might call this the zero density-perturbation gauge. This possibility
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will not of course mean that there are no spatial variations of density; in this
gauge, inhomogeneities will be represented by the fact that the proper time
separating a surface of coordinate time #; from a surface of coordinate time ,,
measured along the normals to these surfaces, varies spatially (corresponding

to the normals to these surfaces being non-geodesic).

The basic problem, then, is this arbitrariness in definition of éu, because
6p (a) is not gauge invariant: it can be assigned any value we like at any
event by appropriate gauge choice; and (b) is not observable even in princi-
ple, unless the gauge is fully specified by an observationally based procedure

(as otherwise fi is not an observable quantity).

As a result, if we are to use éu in a satisfactory way to describe density
perturbations, we must either leave some gauge freedom, and keep full track
of the consequences of all this freedom; or find a satisfactory, unique way of
making the gauge choices (A)-(D) discussed above. The alternative is to look

for gauge - invariant quantities that code the information we want.

1.2.3 Fixing a Gauge

One way of approaching the problem is to choose a satisfactory specific gauge
(specifying completely (A)-(D) above). We mention four possibilities 2.

In each case we choose the corresponding world lines in § and S to be
the fundamental flow lines. The issue then is the choice of time surfaces, and

then a specific correspondence between these surfaces.

Proper Time Gauges

One possibility is to define clearly equivalent proper times in the two models,
and use this to completely specify both time functions and so fix the gauge.
The obvious choice (cf. Olson [43]) is to choose proper time along the fluid
flow lines from the big bang in both models. This is conceptually a clean

solution to the problem, provided we can start at the big bang and follow the

2

&

We omit two of Bardeen’s option[1]: (a) We do not consider surfaces of simultaneity
determined by radar, because such surfaces in S do not coincide with the surfaces { = const}
there [14]. (b) We do not consider zero shear surfaces because they are not invariantly
defined, and cannot exist in most space - times; furthermore in general such surfaces in S do
not correspond to the surfaces {f = const} [40]
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evolution of each model from then on.

The problem, as pointed out by Bardeen[1], who refers to this as a syn-
chronous gauge, is that the definition is non-local. If we observe the universe
today, this proposal means we cannot define §u directly from these observa-
tions but have to do so by integrating the field equations all the way back
to the big bang and then deducing from this integration what éu is today.

Apart from issues of practicality, this is clearly an unsatisfactory procedure.

Flow - Orthogonal Hypersurfaces

A second possibility is to choose the surfaces of constant time as surfaces
orthogonal to the fluid flow. However this choice (called comoving hypersur-
faces by Bardeen) is only possible if the fluid vorticity is zero, so it is not
a generic strategy. Furthermore it is not clear how to assign specific values
of time or density uniquely to these surfaces (unless the acceleration is zero,
proper time measured along one flow line from the big bang to a given surface

will be different from that time measured along another world line).

Equivalent Scalars

A third possibility is to identify equivalent scalars in S and S, that define
spacelike surfaces in S. The obvious choices are the energy density u (leading
to the “zero density-perturbations” discussed above, with fi, = pg) ) or the
fluid expansion O (giving Bardeen’ s uniform-Hubble-constant hypersurfaces,
with ©, = ©,). The problem is that then the information on spatial density

fluctuations is coded in a way that is hard to unravel.

Spatial Averaging

A fourth approach is to define the ideal density i in the lumpy model S
as a suitable average density in S: g =< p >, where < . > denotes some
suitable spatial average (cf. Lyth and Mukherjee[38]). This is equivalent
to specifying a fitting procedure of the fictitious model to the real universe

based on this averaging. This is indeed a reasonable thing to do[15,16], and
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may be expected to lead to integral conditions such as the Traschen integral
constraints [53,54,52], as discussed by Ellis and Jaklitsch [18].

This procedure may well give us the physical information we want. How-
ever one will then have to take seriously the problems associated with averag-
ing in general relativity, for example the degree to which averaging commutes
with the Einstein field equations [13,7]. It also demands investigation of how
this average depends on the choice of space-sections over which the average

is taken.

The results obtained for the evolution of éu/u from the various gauge
choices are different (see Bardeen’s paper [1] for an extensive discussion; and
see also Goode[25]). In each of the last three cases considered, we have
to concern ourselves with the relation between coordinate time and proper
time along the fluid flow lines. In the first three cases, clearly the definitions
are such that they have the correct correspondence limit: if S 7s a FLRW
model, they define as surfaces {fi = const} the surfaces {¢ = const} in those
universes. However the fourth approach is the most fundamental: it tackles
the major issue, on what scale is the real universe approximated by the FLRW
model [13]. From the viewpoint of the present paper, the averaging implied
is a sophisticated way of comparing evolution along neighbouring world lines
in the real fluid. In the next section we shall see there are simpler and more

direct ways of making this comparison.

1.2.4 Gauge Invariant Variables

The fundamental requirement for a gauge invariant quantity is that it be
invariant under the choice of the mapping ®. The simplest case is a scalar
f that is constant in the unperturbed space-time § (f = const), or any
tensor f%.; that vanishes in S: fo . = 0 . The reason is that in each case
the mapped quantity fin S will also be constant, so the choice of correspon-

dence ® does not matter; they will all define the same perturbation é f = f—f.
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The only other possibility for gauge invariant quantities is a tensor that is
a constant linear combination of products of Kronecker deltas (Stewart and

Walker [51], Lemma 2.2)

What are the simple covariantly defined gauge invariant quantities in a
FLRW universe? We can easily determine them by writing down a list of
all the simple covariantly defined quantities in a general fluid flow, and then
seeing which ones vanish in a FLRW universe model (the other two options
in the Stewart and Walker lemma are not useful in our context, as the only
invariantly defined constant in the FLRW universes is the cosmological con-
stant, and no tensors that are constant products of Kronecker deltas occur

naturally).

To carry this out, it is convenient to use the general formalism developed

by Schiicking, Ehlers, and Trimper. We turn to this in the next chapter.




Chapter 2

GAUGE-INVARIANT
VARIABLES

In the first section of this chapter we briefly review the covariant fluid ap-
proach to cosmology. In such an approximation the matter content of the
universe is described as a continuous fluid; this can be thought to be divided
into small? volume elements. At each point of the space-time we can assign
a 4-velocity vector u® representing the velocity of the volume element of fluid
surrounding that point. This description of matter is complementary to the
particle distribution function representation (see e.g. Ehlers (1971)[9]), and
we can regard the 4-velocity of the fluid element as the average velocity of

the particles in that volume.

The second part of the present chapter deals with the definition of gauge-
invariant quantities that naturally fit in the covariant fluid description adopted
here and which describe the inhomogeneity of the real universe. In particular
we identify the comoving fractional density gradient as the new variable (in-
troduced in EB [17]) in terms of which the perturbation problem in cosmology
can be treated in a simple and gauge-invariant way.

The physical interpretation of these variables is straightforward; moreover

2

they are not referred to as perturbations?, since in our approach we proceed

1From the mathematical point of view “small” means arbitrarily small, but from the
physical point of view it means much smaller than the scale of interest.
2There is nothing dealing with smallness in their definition.
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in a direction opposite to that of the usual treatment of perturbations in
cosmology. We start by considering a generic universe, filled in with a gen-
eral - relativistic fluid as inhomogeneous as we like; this fluid is described by
variables obeying exact non-linear equations as we shall see in the next chap-
ter. Then we restrict ourselves to an almost FLRW model for which these
equations can be linearized; at this point the gauge - invariance of those vari-
ables becomes relevant, for in studying an almost FLRW universe we have to

compare it with an exact FLRW.

2.1 The Covariant Fluid Approach

We consider now a completely general perfect-fluid flow in a curved space-
time. To characterize this fluid we introduce the covariant approach to gen-
eral relativity as is presented for example in the papers of Hawking [26] and
Ellis [11,12]. The presentation I give here is an attempt to satisfy a require-
ment of self - consistency of this thesis, avoiding details irrelevant to the con-
tent of the following chapters. The unsatisfied reader can refer to the papers

quoted above, and references therein.

In the following we denote by p the energy density of the fluid and by p the
pressure. We assume a signature (——l, +,4+,+), ¢ =1,and k = 87G, where G is
the Newton’s gravitational constant. Also, we denote 4 - dimensional indices
by Latin letters and Tambc...(d...e)‘..faTambc...[d...e]...f is the standard notation for
symmetrization and skew - symmetrization of 7%, 4 ... s with respect to the

indices e...f.

2.1.1 Kinematical Quantities

In the context of cosmology, there will always be a preferred family of world -
lines (the fundamental world lines) representing the motion of observers in
the universe (“fundamental observers”) which are at rest with respect to our
volume element of fluid. We will often refer to the flow lines as “fluid flow

lines”, since we will use the fluid approximation.
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Let the normalized 4-velocity vector tangent to these world lines be

d a
| ) (2.1)
dr

where T is proper time along the fluid flow lines: at any point of the space-
time u® is the 4-velocity of the volume-element of fluid surrounding that
point. Then we can define the projection tensor into the tangent 3-spaces

orthogonal to u? (the rest-space of an observer moving with 4-velocity u?) as
Rab = Gab + vats = h%R% =A%, hluy=0. (2.2)

It must be noted that the 3- planes defined at each point by A, do not in gen-

eral mesh together to form 3-surfaces in the space- time (see section 2.1.5).

The time derivative of any tensor Te-%, 4 along the fluid flow lines is

simply the covariant derivative along u®
Tambc...d = Tambc...d;eue . (23)

It is important to note that, because of (2.1), this is the derivative with
respect to proper time defined along these lines: in other words T“"'bcmd is
the rate of change of Te®, 4 as measured by a fundamental observer.

The 4- acceleration is then defined as

a® = 4% = uyub, (2.4)

and from the second of (2.1) it follows that a®u, = 0.
A relevant quantity in the fluid - flow picture is the connecting vector n?,
joining any two given flow lines at all time (see section 77). It can be show

that n® is Lie dragged [50] along u?®, i.e., its Lie derivative along the fluid flow

lines vanishes. This implies

7:]a = na;bub = ua;bnb ’ (25)

so that a significant quantity in our approach is the covariant derivative of

the 4 - velocity. Hence It is convenient to split u,,, for which we will need to
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define new variables. This we take up next.

The ezpansion scalar (volume ezpansion) © is the trace of u.p
O=u, (2.6)

which represents the isotropic part of the expansion of the fluid. For in-
stance, the action of ® alone during a small time interval on a sphere of fluid
changes the latter in a larger (smaller) sphere with the same orientation (see
Fig. 2.1(a)).

The shear tensor is the spatial trace - free symmetric part of uqp
cy, d 1 b
Tap = ha hy U(e;d) — '?;G)hab = o’ =0 y (2.7)

Its action distorts the sphere leaving unchanged its volume and the directions

of the shear principal axis (see Fig. 2.1(b)). The shear magnitude is

1
ol = —2~aabaab >0, c6=0 & o0,=0. (2.8)

The vorticity tensor wg is the skew - symmetric spatial part of uqy

Wep = hachbdu[c;d] = wabub =0, (2.9)

with magnitude

w? =

wapw™ >0 . (2.10)

DO | =

Since wgyy is skew - symmetric, all the information contained in it can be

put in a vector, the vorticity vector

1
wt = §nab°dubwcd & Wab = Nabegwu? (2.11)

we' =0, w=0 & w'=0 & wu=0,

where 7%%¢? is the totally skew - symmetric tensor:

et = qletedl | gt = (—g)7T g = det(gw) - (2.12)
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Figure 2.1: (a) The action of the expansion © a.lone on a sphere of
fluid during a small time interval: the sphere change volume, but
its shape and orientation is unchanged. (b) The shear modifies the
shape of the sphere, leaving unchanged its volume and orientation.
(c¢) The vorticity vector rotates the sphere around the axis defined
by its direction, leaving its volume and shape unmodified.

P

\

The action of w® alone rotates the sphere, leaviﬁg its shape and volume
unchanged (see Fig. 2.1(c) ). '

With the definitions given above, the first covariant derivative of the 4-
velocity vector is completely determined |

1 . w
Uagh = Wgap + Cap + §®hab - AqaUp - (2.13)

It is convenient to define a representative length scale S (T) by the relation

. 3y
si5-l0 » 0o 145

§ dr (2.14)

which determine S up to a constant factor along each‘fvtf)rld line. Hence, the
volume of any fluid element varies as $3 along the ﬂow lines (this quantity
is the generalization to arbitrary anisotropic flows of the Robertson-Walker
scale parameter), so that S represents the average dlstance behaviour of the

fluid. This can be understood if we refer to the definition of ® and o,
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and to Fig. 2.1: in general a sphere of fluid will expand in an anisotropic
way during each small time interval, but if we average the expansion along
different directions over this time interval the shear effect will cancel out and
the resulting effect is described by © (S) alone.

It is clear from the above definition of S that © is just proportional to
the familiar Hubble parameter H(7) when we consider a FLRW model.

2.1.2 Matter: Conservation Equations

If T® is the energy momentum stress tensor, the covariant form of the energy

momentum conservation equations is

T, =0 . (2.15)

From now on we will assume a one component perfect fluid unless otherwise

specified; in this case T% takes the well - known form

T® = pugus + phas = (1 + P)uats + Pgas (2.16)
and g and p will be constrained through an equation of state. In section 3.1.1
we will separate equation (2.15) in its time and space components.
2.1.3 Geometry
Riemann, Ricci and Weyl Tensors

The Riemann tensor Rgpq is the tensor which describes the curvature of
the space-time. It is defined by the commutation relation satisfied by the
covariant derivatives of any arbitrary 4 - vector (Ricci identity). In particular

for the 4 - velocity vector Ricci’s identity is
Ugidie — Uaje;d = Rabcdub . (217)
The Riemann tensor satisfy the symmetry properties

Riatjica) = Rabed = Redab, Rappeq =0, (2.18)
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giving 20 independent components. The Riemann tensor can be decomposed

into its “trace”, i.e., the Ricci tensor (10 independent components)
Rab = Rcacb 3 (219)

and its “trace-free” part, the Weyl tensor Cypeq (the remaining 10 compo-

nents)
| 1
C%.q= R4 — 2g°. Ry + -?:Rg[“[cgb]d] = (C%,=0, (2.20)

where R = R%, is the Ricci scalar. We can further spit the Weyl tensor into

its “electric” and “magnetic” parts?®, respectively defined by
1
Eac = abcdubud ’ Hac = Enabghcghcdubud ) (221)
Ea.b = E(a,b) 9 Hab = H(ab) ’ Eaa - Haa. =0 9 Eabub = Habub =0.
Then the Weyl tensor can be written as

Cab'?d = (nﬂ-bpqncdrs + gabpqgcdrs)upurEqs - (nabpqgcdrs + gabpqncdra)upurﬂq’ ’
(2.22)

Gabed = Gacgbd — GadGbe -

It is interesting to note that the physical interpretation of the gravitational
field E,; is clarified by its Newtonian counterpart®: E,; represents the tidal
force, inducing shear in the fluid flow lines (see equation (3.6); Ha has no

Newtonian counterpart.

Bianchi Identities

The Riemann tensor satisfies the Bianchi identities

Rabr_cd;e] =0 3 (223)

3The reason for this terminology is that E,; and H,; satisfy a “Maxwellian form” of the
Bianchi’s identity (see section 3.1.2).

“The Newtonian analogue of the general - relativistic fluid approximation is developed
in detail in Ellis (1971) [11]. The extention of the covariant fluid analysis of cosmological
density inhomogeneities to its Newtonian analogue is given in Ellis (1989) [20].
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in 4 dimensions these are equivalent to
Bl j- . )
Oabcd;d — Reledl _ —Gg"[“R’b] . (2.24)

Written in this form, they are differential equations relating the components
of the Ricci and Weyl tensor. Contraction of (2.24) implies

1
Gab;b =0, Gap = Rap — ‘Z‘Rgab 3 (225)

where (G is the Einstein tensor.

2.1.4 Einstein Equations

Up to now we have not related geometry with the matter contents of the

space- time. This relation is established by the Einstein equations
Gap + Agap = kT (2.26)

where we include the cosmological constant term A for generality. The cosmo-
logical constant problem is a controversial one, but not at all old - fashioned,
see e.g. the recent review by Weinberg (1989) [59].

The Einstein equations tell us that the Ricci tensor Ry, is determined
directly from the matter energy - momentum- stress tensor at each point. If
we substitute (2.26) in the Bianchi identities (2.24), we see that the Weyl
tensor represents the “free gravitational field”, determined non-locally by

matter and suitable boundary conditions.

2.1.5 Intrinsic Curvature

When the fluid vorticity vanishes (and only then) there exists a family of
3-surfaces X, everywhere orthogonal to the fluid flow vector u®. Indeed it is
possible to show that

w=0 & upuyy=0

& 3 f,9: U= fga - (2.27)

In other words, for the surfaces £, to exist, it must be possible to write u,

as a 4-gradient. Then the surfaces £, = {g = constant} are instantaneous
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surfaces of simultaneity for all the fundamental observers, i.e., the surfaces
Y, define a cosmic time. However this can be locally normalized to measure

proper time along each flow line only if a, = 0.

Since for w = 0 these surfaces exist, one can define an intrinsic curvature
tensor for them from the Ricci identity in 3. For any vector V¢ in ¥, :

Veu, = 0, we have
(S)VC(”V;,V; - (S)Vb(s)vcva = Vd(3)Rdabc ’ (228)

where ®)V_ is the 3 - covariant derivative defined in X as the total projection
of the 4 - covariant one®. Finally, the Ricci tensor for these 3-spaces can be

written as

(3)Rab = hafhbg (—5_3(530']:9) + a(f;g)> + aqap+ (2.29)
+ —;—hab(—~§®2 +20% 4+ 2kp + 2A — A)

for a general perfect fluid.

Now, in a general fluid flow, we can define the quantity
K= 2(—%—@2 +o? +rp+A). (2.30)

Then, when w = 0, this quantity acquires a special significance: it is the Ricci
scalar )R of the 3-dimensional spaces T,; that is, w = 0 = C)R = K. A
brief discussion about the meaning of this variable when w 3 0 is postponed

to section 3.3.2.

When w # 0, we can of course define a 3-covariant derivative at each
point, by using the projection tensor h,p (as we did up to now). However we
want to stress here that, if we compute the commutator of these derivatives,
the tensor that rests defined in this way will not have al the usual curvature

tensor symmetries.

SWe already used it in the case of function, i.e., ®V,f = h,"f,. We introduce this
(standard) notation to consider 3-covariant derivatives of tensors, since it is compact; e.g.
OV = ko Ve ; AV LIV, = hthy Ry (he™hs" Vi )t § and so on.
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2.2 Gauge Invariant Quantities

2.2.1 Characterization of FLRW Universes

We can describe a FLRW universe using the quantities defined in the previous
section. If we assume that the matter and radiation content of the universe
can be depicted as a perfect-fluid with equation of state p = p(u), then a
FLRW model is a space- time characterised by the conditions [8,11]:

Oap = Wap = a> =0 . (2.31)

These imply

p=pt), p=p(t), ©=0(1), (2.32)
where ¢ is the cosmic time defined (up to a constant) by the FLRW fluid flow
vector: u, = —t,. Thus

halpp = hobpy = h'@y =0, (2.33)

and these models are spatially homogeneous and isotropic since there are
no directions defined in the 3-space orthogonal to u,. Further conditions

satisfied by FLRW models are
E,=0, H,=0, (2.34)

i.e., the Weyl tensor vanishes. Thus these space-times are conformally flat

(their metric can be written as g = Q7, where 7 is the metric of flat space).

2.2.2 Gauge-Invariant Variables

We now consider an almost FLRW universe, i.e, a universe described by
equations that differ from that of an exact FLRW only by linear terms (this
statement will be clarified in the next chapter). We come back to consider a

general fluid, represented by a general equation of state.



2. GAUGE-INVARIANT VARIABLES 35

From the above characterization of a FLRW model plus the Stewart and
Walker Lemma discussed in the previous chapter [51], the basic gauge invari-

ant quantities for an almost-FLRW universe are as follows:

(1) The vorticity wqp, shear g, and acceleration a?;
(2) The electric and magnetic parts FEg,, Hgp of the Weyl tensor Caped;

(3) The matter tensor components
1
Go = ~haTegu® , 7y = ha'hs Tea = (A Tea)has - (2.35)

These components of the energy - momentum- stress tensor vanish identically
in the perfect fluid case; however, we may need to consider non-zero compo-

nents of these tensors in some physically significant situations (cf. section 77).

These are the simplest covariantly defined quantities which vanish in
FLRW models, and so are gauge invariant. The problem is that the list
so far does not contain quantities characterizing the variation of the zero-
order variables (the energy demsity p, pressure p, and fluid expansion ©),
which are in general non-zero in expanding FLRW models, and so are not
gauge invariant. However we can find associated gauge invariant quantities,

namely the orthogonal spatial gradients of these variables. We define
X.=rhlbpy, Yo=rhdpy, Z.=h0,, (2.36)

(we include the gravitational constant x in these definitions for later conve-
nience) where each quantity is gauge invariant, since they all vanish in the

FLRW universes (2.2;2.32).

We can easily come up with further gauge invariant quantities by finding
more complex invariantly defined quantities that vanish in the FLRW uni-
verse models, e.g., the gradients of the squared magnitudes of the shear and
vorticity, (w?) , and (0?) 4, the scalar products of the shear with the Weyl ten-
sor components, c®E,;, and ¢®®H,;, and so on. These will not be significant
to us in considering linearization around the FLRW universes, for they will

be of second or higher order. However there are two other gauge-invariant
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quantities that will be important subsequently, namely the divergence of the

acceleration, and its spatial gradient:
A=a,, A.=hl4,. (2.37)

In the case of vanishing vorticity, the Ricci scalar ®)R of the orthogonal
3-spaces is gauge invariant if and only if the homogeneous space-sections in
S are flat, i.e. if that idealised universe is at the critical density. However its
spatial gradient is always gauge-invariant. Thus for a general fluid flow, it is

interesting to define from K (see (2.30)) the gauge invariant quantity
4
Ko =htKy = —30Z.+2X. + 2(0?) k% (2.38)

the equivalence following from the definitions (2.36). Since for w = 0 we have
K = ®R, K, is an intrinsic curvature gradient. Then isocurvature fluctua-

tions can be defined as the zero-vorticity perturbations for which X, = 0.

2.2.3 The Key Variables

The point of this discussion is that instead of concentrating on éu, with the
arbitrariness that implies, we can find three simple gauge invariant quanti-
ties that will give us the information we need to discuss the time evolution

of density perturbations, without the complexity of the Bardeen [1] analysis.

The first is the spatial projection of tﬁe energy density gradient, i.e. the
vector X, = kh,’uy. This vanishes in the FLRW universes, and so is a gauge
invariant quantity; it is covariantly defined in the real universe. This variable
naturally arises in the covariant fluid approach (Hawking (1966) [26]; Olson
(1976) [43]). However it was not recognized as the gauge-invariant variable
in terms of which the whole perturbation problem can be formulated.

X, is measurable in the sense that (a) it can be determined from virial the-
orem estimates (indeed, dynamical mass estimates determine precisely spatial
density gradients), and (b) the contribution to it from luminous matter can
be found by observing gradients in the numbers of observed sources and es-
timating the mass to light ratio (Kristian and Sachs[33], equation (39)). It
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describes the density inhomogeneities which we wish to investigate, for if
there is an overdensity which is a viable proto- galaxy, this will be evidenced
by a non-zero value of X, (the magnitude of X, directly indicating how rapid
the spatial variation of density is). Thus X, seems to encapsulate much of

the information we want.

However, we normally will wish to compare the density gradient with the
existing density, to characterize it significance. Thus we can define the second
quantity, the fractional density gradient

Xy = 2(’2" = hab (lﬁ) ) (239)

Kp r
which is also gauge-invariant, and represents the relative importance of the
density gradient. While both are observable in principle, it is a moot point

whether X, or X, is more easily observable in practice.

Both these vectors can be used to determine the spatial variation of the
energy density p. One important point should be noticed. In the case where
w = 0, they will characterize the distribution of the density p in the 3-spaces
¥, orthogonal to the fluid flow (which might naturally be chosen as the sur-
faces {t = const}). However when w # 0, no such orthogonal 3-surfaces exist.
These vectors still characterize the gradient of 4 orthogonal to u*, but cannot
be immediately integrated to give the distribution of density in the surfaces
{t = const} for a suitable set of coordinates [55,7] because these surfaces can-
not be everywhere orthogonal to the fluid flow lines. Even if w = 0, the time
t such that the surfaces {t = const} are orthogonal to the fluid flow will not
measure proper time T along the fluid flow lines unless the acceleration is

zero also, that is, unless there are no pressure gradients.

There remains a problem with X,: it is not dimensionless. This is essen-
tially related to the fact that when we consider the time evolution of the fluid,
both X, and X, represent the change in density to a fized distance, whereas in
the context of considering the growth of proto - galaxy-galaxy fluctuations we

want to consider density variations at a fized comoving scale. In other words,
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when we are interested in the time evolution of density inhomogeneities we
have to define a quantity for which the overall damping effect of the general
expansion cancels out. Thus the third quantity of interest is the comouving
fractional density gradient obtained by multiplying (2.39) by the scale factor
S(r): :

D, =54, (2.40)

which is gauge-invariant and dimensionless. We must remember here that S
is defined only up to a constant by (2.14), so D, is similarly defined up to
a constant along each flow line; this reflects the fact that it represents the
density variation to any neighbouring comoving region. The time variation of
this quantity precisely reflects the relative growth of density in neighbouring
fluid comoving volumes, and this is what we wish to investigate. Because
S represents the averaged volume behaviour, D, represents the average be-
haviour of comoving density fluctuations, rather than the growth of a specific
fluctuation; this is represented by A, a quantity that will be defined in sec-
tion 4.5. We concentrate here on X,, X,, and D, because they are space- time

fields, whereas A is not.

The vector D, can be separated into a direction e, and magnitude D

where

D, = Dea, €ae® =1, equt =0 = D= (D*D,)/2 (2.41)

The magnitude D is the gauge-invariant variable that most closely corre-
sponds to the intention of the usual (6u/p) in representing the fractional
density increase in a comoving density fluctuation. The crucial difference
from the usual definition is that D repfesents a (real) spatial fluctuation,

rather than a (fictitious) time fluctuation.

The vectors X,, X, are closely related to the vectors Y, and Z, defined
above, equation (2.36); indeed they are dynamically dependent on each other,
as will be shown in the following chapter. But we have also defined the

comoving density gradient D,, therefore we find useful to define the comoving
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 expansion gradient

Z, =52, (2.42)

as the natural companion variable of D,. All these variables are gauge in-
variant, and directly determinable (at any desired scale) from a description
of the real (lumpy) universe at that scale. Thus our further analysis will

concentrate on these quantities.

The gauge-invariant variables introduced in this section are only use-
ful if we can determine a self- consistent set of dynamic equations for those

quantities. This is what we consider in the next chapter.



Chapter 3
DYNAMIC EQUATIONS

In the second part of the previous chapter we introduced a set of variables
describing the inhomogeneity of a general space-time S: since they vanish
in an exact FLRW (S), they are gauge-invariant. The density gradient X,
has been considered previously as a gauge invariant variable by Hawking
(1966) [26] and Olson (1976)[43], but they did not notice that the density
fluctuation problem in an almost FLRW can be treated in terms of this vari-
able only. A most significant quantity for describing the time evolution of
density fluctuations (see section 2.2.2) is the comoving fractional density gra-
dient D, introduced in EB [17], because it incorporates the relative growth
of density in neighbouring comoving volumes of fluid. The final aim of this
chapter is therefore to derive a linear system of two first - order equations?!

from which D, can be determined.

However, we shall see that for a general space-time S the density gradi-
ents X,, X, or D, are coupled with the expansion gradients Z, or Z,, as well
as with the shear oy, and the vorticity w,s, through a set of exact non - linear
first - order equations. We shall assume a perfect fluid throughout this chap-

ter, unless otherwise specified.

In the first section we consider a general space-time S, and we present

1To avoid confusion we will use “first-order equation” (second-order) to refer to the
order of the derivatives with respect to time, and “linear equation” when we refer to the
degree of approximation.

40
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the evolution equation for u,p and O, as well as for oq and ws,. We also
introduce the “Maxwellian form” of the Bianchi identities (2.24) for the Weyl
tensor components E,p, H,p (this will clarify the reason for their names). All
these equations are well known and can be found in Hawking (1966) [26] and
Ellis (1971)[11] as well as in other classic papers. They are not directly rele-
vant to our discussion of the inhomogeneity in an almost FLRW universe, but
we present them here in order to have a complete picture of the general non-
linear case. Finally, we derive the equations of motion presented in EB [17]
for the gauge - invariant variables a,, Xq, Xa, Da, Za, Za (first - order in an al-
most FLRW). All the equations in this first section are exact and non-linear

(apart from the energy and momentum conservation equations).

In the second section we consider an almost FLRW universe. By this we
mean a universe model in which all the gauge-invariant quantities are first -
order with respect to the energy density p, the pressure p and the expansion
©. we shall refer to these latter quantities as “zero-order”, since they are
non vanishing in an exact FLRW model. We linearize the equations derived
in section 1, and we shall see how they decouple. Equivalent systems of two
first- order linear equations coupling any of the density gradients with the
expansion gradients are obtained. In particular we derive a pair of equations
coupling D, with Z, (presented in EB[17]). Also, an evolution equation for
the comoving curvature gradient C, is derived in the linear approximation
(EHB [19]). An equivalent system of equations coupling D, with C, is then

obtained.

The final section of this chapter deals with the mapping we have chosen
from the background exact FLRW model (5) to the realistic almost FLRW
universe (). Indeed, since we examine the evolution of each quantity along
the fluid flow lines, we map fluid flow lines in S to fluid flow lines in S. We
shall explain how this specific choice does not affect the gauge-invariance of
our variables (and equations). Finally, we shall briefly discuss the meaning

of the quantity K (defined by (2.30)) in the case of non- vanishing vorticity.
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3.1 Exact Equations

3.1.1 Zero-Order Quantities

Conservation Equations

The tensorial energy - momentum conservation equation (2.15) can be sepa-
rated into time (energy conservation) and space (momentum conservation)
components. For a perfect fluid the energy - momentum tensor has the form

(2.16). Inserting this in equation (2.15) gives
Ty = [+ (1 +p)Ou® + (n +pla® + ¥ =0. (3.1)

The time component is obtained by projecting the above equation along
Uq. Since u’u, = —1,a%u, = Y%, = 0 we obtain the energy conservation
equation

g+ (p+p)©=0. (3.2)

In the same way, using the projection tensor hg,, we obtain the space com-

ponent of (3.1), the momentum conservation equation
k(p+plags+Ya =0. (3.3)

The time-evolution of p is determined by (3.2) when we specify an equation

of state determining p from p.

Raychauduri Equation

The third zero - order variable is ©, whose evolution along the fluid flow lines

is given by the Raychaudhurt equation:
.1 1
®+§®2+2(02—-w2)——A+§K(u+3p)—1\=O, (3.4)

where A is defined by (2.37). This equation was derived by Raychauduri
(1955) [47] in the case of dust and generalized by Ehlers (1961) [8] to the case
of non - vanishing pressure. It is also the trace of the Ricci identity (2.17) (ac-

tually it is obtained by contracting the spatial part of (2.17) projected along
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u?). The Raychauduri equation is the fundamental equation of gravitational
attraction that establishes that in general relativity (u + 3p) is the active
gravitational mass of the fluid 2. For 1+ 3p > 0 we have from (3.4) a volume
contraction; we also see from (3.4) that A contributes as a constant repulsive
force, and a similar repulsive role is played by the acceleration divergence A
and by the vorticity. On the other end the shear term tends to shrink the

volume.

A further useful quantity we defined in section 2.1 is K (see (2.30)): its

time derivative along the fluid flow lines obeys the equation
2
(K —20%) = 5@(602 — K —4w?® — 24). (3.5)

This is immediately obtained by differentiating (2.30) and using the Ray-
chauduri equation (3.4) and the energy comservation equation (3.2); when

the vorticity vanishes, this is an equation for (*R.

3.1.2 Shear, Vorticity, and Maxwell - like Equations

By the perfect fluid assumption, the matter tensor components (2.35) ¢, and
Ta vanish in the general space - time S, so their “propagation equations” are
go = 0, ma = 0. The equations for shear and vorticity as well as for the Weyl

tensor components E,; and H,, are given below.

Shear and Vorticity Equations

Propagation equations for o, and w,; are also obtained via the Ricci identity
(2.17). The symmetric trace - free part of the tensor ((PIPPQ),;) obtained
by taking the spatial part of (2.17) projected along u? is the shear evolution

equation:

haf e (0sg) "~ ha? B%af,g) — Gatthy + wawy + Tapols+

?This is the role played by the mass density only in the Newtonian theory: the p term
in the active gravitational mass is responsible for the regeneration of pressure bringing to
gravitational collapse in general relativity.
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-+ g@aab -+ %hab(A —w? - 20’2) + FEup=0. (36)

The vorticity evolution equation

d

2 1
h“b(wb) T4 g@wa — 4w’ — ~2—n°bc UpGed = 0 (3.7)

is then the skew symmetric part of (PIPPO)g.

Contraint Equations

Three further equations follow from the Ricci identity (2.17).
They can be regarded as constraint equations, since they do not involve

time derivatives:

2
Rey(w’ e — o + },’Zb) + (w® + 0%)a” =0, (3.8)
wy = 2w, , (3.9)
Had = 2a(awd) - haehd‘q (w(cb;c -+ O‘(eb;c) 'r]g)fbcuf . (310)

Maxwell - like Bianchi Identities

We have seen in section 2.1 that the Bianchi identities (2.23) obeyed by the
Riemann tensor can be cast in the form (2.24), relating the Weyl tensor
components to the Ricci tensor components. As the Weyl tensor can be
decomposed into components E,; and H,, (see eq. (2.22)) and the Ricci
tensor is related to the energy - momentum tensor via the Einstein equations
(2.26), one can substitute (2.22) and (2.26) in (2.24), obtaining four tensorial
equations for E,, and H,, that are rather similar to the Maxwell equations.

In the perfect fluid case these Mazwell- like Bianchi identities are:

divE :

1
htaE‘";dh,d - ntbpquba'pdﬂqd +3H W' = gXt , (3.11)

divH :
Rt H® gh,* + Py, By — 3B ,w° = (u + p)uwt, (3.12)
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hamhct(Eac) g ha(mnt)rsdurHas;‘d _ 2Hq(tnm)bpqubap + @Emt+
1
+ hmt(o_abEab) _ SEs(mdt)a . Es(mwt)a — ——2~(,LL +p)0_tm , (313)

hmahtC(Hac) - ha(mnt)rsdurEas;d + ZEq(tnm)bpqubap+
+ R (0% Hy) + OH™ — 3H,(Mo®* — H,(mMw =0.  (3.14)

The form of these equations is the reason for calling E,; and Hg the electric

and magnetic component of the Weyl tensor.

3.1.3 Exact Evolution Equations for Gauge - Invariant
Variables

We pass now to sketch the derivations of the equations presented in EB [17]

for the new gauge - invariant variables defined in section 2.2.2.

Acceleration Propagation Equation

In order to derive an evolution equation for the acceleration we express a®
using the momentum conservation equation (3.2):
a® = ———-—)ii——— . (3.15)
w1+ p)

Differentiating with respect to the proper time and projecting orthogonally
to u® we have

hof(a.) = —g(a—,u(_%)— + aq <1 + g—ﬁ) o, (3.16)
where we substituted for ji from the energy conservation equation (3.2) and
we used p = ggp, with dp/dp taken along the fluid flow lines. Now with the
same tricks and after some algebra we can write

, d
ha®(Ye) = —r(p +p)(gf;®) h’a—
dp
dp

d
— k0O (1 + ) Y, — kho’pouy — naa—BO(u +p).

dp
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Using (2.13) to express u°; and substituting in (3.16) we finally obtain

hof(ac) = a.© (g—z - %) + R’ (g%@) b — ac(we + %) . (3.17)

Density Gradient Equation

To obtain a propagation equation for the spatial gradients of the energy den-

sity we could proceed from its definition, X, = xh,*u;, differentiating with

respect to the proper time and projecting orthogonally to u®3.

However it is more interesting to proceed directly from (3.2), because the
propagation equation we derive for X, is the spatial variation of the energy
conservation equation. Taking the spatial gradient of (3.2) and using the

definitions (2.36), we obtain
RP(f)p + Za(n +p) + OX, +OY, =0 (3.18)
Now we can write
B () = hot () =
= ho’ et + B’ phie(0%p + w0 + %thb) :

where we used f..p = ppe (¢ is a scalar) and we substituted for u®y from
(2.13). It is useful to express the first term in the last part of the previous
equality as

habﬂ;b;cuc = had(hdb#;b);cuc - had(hdb);cucﬁ‘;b =

= hab(fo) — ne ’
where in the last step we again used (3.2) and (3.15).

Substituting in (3.18) and using the definitions (2.36), we finally obtain

. 4
R (Xp) "+ Xp(o®0 + %) + -‘?:@Xa + Zo(p+p) = 0. (3.19)

3in this case a key step would be (o) = (1).c — pyul.., followed by the substitution for
u*y from (2.13), a* from (3.15) and £ from the energy conservation equation (3.2).
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We can cast this equation in the following form:

SR (8% X,) = —r(p + p) 2. — (W + 0%) X, , (3.20)

showing that the time variation of X, is determined by the source term Z,

and by the non-linear term coupling X, with the shear and vorticity.

Expansion Gradient Equation

We now want to derive an evolution equation for the spatial gradient of the
expansion. As for X,, we could start from the definition Z, = hab@;b and
spatially - project its time derivative. However we proceed from (3.4), because
the equation we obtain for Z, is the spatial variation of the Raychaudur:

equation. Taking the spatial gradient of (3.4) we have
by 2 1 3 b 2 2
ha'(©)s + 50Za+ 5 X+ 5Ya + ha [2(0%)5 — 2(w?)p — 4a] =0, (3.21)
and the first term of this equation can be reexpressed as

hab(@.c“c);b =
1
had(hdbe,b);cuc - hadG),b(hdb);c'u'c + Zb(aba + wba) + geza =
. 1
hab(Zb) — ®aa + Zb(aba + wba,) + 'g@Za .

As before we used (2.13) to express u®, and the definitions (2.36). If now we
substitute the last expression in (3.21), using (3.4) to express ©, we obtain
finally

1 .
hab(Zb) +0Z,—a,R+h,° (-2—Xb +2(a%)p = 2(w?) — Ab> +Zb(crba+wba) =0.

(3.22)
We defined

R _‘—:—-;:@2—20'2+2w2+A+5;L+A=

1
= 5/C+A——3c72 + 2w? (3.23)
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where K (defined by (2.30)) is the Ricci curvature ()R of the surfaces orthog-
onal to the fluid flow when w = 0 (see section 2.1.5).

Equation (3.22) can be put in the form

1
S‘Sha"(Sszb) "= a, R+ ha,b —§Xb - 2(0’2)’5 + 2(0)2),1, + Ayl — Zb(O'ba -{-—wba) s
(3.24)
with Raq, Xa, Aa, hob(c?)s, and h.b(w?), acting as source terms, while the

last non -linear term couples Z, with the shear and vorticity.

Pressure and Curvature Gradients

We could derive the equation for the evolution of the pressure gradient Y,
proceeding from its definition, but this would not be an independent equa-
tion. Indeed, when the equation of state of the fluid is known, the evolution

of Y, will follow from that for X, (see next chapter).

We could also derive a propagation equation for K,, either by taking the
spatial gradient of (3.5) or by taking the spatial projection of the time deriva-
tive of (2.38). However, the resulting equation would be rather cumbersome,
involving also the time derivative of ¢. Therefore, we postpone the deriva-
tion of an equation for K, to the next section, where we consider the linear

approximation.

Equations for X,, D, and Z,

The evolution equations for the fractional density gradient X, and the co-
moving fractional density gradient D, could be derived starting from their
definitions (2.39;2.40), spatially projecting their derivatives with respect to
the proper time. Also, we could derive such equations for X, and D, taking
the spatial gradient of, respectively, (3.2)/p and Sx (3.2)/u, where (3.2) is

the energy conservation equation.

However, both X, and D, are simply related to X,. Therefore, it is more

convenient to use this interdependence to express the relation between the
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time derivative of either X, or D, and the time derivative of X,, since we
have already derived the evolution equation for the latter.

These relations are:

to=Xe o (x) =) g (1 + -’-’-) X, (3.25)
KK Kp p
and ox )
Dy=—=8X, = (D) =85X)+:0D,. (3.26)
K 3
Accordingly, the propagation equations for X, and D, follow from (3.19).
They are
1
hAH(X,) = X.0 <£ - —) - Z. (1 + B) — Xo(we +0%) , (3.27)
po3 I
and
hei(D,) = 20D, - (1 + 3) 2y — Da(w® + 0%) , (3.28)
1 7

where we have used Z, = SZ,. The equation for this latter variables can

be derived from that for Z, (3.22) in the same way, and we write it here for

completeness:
S72hb(5%2) = —%wa — Zy(0%s + Wb+
4S5 {aR o+ A+ R [2(w) — 2(0%)]} - (3.29)

3.1.4 Some Remarks on Exact Equations

It should be emphasized that, given the perfect fluid assumption, the equa-
tions presented in this section are exact propagation equations, valid in any

fluid flow whatever.

We see from (3.20; 3.27; 3.28) and from (3.24; 3.29) that the density gra-
dients X,,X, and D, are coupled with the expansion gradients Z, and Z,.
For example, a significant feature follows immediately from (3.20): provided
(p+p) #0, Z, # 0 = X, # 0. The converse result (X, # 0 = Z, # 0)
will hold in general as well (if X, # 0, Z, = 0 then the right hand side of

(3.24) must be zero; this is unlikely to remain true even if it is true at some
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initial time). Indeed, the equations for X,,X,,D,, Z, and Z, contain non-
linear terms coupling these quantities with shear, vorticity, acceleration, as
well as the acceleration divergence A and its gradient A,. Therefore, to con-
sider a closed non-linear system of equations, one should take into account
the evolution of all these quantities. Also, Maxwell - like equations should be
included, because E,, appear as a source term in the shear equation (3.6),
and H,, is coupled with E,; in the E equation (3.13). Finally, the constraint
equations (3.8;3.9;3.10) must be satisfied.

It is not surprising that to consider the full non-linear equation for the
density gradient involve to take into account so many other quantities. After
all, the full non- linear system is equivalent to the complete content of Ein-
stein equations. We only chosen new variables, more suitable for the study

of the growth in time of spatial density inhomogeneities.

An interesting point is then to adopt some reasonable hypothesis ¢, to see

if the problem to determine this growth can be solved.

The first step on this line (at which this thesis stand) is the linear approx-
imation. Indeed, the two equations for X, (X, or D,) and Z, (Z,) decouple
from the others for an almost FLRW universe. We consider this case in the

next section.

3.2 Linearisation about Robertson-Walker
Universes

We now specialize the equations given in the previous section to the situation
where the universe is almost FLRW. We do so by treating the quantities u, p,
and © as zero-order (O(0)), because they do not vanish in an exact FLRW.
We also assume that all the following quantities, and their derivatives, are
first - order (O(1)):

the shear (2.7), the vorticity (2.9), the acceleration (2.4), the electric and

*Physically motivated, and corresponding to some mathematical assumption.
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magnetic part of the Weyl tensor (2.21), the gradients of density, pressure
and expansion (2.36)(2.39)(2.40)(2.42), the divergence of acceleration and
its gradient (2.37), the curvature gradient (2.38).

Moreover, since we have assumed a perfect fluid, the energy momentum

tensor components (2.35) vanish.

To proceed to linearize, in each equation we drop the higher order terms
relative to the lower order ones, keeping only the lowest two orders®. Note
this does not mean we can always drop the 2nd order terms (in some equations
the largest term is 1st order); and also that although we treat the pressure p
as zeroth order, it may vanish; but we must allow for those cases where it is

large.

The basic equations resulting from this process are given in Hawking’s
pioneering paper [26] (see his equations (13) to (19)): they are the lineariza-
tion of equations (3.6;3.7;3.4; 3.11; 3.12; 3.13; 3.14) presented in section
3.1.2. However we consider here only those equations that are relevant for
the time evolution of the gauge-invariant spatial density gradients, because
the growth of density fluctuations in an almost FLRW universe is what we

wish to investigate.

On carrying out this procedure, we still remain with a non yet fully lin-
earized term, the gradient of the acceleration divergence®. This term will be
treated separately, and we shall show how it reduces to the 3-Laplatian of
the pressure gradient. After that, we will have linearised the covariant equa-
tions for our gauge-invariant variables about an as yet unspecified FLRW
universe model; as the linearised equations hold for all choices of background

FLRW models, they are gauge-invariant.

As usual, the product of @(0) x O(0) is O(0), the product O(0) x O(1) is O(1), the
product O(1) x O(1) is O(2), etc.

6 Athough we assumed A, to be first - order, it is not so if we express it as a function of
pressure and density gradients, but see below.
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3.2.1 Propagation Equations
Zero - Order Variables

The first equations that are relevant for determining the density fluctuation
behaviour along the flow lines are those giving the evolution of zero-order
quantities, i.e., the energy and momentum conservation equations (3.2) and
(3.3), which are unaffected by the linearisation procedure, and the linearised
Raychaudhuri equation. This is

®+-1?;®2—A+—;-m(u+3p)—A=0, (3.30)

where we have dropped the o ,w? terms in (3.4).
First - Order Variables

The linearised equations for propagation of X, and Z, follow from (3.20;3.24)

in the same way. They are

S7*h(S*X,) = —k(p +p)Z. , (3.31)
and . )
57%h.(5%2,) = ..-2-Xc + —2-1Cac + A., (3.32)
where now
1 1 ., . 2
—2—IC:——§® +rkp+A=TR, /C=—§®(/C+2A) . (3.33)

Note that linearizing R from (3.23) also gives a term A; however we drop
this term because in (3.32) R = %K is multiplied by the first - order quantity
ac, so A only gives a second - order contribution to (3.32).

The equation for X, follows directly (or can be obtained by linearising
(3.27), by dropping the last bracket). Similarly, the linearised equation for
D, and Z, follow directly from (3.28) and (3.29); they are:

he(D,) = 5@7)0 - (ii + 1) Z, (3.34)

2 1 1
he(2,) = ~3OZ. — ShuD. + 5 (§/Ca,c + Ac) : (3.35)
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These are the linearised equations determining the propagation of the
gradients along the fluid flow lines, and they are the basic perturbation equa-
tions. Indeed, we can already see from (3.31;3.32) and (3.34;3.35) that in the
linear approximation the evolution equations for the density gradients and
the expansion gradients decouple from that of the other quantities. Their de-
velopment depends however on the equation of state of the fluid, as we shall
see in the next chapter. Actually, the acceleration a. term in the equations
for Z, and Z, is just proportional to the pressure gradient Y., and this will be
reduced to D, via the equation of state. This also suggests that the gradient
of acceleration divergence, A, can be reduced to Y, in some way. Thus a last
step remains toward the full linearization of the pairs of equations for the

density and expansion gradients, namely the linearization of the A, term.

Before to turn to this, we derive now an evolution equation for the curva-
ture gradient IC,. This is an easy task in the linear approximation, in which
we obtain from (2.38)

4
Co= —g@Za + 261D, , (3.36)
where we defined the comoving curvature gradient
C. = SK, (3.37)

as the natural companion variable of D, and Z,. A propagation equation for
it, with D, as source term, can be obtained by taking the spatial projection
of the proper time derivative of (3.36), using (3.2;3.4) and (3.34;3.35), and
substituting back for Z, via (3.36). In doing that we obtain the following

alternative pair of equation

S7?hM(5%C,) = KO~ (%c - mma) - %@5 (—;-/Caa + Aa) . (3.38)
R (D.) = Po_ §n(,u +p)@7 1| D, + §®"1 Pii)c (3.39)
ljl 2 a 4 IJ, a

showing that D, can be also determined through its coupling with the cur-
vature gradient. In practice this is because (2.38) reduce to a constraint

between K,, D, and Z,, equation (3.36), in the linear approximation.
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Linearizing the A. Term

We want now to fully linearize the %}Cac + A, term appearing in the rhs of

the equations for Z,, Z, and K,.

The acceleration, given by (3.15), is determined via the momentum con-
servation (3.3), it is just proportional to the pressure gradient ¥, and it is a
first- order quantity. Therefore we need to determine X only at zero-order
in this term, i.e., we can neglect the A term in the second of (3.33), because

the difference it makes in determining K is first - order. Accordingly, we have

6k
'5'_27

where k corresponds to the curvature constant for background FLRW model

K=-20+01) = K=

E=0 3.40
3 3 ( )

underlying in our zero- order assumption. The outcome we obtain in this

way is . . -
§/Caa = —m—S—E . - (3.41)
To linearize the A, term it is first of all convenient toshow that A can be
written as by
=-——"" 1 0(2).
s(k + p)

Indeed, from the definition of 4 we have
A=ad, = aa;b(hba — ubua) = haba";b — 1%, ,

and using

a’u, = 0 = i%u, = —a’a, ,

we see that this is a second- order term. Thus, using (3.15), we obtain at

first- order

a hb a
A:habagz_hab( Y >;b= Y

(1 +p) w(p+p) o),

or

(3)vaya

= (3.42)
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where ®)V,, is the 3 - covariant derivative defined in section 2.1.5. Now, using

the definition of A, and the above result we can write

b
A, =hbA, = (S)VaA — ._(3)va (M)

that is, at first - order,

a =

@y, Oy, BV
&(p +p)
But @V, ®ve ®y,p = @)y, @y, Gy = =V, ®V,Y?, and using the

commutation rule of the (3)V’s, namely the 3- Ricci identity (2.28), we have

(3.43)

Cv, vy’ = Oy, Oy, vyt - %1’;(3)12 , (3.44)

where we have substituted for the 3- dimensional Ricci tensor (*)R®, from
(2.30), using C)R®, = 1h.!C)R at the zero-order needed in the previous
equation. But at the zero-order we have ®)R = K = 6k/S?, therefore we

finally obtain

1 2%k
A, =—— | Zy, — (3)V2Ya) , 3.45
&(p + p) <52 (3.45)

on using the notation ®)V2V;, = @)Yy, ®)VaY, for the 3- dimensional Lapla-
tian. If we sum the above result with the previous one, equation (3.41), we

obtain the required first - order expression

1 1 k
“Kag+ 4= ——— Yo+ <3>v2y;,) : 3.46

2 K(p + p) (52 (340)
Thus we have explicitly shown that the term %lCaa + A, can be reexpressed
as a function of Y, only. Then it remains only one step to close the systems
of linear equations for the density and expansion gradients we have obtained
in this section. Namely, we have to consider an equation of state that will en-

able us to express Y, in terms of X,. This will be the task of the next chapter.

As we said in 2.1.5, the quantity we calculate as a curvature tensor, using
the usual definition from commutation of second derivatives (2.28), will not

have all the usual curvature tensor symmetries when w # 0. Nevertheless the
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zero - order equations, representing the curvature of the 3 -spaces orthogonal
to the fluid flow in the background model, will agree with the linearized

equations up to the required accuracy.

3.2.2 Constraint Equations

While the constraint equations are not needed to determine the propagation
of interesting quantities along the flow lines, they must of course be satisfied
at some initial time on each world line. This gives interesting information

about what is and is not possible.

Specifically, the linearised momentum constraint equation we obtain from

(3.8) ((10) in Hawking[26]) is
2
Rob (e — 03°) = ~3%a (3.47)

This shows that if @ varies spatially, i.e. Z, # 0, then either the shear or
the vorticity must also be non-zero. Conversely only restricted shear and

vorticity perturbations will be compatible with Z, remaining zero.

Similarly, the linearised “div E” Maxwell -like Bianchi identities (3.11)
((13) in Hawking [26]) is
1
3

showing that the electric part E,; of the Weyl tensor must be non- zero if

1
E®y = h%kpy = 7X° (3.48)

there is a non - zero density gradient (i.e. if X, # 0).

These results give a warning that consistent solutions to the field equa-
tions may demand inclusion of non-zero gauge-independent variables not

initially anticipated.

Finally, linearization of (3.9) simply reduces to show that vorticity diver-

gence vanish at first - order:

w'e=0+0(2), (3.49)
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while from (3.10) we obtain
Had = "'ha.ehdg (w(eb;c + o.(eb;c) Ug)fbcuf 9 (350)

determining H,; at first- order.

3.3 The Implied “Gauge”

3.3.1 Natural Map

Before turning to specific equations of state, we briefly consider the gauge
issue relative to the formulation here. Our equations are gauge - invariant, so
we can choose any map ® we like from S to S when using this formalism (just
as we can use any coordinates we like in § and in 5, because the formalism
is covariant). However there is a natural map ® from an idealised FLRW
model S to the realistic model S associated with our formalism, which is the
obvious one to choose unless there is some good reason to use a different cor-
respondence. We consider here this map, naturally implied by the analysis
(see Fig. 3.1).

namely to examine the propagation of each quantity along the fluid flow
lines. Because of the perfect fluid form (11), these are uniquely defined pro-
vided (4 + p) # 0, which we almost always assume. The naturally associated
map ® from S to S maps fluid flow lines to fluid flow lines. This means we

compare observations made by fundamental observers in the two universes.

(B) Because of the spatial homogeneity of the FLRW models it does not

matter which specific flow line in S is mapped into which one in §.

(C) The implied time coordinate ¢ in S is proper time along the fluid flow
lines; it is the time-coordinate of normalised comoving coordinates (t,7") (see
e.g. Ehlers (7], Ellis [11], Treciokas and Ellis [55]), characterised by { = t ,u® =
1, ¥ = (y”).«u® = 0. It is arbitrary by choice of some initial surface ¥, i.e

the freedom in ¢ is

t—t' =t+ f(y") - (3.51)
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Figure 3.1: In the proper time gauge (the time coordinate denotes
proper time along the fluid flow lines), we have freedom to choose
an initial time surface ¥y : {f = to} arbitrarily; then the other time
surfaces are determined by measuring proper time from it along the
fluid flow lines. This has the advantage of corresponding to time
measurements made by fundamental observers.

58




3. DYNAMIC EQUATIONS 59

where f is an arbitrary function of the “spatial coordinates” y”. Thus we
compare evolution in the universes S and § with respect to proper time mea-
sured by the fundamental observers in each model (the standard time f in S
is proper time along the fluid flow lines, without the freedom (3.51) because
we take £ = 0 at the big bang § = 0). The objections raised to this choice by
Bardeen [1] do not apply here, for the variables X,, Y, and Z, will be small
in any space-time region where the universe S is “near” some FLRW universe
S, irrespective of how the time coordinate t is chosen, and the definition of
our variables is independent of the time choice; thus the “non-locality” issue
discussed previously (see section 1.2.2) does not affect the physical interpre-

tation of our variables.
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(D) The specific map of times from the idealised model S to the realistic
model S will be represented by a choice of constants of integration in the so-
lutions to the zero- order propagation equations (3.2) and (3.30), which then
determine the solutions to the propagation equations (3.31;3.32), (3.34;3.35)
or (3.38;3.39) for the gauge-independent variables; in effect, the zero- order
solutions are arbitrary by independent constants along each world line. This
choice corresponds to the gauge freedom above, and may be thought of as
choosing specific initial conditions for the perturbed universe at an initial

time ;.

In the present approach, the definition of the perturbation quantities is
independent of the gauge chosen; however we have to choose a specific gauge
to obtain detailed specific solutions of the equations (just as we have to choose
specific coordinates to write down a specific detailed solution to covariant
equations). This freedom should be left to the end (being represented by
the integration constants that naturally arise). Variation of these constants
then corresponds to variation of the gauge, and also enables us to explore the
effects of different initial conditions on the evolution of the gauge-independent
variables (or equivalently, to explore their evolution in families of differing
FLRW models instead of only one model). The essential problem in the non -
gauge invariant approach - that the definition of §u depends on this choice -

does not arise with the variables proposed here.

3.3.2 Meaning of X when w # 0

When w # 0, there are no surfaces orthogonal to the family of fluid flow
lines, but we can find normalised comoving coordinates {t,4"} satisfying (3)
(see Ehlers [7] Treciokas and Ellis [55]). Using such coordinates, the surfaces
{t = const} can be set orthogonal to a particular chosen world line v and al-
most orthogonal to neighbouring world lines, by the remaining gauge freedom
(43) (e.g. if we choose an initial surface {t = o} to be generated by orthog-
onal geodesics emanating from ). Then K, given by (12), will be nearly the

Ricci-scalar of these 3-spaces on and near 7. Note however these surfaces do
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not directly correspond to the FLRW surfaces {t = const} when there are
spatial density gradients, because if X, # 0 the surfaces {u = const} do not
lie orthogonal to the world-lines; similarly if Z, # 0 the surfaces {© = const}
do not lie orthogonal to the world lines.

More generally, if »* is not too different from the normals n® to a family
of surfaces, then K will be not too different from the Ricci scalar of those
3-spaces. The meaning of “not too different” can be made precise by either
using (a) a formalism equivalent to the ADM 7 lapse and shift formalism (cf.
Bardeen [1] section VI), (b) the tilted flow vector formalism of King and Ellis

(1973), or (c) adapted comoving coordinates mentioned above.

TAcronym for: Arnowitt, Deser, and Misner; they developed a particular formalism in
1962. See for example: Wald (1984) [57].




Chapter 4
SIMPLE APPLICATIONS

In this chapter we shall apply the linear equations obtained in the previous
chapter to some specific cases. In particular we shall restrict our analysis
to a perfect fluid which can be described by a simple equation of state. In
this approximation, the final aim of this chapter is to derive a second - order
linear equation for D, (or some related variable), and analyse its properties

and simple solutions.

In section 1 we briefly comments on the different kinds of fluid that we
can treat within our approach (or some generalization of it), and we discuss

the different equations of state that arise for them.

In the second section we restrict ourselves to the case of fluids which have
an equation of state for which the energy density is the only independent
thermodynamic variable. In this case we can speak of adiabatic (isentropic)
perturbations. Then we explicitly show how the linear systems of two first -
order equations derived in section 3.2 decouple from the other evolution
equations, by virtue of the assumed equation of state. We consider systems
for D, and Z,, as well as for SX, and C,. Also, we introduce a “Bardeen -

like” variable ®,, and we derive a linear equation for it.

In section 3 we derive second - order linear equations for D, and ®, and

we analyse some of their properties. We use a harmonic expansion for our
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variables. This is a standard technique, which enables us to derive ordinary
differential equations for the harmonic components of the various variables.
We consider the Jeans instability for matter against gravity, giving a correc-
tion to a previous result by Jackson[30]. A first integral is obtained in the
long - wavelength limit, corresponding to an analogous well - known [2,38] first

integral. Also, we comment on the isocurvature and scalar modes.

The aim of the fourth section is to obtain explicit solutions of the sec-
ond - order linear equations derived in the previous section. We consider the
zero - pressure fluid (dust), and the pure radiation case, for which explicit
solutions are obtained in the long - wavelength limit. Since our equations and
variables are gauge-invariant, we do not obtain the usual decaying gauge-
mode. Also, we briefly consider the case of a mixture of perfect fluids when

those perfect fluids all have the same 4- velocity.

Finally, in the last section we consider the evolution of density on neigh-
bouring world - lines. We show how we can define scalar quantities closely
related to our gradients, and we derive exact and linear evolution equations

for them.

4.1 Specific Matter Descriptions

In section 3.2 we have obtained linear evolution equations valid in an almost
FLRW universe. These are systems of two first-order equations coupling,
for example, the comoving fractional density gradient D, with the comov-
ing expansion gradient Z, (or D, with the comoving curvature gradient C,).
However, the equations for Z, (3.34) and C, (3.38) contain an additional
term, which has been shown to be a function of the pressure gradient Y, (see
equation 3.46). Therefore, we still need an equation of state, describing the

physics of the situation, in order to close our system of first - order equations.

The intent of this section is to briefly comment on general equations of

state, before to apply our equations to specific cases.
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4.1.1 Fluid Equations of State

In general we may wish to study perturbations with a scalar field, fermionic
matter, or other matter sources; or using a kinetic theory description. We
here concern ourselves with situations where a simple or multifluid descrip-

tion is appropriate. Three rather different cases arise.

Imperfect Fluids

Imperfect fluids will have non-zero energy flux vectors g, and/or anisotropic
pressures T, (these are the components of the matter tensor (2.35)). These
could occur due to dissipative processes, when suitable equations of state
will determine the quantities g, and m, (see e.g. Ehlers[8]); the approach
to density fluctuations introduced in EB [17] and presented in this thesis has
been generalized to this case by Hwang and Vishniac (1989) [29].

However, this description is also appropriate for multi-component perfect
fluids with different 4-velocities. In the latter case it would be natural to
describe the situation relative to the 4-velocity of the dominant component;
the effective stress tensor of any other perfect fluid, moving relative to this 4-
velocity, will be that of an imperfect fluid [31]. This would be the situation
for example in isothermal perturbations where the surfaces of constant matter
density are different from the surfaces of constant radiation density, for in gen-

eral their 4-velocities will differ, leading to such phenomena as radiation drag.

The methods introduced in EB [17] can be adapted to this case, but the

resulting equations are rather more complex than those presented here.

Non - Barotropic Perfect Fluids

Non - barotropic perfect fluid occur when there are two essential thermody-
namic variables, so that the matter tensor still has the form (2.16) and all

the equations in chapter 3 hold, but p # p(p). The importance of this is
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that then in general aj, Xy # 0, so that a, and X, are not parallel in (3.31),
(3.32), implying Z, (and so X,) will not be Fermi- propagated® along the

fluid flow-lines (they will rotate relative to a local inertial rest frame).

A particular case of interest is that of multi-component perfect fluids with
the same j-velocity, e.g. baryonic matter plus radiation that is isotropic
about that matter. This might be expected to be the case in isentropic
perturbations 2, where both the matter and radiation are significant but the
surfaces of constant matter density are the same as the surfaces of constant
radiation density (the baryon to photon ratio is constant), then in general
their 4-velocities must coincide, else this condition will not be maintained.
We can then represent the equation of state in terms of the simple relativistic

~-law equation of state .
p=(y—1n, (4.1)
where v = v(§) takes a simple form when the fluid components are non-

interacting (cf. Madsen and Ellis [39]).

Barotropic Perfect Fluids

Barotropic perfect fluids are perfect fluids where p and p are functionally
dependent: p = p(u). Then there will be a well-defined speed of sound
v, = (dp/du)'/? limiting communication by fluid processes, and from (3.3),
a, and X, are necessarily functionally dependent and parallel. Equations

introduced in chapter 3 apply.

The simplest situation is when v, is constant (cf. Olson [43]); then the
relativistic y-law description (4.1) may be used where now - is constant. The
important cases are v = 1 (dust), i (radiation), or 0 (false vacuum). The
third case is very briefly considered below. The other cases will be discussed

later, in section 4.4.

!That is, their Fermi derivative is non-zero. See Hawking and Ellis (1973)[27], pages
80, 81.
2Also referred to as adiabatic.
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4.1.2 TFalse Vacuum

The “false vacuum” equation of state occurs if the stress tensor is Lorentz
invariant, i.e. if T, o ga. This will be a good representation of the stress
tensor of a scalar field ¢ when ¢ is nearly zero (e.g. it underlies the concept
of exponential inflation in the early universe.)

The false vacuum is equivalent to a perfect fluid for which p + p = 0; we
see directly from (3.31) that then S*X, is constant along the fluid flow lines
(which are not uniquely defined, in this case). Thus spatial density gradients
die away as S7%, independent of their wavelength; relative gradients X, also

die away as S~%; but comoving fractional density gradient D, die away as S°.

4.2 Relevant Systems of First- Order Equa-
tions

4.2.1 Adiabatic Perturbations

As we said above, for a general perfect fluid the pressure p and energy density
u are related by a suitable equation of state with two independent thermo-
dynamic variables. For example, if s is the entropy then we can express it in

the form
p=p(p,s), (4.2)

but as always in thermodynamics many other representations are possible
for the equation of state. From the perfect fluid assumption it follow that
the entropy is constant along each flow line (see equation (3.13) in Ellis
(1971) [11]), thus there is only one independent thermodynamic variable along
each world line. However, for the fluid in consideration, the entropy can vary

spatially. In this case, it follows from (4.2) that that

.= (@) O + (ég) Vs , (43)
K op (s) 5/ (w)

where, as usual in thermodynamic, the subscripts means that the deriva-

tive with respect to one variable is computed while the other is fixed. The
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assumption we now make is that we can ignore the second term (pressure
variations caused by spatial entropy variations) relative to the first (pressure
variations caused by energy density variations). This is at any effect equiva-
lent to assume vanishing of the spatial entropy variation, that is, we can use

an equation of state of the form

p=p(n) : (4.4)

for our practical purpose. The perturbations we are going to consider are
usually referred to as adiabatic or isentropic.

We also ignore spatial variations in the scale function S (which would
at most cause 2nd order variations in the propagation equations). Then
(ignoring terms due to the spatial variation of dp/du, which will again cause

second order variations) we find that we can express the term (3.46) as

1. .. 1 dp k
S(=Ktig+ A)=— ——— [ =) | =D, + OV?D, | . 4.5
(e +42) (1+p/u) (du) (52 * ) (45)

With this result we can now explicitly close the system of equations obtained

in section 3.2.

Before to turn to this, we follow Bardeen [1] by defining
wep/n E=dolip = () = d=-(ru)d-we, (u6)
for easy comparison with the literature.

4.2.2 The System for D,, Z,

We will focus here on the gauge invariant variables D, and Z,; with the
definitions (4.6) and the result (4.5) the equations (3.34; 3.35) become

ho!(D.) = wOD, — (w+1)2, , (4.7)
2 1 c? k
hca Z,) = —= Z.— = c ™ > = Da ® 2Dc:l, .
(Z,) 36 2/-;/.&@ 17 w) (SZ + v ) , (4.8)

where k, arising from (3.40; 3.41), is the usual curvature constant for the

background FLRW model. The above system of first - order linear evolution
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equations is now a close system for D, and Z, only. Before to consider two
alternative descriptions of the growth of density inhomogeneities we comment

on some general properties of the equations above.

(1) Inhomogeneity on a world line « is indicated by at least one of D,, Z,
being non-zero. Because the equation governing its evolution are homoge-
neous, inhomogeneity cannot arise spontaneously: if both D, and Z, are zero
at any event p on <, then they are both zero at all events on «; if either is
non-zero at any event on 7, they are both non-zero at almost all events on

7 (one or the other may be zero at exceptional events).

(2) In general, D, and Z, are not parallel. However if they are parallel at
one event p on 7, they are parallel at all events on v; and if either vanishes at
any event q on v, they are parallel at all events on « where they are non-zero.
In these cases, the vector equations reduce to scalar equations, giving the

rate of change of the relevant magnitude along « (see section 4.3.7).

4.2.3 A System involving C,

In an analogous way we can obtain from (3.38; 3.39) a close system involving
C,. However, since we want explicitly show here the close correspondence
between our work and that of Lyth and Mukherjee[38], we shall couple C,

with the comoving density gradient SX,. For this pair of variables we obtain

hb(SX . 3 -1 3 -1 (Schl)
L(5X3)"= ~(SXa) |© + Zap(l + )07 | + 20 np(1+w)= , (4.9)
B 6k /1
S zhab(SZCb) = §® ! (gca - SXa) +
30w (G VISR ) (410)

which (remembering the Hubble parameter H is given by H = 10) closely
correspond to the system of equations (24;28) of Lyth and Mukherjee [38],

except that we did not yet harmonically analyzed our equations (we shall
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turn to this in section 4.3.3), and our system is for a general curvature back-

ground®.

Note that, because of the linear constraint (3.36), the comments at the

end of the previous section apply also to the pair SX,,C,.

4.2.4 Equation for a “Bardeen - like” Variable

We want now introduce a new vector formally corresponding to the Bardeen [1]
potential @z (up to a constant). This enable us to an easy comparison. We

can thus define
®, = kuS’D, = S°X,, (4.11)

where we have not required a harmonic analysis to make this definition. A
point however must be stressed: our variable @, is a vector, while the Bardeen
@ is not. Moreover the correspondence is purely formal, in the sense that
while our @, is just proportional to D,, ®p is a potential for the Bardeen’s
variable €, * (this is a gauge - invariant quantity for the density perturbation
in the Bardeen approach). A more extended analysis of the relation between

our and Bardeen approach can be found in Hwang and Vishniac (1989)[29].

The rate of variation of the Bardeen-like variable (4.11) follows directly
from the equations above; it is given by

S 3 flg, -3 fh g2
®..+ 3®¢>a+ 2(w—{—1) @q)“ = 4(1 + w) 5 (S%C,) (4.12)

where we have written it in terms of the comoving curvature gradient C, and

we use the subscript L to denote projection orthogonal to u*. The equation

coupling with (4.12) is just (4.10), with a trivial substitution SX, — @&,
from (4.11).

% Actually, the correspondence between equation (4.10) and equation (28) of [38] became
clear if we remember (3.40); then 6k — s"Gc .
*Note however that, if we armonically analyze ®y and e,,, their components become

proportional.
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4.3 Second- Order Equations

The system of equations given above can now be used to obtain second order

equations for D, and ®,.

4.3.1 A Second- Order Equation for D,

Now differentiation of (4.7) and projection orthogonal to u® gives a second-
order equation for D, (we use (3.30, 4.8, 4.6) and (4.5) in the process). As
before we use the subscript L to denote projection orthogonal to u?, i.e. we

write h,°(D,)" = ﬁla, h(D.) " = D). We find

. 2 .
Do+ (— — 2w+ cf) OD, .-

3
12k
- [(% + 4w — ng — 3cf) rp + (2 - w)ﬁ + (5w — 3¢3)A| D, +
L (%Da _ (3)V2Da) ~0. (4.13)

This equation is the basic result of this chapter; the rest of the discussion
examines its properties and special cases. It is a second order equation de-
termining the evolution of the gauge-invariant density variation variable D,
along the fluid flow lines, equivalent to the central equation of Bardeen’s pa-
per[1] (see Hwang and Vishniac [29]). It has the form of a wave equation
with extra terms due to the expansion of the universe, gravity, the spatial
curvature, and the cosmological constant. We bracket the last two terms
together because when we make a harmonic decomposition corresponding to
that made by Bardeen (see section 4.3.3), these terms together give the har-

monic eigenvalues n?.

The form of the equation (4.13) allows for a variation of w = p/u with
time. However if w = const, then from (4.6), ¢ = w, and the equation

simplifies to

.. 9 )
Dro+ (g - w) OD, .-

— 1
—_— ((1 w)g + 3W)’<//-l' + 2wA.) Da, + w(%]i;'pa - (3)V2DG> = O("4‘14)
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This reduce to an ordinary differential equation for the particular case of
vanishing pressure matter (dust), w = 0, for which thus we have a separate
evolution of perturbations along each flow line. The matter source term in
(4.14) vanishes if w = 1 (the case of “stiff matter” & p = p) or w = ~1/3
(the case p = —pu/3, corresponding to matter with no active gravitational
mass). Between these two limits (“ordinary matter”), the matter term is
positive and tends to cause the density gradient to increase (“gravitational
aggregation”); outside these limits, the term is negative and tends to cause
the density gradient to decrease (“gravitational smoothing”). A positive A-
term tends to cause gravitational aggregation if w is positive (but smoothing
if w is negative). Also the sign of the damping term (giving the adiabatic de-
cay of inhomogeneities) is positive if 2/3 > w (that is, 2u > 3p) but negative
otherwise (they adiabatically grow rather than decay in this case).

While this form is expressed in terms of ku, it is convenient for many

applications to substitute for x from (3.33) and (3.40), that is, at zero order®

K = §®2+——-—A. (4.15)

We do so and drop A (which can be represented by setting w = —1) to obtain
Do+t (53-)0Dram

o) L, ), o, 05, 0

a form convenient for most applications.

4.3.2 A Second - Order Equation for &,

We can directly find the second order equation for ®, (4.11) from the equa-
tions above, (4.12;4.10), obtaining

. ) 4 2k
b, + m@(g + cf) + {(cf —w)rn — Z(1+3e) + AL+ cf)}@a +

2k
+ (‘5“2@“ — <3>v2<1>a> =0, (4.17)

s

"We neglected an A term in (3.33). Note that this is just the Friedmann equation, valid
along each flow line.
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which simplifies in the case ¢ = w, A = 0 to the form

< : 4 2k 2k R
@_La + @.Lag('?’)‘ —I—w)-—— §(1 + 371))‘1)4 +w(—5—2-¢’a -—( )V q)a) =0. (418)

4.3.3 Harmonic Decomposition

It is standard [1,26,34,35,38,43] to decompose the variables harmonically, thus
effectively separating out the time and space variations; this conveniently rep-
resents the idea of a comoving wavelength for the matter inhomogeneities.
In our case we do so by writing D, in terms of harmonics Q{™ from which
the background expansion has been factored out. It must however stressed
that the harmonic analysis is straightforward only for finite (compact) 3-
spaces [4] (see also D’Eath [5], quoted in Bardeen [1]); then, what is usually
done is to consider finite comoving volumes with periodic boundary condi-
tions [38], and to use a discrete harmonic analysis there. We only briefly
touch these problems here, and we do not give an extensive introduction to
the different kinds of harmonics (see for example: Borner [4], Bardeen [1], or
Kodama and Sasaki[32]).

We start with the defining equations for the scalar harmonics
& Dy = T o)
(@"™)eu=0, ®v QW = _'515@ y (4.19)

corresponding to Bardeen’s scalar Helmholtz equation (2.7), but expressed
covariantly following Hawking [26]. From these quantities we define the gra-
dient ® harmonics (cf. [1], equations (2.8), (2.10); we do not divide by the wave

number, however, so our equations are valid even if n = 0)

QM =50y, = QMWyr=0, (QM).u"~0,

2 _
(3)V2Q£") - __(_n__g;@Q(an) , (4.20)

6We call these “gradient harmonics” to distinguish them from the intrinsically vectorial
harmonics with vanishing divergence [1,4,32]. Any generic vector in the 3-space can be
completely decomposed with these two kinds of harmonics.
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where the factor S ensure that these gradient harmonics are approximately
covariantly constant along the fluid flow lines in the almost-FLRW case. Then

we can write p in terms of these harmonics as
o= Zu(n)Q(n)’ @ ~ 0, (4.21)

1™ being the nth. harmonic component of 4 (approximately constant in the
directions orthogonal to u?; they cannot be ezactly constant in all these di-
rections if w # 0, for if they were they would define surfaces orthogonal to the
fluid flow lines, see section 2.1.5). As usual the harmonics are orthogonal to
each other in a suitable measure (the details depending on whether k = +1,
0, or —1), so the coefficients (™) can be determined by suitable weighted inte-
grals of . However we have to worry about the convergence of these integrals;
this may require consideration of finite boxes in the universe, or subtraction
of a time-varying function from p before doing the harmonic analysis. In the

latter case it may be preferable to use an alternative representation:

p=po(1+ 3 6MQM), Clyy, ~0, GvsH ~o, (4.22)

where p19 is a solution of the zeroth-order equations and §(") are the nth. frac-
tional harmonic component of p (again, these functions are approximately
constant in the directions orthogonal to u®). Now suitable choice of the
background solution (e.g. such that the Traschen integral constraints [54] are
satisfied) will make all the harmonic coeflicients small and ensure these in-
tegrals (specifically, that for n = 0) converge. In this case there is a gauge
arbitrariness in defining the harmonics, that will affect the higher order terms
but not the linear calculations of this chapter (because we do not use the ab-

solute values of these coeflicients, but rather their spatial gradients).

In either case it then follows from the definition of D, that

D, = Zp(n)an), g, D™ ~ ¢ (4.23)

where D™ is the harmonic component of D, corresponding to the comoving

wave-number n, containing the time- variation of that component; to first
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order, D = (u(™/u) = 6§("). Putting this decomposition in the linearised
equations (4.13), (4.14) or (4.16), the harmonics decouple. Thus for example

we obtain from (4.16) the nth harmonic equation

. 2 . (1—w)(1+3w) (1 _, 3k n?
m 4 (2 (m) _ 1oz 3% _ % Lo =
D —}—(3 w)OD { 5 3@ + ) "V 0
(4.24)

(valid for each n > 0), showing how the growth of the inhomogeneity depends

on the comoving wavelength. Clearly we can similarly harmonically analyse
the other equations, e.g. the second order equation (4.18) for the Bardeen

variable.

4.3.4 Jeans Instability

To determine explicitly the solutions of the second - order equations we have

obtained, we have to substitute for u, ©® and S from the zero-order equations.

Speed of Sound

We can examine solutions in the case where the divergence term is the domi-
nant term, by examining the case where ©, xp, k/S? and A can be neglected.
We see then directly from (4.13) that ¢, introduced above is the speed of
sound (and that imaginary values of c,, that is, negative values of dp/dp,

lead to exponential growth or decay rather than oscillations).

Instability Criterion

The Jeans’ criterion is that gravitational collapse will tend to occur if the
combination of the matter term and the divergence term in (4.13) or (4.14)

is positive; that is, if
1 2k (3)o?
5(1 —w)(1+3w)kpD, > w —‘5—,2—’Da - VD, (4.25)

when ¢? = w (we include the curvature term also, because it comes from

the divergence term A,). Using the harmonic decomposition, this can be
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expressed in terms of an equivalent scale: from (4.24), gravitational collapse

tends to occur for a mode DV if
2

1 n
5(1 —w)(1 4 3w)rkp > W (4.26)
that is 12
1 K,,u} n
- — — —. 4.27
(- (G+3) 5} >3 (427
In terms of wavelengths, the Jeans’ length is defined by
27 S ™ 1
= \/ Gr (1= w)(1 + 30) (4:28)

where we have expressed the result in terms of the usual gravitational con-
stant G. Thus gravitational collapse will occur for small n (wavelengths
longer than As), but not for sufficiently large n (wavelengths less than A;),
for the pressure gradients are then large enough to resist the collapse and
lead to oscillations instead (cf. Jackson[30], but his answer appears to be in

error; we here present a corrected version of his result).

4.3.5 A First Integral in the Long Wavelength Limit

Suppose we can ignore A and so A,; then the Raychauduri equation (3.30)

becomes

; 1
35/8 = ——2-/~c,u(1 +w)+ A, (4.29)

and provided S # 0 we can multiply by S S and integrate: we find
3(5) — (kp+A)S?=—-3k, k=0, (4.30)

which is just the Friedmann equation which governs the time evolution of
FLRW universe models; it is the same as equation (4.15). Whenw =0, K =
()R and k, constant on each world line v, characterises the 3 - space curvature
of the 3-surfaces ¥, where they intersect v (when w # 0 this is approximately
true, see section 2.1.5).Thus in this case there is a separate FLRW evolution
along each world line[37,38]; these evolutions will differ only in their energies
and starting times [26]. Note the difference from (3.33), (3.40) here: in general

we are able to use (3.40) to determine K as far as the propagation equation
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for D, is concerned; but this ignores first order corrections to this equation,
which we must take into account if we use it to determine ©(t) or u(t); the
separate world lines evolve separately in general, and (3.40) does not describe
their evolution accurately. However in the case considered now, we can use
(3.40) for these purposes, that equation being the same as (4.30) under these
conditions, and giving the independent evolution of S(t) along each world
line. The evolution of the spatial variation of density will be then governed

by the equations above, where now we drop the divergence terms, that is
from (3.45),

2k
A=0 = A,=0 & ¢ (3’37)“ - (3)\72Da) =0; (4.31)
then the second-order propagation equations become ordinary differential
equations along the fluid flow lines, easily solved for particular equations of

state (e.g. see section 4 below).

There is a first integral in this case if additionally
A=0, k=0, (4.32)

which has been used extensively in analysing perturbations during inflation
(cf.[2,21]). Tt is obtained in the following way: define ®, by (4.11). Under
the restrictions (4.31; 4.32), from (4.12) and remembering that now by (4.15)
$0% = kp,

. 11 1 )

b+ [g e 1)] 08, = ;(1+w)0(SC.) (4.33)
while (4.10) shows

§%C, = C,, (Ca) =0. (4.34)

Combining these results, we find

P, + (

2 b, +100, C,
2)2at5 = (4.35)

€] ) 1tw
a first integral of the equations (cf Bardeen et al.[2], Lyth[37], Lyth and
Mukherjee [38]).
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If additionally {w = const} < ¢2 = w, the second- order equation (4.18)

reduces to 4 -
é_l_a, + dt)_l_a@ (g + w) =0 (436)
which can be directly integrated to give
bra=—2e 4. =0 (4.37)
e = Gas3w)? Ple ™ :

which can be put in (4.35) to give ®, explicitly in terms of two constants.
In the particular case where ¢, = 0 (no decaying mode), then we have the

integral
C,

2(1+ 5m)

showing how this constant relates to the spatial variation in the curvature of

(I’a. = @Da = (438)

the perturbed model. A generalisation of this argument by Mukhanov [41]
and Vishniac [56] applies if w is not constant. If now the equation of state
varies dramatically over a short time interval during a phase transition, al-
though w varies C, stays constant at the transition (see (4.34) and [21]), so @,
varies greatly; enabling us to follow the evolution of ®, through the different
stages of an inflationary universe [2,21]. We obtain the isocurvature case (see
section 4.3.6 below) when C, = 0.

4.3.6 Isocurvature Modes

We look now at the implications of imposing geometrical restrictions on the
fluctuations. Specifically, suppose the isocurvature condition following from
(3.36) is satisfied at an initial time: under what circumstances will it remain
satisfied? From (4.10) we find that isocurvature inhomogeneities, that is
perturbations with D, # 0 such that

3Ku
a = a — T < ay 4°'
Ca=0 & Z,=300D (4.39)

are possible only if

k
3k (--3—(1 + w)rp + cf®2> D, — ¢t0? (

2k s
= (3 Zp, -3V Da) =0. (4.40)

52
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In the pure dust case, when p = 0 = ¢ = 0, this reduces to
kD, =0, (4.41)

showing that in this case, isocurvature perturbations with non-zero density
gradients are only possible if k = 0, i.e., if the unperturbed universe has flat
spatial sections.

Equation (4.40) shows that this is also the case for non - vanishing pressure
fluids. In this case we have that such solutions are possible if k& = 0 and
the divergence term vanishes, i.e. (4.31) is satisfied, whatever the value of
A. When ¢ = w and A = 0 this corresponds to the particular case C, =
0,9, # 0 of the integrals discussed above, that is, the isocurvature condition
is precisely equivalent to existence of decaying mode alone. Although we have
not obtained a formal proof, it seems likely these are the only such solutions,
that is, (4.40) can only remain true at all times for ordinary matter (more
specifically, matter such that w # g—) if k =0 and (4.31) holds.

4.3.7 Scalar Modes

In general, D, and Z, are not parallel. Even if they are parallel at one event
p on a world-line v, the divergence term 4, in (4.8) will in general mean that
they will not stay parallel; thus they will be essentially vector rather than
scalar solutions. However each harmonic mode is effectively a scalar solution
(as it is an eigenmode). Also, when the divergence term may be ignored, that
is (4.31) is satisfied, then there is scalar solution, arising from initial data for
which D, and ba are parallel (so D, and Z, are parallel to each other all
along the world line). For example (4.14) has a scalar mode obeying

D+ (—i— —w)OD — ((1 = w)g ki) 2wA) D=0 (4.42)

where D is the magnitude defined in (?7). We can always find such “scalar”
solutions (take initial data at p on v with D, parallel to D,, and (4.31)
satisfied); they will indicate the extreme behaviour of the vector solutions.
Thus we may use the scalar equations to investigate the maximum rates

at which density inhomogeneities can grow. Note that the scalar equation
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(4.42) is just the harmonic equation (4.24) for n = 0. As we obtain the same
equations in both cases, D(®) varies precisely as D along the flow lines; that

is the n = 0 harmonic equation s the scalar mode.

4.4 Specific Fluid Solutions

The Zero- Order Equations

We can integrate the zero-order equation along each flow line. The energy
conservation equation (3.2) shows

M,

= S M, =0, (4.43)

and the Raychaudhuri equation (3.30) can be integrated to give the Fried-

mann equation (4.30), as we already shown in section 4.3.5.

4.4.1 Pressure-free Matter

This is the case of “pure gravity”, often called “dust”; p=0,u> 0 so no
kinetic or pressure effects are taken into account. Thus it is not very physical,
but enables us to see how gravity alone functions. It is usually taken to be
a reasonable approximation to the equation of state of the universe at late

times.

Pressure free matter must move geodesically: from the momentum equa-

tion (3.3), we have
p:Oia‘Z:O:»A:Aa:O (444)

exactly, at any length - scale (there are no pressure gradients to deviate the
motion from free- fall). This enables us to omit the projection tensors in the
perturbation evolution equations. Moreover the Raychauduri equation (3.30)
reduces to the Friedmann equation (4.30) not only at zero-order, but also at
first- order.
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The Perturbation Equations

In this case the second-order equation (4.13) reduces to

.2 . 1/1 3k

D, + g@Da -3 (—3—9 + §> D,=0. (4.45)
Since (4.44) holds exactly, we can obtain solutions of the above equation di-
rectly, without harmonic decomposition. Thus in this case we can integrate
(4.45) directly along characteristic, that is, fluid flow lines are characteristic
for the “pure gravity problem” at any wavelength. This is in accord with
the analysis of Ehlers et al.[10]. To determine the solutions explicitly, we
have to substitute for S(¢) from the zero-order equations (or change to the
conformal time variable n = [ dt/S(t) and give S in terms of that time along
each world line). Before looking at two simple cases, we comment on some

general properties of these equations.

In the dust case equation (4.42) reduces to

but this holds at any length - scale.

In the case considered here (vanishing pressure), because the evolution
along each world line is independent, the evolution of each of X,, X, and D,
is unaffected by the wavelength of the density fluctuations ((4.45) and (4.46)
hold independent of wavelength). Furthermore, the evolution is unaffected
by particles horizons and/or Hubble radius; they are irrelevant to this evo-
lution, whether we consider large or small scale inhomogeneity, because the

individual world lines evolve independently.

Equation (4.46) is the standard equation for zero-pressure density pertur-
bation growth relative to proper time along the flow lines in an expanding
universe, obtained by E. Lifshitz [34] in his pioneering study of the instability
of FLRW models. It can also be obtained from Newtonian theory[3]. We
have here obtained it as an equation describing scalar modes of the vector

equation (4.45).
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The Einstein Static Universe

As a first example, we consider a universe that is static at some event p on
a world line 4: § = § = 0 at p. Then from (4.29), (4.30) k = +1, %fs,u, =
5§72 = A at p. Equation (55) becomes

(D,)" = %KD,LLDQ (4.47)
at p, independent of the wavelength of the fluctuation, showing the gravita-
tional instability to inhomogeneity; any non-zero initial inhomogeneity in a
static situation will grow. This supplements the usual proof of instability to
homogeneous (FLRW) modes, which follows direct from the Raychaudhuri
equation (4.29).

The Einstein-de Sitter Universe

For comparison with the standard case, we consider the simplest expanding
solution, the Einstein-de Sitter universe with ¥ = 0 = A. Then the zero order

solution is
S(t) = a(t — )%, a = (3cM;/4)?, © = 2/(t — 1.) (4.48)

where ¢ is proper time along the world lines; a, M; and ¢, are constants.
From equations (4.45) and the related equations one can obtain for the other
density gradients, we find as follows: in a parallel propagated orthonormal
frame along a world line, the spatial density gradients X, have power-law

solutions
Xo=ara(t —t) 2 +a_,(t —t.)" 13 (4.49)

where the a;, are constant along each world line; that is there are only de-
caying modes. Correspondingly, the fractional spatial density gradients X,

have power law solutions
Ko =brg+b_g(t—t.)53 (4.50)

where the b;, are constant on each world line. Again there is no growing

mode. Finally the comoving fractional density gradients D, has power law
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solutions
D, = chalt — 1) +c_q(t —t.)7 (4.51)

where the c;, are constant on each world line, giving the expected modes with

powers of 2/3 and —1. From (2.41) it follows that the magnitude D goes as

D = (DaD*)? = (cpacy®(t — 1)+
+ 2ci0e-(t —t.)V2 fe_ge ®(t — t.)72)Y? (4.52)

showing that there is also an extra mode in this magnitude in the general case,
that is if ¢y, and c_* are not parallel. Note however this is the magnitude
of the scaled energy density gradient D,, which does not necessarily directly
relate the density change between neighbouring world - lines (it gives the den-
sity variation in the instantaneous direction of maximum density change, but
particles in that direction at one time will not necessarily remain in that
direction at other times). The relative density change A between two comov-
ing fluid elements will not show this extra mode, because it will be governed
by equation (4.78), identical to equation (4.46) for the scalar modes of the
vector equation. The growth of this quantity will thus show only the 2/3 and
—1 modes, agreeing with the standard results for growth of 6u/p in terms of

proper time along the flow lines [34,26,43].

It is quite clear in our analysis that these are physically well - defined
modes of growth and decay of a density inhomogeneity; whereas, because
of the remaining gauge freedom (choice of the initial surface from which to
measure proper time), the situation is much more ambivalent if we use the
usual variables. Because the evolution along each world line v; individually
is like a FLRW model F}, it is clear that the “best fit” FLRW model along
v: 18 F; (irrespective of the world model S we first thought of). If we define
the map ® to assign the reference density [ correspondingly, we will have
chosen the zero density perturbation gauge (see section 1.2.1). Suppose we
more conventionally choose a time coordinate which measures proper time
along the world lines in 5. Then Olson shows (see page 329 of his paper [43])
that the decaying mode of §u/pu can be eliminated by the remaining gauge
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freedom, while this is not true for the growing mode. However, when the de-
caying mode has been eliminated from p/pu, it will still be evident in other

quantities. The gauge-invariant approach avoids this kind of problem.

As the equation (4.46) is a standard, we will not discuss its properties
further here; the solutions for £ = +1 and k¥ = —1 may be found, for exam-

ple, in Weinberg’s book [58], see p.573 on.

4.4.2 Radiation

In the case of pure radiation, v = 4/3, w = 1/3 = ¢?. Then we find from

(4.16) 8

. 1. 2(1_, 3k 1 (2k
= - =z — | %D, -OVD, | = 4.53
D.La+3®D.La 3 (3@ +82)D¢1+3 (52 a \4 ) 0 ( )
and from (4.42) the scalar form
o1 . 2(1 , 3k
Z S — D= 4.54
D+30D 3(3@ +52) 0, (4.54)

valid when we can ignore the divergence term (that is, in the low - frequency
limit). When k = 0 then S(¢)  t'/2 and we obtain in the long - wavelength
limit

Dy=tdya+t%d_,, dia=0 (4.55)
(where ¢ is proper time along the flow lines). The corresponding standard
result in the synchronous and comoving proper time gauges is different, be-
ing modes proportional to ¢ and to t'/2 (cf. e.g. [43,1]); however we obtain
the same growth law as derived in the comoving time orthogonal gauge and
equivalent gauges (cf. e.g. [49,1]). As our variables are gauge-independent
and covariantly defined, we believe they show the latter gauges represent the
physics more accurately than any other. Note that we obtain no fictitious
modes (proportional to 1) as happens e.g. in Olson’s paper, because we are

using gauge - independent variables.
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The Jeans length criterion (4.27) is now

| 1
{26u}? >n/S & A<y = ’/Zgﬁ (4.56)

as usual. Because our equations reduce effectively to the Bardeen equations,
their further properties (e.g. solutions when k # 0) are essentially dealt with
in his paper, so we will not discuss them further here.

4.4.3 A mixture of simple fluids

As the last of simple applications, we consider a multi- component fluid (mat-
ter plus radiation plus a cosmological constant). A non-interacting mixture
of matter and radiation with the same 4-velocity is like a perfect fluid, that

is (??7) applies where the total energy density u is now given by
po=p1 4 gy +ops = My /S + My/S*+ M, M; =0 (4.57)
and the total pressure p by
p=p:+ps=(1/3)M;/5* — M, (4.58)

where M, represents the amount of matter present, M, the amount of radi-

ation present and Mj; a cosmological constant.

The relativistic v-law equation of state

p=(y-1n (4.59)
can still be used in this case; it is related to w and c? (see (4.60) by
d
w=y-1, Cf=(7—1)+u3%- (4.60)

The quantity v is a constant for a simple fluid; in the present case we have

an effective v(.5) of the form

My /S® + (4/3) M,/ S
7= M JSP M,y/5% + M,

(4.61)
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(Madsen and Ellis [39]). When A vanishes (M3 = 0), v smoothly decreases
from 4/3 to 1 as the universe expands, and there is a smooth transition from

the radiation dominated to the matter dominated behaviour.

We can use the equations in the rest of this chapter in this situation,
with p representing the total energy density and p the total pressure; at
most stages ¢ will be small and can be neglected, so we can use (4.14) rather
than (4.13). The Jeans’ length will be given by (4.28), where w is given
by (4.60) and (4.61). Because of the possible independent spatial variation
of M, and M, the isocurvature behaviour will be richer than in the simple
fluid case, but (4.10) remains valid and we find as before that perturbations
such that K, = 0 are consistent with the evolution equations if k¥ = 0 and
cf{é—’; . — V2D, } = 0; and it seems likely that these are the only isocurva-

ture solutions.

If the fluids interact significantly, we can no longer describe the situation
by the simple equation of state (4.61); nevertheless, just as in the case of a
dissipative “perfect fluid” (i.e. a fluid with stress-tensor (??) but non-zero
bulk viscosity) we can still use the equations in this chapter for the evolution
of density gradients, provided we add suitable equations of state describing

the interactions and dissipative processes occurring.

However the situation for multi-component fluids with different 4-velocities
is more complex; generalisations of the equations given here are needed for

that case.

4.5 Evolution on Neighbouring World - Lines

4.5.1 Relative Position Vector

As we said in section 2.1.1, a relevant quantity in the fluid flow approximation
is the relative position vector 7% = h%n® linking any two world lines O,

G, where the connecting vector n* obeys the Lie Derivative relation [8,11]
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n°pu’ = u®yn®. The time variation of 3 is given by [8,11]

has(hy = m 4.62)
ab(S) “'(o-ab_!"wab)s . ( .

We see from this equation that %:L = n$o is constant in an exact FLRW
(where o = w = 0). Since n% connects two generic observers, at a distance
as large as we wish, it will be a zero-order quantity in an almost FLRW
space - time; however we see from (4.62) that the correction to its variation
with §(t) are first - order in an almost FLRW.

4.5.2 Scalar Quantities

Relative Density Variation

With the above defined relative position vector we can build up scalar quan-
tities related with our gauge-invariant spatial gradients. For example, in
considering galaxy formation, what we really wish to examine is the relative
density growth in two neighbouring comoving volumes. Using 7% we can

define the following scalar
_ :LL,U» a a

which express the relative difference in density between O and G. Note that
we did not assumed any “smallness” in defining A. However, in an almost

FLRW our gradients are first - order, therefore we need 12 only at order zero
in (4.63), that is, A =~ X,S(¢)n%0. Now, since D, = §(t)X,, we see that

A =~ Dyto (4.64)

that is, the time variation of the density difference between two neighbouring
comoving volumes is determined by D,. With this, the density i on G is

related to the density p on O by
£=pl+A+0(A%). (4.65)

Note that A is a gauge-invariant scalar, because it is made by the scalar

product with a gauge - invariant gradients.
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Other Scalars

In the some way we can build up scalar quantities from any gradient we wish.

Let f any quantity, for which we can define the two related spatial gradients

fa=hdfs, Fa=S5fa, (4.66)

as we did when we defined X, and X,. The corresponding scalar is’

Agp) = fanl = fanl (4.67)

and at first- order
A(f) jad .7:,,_7]10 y (468)

in complete analogy with (4.64).

4.5.3 Propagation Equations for Scalars
Equation for a Generic Scalar

One can obtain an exact first- order propagation equation for Ay from the
equation for f,, just using the definition (4.67) and differentiating with re-

spect to time. With a few of algebra we obtain

@1) =ty =B e T+ m @y | @

expressing the relation between the exact equations for Ay and F, (we have
substitute f, with F,).

It is immediate to see from (4.69) that, at first - order, the equation for Ay
is obtained by multiplying the constant vector 1}, with the linear equation
satisfied by F,, that is

(Af) =mnio [R(F) ], +0O(2) (4.70)

where the subscript L means we are considering the linear equations for F,.

"The subscript (f) not a vectorial index, but obviously refer to the quantity f of which
A(y) is the spatial scalar variation.
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Equation for A

For A, defined by (4.63), the exact equation we obtain from (3.27) and (4.62)

18

A =2oa -1+ 2=, (4.71)
p 1
where
== 0.0° = Za® (4.72)
2~ 2ot (4.73)

is the scalar related to Z,, and the expansion ©® on @ is related to the ex-
pansion © on O by © = © + E + O(E?). From (3.24) and (4.62), the exact

first-order propagation equation for Z is,

: 2 1
E= _§®E — §&MA +{Ri, + A, — 20% . + 202 IS . (4.74)

4.5.4 The Case of Zero Pressure

We conclude this section deriving the equations satisfied by A in the case of
vanishing pressure. In the case of dust, we find from (4.71) and (4.74) the

simple exact relations

A=-E, (4.75)
- 2 — 1 2 2 c i
o= —-595 — ?Z'f%,U;A + {“‘20' ot 2w ,c}'r]_l_ (416)
leading to the completely general ezact second order equation
v 2 . 1 2 2 c
A= -§®A + —2—&,LLA +{20% . - 2w" }n . (4.77)

The last equation is linearised in the almost-FLRW context by dropping the
last bracket, to give
.2 .1

which is essentially the well-known equation (4.46) for zero pressure density

perturbations (obtained in the standard literature by other means).



CONCLUSIONS

This thesis has presented the results obtained in two recent papers[17,19].
We introduced there new gauge - invariant variables characterizing density in-
homogeneities in cosmology, and derived evolution equations for them. These
variables have a straightforward physical gauge - independent interpretation
(they represent the spatial variation of energy density in the real universe),

unlike Bardeen’s variables [1].

However, in this thesis, I tried also to give a more comprehensive ekposi-
tion of the subject including a summary of the theoretical framework within
which the present approach to cosmological density inhomogeneities naturally
fits. Following an introduction to the gauge problems affecting the standard
approach to density perturbations in cosmology (chapter 1), we summarized
the covariant fluid flow approach to cosmology [11] (section 2.1) and the stan-

dard equations describing the fluid motion in this approach (see section 77?).

We have found a set of covariantly defined gauge-invariant quantities that
characterise spatial density variation in almost Robertson - Walker universes.
In particular, we have identified the quantity D,, the comoving fractional
density gradient and its magnitude D, defined by equations (2.40)-(2.41), as
the covariant and gauge invariant quantities which embody most closely the
intention of the usual (gauge-dependent) definition 6u/p. These, and other

closely related variables, are presented in section 2.2.2.

We have obtained exact (fully non-linear) evolution equations for these

quantities (section 3.1.3), showing how these latter are coupled with many
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other fluid variables in the general case. Then we outlined a linearization pro-
cedure in almost Robertson - Walker universes, and applied it to our equa-
tions, obtaining linear first-order propagation equations for our variables
(section 3.2.1). In the perfect fluid assumption, we obtained second - order lin-
ear equations for D, and ®,, a vectorial variable corresponding to Bardeen’s
scalar potential &y (section 4.3). These equations are equivalent to the
general Bardeen gauge invariant equations (see [29]). However, our basic
definitions and equations are valid independently of any harmonic analysis,
although they can be harmonically decomposed if desiderated.

We analysed the properties of these equations, reproducing many stan-
dard results in a unified and transparent way. We have deduced: (1) the speed
of sound in a barotropic relativistic fluid, (2) the Jeans criterion for gravita-
tional instability, correcting a previous result by Jackson [30]; (3) the long-
wavelength limit of those equations, and corresponding first integrals [2,38]
that exist for A = k = 0; (4) restrictions on the nature of isocurvature in-
homogeneities; (5) evolution of the density contrast between neighbouring
world lines (see sections 4.3.4; 4.3.5; 4.3.6; 4.5).

Section 4.4 presented solutions to our equations in the simplest cases. We
first examined the case of pressure- free matter, finding the standard +§, -1
modes in the Einstein - de Sitter background.

In the case of pure radiation with k = 0, we derived solutions in the long -
wavelength limit, obtaining different growth rates (relative to proper time
along the fluid flow lines) from those given by standard analyses using the
synchronous and comoving proper time gauges; our results agree with those
obtained in the comoving time - orthogonal gauge.

Also, we have briefly considered the case of a mixture of perfect fluids

when those perfect fluids all have the same 4-velocity vector u®.

Our equations are exact and non-linear. When linearized, a comparison
with the usual approach to cosmological density perturbations shows that we
obtain equations equivalent to the standard ones but in a much more trans-

parent way, because in the standard approach the definition of the density
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fluctuation éu depends on the gauge chosen. In our case we need a specific
gauge to write down the solutions to the equations, but the definitions of the
fundamental quantities are gauge-invariant. The key difference is that the
standard approach compares two evolutions (the actual one, and a fictitious
background one) along a world line, whereas our variables specifically re-
flect the spatial density variation in the fluid (they compare evolutions along

neighbouring world-lines in the actual universe).

In a recent paper, the formalism presented here has been extended by
Hwang and Vishniac (1989) [29] to include the case of imperfect fluids, while
a Newtonian version has been formulated by Ellis (1989)[20]. Also, aspects
of the effects of averaging on the effective field equations (cf. Ellis [13], Futa-
mase[22]) have been considered within the framework of our approach (Fu-

tamase (1989) [23]).

Because we have obtained fully non-linear equations describing the evolu-
tion of our variables, we can hope to extend our analysis to look at non - linear
effects. In particular, when vorticity vanishes, the constraint equation (77)
suggests that we could consider a second- order effect of shear in the evolu-
tion of the density gradients. Also, the perturbations of a scalar field could

be investigated using our approach.

It is interesting to compare our approach with that of Bardeen. In
Bardeen’s approach, a central role is played by his variables @5 and e,y,,
related by equation 4.3 in his paper [1], which show that ®z is a potential
for €,,. However, these variables do not directly represent the density con-
trast, unless some gauge is fixed. It can be shown [42] that these quantities
correspond to the Weyl tensor components E,;. This is not mysterious, since
Eq is a potential for our variable X, in the linear approximation (see equa-
tion (3.48), 13 in Hawking[26]). We have introduced a vectorial variable,
®., which formally corresponds to Bardeen’ ®. Also, Hwang and Vishniac
have shown that our variable D, is related to Bardeen’s €y, when harmonic

analysis is used. However, the relations between the two formalisms require
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further investigation.

Finally, we note that we the constraint equations remain to be considered,
and that it remain to be verified that their solutions are preserved along the
fluid flow lines by the propagation equations. A full analysis of almost-FLRW

universe models must of course examine these issues.

Acknowledgements

I would like to thank my colleagues and professors at S.I.5.S.A., and in par-
ticular: John Miller and Silvia Mollerach for useful discussions, comments
and critical reading of parts of this thesis; Mauro Orlandini and José Acosta
Pulido for advice in the use of INTEX ; Antonio Lanza for helping me with the
use of personal computers; and Peter Amendt and Phil Cuddeford for their
efforts in defending the purity of their mother-language. I am also grateful
to Mauro Carfora of the Theoretical Physics Department, Pavia, for making
the final version of the drawings (originally due to my supervisor, George
Ellis). Special thanks are due to George Ellis, my supervisor, for introducing

me to this subject.



Bibliography

[1] J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev.
D 22, 1882 (1980).

[2] J. M. Bardeen, P. Steinhardt and M. Turner: Phys. Rev.D 28, 679
(1983).

(3] W. B. Bonnor,Z. Astrophys. 39, 143 (1956).
[4] G. Bérner, The Early Universe, (Springer - Verlag 1988).
[5] P. D. D’Eath,Ann. Phys. 98, 237 (1976).

[6] A. Dekel, Pi‘ospects for the Future or the Optimistic Cosmologist, in
large - Scale Motion in the Universe: A Vatican Study Week, ed. V. C.
Rubin and G. C. Coyne (Princeton 1988).

[7] J. Ehlers, Diplomarbeit. Hamburg University. 1952.

8] J. Ehlers, Beitrage zur relativistischen mechanik der kontinuerlichen me-
dien, Abh. Mainz Akad. Wiss. u Lit. (Math. Nat. KI.) 11, 1961.

[9] J. Ehlers, General Relativity and Kinetic Theory, in General Relativity
and Cosmology, Proceedings of XLVII Enrico Fermi Summer School, ed.
R. K. Sachs (Academic Press, 1971).

[10] J. Ehlers, A. R. Prasanna, and R. Breuer, Propagation of gravitational
waves through pressureless matter, Class. Quantum Grav. 4, 253 (1987).

[11] G. F. R. Ellis, Relativistic Cosmology, in General Relativity and Cos-
mology, Proceedings of XLVII Enrico Fermi Summer School, ed R. K.
Sachs (Academic Press, 1971).

93



REFERENCES 94

[12] G. F. R. Ellis, Relativistic Cosmology. In Cargese Lectures in Physics,
Volume 6, Ed. E. Schatzmann (Gordon and Breach, 1973), 1.

[13] G. F. R. Ellis, Relativistic Cosmology: Its Nature, Aims and Prob-
lems, in General Relativity and Gravitation, GR10 Proceedings, Ed. B.
Bertotti. (Reidel, 1984), 215.

[14] G. F.R. Ellis and D. R. Matravers. In 4 Random walk in Relativity and
Cosmology, Ed. N. Dadich et al. (Wiley Eastern 1985), 92

[15] G. F. R. Ellis and W. R. Stoeger, The Fitting Problem in Cosmology,
Class. Quantum Grav. 4, 1697 (1987).

[16] G. F. R. Ellis, Fitting and averaging in cosmology, in General relativity
and Astrophysics, Proc. 2nd. Canadian Conf. on General Relativity and
Astrophysocs. Ed. A. Coley, C. Dyer and B. Tupper (World Scientific,
1988), 1.

[L7] G. F.R. Ellis and M. Bruni, A covariant and gauge- invariant approach
to cosmological density perturbation, Phys. Rev.D 40 (1939).

(18] G. F. R. Ellis and M. Jaklitsch, Integral constraints on Perturbations of
Robertson-Walker cosmologies, to appear in Astrophys. J., (1989).

[19] G.F.R. Ellis, J. Hwang and M. Bruni, Covariant and gauge indipendent
perfect fluid Robertson- Walker perturbations, Phys. Rev D40, (1989)

[20] G.F.R. Ellis, The evolution of inhomogeneities in expanding Newtonian
cosmologies,S.1.5.5.4. preprint, (1989)

[21] J. A. Frieman and M. S. Turner. Phys. Rev. D 30, 265 (1984).

[22] T. Futamase, Approximation scheme for constructing a clumpy universe
in General Relativity, Phys. Rev. Lett., 61, 2175 (1988).

[23] T. Futamase,in preparation, (1989).



. REFERENCES 95

[24] M. J. Geller and J. P. Huchra, Galaxy and Cluster Redshift Surveys, in
large - Scale Motion in the Universe: A Vatican Study Week, ed. V. C.
Rubin and G. C. Coyne (Princeton 1988).

[25] S. W. Goode, Spatially Inhomogeneous cosmologies and their relation
with the Friedmann-Robertson-Walker cosmologies,Ph.D. thesis, Uni-
versity of Waterloo, 1983.

[26] S. W. Hawking, Perturbations of an expanding universe, Astrophys. J.
145, 544 (1966).

[27] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space -
Time, (Cambridge University Press 1973).

[28] C. Hellaby, Volume matching in Tolman models, Gen. Relativ. Gravit.
20, 1203 (1988).

(29] J. Hwang and E. Vishniac. University of Texas preprint (1989).
[30] J. C. Jackson. Proc. Roy. Soc. A 328, 561 (1972).

[31] A. R. King and G. F. R. Ellis, Tilted Homogeneous cosmologies, Com-
mun. Math. Phys. 31,209 (1973).

[32] H. Kodama and M. Sasaki,Prog. Theor. Phys. 78,1 (1984).

[33] J. Kristian and R. K. Sachs, Observations in cosmology, A strophys. J.
143, 379 (1966).

[34] E. M. Lifshitz, On the gravitational stability of the expanding universe,
J. Phys. USSR 10, 116 (1946).

[35] E. M. Lifshitz and I. M. Khalatnikov, Investigations in Relativistic Cos-
mology,Adv. Phys. 12, 185 (1963).

[36] M. S. Longair, Galaxy Formation, in: Evolution of Galazies Astronom.-
ical Observations, EADN Astrophysics School I Les Houches, eds. I.
Happenzeller et al. (Springer- Verlag 1989).



REFERENCES 96

[37] D. H. Lyth, Large-scale density perturbations and inflation, Phys. Rev.
D 31, 1792 (1985).

[38] D. H. Lyth and M. Mukherjee, The fluid flow description of density
irregularities in the universe, Phys. Rev. D 38, 485 (1988).

[39] M. Madsen and G. F. R. Ellis, The evolution of § in inflationary uni-
verses, Mon. Not. R. Astron. Soc. 234, 67 (1988).

[40] D. Matravers, Some spacelike hypersurfaces of interest in FRW cosmolo-
gies. GR12 Abstract (1989).

[41] V. F. Mukhanov, JPTP lett. 41, 493 (1985).
[42] S. D. Nel,preprint, University of San Francisco, to appear, (1989).

[43] D. W. Olson, Density perturbations in cosmological models,Phys. Rev.
D 14, 327 (1976).

[44] P.J. Peebles, The Large - Scale Structure of the Universe, (Princeton
1980).

[45] A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna
Temperature at 4080 Mc/s,Astrophys. J. 142, 419 (1965).

[46] W. H. Press and E. T. Vishniac, Tenacious Myths about Cosmological
Perturbations Larger than the Horizon Size,Astroph. J. 239, 1 (1930).

[47] A. Raychaudhuri, Relativistic cosmology,Phys. Rev. D 98 1123 (1955).

(48] R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model
and angular variations of the microwave background, 4strophys. J. 147
73 (1967).

[49] K. Sakai. Prog. Theor. Phys. 41, 1461 (1969).

[50] B. F. Schutz Geometrical Methods of Mathematical Physics, Cambridge
University Press, (1980).



REFERENCES 97

[61] J. M. Stewart and M. Walker, Perturbations cf space-times in general
relativity, Proc. R. Soc. London A 341, 49 (1974).

[52] P. Tod, Traschen’s ICV’s and 3-surface twistors, Gen. Relativ. Gravit.,
20, 1297 (1988).

[53] J. Traschen, Causal cosmological perturbations and the Sachs- Wolfe
effect, Phys. Rev. D 29, 1563 (1984).

[54] J. Traschen, Constraints on stress-energy perturbations in general rela-

tivity, Phys. Rev. D 31, 283 (1985).

[55] R. Treciokas and G. F. R. Ellis, Isotropic solutions of the Einstein- Boltz-
mann equations, Commun. Math. Phys. 23 1 (1971).

[56] E. T. Vishniac,unpablished (1983), quoted in [29]
[57] R. M. Wald, General Relativity (The University of Chicago Press, 1984).
[58] S. Weinberg, Gravitation and Cosmology (Wiley, 1973).

[59] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61,
1 (1989).




