)
L4l
=
= 2
LS mm4 @
o 8 | |
=
(@) : | |
O : F | |
HN P 2 w.“r {1 ]
eli} : | |
O < I | ¥ |
»n > : ; I
(] = RD V
LD < = i w.
< g i a
< : A |
= s a2 E h
oe : g : |
(@) : I
o O 3%z | |
g = AL |
5 & oS A %
- : : ! m
2 2 = e ‘ r
: o  F 8 %
= 1 |
B E m
=z = |
ol 2 |
2 |
%) |
nl 2
Z| Z :
E 5
.
1
nn
©
] G
O




I am grateful to Prof. Roberto Iengo for suggesting the

subject, for fruitful discussions and for reading the manuscript



CONTENTS
INErOAUCHION «ecvecrreccccncsccasaccrnsscrssoncsssasssnasssasossssesassessonsasans 1
Chapter one

1-1: Introduction: the Classical String Lagrangian .......cccccceveveeececeeenennne. 3
1-2: Covariant Quantization. (Faddeev-Popov) .....cccocceeeecceincicriecnecnnneen. 6
1-3: Operatorial Formulation of String Theory .......ccccvvevevevencrinncnnn. 16

Chapter two
2-1: Introduction: BRST Quantization .......cccceeeeerveereescveveeeeeccneeeeesennenn.s 30
2-2: BRST Quantization of the Strng .....c.cccveeeerveercvecnnnrecenineennnnenne 37
Chapter three ....ccccocoeecescrcesoresssnnsessssncesssonssssasessssassesnns 42

3-1: Computation of the Vacuum Wave Function:

Saddle-Point Evaluation ........ccceeevveerereeessreneesannneecseeeeseeesessecneene 43

3-2: An Alternative Method to compute the Vacuum
Wave Function. Properties of the Vacuum

Wave FUNCHON ..coecviieeiieieeecirecete et 51
Appendix A
A-1: Complex and Almost Complex StruCtures .......ccceeerevceeeesneinennnn 57
A-2: The Complex Formalism for String Theory .....cccccccvveviivnnnnnnnnnnne. 59

A-3: Deformations of the Complex Structure - Moduli .......cceevvvuvrnuricncnne. 62

A-4: Determination of the Dimensions of Teichmuller Space .....................
APPeNdix B ....cccciicinneisincocersiccessanssscssssssssascssassssssasssssonns 71
APPENAiX C ..ueeiicicnerenccnsnosssencssensecsssncssssntacssesssanssssssenss 78

R EFEICIICES .vouercreensesoorvossensssssassssssssssassnsesasassssssonssasaassasaas 81



INTRODUCTION

String theory has in recent years been object of a growing interest. The basic
motivations are well known [1]:

1) The theory seems to be, in all its formulations, consistent with the requirements
imposed by quantum mechanics, relativity, causality and so on.

2) String theory contains the gravity in the low energy limit, i.e. the spectrum
exhibits a massless spin-two excitation mode that interacts at low energies obeying
the laws of general covariance.

3) There exists a certain agreement between many predictions of string theories and
those of the standard model.

Despite of these advantages, string theories are not free of problems. First of all
they are conceived from a first quantization point of view. The main shortcoming of
this approach lies in the fact that it is intrinsecally perturbative [1,2]. The partition '
function and the mean values are written as a sum over topologies, i.e. Riemann
Surfaces of genus g, as: Z = E g Zg (g =0,1,...). Each Zg has to be considered as. -
the contribution to the partition function coming from a g-loop approximation. So it
is difficult to investigate the nonperturbative features of the theory.

~ Another still unsolved question is the relation between the geometrical (via path
integral) and the algebraic (via operator algebra) formulations of string theory.

[n fact there exists no global definition for surfaces of genus g>1 of the vacuum state
invariant in the string Hilbert space under conformal transformations [3].
Nevertheless it seems useful to extend also for these surfaces the operator formalism
which was successfully developed for the case of the sphere and of the torus [3,4,5].
Apart from string field theory [2,6], many new recipes have recently been found to
cope with these problems [7,8], which remain within the framework of the first
quantized strings. In particular we refer to [7], in which there is also defined a sort
of vacuum state for Riemann Surfaces with genus g>1. This is based on the usual

vacuum I0> of [3] derived in the simple case of the sphere.



In this thesis we provide two methods to compute the vacuum 0> following the lines
depicted in [9]. The first method is based on a saddlepoiﬁt evaluation [10] (see
section 3.1) and the second on the definition of the path integral [11] (see Appendix
B). We have recognized that in both cases we get equal results apart from a total
derivative term added to the Lagrangian in the former approach (section 3.2).

After that we study the quantum properties of the vacuum [0> and in particular its
invariance under the BRST operator (section 3.2).

A brief discussion is carried out on the differences between the BRST charge of [3]
and that coming from the canonical BRST quantization of the string in the complex
formalism (section 2.2).

A short introduction to BRST formalism is contained in section 2.1.

A study of conformal field theory and of the properties of the vacuum under
conformal transformations are contained in section 1.3 and Appendix C
respectively.

We stress the operatorial quantization of the string theory finding all constraints -
(see section 1.1 and 1.3) at the classical level and then quantizing along the lines of
[12] (section 1.3). The future aim is to extend this formalism to surfaces of genus
g>1. To this purpose we have included part of our preliminary investigations on
higher genus surfaces in section 1.2 and Appendix A. In this appendix the complex -

formalism and the notations we used throughout this thesis are also explained.



CHAPTER ONE

1.1-Introduction: the Classical String Lagrangian

Let's start with the usual Polyakov's Lagrangian [13] for an Euclidean theory in

two dimensions:
L——,/gg 0X 0 X 1.1.1)
2 a b (1.1.

where X! : M ->Rdisa map from a 2-dim manifold M (the so called worldsheet)
to R4 (the target space) and g, 1, is a metric over M(g,p =gha)-
We list here the invariances of the string action based on (1.1.1) [14]:

1)Worldsheet reparametrization invariances, constituted by the group Diff(M) of

diffeomorphisms acting on the coordinates of M.

2)Weyl invariances Conf(M): this is not a pointwise transformation group and it is

given by the transformations of the type: g4 1 .~ eq)(x)ga b (x are coordinates on
M).

The lagrangian (1.1.1) describes a gauge theory. We furnish now a sketchy
computation of the related constraints to provide a better understanding of what
will follow [15].



I)First remark that the matrix ¥aP =g ¢8b appearing in (1.1.1) has only two
g g g%~ app g y

degrees of freedom,ﬂw others being fixed by the conditions:

gab:gba (1 12)
det'g =1

I)So ‘éab can be parametrized in the following way:

P (1.1.3).

A A
_.---2- _2+}\
A A

1 1

This obeys clearly (1.1.2) and displays immediately the two degrees of freedom
ALAR.

IIIDLet 0 and T be the parameters of M and denote A( U, T)=dtA(0, T )J
A0, T) =dg A(g, T).

Now substituting (1.1.3) in (1.1.1) we have:

2
A A
Lox?o-2%x + (=2 + A x? (1.1.4),
A! Al AI !

L=

B =

IV)The momentum associated to the coordinate X is:



P =a.[’=_}_(j(->\2X') (1.1.5).

It 1s straightforward to see that using (1.1.5) properly in (1.1.4) one obtains:

A‘ 2 12 1
L:XpT ---2--(1)T +X)—>\2pTX (1.1.6)

This form of the Lagrangian shows immediately that:
1) the theory exhibites two constraint (first class) [15] equal to those of the

Nambu-Goto Lagrangian:

p2 + X'2= ;
T X -0 (1.1.7)
p g

2)The Hamiltonian related to (1.1.6) vanishes apart from the contribution of the
Lagrange multipliers.

3)The theory is something different from the standard ones because the Lagrangian
contains the constraints [15]. This means, for example, that apart (1.1.7) we have

four additional (trivial) constraints given by:

(1.1.8)

4)The constraints (1.1.7) are the generators of the reparametrization invariance, so
that the gauge group is Diff(M), whose elements are the diffeomorphisms connected

with the identity.



1.2-Covariant Quantization

Let's go on with the first quantization of the simple bosonic string action:

S = f d't "9 X, X (1.2.1)
M

(From now on target space indices will be omitted.) As in the case of standard gauge

theories the quantization can be performed starting with the path integral [16] :

- 5(X)

Z:J.DgDXe (1.2.2)

A measure D g is induced by the metric [17]:

2 b b
(5,85, 9= @2 JE @ ¢ red 5 g, 5 g, (123)
M

where c 1s a constant.

This measure is determined using the relation [ D g e 13 g ll=q,

Eqn. (1.2.3) provides the most general metric for 8g, taking into account that the
variations 8g can be decomposed in a traceless and a trace part, which are

reciprocally orthogonal. Analogously the measure for X is given by:

(SIX,SZX)=J-d2281X82X (1.2.4)
M



At a first sight (1.2.2) seems to describe a free field theory because the action is at
most quadratic in the fields. Nevertheless the string can split into two parts [18], as is

pictorially shown in fig.1.1

fig. 1.1
Note that the interaction point

is not definite

It is easy to see by reparametrization invariance that this is the only allowed vertex.

Then we can express string interactions as in fig. 1.2.:

figl2

We see that the interactions between strings introduce manifolds with different
topologies, characterized by the number of handles of the manifold, called the genus

g. So the partition function in (1.2.2) is effectively a sum of the kind:

- -SEX) _
7= E _ng DX e —2, Z, (1.2.5)
g

topologies

Exploiting again reparametrization invariance on graphs like those in fig 1.2 and
considering the external legs coming from infinity, these graphs become Riemann

Surfaces in which the external legs appear as points.(see fig 1.3).
The problem of the gauge fixing was until now ignored. We quote here just the most

widespreaded methods [3]:
1)Light cone gauge: one uses the Dirac procedure to convert the ISt class constraints

(1.1.7) to second class ones eliminating some components of X's and p's.



fig. 1.3

The external legs in fig 1.2
are now the points indicated
by crosses

This lift the covariance in the target space but has the advantage that with this choice
one can retain a positive definite Hilbert space.

2) Conformal gauge: the Polyakov's approach allows us to fix some components of

the Lagrange multipliers g 2 b,

For example in (1.1.6) one can choose [15] :
A=1,x=0 (1.2.6).

From the first paragraph it is easy to see that this amounts to put :

pr=X (1.2.7)

and so the constraints (1.1.7) become:

2 2
X +X=0 12.8).

XX =0

These are the generators of conformal transformations. So this second gauge is
covariant in the target space but it is not able to eliminate completely the gauge
freedom. Despite of this, we will use afterwards the conformal gauge.

We discuss here some points of the quantization in this gauge for surfaces of genus

g> 2 [14,16,17,19,20]. The method we use is the generalized Faddeev-Popov



mechanism. The trick consists in trading the functional integration over the metric g
in each term of the sum (1.2.5) for an iﬁtégration in the gauge parameters, which
can then be factorized as an infinite constant.[14,16].

A problem is to find a good parametrization of the metric space M. For this
purpose we choose a particular metric g [14]. Using the uniformization theorem for
surfaces of genus g> 2> we choose% a b 1n such a way that the related curvature
tensor Rg is constant over all M, i.e. Rg?.l.

From A-44 (see appendix A) we see how g behaves under a small variation of g
[19,21]:

58ab=5® gab+ P Vab+8y2 04 (1.2.9)

These variations correspond to an orthogonal decomposition of the tangent space of

metrics Tg(M ):

T o(M ) = Conf(M) ® Diffy(M) ® (Teichmuller) (1.2.10)

We notice that in this case q)A is not varying under a Weyl transformation, i.e.
(pAlg= (pAlg g =e® g But we need that also the yA variables don't depend on ¢. In

fact when we do the change of variables § g --> (8@, v,y):

6g..P) |=]0 P, * (1.2.11)

A

sg G| |1V av, = | [39
Sv
se, 00 | Jo 0 ot 18

One has to check that the parameters ¢ ,v,y A form an integrable system [22]. If this



- ] O _
is the case, the derivatives §/8®, 8§/8v, 8/8yA defined below must commute:

o 2 8 8 2 8 d d
— =] dz8¢(2D)—— ; — = |dz Sv(z) ; = (1.2.12)
5P i 53¢ (2) 8v 1\'/[ &v(z) 4 yA oyt

But if we compute the commutator between two of these derivatives, for example:
iy
50 Al Bap (1.2.12a)

his does not vanish.

Explicitly,since 8/8® g, ) =g, p0¢ and dfoyA gab= (pAa b we have:

5
5 Fub a8 s 50 =9, 30 (1.2.13)

This leads to a nonsense: q)Aa b does not depend on ¢ because these tensors are
related to transformations which are orthogonal to conformal transformations as
explained before.

Accordingly d/d¢ (gDAab) =0 and we get 0 = (pAa b 8P # 0! This implies that the
yA variables involve a dependence on ¢.

The recipe that solves this problem is the use of a nonorthogonal decomposition
[22], adopting a new basis {T A} on Teichmuller space which transforms non
trivially under the conformal group.

Our situation is the following: in (1.2.9) we have the decomposition:

A
Sgab = 8 5¢ + (P1 v)ab + 8y Pa ab (1.2.9)



— ]]__

where @ A 51 does not depend on ¢ and dyA depends on ¢. We rewrite (1.2.9)

allowing a non orthogonal decomposition:
A
8gab = gab 8¢ + (Pl v)ab + SQA T ba gab (1 298.)

This should be the correct decomposition usually accepted, with 8p A and SyB
related between themselves by a matrix depending on the Weyl parameter ¢. We
will verify in a while that it is so.

Eqn.(1.2.11) should be replaced by:

=

se o) |1V av, = &
sg_ () |=]0 P, * 5v (1.2.14)

A
Bem@D | [0 0 gl L3V

where A\ g 1s an orthggonél projection from the ¢ A's to the new TA's
[14].(1.2.12a)
If we perform this change of variables we get the measure of the path integral in

terms of &, v, SyA~

Dg= DfDv d383 yAd383 yAldetPyldet A (1.2.14a)

g

We want now give an explicit form to det /A g [19]. For this proposal we have to

construct the basis { T A}. We recall the notations of appendix A:
{T AZZ} are the Beltrami differentials.

{op Azz} is their dual orthonormal basis, the holomorphic quadratic differentials.



— ]2_.

Since we have:

dzndz T g, =81 (1.2.15)
M

dzAdz9? @, g =N} (1.2.16)
M

(N4 g is not diagonal in general) we infer that gZ z 5]3 %3 lies in the dual space of ¢.

So it can be expressed as linear combinations of the T's in this way:
g. T . (1.2.17)

where A is a constant matrix. The expression of A is obtained inserting the

definition of T in terms of  given by 1.2.17:

-1LAC T 27 A
) sz/\ dzg"" 9oy Pp,, =83 (1.2.18)
M

This implies [19]:

Ay { JdZ/\‘ﬁg Pa i Pn zz} (1.2.19)

M

Using this result in eqn (1.2.17) we get the wanted relations between T 's and Pp's:



— ]3_

A - ZZ ~ —
7o gt {idz/\dzg Puzz®B 22 } . (1.2.20)

Here we see that the @'s have an explicit dependence on the conformal parameter ¢
trough the metric tensor gZZ. In fact if put eqn. (1.2.9a) in terms of the T A using

(1.2.17), we get:

Be
a

88, = 8y 8P + (P V) + 8y" (A)pp 8 T
Eqn. 1.2.9a is obtained from the subtitution dy (A)Ap = 5pg. Here it is shown an
explicit dependence of y4* from (A) AR Which contains the conformal parameter.
Now we can check that the commutator (1.2.12a) is effectively 0. We have
computed it explicitly in the new basis and verified that this is true.

At this point we derive the Jacobian det /\.g [19]. A measure Dg L is defined

requiring:
L -ldag
Dg e =1 (1.2.21)
where:

z

2 - A - —B
[tY:qll =sz/\dz g.dy, T,%dy, T °, (1.2.22)
M

as one sees applying the ortogonality condition (1.2.10) and using the metric

decomposition A-44 in the definition of I8 gllz. In terms of the @'s I5g L1112 becomes:



—_ ] 4__
I15gHl = (A-DAB dy o dyp (1.2.23)

If we perform the change of variables &g L -->yA in eqn. (1.2.21) we have the

condition:

i {yavs @ D) |
HE_[ dyAdy det A e ATB =1 (1.2.239).
i=1

Here we have formally indicated the Jacobian of the change of variables with

det(/\ g).

After the integration of the gaussian integral we find:
-1

- 77
det A =det(A™")" = det[ J dzA\dzg ™ 9, 4P p zz] (1.2.24)
M

Now using the relation above together with the eqn.(1.2.14 ) for Dg it is possible
to express the partition function Zg as [19]:

-S
353 _ idet (Pl e

Zg:ijDv Fy, Py
detUdz/\d'z g 9, P ]

(g>1) (1.2.25).

As we see the determinants define in a certain sense a measure and in fact they are
positive numbers.

Moreover they don't depend on vZ, because they are computed at the point g=g and
the effect of the trace part of the diffeomorphisms,which gives rise to a conformal
anomaly,can be adsorbed in the integration over ¢ [19,23].

Hence the Dv? integration can be performed and its contribution is an infinite



constant which we easily factor out in the normalization constant. Also the
integration in DX can be done éxplicitly since the action S is quadratic in the X

fields and gives:

D
@etD"Y J' d° X, (1.2.26)

Here det A' is the determinant of the Laplacian without the zero modes, which are
the constant fields X and yield the JdDXO term [16].
As a result we get from (1.2.25):

D
- det(P) -5

=J.D ¢ dx %y Iy ETT (det A ) (1.2.27)

In D=26 dimensions also the integration over @ is harmless because there is a
cancellation of the conformal anomalies coming from det A" and Idet Pql : in this |
case the D@ integration can be performed [13,14,24]. Here we just mention the
result one would get in the

case g=0 and for a complex parametrization of M, because it will be useful

afterwards.

J.d (—8 X9, X +boc+ cc)
Z J-DXDb Dce™ (1.2.28)

We have used here the expressions of Idet P1l in terms of the ghost fields. X,b,c are
free fields. Eqn. (1.2.28) will be derived further in the framework of BRST

quantization.



1.3-OPERATORIAL FORMULATION OF STRING THEORY

We discuss here some topics of the operatorial formulation of the string theory
[3,22,25,26,27,28]. Such a formalism has been developed thoroughly only in the
case of surfaces of genus g=0 and g=1, namely the sphere S2 and the torus T2.

We restrict us to the simple case of the sphere, for which we introduce the following
atlas {Ugy, P}, (X =1,2):

U, =S>/{s}, U,=S"{n) (1.3.1)
¢, Ul-—>C1+{(U,T):-°° < T L£0;0g0<L2m}

P, U2-->C2+{(U,T):OST<+w;0SUSZTr} (1.3.2)

{n} and {s} are two arbitrary but opposite points of the sphere and C, are
semiinfinite cylinders. Since S2 allows a complex structure, we define on Cy a

complex coordinate system w,w as:

w =T +10

w="T- id (1.3.3).

Further we can go on the complex plane C projecting C1 and Co on the unitary disc
D centered in the origin by means of the conformal transformations z = ¢ "W and
Z=e"W respectively.

On C, the overlapping region Uy MUy is simply the disc D/{0} and the transition

function between z and z is the conformal map:



z,Z €D/{0} (1.3.4).

N
i
N2 =

The remaining part of this section is devoted to show,in a very intuitive manner,
that the quantum string theory on the sphere is equivalent to a conformal field
theory.

We will organize the job as follows:
1) Conformal field theory briefly reviewed.
2) Quantization of the string theory in the operatorial formalism.

3) The stress-energy tensor for the string theory case.

1) Conformal field theory briefly reviewed: a conformal field theory is a theory

invariant under conformal transformations (see Appendix A).

Infinitesimally they look like:

z-->7z+v(z)

z-->z+ v(z) (1.3.5).

Notice that here we have chosen the disc D containing the image of the point {s} of
the sphere: this does not imply any loss of generality.
A simple basis for v,V is [26]:

1
v(z)=¢ "

v@) =¢ 2 co <N < oo, £ << 1 (1.3.6).

These transformations have as generators:



n+l d
LT
ntl d
Ln =-2Z -az (1.3.7)

We see that not all the L;,'s are well defined over the whole sphere. As a matter of
fact,their extension in the local coordinate system 7,7, which contains the image of

the point {n}, is:

f pnd (1.3.8).

From eqns. (1.3.7) and (1.3.8) it is easy to see that the regularity in the origin
requires that the only allowed values of n are 0 and =1 [26]. Lp,L.; | generate the
transformation group SL(2,C), i.e. the group of automorphisms of the
complexified sphere. They are related to the Conformal Killing Vectors in the sense

that they are global solutions of the equation:
a V4
¢ =0 (1.3.9)

The other L;'s, withn = 0,%1, correspond on the contrary to the local solutions of

(1.3.9).

The commutation relations of the L's give rise to a Lie algebra of the kind [25]:
[L_.L ]=(n-m)L_ (1.3.10).

Unfortunately this classical Virasoro algebra does't match with the quantum string

theory on the sphere.
Due to the operational nature of the Ly's, they need a prescription in their

definition.



So the "true" algebra, to which we will always refer from now on, is actually the

Virasoro algebra:

(L. ]=(n-m)L,_ +—=(m’-m)s

wem T3 (1.3.11).

The additional term appearing in eqn.(1.3.11) spoils the conformal invariance and
can be thought as a quantum mechanical breakdown of that symmetry [25]. In any
case we notice that the subalgebra SL(2,C) generated by Lo, +1 is unaltered by the
anomalous term: the automorphisms of the sphere still remain a global symmetry.
At this point we introduce the conformal fields: they are tensors

h,h

¢ 2.7 3 Z..2
h tmes h times

whose transformation rules under a general conformal variation w=w(z) is of the

form:

h, dw -0 dgw . -h h,h
¢y () () =9,,.55 (1.3.12).
h times h times

From this equation, it should be clear that they transform homogeneously under the

conformal group, i.e. [26]:

(L @,6"" @d] =zm[z%+(m+ H]ho™" @9
_ - . (1.3.13).
[L,@, 0" @] =i [z S+ men]ho™ 5

Remark: of course in a field theory there are also fields with non homogeneous



__20 —

transformation rules.
An example is provided in string theory by the X's, whose propagator is given

by [3]:

2
<X(2),X(w)>=Inlz-wl

We don't face us with this problem, because [27] showed that all information
about a conformal quantum field theory is contained completely in the
correlation functions of the conformal fields only.

It 1s clear in the context of string theory how this is possible. All the states in
the Hilbert space generated by the inhomogeneous fields acting on the vacuum
are spurious states [3]. They don't contribute to the physical amplitudes.

This discussion should be more clear when we will introduce the BRST

formalism.
Now we come back to eqn. (1.3.13).

All the local transformations appearing there can be summarized expressing them in

terms of the so called stress-energy tensor T, [27]:

( 1.3.14).

Some remarks about this equation are in order:
1) We have defined T at the point z instead of the point zero as is done in [3],
because the origin is just the singular point of the L's.
2) (1.3.14) has to be understood as a formal Laurent expansion, which allows

us to rederive the generators of Virasoro algebra by means of a



Cauchy-Riemann integral:

d n+
L) =¢ 2=(E-2)"" T@® (1.3.15).
c

Here C, is an arbitrary path surrounding the point z.

3)The tensorial properties of T are somewhat hidden in (1.3.14), but from

(1.3.15) we see that T must be of the form T, since the L,'s have a vectorial

nature (see eqn. 1.3.7).

4)The fact that the conformal transformation z -->f(z) and the anticonformal

transformations z --> 1?(2) are independent, involves that the trace part of the

stress-energy tensor vanishes. In real coordinates, indeed, the trace T2, is the

T,z component in complex coordinates, which is zero, as eqn. (1.3.14) shows.
Finally we can use the expression of commutators as complex contour integrals

[3,23] to rederive the transformation rules of conformal fields in terms of T:

(L @ ,6™ @] =J- %(& ™ T @) ¢ P (2.9) (1.3.16).
C

z

We see from this equation (and from the previous discussion) that a conformal field
theory in two dimensions is completely determined by its traceless stress-energy

tensor [3,27,29].

2)Quantization of the string theory in the operatorial formalism.

We quantize now the string action:



S= j d*z (_;- 9, X9, X +(bdc +c.c.) (1.3.17)

(see eqn. 1.2.28). We use an operatorial approach along the lines of [10].

I) The Lagrangian in (1.3.17) has the following expression in real coordinates:

L=1"3,X3,X+b, 1°°d_c" (1.3.18).

The conjugate momenta of coordinates X, ¢ and b are computed below:

P =2 X (1.3.19)
aL
P30 o) D
aL
p = = b
TR
oL oL
= = O 5 = = O 1.3.20 -
Poe T3@.D.) Poy T30, 5_.) (1.3:20)

The four eqns. of (1.3.20) are actually constraints; a further investigation tells us

that they are second class constraints [10].

II) We build the commutation relations of ouer field in terms of the Poisson
Brackets { , }:

{X,py}=8(g-0) (1.3.21)
{c".p,} =800 {¢",p.}=6(0-07
{bo »Py__ }=38(0-0) {b, Py,_ U} =5(0-0") (1.3.22).

Here it was used the fact that by ¢ and by g are not additional degrees of freedom



since b,y is a traceless antisymmetric tensor.

II) We eliminate the second class constraints introducing the Dirac Brackets {,}pp
[30]:

{aB} ;={aB}-{A9p,_] c:o'(lB {98} (1.3.23)

Where :
A,B are any two observables of 0,T;

(P are the constraints, namely:

$,=Pp, (1.3.24)

Ce B'l is the inverse of the matrix :

Cop = {PcPp) (1.3.25)

and the summation over ¢« and [ includes also the integration over the ' variables.
In terms of the Dirac Brackets we obtain that the only non vanishing commutators

are the following two [31]:

{c',b_ ) =80+

(c”,b__}pp=8T+0) (1.3.26).



We see that ¢ can be considered the conjugate momenta to ¢¥ and b the
conjugate momenta to c¥ .
We turn now to complex coordinate: in this case the conjugate variables are b,, and

c?, since we have the following commutations relations:

(b__-ib_)
L 9Ty =8(a+o (1.3.27)

z T . g
!b = ?
{c } {c +ic 5

2z’ DB

{c", b} p=8(+0") (1.3.27a).

IV) We exploite the equations of motion coming from the complex action (1.3.17)
[12], which are:

— Zz
’32622:02'6 = O

2z 9z X =0 (1.3.28)

On the disc the most general solutions of eilns (1.3.28) are expressed as:

Xe S (ozne Kug®) P22 nXealenXaZ"

fz-c0 fz.co
baz ":Z ‘D" ="
[(EL)
cF2 ) cnE" (1.3.29).

iz .ca

We quantize at this point the theory transforming the coefficients X, fn, by and ¢
in operators acting on a certain Hilbert space. The Dirac quantization recipe

({,}-->1/i[,]) tells us that the commutation relations become:

[)2.,, , ﬁmj_ Stn gn,m

A A -,
[ b 14 5 Swtmo (1.3.30)
A
where the # symbol denotes operators. If we represent by, as 8/8c_y;, we have the

usual commutation relations:



A A .
[an Pm]‘ = cngn,m

'ECn;%;mL = ‘gn/m (1.3.31).

Remark: our commutation relations differ from those of [3] because of an extra i
factor.

This depends on the definition of BRST transformations one is adopting.

V) Until now we have constructed a theory of operator fields without specifying in
which space of states they are acting. We refer to [29] for the demostration that the
string theory on the sphere can be effectively represented in an Hilbert space of
states.

Here we limit ourselves to the explicit contruction of the vacuum 10>, which will be
fundamental in the forthcoming computations.

To accomplish this purpose one computes the amplitude:

* = ) ::—-T

between a state at time -T with X, = ¢, = 0 for each integer n and a state at time O
with classical configuration X and ¢. This amplitude can be rewritten in terms of

the time independent wave functions $,(X,c), which are eigenstates of the energy:

2 * ET
<2.</£,'010,'--T>=21 #7,, Q(,s-)ffl?n[‘?)e (13.32).

Here we understand why we have excluded the b's.

Since we want to express all wave functions in a coordinate representation and the
b's are the momenta conjugate to the coordinates ¢ (see eqn. (1.3.30)), they have no
right to appear.

Now if we perform the T --> +oo limit, we see that only the lowest energy
contribution survives in (1.3.3), i.e. that of the ground state which gives:

* . -ET"
<>_<,,c.;<9!@,'f7‘>f\)/ O(X/QWJO)@ (1.3.33).



From this equation we single out the vawe functions of the vacuum $n(X,c) at the
time T =0.

In a first quantized theory ¢ (X,c) has to be understood as a state in the Hilbert
space [9]. The other states can be reached easily acting on ®(X,c) with the creation
and annihilation operators.

The only problem is the explicit computation of the amplitude in eqn. (1.3.33),

which is equivalent to the evaluation of a path integral.

In fact:
--g (_.!,_ 04X9§X4‘3664'(.C-)
<X,Q,'O,0/' =T ) = g DXOL Qg "
Cad= <
Xm, =X (1.3.34)

as one can see from the point particle analogy. -
In the above expression M is a cylinder (see fig. 1.4) and possesses consequently a
- boundary dM corresponding to the circle sl parametrized as T =0and 0 < 6 < 2r.

1.4a: point particle case Fig 1.4b: string cose

~

3) The stress-energy tensor in the string theory case.

We derive now the stress-energy tensor:

ab
T - - 4m 8§ (1.3.35)
V—%— g%uh

for thie bosonic string and we show that it is effectively traceless.

A)GHOST SECTOR:the starting point s the action in (1.3.17) expressed in a
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Cové:rvi’ar;'t f‘c;rr_ﬁ:‘
h z z 14
SV = - gv bzz ¢ q Iz +cc (1.3.36).

The standard action S gh = J bdc + c.c. is recovered remembering the expressions of

the covariant derivative V, : TR .>tn-1 [see A-2] in the conformal gauge
gab_5ePyab,

Ve = Qz+ b 02 9 ; A {fg th (1.3.37).

If we compute 5sgh using the formula of [3,23].

VE=l §22Vz +L, nVz (g 2z
S 4 @ : : ((j ) (1.3.38)
yvvé ge‘t a(;al result:
>4
5ST=- gdzz 5[5 V7 bae ¥ hg 454 baa Va € ]
j (1.3.39)

We see that the variations in & gzZ are not appearing. This happens because the
classical action does't depend on the conformal factor ¢.

In fact Vg gZZ is independent from ¢ in the bosonic action and also Vg VZ is
independent on ¢ because Vg VZ =g = gzzaz = 05.

From the definition of the stress energy tensor Tab in eqn. (1.3.35) this entails that
Tab s traceless and so the ghost sector is invariant under conformal
transformations.

As a matter of fact we get from (1.3.35):

Tz (2]: ”_QL (@?EEZ CZ) T NE <
$—"‘ 2= L Rs bs3 Z + "‘@”C-??

¥z (2) .1( s bz o Jrhas O (1.3.40).
rTTz'i' :lT“iz :‘0

Normal ordering of operators is understood whenever necessary.
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The related generators_ of the Virasoro algebra are now easﬂy comp'uted:

L(lk“(o] = % d=z 2h+‘ T(ZI‘Z M.:’l_ Lm-m] (1.3.41).

¢ 2T m a2

2=0

B)BOSONIC PART: we start from SX= fdzz\fg g(XBaC(X BBX.((X,B=Z,Z).

Following an analogous procedure as before we find:

§5X= |12 Vg 547 02X 0 Xveec

(1.3.42)
and
=X - —X
Ts G| = PzX BzX o lae @l E X0 (1.3.43).
9 2

If we rewrite eqn. (1.3.43) in real coordinates T,0 we obtain:
__1:@} Lo X e XS 2ixx!

. [ vt
~T@ = - X e e KX (1.3.44).

In this form it is transparent that the stress-energy tensor generates the gauge group
of conformal transformations, since it is a linear combination of the first class
constraints (1.2.8).
Finally the computation of LnX gives:
vy
| © =) Ke¥a-e
Tt 2 (1.3.45)
where we used for the X's the following Laurent expansion (compare with that of
1.3.29):
o 2 ipo Bae i), Lo
XFa =i bo 2 %
Pe = o (1.3.46).
Eqn. (1.3.45) shows that for n=0 we have:
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Lj(:z M )
@=-c0 2 (1.3.47).

Lq is not well defined since the <, & _] don't commute. The normal ordering

prescription gives us:

L, =L, - (p-2 (1.3.48).
24
In the case D=26 this result agrees with [25].



CHAPTER TWO o

2.1 Introduction: BRST Quantization

The BRST quantization is a way to quantize the gauge theories which generalizes the

As is well known, BRST invariance turns out to be crucial in string theories [22,32].
1t is not only an useful tool to prove the unitarity in the conformal gauge, but also
provides a method to select automatically the physical vertex operators [3].

Moreover, if it is valid at the quantum level, it implies the absence of anomalies [22].
Here we give some general notions about BRST quantization, following the

approach of Kugo and Ojima [33,34].

I)The starting point is the construction of a global BRST symmetry from the gauge

symmetry. The associated charge must satisfy the following properties:

nihilpotency:
Qp2=0 (2.1.1)

hermiticity:
Qp* = Qp (2.1.2)

These conditions assure [33] the unitarity and hermiticity of the theory.

Example: QED with scalars.
I - _41__ (’AHAV'(EVAH)“ Dy e é)“x{),;

The infinitesimal gauge transformations are written in terms of a parameter €(x) in
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this way:

g APQ( Dt"g@) o D[“ Cuv&nbn‘f Jev.va'/we

: £ Q()Ta_‘, T Qhera‘{oﬂ o-( the gaue

Ce ) = | (f)* D "T2.13).

The corresponding BRST transformations 8g are builted introducing the ghosts c?
B g

such that:

Sa =\ Ca (2.14).

Here A is a Grassman constant which is purely immaginary to meet condition
(2.1.2).

Now we define

SB AV(Q() = >\ DH’ CQ(J
Egtf@ - che« : cﬁ (2.1.5)

Cac¥) = _Xc& \@agc P&l ¢ @) (2.1.6).
The g variation of ¢ is such that SBZ vanishes when applied to the fields.
Since 8p* ={QpR,*} 1, (+ an arbitrary operator), this entails that QB2 =0.
Finally we have to introduce the antighosts to guarantie the conservation of the

fermion number. Their transformation rules under &g are:
“\Re
(o b @l = (AB

Sg Bl = O 2.1.7)
where B2 are a set of bosonic fields which play the role of Lagrange multipliers.
Notice that also for the B's and the b's the 832 = ( property is valid.
One verifies that (2.1.5) defines a global symmetry at the classical level.

So the related BRST current J B, derived form the Noether theorem:

'SB—;DV( Qi FlcqTy), AL _ L (cxc) AL

‘ ‘ W) K (( ’)"c(} Z? 2t¢) i

Bl (2.1.8)
RN




is conserved:
3, JHB =0 (2.1.9).

From (2.1.9) we can compute the charge Qp:

_ (3 78
(g = Sd X J, (2.1.10).

Because of the conservation of the ghost number, there is another symmetry of the

action connected with the following transformations:
c-->ceb b->be (2.1.11).

This invariance leads to an additional conserved current J © and to a charge Qc,

called the ghost number operator.

IT) The second step is to provide a condition to discard the unphisical states, i.e.

those with negative norm. Accordingly a physical state must obey the following -

relation:

Qp Iphys>=0 (2.1.12).

In string theory it is easy to see that this equation,together with (2.1.1), is equivalent
to impose:

L0>=0 n= -1 (2.1.13)
which is the usual gauge fixing.
The proof in a more general case is not trivial and we refer to [33] for this.
From eqn. (2.1.12) one can split the space of the states into three pieces:
A) Unphysical vectors {lunphys>} which don't satisfy condition (2.1.12).

B) Physical vectors with strictly positive norm, denoted from now on as {lphys>}.

C) Physical vectors which are annihilated trivially by Op.

These are of the form



I2X>= Qp lunphys>. (2.1.13a)

The 1X> vectors have these two properties:

1) They} have vahishing NOIms.

ii) They decouple completely from the states Iphys> of B).

As a a matter of fact:

<Xlphys> = <unphyslQg tIphys> = <unphyslQglphys>=0  (2.1.14)

This means that physics does not change under the transformations:

Iphys> --> Iphys>+ [X> (2.1.15)

Of course we should check that also the mean values of physical observables 6phys
A~

are unaffected by (2.1.15). In general this purpose is achievied only if Ophys is

invariant under the BRST symmetry.

In formulas:

[QB. Ophysl+ QB (2.1.16).

If eqn. (2.1.16) is verified, the zero normed states 1X> decouple completely from

the physical quantities:

<physy + Xll/(\)physlphysz + X»9>=<physy Iﬁphys' physy>  (2.1.17).

In correspondence with the categories A),B) and C) of states, we have three distinct

kinds of operators:

a) Unphysical operators 6, not obeying (2.1.16).

They send physical states Iphys> into unphysical ones:

A
C { [phys 7} - {[unﬂy;% (2.1.18)
b) Physical operators /ﬁ, which satisfy (2.1.16) trivially, and are such that:

B: { Iphos 7} — {1900
(2.1.19).

A
All these B's, called also null operators, are written as follows:

B=0¢, 87,

A
with C unphysical.

(2.1.20)

A
¢) Finally we have the true physical operators A, which transform physical states



into unphysical ones :

A
. H'D}- ]hs)} o
A Iz = Jiphy 2.1.21).
I1I) The last step is to add a gauge fixing term to the original Lagrangian L, in
order to break the dangerous gauge invariance.

Since we don't want that the physical expectation values change, it is natural to

A C .
choose an operator of the B type,which is given by:

IGF+‘H’ = "'".ge‘ (Z‘l FQ): {QB/ZG.FQ} (2.1.22)

F2 is a gauge fixing, which in this BRST formalism can be also dependent on the
ghosts [33,35].

Finally, starting from the total Lagrangian:

L =Lyt Lorare (2.1.22a)

the path integral formulation is builted.

Remarks:

1) Qg is an operator of ghost number 1 and acts on the space VI of states with
ghost number n as follows [18]:

Qg V"= V"™ (2.1.23)

Since QB2 =0, the BRS charge defines a cohomology operator.

The physical states [phys> € VI, which obey the condition (2.1.12), are
collected in equivalence classes of a cohomology group. We will denote it as
HO(G,R), where G is the group of the original gauge invariance and R is the

representation on which the ghosts live. The charge Qg can be expressed as
(see [3]):

. W
= Lo .
QB_. 66" :(g:“gul

in terms of the generators Gj belonging to the representation R

¢t ¢ by (2.1.24)
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([Gi,Gj]zifkiij). The states IX> of (2.1.13a) are the exact forms of H, i.e.
the trivial solutions of eqn. (2.1.12). The fact that two states belong to the same
equivalence class if their difference is a IX> vector, 18 simplyr a restatefﬁén% of
the independence of physical quantities under the transformations (2.1.15).

2) Since the Lagrangian L + L pp does not depend on the constant modes
cg and by of ¢ and b, we have a degeneration of the vacuum IO>gh in the ghost
sector [36].

Note that the bosonic and fermionic sectors are independent so that:
loy= 102 @ \O>3(ﬂ

because of this degeneration, we can define a ground state l+>g}1 annihilated by

CQ-

Colty, =0 (2.1.25)
but then the anticommutation relation (see (1.3.31)) [cq,bgly = 1, tells us that
also I->g1, =bg H+>gp, which is annihilated by by, is a good ground state [36].
Nevertheless b and ¢ don't enter simmetrically in the theory: the b's are rank
two tensors ans the c's are vectors. Indeed, if we denote as Q4 the ghost

number of +>op and as Q. that of I->4,, we see that their differ because:

Q.= Qo +1 (2.1.26).
The knowledge of the absolute values of Q. and Q._needs a prescription for
the ghost number operator like normal ordering. The explicit computation

gives us [36]:
éc = LL (cobe ~bo Co)+r\Z (Cembmb_ ) (2.1.27).

From this equation we see that Q. =z 1/2.
So in string theory, due to the singular character of the charge Q, we have
states with half integer ghost number. It is possible to show that the true

vacuum is the state |->41,, with ghost number -1/2, otherwise the condition
O
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(2.1.11) 1s not equivalent to the standard gauge fixing (2.1.13) [36].

The vacuum IO>gh which we will compute later satisfies effectively this
condition.

3) The BRST quantization has been developed in many different formulations.
The following approach, due to Fradkin and Vilkovisky [35], will turn useful
afterwards.

Hamiltonian approach of Fradkin and Vilkovisky [37]:

i)We start from the generators of the symmetry gauge group Gj, whose

commutation relations between themselves and with the Hamiltonian Hp are:

{6"’6)}*; = 6y %”3 (2.1.28)

{HO,GJ = ¢ 2 (2.1.29).

(2.1.19) displays the invariance of the Hamiltonian under the symmetry group.

11) The BRS charge is constructed directly as in (2.1.24):

o U J K
Qo= ¢ 6 “[(“) b U jx ¢ ¢ (2.1.30)

where cls b; are variables with opposite statistic to that of the constraint G;

satisfying the following commutation relations:

'bi], = 1

and

(2.1.31)
; 9] i{- G v Eo.:om‘c
h =

{ l C{ G, s ,(ermiom‘c

The condition which selects the physical states is as before:

QB l{ﬁv];? = O

ii1) The gauge fixing term added to the Hamiltonian is again a null operator:

(2.1.32).
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H=Hot Herirp = H+ b, \/LB el {?’Qf

Here F is a general gauge fixing.

(2.1.33)

*

From (2.1.33) one can quantize the theory.

2.2 BRST Quantization of the string.

We employ the previous formalism to the actual case of the string:

S- (1T (gEaxaxs A Beee)

This action is invariant under the riparametrization group, which in complex

coordinates is composed by the transformations of the type:

2‘7240’(212)

i"' —;§+5’(Z,§)

(2.2.2).

These transformations look like the conformal ones, but they mix z with z.

The gauge acts on the fields X and the Lagrange multipliers g in this way:

SX =020, X372z X

g%zz"vz Vs g‘&ii = Vz Vg
Mz = (Ve v? 4V vF) 1= (2.2.3).
Accordingly with the BRST quantization procedure, we introduce the ghosts ¢Z such
that:
N W
5 T = z 2.2.4).
O,Z — N C_Z‘ - &C ( )

With these substitutions eqn. (2.2.3) gets:
- Z Z
gBX‘ >(C /92)(“'6 /’&-Z;X)

ng;_%:}%cz Se 9z = -5 c3
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- 2 -

gB %22 = >‘(Vg C2 “VZ_ c ) %22
s (2.2.5).
The variation 8gc? is determined by the requirement 8g(X,g,c) = 0. This entails,
after a little computation, that:
Z/n- Z
Sac® = N ERp T HN T Ec
_ ~ = (2.2.6).

< - 2

The set of BRS fields is completed by the antighosts b,,,bss and the related

Lagrange multipliers B, Bz, with nihilpotent transformation rules:

58 bza :(822 gs 535 = Bzz
ge Bzz: Xg 53 =0 (2.2.7).

Remark: since no use of the equations of motion was made to assure the condition
832 =0 throughout eqns. (2.2.5), (2.2.6), (2.2.7), the BRST invariance is valid off
shell, apart anomalies.
We fix now the gauge freedom emploing the conformal gauge prescription:
2z =937 =0
(\i Ca é (2.2.8).
3 =43 =1l ¢

Cdzz e =7

The related gauge fixing Lagrangian is, according to (2.1.22):

OZZW = Ve s (bez % bz 332 ) (2.2.9)

whose explicit computation yields:
‘ 232 2 ® . 3% -T2 F
:\/— LBZE d) V c%4(Bs; +5 ch)
L orirr 7V ( (e R TR 0000).
From eqn. (2.2.10) the Lagrange multiplier role of B,, and By is evident.

We turn now to the path integral formulation writing the partition function:
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d 0( 'h(g{-‘-«-*’?
(0, 910 0581, §0BCec) & I+ o ipic

- dl%%ﬁ?a QXX +ZZ§ NXAX+¢ B?%Cla“l’aavacz |
xe 2.2.11).

The usual form of Z 1s recovered after an integration over the Lagrange multipliers

and further over the component of the metric tensor g,, and gzs:

L= jQ‘aea Qc‘aﬁ (Qca 95?3 (9(6‘(.-) g(ﬁ?a) {(ﬁ;g} N

Sdl& L‘J.QX@X +hQcve. c]

Xy ?a/)x'})(‘g- Z/QXQX'*‘ha e-rc‘C]
-J 2 (4 1 Kgﬁng&ﬁ (2.2.12).

v

The final result is the partition function (1.2.28) one gets with the Faddeev-Popov
method.

The action appearing in (2.2.12) still retains some trace of the initial BRS
symmetry. The related current _]ZB,JZB can be computed directly from the current

J ZB,J-Z-B connected with the BRST transformations:

-0l 587 4 Rl Gl + 0L (e X+ 9L $4c7,
Q(M foz b, bz) ez x) oz

—‘r(_a_ﬂ,é,____~ §a ¥ Q) QBng—FC-C.

W0z @) 1 N0Bz) (2.2.13).

Eqn. (2.2.13) is just an application of the Noether theorem.

Now jZB is achievied simply taking into account the constraints (2.2.8) and the fact
that after their imposition gZ% is not more appearing in the Lagrangian (see eqn.
2..2.12).

We obtain:

S (62@27(-; Nz X )FJ;X - (¥R %y Bpg CE)L?@

B A z 2 3
L2 = (PR K=" 003 X)X (2 e+ " B2 Ibe. (2.2.14).

It is easy to see that the related charge Qp is still nihilpotent, but this time only
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on-shell, 1.e. after the use of the equations of motion (1.3.28) [22].

Hence the effective current leading to QF2 =0 1s instead :

%= s Xa) By Xa) + 20, 3(z) by, (2.2.15)

We recognize here, apart an ininfluent total derivative, the current of [3], which

generates the conformal group transformations:

[Q{: /Xﬁjﬁr <¥®2 W

EOF} CZI+ = Cz@z Cz
(2.2.16).

EQFI &)EZ_L = E); +7;33h

Comment:

We can provide only an hint of what has happened resting on an analysis performed
with the Fradkin-Vilkovisky method.

We started with a charge Qp, conserved off shell, related with the
reparametrization group.

The choice of gauge fixing has restricted us to the conformal group, which is, on a
chart, a subgroup of the initial one. In this way, the reparametrization current J B
merges in the conformal current jB, but in this procedure we have reduced the
invariance of the theory.

In particular we have discarded so many generators that the Lie algebra of the
residual group is not able to close without the aid of the equations of motion.

This explains intuitively why the operator Qg is now nihilpotent on-shell.

At this point a remark is in order: when we supposed that QB2 = ( holds off shell,
we were neglecting the anomalies: in fact, even if in our simply case we don't have
to face the anomalies coming from the moduli space [32], we still encounter the
conformal anomaly.

Until now we have tacitly assumed to be in D=26 dimensions to avoid problems [36].
Nevertheless, to find anomalies, one has to verify the Ward Identities, so the

question arises, if we have to use the full BRST symmetry of (2.1.5),(2.1,6),(2.1.7)
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or the reduced symmetry of (2.2.16). This point was recognized by Mansfield [22].

The generator of the W. Identities he proposes:

D = [ 07 (70 C2 0,07y 20505 287 (T 07)s

+T'3(¢ (E,Z)h.c.)}

A A
t ‘2_1_ S -1 &
= Q.L_ S' - = 13 = o
g i 5 C g s E T e (2.2.17)

acting on the functional Z( fff g, X ) with sources I/, ﬁ Pzzis based on the full BRST
symmetry.

Remark: in the approach of [3] one uses an operational formalisms, where explicit
use of the equations of motion (1.3.28) is made, so the charge appearing there is Qp:

this 1s not possible in the path integral formulation.
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CHAPTER THREE

In this chapter we give an explicit form to the ground state 10> along the lines
explained in section 1.3.

We provide two methods of computation.

In the first, one extracts the boundary contribution to the amplitude (1.3.4), fixing
suitable boundary conditions [38].

In the other we use the definition of path integral a la Feynman and Hibbs [11]
discretizing the time T axis in many intervals and then performing the limit in
which the amplitude of these intervals goes to zero.

As we will see, the two vacua look very different: this is because in the first
approach one is lead to add a boundary term in the usual ghost action,which can be
considered as a canonical transformation of the dynamical variables b and c.

So the fields appearing in one vacuum are actually different from the fields
appearing in the other.

We have found the operator which relates the two vacua and we have verified that,
apart from this transformation, they coincide.

After that we use the BRST formalism developed in chapter two in order to see that
our vacuum is effectively annihilated by the BRST charge of [3].

Since we are in an operatorial formulation of the theory, it is not necessary to
employ the full BRST charge Qp as explained at the end of the last chapter.

Note that to comply with the standard notation, throughout this chapter we use the

symbol Qp for the charge Qp.



3.1-Computation of the vacuum wave function:
Saddle-Point Evaluation.

The amplitude < X,c;0 | 0; -T> of (1.3.34) which we want to compute is basically a
determinant for the Laplacian operator d,05 and for the P operator gZEGZ (see
appendix A). Since they are operators defined on a manifold with boundary, (in our
explicit case the semiinfinite cylinder of section 1.3), we need to fix their boundary
conditions to determine their eigenvalues uniquely.

We start with the simple case of the Laplacian. Since we use a sort of saddlepoint

evaluation to compute determinants, we rewrite the X fields as:

X=X +8X (3.1.1).

where X1 is a field obeying the classical equations of motion and §X is its quantum

fluctuation.

Now the classical action, in terms of the shifted fields (3.1.1) looks like:

SX +dX)=SX )+ [ . J. dz (9,% ;) 8X -1 _[ dz(d, X )8X - iJ.dz (9,5X) 8X ] N
oM oM M

+ iJ‘d'zdz SX(BZB.Z 5X) (3.1.2).
M

Notice that here we have employed the equations of motion:

d0:X,=0 (3.1.3).
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Of course, if we want to derive the correct determinant, we have to require that the

linear part in 8X vanishes. This result can be achieved if we impose:
3Xiom=0 (3.1.4).

With eqn. 3.14 we have choosen the so called Dirichlet boundary conditions for the
fields X.

Actually O. Alvarez in [24] claims that these boundary conditions are too strong
because one loses the reparametrization invariance on the boundary. So he proposes
more sophisticated Modified Dirichlet Boundary Conditions. Nevertheless one
shows [24] that in the case of the Laplacian acting on scalar fields X, the choice
(3.1.4) does not lead to pathologies.

In terms of the shifted fields, we obtain from the X integration in (1.3.34):

4 -szz (bdc + c.c)
-Sa KXo 2 oM
<XB,bB,cB ;010;-T >=e JDch (det ) “e (3.1.5).
where: Xg = X|gM> bB = bigMs ©B = CI9M (3.1.5a),
XR.bp, cp are classical fields,
S (X = J—dz dz 9 X 0; X (3.1.6)
M

and A is the Laplacian without the zero modes X{.
As we see, we were able to separate the contribution of the classical field
configurations at the boundary from the A determinant, which is a pure number.

The same procedure can be developed in the case of the ghosts, but we have to use



more care in the choice of the boundary conditions. This is because the operator P1
=9 is not selfadjoint like the Laplacian.

We determine the boundary conditions for Py and Pyt requiring the following
properties [24]:

1) P is a differential operator: we want the freedom of integrate by parts without
worry with surface terms.

ii) det(P1*P1) = ldet(P1)! defines a functional measure: accordingly the operator
P*P has to be definite positive. Here we are neglecting the zero modes.

Let's start with the property 1).

First of all we have to introduce an inner product in the space of tensors.

In general, for two tensors \, ,and ¢, ,in T B this is provided by:

<v,0>=[d2 [ @) W+ (3.17)
M

(3.1.8).

Secondly, we proceed shifting the fields b and c:

b=b. + &b
c=Co+dc¢C (3.1.9).

Now we can compute the following difference for the quantum fluctuations &b and
dc:

<b,P, 8¢ >- <P 8b, 5c>=-Im {sz sb_8c”) (3.1.10).
oM

If we want to integrate freely by parts, the RHS has to vanish. But 8c is a vector

representing the infinitesimal reparametrizations: so [23] it is a tangent vector on M.



On the _l?qu}.ldafy.,- in complex coordinates, this entails:

Re 8cZgv =0 (3.1.11).
Accordingly in (3.1.9) we need to require that:

Im 8b,, |90 =0 (3.1.12).

Analogously we verify the positivity, i.e. property ii).
We find for P;*Py that:

¥4
<8c,P| P, 8c>- <P 8c,P, 8c>=Im { J.dZ‘ESC Py SC)ZZ} (3.1.13).
oM

This equation, taking into account (3.1.11), means that tha positivity of P;* Py is
assured if: ‘

=Im(V, 5¢ (3.1.14).

Im (P5C),, o) =0

oM

We have still to see that also P{P™ has strictly positive eigenvalues.

In a similar way as before, we find the additional condition:

z
Re (V' 8b,) =0 (3.1.15).

To summarize we collect our results scattered in formulas (3.1.11), (3.1.12),
(3.1.14) and (3.1.15):

Re 8c?gp =0 by definition of cZ



Im 8b, oM =0 requiring the freedom of integrate by parts
Im v* 5¢, oy =0 positivity of FIP1
Re(V°8b,,),,=0  positivity of B P" (3.1.16).

In real coordinates we recover the results of [24]:

b
n 8¢y 1 =0

Dy t, 80y, g =0
ab
N, t, Py 8¢) gy =0

n" (P} 8b) , 5 =0 (3.1.17)

where n and t2 are respectively the normal and tangent vectors of the boundary
oM.

One may wonder of the fact that we have give conditions also on the derivatives of
the fields because our problem is of the first order. Nevertheless one should
recognize that these conditions are more appropriate in this case than the simpler

Dirichlet ones:

Re &¢ 3M =Im &c M =0

Re 8b gy, =Im 8by,, =0 (3.1.18).
At this point we compute the ghost action:

S (0:0) = '[d2z (b3c + c.) (3.1.19)
M

in terms of the shifted fields:



Sgulbe +8b, ¢y +8c] =S [by , cyl +i J. d'z8b_d 8¢+ J-dz b,, 8¢’ (3.1.20).
M oM

We see that the action (3.1.19) does not lead to the determinant of dz because we
have an additional non vanishing boundary term. In order to eliminate this linear
term in the quantum fluctuation we are forced to add an extra piece to the action

(3.1.19).

We express it in real coordinates £2:

t c b
S ulbic] = S Ibel - jdsa b, ttc (3.1.21).
oM

Remark: if we parametrize the boundary with a local parameter A so that the
coordinates get £4( A ) on dM, we can write the infinitesimal surface element d S2

as:
dS8=dsn? (3.1.22)

with:

a b
/ de¢ deg
ds = gab —(-1-;\- ._dX dA

the element of arc lenght.

The additional term to the Lagrangian in (3.1.21) is only a total derivative which
defines a canonical transformation of the ghost fields: moreover it suppresses
exactly the boundary term of (3.1.20) yielding just the correct determinant.

Unfortunately this cancellation is more subtle in complex coordinates because it



happens only when we consider the contribution to the action of b and ¢ together
with their complex conjugates.
This was the main reason to the use of real coordinates in (3.1.21).

in any case , in terms of z andz, the new action is given by:

. _ 2 z z Z
S ¢h (b,c) = Jd zb,, 82 c - J- dz (b,,- b, ) (c"-¢) (3.1.23).
M oM

Since we are sure that now we will obtain the correct determinant, we integrate over

b and cin (3.1.5), so that the amplitude < Xg, bB, cg; 010 -T> gets:

50 05 - Sy (o )
<X pby,cgi0105-T>=Ne & & &0 (3.1.24).

B’ "B’
T-->c0

In N we have factored all determinants: all the dependence on Xpg, bg, cg is
confined in the exponential term which has to be proportional to the vacuum wave
function ¢( Xpg,bg,cp). In particular we see from (3.1.23) that the ghost
contribution to ¢ Xg,bg.cy) is determined only by the imaginary parts of b¢] and
Ccl-

The appearence of the b fields with respect to the original formula (1.3.34) is not
amazing because we have mixed the b and c fields with a canonical transformation.
Finally we find explicitly the form of the wave function ¢g( Xg,bg,cg) in terms of
the boundary data Xg,bg.cR.

We have to compute:

2
S X )= Jd 29 X 0,X, (3.1.25)
M

and



2 z z Z
Sghzjdzbzzaick—jd‘z(bu—\bﬁ) (c*-c)+cc. 3.126)
M oM

with the conditions (3.1.5a).

We develope the classical fields on the semiinfinite cylinder in Fourier series

(z=T+10):
X, = Y, X "+ X o) (3.127)
n=0
=Y c " (3.1.28)
n=0
F=Y g " (3.1.29)
n=0
b, = Z b e (3.1.30)
n=0
by > b & (3.1.31).
n=0

One can show that these are the most general solutions regular at T --> -co,

Substituting (3.1.27 .... 3.1.31) in (3.1.25) and (3.1.26) we get from (3.1.24), apart

from a normalization constant:

bp=e " e (3.1.32).

Equivalently this expression can be restated through the imaginary parts of b and ¢

on the boundary [10]:



Imb,, = Y e ™ (3133
C.
n=-o0
ngte
Imc, =Y, Be'™ (3.1.34).
n = -co

Using (3.1.33) and (3.1.34) we rewrite ¢ as:

z ™X, X 2 ¢ 8.-88)
A nz nz
0, (X,8,8)=¢ " e " (3.1.35)

Notice that in (3.2.32) and (3.2.35) there is also the contribution of the conjugate
fields b and c.

3.2-An Alternative Method to Compute the Vacuum Wave
Function.-Properties of the Wave Functions.

We provide here an expression of the Wave function ¢ derived from an alternative
approach to that of section 3.1.
Actually, since the computation is quite lenghty, we have confined it in the appendix

B and here we state just the result:

oc=v, [ ] <. (3.2.1)

n>0

We use the index k to distinguish this new ¢ from the previous one.
We will strive for a relation between the vacuum of (3.2.1) and that of (3.1.35).

To do this we introduce the momenta conjugate to the variables 8 and 8 of (3.1.33)



and (3.1.34). From the commutation relations (1.3.26) we see that these momenta

are given by:

+ oo
7= 2 fr et (3.2.2)
A .
(8,7, 1= 18, .0 (3.2.3)
and
n=+oo )
-1nd
b= Z p, © (3.2.4)
Il = -o0
[8,,m, 1=i8 ¢ (3.2.5)

c8 and bt are proportional to Re ¢Z and Re b respectively.

Now, since the boundary term -added to the action (3.1.2) resembles a Fourier
Transform acting on the Wave Function, we seek for the inverse of this
transformation 5.

This is of the form:

(B g 1

B[ 0, = J-dé\ _dB e =A@, B) (3.2.6).

A
As a matter of fact, if we choose as A( 8, B) our wave function q)Ogh we get:
A oa -Eae B 185, )
3L, =J.d§3_n db_e e =
=T A, -i8) (f +i8)) | 327,
n=1

Fal A
But from the definitions of 7 and 8 we recognize that (3.2.7) can be rewritten in



terms of c and c:

oo

stog=] [<.c. (3.2.8).

n=1

This 1s equal to the Fourier transform of (3.2.1) in the constant mode by
remembering that here we have included also the contribution of the complex
conjugate ghost c. In fact we can show easily that (3.2.8) has the right ghost number
- 1/2.

The bosonic part, instead, did not present shortcomings.

From now on we will consider as our vacuum wave function that of (3.2.1):

-2 X, X
10>=10>®10>, =¢ " b, [ [ ¢ ® e (3.2.9)

m>0

Notice that in (3.2.9) we have put X;; = X, .
Now we will investigate on the BRST properties of the vacuum state.

We list the creation and annihilation operators:

A) Bosonic sector:

destruction operators are:

1 9
o =-i|l7ax- % ] (n>0) (3.2.10)

1 9
& =-i] T X +“X-n] (n>0) (3.2.11).

The costant modes (), <(y are considered later.



o/
The creation operators are instead &_p, &X_p, ,(n>0).

The 601nn1utation relations are:
[« .o 1 =n8 (32.12)

n+m,0

[, ] =nb (3.2.13).

n m n+m,0

B) Ghost sector: (see eqns. B-29 andB-30).

destruction operators:

S
c ,b = 5o n>0 (3.2.14)
-n
creation operators:
5
c,-b TS n>0 (3.2.15).
n

Moreover by is a destruction operator and c() is the related creation operator.
From (3.2.10) and (3.2.11) we see that the constant modes appears in a wrong way
in the bosonic vacuum [ 0 >y .

In fact, applying < and 8(0 to | 0 >xwe obtain:

X W= Xy W = 0 (3.2.16)
Moreover:

o
PO W 0 = .;S—)-Z— \]/0 = O (3.2.17)

0

S0 our ground state has zero momentum: but we know that the true ground state of
the bosonic string is a state with tachyonic momentum. We give the correct quantum

numbers to the vacuum defining a new vacuum in this manner:



[0>=¢ 10>, ® IO>gh (3.2.18)

with k2=8.
We check now that this vacuum is effectively annihilated by the BRST charge as the
physicality condition (2.1.12) requires.

First we construct Qg from the current related to transformations (2.2.16):
Bz =%, X(2) 3,X + 23, cZ by, (2.1.16).

In two dimensions eqn. (2.1.10) yields for the classical charge:

B dz B
C

0

The explicit integration of (3.2.19) gives, after a little reshuffling of terms:

-+ oo
B X
Qq = Zc-n L+ 2 ¢ c, dmb_ (3.2.20)
n=-co I,m

Now we turn to the quantistic theory; operators are regularized with normal

ordering.
+ oo

Q=D e L5 Y e bmyb (3:2.21).
n=-co l.m

After a straightforward calculation we see that the only divergent term in (3.2.21)



1s LOX.
Using eqn (1.3.48) we obtain:

+ oo

B X _ (D)
Q =z c, .Ln. +1§m:(1-m).clcnb_m_l.+ 0 Cy (3.2.22)

1 = -co

We apply this BRST charge to the vacuum of (3.2.18) in D = 26 dimensions.
The term
Z (Im):cc b ., :
I,m
vanishes automatically acting on | 0 >: this can be shown in a straightforward way
checking all possible cases 1=m=0, 1=0 but m # 0 and so on.

So the remaining task consists in to realize that also:

+ oo
D (e i+ 20)105=0 (32.23)

Il =-oc0o

[t is easy to see that this is true provided we use the tachyonic vacuum of (3.2.18).
In conclusion the vacuum of (3.1.18) has to be the correct vacuum, since its ghost
numbef, its tachyonic quantum numbers and finally the physicality condition are all
verified.

This ends our analysis.

We should remark that in this discussion we have not exhausted all possible methods
of vacuum state computation. For example there is the approach of the geometric
quantization [8] and that of the holomorphic representation. In any case they are all

based on the principles stated at the end of section 1.3
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APPENDIX A

A.1 Complex and Almost Complex Structures

Let M be a real differentiable manifold with its tangent space T(M).

We suppose that M satisfies the following two properties [11,39,40,41]:

1) M is even dimensional, with dimension 2m for each x € M.

2) HZM(MR) # 0, i.e. M is orientable.

So it can be defined on Ty (M) a 2m X 2m matrix J such that J 2= -1, which is the
analogous of the complex number V-1 in the simple complex analysis.

In order to preserve the operation of multiplication of vectors by J, the group of
symmetries GL(m,R) acting on Tyx(M) should be restricted to matrices which
commute with J.

This leads to the group of symmetries GL(m,C), which is a subgroup of GL(m,R).
If it is possible to do this for each point x € M then we say that M has an almost

complex structure,

Remark:the properties 1) and 2) are only necessary.

The necessity of M to be 2m dimensional is explained by consistency:

0« (Det T)'= Dat(T¥)= det(-4)= 1) A-1
and this implies n>0.

The necessity of the orientability is more difficult and we skip its demonstration.

In the case of a Riemann Surface, for which m = 1, we have:

T [ A2
- )

This tensor can be diagonalized only using complex coordinates z and Z.



In fact let:
| Z:Xﬁf o - A3
2 s X-( Y

where x,y are real coordinates on M, then:

This 1s called the canonical form of J.

We go now one step beyond the almost complex structure, extending the complex
coordinates z and z on an entire open subset U of M and not only in a point x

This 1mplies that we have to put the tensor J in the canonical form A-4 on all U,

solving in this set the following Beltrami equations in the z variable:

v Q
e dz 2 oda A-S
d3* d3%

where £ = (x,y) are the real coordinates of M.

When it is possible to find solutions of eqn. A-5 for each open set Uy of a given
covering of M, then we say that M has a complex structure.

A similar problem arises in the general relativity theory: one want to have a flat
metric g v = 8y In an entire neighborhood of a point p.

The necessary and sufficient condition in order to get this result is the vanishing of
the curvature tensor Rijkl in this neighborhood.

In our case the role of R is played by the Nijenhuis tensor [18]:
{ “hooowe Sk ¢ —LQ' h _LQT"—(
N%K:Z(x\'\@thNJKQhS‘)_BH },‘Sv(**jhk ¢ A-6

In fact one can state the following theorem [39]:

Theorem: an almost complex structure J corresponds to a complex structure iff:

NS =6

hl/ﬁ



The necessity of this condition is easily verified:
if J4, = 189, the partial derivatives of J in A-6 are vanishing giving N = 0.

Remarks:

1) A complex structure on a real differential manifold determines a complex
manifold [41].

In fact we have now coordinates zn on each patch Uy, of M.

In Uy N UB‘ since the transition functions must preserve the canonical form of
J, it is easy to proof that the only possible transformation functions are

holomorphic, i.e. of the kind:

For example the component JZ, transforms under A-7 as:

T/E« - 3-?32 (:I_El? QI}\‘K ) 3-832
2 # de, d2g ¢
2) We can extend this discussion to the case of a Riemannian manifold M, in
which, by definition, a metric tensor is defined.
In this case the transition functions on T4(M) are elements of SO(2n,R) and
the complex group G such that G € SO(2n,R) and preserves the complex

structure, is U(n).

A-2. The Complex Formalism for String Theory




We {ix the notations which were used in this thesis [16,24].
 We know that, after imposiﬁg the confomlal'—gau'ge, the action of the bosonic string
still remains invariant under the conformal group, previously called holomorphic

transformation group.:

I
=z (2
2+ 4@ A8
We have also seen that these trasformations allow a complex structure on M.

At this point we can introduce a metric in order to rise and lower indices.

In string theory the metric ds2 can be written locally as [16]:

Jsz‘“'}j e‘# (dz @ dF+ di de)‘“e(# (dxz+d72) A-9

Strictly speaking, ¢ is not a scalar: in fact its transformations underA-8 are:

e

From A-10 we verify that only the subgroup SO(2) ~ U(1) of GL(1,C) mantains the
metric invariant.

In matrix form the metric A-9 becomes:

ol - (O 7= _ (-LO& %Q&

EX: 0 2 o Al

Acting with this metric all tensors can be expressed with nt z upper indices and n~ z

lower indices without z indices.

EX.: ~ 223

¢FTT =

Their transformation rules under conformal group are:

/ -
T'= (CL’)"‘ M A-12
72



We see that this transformation is characterized only by the difference n=n* - n".
Following Alvarez [24] we call T ™ the space of tensors with n>0 (upper unpaired
indices) and T ' the space of tensors with n<0 (unpaired lower indices).

The covariant derivatives acting on these spaces are:

2. -
= nl _ 2N~
anl/wﬂ{f? /'VM T=yg fz T A-13a

vzv: Y n /i— n-| ) V;Ti‘ (%25)”@2 }j(?a?)h—r'] A-13b

They are expressed in terms of the partial derivatives:

%=1 (2 - i@_)

™y A-14
s = Q. 7,
& “fz(‘ (’b;( e 2y

Now we are in the position to compute the operator P1, which sends vectors v& in
traceless symmetric tensors of rank two hyp,.
'The components of v in the complex coordinates are [24]:
oyl

o z =V 1 (v
- L A-15

J ? = U ~(U
while h,1, becomes:

TR R

g 1L
h?? = . - L L\
L);_@“:L\:{%t‘—o A-16
vZisin T-land h,, = (gZZ)2 hZZ is in T +2 according with our conventions.

Sov@belongsto T! T-1=5land h,t, is decomposed in T2 T2=52,

Then the operator P going from Slto 82 is, according to A-13:



The adjoint of Py, we computed explicitly elsewhere, is:

P (“sz o

\ = A-18
0 -V,

A-3: Deformations of the Complex Structure-Moduli

The purpose of this section is to find the relation between deformation in the
complex structure of a manifold and the moduli.

We change the complex structure J, on M with a small perturbation T A

{ -a
-\Yab\)]‘ qk = 3 b +’TIQL> (Q(L:&’,g) A-19

J 'ab defines a new complex structure only if it obeys the conditions:
laq =1k a

TH T % =-%" A-20

o (512 A-2

7] N be ( J ) =0 /

Since T is supposed to be small, we retain only first order terms in T in the
successive calculations.

The conditions A-20 then become:



~a T
‘johq’bc-lﬂab j c =0 - - S A-22 e -

Remembering that:

e
R 0 A-23
T = >
0 ~U gzg
it is straightforward to find from A-22 that:
Y A-24
T%=T% <0

On the contrary no constraint to T% comes out exploiting condition A-20.

Now we check A-21.

Since J&y, is constant, its derivatives don't appear, and we obtain:

'IAb B re -Tdc 0479 - TQJ OLT‘{, +7%0, T’JwO A-25

Also this expression at a first sight vanishes automatically.
But A-25 is a differential equation on a manifold and we have to solve it globally;
eqn. A-25 is formulated instead over a local patch of M.
In order ot understand better this point, we solve A-21 in the more general case of a
complex amnifold with several variables zi Ej (1,j=1,..,n).
Later we will restrict ourselves to the case n=1 of a Riemann Surface.
Repeating the same procedure as before we find that all components of N 4, vanish
except:

2.

Z, = >~ 2
- = )= o o Ct A-26
X\[ 2.,\ 2y [ngT Zu QQ—W [ .

So we get a condition on T :



~ 2, B &L = A-27
—_ 7 S - — =0

k ¢ b2y Q?K | %5

We can think now at 43 as one (0,1) form living in the holomorphic tangent space
W

o1
L _
The action of the external derivative d on TZ75 , when computed in local

Z
"
coordinates, takes exactly the form A-26.
So eqn. A-27 can be rewritten as:
— A-28
¥k <o

The nontrivial solutions of A-27 or equivalently A-28 lie in the first Dolbeault
cohomology group of T1:H( T 5

Of course in the case of a Riemann Surface A-27 and A-28 are automatically 0: on a
Riemann Surface the whole space of (0,1) forms consists in closed forms, but this
does not imply that the are all trivial.

In fact, as we will show in the next section, Hl('l“ 1) is different from O on a
Riemann Surface and its inequivalent classes define a vector space of dimension
3g-3.

We indicate a basis on this space as {T AZZ} (A=1,..,3g-3).

Each TA defines one inequivalent complex structure of M; all the complex

structures can be reached by the deformations:

’T’w:y"’r" A-29

The coordinates yA are called moduli and build the so called Teichmuller space.

In principle also the diffeomorphisms change the complex structure since they mix z

with z.

An infinitesimal diffeomorphism z + 8z can be written as:

2l 2105 0% (2,7]

?/:§+Ez—7€(?/?) A-30



where vZ is the z component of a vector.

Being a tensor, the complex structure J&, transforms as a tensor under A-30:

/

/
4 CL\’a ‘b T/ =
j 5 / }ILL j Bl {Q,L\Ja,(,!?/:g/g)

dr'* dxb ;
A-31
Explicitly: _
2! Z T/ z T g A-32
Z - 1 . =, = Z -
2( J 7 / 2/ 2
and:
TE L L TG Zing vE
=/ = Z
4 A-33
So for a diffeomorphism:
Z
T% « Gz 0% A-34

From a cohomological point of view, this is a trivial solution of A-27 corresponding
to an exact form: in other words diffeomorphisms transform complex structures in
other different but inequivalent complex structures.
We explain now the connection between this rather abstract formalism and the
metric gqp.
We remark that, given a metric ggt,, the complex structure J&, compatible with it
is:
Tqb:JiEM%CL

A-35
with €19 =-€91=-1,€99 =£171 =0.
So if we change J this has in principle an influence also on ggj,.

In order to find this correlation, we start with



on M.

According to A-35 the local metric is:

J;Z:- 6% CJZO}Z\

A-36

Now we transform infinitesimally J (see A-19):

(Z 2
_S zZ = J 2

lg _ <32
J5=17%

( A-37
+—'Z

Il = (ng

We want to compare this variation of T with the one given by a variation of the
metric ggp,.

In whatever way the metric tensor changes, we can express it as
¢
{ - =
A-38 (Jg 'z:.e 47 HZ +{‘-zz JZ[

where J1Z, is called a Beltrami differential.

In fact A-38 represent an arbitrary metric on M.Inh matrix form:

fab Qﬁ I Arui
q T e ( ¥ *!“f*) A-39
hpp e
Now we are able to compute the structure J' = Vg' € ac g'Cb compatible with g'.
Remembering that:
f2g <&3i <0

| A-40
{z_g - - 55_2 el



Z A-41

'3' ( % < X rkz§
Matching this result with the expression of J' obtained after a direct change of the
complex structure, we see that, apart from a negligible constant, 1 Z coincides with
the deformations T: a change of the complex structure is equivalent to change the
metric.

In formulas:
A_A A-42

2

k3w / l

Analogous results are found in the case of transformations by diffeomorphisms:

{-L'&’Z = /35 lfz

A-43

(A-43 is true apart of a constant whic is ininfluent because it can be incorporated in
the definition of vZ).

At this point we find what is the transformation of the metric under the actions of

the conformal group, reparametrization group and moduli.
From A-39, A-42 and A-43 we get:

5 (et dzdz | <
gcéze¥JzJ§+£¢§J2J§Z+£°{’$7t“7ﬁ(ﬁz+c.g A

This is the central result of this section.

A-4:Determination of the Dimension of Teichmuller Space.




Let's introduce the dual basis of TA, i.e. the tensors (pA such that:

A
Jﬁﬁ”“(]ﬂﬁ dzads= §'g A-45

We want to compute the number of the gDA's [42].

They have fwo important properties:

1) Since the scalar product A-43 has to give complex numbers, we want all tensorial
indices saturated.

Itis easy to prove that g must have the tensorial structure PBzz-

2) One can also check that (PAzz is holomorphic if we want the the 1%;'s orthogonal
to diffeomorphisms.

In fact, following our previous discussion, two deformations UIZZ and lezz are

equivalent only if:

2 2
1'(( FRES f‘z § + mé 0—2 A_46
Equivalence implies that the components of H1%7 and py%; with respect to a vector

basis are the same. i.e.

S(ﬁ‘fA dza d3 ?Jf‘zﬂf dzadz
Soifwewrite

2‘7& Ai‘72

LA N2
1*12*“2/ %+ v A-47
H1 and J1y are equivalent only if yA = yA and

Bngsz sV “faz = A-48



Integrating by parts we have:

— #
_,g”(lZ/\(J‘? \72 (‘)5 &FEZ =0

for each vZ and this implies that gDAZZ is indeed holomorphic.

A-49

We define at this point the canonical line bundle K, as the space of the tensors

transforming under a conformal variation as

{z = Cw EIE
dw

C, is called a section of K.
From the above discussion we can conclude that the (PAzz are global holomorphic
sections of the line bundle K2 to compute their number we have to find the solutions

of the equation:

Nz %z =0

This is equivalent to compute the dimension hO(K2) of the cohomology group
HOK2).
We need for this task the following ingredients:

1) The Riemann-Roch theorem ﬂ%‘:’ﬂl arbitrary line bundle L:
|
VW,L)—L\ M/L):Jejl-—j“ A-50

where deg L is defined below, eqn. A-51.

2) The values of hO(L) and hl(L) listed in table A-1: these are obtained using the
Riemann-Roch theorem, the Serre duality and some reasonable considerations.

As an example we derive h0 and h! in the case deg L =0.

Given one global section s of L, deg L consists in the sum:

D\Uz)L:(ZhL *_% My ALST



TABLE A-1

deg(L) ho(L) hlw)
<0 0 g-1-deg(L)
1 g Le
0 {O { + ¢ L¥O
c% l Lt/ LE K
2g-2 { i {0 of L %[K



i runs over the zeroes and j over the poles of s and nj (nj) is the order of the i-th
(j-th) zero (pole).

All global sections of L. must obey the bound A-51.

So one holomorphic section cannot have zeroes because deg L = 0 by hypothesis.

On a compact manifold this means that either there is only a constant section or
there are not.

In the first case we have hO(L) = 1, because there exists the constant section: this
implies that L is trivial, i.e. its transition functions can be put equal to one
everywhere.

in the second case we have hO(L) =0.

When h0 is known, also hl is known from the Riemann-Roch theorem:.

'The other results of table A-1 were obtained in a similar way.

3) The last ingredient we need is deg(K).

We find that for K:
W) =h' (k™ e k) = h'(0)= A-52
L\'(K)= L\O(l«(”'é%w)e h*(0)=I A-53

The first equality in A-52, A-53 is obtained from Serre duality.
Then we have remembered that hl(O) is the number of harmonic differential.
hO(O) was already computed above.

After a substitution of A-52, A-53 in Riemann-Roch theorem we get:

At this point we have all the tools to compute the number of holo quadratic
differentials (PAzz-

The derivation is trivial and we give only the final results in table A-2.



genus

TABLE A-2

dimensions of moduli space

dim. of moduli # of conformal
space killing vectors
3g-3 0
1 1
0 3
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APPENDIX B

Computation of the Vacuum Wave Function.

We want to rederive the ground state wave function of (3.1.35) with an alternative
method which do not imply the addition of surface terms in the Lagrangian.

We deal here only with the ghost contribution since the bosonic sector do not suffer
from the problem.

So we have to compute the amplitude:

ol = [ 519 45 e
<g=<()
where (c.c.) is the term ci)u:: Ct%) the presence of the complex conjugate fields in the
action.
Notice also that we have fixed only the boundary value of c: in fact in this case b and
c cannot appear contemporarily in the final result (see section 1.3).
Of course c(f) is a classical field.

Now we expand b and ¢ on the semiinfinite cylinder in the following way:

00 .
-
bee 77 =2 bal@) 2" B2
eSS
s ‘Ma-/
2 (r%) =) @) e B-3.
[T

Eqns. B-2 and B-3 define a change of variables for the path integral in B-1 whose

Jacobian determinant is equal to one:
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400 tco
(CgiOIO“—‘\T>: KT{— c“)m\ W (l(‘,n\ X
Mz-00

Moo

40 T . W7 B4
coxp {3 gh b, (s Do) )< }M
rlll):-co

Some care must be used for the measure in B-4 because of the anticommuting nature
of the ghosts.
Our choice agrees with the meaning of B-4 as determinant of d.

After a little of work integrating in the 0 variable, we obtain from B-4:

< D :I\- ga“),m e X

xekp {_ ay &;«4"’ Loptr) Ay Con@) 4 ban o mﬁ B-5.

We have omitted here the (c.c.) terms which can be treated in an analogous manner.
We rewrite the action appearing in B-5 in a more compact form, working on a

single term of the infinite product Tr and eliminating the index m:

™M
&J(, @({o{ J dr [{3? +(md> :(} B-6
where we have used the following substitution:
k,m:f , C-,mﬂ B-7

P.q anticommuting variables.

Now we discretize the [ -T, 0] interval dividing it into N intervals (fig B-1).

‘ Fig B.1
_ F—t— s e
-t T, 7, LT,
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The infinitesimal element is given by:

e = [(n-wl T B-8
Nl © N¢|
and c(i)=c(tg) ; c() = c(tN) B-8a.

From the definition of path integral (see Feynman and Hibbs) we get:

v
< D= Lo Kilﬁuﬂ T dpe J?; x
Moo 20 = 4r

M
el gy lemd) - g (- g B9

The integration in dpj is very easy to perform but firstly we have to pass with the
differentials dp; over the dqj's.
Doing this carefully we obtain:

£ Y = Lo &"FJ?TJ . dpww ()8

PN T
" B-10
__2 PPN D0 _
*”O'X\"Z "% Lti9; (“’%4—") Piqj- (4 ﬂffﬂ}
with
Xhen 5 even
{= /z B-11.
J%L \)0‘,\“, N U OJJ

Remark: it is clear that at the end of computations this dependence on (-1)& must
disappear because otherwise the limit N --> 4c0 does not exist.

Integrating over pi's and p,, . eqn B-11 becomes:

L 2u=
Ml
& Lo (4 1Y g’ﬁi Jf(;T { gl w%*)qu fiv (1_@)} B-12.

N-2 00 L=y l=‘ 2
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We put now eqn. B-12 in a more suitable form for the dq; integration:

< > = Mow (l%z+NJ

~>m

4 a-gob) o (ea-gb) -

. J?Nﬂ (((N-:Q‘ 7u.zL)chN(C(UQ*?“’*‘)((’“?N\uz"L?M) B-13

where:
a =< (H' A'\(J’Wl)
2
h :(4 - A'r,m) B-14
2
and

fl whea N oI5 gven

X= { vel) whea NG oold

2
At this point we verify that:
N+3+X
(“ll k = | V<N B-15,

allowing the limit N --> oo,

The integration in the variables g; can be done in an iterative way and the result is:

Ly = Nﬁm ( ™ T ~ - 70) B-16.

Since:

a = |4 A“\’nm o~ Qx*,( AT’)

— B-17
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and analogously:

b o 2Ky (_ Mélif)

we have:

azg (1+ {_ﬂ ) @(r(mﬂ?’) & ex}o(Zm ATj
o ey (- L)

'
[y
+

aN’-H L ‘@X? ((N“)M-Ag)

bNH o 'ei(f’ (
and < >, becomes

£ >,,,\ = fe MTZ: C~M(1/) = ‘e"""'/ZCVM (Ll :(

B-17a

B-18

B-19.

Putting this result in eqn. B-5 we obtain the total amplitude B-1:

oo T -
< >:tﬂ— Eemé Cw(f}" 2 MT/ZC_,M(&)I“

M=o

X ﬁﬁ: [e " o*_m@ —th/L Cf"‘ t j(

N~= -0

B-20.

In B-20 we have also included the contribution of the (c.c.) term in c*(f) and c*(1).

The dominant contribution is provided by:

L 7R (T C’*‘U) ("(Tﬂ/T C"“@ | g )((CC)

m<£0 mzo

B-21

B-22
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using the zeta function regularization.

Comparing this amplitude with 1.3.33 we recognize that:

?éjé = e B-23

<6

{36:- f] T cuff] B-24

M >0

—

T, =L B-25.

6 —

2

B-25 is the energy of the vacuum state.
Finally we find the creation and annihilation operators for ¢.
according to the commutation relations of (1.3.30) they are given by:

annihilation operators
o, L’m = é__ m >0 B-26.
0Cm
creation operators

C"“l B-M = § myp B-27.
SCn
acting with these operators we can find all the excited states which span theHilbert
space of string theory \
Moreover we can effectively verify that the vacuum defined from ¢ has ghost
number 1/2.

In fact the ghost number operator of Q. applied on the vacuum gives

610y Fhlehibicdtd (embrbon [T ] B28
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The only part of Q. which is not vanishing is:

A
Q o> :"LC"LO (CoWCM f"‘10>4 B-29.
¢ f)(" Z ™m0 4 3

But this is the wrong vacuum as we said in section 2.1.

The true vacuum is recovered putting by hand the right constant modes:

10>3L sbe T G

m>0 B-30
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APPENDIX C

Properties of the Vacuum under Conformal
Transformations.

We verify the crucial invariance of the vacuum l0> under the conformal killing
vectors of (1.3.9).
We see this problem for the general case of a manifold with boundary M (fig. C.1).

fig. C.1

The "vacuum' on M is:

0% < X@L 9, b
Clan=Cg

We want that 10> is invariant under transformations of the type:
{
C—=2C =CH¢

with  holomorphic global section over M.

As a matter of fact let's compute:

IO%\L* 3 g@h@(u ) €§'SI1 h@(cH)

Clon = Cetdy
Now we know that:

9( C*“{’] = e
FD-( (A—t{') = 6(,
The only problem is the boundary oM.

But we know that in general in a path integral the expansion of ¢ in series will be of

the form:



oo -
C‘fﬁ z" +Z C ?ﬂ*EC”‘M (thh)+

In any case we see that the holomorphic part (i.e. the first term in the expansion)
never contributes to the path integral because of the presence of the differential
operator d3 in the Lagrangian.

So we can perform the shift ¢ --> ¢ +  as we want if s is a globally defined vector.

In this case it is possible to write:

b 6 <, = K b 6 ¢
-
T Clan=ordg ar =0
because in the second member d (c-y) = dc since Y, is conformal.
So we have:
_{ boc

Clon=Ce

In particular all this discussion is valid when v is a conformal killing vector.

The only problem is that such conformal killing vectors does't exists for surfaces of
genus g>0.

Finally we check that our vacuum computed in appendix B is invariant under global

conformal tranformations.

lo >, = r”— Con
L] .« . néo
From our discussion it seems that:

Tr (Cvx++m) < TCM
n<o nw{o

but this is not possible.

How can we explain this?

The fact is that -, is holomorphic and so on M it can be expressed in a Laurent

expansion whose coefficients for n<0 are vanishing.
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But this implies simply that -, does not enter onT( Cp-
Mo
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