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METHODS OF CONFORMAL SYMMETRY IN TWO
DIMENSIONAL STATISTICAL MECHANICS

Introduction

This work is intended as a general survey of methods and results of
conformal symmetry is two-dimensions applied to the study of statistical
mechanics models. A renewed, strong impulse in this subject has been given by
Belavin, Polyakov and Zamolodchikov with their paper [1.1] in 1984, but early
results trace back to old ideas of Polyakov [1.2] and Migdal [1.3] in 1970, about
conformal invariance in phase transtions physics and its consequences in
operator product expansions ("bootstrap equations").

Since then, and along with renormalization group approach to critical
phenomena, conformal symmetry has provided many insights both in statistical
mechanics and in quantum field theory, constituting a deep link between them
(see for example [1.7]). An interplay with string theories has been present since
the early days of dual models, but the new interest in superstring theories has
inspired some major results, such as the extension to the superconformal
symmetry (see [I.16]) and the manifestation of supersymmetry in a system
realized in nature, the tricritical Ising model (see [I.17]). Besides that, a line of
development risen from [I.1] and based on the concept of modular invariance
has produced a classification of two-dimensional critical phenomena using
Dynkin diagrams (see [I.5] for a complete review).

We will review here the fundamental concepts of conformal symmetry in
two dimensions in their modern formulation after [I.1], along with methods
developed from them for studying two-dimensional statistical systems. Such
methods will concern the computation of correlation functions, the study of the
operator algebra and the operator content of a given model, the determination of

physically interesting functions and quantities, such as partition functions,



conformal anomaly and so on. The two-dimensional Ising model will be used as
a "gymnasium" in order to show applications of general results to a concrete
model: even if it has some simplifying features, it is perfectly suitable to illustrate
many aspects of the computations in detail. We hope to provide a wide
understanding of the role played by conformal symmetry principles in
two-dimensional physics.

This thesis is organized as follows:
- Chapter I is devoted to a complete review of conformal invariance in
two-dimensions in the formulation of Belavin, Polyakov and Zamolodchikov.
Major results, such as conformal Ward identities, differential equation for
correlators, Kac formula and fusion rules for operator algebra are given, and are
exhibited in the case of critical Ising model.
- Chapter II can be considered as a natural continuation of the first one, as it
deals with a method for computing correlation functions as given by differential
equation of chapter I: Coulomb gas representation of correlations, as developed
by Dotsenko and Fateev (see [IL1]) , is explained in detail and a simple
computation is given .
- Chapter III is devoted to the study of conformal symmetry in a restricted
geometry, with an eye to applications in lattice statistical mechanics. In this
context, modular invariance can be profitably used in order to determine the
operator content of a statistical model.
A particular emphasis is given to the interpretation of the conformal anomaly as
a finite size scaling correction to the free energy : in quantum field theory
language, one can say that the central charge is related to the Casimir effect ( see
[IIL.5] ) . As an application , the computation of the central charge for the Ising
model is presented. Possibly, one can go further : this characteristic feature of
finite geometry may provide a way to determine the conformal anomaly of
models for which it is not known, but whose free energy is available. Work in

this direction is in progress ( [IIL.19] ) .
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ChapterI: Conformal Invariance in Two Dimensions

Introduction

This chapter will be devoted to a survey of the formulation of conformal
invariance in two dimensional physics as given by Belavin, Polyakov and
Zamolodchikov (see [1.1]). We shall furthermore consider the Ising model as an
example of application of their ideas to two dimensional statistical models.

Conformal invariance has been playing a central role in statistical
mechanics since Polyakov introduced it early in 1970 (see [I.2]) and showed the
main consequences it has in studying phase transitions of statistical models and
also operator algebras in quantum field theories (see [1.3], [I.15]).

In short, the idea is that the scale invariance of critical phenomena may be
generalized to be a local symmetry just as in the case of local gauge symmetries
in quantum field theory (see [L2] and [L4]). This may be explained using

renormalization group concepts. In fact, considering a lattice system and
uniformly rescaling the lattice spacing by a factor A, correlation functions of
operators @, get transformed as follows

N
< @) gy > = ] AT < 0r)) e gy >
i=1

x; being the scale dimensions of ¢, and r' = A-r. Assuming rotational invariance

of the fixed point Hamiltonian, which is valid for isotropic models, this relation
has to be true also if the lattice is rotated through some fixed angle. Therefore

due to locality of renormalization group transformations, it holds also if we

consider a non uniform rescaling A =A(r) as long as this mapping corresponds



locally to a dilatation and a rotation, i.e. as long as A(r) is a conforinal mapping.

In two dimensions conformal symmetry becomes an infinite symimetry, any

)i
analytic mapping A(r) being a conformal one: as we will see in the fcllowing, this
fact has important consequences that may be enforced in a wide class of two

dimensional models, either exactly solvable or not.

1.1 Conformal transformations
Let us start with the definition of a conformal transformaticon: this is a

coordinate transformation

&a — na(é) a=1,.,D 1.1)

such that the metric tensor gets modified in the following way:
1 = OEY _Eﬁi = 1.2
By 7 Bap T gn® gob 85 PE) & 4 (1.2)

p(&) being some function of &*.

For dimension D>2 the conformal group of transformation (I.1) is finite
dimensional and its generators are given by translations, rotations, dilatations
and special conformal transformations (see e.g. [1.2], [1.3] and[L.4]). in the case D=2
transformations (I.1) form a much bigger group: that is the group of conformal
analytical transformations of a complex variable. This richer structure allows to
get more information about two dimensional systems: as we will see in the
following, the existence of conformal Ward identities or the possibility of getting
correlation functions from some differential equation are due tc the infinite
dimensions of the conformal group in D=2.

For these reasons from now on we shall concentrate on the
two-dimensional case, exploiting its special features in order to study conformal

properties of statistical systems.

I2 Conformal Ward Identities and the Stress Energy Tensor

One of the more important ingredient in a conformal theory is the stress



energy tensor that we now introduce. Let us consider a two-dimensional

conformal theory (i.e., a theory which is symmetric under (I.1)) involving some

local fields ¢,(§) and then perform an infinitesimal conformal transformation

around the flat metric g, = Suv (v = 1,2):
&880

88,y = 8w -SW =08, +avgu (L.3)

Having in mind a functional formulation of our theory, we can write, for the

variation under (1.3) of a generic correlation function <X> = <(pl(§1)...((pN)(§N)> ,

58 <X>=0= <88 X> - <X68 A> (1.4)

where A is the action appearing in the definition of the partition function (see
(L5D.

Relation (I.4) has the form of a Ward identity, and in fact it is called
"conformal Ward identity". The stress energy tensor is introduced precisely at
this point: it appears in the variation of the action with respect to the metric (see

[1.6] or other standard textbooks). We have

8,4 = | A TRV g8 L5)

where THY denotes the stress-energy tensor. Using this last relation and

denoting with 3 ¢, the variation of the fields under (1.3), we can get a more

explicit form of the conformal Ward identity (L.4):

Z

Y <o) BaE) oy > = | d% 28, <TV® 9,E) - 0y(EY > 16)

k=1



L3 Properties of the Stress Energy Tensor THY

It is well known that in a general conformal theory the stress energy tensor

has to be conserved, symmetric and traceless ([I.1L,[1.7]). In two dimensions these =~ - - -

properties are better stated with the aid of complex coordinates. Therefore we put
z = El +if?

7z = E' —ig? (1L7)
and we treat them as independent coordinates. In term of these new variables

the conformal group of transformations (I.1) is given by all analytic or

antianalytic functions:

z - ((z) z > ((z) (L.8)
The stress energy tensor has only two independent components which are
given by
T, =T =T, - Ty + 2T,
T =T = T, - T, - 2T, (L9)
and which can be shown to be analytic or antianalytic functions of z and Z
respectively:
T = T(z)
T = T(z) (1.10)

A remarkable feature of this relation, as well as (I.8), is the complete

separation between z and Z dependence: even though we consider 2 by taking z
and Z as independent, the conformal group G of transformations (L8) is

completely factorizable into a direct product

G=ToT (1.11)

where I'(T) is given by all analytic substitution of z(Z). This observation allows us



to concentrate on the properties of group I' in what follows: the same results will

be also valid for F

In this complex language the conformal Ward identity (L6) transforms into

<O X> = §c dz e(z) <T(z)X > (L12)

where C is a circle surrounding all the points z,, k=1,..,N , in which the fields

¢, present in X are evaluated (seealso [1.9D).

We consider now conformal properties of T under infinitesimal analytic

transformations
z—>z+¢e(z) (1.13)

deferring the study of those of the fields ¢, to the next sections. Thanks to a

theorem due to Liischer and Mack (see [1.8] and references therein) one can show

that the stress energy tensor transforms as follows:

5 T@ = &) T(2) +26(2)T(@) + '1C—2 " (2) (1.14)

where a prime denotes a z-derivation.

At this stage the constant ¢ appearing in (I.14) is treated as a parameter of
the theory, since it cannot be determined from first principles: the only
constraint we can give on it is that

c>0 (I.15)
under very general requirements, such as positivity and uniqueness of the
vacuum state, or reality of stress energy tensor.

In order to make closer contact with quantum field theory, which is also the

framework used to prove Liischer-Mack theorem, we can introduce ¢ and 7

coordinates by

z exp (1 +ic)

z exp (T —ic) 1,0eR, O0<o<n (L16)

1l

Considering a "radial ordering" ®in the euclidean time 1 (see [L.7]), correlation



functions may be rewritten as (*)

< X > = <0I1g] (le(o-l’Tl) e @ (O‘n,Tn)] [0 > (1.17)

and if the generator T, is given by |

T, = <f> e(z)T(z) dz

€
loglzl=1

then we may express the variation 8 ¢, as a commutator

5.0, (0,0) =[T,, ¢, (0,0)] (1.18)

Therefore, from (I.14) we can get

[T,,T@] = e@T@ + 2@ T@ + ¢ @ (1.19)

It is very useful, at this point, to introduce operators L, ne Z , as moments of

T(z) in its Laurent expansion:

S L
T(z) = 2 - (1.20)

(and the corresponding L for T(z)).
It is clear that expansion (1.20) has to be understood as a formal one (**), but

the important point is that these L turn out to be the generators of a Virasoro

algebra, as we will see in a moment.

14 Conformal Covariance and Virasoro Algebra

Simple substitution of Laurent series (1.20) into commutation relation

(1.19), giving the transformation properties of T, shows that the operators L,

ne Z, satisfy the following algebra:

(*) sce next section for the definition of the vacuum state

(**) it is only known that (1.20) has convergent matrix elements for 1zl =1, sce [1.8]



(n’-n) (1.21)

n+m,0

C
[Ln,Lm] = (11—m)Ln+m+ —1—58

This is a Virasoro algebra, and is the so-called "central extension" of the algebra
of the differential operators

0 _ n+l _d_

o z e , ne 2 (1.22)

Thanks to relation (1.21) we see that the parameter ¢ entering the transformation

law of stress energy tensor is the central charge of the Virasoro algebra.
Algebra (1.21) admits the set {L_;, L, L,{} as a subalgebra (note that for
n=+1,0 the central charge term is absent): each operator generates some

elementary transformation, such as translations (L_), dilations (L) and special

conformal transformations (L,). Using variables o,t introduced above we see that
the operator

H=T,+1L, (1.23)
generates "time" shifts, and so it can be taken as a hamiltonian. Therefore the

| 0> state appearing in (I.17) can be taken as the ground state of H. Requiring

analyticity of T(z) as z goes to zero or to infinity, one can show that

L 10>=0 nx-1
L, 10>= | newstates> n<-2 (1.24)
and
<0I'L,=0 n<1 (1.25)

so that the vacuum is left invariant by L,; and L as expected.

Before considering conformal properties of local fields cp].(&) we quote a last
result concering the stress energy tensor T. In fact its Laurent expansion, along
with Virasoro algebra and relations (1.24), (1.25) allows us to compute, at least in
principle, any correlation function of the form

<T(E)..TE>

In the case of a two points function, simple algebraic manipulations yield the



following result

< T(z) T(z) > =

- (1.26)

2(z,- z,)

which shows again that ¢ > 0.
From the point of view of computation of c this is also a practical result:
once we know the explicit form of stress energy tensor, in order to find c it will be

sufficient to perform an Operator Product Expansion (O.P.E.) of T(z) with itself

and look for the most singular part.

I.5 Primary Fields and Conformal Families
Studying the conformal properties of local fields it turns out that the most
important class of fields is given by those which have the simplest possible

transformation law. The finite and infinitesimal versions of this law are (*)

¢

- dz' w  dz' & R
hj(Z,Z) - (a‘;) (E) q)m—l(Z,Z) (1.27)

and

6£¢h(z) = e(z)%q)h(z) + he(z)¢,(z) (1.28)

Fields satisfying (1.27) and (I.28) are called primary fields, x = h+h is the

anomalous scale dimensions of the primary field ¢, yand s = h-h is its spin (as

can be seen considering a dilatation or a rotation in (1.27)). Obviously the class of
primary fields does not exhaust all possible fields that can appear in a given

conformal theory: for instance, if one considers the O.P.E. of the stress energy

tensor with a primary field ¢, there already show up fields having a more

complicate transformation law than (1.27), (I.28). However it can be proved that

the algebra of the operator product expansion quoted above is given by the so

called conformal family of the primary field ¢, (see [L.1]).

A conformal family [, ] of a primary field ¢, is made up by @, itself (which

(*) In the first relation we have restored for a moment both z and Z dependence

8



plays the role of an "ancestor") and by an infinite set of "secondary" or

"descendant" fields which are given by
(Kypo ook )

?, (z) = L'kl( 2 O L'kN (z) (ph( zZ) (1.29)
with
T(Q)
L. (z) = j; dl (1.30)
k ( C _ >k +1
and whose dimensions are
AT L Rk et Ky @.31)

thus forming an integer spaced series.

As we will see in the following, conformal families will have a central part
in the classification of representations of Virasoro algebra. For the time being, we
limit ourselves to mention some important consequences of (I.27) and
conformal Ward identity, concerning correlation functions of stress energy

tensor with local fields. Let us consider for the moment a string of primary fields
X =0, (z9.. ¢, (z) :if we insert transformation law (I.28) into relation (1.12)

and  consider Cauchy representation for € and €', then, eliminating an

integration over z, we get

N
h
<T(z)cph1(zl)....cth(zN) > = 1;1 { (z-:;)z + z—lzk Bik <q>h1(zl) '"(Ph,gZN>>

(L32)

which relates a correlation function of T and ¢, with that of ¢, only, through

the application of a differential operator; this is only the simplest example of
such identities, and it can be generalized. In fact one can consider any correlation

function of the form

< T(C)) ... TQCY (phl(zl) ...... (phM(zM) > (1.33)

and repeatedly apply (1.32), and also any correlation function of secondary fields

(k)
< (phl (zl) ...... (th (ZN) > (1.34)



since they are nothing else than coefficients of an operator product expansion of

T(z) and a primary field ¢, . In that manner we get rather cumbersome formulas

(see [L.11), but the main feature to point out is that every correlator (I.33), (1.34)
may be expressed in terms of a correlator of primary fields only, through the
action of some combination of differential operators, like the one appearing in
(I.32). This is a first instance of how conformal invariance severely restricts the
possible form of a correlation function. However, it is not the only one: when
dealing with the so called minimal conformal theories we will be able to have

differential equations for every correlator.

1.6 Representations of Virasoro Algebras and Degenerate Conformal Families
First of all, let us give the transformation law (I.28) of a primary field in

terms of a commutator with operators L_: this will be useful in the following for

the study of representations of Virasoro algebra. Inserting the Laurent expansion
(L.20) into eq.(1.18), and expanding also the Lh.s. of (1.28) we can easily get

m+1 0

[L.. 0@] = z=° =

0, (2) + h(m + 1)z" ¢, (2) (1.35)

Using relations like this, we can also see, from their definition (I1.29), that

descendant fields in a conformal family have variations SE(ph{k} which may be

expressed as combinations of field in the same conformal family (*).  This fact
suggests that conformal families correspond to various representations of the

conformal algebra.
To show that, we resort to a highest weight vector (HL.W.V.) construction of

the representation space. Let us define primary states as
Ilh>=¢,(0)10> (1.36)

where @, is a primary field.

(*) Recall that a conformal family contains also all the derivatives of its ancestor

10



States (L.36) are in fact highest weight vectors for the operator L :
commutation relations (I.35) allow us to write
| L,h>=0 if m>0
L,!h>=hlh> (1.37)

On the other hand, application of L _, m<0 gives new state ("descendants" of

m’

Ih>), which are in one to one correspondence with fields in the conformal

family [ (ph] of P we have

, k>0 (L38)

>
It
=
+
-
+

N B S + Ky (1.39)
Therefore we argue that representations of the Virasoro algebra (I.21) correspond
to some spaces Vy, .y (*), each of them being isomorphic to a conformal family

[}, ]: those spaces are called Verma modules.

There exist cases in which the structure of representation space becomes
much simpler, being present a reduced number of states: they correspond to

degenerate conformal families. It happens that for particular values of the

conformal weight h, the space V3, ) contains a special kind of vectors 1£>: these

are vectors such that
LI’\ | §> = n>0, I §> € V(h,C) (140)

L &> =h+M) 1E> M>0 (L.41)

and they are called "null vectors". A conformal family containing fields which

give rise to such vectors will be called a degenerate conformal family. Let us

(*) We keep also the suffix "c¢" in V(h,c) since the representations of the algebra (I1.21) will also

depend on the value of the central charge.

11



examine in more detail eqs.(L40) and (I.41). The last one simply says that &> is

nota highest weight vector for V(o : it belongs to the same level of

(pn('k -~ K)10>, with X k; = M . On the contrary the first one is the

characteristic condition of a highest weight vector, so that |§> seems to be a

H.W.V. without actually being that: it may be considered as a HLW.V. of "its

own" Verma modulus V(h +M.o) Its hallmark is that (1.40) holds for it with each

n>0, and not only starting from a certain N onward, like in the case of "normal"
secondary states (I1.38).
We shall now try to determine what are the conditions under which the

phenomenon described above can take place.

From equation (1.41) we see that |£> may be written in the form

lE> = L, ... L, Ih> k. >0

or their linear combination. Therefore, from eq.(1.40) we get

IEP = <&l&> = <hlL...L, 1&> = 0 (1.42)

where we used the fact that L'; = L_,. Thus we come to the following important
point: the existence of a null vector in a Verma modulus V, .y is related to the

degeneracy of the metric in that space. Since a given modulus Vy, () is the direct

{n)

sum of submodules V (h c)of level n,

v - @ yWw (1.43)

L. . L. |h> , k>..2k=>21 , 2 ki = n (1.44)
and such that

Lo VY ) = ) V) (145)



the study of the degeneracy of the metric in V(, .y may be reduced to one in the

submodules V((n h) o) (see [L8]). An analysis of this kind yields some constraint on

the possible values-of h and c. In fact, a simple application of a'lgebra (I.21) gives

0< IL_Ih>11> = <hlL L_Ih> = <hl[L,L_1lh>=

2nh + 1£2- n (n2 -1) Ynzo0 (1.46)

which for n=1 and n—e implies

h=0

c=0 (1.47)
As a typical (and easy) example, we may study the metric in the submodulus at

level n=2: here a basis is given by

L,lh> 1% Ih> (1.48)
and we can form the following matrix of inner product

2
<hIL,L,lh> <hlL,L lh>

2 2.2
<hILiL,lh> <hILIL] lh>

C
4h + < h
_ ) 6 (1.49)
6h 4h(2h +1)

In order to be non degenerate, the matrix M has to satisfy the following
condition:
0 < detM = 2h(16h?-2h(5-c)+c) (1.50)

with h and c positive.
This is a constraint on h and ¢, and we see that there may be null vectors in

V((n h] o) only for the following values of h

ho o= %[S-Ci‘/(c-l)(c-QS)] (L51)

to which it corresponds

13



3
2Qh +1)

(cfr. [I.1]). This ends the analysis for the n=2 case, which shows that there are
special values of h that makes the representation V;, . a degenerate one. In fact,

1E> = (L, + I’ ) Ih> (1.52)

as one can see from (I.40) , (I.41) , the highest weight vectors of the submodules
V(h+M,c) of V(h,c) (in the case of (I.52), V(h+2,c))' Thus V(h,c) turns out to be

reducible, but the fact that null vectors have actually zero norm (see (1.42)) allows
us to recover irreducible representation by consistently putting equal to zero null
vectors and all their descendants (1.38):

|E>=0 (1.53)
Correspondingly the Verma modulus Vy, ) will contain much less states than a

"normal" one, having eliminated all those belonging to VihaMe) -

The study of the degeneracy of the metric in the general case, i.e. in any
n)

submodulus V(( h,o) - 8iving all the special values of h, has been completed by

Kac (see [1.10]).
In the following section we shall comment on his result and study the
consequences of eq.(I.53) in a conformal invariant theory.

17 Operator Algebras and Minimal Theories

As we already mentioned, the complete analysis of the metric in a given
Verma modulus has been treated by Kac, who was also able to find a general
formula for the determinants of the matrices of inner products, like the one in
(1.49) (see [I.11],[1.12]). By setting them equal to zero he found also all the values of
h corresponding to a degenerate conformal family: they are labelled by some
positive integers p, q and are given by

1 2
Bp,q =ho+ 7 (@, p+o_q (154)
where
1
h() - EZ(C'-I)
/ -c + /2 -
a, = Lt Skl (1.55)

B J24
Since we do not want to have negative or complex conformal dimensions h(p Q

in (I.54), we have to limit the possible values of ¢ to the interval
0<c<l (1.56)
Considering this domain, Friedan, Qiu and Shenker ([I.11],{I.12]) showed that
unitarity requirements constrain much further the central charge: in fact it has to
be quantized within the interval (1.56) according to the following formula
6

= S A— >2 L57
¢ L mmaD m (L57)

14



and in consequence of that the dimensions given in (I.54) have to be
parametrized as

h _ [pm+1) - qm]2
e dm(m+) o T .
Formulas (1.57) and (1.58) determine finally all the value of ¢ and h which
can give rise to degenerate representations. Degenerate primary fields, i.e.
primary fields corresponding to degenerate conformal families, will be

I1<ps<m-1 , 1<q<p (1.58)

accordingly denoted as Plp,q) their conformal weight being h(P Q" According to

(1.53), considering one of these fields we will find some state 1> that has to be
(ki

(p,q)
in (1.38). In order to be consistent, we then have to put equal to zero also the field

put equal to zero and is generated by a descendant ¢ of P(p,q) A5 We can see

corresponding to &> (hereafter called a "null field"), and this have important
consequences on the correlation functions containing degenerate primary fields.
As we have seen in sect. 1.5, any correlation function of secondary fields
may be expressed in terms of one of primary fields only, through the action of a
(k)
(p.q)
functions with other primary fields ¢ having put ¢

and one of its correlation

E;k‘}q) equal to zero will

then yield a differential equation for the correlator of the degenerate primary
field P(p,q) with @,. We can take the case of (1.52) as an example. To this null
vector it corresponds the null field

differential operator. Consider now a null field ¢

2
£ = ol 4 S o 0 (1.59)
h 22h +1) 3,2 ™

(see [L.1]), where, having taken the minus sign in (1.51), the degenerate field ¢, is
given by ¢; ,,. Given the correlator <€(z)p,(zy)> with another primary field

¢,, we have the following differential equation for < O1.2) (2) 9,(z1)> :

3 9 h, 1 9

[ 2Qh +1) 5,2 (2“21)2 “z-z 0z, I <9qp@ e z) > =0  (160)

where we have used the fact that

h
(-2} T 1 ) 1 0
<o @ @ z)> = [ oLy 770 1 <9, 5@ 9,(z)>
1

Equations like (1.60) are extremely useful when computing actual correlation
functions and this aspect makes the case of degenerate conformal families a very
interesting one. Anyway, this is not their only benefit. In fact these differential
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equations constrain also the operator algebra of degenerate primary fields. If we
consider the O.P.E. of a degenerate field with another primary field ¢, , it turns

out that operators in the expansion cannot have arbitrary conformal weights:
these are determined by the differential equation concerning the degenerate field
we are dealing with. o ' o

For these reasons it is worthwhile to examine the so called "minimal
models" in which all primary fields are degenerate. Actually, it comes out that
the parametrization of ¢ and h(p,q) given in (I.57) and (I.58) corresponds to such

models, in which every degenerate representation has an infinite number of
null vectors, in different levels. Putting equal to zero each of them, the infinite
equations we get give rise to an operator algebra involving a finite number of
degenerate conformal families, whose weights are given by (I.58).

This results may be summarized in the so called "fusion rules" for
degenerate fields, which determine the operator algebra:

P +py-l q+Gp-1

v P = El (o, . ] (L61)
(P1~q1) @2:‘12) K= |P1 ’le f1 =1 a- q2| 1 (&)

where k(j ) is even if p;+ p,, (q; + q7) is odd and viceversa.

Eq. (I.61) is written in a very concise form: the notation [CI)(p q)] in the r.hus.

shows which conformal family appears in the sum, rather than the precise form
of the expansion and the coefficients. A remarkable feature to point out is that
those minimal theories correspond to actual two-dimensional models. In the
next section we shall see the Ising models as a simple example, but is by now
very well known (see [I.11],) that the series (1.57), (1.58) gives a lot of statistical
models, which can then be studied with the methods of conformal symmetry.

18 Ising Model: an Example

In this section the Ising model will be treated as an example to which we
can apply the results found in the previous paragraphs. Commenting on it, we
shall also try to get some new insight into the structure of conformal theories.

It is very well known (see [I1.13], [I.14]) that the Ising model has also a
fermion formulation: at the critical point in the continuum limit it is described
by the lagrangian of a free Majorana fermion with zero mass

1

1= -
L = zwagw + zwaz\u (1.62)

where we have used complex variables. Integrating over z,z we consider the
action

5=jm&Lw£) (1.63)

and then we perform a conformal transformation

z— [(z) (I.64)
Since we have
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ac 4

d = dz
9 _dza .. O ues)
L dg 9z
and complex conjugate relations, the transformed action is
— 1 - ' dC 1 -—l _q':C__ _1
_ zjdzdz (VALY + VoY)
and is equal to the old one if and only if
dg
v (HI)"? = v
d -
v'(© (Z Lym y@) (L66)

from which we see the conformal weights of primary fields y and y:
yv—h=12; h=0
¥—h=0; h=12 (L67)

Consistently with the value of spin (h-h=+1/2). As a consequence of conformal
symmetry we have that the two point function of primary fields must be of the
following form:

- - 2y — - -2k,
< (Phl,ﬁl(zl’zl) (th,EZ(Z?—’ZZ) > = 6h1 1 8}_11 5 (z, -z, ) (21' z,) (1.68)
and therefore we get for yand y
' 1 - 1
<y yiz)> = - <y@)yiz)> = =——=
Z-Z el
<@ yE) > = <y@) yE)> = 0 (169)
Let us consider now the stress tensor as given by the Noether theorem
oL 1
T(z) = 0 = -—:y(z)d y(z): (L.70)
5 (8;\4!) Y 5 Wzo ¥

and taken in normal ordered form. Performing the operator product expansion
with the aid of Wick's theorem, we find that

<T(@)T(z)> = (1/0)[<y(2)d,, y(z')> < 9,y(z) y(z)> - <y(z) y(z')> < 0,y(2)d,y(z)>]
(L.71)
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and, thanks to (1.69)

1
< T(z) T(z) > = — (L.72)
: g g .
Comparing this result with (I1.26), we deduce that for the Ising model
Clsing = 1/2 (1.73)

We can then start studying the operator algebra for this model: inserting (1.73)
into (I.57) we see that it corresponds to m=3 in the series of Friedan, Qiu and
Shenker. Hence, the allowed conformal weights are given by (L.58)

(4p-3q)° - 1

oo = 48

with - 1<p<2 , 1<q<p (1.74)

and may be plotted in a p,q diagram to form the so-called "conformal grid":

1 4
Jm
VAR [}
0 1o
41+ ® ®
— >

Fig. 1: Conformal grid for the Ising model: the conformal weight is shown associated with each

point

These diagrams are a synthetic way to exhibit all the conformal weights
allowed by (1.58) in a given model: a degenerate primary operator will correspond
to each of them, but this correspondence is not properly biunique.

In fact, the values shown in fig. 1 are also reproduced by operators with
indices (p,q) given by (2,3) for h = 0, (1.3) for h = 1/2and (1,2) for h=1/16, so that we

have a doubling of the operators of given conformal weight. However, as
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pointed out in [L.9], the possible ambiguities arising from this fact are only
apparent: on the contrary it can be profitably used in determining the operator

algebra (see [I.1]). With this remark in mind we can identify the operators

appearing in our model: in order to do that we have to take into account also the- - -~ -

z dependence, neglected till now. This produces conformal weights ﬁ(p 9 given

by the same formula (I.74), and therefore conformal fields will be denoted as

O, [y rather than P(p,q) Comparing scale dimensions x=h+h of each field with

known results about Ising model, we see that the operator algebra involves

P0,0) =1

Pay2,1/2) = €

®a/16,1/16= © (1.75)

where I is the identity operator, € the energy density and ¢ the magnetisation.
Now, a simple application of (I.61) will give the operator product relations: the

operator algebra for the Ising model is then summarized as follows

ILe = [e] ee = [I]
I-0= [o] e-o0 = [ol
11 = [I] -0 = [I]+[e] 1.76)

This ends our analysis of Ising model: we have seen how conformal
symmetry may be used to determine the operator content of a given model.
In the next chapter we shall dwell further on this aspect and also we shall

consider some application to the study of correlation functions.
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ChapterII : "Coulomb Gas" Approach to Conformal Symmetry

Introduction

The formulation of conformal invariance as given by Belavin, Polyakov
and Zamolodchikiov in their work [I.1] has been a major breakthrough in the
study of two-dimensional statistical systems. Not only it recovers known results,
but it also provides a unified framework for various classes of statistical models,
which allow new computations. One of the most important results concerns
correlation functions, namely the possibility of getting them from some
differential equation: this and the study of the operator algebra of a given model
yield also new relations for critical indices (see e.g. [IL.2]).

In this chapter we shall review a general technique for getting, with
conformal invariance methods, correlation functions based on an integral
representation for them. The integral representation stems from the study of a
Coulomb gas model in two-dimensions, and is therefore called " Coulomb gas
representation”.

We shall firstly illustrate some features of Coulomb gas model in
two-dimensions: besides being another example of applications of conformal
symmetry to an actual model, its importance arises from the fact that many
statistical models in two-dimensions may be led back to it, so that it is a good
guide for their study (see e.g. [II.3] for a review on this topic). Since Dotsenko and
Fateev have been the first to stress the importance of Coulomb gas
representation for correlation functions in the context of conformal symmetry,

the main reference throughout this chapter will be to their original work, [IL1].
IL1 Coulomb Gas Model as a Free Field Theory

In this section we shall define this model as a free field theory in two

dimensions.
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Let us consider a neutral scalar field without mass , ¢ , described by a

partition function
Z=1[Dp exp-Alo]) (IL.1)

with the following action
1 -
Alo] = 1 j dzdz 9,0 0-¢ (IL.2)

where we have employed, as usual, complex variables z , z. As one can see from

the equation of motion for ¢ , this is not a primary field of our model : in fact

its two points function reads as follows
1
(IL.3)

log ——
©lz-z'l

<o) o) > ~
Comparison with (I.68) shows that our basic field is not primary. On the

contrary , we may consider exponentials of it as primary fields of the Coulomb

gas model. Let us define a "vertex operator” Va (z,Z) as

Va(z,E) = : explicne(zz)]: (IL.4)
where the parameter o is usually called the charge of the vertex V, .
For the correlator of two vertices we then get the following result
<V()V (D) > - L (L)
a -0 vy 402
| z-2'
which shows that V, is a primary fields with weights
h = h = o2 (IL6)
o a
This , in turn , determines also the transformations properties of vertex
operators under a conformal change of coordinates z — f(z) : we have
(IL7)

- df 2 , df 2 s
V(z2) o G (=) Y (H2)i@)

Let us comment shortly on (IL.5) . The combination * & for the charges in this
formula is not an accident : actually in order to get a result different from zero

21



in any correlation function, vertex fields V. appearing in it have to satisfy the

following neutrality condition :
oa = 0 v (8)
i

We now examine what happens if (II.8) is not true : put the model in a box of

size R and then evaluate <V, Vg >, a+ao # 0 , by usual functional
methods.

Considering the exact expression for the two point function ( cfr. [IL1])

- _ _ R
<o) oz)> = 4log P (I1.9)

it turns out that

J ) S0 0@ Jiwe@) - Alo]
< V(@ V (Z)> = =
o o A

R 2(a + a)

- —_— (I1.10)
, g -doa’
| z-2'l

Therefore the correlator vanishes in the limit R - « , unless condition (IL.8)

holds , giving a+ao' =0 .

Having determined what are the primary fields of our model and their
conformal properties, let us proceed to consider the stress energy tensor and the
computation of the central charge. As usual, in what follows we shall neglect
the Z dependence in order to keep the notation as simple as possible.

An application of the Noether theorem gives the relevant component of

the stress energy tensor

oL 1
T(z) =T = - 0 = -—:00 00: 11
z S(B-Z(p) Z('p 4 Z(P Z(‘P

which is an analytic function of z .

From the Wick theorem we then get
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<T(z) T(z) > = %6— <:(ach)2: :(E)Z.(p)2:>

_ - 1__)4 (IL.12)
zZ-Z

i

and this yields finally

CCoulomb = 1 (I.13)

Formula (I1.13) shows that the Coulomb gas model may be obtained from

the series (57) as the limiting case m = e . Therefore , if we want to employ it

in the study of other models of the series of Friedan, Qiu and Shenker , we have
to find a way to shift the value of the central charge away from that of (IL13) .

We will see in the following section that this is possible by modifying , in

a suitable way , the boundary conditions at infinity of the field involved in the

model.

IL.2 Modified Coulomb Gas Model : a Charge at Infinity
In this section we shall define a Coulomb gas model with a conformal

anomaly different from one . In order to do that we have to introduce a charge

- 20y placed at infinity : as we'll see this results in a change of boundary

conditions of ¢(z) .
A first consequence of this is that neutrality condition in the form of (I1.8)
is no longer valid , but it has to be replaced by the following relation
Zi o, = ZOLO (I11.14)
and only those fields satisfying (I1.14) can have correlation functions different
from zero . As an example we can consider the two points function given in

(I1.10) : it becomes

1
< V(z)V (z) > ~ (I11.15)
o 20 o~ & 2(x(oc—2ao)
(z-2)

from which we see that conformal weights of the two fields V, and V,, _, are

23



the same
_ _ 2
hy = hogg = © — 2o, (I1.16)

. in such a way that V_ and V

o 2000 CAN be considered as a sort of conjugate

fields.

By virtue of (II.16) we see that also transformation law (II.5) gets

modified : since V, is a primary field in our model , (IL.16) implies that

performing a conformal transformation z - f(z) we must have

V(z) - (g—ff’ “% v (f2) (IL.17)
o Zz oL

Note that in order to get this result we have to change also the

transformation properties of the scalar field ¢ . This is not a primary field , and

we can recover (IL.7) simply supposing that

o(z) - ¢(f(z)) (IL.18)

under z- f(z) .

The case of (I1.17) is slightly less simple : we have to require that

oz) - o(f(z)) + 2oylog[f(z)] ~

~ (z) + &(z)d,p(z) + 2io, €(2z) (11.19)
in order to reproduceit. Infact , using (IL19) and (IL7), we have, under
z > {(z),

V(z) = o o(z) . (_d_f_)az ia[o(f(2)) + 2Ziay log £(2)] _
dz |
2_9 .
(L Jaetien, (T1.20)
dz

which finally yields (IL17) .

The main consequence of (II.19) is that it modifies the boundary

conditions at infinity of the field ¢ with the appearance of 2ioglog [f(z)] ,

and this fact give rise to a sort of improvement of the stress energy tensor , in
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which it appears a new term.

In order to see how it can happen , and to determine this new
contribution , we have to refer back to the very definition of the stress energy
tensor in a lagrangtan field theory ( see [11.14] ). Actually, if Wé consider the
variation of our action (II.2) under the infinitesimal version of (II.19) , we

find that it is given by two contributions :

with
£
I = 0. (ed.0) + 0-(ed_o) ] (I1.22)
1 8(8€(p) ¢ oo® 30:0) ¢ al
L = 6L (I1.23)

+ E
(P) § 6(8'& Q) &

Clearly the term given by (I1.22) concerns the usual relation (IL.18) , while

the second one is related to the introduction of the charge at infinity : if it was

zero , then I; would yield the conservation of a stress energy tensor as given by

(IL.11). Now by evaluating the functional derivatives of the lagrangian in (IL.2)

and performing some integrations by parts under suitable hypoteses on the

function & (which is always possible, since ¢ is arbitrary ) we get for I,
1 - 2
L o= 3 j dCd (2 (0] € (I1.24)
Combining this with the usual result for I, , and imposing

3A =0 (I1.25)
according to the conformal symmetry of the theory , we find that the stress

energy tensor gets modified as follows :

T(z) = (-1/4) :0,0 0,0: + i0,,9,%¢ (11.26)
in consequence of the presence of the charge at infinity.

Having worked out the form of the stress energy tensor for the modified

Coulomb gas model, we areready to compute the value of the central charge
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for it. As usual we are interested in the short distance expansion of the product

T(z) . T(z') , whose most divergent partis given by the terms

(1/16) : 9,0 9,0 : 10,0 0,¢: ' (I1.27)

‘and R '

- 0(02 10,20 1 0,29 (1L.28)

As in the previous computation , (IL27) yields the old result (IL13) ,

while the term (I1.28) shifts the central charge away from one . Contracting

fields in (I1.28) with Wick theorem and performing derivatives , we end up
with the following contribution to < T(z) T(z) > :

- 1202
" (I1.29)
(z-2)
Therefore the total conformal anomaly for the Coulomb gas model with

a charge atinfinity is given by

c = 1 - 2402 (11.30)
ocoth 0

This is the last result for this section : in the next one we shall see ,
while introducing integral representations for conformal correlators , how to
recover the series of conformal weights (I1.58) with this parametrization of the

conformal anomaly.

IL3 Screening Operators and Integral Representation for  Correlation

Functions.

In this section we shall show how the Coulomb gas model can be used
for the computation of the correlation functions : as a result we find that
they can be expressed as integrals of complex variables .

In order to keep contact with actual statistical models we work with a
charge -2a, at infinity and we make some requirements on the general
properties of operators V_, of the Coulomb model , so that they canbe

o
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identified with physical operators of the statistical system at hand each

time.

Let us start by considering a four-points correlator of some operator @ :

< cp(zl)cp.(zz)cp(zg,)cp(zéi); ‘(II.31)

We want to represent it as a correlation function of four vertex fields
<V V VvV V > (11.32)
[84 03 o o

1 2 3 4
which have to be suitably chosen according to the following requirements :
i) the correlator (II.31) must be non vanishing ;

ii) all the vertex fields must have the same conformal weight in order to

represent the operator ¢ with each of them.

Since we are considering a charge -2a, at infinity , condition i) implies
simply that charges in (I.32) have to satisfy the neutrality condition (IL14) ,
while the second one may be enforced only by using either V, or VZaD—oc
in (I.32) . In so doing we can easily see that any combination of V, and

Vza;a in (IL32) gives rise to a vanishing result.

A way to solve this problem could be constituted by the insertion in

(II.32) of an operator that do not spoil the conformal properties of the

correlation function andis able to cancel the exceeding charge carried by V,

and V,,_, S0 that we can recover the neutrality condition (IL14) . We will
[}

call such an operator a "screening operator ".
One of the properties of a screening operator is thatit must have a zero
conformal weight , in order to be a conformal invariant object : therefore it

has to be proportional to the identity operator and in our Coulomb gas
model this is represented by V,, and V_ _, . Unfortunately these two
4]

verices are not suitable for our aims , so that we are left with the possibility of

considering an integral operator of the following form :

Q = ff)dz J(z) (I1.33)
C
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with C being some curve in the complex plane .

Clearly the operator J(z) in (IL33) musthave h=1 , if we wewantQ to

be conformal invariant.. = - - e -

Since the only primary fields we have at hand are the usual vertex fields
V, , we have to impose the conformal invariance condition on their conformal
weights in order to see if an operator like Q actually exists or not. Indeed
the equation
- o2 -
hy, = o -2o00, = 1 (IL.34)

(cfr. (I1.16)) has two solutions

o, = ag £V a2 + 1 (IL.32)

+ 0

so that we can build up two screening operators

Q, - §m V) (IL36)
C

with all the required properties.

Thus operators Qg can be inserted in any correlation function (I1.32)
without affecting its conformal behaviour but altering the balance of the
charges.

Actually there is one more condition that vertices V, have to fulfill if

we want to represent correlators (IL.31) with (IL32) : this is the quantization of
their charge , which yields in turn a parametrization of the conformal weights
analogous to that found in (L54) when computing Kac determinants . We'll
see it as follows.

Let us consider the four-points correlator

<V, V.V, VZ%_ > (11.37)

[0

which has a charge surplus given by

Z o - 20c0 = 200 (11.38)
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We can easily realize that this can be cancelled by the insertion of a

certain number of Q, and Q_ operators if and only if the charge o is
quantized according to

[(1-ploy + (1-q)o]

oa( pa) " 5 (I1.39)

with p and q being some positive integers.

From this we learn that we can use only vertices V, for our purposes :
(pp
the magic is that these vertex fields have exactly the same conformal weights

as those of primary fields in a degenerate theory as examined in the first

chapter.

In fact , evaluating h, for V, wefind
(XY (N2

[ (po, + qo_ )Y~ (o + 0 )% ]
4

2
g - e (I1.40)

=20, %0

which , after short manipulations and taking into account (IL.30) , yields
precisely (1.54) .

We can therefore conclude that the Coulomb gas model may be used very
profitably to study correlation functions of primary fields in minimal models,
by reperesenting each field with a vertex of appropriate conformal weight
(I1.40) . Since we have to insert screening operator Qg inorder to get a non
vanishing result, we will express correlators as integrals of complex variables :

for example , referring back to the notation of the first chapter , we can have

< > _
(P(p.q)(zl) q)(p,q)( z,) q)(p,q)( Z3) (P(P,q)(z"f)

~ b dud duy b dvi.d dv, <Vo(2)V(2) Vol z) Vilzg) x
n 1 n eq) o e Go

x Vo () o Vo (v,) > (1.41)
- +
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On the other hand , correlations functions of primary fields satisfy certain
differential equations , so that what we are doing with (IL41) is just to give
the integral representation of the solution of an equation like the one given in
(1.60).The usefulness of relations like - (IL41) -lies in the fact that-correlators-of- -
vertex operators are indeed computable with standard methods as those giving
(L5) , (IL.10) or (II.15).

Let wus consider a particular correlation function as an example of what

we have said till now : look at

< (P(p‘q)(zl) @(1,2)(22) @(1,2)(23) (P(p'q)(Z4) > < q) > (]:[42)

According to (IL.41) this is given by

<0 > = §dv <V, (z) Vz) V(29 V(z) V,(v) >  (I143)
< X B B ¢ ) B X B

The multipoint vertex correlator reads as
20, o
< V(21 Vo (29) Vo (23) Vo (29 Vo (25) > ~ H (z-z) ' (1144
i<j

(cfr. [IL1] ) , and then we get

2 200 % 20 20 0 20 o
< b > ~ 7% (1) Gy D (L) @ (yog) + D (145)
C

after having performed a projective transformation z; -0 , z, » z , z3- 1,

Zy = oo

There are two independent ways to choose the path C on which perform
the integration (either from 0 to 2z or from 1 to e ), and this
correspond to consider one of the two independent solutions of the
hypergeometric equation , both expressed in integral form.

The integrals we obtain are

I1 = J dv v(v - 1)b(v -2)° = LD ICabel) F(-c,-a-b-c-1;-a-c;z) (11.46)
1

I'(-a-c)

and
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Lrare L @FDICH])
I'(a+c+2)

YA
L = J. dv v(1 - V)b(Z -v)° = F(-b,a+l;a+c+2;z) (11.47)
0

with F being the hypergeometric function.

Thus < ¢ > may be given a a combination of hypergeometric functions,
and therefore it has all their singularity problems.

In the next section we shall consider them , and in particular we shall
study the single valuedness of conformal correlators : as a result we shall see
that monodromy properties of correlation functions will help wus in their

actual computation.

II4 Monodromy Properties of Conformal Correlators

In chapter one we have seen that conformal symmetry allows us to get
correlation functions of primary fields involved in a statistical model as
solutions of certain complex differential equations . We have then to expect
that such functions will be affected by some polydromy problems , as it
happens , in general ,in complex differential equations' theory (see [IL5] or
any other standard textbook ). The Coulomb gas approach provides a straight
and neat way to handle those problems : we shall treat them in a particular
example and their study will allow us to find the explicit form of a correlator ,
up to some constant.

Let us consider the following correlation function

< (p(pl,ql)(()) (P(Lz)(Z) (P(p3.q3)(1) (P(p4'q4)(oo) > (1148)

which , according to what we have found in the last section , is represented by

the integral

1 2 3 4 +

J'dt < Va(O) Va(z) Va(l) Va(oo) Va(t) > =
C

200 o 20, ¢, a b c
= z '?(1-z) *° f dt t (t-1) (t-z) (IL.49)
C

31



where o, = oc(H'q) are given by (IL.39) , a, = Oppoy s and , according to

(11.44) ,

a = 2,0(110('+ b= 20‘30‘+ . G = .ZMQZQL.*.-.HM.. - (I1.50)

4

As before there are two independent choices for the path C , given in
fig. 1 , and the integrals we have to consider are exactly those in (IL.46) , (11.47)
(with a, b, and c asin (IL50)). The correlator (I1.48) is then expressed as
a linear combination of the two integrals , but if we want to consider a
physical correlation function we have to restore alsothe Z dependence ,
neglected till now. By the factorization property of the conformal group
outlined in the first chapter , this simply amounts to multiply the results
obtained with their complex conjugate. Therefore the physical correlator we

are interested in may be written as

2
G(zz) = Z X; L@ L@ (IL.51)
ij=1

with X;, being some coefficients.

T 1 od >
0 2 4
[} Zz 4

fig. 1 : independent paths of integration in (II.49)

A characteristic feature of any physical function is that it has to be single

valued and we'll make it sure by working out appropriate conditions on
(IL51).

We know that I; and I, have singularitiesin 0 , 1 and o : if we

perform an analytic continuation of them along some path Cj, or C

surrounding 0 or 1 , they will in general change their values. The new
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where o = % q) are given by IL39) . o = %q,2) 7 and , according fo

3

(11.44) ,
a = 2000, b = 2050, - ¢ = 20,0, T (1L.50).- - -

As before there are two independent choices for the path C given in
fig. 1, and the integrals we have fo consider are exactly those in (1146) , (11.47)
(witha,b, and ¢ as in (IL50)). The correlator  (I1.48) is then expressed as
a linear combination of the two integrals , buf if we want to consider 2
physical correlation function we have to restore also the Z dependence ,
neglected till now. By the factorization property of the conformal group
outlined in the first chapter this simply amounts to multiply the results
obtained with their complex conjugate. Therefore the physical correlator we

are interested in may pe written as

2
G(zz) = 2 X, L@ L@ (IL51)

-

fig. 1: independent paths of integration 1nt (11.49)

A characteristic feature of any physical function is that it has to be single
valued and well make it sure DY working out appropriate conditions on
(IL51).

We know that 1y and 1, have singularities in 0, 1 and oo 1 if we
perform an analytic continuation of them along Some path  Co ©OF Cy

surroumding 0 or 1 they will in general change their values . The new
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functions we get , however , are still solutions  of the same differential
equation and so0 they are a linear combination of the old ones . In short, we
may summarize the situation as- follows -iv-- -

i) if we continue along Co » then Ii(z) is transformed into

2

= 0
L (z) = Zl &; Ij (z) (I1.52)
ii) if we continue along C, then IL(2) becomes

2

i > g 1) (IL53)

i=1

i

( see fig.2).
Matrices g0 gl in (I1.52) , (I1.53) are called " monodromy matrices "
and generate the monodromy group -

In our case we can determine g0 by direct inspection of (I1.46) and (IL47):

continuing around 0 wesee that I; remains invariant , while I, acquiresa

phase factor e2in(1+a+c)  Therefore g0 is given by :

6 1 0
& : (11.54)
0 e 2in(l+a+c)

This diagonal form forces G(z,2) in (IL51 tobe diagonal too , if we want

Il

to mantain it single valued :
G(zz) = X L@I(z) + X,1,(2)1,(2) (IL.55)

fig. 2 : continuation paths around 0 and 1.
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For what concerns gl , we have to resort to the following expansion of
L(z) in terms of IL(1-z) (cfr. [IL1])

2 . . U A

Ii(z) = Z Bik Ik(l-z) (I1.56)

k=1

which has the advantage to turn also g! into a diagonal form. From (IL55) we

then get

G(zz) =

M

X, By By L (1-2)L(1-2) (IL57)

b

ik =1

so that if we want G to be invariant also under g1 we have to require that
2

D, X BuBy = 0 ik (11.58)
i=1

This relation , in turn, allows usto compute the ratio X;/X,

_ B22 BZI
B11 BIZ

(I1.59)

Railte

Thus we are left with the problem of determining the coefficients  B;
and this is done by determining in which way the path of Ij(z) may be

deformed into that of Ij(1-z) . Hence, these appear with some sine factors

in front, and the final result is

B. B 1 sin(na) -sin(mc)
B = [ 1t ] = — (IL.60)
B B sin[ n(b+A)] \ _gin[n(a+b+c)] -sin(xb)
12 2
with a , b and c given in (IL51) . Therefore the ratio (IL.59) is
X . .
M sin [r (a+b+c)] sin (nb) (L61)
X sin (na) sin (nc)

and finally (IL55) gives
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G(z72) ~ sin(mb) sinln (at+b+e)] 11(z) 17 + sin(ra) sin(ne) 11(z) 17 (L62)

up to some constant.

This is the announced result and ends our analysis of the Coulomb gas
approach to conformal symmetry . Of course methods and results outlined
here may be generalized in order to consider more complicated situations , as
is done in [IL1] and [IL.6] . Furthermore , applications to actual two
dimensional statistical models lead to interesting results concerning critical
indexes , as in the case of O(n) and Potts models (see [IL.1] and references
quoted therein) . These features go far beyond the aims of the present work,
so we have limited ourselves to describe in general the Coulomb gas model
as a useful and profitable way to employ conformal symmetry concepts in
actual computations.

In the next chapter we shall survey some features more closely related to .
lattice statistical mechanics , and in particular we will describe a method for

evaluating the conformal anomaly in a statistical system.
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Chapter III : Statistical Mechanics in a Finite Geometry

~ Introduction and Summary

As we already pointed out in the first chapter, conformal invariance is a
richer symmetry in two-dimensions than in any other case, and therefore allows
for considerable improvements in the study of two-dimensional systems.

One such improvement is constituted by the possibility of relating the
behaviour of a statistical system in a finite or semi-infinite geometry (like, e.g., a
torus, a strip or the half plane) to that of the same system in the infinite plane
through a conformal transformation of coordinates (see [IT1.1], [IIT.2], [1.4]).

In particular , this correspondence is very useful when considering finite
size scaling in two dimensions, allowing, for example, the computation of
surface cirtical exponents for a wide class of models (see [I.4] and [IL.2]).

This chapter will be entirely devoted to the study of statistical systems in a
restricted geometry , which allows us to enforce modular invariance for their
partition function and hence to determine the model operator content. Besides
that, one can stress, as a main consequence of conformal symmetry in a finite
configuration, the interpretation of the central charge of a statistical model as a
finite size scaling correction to its free energy , thus relating, in quantum field
theory context, the conformal anomaly to the Casimir effect ([III.5]) .

We will start by studying conformal invariant theories in the upper half
complex plane : this is intended as an introductory exercise , since we will show
which modifications arise in the conformal symmetry machinery of the first
chapter as a consequence of finite geometry . In particular we'll find that the
factorization of the theory into analytic and antianalytic parts is no longer valid,
and hence we'll be forced to slightly modify conformal Ward identities. In so

doing we change also , in a very natural way, differential equations for

correlators of primary fields : for example , in the case of a scalar primary field ¢,
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it turns out that the correlation function < @©(z{,2;)..... ¢(z,Zy) > in the half

plane satisfies the same equation as < @(z1,Z7)..... (255, Zopy) >  in the infinite

plane considered as a function of z; only. As we will see in the case of Ising

model this leads to the correct surface exponents.

As a subsequent step we'll illustrate in detail the concept of modular
invariance for the partition function of a statistical system put on a torus : this
idea makes finite geometry so interesting , because it allows to study the number
of primary operators of the related conformal algebra. In short , the situation is as
follows : if we consider a model put on a parallelogram of sides 1,1 with

periodic boundary conditions, its partition function Z(1,1') can be decomposed

into a sum containing characters , %(3) , of Virasoro algebra , the ratio &=1/1' ,
and the number of primary conformal operators of the theory A{p,q;P,qj), where
p.qP,q are integers parametrizing c¢ in (1.57) . Enforcing modular invariance
on Z implies
Z4r)y = Z«aT,D

and this gives a non trivial constraint on the number A , which may be
interpreted as an eigenvalue of a certain matrix. This eigenvalue problem is not
solved in the general case : available solutions concern very simple models and

give their operator content. As an example , we will consider the Ising model,

finding again its operators 1, € ando.
In the last two sections we shall be concerned with statistical models on an
infinite strip of width L : rewriting conformal Ward identities for the partition

function in this geometry, one can derive the conformal anomaly as a correction

of order 1/L to the free energy in the limit L-e. Thus, one has an alternative
way to compute the central charge for a statistical model : instead of evaluating a
short distance expansion for a stress energy tensor , one has to know the

expression of the free energy of the model in the strip, and then study the limit

L - e . This is explicitly done still in the case of Ising model, for which we know
the partition function and the free energy on the strip , for example from its
grassmann variable formulation ([IIL.3]) , but this method may be very well

suitable for any two dimensional model whose free energy is known , and in
37



particular for those whose conformal anomaly has not yet been computed. Work
in this direction is in progress ( [1I1.19] ) .

Let us then consider conformal symmetry in a half plane.

‘L1 Correlation Functions ina Seémi-infinite'Geometry
The results of chapter I concerning conformal invariant systems in the

complex plane may be easily generalized to the case of the half plane. Let us

consider a theory whose operators ¢(z,Z) live in the upper half plane Im z>0: in
order to keep the geometry, conformal transformations have then to be limited
to the real analytic ones, i.e. to those satisfying
fz) =@ (IL.1)

Consequently the factorization between analytic and antianalytic
components of the stress energy tensor is no longer valid: on the contrary we
have to extend the definition of T also on the lower half plane, and we do that by
posing

T(z) = T(z) for Imz <0 (1I1.2)
With these restrictions, and relabeling the complex conjugate z with z' , we

may write down the conformal Ward identities for the half plane: in the case of a

multipoint function of a scalar primary field ¢(z,z) we have

)
ﬁ ok
%
[e]
m
—~
N
~
A
~
~
N
N~
S
-~
N
=
N
.
~—
\%
+
g~
.
—S
ol
Q.
N
N
N
~
A
=
2
S
=
N
N
-~
%
|

(II1.3)

having considered an infinitesimal transformation z — z+&(z) and integrations
contour C and C as in fig. 1. It is easily seen that the parts of C and c
neighbouring the real axis give zero contribution if T = T for Imz=0, and indeed
this is the appropriate boundary condition on the stress energy tensor in our half
plane configuration. Therefore, integrals in (IIL.3) can be joined together and

evaluated on a larger circle surrounding z; and z';: the net result is that
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' — h 1 a
< T(z)(p(zl,z1 ) e > = [zi[(z_sz + Z-Zl' aZi ]+
h 1 9 \
+ [—————2 + = _az; 1} <o(z,z)) ... >

(IL4)

having resorted to Cauchy representation for € and €' as usual. The rest of the
analysis goes through in the same way as in the case of the infinite plane, so that

comparing (IIL.4) with already known results (see (1.32)) we are left with the fact

that the correlator <¢(zy,Z;) ... ¢(zp;,Zpy) > as a function of z;, z; satisfies, in the

half plane , the same differential equation as that of <¢(z1,Z;) ... §(Zonp, Zopp) > in
the infinite plane, considered as a function of z; only. Let us consider a four

points function in the infinite plane

GW = < ¢(zy) 0(z,) ¢(z3) @(z,) > (IIL.5)

fig. 1: integration contours for (I11.3)

According to the early results of Polyakov (see [1.2]) , (IIL.5) is constrained to

be of the form
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e

zZ.. 7z

4 13 %24 21

G» = )™ F(E)
219293 Z34 214

having put

and

Z.,Z
12734
E=

Z13 %4

(I1L.6)

(I11.7)

(1I1.8)

If the field ¢ is degenerate at some level, then GW has to satisfy a

differential equation which, thanks to (IIL.6), is a differential equation for F(E)

with regular singular points at § = 0,1,.e. We can determine the behaviour of F in

a neighbourhood of £ =0 (*) by resorting to a short distance expansion of the

field ¢, which reads as follows

P(z,) (z,) ~ 2 ¢ (277 T P2y )

Substituting it in (IIL.5) we have

2h +h
Y~ z ¢ (z,-2,) 7 9(z)

and we see that the allowed exponents in

F(E) ~&* £E—=0

are o= hk

(I11.9)

(01.10)

(IL.11)

(1IL.12)

hy being the scaling dimension of an operator appearing in (IIL.9}. If we now

(*) similar considerations may be carried on also for § = 1,e.
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consider the two point function in the half plane,
GY = <o(z,z,) ¢(z,7) > (IT.13)
... this has to be of the form

(21'21)(22‘22)

*"E(E) (IT1.14)

S

G(Z) = 1 2
’ (z,-2)(z,-2) (2 -2)(z -2)

where now

(z -2,)(@z -2,)
i B (II1.15)

(z-2,)(z,-2,)
Thanks to the above considerations, for F (£) we have the same results as

for F(§). Let us take as an example the two points spin correlation function in

Ising model: in this case the operator algebra is (see sect. 1.8)

6o~ [I]+[g] (IIL.16)
while
h,=1/16
h,=1/2 (IIL.17)
hy=0

From this we get

GS) = < of 21,52) o( 22,52) > =
- - 1
(z,-z)(z,-2) ry
= B 1 F (&) (I1.18)
(z-2)(z,-2,)(z,-2)) (2, - 2)) °
where
Iz —zzl2
1
= - <0 (111.19)
: 4y, ¥, <

in this case (we have put z;=x;-1iy; ).
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Let & ——co with y, fixed, thus giving |x;-x, | —ee: assuming F(€) ~ €™ from

(I11.18) we get
@, = = 1
Gc ( 2,2, zz,zz) ~ g (I11.20)
Eooe | X -, ]
and since in this limit we have § ~ - I x;-x, | 2 the final result is
@, = - 11220
G0 (zl,z1 , 22,22) ~ I x| =X, ! (II1.21)

IX; -%g =00

The allowed exponents a in (IIL.21) may be determined form the algebra
(II1.16). An argument similar to that leading to (II1.12) shows that we can have

only
oy = -4h + hy (I11.22)

where k refers either to the identity I or to the energy operator €. Therefore we

have the two solutions

oy =-1/4 (II1.23)

o, =1/4
Since the two point function G® has to vanish in the limit we are

considering , oy is ruled out and we are left with

c® ~ Ix,-x, 17 (I1.24)
[e)

1x) - %yl = o0

that thus determines the critical index mn, for the Ising model (see [II1.2], [1.4])

M, =1 (ITL.25)
which agrees with known results (see [1.4]).
This example shows how conformal invariance, recast in a finite geometry

context, may be used to compute surface critical exponents.
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In the next sections we shall consider a restricted geometry and show how it

can be used in order to determine the operator content of a conformal theory.

IIL.2 Unitary Conformal Theories in a Restricted Geometry

In this section we shall be concerned with a statistical system put on a

rectangle of sides ¢ and ¢' with periodic or toroidal boundary conditions. It is
known (see [II1.1]) that the partition function for such a system can be given in

A
terms of a transfer matrix H as follows

Z(0.9) = Trlexp(-0H)] (ITL.26)

This result can be extended to the case of a parallelogram by considering a

complex ratio /%' (see fig. 2): in both cases enforcing the requirement of modular

invariance

Z(0,0") =Z(2',2) (I11.27)
we obtain useful constraints on the transfer matrix H, which allow to determine
its eigenvalues and their degeneracy, and therefore the operator content of the

theory we are considering.

fig.2 : rectangle and parallelogram with toroidal boundary conditions
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For the moment we will study the case of # and #' both real and , as a first
consequence of modular invariance, we shall show that a unitary theory with a
finite number of primary operators must necessarily have

’ S o4 SRR C e : . .(I11.28)
and therefore fall into the classification (1.57) of Friedan, Qiu and Shenker.

Let us consider the theory given by the partition function (IIL.26) in the

limit 2 ,0'— o with & =0 /0 fixed. We have to resort to a complete

N
orthonormal set of eigenstates of H with energy E, in order to evaluate the trace

in Z(©,2" ,and we obtain

-2 (B -Eg)#"
Z000) = e Y e (I1.29)

n
The particular way in which we have rewritten the partition function

permits to employ the relation between the ground state emergy E, and the

central charge c (see [11L.1], [IIL.5], [IIL6]) which holds in the limit under

consideration and for our toroidal boundary conditions

By~ f2 -, 8,2 e, 8 fixed (IT1.30)
62

f being the bulk free energy per unit area. As a consequence of that , the

partition function becomes

(-fA + mcd/6) 2 [-(E,-Eg)e']
e e
n

Z(e2) = (L.31)

A being the area of our rectangle.

Let us examine the expression we have obtained so far: in the sum only

those energy gaps going like 971 can contribute in our limit. The same
hypotheses leading to (I11.30) allow also to show the following expression for the

energy gaps

E -E = 2mxn (IL.32)

© i
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where x,, are the anomalous scale dimensions of conformal fields corresponding

A
to E -eigenstates of H (see [II1.1] and [IIL.2]). By virtue of (II1.32) we have that all

independent conformal scaling operators will contribute to the sum in (IIL.31)
and therefore it can be recast according to the various conformal families,
summing over the ancestor and descendants secondary fields of level (N,N) in

each of them. At a given level (N,N) in a family, the operators have the form

(I.29), and hence their number is P(N)-P(N) , if P(n) gives the number of
partitions of n into positive numbers.
This observation allows us to give an upper bound on the partition

function (II1.31). In fact, since any term in (IIL.31) is positive in a unitary theory,

and in general not all the P(N)-P(N) secondary operators are really independent
(recall the degenerate cases), the contribution from one conformal family of scale
dimension x is certainly less than or equal to

e('mN,NS)Z P(N ) P(N ) e[-21r(N+N)8] (I11.33
N,N

Xy being given by

XN,FI = x + N + N (111.34)

(cfr. (1.31)). At this point, it can be easily shown (see [IIL.1]) that the sum in (IIL.33)

is equal to [1/f (§)]2 where

oo

() = ] - (IIL.35)

n=1

(f -1 is called the "generating function" for P(N)) and this finally yields the

desired upper bound on Z(¢,2'):

- c R 2nx_ 8 )
Z(o0) < T gt Y e (IL.36)

primary
operators
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Xp being the anomalous scale dimensions of the primary fields in the theory.

This bound , along with the requirement of modular invariance of Z which we
now impose, permit to prove that if the number of primary operators in the
theory is finite, then c has to be strictly less than one. According to (II1.27) it
must be

Z(8) = Z@Eh (IT1.37)

substituting & with 51 in (IIL31) we can easily get

_ : 5 (- 2m0, )
Z(5ly = LTATTRO N (I11.38)
n

let us consider now the limit 8 — 0: then only the identity operator with X =0

will contribute in the sum, giving

-fA 68
e(f + 7c/6d)

Z( &) (I11.39)

8- 0

In order to enforce condition (II1.36), we have to study also its limit for
3 —= 0 : thanks to an inversion relation for f(§) (see [IIL.1]) which relates its &
dependence to 51 one ,

1
(8) = &2 TR g5y (I11.40)
and since

F(8hHy  ~ 1 (IIL.41)
8§-0

the Lh.s. of (IIL.36) takes the following form in the limit 6 — 0

e TATHE N g (IIL.42)

primary
operators

Therefore, if A is the number of primary operators in the theory, (I11.39)

and (I11.42) yield

(-fA + mc/6d) (-fA + T/65)
e e

< NS (11.43)
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which holds in the limit 8 — 0 . Now simple algebraic manipulations lead to

exp[n(c-1)/68] < A-d (I11.44)

in the limit 8 — 0 : since an A/ finite makes r:h.s.-vanish in- the limit ; also Lh.s. - --

has to go to zero, and this can happen for 6 — 0 if and only if
c<1 (II1.45)
which is the desired result. This implies that for a theory with a finite number of
primary operators, ¢ must be given by (1.57).
In the next section we shall dwell further on the implications of modular
invariance of the partition function in a restricted geometry: in particular we will
see how it can be used for determining the content of primary operators in a

given theory.

1.3 Operator Content of a Conformal Theory
Throughout this section we shall consider a unitary theory with a finite
number of primary operators (which therefore satisfy (III.45)) put on a

parallelogram with toroidal boundary conditions (see fig. 2). The new shape may

be obtained by considering £' as a complex number, while the partition function

I N
is written with the aid of the trasfer matrix H and the momentum operator K
(see [IL.1]):

A A ,
Z(0,8) = Tr[eHReR" giRIme'] (II1.46)
N ~
As before, taking a complete orthonormal set of eigenstates of H and K we
obtain
; [-E,Re' - ik,Im2"]
Z(09) = TATTERBO N SRR (II1.47)

n

Examining the sum in (III.47) we see that a conformal operator of scale

dimensions (h,h) will give a term exp[-2rn(hd+hd*)] and therefore the

contribution of each conformal family will be of the form
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x(S).-i(S*) (I11.48)

where

(8 =, AmN)elTmME™d (g9
N

The quantity %(8) is called a character, and since it gives the contribution of
a conformal family it pertains to a certain representation of the Virasoro algebra:
therefore it may be denoted by % D q(8) resorting to the notation of Chapter I; the

number d(N) simply gives the possible degeneracy of an operator at level N.

Characters %o q(6) are actually given by the following formula (see [IIL.1], [II1.7])

Xpq® =L@ gp, o) (IL.50)

8p,q

where £(8) is given in (III.35) and gp’q(S) is

N 21d
8,® = k;o [exp{-zrﬁ(—“m——l)- [ (2m(m+D1)k + (m+1)p - mq)*- 11} +
-{q--q}1 (I11.51)

Therefore, if A{p,q:p,q) is the number of primary operators with conformal

weights h Bf) 3 (cfr. 1.58), for the partition function in (II.47) it turns out

pP.q’

- ¢ Red — - -
2000y = TN R gD %y ® 2z -6 (I.52)
pP.4:P.q

where the indices p,q run in the domain

1<g<p<m-1 (III.53)

m being the integer which parametrizes c in (I.57).

The form (II1.52) for Z(2,2') is very well suitable for enforcing modular
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invariance requirements: these will translate in some constraints on the

numbers A{p,q;p,q) which will be given in the form of sum rules. An application
of Poisson's formula to gplq(ﬁ) brings & to the denominator of the é§ponentia1 in
(IL.51), and further employing the inversion relation (II1.40) we get the

dependence of Z(#,¢') upon & as follows

N (fA+7tcRe§‘1/6) 217 Hi? _
Z(e,0) = m(m+1) ZMp,q,p,q)
P.@iP,q

71‘(r -1) e
25m(m+1) . ITp . ITq '

[rzw sin( = ) sm\mH) ]
) 'It(r -1) o

[2 ) g TP p) sin(—1) ] (IL54)

T =-00

On the other hand we can work out the expression of Z(#,¢") = Z(8™) just in

the same way as that of Z(¢,¢') = Z(6) , obtaining

-1
Z(B-l) _ e(-fA +7cRed” /6) Z Mp,q,r_),(_l) .
P.aP.
[ Z {exp (- ———— [ 2m(m+Dk + (m+1)p-mq)2]) (-l ]1-
K= oo 8m(m+1)

+ oo
1), (858 , k> E , p- D, q- qll
k=-oco

(II1.55)
Modular invariance then requires that (II1.54) and (IIL.55) have to be equal ,

and comparing powers of exp(1/3) and exp(1/6*) we get conditions that have to
be fullfilled by numbers aUp,q;p,q). For example, the leading terms
corresponding to r=T=+1 in (IlL.54)andto k= k=0 , P=q=p=q=1in
(IIL.55) yield the following equation:
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2T 1 P C I
2 Ap,qp,9) sm sin — 1 Sin sin —7 =
P.aiP.q

_ 8
m{m+1)

= AL = 1 (II1.56)

since the identity operator can appear just once in a given theory. Actually the
number of constraints we get for A{p,q;p,q) is not infinite, as it may seem at first
glance, and this is due to the particular structure of the sums in (III.54). In fact,
thanks to the presence of sine factors, r and r such that

_ 0 mod m
(I11.57)

0 mod m+1

will not contribute to it, and this allows to reparametrize the sums by putting
(see [I11.1])

2 = (2m(m+1)1<'+(m+1)p'—mq'):Z (I11.58)
with 1<1q' | <p'<sm-1. If we substitute (IIL.58) into (II1.54), we express it in the same
form of (IIL.55): consequently the sums over k in (IIL.55) and those in (IIL.54) may
be eliminated and we end up with a finite number of conditions on A{p,q;p,J) :

2 Np,gpg) (-1)FD @D+ P+ P+a)

P.4:p.q

o EPP o mqq s o WpP, Mgy _
sin( - ) 5m(m+1) sin( - ) sm(m+1)

m(m+1)

3 A6p'.,q5p.q) (I11.59)

The set of equations thus obtained, indexed by integers (p',q"; P',q") in the
interval (III.53), may be interpreted as an eigenvalue equation in the form

MAN = N (IT1.60)
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where M may be thought of as a direct product of two matrices, has a total

number of [(“2)m(m-1) x (*2)m(m-1)]% elements correspondlng to the p0551b1e

P L T PSS N

values of p and q's in (II1.53), and is given by

M(m) _ 8 (1 )P+ @)+ () ()
Pq m(m+1)
P.q,

»DIJD

P
P

. sin(lt-&E—) sin(%) sin(npp) sin(nqq )
m m+1 m m+1
(I11.61)

Solving equation (IIL.60) is a very difficult task, and yet a general solution
for arbitrary values of m is not at our disposal (see [IIL.1]). The best one can do is
to study for the lowest m values, being helped by some simplifying observations
pertaining the case under consideration. In the next section, as an example, we
shall work out in any detail the solution for the simplest case m=3,

corresponding , once again , to the Ising model.

1.4 Operator Content of Ising Model: an Application

First of all, let us make some general requirements which hold for any
value of m, starting from the fact that the eigenvectors we have to find must be
constituted by non negative integers. Furthermore, the particular boundary
conditions we have considered from the beginning (i.e. periodicity) imply that
there may be only integer spin operators, the others being excluded: we shall
comment again on the influence of boundary conditions at the end of this

section, and for the moment we put

Np,q;p.q) = 0 unless hp,q - hfn.a e Z (IL.62)

Finally, reality of partition functions yields

Mp,p = Np.gp.q (IIL.63)
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With these remarks in mind, let us now consider the case of an Ising

model, ie. m=3 . Conformal weights are given as usual by Kac formula (1.58)

R - (p - ‘1‘3 - ! (TL64)
with p=1q=1 (I1L.65)
and p=2q=12 (I1.66)
(and respective formulas for Bﬁf{)' and therefore the possible values are

( hy, = El,l =0
i hy =k, =% (IIL67)

h,, =H272‘ =1/16

from which we see that the only integer spin operators that can be present in the
theory are the scalar operators.

Substituting m=3 into (III.61) we get the matrix we have to study in our
case: this is

1

MO o 2 )eRER e e
Paipd 3
P.q:PLq

. mp'py . mqq, . Wpp'\ . 7©qq
. sin( 3 ) sin( 1 ) sin( 3 ) sin( n ) (01.68)

Enforcing the constraint (II1.62), we have to consider only those values of

indexes which give rise to scalar operators, and hence we have to put
pP=p.,q=q (I1.69)

This condition reduces M® to a simple 3x3 matrix as follows
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;L1 L1; 2,1 1,15 2,2
L1; L1 L1 ;21 11522
3 3) 3 3
M - Mot M31sa M31:22 - (IL70).
2,1; 1,1 2,1 ;2,1 2,122
3) 3) €
Mo 11 M2 M32:22
2,2;1,1 2.2;2,1 2,2;22
and also gives at once A{p,q;p,q) in the form
Mp.gpd = Ap.gpg (IL71)

consistently with (IIL.63).

In order to determine A we relabel the multi-index (p,q;p,q) in a way

suggested by the form of M® itself (see II1.70): let us put

(p.epQ = =123 (IT1.72)
so that

1,L1L,D=1 @L2)=2 (2222)=3 (II1.73)

This yields #’as a three-component vector
N = (N1 ’ N2 p N~3 ) (I11.74)

and also relabels the matrix M(?); for example

The various components of M) in (IIL.70) are computed by simply
replacing the corresponding values of p,q, p',q' into (IIL68) , and the result is

1

3 1 1
= 1.7

M 4( 5 ( 5)

N ==
oNN
S’
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Therefore the eigenvalue equation (IIL.60) is, in the case of Ising model,
{112y /N N,
L) (R - (B 7o
4 \220 N; Nj
and this yields the following linear system

4N1 = N1 + N2 + 2N3
4N2=N1 +N?_+2N3 M1.77)
4N3=2(N1+N2)

which finally gives A(as
AN=Nq (1,1,1) (I11.78)

In order to determine N; we have to know the operator content for some

index in the Kac table (1.58) : since a=1 in (IIL.73) corresponds to the identity
operator we have

N;=1 (I11.79)
and hence

AN=(1,1,1) (I11.80)

Taking into account condition (III.71) and the relabeling (II.72) we can

easily conclude that for the Ising model

D0 = & -8 - 111.81
ANp,q:p.9) 58 ( )

in agreement with (II1.63) and (IIL.62).
This result is consistent with our previous analysis of chapter I, in fact it
simply means that the allowed operators are the identity, the energy density and

the magnetization which are all scalar operators (cfr.(I.75)).

54



For what concerns higher values of m, as we already mentioned, a general
solution does not exist. Nonetheless it may be shown (see [IIL.1]) that (IL.81) is a
solution of (II.60) for any m, and Cardy (see [III.1]) has been able to solve (II1.60)
up tom =5 tﬁus determining the operator content of the tricritical Ising model
and 3-state Potts model. As a final observation on (III.81) we note that the
eigenvalue equation (III.60) is a much more fruitful constraint than the

requirement of the closure of the operator algebra: in the case of Ising model the
algebra actually closes by considering just I and € (see (1.76)) but from (IIL81) we

see that the theory, to be consistent, has to involve also the magnetization .

The whole analysis we have exposed here has been based on the
assumption of periodicity at the boundaries of the parallelogram in fig. 2.
Actually other boundary conditions may be considered, and they obviously affect
the operator content of the theory. Cardy [II.8] has analysed completely all the
various cases of boundary conditions, pertaining the symmetries of the statistical

models considered, such as antiperiodic for Z, models, cyclic and twisted for

3-state Potts model and so on. Rewriting the partition function with these new
conditions (see also [IIL.9]) it is easy to work out the corresponding sum rules for
Ap,q;P,q) in the form of (IIL.60) and then determine the operator content. A few
simplifications may occur in some cases, and it can be seen that in a given sector
each model can use only a subset of the allowed dimension in Kac formula (I.58)
(for the complete list of results refer to [II1.8]).

In the next section we shall concentrate once again on the determination of
the conformal anomaly: this time we shall obtain it from finite size geometry
considerations, and this will enable us to work out a relation valid also for

models in which it is not possible to define a stress energy tensor.

L5 Conformal Anomaly as a Finite Size Effect
In this section we shall consider as usual a statistical system in a restricted

geometry , namely an infinite strip in the complex plane, and we will give a
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relation between the free energy of the system and its conformal anomaly ,
resorting to some finite size scaling results.

Let us consider the strip of fig. 3, with width Lz, in which we impose
-~ periodic boundary-conditions on the edges at + Lx /2
This makes it a cylinder, and the coordinate transformation taking z in the

plane to w in the cylinder is given by

w=- _15[: log z (I11.82)
or
2iw
z=exp () (IIL.83)

Note that limiting (II1.82) to the principal branch of the logarythm, they
give the proper transformation for the strip in fig. 3 with cylindrical boundary
conditions.

For what concerns the stress energy tensor, its expression in the strip may
be worked out with the aid of the finite version of (I.14): T(w) in the strip is

given in terms of T(z) in the plane by

dz 2 C
T(w) = T(2) (E) + izw) (I1.84)

b’hxﬁl"' '

- Lwy LR/L Re wr

Fig. 3: Infinite strip of width Ln  with periodic boundary conditions
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where

z"(w) 3 z"(w)2
N 5,(zi(w>) . (I11.85)

{zw} =

After a little algebra we obtain

4 C
TS(W) = - ? (T(Z) - ﬂ) (HI.86)

Since we can have (see [II1.5])
<T(z)>=0 (I1.87)
in the plane, it turns out that

<T(w)> = —C; (111.88)
6L

Therefore even if we normalize T in order to make it vanish in the plane, it is
surely non zero in the strip (cfr.[IIL.5]).

Let us now examine which form is taken by conformal Ward identities in
our geometry. Instead of considering them in the form (I.5), where they are
written for a correlator of some field, we study the Ward identity for the partition

function itself, that in the strip reads as
2 AY =
8 log Z - | d?w <TMV(w)> 3, (w) =0 (I11.89)

€ being an infinitesimal transformation and Z the partition function of our

system. The integral (II1.89) is considered as given by

Lxn/2 M/2
szw = J- dw, _[ dw, (ITL.90)
s -Ln/2 -M/2

and afterwards M will be let go to infinity.

In the case of an infinitesimal dilatation of our strip
L—({1+A)L (I11.91)

with 8L = A-L, it turns out that
0¢€ = Ad o (111.92)
[TRRY
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and

dlog Z
oL

6 log Z = AL (I1.93)

Substituting (I11.90), (IIL.92) and (TI1:93) intothe conformal Ward identity (II1.89)

we obtain

Lr/2
dlogZ 4 J. dw, J dw, <T.W)>A = 0 (I1.94)
oL Lm/2  -M/2
From (1.9) and (IIL.88) it is easily seen that
1 - —
<T:1(w)> = = (<KTW>+<TW>) = <Tw > = —
2 5 s s 2
6L
(II1.95)
and plugging it in (II.94) we have
Ln/2 M/2
610g Z
J. dw, J‘ dw, — A = 0 (I11.96)
Lm/2 -M/2
Carrying out the integrations, this finally yields
SogZz op - 4 - o (ITL.97)
oL 6L
which gives
dlog Z ctM
g - > (I11.98)
oL 6L

Let us now define the free energy per unit length of the strip as

F(L) = -lim (———-) log Z (I11.99)

m - oo

and let us combine (I11.99) with the result (II1.98): we get

o F(L) CTt

_— - .= (11.100)
oL 6L2

In order to determine F(L) we have to integrate this expression between L

and oo , thus obtaining
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Feo) - F(L) = = - . Z (I1.101)
6A 'L 6L

The finite size scaling hypothesis (see [IIL5], [IL.11]) gives the following
form for F(es) in the case of periodic boundary conditions:
F(e) =f, L (IT1.102)

f, being the free energy per volume . Therefore the final result is

(L) = £,L + = (II1.103)

This is the desired equation, which gives the conformal anomaly as a finite
size effect in a statistical system. Relation (II1.103) has been worked out here in
the assumption of periodic boundary conditions on the edges of the strip, but our
considerations hold true also in the case of other type of conditions, leading to a
slightly different result (see [IIL.5]).

Furthermore, the correspondence between the free energy and the ground
state of the hamiltonian corresponding to the infinitesimal transfer matrix of the
system (see, e.g. [IIL.10]), allows us to interpret the central charge as related to the
magnitude of a Casimir effect in a (1+1)-dimensional quantum field theory (see -
(OL.5]).

The relation we have found may be checked either analytically or
numerically in a wide class of models, such as Ising or gaussian models.
Exploiting their correspondence with a Gaussian model (III.103) has been proven
valid numerically also in the case of six and eight vertex models.

A recent line of development arising from it concerns Bethe ansatz
computations of central charge in statistical models (see, for example, [III.12],
[II1.13]). We will consider, in the next section, a very detailed check of (III.103) in
the case of the Ising model: in order to do that, we will introduce a Grassmann
variable formulation of it (see [III.3], [III.4]) which appears to be very useful and

profitable, since it can be generalized to any free fermion model.
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IIL6 Grassmann Formulation of the Ising Model and Central Charge

Computations .

This section is devoted to a survey of the Grassmann variables techniques
introduced and developed in statistical mechanics by Samuel (see [IIL.3],[IIl.4] and
[[IL.14D).

This formulation establishes very deep links between quantum field theory
and statistical mechanics, since it is able to treat a statistical system as a fermion
field theory, and, besides that, it can be applied either to exactly solved or
unsolved statistical models in two and theree dimensions (see [II1.14]).

Applications of anticommuting variables in statistical mechanics trace back
to the graphical representation of two-dimensional statistical models solvable
with Pfaffian methods. A typical example is the closed packed dimer problems
(see [III.15]) which in turn can be seen to be equivalent. to a free fermion vertex
model (see [III.16]). Consequently many models which have a graphical
representation can be treated with the aid of Grassmann variables. This is also
the case of Ising model in two dimensions: the Grassmann formulation we shall
illustrate for it in the sequel, allows us to study it as a particular case of a free
fermion eight vertex model.

Let us consider an Ising model in a two-dimensional lattice with horizontal
and vertical couplings J, and J, ;its graphical formulation can be constructed
by drawing lines surrounding regions with constant spin. The partition function

can be then written in term of the partition function of closed non overlapping

polygons, which can at most intersect, and one gets

Zigng Ty) = g sts;héozlvy g)ons (I1.104)
with g = exp[N@J,+pl)] (I11.105)

N being the number of sites in the lattice and p = KgT. Parameters z; and z, are

Boltzmann weights for horizontal and vertical Bloch walls, which are given by

z, =exp(-2B]) z,=exp (-26],) (I11.106)
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in the case of the Ising model.

In order to give the explicit expression of Z . .q polygons W€ Tesort to two

sets of Grassmann variables which can be associated to a site (i1,V) of the lattice:
considering the possibility of two kinds of sites (x and O sites) these sets are given

by

nLW , nw (I1.107)
and
VO V)<
nw , nw (I1.108)

where h and v stand for horizontal and vertical.

We have then
Z.p{22,) = -1 f dn’® dn* exp(-A) (II1.109)

with

corner monomer
Each term in the action creates the corresponding part of the polygon,

which can be considered as a fermion trajectory: it turns out that (cfr.[II1.3])

Aplochwal = 2 (z th uﬂv + z, Tl;:/ nim ) (I1.111)
Acomer Z (a ﬂwﬂw nwn;v + a3n;:n‘:; + a4n;:nfv ) (IIL.112)
Amonomer Z (b hnw w tob nwnw ) (II1.113)
Zp 2, a, a, a, a,
¢, 42y
b
oGty G *Tfj > w» e

fig. 4 : Bloch walls and corners with their weights. The arrows represent the order of 7 variables
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The first creates a vertical or horizontal unit of Bloch wall from an X site
toan O one, while the second gives corners necessary to build up polygons (see

fig. 4); the third one, finally, fills all free sites with 0 —x pairs ("monomers"): since
the square of an anticommuting variables vanishes, the polygons so drawn
cannot overlap.

The partition function (IIL.109) is actually quite general, and in fact it
represents a free fermion eight vertex model, that we now define (see [III.17]).

Let us consider a square lattice, and on each one of its edges put an arrow
which can point toward a certain site, but with the following constraint: the only
allowed configurations are those in which there is an even number of arrows

flowing into or out of each site. This permits a maximum of eight individual

vertex configurations, given in Fig. 5, each one with an energy ¢, and a

Boltzmann weight

@, = exp(-g,/kgT) i=1,.,8 (II.114)

Like the Ising model, also the eight vertex model admits a graphical
representation which can be constructed by drawing an heavy line on an edge of

the lattice if the corresponding arrow points down or to the left (see fig. 5).

E———— ot
e r——

fig. 5 : The eight allowed vertex configurations, with their line representation and their weights

62



Then to each line configuration we can assign a Boltzmann weight (II1.114),
and referring to the meaning of the various terms of the action in (IIL.109) it can

be given (see [II.3]) a complete correspondence between (II1.114) and the weights
a; by of (IIL112) and (II1.113), which is depicted in fig.6 .

From it we can easily see that the Grassmann variables formulation of the
model given in (III.109) is constructed in such a way that it enforces
automatically the free fermion condition. This is a further constraint on the

model, namely on its vertex weights (I11.114), and reads as follows
1@, + M30,= DM+ B0 (ITL.115)
Under the assumption (I1.115) (which is readily verified by weights a;, b;in

fig. 6) the eight vertex model has been firstly solved in 1970 by Fan and Wu (see
[OL.16]).

We shall now explicitly compute the partition function and the free energy
from the general formula (II1.109): the result can recover the Ising model by
imposing (IIL106) and setting all a; = b, = -1, and then it can be used to determine
the conformal anomaly in this case as a finite size effect.

Let us consider, for definiteness, a square lattice with 2N+1 rows and 2M+1

columns, so that we have  (2M+1)x(2N+1) sites, and first of all let us go to the

momentum space via a Fourier transform

78]
Wy W, T3 o, TS Xy l # We
Q‘a-’+ Q_LG.,UB‘,HD 4 - bh, _ \ov _ ‘!_3 _ a’ _a_z - Qq

fig. 6: Correspondence between @; and a;, b;. The minus sign is due to the presence of “DNin
(II1.109). Note that substituting the proper weights aj, b;, (111.115) is readily verified.
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R . 21i 2
nrv _ Z (M +1) " (N +1)2 exp ( TipLs TVt (UL116)
s,t

T
w4 Ml TN S

where s and t go from -M to M and from -N to N respectively and E_,';t isa

set of anticommuting variables equivalent to that of 7's.
Equation (III.116) involves periodic boundary conditions, and the

transformation it represents has a jacobian equal to one , so that the functional

integral (II1.109) remains unaffected: one has to think of (1,v) as space variables,

and of (t,s) as momenta, in the following way

(1LV) & (x,y)

( 27S 2nt ) s )
OM+1 7 2N+1 - ‘Px Py

(II1.117)

In consequence of (III.116) the free fermion action (II1.110) transforms in

Eeh® 2mis v<ev® 2mit P e v®
A = Z[ Zh Z:’st gst exp( 2M+1 ) + zV E—’stgst exp( IN+1 ) + alast &st +
5,t
v¥eh’ v e h* v ¢h’ h° % v v
+ a3§st gst + a2€‘st Z:’-s,-t + a4§st &-s.-t + bhist Z:'st + bv&st gst ]

(I11.118)

Employing the usual rules of integration of Grassmann variables (see, e.g.

[IIL.3]) we get for the free fermion partition function

z., = I H L(st) 1Y (I11.119)
s, t

where L(s,t) is given by

L(st) = hh vv aa; (hv +h v ) -aa,(hv +h v)+

+ (aa, + a2a4)2 (IIL.120)

3
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with

2mis

h = b -z exp( 2M+1) (O1.121)
2wit

v, = bV -z, exp( N 1) (I11.122)

Therefore for the free energy, which is the quantity we have to compute in

order to determine the central charge, we obtain

1
-BF = 5 Z‘ log L(s,t) (IIL.123)

in a finite square lattice with (2N+1) (2M+1) sites. Since our considerations have .
been quite general till now, result (II.123) holds true for any free fermion eight

vertex model: we can specialize it for the case of Ising model by posing

aj=b,=b,=-1 i=1,.4 (IT1.124)
In order to compute the conformal anomaly for the Ising model we have
also to enforce an isotropy constraint on it, so to make sure that conformal
symunetry can take place at criticality: this additional condition is simply
Ih=ly =] (IIL.125)
which gives
zn=2z,=exp(-2B7) (I11.126)
If we substitute (II1.124) and (II1.126) in (II1.120) we get the free energy for the

Ising model:

1
-B FISing = _i ;108 LIsing( S,t) (II1.127)
where
I.1 11 I I I I 11 I I
LIsing( st) = hh vv, - (hyv, + h v )-(hv +h v)+4 (O128)
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I 2ris

hS = - [1+exp(-2B]) exp( ML )] (II1.129)
Vf = -[1+exp(-2p]) exp( 2213_1:1 ) 1 (II1.130)

According to the analysis of the previous section, if we consider our
statistical system on an infinite strip we can get its central charge as a finite size
scaling contribution to the free energy: since we assume periodic boundary
condition, we will refer to formula (II1.103). We can fit (II1.127) to the case of an
infinite strip by performing a sort of thermodynamic limit in one direction, by
letting, say, N go to infinity: this transforms one of the two sums in (II.127) into

an integral , according to the usual relation

N
Y Lceat).ae - jdtL(t) (II1.131)

t=-N

where now

27
2N+1

At = (II1.132)

Thus we can easily obtain the free energy per unit length for the Ising

model in an infinite strip

NIQ..
]

log LIsing( sp) (1I1.133)

S-—"

s

1
-B fIsing = EJ
-7

Easy algebraic manipulations yield the form of Lising a5 follows

(sp) = 4™ [ cosh? (2p]) - Sinh(zm)(coszi/[nil

and substituting it into (IL.133) we get
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B, = (2M+1)log(2e2F) 4
o
1 p 2 . 27s
+ 3 J > S_‘I\/Ilog[cosh(ZBI) - 51r1h(2[5])(cos21\4+1 -cosp) 1l
(II1.135)

As we are interested in corrections of order 1/M for large M (cfr. (II1.103)) to
the free energy, we can neglect the first term in (II1.135). The integral over p can
be easily evaluated with the aid of the tables (see [IIL.18]): in particular we use the

integration formula
n

J' (21—5- log [A- Bcos(p) + Csin(p) ] = log% “Og[A*m}
0

(II1.136)
which holds provided A2 > B2 + C2, and where we can pose
2 . 27s
A = cos h™(2B]) - sin h(2B]) cos M
B =sin h(2B ) (II1.137)

C=0
Neglecting once again the first term in (II.136), which gives a contribution

proportional to (2M+1), we are left with
M

-B flsing = z log [coshz( 2PBJ ) - sinh(2f] ) cos Z;Ini T+

s=1

) - sinh®( 28] ) ]

2 . 2ns
+ \/(cosh ( 28] ) - sinh( ?_BJ)COSZM 7

(IT1.138)

where we have exploited the simmetry of the summand under s —-s and
omitted the irrelevant term corresponding to s=0. We now impose criticality

condition for the Ising model, in order to make it conformal invariant: at the self
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dual point we have (see [II1.17])

cosh?2B J) =2 (IT1.139)
and choosing  sinh2BJ =-1 it turns out
M -
21s 2ns |2
BE ica Ling = ;1 log[2+ C052M+1 + \/ (2 +cos M )y -11] (1I1.140)

The problem of determining the conformal anomaly is now reduced to that
of studying the contribution O(1/M) to the sum (II.140) in the limit of great M.
This is done by noticing ([IIL19]) that in a sum involving a function of the

cosine, the coefficient of the wanted term is given by

27cs '
5_21 S COS M:oo _EZ a £ cos—-) & o (1.141)
oMy

Let us then consider

d 2
Fx) = -ﬂ—d-x-log[2+cos—- \/(2+cos§) -1 ] (I11.142)

which after a short manipulation gives

1 sm——— (2 + cos—)
FX) = — - { sm— -}

48 5
2+cos—- (2+cos——) - (2+cos—-) -1

(II1.143)

Examining its limit for x — 21 we have two terms
Fx) = F1(0) + F5(x) (I11.144)

the first of which vanishes

Y
x sinz;
F) = - 0 as x-o 21

1

48(2+cos§ + \/(2+cos-’25)2 - 1)

(II1.145)
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For the second, expanding around x =2xn , we find

T X-2% T

18 12210 24 14
48 1/2(x-21) 24 (I11.145)

F) Zom

and this is the coefficient of 1/M in the sum (II1.140) as M —e. Since in this limit
the length of the strip is L = 2M we get from (II1.140) and (I11.145)

T i
— = e ——

T 1
+ chrit. Ising =+ 24 ° _1\_/-{ 12 E (H1146)
which, compared with (III.103) after having restored the Boltzmann factors,

finally yields
CIsing =1/2 (I1.147)

in agreement with (1.73).

The method outlined here in order to evaluate (II.147) , based on a finite
size scaling interpretation of the central charge of a statistical system , has not
to be thought of simply as another way to derive already known results.

Its interest lies in the fact that it may provide a relatively simple, analytic
procedure to compute the conformal anomaly for the 6 and 8 vertex models,
which may be an alternative to a rather cumbersome application of the Bethe
ansatz (see [II1.12], [II1.13]). Besides it can be further generalized to recover the
cases of 32 and 128 vertex models, whose free energy has been already worked out
(see [[I1.20], [IT1.21] and [MIL.22]), and also a closed packed dimer problem, for which
a clear graphical solution (see [IIL.3] and [III.15]) can be given .Work in this

direction in in progress.

These comments end our analysis of statistical systems in a restricted
geometry, and also our survey of conformal symmetry implications in statistical
mechanics, in which we have reviewed various methods for studying critical
systems, and computing their physically interesting quantities.

Since the publication of the fundamental work of Belavin , Polyakov and
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Zamolodchikov [I.1] , the general interest in these subjects has continuously
increased. Various lines of development, such as the classification of critical
systems according to modular invariance, the extension to the supersymmetric
case or the study of parafermionic systems, have sharpened the unification of
two branches of physics which did already find major instances of synthesis:

quantum field theory and the study of critical phenomena.
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