ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Thesis submitted for the degree of "Magister Philosophiae”

G-CONVERGENCE OF QUASI-LINEAR
ORDINARY DIFFERENTIAL
OPERATORS OF MONOTONE TYPE

Candidate: Supervisor:
Micol AMAR Prof. Gianni DAL MASO

Academic Year 1989-50

TRIESTE







Scuola Internazionale Superiore di Studi Avanzati
International School for Advanced Studies

"MAGISTER PHILOSOPHIAE" THESIS

Micol AMAR

G-CONVERGENCE OF QUASI-LINEAR ORDINARY

DIFFERENTIAL OPERATORS OF MONOTONE TYPE

Supervisor : Prof. Gianni DAL MASO

Trieste,Academic Year 1989-90







Acknowledgements.
I warmly whish to thank Prof. Gianni Dal Maso for suggesting me this research and for his
valuable help during the thesis work.

Particular thanks to my friends Anneliese Defranceschi and Valeria Chiado’ Piat for giving me
many useful advices.







CHAPTER 1.
CHAPTER 2.

CHAPTER 3.
CHAPTER 4.

CHAPTER 5.

CHAPTER 8.

CHAPTER 7.

REFERENCES

CONTENTS

Introduction

Maximal monotone maps
and convex functions
Measurable multivalued maps
An extension theorem for
monotone mappings

The Dirichlet problem for
differential inclusions
G-convergence for maximal
monoectone operators
G-convergence in the scalar

case

Pag.

pag.
pag-

pag.

pag.

pag.

pag.
pag.

2

6
11

19

24

31

44
54




CHAPTER 1

INTRODUCTION

In this thesis, our purpose is to deal with a particular notion of convergence for
differential operators, said G-convergence. The jimportance of this notion is connected
with a problem which arises in a natural way in the study of perturbations of differential
equations. To introduce this problem, let us begin with the model case, first studied by
E. De Giorgi and S. Spagnolo, of a second order linear partial differential equation. Let us
assume that 2 is an open bounded subset of R®, f € L?(f), a’}, ; 1§t — R are measurable

functions such that

al . (z) = a.?',-(m) a.e. in O

iJ
1.0 -
(1.0) NP < 3 abj()st; < AleP?
f,j=1

for a.e. = € Q, for every £ € R®, with 0 < A < A < +oo, h € N, i,j = 1,...,7n, and

(ur)ren is the sequence of weak solutions of

- D,-(agjp,-uh) = f

(1-1)}1 ,
uy € Wy Q).

Assumptions (1.0) yield, by simple calculations, that

lunllwre < G Al
lasDusllzay < C(A, A n)| fllzs-

These inequalities and the reflexivity of the Sobolev space Wy'?(€) and the space (L*(Q))",
imply that there exists a subsequence Ay — oo and two functions v € Wet () and
g € (L*{(Q))™ such that up, — u weakly in Wi*(Q) and ay, Duy, — g weakly in (L*(Q2))".
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The question naturally arises if it is possible to characterize u as a weak solution of a
suitable problem, that is if there exists 2 matrix a; ; of the same type as a?'j, such that u

satisfies

— Dj(ai,;Diu) = f
(1) ’

u € Wy (Q).
A positive answer to this problem was given by E. De Giorgi and S. Spagnolo (see [15],
[26], [27], {28]), with the introduction of the theory of the G-convergence. This notion was
then extended to the non-symmetric case by F. Murat and L. Tartar, who stated also the
convergence of the momenta, that means as, Dus, — aDu weakly in (L*(Q))", (see [19],

[29], [30]). The quasi-linear case with linear principal part was studied by L. Boccardo, T.
Gallouet and F. Murat (see (5], [6], {7]).

Under proper hypotheses of continuity and monotonicity, the same question arises
in the case of partial differential operators with quasi-linear principal part, in a general
Sobolev space W' with p > 1. This case was considered by F. Murat and L. Tartar (see
[20]) and by V. Chiadd-Piat, G. Dal Maso and A. Defranceschi (see {12]). The notion of
G-convergence was extended by L.C. Piccinini to the case of ordinary differential equations
(see [23], [24], [25]).

In this thesis, we are interested in studying the properties of the G-convergence in the
special case of non linear systems of ordinary differential equations with Dirichlet boundary
conditions; our aim is, in particular, to apply some typical tools of partial differential
equations to this case.

More specifically, if (a,b) is an open bounded interval of R, 1 < p < +oo, % + ;11' =1,
an,a: I x R™ — R™ are measurable on I x R, strictly monotone in R™ for almost every
z € I and satisfy suitable continuity and strict monotonicity conditions for every b € N,

we consider, for h € N, the family of boundary value problems

up € (WHH(D)"
(1.2) —(an(z,u})) = fn aeinl
up{a) =a up(d)=4
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and the boundary value problem

u € (Whe(I))
(1.2) —(a{z,v")) = f ae.in]
ula)=a u{b)=p

for arbitrary @,8 € R™ and (fa)ren, f € (W19(I))*. Then we say that ay = a (axn
G-converges to a), if and only if for every sequence (f;)sen converging stronlgy to f in
(W~b4(I))™, the corresponding sequence (u)hen € (WP(I})™ of solutions of the systems
(1.1)p satisfies )

up — u  weakly in (WHP(I))"

an(z,uy(z)) — a(z,v'(z)) strongly in (LI(I))",

where u is the solution of (1.2).

Following the paper of Chiadd Piat-Dal Maso-Defranceschi (see [12] remark 3.9), the
definition of G-convergence can be extended, with some suitable modification, to the case
in which we drop out the hypotheses of continuity and strict monotonicity, but in this
case we cannot deal anymore with single-valued functions only. In fact, it is possible to
obtain non trivial examples, in which a sequence of single-valued functions G-converges to
a really multivalued map (see, for instance, [13] ex. 4.7). Therefore, in order to achieve
a compactness result with respect to G-convergence, it is natural to consider the general
case, where ay(z,-) and a(z,-) are maximal monotone multivalued maps, a case which is

not included in the previous works of Piccinini.

The main result of this thesis is a compactness theorem (see theorem 6.12), which
states that from any sequences (ax)ren of maps belonging to the class described before,
we can extract a subsequence (as, Jxen that G-converges to a map a belonging to the same
class. This is a consequence of an extension theorem for sections of maximal monotone
maps (see theorem 4.3), applied to the sequence (a;)ren of the inverse maps with respect

to the second variable.

This theorem gives an alternative and simpler proof, with respect to the one in [12],

of the compactness of the G-convergence in the case of one independent variable.

Moreover, our method gives a characterization of the G-limit for ordinary differential
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operators in terms of a suitable convergence of the inverse maps. In particular, in the single-
valued case (see corollary 6.8), we obtain that ay = a if and only if azt(n) = a7 ()
weakly in LP(]), and when n = 1 this is an extension to the quasi-linear case of the result

obtained by S. Spagnolo in [28] in the linear case.

Finally, we observe that in the case of equations, i.e. n=1, it is possible to characterize
the G-convergence by means of the weak-IP convergence of the primitives associated to
the inverse maps a_;l. This provides a new proof of a result which could also be obtained
by means of a theorem by P. Marcellini and C. Sbordone (see [18]), taking into account the

connection between G-convergence and I'-convergence proved by A. Defranceschi in [14].

However, the main conclusion in this case is the characterization of the G-convergence
by means of weak L* lower and upper limits (see definition 6.5), which can be compared to
the notion of weak L? limit of multivalued maps given by Z. Arstein in [2]. Since our results
are obtained by dealing with the operators associated with the inverse maps a; ', the main
difficulties encountered in the work were: 1) to establish conditions on the inverse maps
(aj ' )nen, which are equivalent to the G-convergence of (ap)aen; 2) to guarantee that a

monotone function of a suitable class has only one maximal monotone extension.

This thesis is organized as follows: in chapter 2 we recall some definitions and known
results about maximal monotone operators and convex functions, without giving proof; in
chapter 3 we consider measurable functions and measurable multivalued maps, giving the
proof of three properties very useful for our thesis; in chapter 4 we state an extension theo-
rem on monotone operators, which results to be a fundamental tool in the development of
chapter 6; in chapter 5 we briefly study the existence problem for differential inclusions with
Dirichlet boundary conditions; chapter 6 contains the main results on the G-convergence
for non linear systems of ordinary differential equations and finally in chapter 7 we consider

the G-convergence for the scalar case.

The results of chapter 4, 5, 6 and 7 are contained in [1].




CHAPTER 2

MAXIMAL MONOTONE MAPS
AND CONVEX FUNCTIONS

In this chapter we will recall some definitions and some known results about maximal
monotone operators and convex functions, which can be found in the classical licterature.
For this reason we give only the references, even if these results will be very useful for the

sequel.

Let X and Y two sets, we denote by P(Y) the collection of the subsets of Y. A
multivalued function F : X N Y is a map that to every z € X associates a subset
Fz CY. If for every z € X, the set Fz is a single point of ¥, we say that the map F is
single valued.

The sets
D(Fy={zeX : Fz+#0},

G(F)={lz,y]€e X xY : y e Fz}

and R(F)= U Fz
zeX

are called the domain, the graph and the range of F, respectively.

In this thesis work, we refer to the particular case in which the set X is a topological
vector space and Y is its topological dual, denoted by X*. Finally, the duality pairing
between X and X* is indicated by <, >.

We begin with the definition and the main properties of maximal monotone operators.
Def. 2.1

We say that a set A C X x X* is monotone if and only if

<y—-mz—§£>20 V[z,y],[f,ﬂ] € A.
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The set A is mazimal monotone if it is monotone and it is not contained in any other

monotone set, i.e. the following property holds:

if [z,y] € X x X* is such that
<y—mz—§{>20 V[é?’?] €A

then [z,y] € A.

Def. 2.2

A multivalued operator F : X — X* is said mazimal monotone if such is its graph.

Theorem 2.3 (See, for instance, [22] chap. III, section 2.3)

Let F: X — X* and F~! : X* — X be two multivalued operators such that
‘yeFr &= zeFly

Then F is maximal monotone if and only if such is F~1.

Def, 2.4

A multivalued operator F: X — X* is coercive if

*
Lim SELE> = +o0.
fle—teo  |lz]|

z* c Pz




Theorem 2.5 (See, for instance, [22] chap. III, theorem 2.10)

Let X be a reflexive Banach space and let F : X — X* be a maximal monotone
multivalued operator. Then, if F is coercive, R(F) = X*.

Theorem 2.6 (See, for instance, [22] chap. III, theorem 4.2)

Let X be a reflexive Banach space and ' : X — X* be a maximal monotone multi-

valued function. Suppose that for every z € X there exists a neighborhood U of z such

that
U Fy
yEUND(F)

is a bounded set, i.e. F is locally bounded in X. Then F~! is surjective.

Def2.7

Let X be a reflexive Banach space. We say that a set A C X x X* is demiclosed, if
for every sequence ([z,, Ynl)nen C A with z, — z in the strong topology of X and y, — vy
in the weak topology of X*, it follows that [z,y] € A.

Def. 2.8

Let F': X — X* be a multivalued operator. We say that F is upper semicontinuous in
X if for every z € D(F) and for every neighborhood V of Fz there exists a neighborhood
U of z such that for every y € U N D(F) it follows that Fy C V.

Theorem 2.9 (See, for instance, [22] chap. III, theorem 2.3)

Let X be a reflexive Banach space and F : X — X* be a multivalued monotone

operator. Suppose that for each z € X, Fz is a non empty closed convex subset of X*.
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If, moreover, F is also upper semicontinuous with respect to the strong topology of X and

the weak topology of X*, then F is maximal monotone.

Now we want to consider convex functions and some of their properties.

Def. 2.10

The function V : X — R = RU {00} is said convez if for every A € [0,1] and for

every pair z,y € X we have

V(Az + (1 = Ay) < AV(2) + (1 - X))V (y)

whenever the right-hand side is defined.

V is said proper if V{z) < 4oo for every £ € X and there exists # € X such that
V() > —co.

Next theorem points out the connection between convexity and continuity.

Theorem 2.11 (See, for instance, [16] chap. I, corollary 2.3)

Every proper convex function on a space of finite dimension is continuous on the
interior of its effeciive domain, where the effective domain is the subset of all points in

which the function takes a finite value.

We want to introduce now a concept that generalizes the notion of gradient for those

convex functions which are not differentiable.




Def, 2.12

The subdifferential of the convex function V : X — R is the multivalued operator

aV:X - X"

defined as follows:

redV(z) &= V(y)>2V(e)+ <z, y—z> WVyeX.

Next theorem shows that the subdifferential of a convex function has the fundamental

property of being maximal monotone.

Theorem 2.13 (See, for instance, [22] chap. III, proposition 2.13)

Let X be a reflexive Banach space. Let V : X — R be a convex proper lower
semicontinuos function (i.e. V(z) < liminf V(z,)). Then 8V : X — X* is a maximal

monotone mappings.

10



CHAPTER 3

MEASURABLE MULTIVALUED MAPS

In this chapter, we want to give some notions about measurable functions and mea-

surable multivalued maps.

Def. 3.1

Let (X, A), (Y,B) be two measurable spaces and let u : X — Y. We say that

is measurable with respect to A and B if, for every subset B € B, the inverse image

v~ B) € A.

We observe that, when ¥ = R"™ and B is the o-field of all Borel subset of R™, i‘:‘hen u
is measurable with respect to A4 and the o-field of Borel subsets if and only if «~1(B) € A
for every open subset B C R", or equivalently if and only if u~*(C) € A for every closed

subset ¢ € R™. This equivalence, as we shall see later, does not remain true in the
multivalued case.

Let (X, A, ) be a measurable space; next theorem shows the space of all measurable
functions defined on X with values in R forms a complete lattice with respect to the order
relation given by f < g p-a.e. in X. We want to point out that, when we deal with a non
countable family, this problem is not trivial.
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Theorem 3.2 (See, for instance, [21] chap. II, proposition 4.1)

Let (X, A, p) be a measurable space with finite measure. Then, for every (countable
or not) family (f;);es of measurable functions defined on X with values in R, there exist

two measurable functions F* and F* such that , for every measurable function ¢ defined

on X:
fi<g aeinX VjeJ & F'<g aeinX

fizg aeinX VieJ & FiZQ a.e.in X.

Proof. If the family (f;);es is countable, we set F* = Sup f; and F* = 125 fi
jer i

On the contrary, let h be a strictly increasing continuous function from [—o0, +o0] to

(—o0, +0a), for instance h = arctg. The upper bound o of
[ Wsup fy)au
X J

is finite when J varies in the countable subsets of J , moreover ¢ is obtained by a countable

subset of index Jy, in fact it is enough to set Jp = U{J, : n € N}, where J,, is such that
1
[ WSup f)du+ = 20
X . “

Let us define F* = Sup f;. Hence, for every measurable function g such that fi £
i€Js

g ae.in X for every j € J, we have that F* < g a.e.in X. To prove the inverse

inequality, it is enough to show that fi £ F* a.e.in X for every j € J. By construction

of Jy, it follows that for all j € J
[ muptis, P = [ h(EYdp=o;
X X

therefore we obtain that h(Sup(f;, F*)) = h(F*) a.e. in X and hence Sup(f;, F*) = F*
a.e. in X and for every j € J. In a similar way we prove the existence of F*, and this

concludes the proof. &
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We want to consider now multivalued maps.
We recall that by B(R") we denote the o-field of all Borel subsets of R".

Let (X, .A) be a measurable space and let ¥ : X — R" be a multivalued function from
the space X to the family of non empty closed subsets of the space R*. For every B C R*

the inverse image of B under F is denoted by
FlUB)={zeX : FznNB #0}.

Let consider the following measurability conditions:
1) for each Borel set B C R*, F71(B) € A4;

2) for each closed set C' C R®, F~1(C) € A;

3) for each open set U C R®, F~1(U) € A;

4) there exists a sequence g4 of measurable selections such that Fz = cl{on(z) : h € N}
for almost every « (a selection of F' is a map o : X — R® such that o(z) € Fz for almost

every z);

5) G(F) € A® B(R™).

Def. 3.3

We say that a multivalued function F' : X — R"™ is measurable (with respect to .A and
B(R™)) if condition 2) is verified.

This definition of measurability is linked to the other conditions on F listed above by

the following theorem.

13




Theorem 3.4 (See, for instance, [11] chap. III, section 2)

Let (X,.A) be a measurable space. Let ' : X — R™ be a multivalued function with
non empty closed values. Then the following conditions holds:

i) 1):>2)=>3)¢r4)=>5);

1) if there exists a complete o-finite measure i defined on A, then all conditions 1)-5)

are equivalent.

Theorem 3.5 (See, for instance, [11] chap. III, theorem 23)

Let (X, A, 1) be a measurable space, where 4 is a complete o-finite measure defined
on A. If @ belongs to A ® B(R™), then the projection pr.G belongs to A.

It is interesting to note that the equivalence between conditions 2) and 5) is true for
certain multivalued maps, even if the measure space is not complete. This result was found
by Chiads-Piat, Dal Maso, Defranceschi in [12] and it will be very useful in the sequel;
therefore we prefer to state it, giving also the proof. '

Theorem 3.8 (See [12], theorem 1.3)

Let (X, A, 1) be a measurable space, where p is a complete o-finite measure, Let
F: X — R x R™ be a multivalued function with non empty closed values. Let H :
X X R"™ -+ R™ be the multivalued function defined by

H(z,{) = {n € R™: [¢,n] € Fz}.

Then the following conditions are equivalent:
i) Fis measurable with respect to 4 and B(R™) @ B(R™);

i) G(F)e A®B(R")® B(R™);

14



iii) H is measurable with respect to A ® B(R™) and B(R™);

iv) G(H)e A®B(R")®B(R™).

Proof. By theorem 3.4 we have that i) is equivalent to ii) and iii) implies iv). Since
G(F) = G(H), we obtain easily that ii) is equivalent to iv). To conclude the proof of the
theorem we shall show that ii) implies iii). To this aim it is enough to prove that i) yields
H~YC) ¢ A® B(R™ for every compact subset ¢ C R™. Let us fix a compact subset
C' C R™. By taking into account the definition of H, we have that

(3.1) HYO)={[z,l e X xR*:Ip e R™: [{,n] € FeN{R" x C)}.
Let B denotes the set of all z € X such that Fz N (R™ x C) is not empty. By ii) and the

projection theorem 3.5 it follows that B € A. If ® is the multivalued function from X to
R™ x R™ defined by &z = Fz N (R" x (), then D(®) = B and (3.1) becomes

(3.2) B(C) = {[¢,€] € X xR :In € R™: [6,n] € Bz},

Since G(3) = G(F)N (X x R* x C) € A® B{R™) ® B(R™), by theorem 3.4 there exists

a sequence [y, gr] of measurable functions from B to R™ x R™ such that

(3.3) @z = cl{[ps(z),gn(z)] : A € N}

for every z € B. By taking (3.3) into account let us define the set
(3.4) M={[z,§l e X xR":z € B,¢ € cl{pn(z) : h € N}}.

We shall prove that M = H~(C). The inclusion H~(C) C M follows easily from (3.2),
(3.3), {3.4). To prove that M C H1(C), let us fix'[z,{] € M. By definition there
exists a subsequence {po(x)) of (@n) such that (p,(n)(z)) converges to {. Moreover, the
corresponding sequence (g,(s)(z)) belongs to the compact set C. Hence, by passing, if

necessary, to a subsequence we may assume that (g,(»y(z)) converges to somen € R™. By

15




(3-3) we have [¢,7] € ®x, hence [¢,m] € H=*(C), which concludes the proof of the equality
M = H™YC). Since M = {[z,{le X xR":z € B, ffngv |§ — wn(z)] = 0}, we have that
M € A® B(R™) and the proof of the theorem is accomplished. B

Since it will be useful for the sequel, we observe that when n = m the roles of ¢ and

77 can be interchanged.

To conclude this chapter, we would like to pass from the previous general situation to

the particular case of the space L? and of the Sobolev space W,

From now on, we denote by p a fixed real number, 1 < P < 400, and by g its dual
exponent, 1% + i— = 1; moreover I = (a,}) is a fixed bounded open interval of R, and by |7

we indicate the Lebesgue measure of I.

Def. 3.7

By W1(I} we denote the Sobolev space of all functions u € L?(I) whose distributional

derivative u' belongs to LP(I), with the norm

Fellwrs == |lufize + [|u'){zs.

The Sobolev space W, * (I) is the closure of C%(T ) in the topology of W(I). We dencte
by W=14(I) the dual space of Wy P(I). Instead of the norm of WHP(I), thanks to the

Poincaré inequality, we can introduce in W,P(I ) the equivalent norm:

e = 2o
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and in W_l'g(I ) we consider the dual norm:

|F|lw-1e = Sup <Fu>.
wEWSE ()
"‘"W;‘p"—"l

For further properties of the Sobolev spaces, we refer to fa).

Since in the sequel we will often deal with vector valued functions, we observe that the
space LYI,R™) = {f: I = R™ : [;|f(z)|? < +oo}is eéluivalent to the space (L2(I))™ and
in the same way W1P(I,R") is equivalent to (W1?(I))". To simplify the notation, we will
always write L? instead of LY(T) or (L9(I))™ and W*? instead of WHP(I) or (WHe(I)),

when no confusion is possible.

Lemma 3.8

Let (gn)nen C L? {g > 1) be a sequence such that
i) gn — g weakly in L9,

i) g — ¢' strongly in W19,

Then gn— ¢ stronglyin L9,

Proof. Without loss of generality, we may assume that g and g' are equal to zero.
So we have to prove that |lgalirs — 0. By the theory of Sobolev spaces, we can find 2

function fi € L? such that
gy =fn and

lghllw-1a = llfalize-"

Since we are in the one-dimensional case, we can write

gn=fr+ecan

17




for a suitable choice of the constants cy.

By i), we have that frn — 0 strongly in L7 and by i) we have that g, — 0 weakly in
L?, hence the sequence of constants

(¢r)uen converges to 0 in R and so gn — 0 strongly
in L8

18



CHAPTER 4

AN EXTENSION THEOREM FOR
MONOTONE MAPPINGS

In this chapter, we present a construction which permits to extend, in a unique way,
a monotone map defined on a dense subset of a reflexive Banach space to a maximal
monotone operator. In other words, this theorem says that a maximal monotone operator

is completely known by its behaviour on a section defined on a dense subset.

Moreover, this explicit construction permits to preserve some of the properties of the

initial monotone map. These results can be found in [1].

Proposition 4.1(See, for instance, [10], propesition 7.2)

Let X be a reflexive Banach space, 4 a bounded subset of X, zg 2 point in the weak
closure of A. Then there exists an infinite sequence (z )ren in A converging weakly to zg
in X.

Proof. We prove first that there exists a countable subset 4y of A such that z; lies
in the weak closure of Aq. For each integer n, let B™ be the product of n copies of the unit
ball in X*. Then B™ is compact in the product of the weak topologies. For each element

[w1,...,wy,] of B® and each positive integer m, we may find an element 2 of A such that
[(wj 2z —z¢) <m™ (1<7<n)

Moreover, this inequality holds on a weak neighborhood of the point [wy,...,w,] in B"

for the same choice of z. Since B™ is compact, we may find a finite set F}, », of points
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z such that for each [wy,... s Wr] at least one point 2 of Fr,m serves to verify the above
inequality. Set A, = Un,m Fr,m, the union being taken over all pairs of positive integers n
and m. Then A4, is countable, and it follows by the above prescription that zg lies in the

weak closure of A;.

Let Xp be the separable closed subspace of X spanned by the points of 4. Then z;
lies in the closure of 4 N Xo, and X is reflexive since it is a closed subspace of a reflexive
space. To show that z; is the weak limit of a sequence from Ay in X, it suffices to do
the same in X,. Since X, is separable and reflexive, however, the weak topology on X is
metrizable and each limit point of 4j in the weak topology on X is the weak limit of an

infinite sequence from 4. B

Corollary 4.2

Let X be a Banach space, ¥ a reflexive Banach space, M C X x ¥ a subset with the
following property: for every T € X, there exists e > 0 and C > 0 such that, if |z — %] < ¢
and {z,y] € M, then lyl < C. .

Assume that [z0, Vo] belongs to H’xw, the closure of M in the product of the strong
topology of X and the weak topology of Y, then there exists a sequence ([, yx]) keN
belonging to M such that z; — & strongly in X and y; — y weakly in Y.

Proof. Choose ¢ corresponding to zg, as prescribed by the property of M and for
every zm X, let M(z) ={ye VY : [z,y] € M}. For every 7 > 0, we define M(zg,n) as
the union of all sets M(z) with |z — 20| < 7.

Since [zq,y0] € M ™", it follows that for every ball B« of center zy and radius t and
every neighborhood ¥ of 4 in the weak topology of ¥, the set MN(Bz x V) is non empty;
let [z,y] € MN(Bex V), hence |[z—2o| < fandy € M(z)NV, and then y € M(zo, £)OV.
This allows us to say that for every k € N and for every neighborhood V of Yo in the weak
topology of ¥, the set M(zq, TNV £0, ie. for every k € N, o belongs to the closure of
Mz, £) in the weak topology of Y.
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Let k fixed and recall that M{zo, ) is bounded In Y, then by proposition 4.1, we
can find a sequence (y%)nen € M(wg, ) such that (yE)nen converges to Yo weakly in
Y; correspondingly we find a sequence (zF)nen € Be such that [z,’ﬁ_,yﬁ] € M. Repeat
this argument for every k and denote by ¥y the separable closed subset of ¥ spanned by

(yﬁ)n,kEN-

Since (iﬁ)n,keN C B, then (y,’f_)n,keN is contained in a bounded subset of Y), which
is reflexive and separable, hence the weak topology is metrizable on its bounded subsets
(see, for instance, (9] chap. III, corollary 24 and theorem 25'); in particular, we can find
for every k € N an index ng € N such that d(y* ,ye) < §, where d is the distance which
gives the metric on the bounded subset of Yp containing!(y,“::)n‘kerq. Correspondingly, the
subsequence (z% )een is such that |2k — zo| < § and (zk ,yk. ] € M; hence zk — zo

strongly in X and y*, — yo weakly in Y, which concludes the proot. B

Theorem 4.3

Let X be a reflexive Banach space and let ¥ € X be a dense subset of X.

Let v:Y — X* be a monotone and locally bounded single valued operator, that 1s:

i} <v(y) —7ly2)yyr —y2 >20 Yy, €Y
“W)Vzo € X Fe>0, 3C. >0 st |y(w)llx- £Cc YyEY N B(zg,€).

Let T’ be the operator defined by
[z,/leGMCX xX* == <4(y)-fiy—z>=0 Vyel.

Then I' is the unique maximal monotone extension of v and D(T') = X.

Moreover, if T' is the map defined by

then I'(z) = col(z) for every ¢ € X where, for every = € X, col(z) denotes the closure of
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the convex envelope of T'(z).

Proof. Let [z;, il € G(T) i = 1,2 and let z = 2tz

Hence z; =z + 8222 g, = — #1222 and by the definition of T

L1 — T2

< fi —v(y),z + —y>>0 VYyeY

<f-y)e -2 _ys>0 wev

By adding we have

1
-2—<f1—fz,31—-zg>—2<*y(y),::——y>—|—<f1+fg,:n—y>20 VyEY.

By the density, we can find y, — z and taking in account the local boundedness of v, we

cbtain

< fi— fo,z1 — 23 >20 Vzy, f1],[z2, f2] € G(T).

Therefore the operator I' is monotone; the maximality and the uniqueness are obvious by

the characterization of its graph.

Finally we have to prove that D(T') = X. Let z € X and let y, — = in X as v is

monotone, we have that

(4.1) <Y(Yn) —7(Whya —y>=20 Vyev.

By the reflexivity of the space and the local boundedness of 7, we know that 3 (Yny Jeen
such that y(yn, ) — z. Passing to the limit in (4.1) we obtain that

<z—Ayhz-y>>0 VyeV

and hence [z,2] € G(T'); in particular z € D(T') or, for the arbitrariety of z, D(T) = X.
We observe also that, since D(I') = X and T' is monotone, then it is locally bounded.
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In order to prove the second part of the lemma, we begin observing that, if [z, f] €
G(T), applying corollary 4.2 with M = G(v) € X x X~, it follows that there exists a
sequence ({Yn,¥(yn)])nen such that y, — =z strongly in X and y(y,.) — f weakly in X7,
that is

Te={f€X* : Hyn)nen C X st yn — = and (yn) — f}-
Clearly D(T) = X, I'(z) C T(z) for every z € X, T is locally bounded and G(T) is
demiclosed, hence it is also upper semicontinuous from the strong topology of X to the
weak topology of X*. Let us take now col'(z), we will prove that G(col') is demiclosed.
By contradiction, let ([zn, fa]lnen © G(col) with ¢, — = and f, — f, but f ¢ @l(z).
By the Hahn-Banach theorem (see, for instance, {9] chap. I), thereexist z € X and § € R
such that

<fiz>+6>0

(4.2) ]
<z",z>4+6 <0 VYz* €col{z).

Since the half space {z* € X* : < z*,z > 46 < 0} is a convex neighborhood of I'(z) in
the weak topology of X* and I' is upper semicontinuous, we have that for n la.rgé enough,
if y* € f‘(zn), then By* + § < 0. Passing to the closed convex envelope of f‘(:cn), this
inequality is still true, hence in particular < fn,z > +6 < 0; passing to the limit, we
obtain Bf 4+ § < 0 which contradicts (4.2). This implies that [z, f] € G(GT'), or ol is
demiclosed. It is clear that ol'(z) C I'(z) for every ¢ € X, thus this mapis monotone and
locally bounded and these properties, jointly with the demiclosure of its graph, imply its
upper semicontinuity. Moreover, we observe that E"Gf‘(a:) is closed and comvex and, since
D(eeT) = X, thus, by theorem 2.9, it is maximal monotone, which implies tol(z) = I'(z)
for all z € X and this concludes the proof.®

Remark 4.4

Let 4,I',Y be as in the previous theorem and let C : X — X* be a multivalued
map with closed convex values and demiclosed graph. Assume that v(y)} € C(y) for every
y € D{v) = Y; then the preceding theorem assures that I'(z) C C(z) for every z € X. In
fact I' is constructed passing throw the demiclosure of G(7y) and the closure of the convex

envelope of I'(z), and these operations preserve the inclusion into the multivalued map C.
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CHAPTER 5

THE DIRICHLET PROBLEM FOR
DIFFERENTIAL INCLUSIONS

This ché.pter is devoted to a brief study of the Dirichlet problem for second order
systems of ordinary differential inclusions. In particular; we want to consider the existence
of solutions for this kind of problems. It is known, by a general theory, that under suit-
able coercivness and boundedness hypotheses, the Dirichlet problem admits at least one
solution. Really this theory takes into account generic partial differential operators and,
for this reason, it makes use of very complicated tools. On the other hand, in our partic-
ular case, the scalar nature of the indipendent variable z, permits us to overcome many
difficulties and to develop an indipendent and simpler existence theory, that we consider

useful to present here.

For the sequel, m,,m, € LY(I) will be two non-negative functions and ¢; > 0,¢5 > 0
two constants. By £(I) we denote the o-field of all Lebesgue measurable subsets of 7. The

Euclidean norm and the scalar product in R™ are denoted by |- | and (-,-), respectively.

Def. 5.1

By M f we denote the class of all multivalued functions a : I x R® — R® with closed
values which satisfy the following conditions:

(i) for ae. z € I the multivalued function a(z,-) : R* — R® is maximal monotone;
(ii) a is measurable with respect to £(I) @ B(R") and B(R™), i.e.

a™(C) = {[z,8] € I x R™ : a(e,£) N C # 0} € £(I) ® B(RY)
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for every closed set ¢ C R*;

(i) the estimates

———
o
—4

N

(n]* < ma(z) + e1(n, £),
(5.2) €7 < ma(z) + cafm, &),

hold for a.e. z € I, for every £ € R® and for every 5 € (=, §).

Proposition 5.2

If a € M}, then D{a(z,-)) = R® for a.e. ¢ € I. Moreover the multivalued map
b:I xR"™— R™, defined by

(5.3) teb(z,n) <= n€a(z,§).

belongs to the class M7}, corresponding to mas,m; and ca, c1.

With a little abuse of notation, the map b, that is the inverse map of a with respect

to £, well be denoted by a=*.

Proof. 1) By (5.1), for a.e. z € I the maximal monotone operator a(z,-) is locally
bounded, hence by theorem 2.6 a~(z,-) is surjective. This implies that a(z,£) # @ for
every £ € R" or D{a(z,.)) = R™ for a.e. z € I.

Let, now, N C I with |N| = 0 be the set where (5.1) and (5.2) hold for every z € I\ NV,
and fix ¢ € I\ N. By (5.2), it results that a is coercive, hence applying theorem 2.5, we
have that for every n € R®, there exists £ € R® s.t. 7 € a(z,£). Let call b(z,} the map
that associates to every € R™ the values £ € R® for which 5 € a(z,£). We have to show
that b € M}.
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Since for z fixed in I\ N, b(z,-) is the inverse map of a(z, -} and a(z,-) is maximal
monotone, by theorem 2.3 also §(z,-) is maximal monotone. Clearly the estimates (5.1)
and (5.2) hold for b, with the interchanged constants ¢;, c; and the interchanged functions
mz,my. It remains to prove the measurability of b with respect to £(I) @ B(R"®) and
B(R*?), but this is a direct consequence of theorem 3.6.H

Def. 5.3

To every a € M? we associate the operator A : W» — L7 defined by
Au={g € L?: g(z) € a(z,u'(z)) for ae. z € I}
and to every b = a1 ¢ M} we associate the operator
B : L% — L? defined by

By = {v € L? : v(z) € b(z, g(z)) for a.e. © € I}.

As usual, we identify the multivalued maps A and B with their graphs.

Moreover, adapting an argument of Brezis (see {8] ex. I1.3.3), it is possible to prove
that the properties of b imply the maximal monotonicity of B, as the next proposition

shows. Therefore, B has closed and convex image and demiclosed graph.

Proposition 5.4

Let b € M{ and B as in definition 5.3, then B is maximal monotone,

Proof. We begin by showing that

(5.4) R(AB +J)=1I*
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for every A > 0, where J : L? — L? is the multivalued map defined by

J(g) = lg]"g.
More precisely we want to show that for every v € L? the differential inclusion
(5.5) (AB+J)(g)3 v

has, for every A > 0, a solution ¢ € L9,

By the properties of b, there exists a subset N contained in I with |N| = 0, such that
for every z € I'\ N, b(z,-) is maximal monotone. Let fix z € I'\ N, then for every A > 0

the inclusion

(5.6) Xo(z,m) + 1120 5 v(z)

has at least one solution 17, € R™, because the left-hand side of (5.6) is maximal monotone
(see, for instance, [22] chap. III, theorem 3.6) and by (5.1) it is also coercive, then it is
possible to apply theorem 2.5. Moreover, by the selection theorem of Aumann and Von
Neumann (see, for instance, [11], theorem 111.22), we can find a measurable function g
such that

(5.7), Ab(z,9(2)) + 9(=)|*2g(z) 3 v(z) VzeI\N

that is (5.7) holds a.e. in I. It remains to prove that g € L. We observe that (5.7) implies
that there exists f(z) € b(z, g(z)) a.e. in I such that

Af(z) +[9(2)"%g(z) = v(z) awe. zel
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and then by (5.1)

2gllLe < maflze + gl + A ff F(z)e(e)dz =
= malze + / (Af + Tg)(a)dz < [lmallzs + IAF + TallzellglLe

|
= llgllte" < g [(Imallze +1) +[IAf + Jg|ze] < +o0

since |[Af + Jg|lzr = ||v||z» and this proves (5.4). Now, by (5.4) we obtain immediately
that B is maximal monotone, in fact if C is a monotone operator containing B and v € Cyg,
then

(5.8) M+ JgeAlg+ Jg.

On the other hand, since R(AB + J) = L?, there exists h € L9 such that
(5.9) Av + Jg € ABh + Jh.

As B CC, we have

(5.10) dv+ Jg € ACh+ Jh.

By taking (5.8) and (5.10) into account, the strict monotonicity of the operator AC + J
yelds g = h a.e. in I. Thus (5.9) becomes

A+ JgeABg+ Jg

that is v € Bg or C C B, which gives the maximality of B and concludes the proof.

We can now prove the existence theorem, which can be found in [1] remark 3.4.
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Theorem 3.5

For every a € M Tand fe W19, the boundary value problem of the type:

uEW, P ge 9
(5.11) —g = I
9(=) € a(z,u'(z)) ae.in ]

has at least one solution u € WDI P,

We observe that in the case of a strictly monotone and single-valued map a, (5.11)

reduces to the problem (1.2) mentioned in the introduction.

Proof. We would like to show that (5.11) always admits at least one solution, which
is in general not unique. We recall that given f € W~ we can fix v € LY such that
7'(z) = f(z) ae. in I and so we will write g(z) = ¢ + ¥(z) a.e. in I. Then we have to

determine the constant ¢ ¢ R™, so that there exists u € WP with
u'(z) € b(z,e +7(z)) a.e. in I.

To this aim, it is enough to find a measurable selector ¥(z) € b(z,c +v(z)) ae. in I such
that [, 4(z) dz = 0; hence let us define the map I : R™ — R™ as follows:

I(c) = {/I¢(m) dz i Y € L7, (z) € b(z, ¢ +1(2)) ac. in I}.

By the properties of B defined in def. 9.3, 7 locally takes values in a compact subset of
R™ and has closed graph, hence the next lemma 5.6 yelds that it is upper semicontinuous.
Moreover, T is monotone and has non empty closed convex values for every ¢ € R,
hence 7 is maximal monotone by theorem 2.9. Finally, T is coercive and so it is onto by

theorem 2.5. Then 0 e R(I}, or equivalently there exist a constant ¢ € R" and a function
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¥(z) € b(z,c + v(z)) a.e. in I such that

/;1/:(3:) dz = 0.

Clearly, if we set
u(z) = / Bt dt,

we obtain that u satisfies our problem and belongs to WDI g |

For semplicity, we have considered homogeneus boundary conditions, but it is obvious

that the same proof can be adapted to any other boundary conditions.

Lemma 5.6 (See, for instance [4] chap. I, corollary 1.1)

Let F : R™ — R™ be a locally bounded multivalued map with closed graph and closed

values, Then F'is upper semicontinuous in R™.

Proof. Given 2z € R"™, let V be any open neighborhood of Fz; since Fz is bounded
and closed, it is also compact, hence d(Fz, V<) > 0. Set ¢ = 1d(Fz,V*), then B(Fz,¢) =
{z € R": d(z,Fz) < €} C V. We would like to show that it is possible to find § > 0
such that Fy C B(F'z,¢) for every y € B(z,§); this means, in particular, that Fy C V
for every y € B(z, ). By the arbitrariety of z in R™ we obiain the upper semicontinuity
of F in R™, Toi this aim we proceed by contradiction. Suppose on the contrary that,
given z € R™, there exists € > 0 such that Fy € B(Fz,¢). For every n € N, let §, = %,
therefore there exists y» € B(z, 1) and z, € Fy, such that z, ¢ B(Fz,¢). Since yn —
when n — 400, by hypothesis we have that (z,)nen is @ bounded sequence in R™, then
there exists a subsequence (z,, )ren and & point z € R™ such that z,, — z, moreover
d(zpn,,Fz) > ¢ and passing to the limit, this implies that d(z, Fz) > e or z ¢ F=z.

On the other hand, (yp,, zn, ) belongs to the graph of F, which is closed; passing to
the limit, we obtain that (z,z) € G(F) that implies z € Fz, which is a contraddiction.
This concludes the proof. I8
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CHAPTER 6

G-CONVERGENCE FOR MAXIMAL
MONOTONE OPERATORS

As we pointed out in the introduction, this chapter, jointly with the next one, contains
the main results of this thesis, that is the fundamental theorems on the G-convergence for
systems of ordinary differential equations with boundary conditions. In particular we give
a characterization of the G-convergence by means of the inverse maps and we state a G-
compactness theorem, whose proof is completely indipendent from the one given in the
work of Chiado-Piat, Dal Maso, Defranceschi in [12]. In our case, in fact, we take strongly
into account that the problem is defined on a subset of the one-dimensional space R. and
hence it does not arise any problem in passing from the derivatives to the primitives of a

vector function.

After an introductive part, the theorems of the remaining of the chapter can be found
in [1] section IIL.

We begin considering a convergence that was formulated in abstract terms by Ku-
ratowski (see [17] section 29), as a general concept of set convergence in an arbitrary

topological space (X, 7).

Def. 6.1

Let (Ex)nen be a sequence of subsets of X. We define the sequential lower imit and
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the sequential upper limit of (Ej)pen by

I)K,eq(r)]jéninf Ep={z € X:3zp » 2,3k € N,VA> k:z4 € By}

2}Kyeq(T)im sup Ep, ={z € X:3ht — +oo,3zi 5 z,Vk € N:zp € Ep, }

hes oo

Then we say that the sequence (Ep)nen KyeqT)- converges to a set E in X if

Kyeq(7) Iiffnin{ Ep = Kyeq(t)imsupE = E

h—eco

and in this case we write K,,q(’r)h}.im Ep = E.

We denote by w the weak topology of L?, by s the strong topology of L? and by &
the weak topology of W1P,

Def. 6.2

Let (an)ren be a sequence belonging to M}’. We say that {an)ren G-converges to

a € M? and write a; S aif

K,eq(w x s)imsup Ap C A,

h—eo

where Ay and A are the operators associated to ay and a by definition 5.3, and as usual

Ay and A are identified with their graphs.

Remark 6.3
It is worthwhile to point out that the G-convergence satisfies the following properties:

1) if (an)nen C ]‘.’ff and a, = ag for every n € N, then (an)nen G-converges to ag;
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i) if (@n)nen © M? and (an)ren G-converges to a, then every subsequence (an, Jren of

(an)nen G-converges to a;

iii) if (an)nenw € M? and if every subsequence (an, JkeN of (@n)nen contains a further

subsequence which G-converges to a, then (@n)nen G-converges to a;
iv) if (an)nen C MP G-converges, then its limit is unique.

The properties i), ii) and iii} are a direct consequence of definjtion 6.2; for the unigue-

ness of the G-limit we refer to theorem 8.7.

Remark 6.4

We observe that by the definition, it follows immediately that the inclusion

Koeq(1 x s)limsup A, C A

h—co

is equivalent to the following condition:

if by — 4eo
gk € ap, (z,uy(2z)) ae.in T
uy — u  weakly in WP
gx — g strongly in L?

then g(z) € a{z,v'(z)) a.e.in I.

When n = 1, this condition is equivalent to the one given in the paper of Chiads-Piat, Dal
Maso, Defranceschi (see [12], remark 3.9): in fact, in this case, the topology ¢ introduced
there for the space L? coincides, by lemma 3.8, with the strong topology of L?.

Theorem 8.5

Let (an)nen € M? and (by)ren € M, by = a;! and let B, be the operatar associated
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to by by definition 5.3. Then the following conditions are equivalent:

1) ap — a

2) Kieg(s x w)limsup B, C B

h—coao

where B is the operator associated to b = a™! € M}.

Proof. As a consequence of 1) we have that if

hrp — 4+c0
gi(z) € ap, (z,ui(z)) ae inl
ug — u  weakly in W17

gr — g strongly in L7

then g(z)} € a(z,u'(z)) for a.e. z € I.

Let now [g,v] € K,eq(s X w)limsup By, then there exisis {ge,vr] € Ba, such that
h—ca
sxw)

(g, vk] (o, [g,v]. In particular, if we set

we obtain that uzy — u weakly in WP, Since vi(z) € bp, (z,gx(z)) a.e. in I, we have
gi(z) € ap,(z,ve(z)) a.e. in I and, by the G-convergence of the sequence (ax)nen, it
follows that g(z) € a(z,v(z)) a.e. in I, or v(z) € b(z,g(z)) a.e. in I, that is [g,v] € B.

34



Viceversa, let us assume 2) and let

hy — +o0
up — u  weakly in W1
gx — g strongly in LY

gx(z) € ap, (z,u}(z)) ae.in I,

we would like to conclude that g(z) € a(z,u'(z)) a.e.in I.

Set vx = u}, hence vy, — v weakly in IP and v = ', As gx(z) € an, (z,ul(z)), we
obtain vi(z) € by, (z,gx(z)) a.e. in I, or equivalently {g,vi] € By, ; since we have also
lgk, vE] Gox) [9:v], by 2} it follows that [g,v] € B, which is equivalent to v(z) € b(z, g())
a.e. in I, or g(z) € a(z,v(z)) a.e in I.B

For every 7 € R™ and every b € M3, we set

B :={v € L” : v(z) € b(z,7) for a.e. ¢ € I}.

Theorem 6.6

Let D be a dense subset of R™. If B; and B are as in the previous theorem, then the

following conditions are equivalent:

1)K, eq{s x w)limsup B, C B

h~rco

2)K,eq(w)limsup B] C B" Vge D.
h—

o0

Proof. 1) implies 2) is trivial,

35




Conversely, assume 2) and let [§,7] € K,.(s x w)limsup By, hence there exist a
h—oco
subsequence (B, Jken of (Br)ren and a sequence [§i,7x] € Bs, such that [gr, ¥ (x)

[3,7]. Fix, now, a countable dense subset Dy of D. By the measurable selection theorem
due to Aumann and Von Neumann (see, for instance, [11], theorem II1.22) and by the
boundedness condition {5.2), for every 7 € Dy and for every k € N there exists a function
v € L? with v](z) € bu,(z,7) a-e. in I. Moreover the inequality (5.2) implies, thanks to
the reflexivity of the space LP, that for every 7 fixed in Dy, there exists a subsequence of
(vi)ken which converges wealkly in LP. By a diagonal method, we can construct a further
subsequence, that, for simplicity, we still denote by (v])ren and a function v7, such that
vl — v" weakly in L? for every 7 € Dy: by 2) v”(m)'E b(z,n) a.e. in I, and by (5.2)

v7 € LP. As a consequence of the monotonicity of b, for a.e. =z € I we have that
(vi(z) — =), — Gelz)) > 0 Vn € Do.

Passing to the limit, we obtain for a.e. z € I

(6.1) (v"(2) — (=)~ §(=)) > 0 V€ Dy,

Let I' be the set of all points = € I such that (6.1) holds, v"(z) € b{z,n) and b(z,-)
is maximal monotone and locally bounded. Clearly, [\ I'| = 0. For a given z & I,
we can apply theorem 4.3 with X = R™, Y = Dq, 7(n) = v"(z), and we obtain that

#(x) € b(z, g(=)). This gives [§,%] € B and concludes the proof.B

Theorem 6.7

Let (ap)ren C Mr}”. Then, if (as)ren G-converges, its limit is unique.

Proof. By contradiction, assume that ay £ 4 and ap g &, with ¢ and @ € M7 and
a # @; then, by theorem 6.5 and 6.6, K, (w)lim supB] C B" and K,eq(w)limsupB) C B7

h—eco h—oo

for every n € R™ with B +£ B7 for at least one n € R®,
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As we did in the preceding theorem, if Dy is a countable dense subset of R™, we can
construct a sequence (v])ren and a function v", such that v](z) € by, (z,7) a.e. in T and
vg — v7 weakly in I” for all 17 € Do. We observe that v7 € B" N B for all 5 € D, by the
condition on K ,,q(w)hm supB »; hence, applying theorem 4.3 with X = R™, ¥ = D, and

v(n) =v(z) for = ﬁxed a.e. in I, it follows that v has one and only one maximal monotone
extension, hence B" = B7 for every n € R™. This implies that a = @ and concludes the

proof. B

Theorems 6.5 and 6.6 give a characterization of the G-convergence of the sequence
(21 )ren in terms of a suitable convergence of the inverse maps by,. In particular, when the
map b = a7 € M} is single-valued, these results give a very simple characterization, as

the following corollary points out.

Corollary 6.8

Let D be a dense subset of R™, (ardren and @ € M7, (bp)pen = (&;I)MN and
b=a"' € M}. Moreover, assume that b is single-valued. Then the following conditions

are equivalent:
1) ap = a

2) for every € D, there exists a sequence (v} Jren, such that

vi(z) € ba(z,n) ae.in

and v} — b(-,n) weakly in LP.

Proof. Assume that 1) holds, then by theorems 6.5 and 6.6, it follows that

Kyeq(w)limsup B} C B" for every 7 € D,

~—r 0
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where now B" contains only the function 5(z,n). For every 7 € D, as we have already
proved in the preceding theorems, the growth condition (5.2) implies that

K,,q(w) lim sup BE £ 0;
hA—co

(6.2) K,eq(w) imsup Bf = B".
h—oo

Equality (6.2) and again the growth condition (5.2) imply that, for every 7 € D, if v} € B],
every subsequence (v} )ren of (v} Jren has a further subsequence which weakly converges

to b(+,7); hence all the sequence (v])renw weakly converges to b(:,7) and 2) is proved.

Conversely, assume that 2) holds. By theorem 6.5 and 6.6, it is enough to prove that
K eq{w)lim susz C B for every 77 € D, where D is a dense subset of R™ and B7 contains

— O

only the function b(z,7). Let ¥ € K,cq(w)limsusz; then there exist hp — +oo and a
h—eco
sequence (T )ren such that 9x(z) € by, (z,7) a.e. in I and 9 — © weakly in L?. By the

monotonicity of by, (z,-) we have
< e{z) —v) (2),7—19>>0 VYp€Dandae.in I
Passing to the limit, we obtain
< t(z) —b(z,n),7—1n>>0 Vn€Dandae. inl
and by theorem 4.3, this implies that o(z)} = b(z,7), but this is true for a.e. =z € I, and

hence the theorem is proved.B

If also by, 1s single-valued for every h € N, the result obtained takes the form

G w—LF )

ap = a &= b(yyg) — b,n) VneD.
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Remark 6.9

In general it is not possible to say that, if ¢, G-converges to e, for every 7 € R™

K,eq(w)limsup B] = B”

h—co

nor that

K,eq{w)im sup B}* = B”

h—roo

for a suitable sequence n) — 7, as the following counterexample shows.

Let a < c < band I = (a,c]U({c,b). We set

1 if n € [0,+o0)
bu(z,n) =by(n) = { hn+1 g€ (FE,0)
-1 if RS (_O’O:?]

when 2 € (a,c] and

1 ifn e [%,-{-oo)
br(zyn} =bi(n) =< hn—1 ifne(0,2)

when z € (c, b).

Clearly if
1 if g€ (0, +0)
b(z,n) =b(n) =< [~1,1] ifp=0
-1 if n € (—o0,0)

we have that

Kyeq(w)limsup B]* C B",

oo

By contradiction, assume that K,.,(w)lim supB}* = B” and take 0 € B®. Then there exists

h—oo

a subsequence by, (2,7 ) such that by, (-,7:) — 0 weakly in L? when 7k — 0. Without loss
of generality, we can suppose that e 2 0 for all € N, but in this case, when z € (a,c],

buc(zyme) = b; (me) > 1 and hence by (mx) does not converge to zero on (a,e]. As a
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consequence, it follows that

Kyeq(w)limsup BJ* & B®

h—roa

for any n, — 0.

We now introduce an auxiliary notion of convergence, called 7-convergence, on the
family of maps belonging to M7, that has two important properties: the first one is that
this convergence implies the G-convergence (see lemma 6.11) and the second one is that

this convergence is compact (see theorem 6.12).

We would like to point out that the 7-convergence does not satisfy condition 1i) of
remark 6.3. Since this property is very useful in many concrete cases, we preferred, as
2 definition of G-convergence, the one given in def. 6.2, by means of the notion of set
convergence formulated by Kuratowski, instead of the simpler definition which could be

given in terms af the r-convergence.

Def. 8.10

Let (bn)nen,b € M}; we say that the sequence (bp)nen T- converges to b, and write
by =+ b if and only if for every 7 € Q™ there exdst v, v7 € L? such that

vy — v"  weakly in L?,
vi(z) € bn(z,n) a.e.in I,
v"(z) € b(z,n) a.e.inl.

Lemma 6.11

If (b )ren, b € M} and (by)nen T-converges to b, then {(aplrew G-converges to a.
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Proof. By theorems 6.5 and 6.6, it is enough to prove that the condition

(6.3) Koeq(w)limsupB] C B? Vije R®

h—+o0

is satisfied; hence let 7 € R™ and v € K,eq{w)lim sup B’-J Then there exists a subsequence

h—oo
ve(z) € by, (z,7) a.e. in I such that v, — v weakly in LP. By the hypothesis, for every 5 €
Q" there exist v}(z) € be(z,9),v"(z) € b(z,n) a.e. in I such that v] — v" weakly in L°.

By the momnotonicity of by, (2,-), it follows that, for a.e. z € I,
<vk(z) —v] (z)7—7>>0 VneQ®

and passing to the limit, we obtain that for a.e. z € ]
<o(z)~v'(z),i—n>>0 VYnpe Q™

In order to prove that v(z) € b(z,7) it is enough to apply theorem 4.3 as in the proof of
theorem 6.6. Then we conclude that v € B7, or (6.3) holds.E

We can now state the main result of this thesis work; in fact, as it was pointed out
at the beginning of the chapter, we prove a compactness theorem for the 7-convergence,
which implies the compactness of the G-convergence for systems of ordinary differential
equations. Roughly speaking, the compactness of the G-convergence is a consequence of
the next result and of the relation between the G-convergence and the 7-convergence,

obtained in the previous theorems and lemmas of this chapter.

Theorem 6.12

Given a sequence (b)pen € MJ, there exists a subsequence (b, Jten which 7-

converges to b € M},
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Proof. For every n € Q", the measurable selection theorem (see, for instance, [11],
theorem III.22) and the boundedness condition (5.2) assure the existence of a measurable
selection v](z) € bu(z,n) a.e. in I, with v] € LP for every h € N. Moreover, by the

boundedness conditions (5.2) on by, we have that
(6.4) lvi(z)] < C (m(z) +[n]*") VnpeQ" forae.zelandVheN

with m € L?. Thanks to the reflexivity of the space I?, for every 7 fixed in Q", there exists
a subsequence of (v }ren which weakly converges in LP. By a diagonal method, we can
construct a further subsequence (v} )rexn and a function v" € LP such that v} converges to
v" weakly in L? for every € Q®. Clearly v” still satisfies (6.4), hence there exisis N C T
with |N} = 0, such that for every z € I \ N, the map # — v"(z) is monotone, locally
bounded on Q™ and satisfies conditions (5.1), (5.2). Let, for ixed z € I, 7, : Q" — R*"
be the function defined by

_Jv'(z) Hezel\N
72(7?) - { l77|q—-2.r‘r if zE N

By theorem 4.3, there exists a unique maximal monotone extension of 7, on all of R"; let
call T'; this extension, and define the operator b : I x R® — R™ such that b(z,.) = I'; for
every ¢ € I. By construction, it follows that bs, — b. It remains to prove that b € M7.

It is clear that v.(%) is measurable in = for every n fixed in Q. We would like to
show that b is measurable with respect to £(I) ® B(R") and B(R"). Recall that

Gey= (] Cy

’TqEQn

where Cp:= [ {[z.6&,n € IXxR* xR* : (7x(nq) — &,mq —7) = 0}.
T EQR

Since every €, is measurable and we have a countable intersection, it follows that G(b) €

L(I)® B(R*) ® B(R"). Let now

Fz = {[£7]: ¢ € b(z,n)}
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then G(F) = G(b) € £(I) ® B(R") ® B(R"). Applying theorem 3.6, we obtain the
measurability of F' from L(I) to B(R®) ® B(R*"). Set

H(z,n)={{:[£,m) € Fz} =
= {£ Fg< 5(3»?7)} = 5(3:77)

applying again theorem 3.6 we obtain that H and hence b is measurable from L{I)@B(R®)
to B(R"). To conclude the proof, we have to show that the boundedness conditions (5.1)
and (5.2) are satisfied, or explicitely:

hold for a.e. z € I, for every 1 € R™ and for every ¢ € b(z,7). To obtain this, let define
for a.e. z € X fixed, the multivalued map C, : R™ — R" as follows:

Ca(n) = {¢ €R™ : (5.1) and (5.2) hold }._

Clearly C. is has closed convex values and demiclosed graph and v.(n) € C.(n) for every
7 € QF; hence, by remark 4.4, for every € R* b(z,7) € C.(n) and this concludes the

proof. H
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CHAPTER T

G-CONVERGENCE IN THE SCALAR CASE

In the scalar case, i.e. when n = 1, for every z € I and every 7 € R, the maxi-
mal monotone map b4(z,7n) is an interval of R; if we denote by ¢ (z,7) and gb',i:(z,n),
respectively, the lower and upper bounds of this interval, then we have the following rep-

resentation:

(7'1) bh("""r’?) = [‘i’}:(z"’?)f ‘351_(3377)]

with the functions qﬁ}f and ¢; monotone with respect to 7.

The £(I) ® B{R) measurability of qfvf(, -} is an easy consequence of the £{I) ® B(R)
measurability of b4 (-,-), in fact

L(I) ® B(R) 3b; ([a,+00)) = {[z,n] e I x R : b(z,7) N [a,+00) # B} =
={[z,n] e Ix R : ¢} (z,n) > a} = (¢}) ([, +o0)).

By (5'2) (}5}1(3, '):‘#’I(za') e L1
Moreover, if by € M7, it is always possible to write
n
(7.2) Vate,) = [ 6i(e,)ir
0
so that it resulis:
(7.3) br(z,m) = OpVi(z,7)

with Vi : IxR — R convex with respect to 7. Hence in this case, it is possible to obtain the
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same results as in the previous chapter, using the convergence of the primitives Vil(z,n);

in fact, it follows that Vi(z,7) satisfies the following conditions:
(i) Vi is measurable with respect to L£(I) ® B(R) and B(R)

(i) the estimate

(7.4) calnl? — ms(z)ln| < Vi(z, 1) < calp|? + ma(z)7]

holds for a.e. z € I and for every 7 € R, where thé functions m3,ms € L? and the
constants 0 < ¢3 € ¢4 < 4+ depend only on the functions and the constants which
appear in the definition of M}. Also the converse is true, that is if V} is convex with
respect to 1 and satisfies (i) and (ii), then by € M]. For the measurability see [3], theorem
2.3; for the estimates it is enough to do some simple calculations and finally the maximal

monotonicity of b; is a consequence of theorem 2.13.

In particular in this case, the compactness of the G-convergence is a direct consequence
of the compactness of Vi(z,7) in the weak topology of L? ; as the next theorem shows (see
(1] section 4). '

e

Theorem 7.1

Let (an)pen, a € M7} and let (ba)ren, b € M} be the corresponding inverse maps; let,
for ae. z € I, by(z,n) = 8, Vi(z,7) and b(z,n) = 6,V (=, n), with (Vi)ren and V convex
with respect to 7 and satisfying (i) and (ii), and finally let Dy be a countable dense subset
of R.

Then the following conditions are equivalent
1) ay A a,
2) Vilym) = V(n) Ype Dy weakly in L.

Moreover condition 2) is compact.
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Proof. By inequality (7.4) we have, for a.e. = € I, at the same time, the continuity
of the primitives in the second variable (by theorem 2.11) and their boundedness in L? for
every 77 € R fixed. Hence, by a diagonal method, it is possible to construct a subsequence
of (Vi)rew, which converges in the sense of 2) to a function V of the same type, defined
on I X Dy. Since V is locally uniformly continuous in 7 for a.e. z € I, it is possible to
extend this convergence to every 7 € R, in fact we can well define for every 7 € R. and for
a.e. ¢ € [ the function

V{(z,n) = lim V(z,m)
Th=+q
where {na)rern € Dp and 55 — 7 in N. It is clear that the definition is indipendent of
the sequence (n4)ren. To show that Vi(s,n) — V(-,n) weakly in L? for every 7 € R, it
is enough to consider the weak convergence on Dy and the lipschitz continuity of Vi(z,-),
uniform with respect to b € IN, due to (7.2) and (5.2). This argument gives the compactness

of the primitives for this notion of convergence.
Now it is possible to follow two different ways.

The first one takes into account the equivalence between G-convergence and I*-conv-
ergence proved by A. Defranceschi in [14] and the relation between I'-convergence and the
convergence expressed in 2) due to P. Marcellini and C. Sbordone in [18], as we mentioned

in the introduction.

The second one is a direct proof. Assume that 2} holds, then adapting the proof of
lemma 3.1 in [18] and taking (7.2) and (5.2) into account, we obtain that Vi(-,ga(-)) —
V(-,9(-)) weakly in L!, for every (gs)nen converging strongly to g in L9. Suppose that

hk — + o0
gi(z) € ap, (z,u1(z)) aeinl
gx — g strongly in L?

up — u  weakly in WHP,

we would like to conclude that g(z) € a(z,v'(z)) a.e. in I or u'(z) € b(z,g(z)) a.e. in

I. Since gi(z) € ap,(z,ul(z)) ae. in I, we have ui(z) € by, (z,gx(z)) ae. in I, or
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ui(z) € 8, Vi, (z,gi(z)) ace. in I. This implies that for every n € R
Vi (2,7) = Vi (=, 92(2)) > ui(2)(n - gu(=)) forae. zin I
and passing to the limit, it follows that
V{z,n) - V(z,9(z)) > v'(z)( — g(z)) forae zinl

or u'(z) € 8,V(z,g(z)) = 5(z,9(z)) a.e. in I, and this proves 1).

The converse is a consequence of this step, the compactness of condition 2) and the
uniqueness of the G-limit, proved in theorem 6.7. In fact, let ay S a; by the compactness,
we have that there exist a subsequence Ay — -Loo and a function V such that Vi () —
T}(-, 1) for every n € Dy, with ¥ satisfying the same properties of V;. Since we proved that
2) implies 1), it follows that an, < a, where a™*(z,n) = 8,V(z,n) a.e. in I and for every
7 € R; by the uniqueness of the G-limit, we obtain that @ = @ or equivalently V = V (we

agree to assume that every primitive function is zero when n = 0), and this concludes the

proof. B

By (7.1) it is clear that the multivalued map by, has two special selections, i.e. ¢ and
¢, ; hence we can particularize the characterization of the G-convergence in terms of the
convergence of ¢} and ¢, - For this purpose, we have to develop some preliminary tools

(see [1}, appendix).

Theorem 7.2

Let (f.) be a sequence of functions contained in L#(I) and (f») equidominated, i.e.
there exists m € L!(I) such that

|fo(z))? <m(z) for ae. zin I.
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Set

n—+co

G ={g e L) : ] o(2)dz < bminf | fu(z)ds VB € B(I)}.
B B

Then the following conditions hold:
1)gi,2€ G = g1Vg2€G
29T9 G = geGh.

Moreover, there exists a unique g* € G* with the following properties:
(i) g(z) <g'(=) Vge &

(ii} if h € I? and g(z) < h(z) Vg € G then gi(z) < h(z) a.e. in I.

Proof. 1) Assume that g; > g» on A; and g; < gz on A4,, then I = A; U 4, and

/ g1V gadz = / g1dzx —{—/ gadz <
B BnA, BnA;

ﬁ]iminf/ fndz + liminff fndz <
BnaA, Brnid,

T s} OO n—+4co
Lliminf | f.d=.
n—too fg

2) It is a consequence of the monotone convergence theorem.

Since G* is a collection of measurable functions, by theorem 3.2 there exists a function

g* which satisfies the properties (i) and (i) and such that g° = Sup g; for a suitable choice
iEJg
of a countable set J;. Now we have to prove that g* € %, therefore set

G1=91 §2=G1V g2 crreurns Gr = gh-1V gn
then gn < gr41 and §u > gi a.e. in I and hence

Sup jr > Supgs = ¢'.
heN hEN
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Since by 1) §» € G%, it follows that g* > Sup §p and so Sup G = g'. We conclude the

heN hEN
proof noting that Sup §, = hm gh and by 2) lim g, € G'.B
heN h—too
Theorem 7.3

In the hypothesis of theorem 7.2, let us consider the set
H={h€L? : 3n, T +co s.t. fn, — h weakly in L?}.

Then H is not empty and inf H = max G-,

Proof. Since (fn).en is equidominated in L? , it is weakly precompact i in L?, hence H
is not empty. By theorem 3. 2, we have that there exists inf ; it remains only to prove the
equality inf H = max G*. Fixed B ¢ B, there exists a subsequence (fi)xen of (fu)nen
such that

it [t = i [ e

Since (fi)ren is equidominated, it is possible to extract a further subsequence (fi)ren

weakly convergent to A such that:

/fkdz— /fhd:c“/hdz>/mf7‘fdz
k—’+00 h,—-+oo B

This implies that
h'minf/ frndz > f inf H d=z
B B

n—+oo

and this relation holds for every B ¢ B(I), thus inf H € G*.

Moreover let g € G* and h € 'H. By definition, there exists a subsequence (fi)ren of

(fr)ren weakly convergent to A, then

/ g dz < liminf fn dz < hmmf/ fedz —/ h dz.
B

n—-tco
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This inequality holds for every B € B(I), then for a.e. z € I it follows that g(z) < A(z)-
By the arbitrariety of  in H and g in G* and since inf H € G¥, we obtain that

max G <infH < maxG’ .

This concludes the proof.H

Remark 7.4

By duality we can consider the set

G*={ge L) : /Bg(:c)d:; > ]imsup/B frn(z)dz VB e B(I)}

T b oo OO

and we obtain that min G* = Sup H.

We can now give the following definition.

Def. 7.5

Let (¢r)aen be a sequence of functions belonging to L?, which is equidominated. We
say that the LP function g* is the weak L? lower limit of the sequence if and only if ¢ is

the maximal function such that

/ g'(z)dz < Iiminf/ Pr{z)dz VB € B(I)
B B

h— 40

The weak L? upper limit g* is defined in a dual way.
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As we proved
(7.5) g'=inf H and g¢'=Sup H
where the infimum and the supremum are taken in the lattice structure of 7.
We can now state the main theorem of this chapter (see [1] section 4), which charac-

terizes the G-convergence of maximal monotone operators, in the scalar case, in terms of

a suitable convergence of their inverse maps.

Theorem 7.6

Let (an)ren € MY be a sequence of maximal monotone operators and let (by)pen €
M} be the sequence of their inverse maps, as in proposition 5.2. Then the following

conditions are equivalent:

Vay =a

2) ¢7(z.n) < gi(z) < gi(z) < ¥ (2,7)

forae.zel and VneR

where b(z,n) = [67(z,7), 6T (2,7)] for ace. =z € I and for every n € R, g,‘; is the weak LP

lower Iimit of the sequence (6, (-sn))hen and gy 1s the weak L? upper limit of the sequence
(81 (- m))hen.

Proof. Assume that 1) holds. We recall that, since ¢, (z,7) € ba(z,7) then 7 €
an(z,$; (2,7)). By the boundedness condition (5.2), fixed 7 in R, gﬁ;k("}(-,n) — A7)
weakly in L?; noting that qb;km and A" are derivatives of JW1? functions, it follows by
the condition (5.2) and the G-convergence that A" is a solution of the inclusion n €
a{z,h"(z)) a.e.in I or equivalently A"(z) € b(z,n) a.e.in I. In particular we obiain

that A"(z) > ¢~ (z,9) for a.e. z in I. Since this is true for every weakly-L? convergent
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subsequence of (¢, (+,7))nen, by (7.5) it follows that

g:(z) 2 ¢™(=,7)

for a.e. z in I. In the same way it is possible to prove the opposite inequality for g7 and

¢1 and the first part of the theorem is proved.

Conversely, let us suppose that 2) holds. We would like to show that if

hr — +co
up — u  weakly in L
ge — g strongly in L7

gx(z) € an, (z,ui(z)) ae inl and

then
g(z) € a(z,u'(z)) a.e. inl.

This is equivalent to show that

(7.6) u'(m) € b(z,g(z)) aeinl.

As in the proof of theorem 6.6, we can construct a subsequence (v] }ren of (@, (1) ke,
which weakly converges to a function A" € L?, for every € Q. The properties of the weak

L? lower and upper limits mentioned above assure that g;(z) < h™(z) £ g;(z) a.e. in I,

and hence by 2) A"(z) € b(z,n) a.e. in I.

By the monotomnicity, for a.e. z € I, we have

(vi(z) = vi(z),gx(z) —m) 20 YneQ.

Passing to the weak limit, we obtain that, for a.e. z € I

(v'(z) = R"(z),9(z) —n) 2 0 Y€ Q.
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We can now consider, for a.e. = € I, the map 7¥: : Q — R defined by v=(n) = h'(z) €
b(z,n). By theorem 4.3 v, has, as unique maximal monotone extension, the operator
T'z(-) = b(z, ), then it follows that v'(z) € b(z, g(x)), and this holds for a.e. z € I, hence

(7.6) holds and the proof is complete. B

If ¢7(-,p) — g,‘r() weakly in L? and ¢} (-,7) — g5(+) weakly in LP, then we say
that the multivalued operator b(z,7) = [g,':?(z),g;’](z)] is the convex weak limit of the
subsequence (b (z,7))ren = ([q&{(z,n),é}f(z,n)])hew and the definition agrees with the
one introduced by Arstein in [2], theorem 4.1. Therefore, in this case, the statement of the

previous theorem 7.6 takes the following form:

If oy () — g:,() weakly in LP and 7 () — go(+) weakly in L?, then ap S if and only
if for every n € R the conver weak limit in the sense of Arstein of the sequence (by(-,7))ren

1s contained in b(-,n).
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