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Introduction.

The main purpose of this thesis work is to present some results concerning existence of periodic
solutions of retarded functional differential equations.

One of the main assumptions which lead to describe the state and evolution of a system by
means of ordinary or partial differential equations, is that the system is governed by a principle
of causality; that is, the future state of the system is determined solely by the present values of
the state and of the rate of change of the state. However, after closer inspection, one realizes
that this assumption is often only a first approximation to the true situation and that a more
realistic model would include also some of the past states of the system. There are even
examples in which it is meaningless not to have dependence on the past.

Although these facts have been realized a long time ago, until the pioneering works of Volterra
there seems to have been little interest in a general theory of differential equations with
dependence on the past: most results were concerned only with special properties of very
special equations. The first non specific formulation for such problems is thus due to Volterra
(in [V1], [V2], [V3]) who wrote some rather general differential equations incorporating the
past states of the system, in his research on predator-prey models and viscoelasticity.

It is undoubtedly right from the applications that came the great rise of interest for the
mathematical theory of these problems. Indeed, in the late thirties and early forties, Minorsky,
in his study of ship stabilization and automatic steering, pointed out very clearly the importance
of the consideration of the delay in the feedback mechanism (see for example [MIN]).

It was in the fifties that the first books completely devoted to this theory appeared, as well as the
first attempts to organize the general theory of linear.systems (see Mishkis, [MIS]). Moreover,
the great interest and evolution of control problems that started just about that time influenced
significantly the rapid development of retarded functional differential equations. Successively,
Bellman and Danskin in [BD] and Bellman and Cooke in [BC] presented a well organized
theory of linear equations with constant coefficients and the beginning of stability theory. They
also pointed out the very wide range of applications of differential equations with deviating
arguments, from biology to economics. It soon became evident that many problems in this field
are more meaningful if one considers the motion in a function space, even though the state
variable is a finite-dimensional vector. In the last thirty years or so the subject has undergone a
rapid development, with new applications arising from most different fields, and new
mathematical problems which require modification of even the definitions of the basic
equations.



Before turning to the specific problems we have considered, we wish to give an idea of the very
different types of equations which go under the name of functional differential equations. The
simplest example of past dependence in a differential equation is through the state variable and
not the derivatives of the state variable, that is, the so-called retarded functional differential
equation, whose general form (in the case of a single constant delay ) is given by

0.1) x'(t) = F(t,x(t),x(t-1)),

where F: Qc R’ > R is for example a continuous function.

Particular cases of this equation can be found in the literature (e.g. [CU],[WR]) in the theory of
the growth of a single species and in the study of the distribution of primes, just to quote two
very different applications.

Very interesting features can also be found in equations in which the delayed argument also
occurs in the derivatives of the state variable, the so called neutral functional differential
equations. These problems are somewhat more difficult to motivate, but often arise in the study
of two or more oscillatory systems with some interconnections between them. It is from this
kind of application that the importance of periodic solutions becomes relevant, as it carries a
precise physical meaning.

Finally, we would like to mention some variational problems that are strlctly related to
functional differential equations. El'sgol'ts in [EL] and other authors have considered the
problem of minimizing the functional

1
0.2) I(x) = JF(t,x(t),x(t—t),xi(t),x'(t—-’l:))dt

over some class of functions with suitable boundary conditions. Generally the Euler equations
for functionals of the type (0.2) take the form

0.3) x"(t) = f(t,x(t),x(t—1),x'(t),x'(t—7),x" (t—1)),

which leads to neutral differential equations.

Many more examples could be produced to illustrate the importance and frequency of
occurrence of equations which depend on past history; for a good collection of these, we refer
to the book of Hale [H1].

From this great variety of situations it becomes clear at first glance that it is almost impossible to
find a class of equations which contains all of these and is still mathematically tractable and



interesting. In that case one could write an equivalent integral equation and then consider
general operator equations to obtain existence, uniqueness and other properties. Indeed there
have been in the literature some attempts in this direction (e.g. [NE]); the main difficulty in this
approach is to carry into the resulting functional equation all the properties contained in the
original differential equation. One could in this way hope to get a general existence result, but
then it becomes a major task to verify that one of the special equations satisfies all of the
required hypotheses.

This is one of the reasons why we have chosen a different approach for this thesis work. Our
goal is to study the existence of periodic solutions of some delayed equations linked by a
common feature, which we are going to illustrate. Various methods known in the literature rely
upon the fact that in some cases the delayed differential equation can be seen as a perturbation of
an ordinary differential equation. This occurs for example when the delayed term can be
considered smaller in some sense or "dominated" by the ordinary one. To fix ideas, one can
think of the model problem we have chosen for the first part of this work, namely the existence
of solutions for

x'(t) + ax'(t—1) = f(t,x(t))
0.4)
x(0) = x(2w)

where f: RxR — R is a Carathéodory function 27n-periodic in the first variable, ae€ R and
7 € 10,2n[. This equation, when a# 0, is a neutral equation. Here the "domination" of the term
x'(t) over the delayed one x'(t—t) can be well understood when we take the parameter a such
that lal < 1. In this case we have in fact many good properties concerning the differential
operator, such as invertibility and continuity of the inverse. These are the properties which
enable us to transform the original problem into a fixed point equation that can be studied by
means of some topological degree argument. It is moreover worth mentioning that the
domination we have described allows also to obtain some a priori estimates that can be very
hard to prove or even false when no domination occurs. The study of Problem (0.4) is carried
out letting the parameter a take values in [-1,1] and looking for sufficient conditions on f to
ensure the existence of solutions, for every delay 7. Restrictions on T are only imposed in the
analysis of the critical case a = 1. There we can still get an existence result using techniques
which were first introduced to study partial differential equations, and in particular for the wave
operator with periodic boundary conditions, a problem which has, rather surprisingly, many
points in common with ours.

Following the same idea that led us to study the case in which domination is not present, we
examine in Chapter 2 a different equation, this time with the delay in the nonlinear terms, but



which gives rise to similar problems. We again look for sufficient conditions on the nonlinearity
to obtain a solution of

x'(t) = af(t,x(t)) — bf (t,x(t—1)) + p(t)
0.5)

x(0) = x(2w)

both in the "good" case lal > Ibl and in the critical case lal = Ibl = 1.

The choice of Equation (0.5) was motivated, among other reasons, also because it is, along
with some of its variants, a very important model in the theory of diffusion of infectious
diseases and epidemics (see e. g. [CK],[DL)).

Many results are known in the literature concerning Problem (0.5), especially for what concerns
the asymptotic behaviour of solutions. One of the basic hypotheses in many papers is that the
nonlinearity f be monotone. Our aim is to show that this assumption can be completely
abandoned if it is replaced by some growth condition, as far as periodic solutions are
concerned. :

The thesis is subdivided in two chapters: the first one is devoted to the study of Problem (0.4),
while in the second we examine Problem (0.5).

In Section 1.2. we make a complete analysis of the properties of the differential operator when
the parameter a is allowed to vary, and in Section 1.3. we give a first existence result in the
case lal < 1. The case without domination is treated in Section 1.4., while in Section 1.5. we
re-examine all the results obtained in the previous parts,when the nonlinearity is allowed to take
the special form f(t,x) = g(x) + h(t). We are able to show that all the results obtained still hold
true when the hypotheses are very much weakened.

In Section 2.1. we briefly expose some motivations and the "physical background" in which
Equation (0.5) is situated, and we make some preliminary observations; in Section 2.2. we
give a first existence result. Section 2.3. is devoted to the dominated case lal > Ibl. Finally, the
critical case lal = Ibl = 1 is treated in Section 2.4.

Preliminaries.

Throughout this thesis we will denote by IN the set of positive integers, {1,2,...}.

All the function spaces we use are spaces of Zﬁfﬁeﬁodic functions, except where expressly
stated. We denote therefore simply by C0 the space of continuous 2rn-periodic functions,
equipped with the norm Ilull ;= max {lu(t)! / te [0,27]}.We denote moreover by LPthe completion



2r
of COunder the norm Iull,= ( [lu®PdD)"?, 1 <p < +ee.
0

H' is the usual Sobolev space of L2 (2n-periodic) functions whose distributional derivatives
are still representable by an 1.2 function. We denote by lI-ll; 5 its norm and we recall that it is
compactly embedded in L? and CO, foreveryp= 1.

If Qisa bounded open setin R", pe R"andif g: Q — R" is continuous, we will denote by
deg(g,Q,p) the Brouwer degree of g with respect to {2 and p.

Similarly, if X is a Banach space, Q < X is open and bounded, pe X and f : Q- Xisa
compact perturbation of the identity, deg(f,Q,p) is the Leray-Schauder degree of f with respect
to £ and p.



CHAPTER 1

NONLINEAR EQUATIONS OF NEUTRAL TYPE

1.1. Neutral equations.

The precise definition of what a neutral equation is, is not at all simple, due to many technical
subtleties. Roughly speaking, one can think of a neutral equation as a differential equation
where the value of the unknown function depends not only on the present values of the function
itself and of its derivatives, but also on past values, and in particular past values of the
derivatives. That is to say, for first order equations, delays are present in the derivatives of the
unknown function. To fix ideas, one can think to the model nonhomogeneous linear equation of
the first order, which is

(1.1.1) X'(t) +ax'(t-t)=bx(t) +cx(t-1 )+1(t)

where a,b,c, T are constants, a # 0, and f is continuous.

Clearly the general definition of neutral functional differential equation is much more
complicated, since it has to contain a much wider class of equations than those represented by
(1.1.1).

In order to make clear what is meant by neutral equation, we need some preliminary definitions
from the classical theory for which we follow the book of J. Hale [H1].

Suppose © 20 is a given real number, C = CO([-‘C,O];IH“) is the Banach space of continuous
mappings from [-1,0] to R" with the topology of the uniform convergence; if 6 € B, A >0 and
x € C([o-1, 6+A]; R™), then for any t € [0,0+A] we let x,€ C be defined by x,(8) =x(t + 0)
forall 0 € [-t, 0].

If Dis a subset of B x C and f:D — R", the relation

(1.1.2) x'() = f(t,x,)

is called a retarded functional differential equation.

A function x is said to be a solution of (1.1.2) on [0-T, O+A[ if there are o€ B and A > 0
such that x € C([o-T, o+A[; R"), (t,x,) € D and x(t) satisfies (1.1.2) for t € [o,0+A[.
Forgivenoe R, ¢ € C, we say that x = x(0,9,f) is a solution of (1.1.2) with initial value ¢



at ¢ or simply a solution through (c,9), if there is an A >0 such that x(c,¢.f) is a solution of
(1.1.2) on [o—1,0+A[ and x4(0,0.f) = ¢.

We remark that (1.1.2) is a very general type of equation, and includes ordinary differential
equations(t=0), differential difference equations, as well as some integro-differential equations
and much more general equations.

For various technical reasons, for which we refer to [H1], we introduce some more definitions.
If X and Y are Banach spaces, we denote by £(X,Y) the usual Banach space of bounded linear
mappings from X to Y. When Le L(C, R™), by the Riesz representation theorem there exists
an nxn matrix 1 on [-1,0] of bounded variation such that

0
Lo= [[dn(®)16®), Voe C.
-«
For any such 1 we always understand that we have extended the definition to R so that N(0) =
1(—r) for 6 < -t and N(6) = 1(0) for 6 =2 0.
Definition 1.1.1. (Hale) Let A be an open subset of a metric space. We say that
L:A—= LCRY
has smoothness on the measure if, for any B e R there is a scalar continuous function

vy:AxR-R,

0
Y(L0) =0, such that, if LYo = [[AN(,8)16(8) , A e A, s> 0, then

-T

B+s B-h
a1y | ( Janaon@+ [na.enee) | < o
—> B+h B-s

IfBe R and the matrix A(\;B,L) =n(A,B+) - N(A,B) is nonsingular at A =Ag , we say that
L(\) is atomic at B at Ag. If A(A;B,L) is nonsingular on a set K < A, we say that LQ\) is
atomic at B on K. As far as we are concerned the case we are interested in is A = QcRBRxC,
thatis L € C(€;L(C,R™).




If D:Q — R"has a continuous first (Frechet) derivative with respect to ¢, then it is known
that D, has smoothness on the measure.
Then we can give the following

Definition 1.1.2. (Hale) Suppose Q c R x C is open. A mapping D : Q — R™ is said
to be atomic at B on Q if D is continuous together with its first and second Frechet derivatives
with respect to ¢, and D, , the derivative with respect to ¢ is atomic at § on Q.

For examples illustrating this definition we refer again to [H1].
We are now ready to give the general definition of neutral functional differential equation:

Definition 1.1.3. Suppose Q c R x Cis open, f: Q - R", D: Q — R"are continuous
functions with D atomic at zero. The relation

(1.1.4) & D(tx,) = f(tx,)

is called a neutral functional differential equation. The function D is called the difference
operator.
A function x is said to be a solution of (1.1.4.) on [0-T, O+A[ if there are 5 € B and A >0
such that

x € C([o-1, o+A[; R™),

(tx,) e Q,

D(t,x;) is continuously differentiable and satisfies (1.1.4) for t € [0,0+A[. For given oce R,
¢ € Cand (0,0) € Q we say that x(0,9,D,f) is a solution of (1.1.4) through (c,0) if there is an
A >0 such that x(c,,D,f) is a solution of (1.1.4) on [0-T,0+A[ and x4(0,0,D,f) = ¢.
If D(t,0) = Dy(t,9) - g(t) and f(t,0) = L(t,d) + h(t) with Dgand L linear in ¢, the equation is
called linear. It is linear homogeneous if g =h = 0; it is autonomous if D and f do not depend
on t.
We now give some examples of neutral functional differential equations.

Example 1.1.1. If D(¢) = ¢(0) for all ¢, then D is atomic at zero. Consequently, for any
continuous f: Q — R", the pair (D,f) defines a neutral functional differential equation.
therefore retarded functional differential equations are neutral functional differential equations.



Example 1.1.2. If t> 0, B is an nxn constant matrix, D(¢) = ¢(0) - B¢(-t) and f : Q — R"
is continuous, the pair (D,f) defines the neutral functional differential equation

(1.1.5) S - Bx(e0)] = £(tx,)

Many results concerning existence, uniqueness and continuous dependence are known for
general neutral functional differential equations. For a good collection of this kind of results we
refer to [H1].

It is clear however that general results for such a vast class of equations are very difficult to
prove. In the first part of this thesis we are concerned with the search for periodic solutions for
a very restricted class of neutral functional differential equations. In this framework it is natural
to ask if some kind of Fredholm alternative theory can be made for such equations. The answer
(see [H2]) is that there are results in this direction but only for a rather small subclass of neutral
functional differential equations, namely for those equations whose difference operator D
satisfies a property called D-stability, [H1]. Existence theorems for periodic solutions of D-
stable equations are generally obtained via the application of the Leray-Schauder theory or the
coincidence degree. One of the main points of interest in considering non D-stable operators is
that in this case not only there is no known Fredholm alternative result, but also many rather
unusual problems arise. These problems can be roughly classified at two different levels. First,
at a "linear" level the injectivity of the differential operator does not necessarily imply its
surjectivity; second and especially important in the applications, even when some kind of
generalized inverse of the differential operator can be defined, it turns out that it is not
continuous, let alone completely continuous. So, when one is interested in studying the
existence of periodic solutions of an equation like -

(1.1.6) £D(x,) = f(tx,)

one realizes that, contrary to a great number of other similar problems, this equation cannot be
transformed into a fixed point problem for a (at least) continuous mapping in Banach spaces. It
is clear then, that some supplementary work has to be done even to choose for equation (1.1.6)
a proper functional setting.

We wish to point out that neutral functional differential equations are not the only example of
~ such a difficulty. Indeed, it is well known that in the theory of partial differential equations, and
particularly for hyperbolic equations, this kind of problems are very common.
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Just to make an example, we recall that when one studies the existence of periodic solutions for
the semilinear wave equation, that is when one looks for a function u: R x R" —> R of

02u
5-{'2" — Au = g(u) +h
u(0,x) = u(2x,x)

u(t,0) = u(t,2x)

one is naturally led to consider nonlinear perturbations of a linear operator whose kernel has
infinite dimension (see for example [KA],[M2]).

Various techniques have been developed by many authors to overcome this kind of difficulty.
The main motivation of this work is to investigate which among these techniques are suitable to
study neutral functional differential equations.

Obviously, the difficulty of this task has forced us to consider not a generic neutral equation,
for which, as many authors have pointed out, a general theory is still far to come, but a model
problem depending on some parameters. When we allow these parameters to vary the equation
under study takes a form which underlines the different situations and difficulties that we have
described above. The particular equation we have chosen also allows us to compare our results
with the ones known in the literature: in some cases we have weakened the hypotheses of
existence theorems already proved, while in others our approach seems to be new, as far as
neutral equations are concerned.

The plan of the Chapter goes as follows: in Section 1.2. we develop the linear theory for the
differential operator and we establish the main properties that we will need in the applications.
In Section 1.3. we prove an existence theorem for a relatively easy case; Section 1.4. is devoted
to the "critical" case in which the kernel of the differential operator has infinite dimension.
Finally, in Section 1.5. we examine the particular situation which arises when the nonlinearity
has a special form: it is proved that the hypotheses of the theorems from the previous sections
can be weakened very much without loosing the existence of solutions.

1.2. Study of the differential operator.

The aim of this section is to investigate the structure of a family of differential operators in order
to establish the properties which we are going to use throughout this chapter. The properties we
are concerned with are the invertibility and the continuity and compactness of the inverse or of
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some generalized inverse of a differential operator. This program is carried out by means of the
study of an eigenvalue problem depending on a real parameter which describes all the cases that
we are going to treat.

More precisely we consider the following family of operators:

(1.2.1) L; :domLycl?2—12
defined by

(1.2.2) dom L, = H!

(1.2.3) Ly w)(t) =u'(t) + au'(t — 1) + Au(t)

where AeR , 1€ ]0, 2r[ and, since we are interested in the delay equation, ac R\{0} . We will
study the eigenvalue problems

(1.2.4) Lyu=0 in L2

when a varies in its domain of definition with the aim of establishing for which values of a
and A the operator L, is invertible. We will achieve this by means of Fourier expansions,
subdividing the problem into three cases depending on the range of values a is allowed to take.
For the properties on Fourier series we are going to use we refer to [ED].

First of all we introduce the complete orthonormal system £ in L2 given by

{ coskt sinkt / ke TN} .

Vor x Ve

- Then, to every ueL? we associate its expansion with respect to L, that is

(1.2.5) u() ~—2= + —— Z uy coskt + vy sinkt .

o T

In the same way, if u, given by (1.2.5) belongs to H!, we associate to u'(t) and u'(t—t) the
expressions
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oo

(1.2.6) u'(t) ~ L Y kvy coskt — kuy sinkt
T k=1

and

u'(t—-1) ~ L 2 (kv coskT + kuy sinkt) coskt +
Tt k=1

(1.2.7)
+ (kvy sinkt — ku, sinkT) sinkt .

It is now possible to write the differential operator L, as

(1.2.8) — E (kvy + akv, coskT + akuy sinkt + Auy) -

\/—

- coskt + (— kuy + akv, sinkt — akuy coskT + Avy) sinkt .

We can study the invertibility of L, trying to solve, for a fixed veL? the equation

(1.2.9) Lyu=v.

If we call respectively y, and z, the Fourier coefficients of v with respectto L, we are led
to solve for (1.2.9) the following system of linear algebraic equations:

Aug =yy
(1.2.10) uy (aksin kt + A) + vi(k + ak coskt) =y, , ke N

—u,(k + ak coskt) + vi(ak sinkt + A) =z, , ke N .

With the notation

Ry = ak sinkt + A , ke N
(1.2.11)

Sy =k + ak coskt , ke N

we can write (1.2.10) in the more convenient form
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Aug = ¥o
(1.2.12) Rkuk + Skvk = yk N ke fN

—Skuk + Rka = Zy ke N
. . Ry S¢ .
and finally, calling M, the matrix ~S, R "¢ obtain

Aug =yp

k - k
M Vk) = @'k),kew.

At this point we begin by verifying for which values of a,T and A, L, isinjective. We take
therefore v = 0 and we determine a, T and A in order that (1.2.13) has only the trivial
solution. First of all observe that for every a and t,if A =0, then L, is never injective

since from (1.2.13),

(1.2.13)

Ker Lo span {1},

that is, all the constant functions are in the kernel of L.

We then suppose A # 0 and we come to examine the injectivity of L, when a varies. The
reason of this choice comes from the fact that the behavior of L, is determined by the values of
a in such a way that, as far as injectivity is concerned, the three cases lal <1, lal =1, and lal >
1 give rise to very different situations, and, as we shall see, the case lal=1 can be viewed as
critical.

Now when v =0 and A # 0, (1.2.13) has nontrivial solutions if and only if, for some
kelN,

(1.2.14) Ap=detMp =0 .

But Ay =0 if and only if

(1.2.15) {
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and this is precisely the equation that we are going to study when a varies.
We begin by supposing lal < 1. In this case equation (1.2.15) means

(1.2.16)

It
o

{aksinkt+k=0
acoskt+1
Since lal<1 one has acoskt+1#0 forevery kelN.
We can summarize this into

Proposition 1.2.1. Let lal<1.
If A =0 then KerLg=span {1}.
if A=0 then L, is injective.

We now turn to the case lal > 1. We have

Proposition 1.2.2. Let lal> 1.
If A=0 then KerLjy=span {1}.
If A0 and M #kJVaZ—1 for every ke N
then L, isinjective.
If A#0 and IAl=kVaZ—1 for some ke N

Al
then Ker L, = span {cos kt, sinkt / k = : } .
a —

Proof. Let A =0 ; then obviously Ker Ly D span {1} . Moreover Ker L contains some
nonconstant function if and only if A, =0 for some keN.But A, =0 if and only if

{sin kt=0

l1+acoskt=0

and this is impossible since lal#1 .

Let A #0; then, if coskt=—1/a, Isinktl=1/lalvaZ—1 . But then A2 = a2 k2 sin? kt =
k2(aZ — 1) . Therefore, if VkeN, I\l #kvaZ -1, the equation a k sin kTt + A =0 is never
satisfied and L, is injective.

Finally, if IM =kVaZ -1 for some keN,then Ker L) = span {cos kt, sin kt}. ¢
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We end the discussion of the injectivity of L, by considering the case lal =1 . As we have said
before this case can be considered critical with respect to the others because the behavior of L
depends not onlyon A and a,butalsoon T. '

It is convenient to distinguish between the two cases a =1 and a =-1 . More precisely, we
have the following

Proposition 1.2.3. Let a=1.
If A=0,then L, is injective.

If A=0 and eithert=%£,with q, p coprime integers and q even,orieﬁ%\@ ,
then Ker L= span {1} .

If A=0 and T=Sp£, with @, p coprime integers and q odd,
then Ker Ly > span {1, coskt,sinkt/k=(2n-1)p,nelN}.

Proof. The first part is immediate, reasoning as in the preceding propositions.

For the second case notice that if t/re R\ [ then 1+cos kt#0 Vk and so KerL;=span{1}.
Similarly, if ©=qn/p with q even, then kt can never be an odd multiple of ® and once
again 1+ coskt#0 Vk, which leads to KerLg=span {1}.

Finally, in the last case we have A, =0 if and only if k is an odd multiple of p, so that

Ker Ly D span {1, cos kt, sinkt / k= (2n-1) p,ne N} . $

The same kind of argument allows to prove the following proposition

Proposition 1.2.4. Let a=-1.
If A+#0 then L, isinjective.

If A=0 and EEFR\[D then Ker Ly =span {1} .
T

If A=0 and = -C-IPE-, with g, p coprime integers,

then Ker Ly D span {1, cos kt, sin kt /k=2np ,neN} .

We now turn to the more interesting problem of the invertibility of the operators L, and of the
continuity and compactness of their inverses.
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We begin with the "regular” case lal < 1. As we have seen, in this case (Wwhen A #0) L, is
injective and so L is defined from ImLy to HI.
We can actually say more, and precisely

Proposition 1.2.5. Let lal<1 and A #0.
Then L, is surjective onto L2 and
L;l : L2 - H! is continuous.

Proof. Taken y in L2 we show that there exists x in H! such that Lyx =y and that this
x depends continuously on y .

If we call Gij the Fourier coefficients of x and Gt) those of y, we have Lyx =y if and
only if

ug = yo/A

M) = ()

Since L isinjective, My is (algebraically) invertible and it is easy to see that

(1.2.17)

1
up = —(Ryyy — Sxzy)
Ay
(1.2.18)

1
vk = — (Rgzy + Syyi) -
Ay

We have first of all to show that if x is defined by means of (1.2.18) then xeH!.
Now by Parseval's equality we have

2 2
2 lygl? i Vit 2
(1.2.19) Ixlly = <% 4+

and

- k2
(1.2.20) i = Y K2y
k=1 Ak
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So lixll, and lix'll, are finite if

K2
(1.2.21) sup — < +oo.
keMN Ak
But
(1.2.22) Ay = a%kZsin kt + 22 +2a Aksin kt + a2 k2 cos? kT +
+k2+23kzcosk‘c=a2k2+7\.2+k2 +
+ 2ak (A sinkt + k cos k1) 2
S 2 K2402+ K2 2alk A2+ k2= (VA2 + 12— lal 2.
Therefore
2 2
ek
Ay (\A24Kk2 - lalk)?
and
2
(1.2.23) lim sup 5= lim L

k?.
= — 5 < oo
O VRN TR lal)

This implies that both lixll, and lix'll, are finite and consequently Ly is surjective. Moreover,

since
2 1 1 2
Ikl < max {=—, sup — iyl
: (7“2 o Ak) &
and
k2 < Ly
x'll, < sup vl
k Ak
we have that L;l is continuous from L2 into H!. ¢

. . . -1 .
In the following section we shall need an estimate of the norm of L, considered as an

operator from L2 into itself. This is exactly what states the following
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Proposition 1.2.6. IL; " a2 <

1
A vI=Z

Proof. From (1.2.19) it follows that

2
(1.2.24) E&_<max L sup L
- Iyt = (?@ "k Ak)

Moreover, from (1.2.23),

im 4+ =0
k—>eoAk

so that sup Ai- is achieved. We are going to estimate it as follows:
k Qg

let F: [0, +eo] > R be defined by

F(t)= (VA2 + 12 —Ja] )2 .

laAl -

We have F'(t) = 0 if andonlyif t=1¢ = and t is necessarily a minimum point. Then
(t) y Nrwvy y p

Vte [0, +eo[ , F(t) 2 F(1) = A1 - a2)

and

1_1 .1 g
CFk) T T T o
Ay F(D) A2(1 - a2)

If we carry this information into (1.2.24) we get

max (L 1 _ 1
(x ’12(1—a2)) A2(1 - a2)

and
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-1 1
[ —
ey = 5z

Carrying on with our program we now examine the case lal > 1. We recall that when lal>1,
L, is injective only for some particular values of A and precisely for IM#k«aZ—1 . The
analogous of Proposition 1.2.5. is given by

Proposition 1.2.7. Let lal>1 and M #k+a2—1 VkeN.
Then L, is surjective onto L2 and
L;l : L2 - H! is continuous.

Proof. The proof is similar to that of Proposition 1.2.5:

e . . k2
the proposition is true if sup X— < oo,
k Ok

But A, = (\ A2+k2 — lalk)2 and we observe that A, > 0 . Indeed, if for some k we have
k k

VA2+k2 - lalk =0 then IAl =kva?—1, which is impossible by assumption. We end like in the
proof of Proposition 1.2.5. ¢

We close this section with the analysis of the critical case lal = 1. We point out that the criticity
of this case is well understood when it comes to consider the continuity of L{l . In fact here the
arguments used in Proposition 1.2.5 and 1.2.7 fail, because the estimate (1.2.22) gives

Ay 2 2k2 + A2 - 2k A2+k2 and lim A, =0 which is of no use in trying to prove the

k—eo

continuity like we have done above for lal # 1 .

The line we follow here is to impose more conditions on the parameters (in particular on the
delay) in order to guarantee some "invertibility" properties which can be used to obtain some
results similar to those of Propositions 1.2.5 and 1.2.7.

We suppose therefore that T=qn/p with p and q coprime integers and p# 1. We call Z the
subspace of 12 defined by

Z=clspan{1,coskt,sink'c/%6£ N} .

The restriction of Ly to ZNH! is still injective, and the following proposition holds:
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Proposition 1.2.8. Under the above hypotheses,
L;l is surjective onto L2NZ and

-1 ) )
L : L2nZ — HNZ is continuous.

Proof. We begin like in the proof of Proposition 1.2.5. With the same notations we take
ye L2nZ and we look for an xe H!NZ such that Lyx =y . We show that x is given by
L;ly , where L{l is the algebraic inverse of L; . The Fourier coefficients of x are therefore
given by

(ug = yo/A

(1.2.28)

A\

1
ug = —(Ryyx — Skzy)
Ay

1
vi = —(Ryz + Seyy) -
kk A kZk kYx

Once again we have to show that xe H1, that is that

k2
(1.2.29) sup — < +oo.
keN Ak

Kfpe N

Expliciting A, we obtain

Ag = 2K2 + A2 + 2ak A2 + k2 A sinkt + —X__ coske
A2+k2 \ A2+k2

> 2k2 + A2 — 2k VA2 + k2 Icos (kT + )]

2

where 6,€[0, 2] is defined by

(1.2.30) cosfy = k

\ A2+k2
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—A

\ AZ+k2 .

Let us suppose that there exists a f >0 such that

(1.2.31) sin@y =

(1.2.32) lcos (kt+0)Isp<1

In this case we have

A2 2k2 + A2 - 2uk VA2 + k2

and then

. A
lim ﬁ-: 2(1-p)=0.

k—eo
k/pe N

Since A #0 , VkelN ,k/peN we get

K2
sup = < +oo
kelN Ay

k/peN

and we can use the same argument as in Proposition 1.2.5.

VkelN ,k/pelN.

It remains to show that there exists a W verifying (1.2.32). Since 1t =qmn/p , the set
{kt/k/pg N ,keN} is finite (mod ) and as k is never a multiple of p, it does not contain

1t . Therefore

o= min (kt-nlmodmw)>0.
k/pe N
keN

Now we fix €>0 such that € <o ;since 8, — 0 for k — e, there exists kj =ko(€) such

that Vk 2k, 16,| <e. But then we have

kt+6,—nlmodn>0c-£>0

VkefN,l-f){-elN .



-22-

This means that the distance between {ktT +0,/keN , k/pg N} and the multiples of & is
bounded from below by a positive constant, so that there exists a p such that lcos(kT + 0! <
K <1, and the proof is complete. ¢

Remark 1.2.1. Under the hypotheses of Propositions 1.2.5, 1.2.7 and 1.2.8, that is when
L;l is continuous between L2 and H! (L2nZ and H!NZ in the case of Proposition 1.2.8),
L;l is also completely continuous between L2 and CO or L2 (respectively between 1L2NZ
and L2NZ or CONZ), thanks to the compact embeddings of H! into L2 and C°.

1.3. Existence of periodic solutions.

This section is devoted to the following problem:
let £:R XM — R bea 2n-periodic function in the first variable. State under which conditions
on f there exist 2n-periodic solutions of the equation

(1.3.1) x'(t) + ax'(t — ©) = f(t, x(v)) .

We begin by choosing a functional setting in order to apply the results of Section 1.2.
We set

(1.3.2) X =12
(1.3.3) Ly:domLyc X — X
(1.3.4) | dom Lo = H!
(1.3.5) (Lox)(1) = X'(6) + ax'(t - 1) .

From Proposition 1.2.1 we know that Ker Ly = span {1} ; if we write (1.3.1) in the equivalent
form

(1.3.6) x'(t) + ax'(t — 1) — Ax(t) = f(t, x(t)) — Ax(t) , AcR

and, with the same notations as in Section 1.2, we set
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(1.3.7) L_x)() =x'(t) + ax'(t — 1) — Ax(D) ,

we can write (1.3.1) as

(1.3.8) (L_x)(t) = £(t, x(1)) — Ax(t)

where L_; is a bijection between H! and L2, and L:; : L2 — L% is completely continuous
(Remark 1.2.1). Then, if we call N the Nemytskii operator of f (we suppose, to begin with,
that N : L2 — L2 is continuous, we shall see later which conditions on f guarantee this
continuity), we can write (1.3.1) as

L, x=Nx-Ax , or

(1.3.9) x =L, (Nx - Ax) = Thx

where T, : L2 — L2 is a completely continuous mapping. The originary problem is now
reduced to a fixed point problem, which will be solved via the Leray Schauder continuation
theorem (A.2.).

The argument used in this section is essentially the one introduced by Metzen in [ME],
combined with the properties of the differential operator established in Section 1.2. We actually
need something more than what we have done in Section 1.2, that is the spectral properties of
an operator closely related to L_; .

We denote with K the complex extension of Ly, that is the operator whose domain is

domK = {u+iv/u, vedom Lg}

and whose definition is
Ku+ivy=Lou+ilgv
and we recall (see [WE] for details) the following definition:
Definition 1.3.1. let H be an Hilbert space and T : domTcH — H a linear densely

defined operator.
T is said normal if:
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i) domT = domT* (T* is the adjoint of T)
i) T*ully = ITully YuedomT .

Concerning K the following proposition holds (we state it without proof):
Proposition 1.3.1. K is a normal operator.

Now we come to the analysis of some spectral properties of K , studying the eigenvalue
equation

(1.3.10) Ku, =Au,, AeC .

By taking the Fourier expansion of u one easily gets for the eigenvalues of k

(1.3.11) A, = in + aine-int

and for the corresponding eigenfunctions

(1.3.12) O, (1) = eint,

We want to estimate, for we R , the distance between ® and the spectrum o(K) of K. Since
6(K) coincides with the set of the eigenvalues of K , we have

dist(w, 6(K))? = inf [(® — ak sinkt)? + (k + akcoskt)?] .
keZ )

Using the same calculations as in Proposition 1.2.6 we get
(1.3.13) dist(w, o(K)) = lol V1 — aZ .

We are going to use the quantity on the right-hand-side of (1.3.13) to state the condition to
impose on f in order to solve equation (1.3.1).
More precisely, if A is the number introduced in (1.3.6), we set

(1.3.14) r=IAIVI —aZ < dist(A, 6(K))
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and we suppose that f: R xR — R is a Carathéodory function 2n-periodic in the first variable
such that

Gl VR >0 , IfgeL? such that If(t, s)l <fp(t) VIsISR and a.e.t
G2) There exist two functions o, e L* and a set Pc[0, 2rx] of positive
measure such that

(1.3.15) A —r<a(t) <liminf i%ﬂ < lim sup fLs) S B@) <A+

Isl—soo slseo S
uniformly in t and A—r<o(t) < B(t)<A +r1 forae. teP.

First of all we remark that conditions G1 and G2 are sufficient to obtain the continuity of the
Nemytskii operator of f, from L2 into itself. To make use of the Leray-Schauder continuation
theorem we shall need the following two lemmas, the first of which goes under the name of

"property p" (see [FOJ).
Lemma 1.3.1. Let peL>= be such that

ot) < p(t) < B for ae. t .
Then Lox = px implies x=0.

Proof. Suppose by contradiction that there exists xoe dom L such that Lyxy = pxy and
Xg # 0. i
Let Aq, ..., A be the eigenvalues of K which lie on the circle |z — Al =r; since every 2

has finite multiplicity, if we set
k
V= @ KCI'(K-— )\.J) ’
j=1

then dimV < +oo and all the nonzero functions in V, being analytical, have only a finite
number of zeros in the interval [0, 2x] .
It is easy to see that

xeV if and only if IIKx —Axll=1lIxll.
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Now, from Proposition 1.2.6 it follows that

(1.3.18) VxedomLy, IIKx — Axll > rlixIl .
On the other hand, if Lgxg = pxy, then

IKxq — Axqll = ILgxg — Axgll < rlixgll,

so that xge V, and x; has only a finite number of zeros. Then being A —r < p(t) <A +r1 on

P and meas(P) >0 we get
IILgxg — pxoll < lixgll

which is absurd.

The next lemma shows that the hypotheses of Lemma 1.3.1 can be made a little less restrictive.

Lemma 1.3.2. There exists an € >0 such that if

pe L™ verifies a(t)—e<p(t) <P(t) +¢€
and Lgx = px ,then x5=0.

Proof. Suppose by contradiction that there exists a sequence ppeL> with
o) ~ =< po() S BO + =
n-Pal)= n
and a sequence x,edomLy, x, =0 Vn such that
(1.3.20) LoX, = PnXq -

It is not restrictive to suppose lixll, =1 .
Then there exist subsequences (still denoted p, and x,) such that

(1.3.21) X, = x in L2 weakly

(1.3.22) Pn— P in L~ weakly *.

forae. t

forae. t
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If we set v, = (Lg—A) X, , we get
Ivglly = 1Ly — A)%ylly = Py — Mx ll, < const
and then by extracting a subsequence we can suppose
v, — v in L? weakly.

On the other hand, (Lg —A)~! : L2 — L? is completely continuous so that actually the
convergence in (1.3.21) holds strongly. But then p,X, — Px in L2 weakly and passing to
the limit in (1.3.20) we obtain

Lox =px

where o(t) < p(t) < B() forae. t and x = 0 because lix ll, = 1 and x; = X in 12
strongly. This is against Lemma 1.3.1, and the proof is complete. ¢

Now we have all the tools to state and prove the main theorem.

Theorem 1.3.1. Let f: R xR — R be a Carathéodory function 2x-periodic in the first
variable such that (G1) and (G2) hold for some A = 0.
Then the problem

{x'(t) +ax'(t — 1) = f(t, x(1))

x(0) = x(2m)
has at least one solution.

Proof. We want to apply the Leray-Schauder continuation theorem (A.2.) to equation (1.3.9).
All we have to do is to show that the homotopy

(1.3.24) x=puTyx , pelo, 1]

is admissible, that is that solutions of x =pTyx are uniformly bounded in L? with respect to
1L . We choose an € which satisfies Lemma (1.3.2) and an R >0 such thatif Isl>R, then by
(G2)
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oft) —€ S-f—(-ts’—sl < B +e forae. t.

We define the auxiliary functions g and h by

-f-(—;’i)- if Isl >R
g(t, s) =
%LS if Isl <R

and h(t, s) = max{o(t) — € , min B +¢, g, s)}}).
It is clear that out) — e < h(t, s) <B(t) + € and that

(1.3.25) If(t, s) — h(t, s)sl <) forae. t
where 1 is some function in L2

Next we denote by H the (continuous) Nemytskii operator associated to h(t, s) - s and we
notice that, thanks to (1.3.25)

(1.3.26) INx — Hxll, < const , Vxel?,
With all the notations introduced we can write the homotopy (1.3.24) in the equivalent form

(1.3.27) x=HL (N-Hx + pL7 H-A)x uelo, 17.

We now suppose that an a priori bound on the L2 norm of the solutions of (1.3.27) does not
exist: in this case we can find two sequences Hne [0, 1] and x,eL? such that
(1.3.28) M, — p*

(1.3.29) lIxylly, — oo

(1.3.30) Xo= Mo LTy (N ~H)x, + 1, L (N = d)x, .
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If we divide (1.3.30) by lix,ll, and we notice that

(1.3.31) L, L:i (N-H)xll < HL:i I I(N = H)x,l < const.
we can write

% _ Hn -1y
(1.3.32) ;= rn+“Xn“2 L_k(H A)x,

with r, = 0 in L2.
If we set v, = =B~ and p,(t) = ht, x,(t)) , (1.3.32) is equivalent to
n =Ty, n n

(1.3.33) Va=Ta+Hn Loy Py =MV

with livpll, =1 and o) € <p,(t) <P() +¢€ forae. t.
Now we can pass to subsequences and suppose that

(1.3.34) v, — v in L2 weakly

(1.3.35) p, — P in L= weakly* .

But since L:i is completely continuous and llp,v,ll, < const , we have that (1.3.34) holds
strongly, which in turn implies that -

(1.3.36) PV, — pv in L? weakly .
Now we can pass to the weak L2 limit in (1.3.33) to get

(1.3.37) V=L, (p -y,

with a(t) —e<p(t) <B() +€.
In other words (1.3.37) means

(1.3.38) Lov = [#p + (1 — W¥)AJv
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and vz 0, since the convergence of v, holds strongly. But this, when A is suitably chosen
contradicts Lemma 1.3.2, and the proof is complete. ¢

Remark. Strengthening a bit the hypotheses of Theorem 1.3.1. on f, it is possible to prove,
with the aid of Lemma 1.3.1., that the solution provided by that theorem is unique.

More precisely, suppose that f: R xR — R satisfies all the hypotheses of Theorem 1.3.1.
and suppose in addition that it is differentiable in the second variable with

(1.3.39) at) £ %t,s) <B@®/2rn  forall sand a.e. t.

Then there exists at most one solution to problem

x'(t) + ax'(t—7) = f(t,x(t))
(1.3.40)

x(0) = x(2xn).

Indeed, suppose by contradiction that y is another solution of (1.3.40); then, by the linearity of

Ly, we have
2n

(1.3.41) Lo(x —y) = f(t,x(1)) — f(t,y(1)) = (x -—y)(ﬁ;%(t,y +5(x — y))ds.

2
If we set p(t) = J%(t,y + S(x —y)ds , with a(t) < p(t) £ B(t) for a.e. t, (1.3.41) becomes

(1.3.42) Lo(x—y) =px-y),

and invoking Lemma 1.1.1 we get x —y =0.
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1.4. Infinite dimensional kernels.

In Section 1.3. we have seen how to deal with the "easy" case lal < 1, that is when invertibility
and compactness of the inverse of the differential operator can be proved.

Now we want to investigate what happens in the critical case lal = 1, and precisely when the
dimension of the kernel of the differential operator is infinite.

Differential problems in which the kernel of the differential operator has infinite dimension have
frequently appeared in the literature (see e.g. [M2], [MW1], [KA], [CO], [BN]) and different
approaches have been developed in order to deal with them.

One of the most useful ones, which goes back to [DST], [MAN], [CO], is particularly suitable
to treat the wave equation with periodic boundary conditions and monotone nonlinearities, a
problem which can be considered as the starting point for all such techniques. Many papers are
devoted to the study of the semilinear wave equation with periodic boundary conditions and
techniques have been refined in order to increase their range of applicability.

When we try to modify such techniques to apply them to our problem, we immediately meet
with a very hard difficulty. In fact, all these techniques which have been developed for the wave
equation can only deal with differential operators which have some good properties such as
self-adjointness: all these results require that the differential operator be at least closed.

So if we try to apply them we have to start by verifying the closedness of our operator.

More precisely, we are going to study the closedness of the operator

(1.4.1) L:domLcl2—12
defined by ‘
(1.4.2) dom L = H!
(1.4.3) (Lu)(t) = u(t) +u(t — 1)

where T =3 with q and p odd coprime integers. We know from Proposition (1.2.3) that
this is the case in which

(14.4) KerL o span {1, coskt,sinkt/k=(2n-1)p,neN}.
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Now we show that for every p, q coprime odd integers there exists a sequence uge dom L
such that

(1.4.5) u, —>u in L2 for el 0

(1.4.6) Lu, > w in L2 for €l 0

but ue¢dom L, that is, the operator L is not closed.
To this end we first recall that Ker L N dom L can be characterized as a set of functions which
have a certain symmetry, and precisely we have that

(1.4.7) KerL = {uedomL/u(t—1) =—u(t) forae. teR}.

Then we fix in the interval [0, 2r] the points
.
(1.4.8) tk=k5 for k=0,1,...,2p

and we define, for every € >0, the function

(t = to)1/2*e if te [ty;, thje1]
(1.4.9) ug(t) =

(t2j - t)1/2+£ if te [th—l , th]
We notice that u; is continuous and that -

("21‘1‘8)(t - tzj)_1/2+€ if te ]th’ t2j+1[
(1.4.10) (1) =

- Gre)(tgy = D12 BE 1 Tty

so that ugeL? and therefore u;edomL .
Moreover, by (1.4.10) it —%’-‘-) = 0,(t) sothat u,eKerL Ve>0.
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(t — 12 if te [ty t541]
But now if uy is defined by uy(t) = we have that

(tay — D2 if te [ty » tyj]

u, — g in, CO and a fortiori in L2, but uggdom L. since uge L2 .

Thus the operator L is not closed and the approach which we have discussed above is not
useful.

Even if we replace L by L —AI, an operator which is injective (Proposition 1.2.3) we cannot
g0 any further because, recalling the proof of Proposition 1.2.5 one sees that L —AI might fail
to be surjective, let alone (L —AD-! to be continuous.

A different tool is needed to study the existence of periodic solution of the equation

(1.4.12) x'(t) + x'(t — 1) = f(t, x(1)

and this is provided by some ideas which can be found in the work of Coron [CO].

The main feature of this new method consists in restricting problem (1.4.12) to 2 subspace of
L2 which is invariant under the action of L, of f and such that the restriction of Ker L to this
subspace has finite dimension. One can then hope to prove continuity and compactness of some
generalized inverse of L.

One possible choice for such a subspace is provided by Proposition 1.2.8: if we set

(1.4.13) V =cl span {1,coskt,sinkt/1l—§e N}

than Ker L N V = {0} . However this choice turns out rather awkward when it comes to
impose conditions in order that f map V into itself. )
We therefore introduce the following subspace

(1.4.14) H =cl span {1, coskt, sinkt / k =2n,neN}

noticing that it is nothing else than the space of 7-periodic functions.
We now set

(1.4.15) X = COnH

(1.4.16) Z=12nH
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so that L. maps Xndom L into Z.
If wecall L the restriction of L to H , that is the operator defined by

(1.4.17) L:domLc X — Z,
(1.4.18) domL =H! A H,
(1.4.19) Lu=Ly,

we can prove the following

Proposition 1.4.1. L isa Fredholm operator of index zero. In particular

(1.4.20) Ker L = span {1}

(1.4.21) ImL = (xeZ/ [x(s) ds = 0) = Z,.

Proof. Substituting for x its expansion in Fourier series and using the same calculation as in
Proposition 1.2.3 we immediately see that Ker L = span {1} .
To characterize Im L we notice first that

~

ZpoIm L

to verify the converse inclusion we take yeZ, with Fourier coefficients (Yn» o) ; the equation
Lx =y has a solution if
a) Ay#0  Vk

b) X = (3:) = M;l G’:)e H! for some ke N .

Now a) is always true because
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sin 2kt =0
Ak=O€"')

1+cos2kt=0

and this is always false.
For what concerns b), using standard computations, we see that xe H! because

2
sup (k) 1

< < +oo,
k A2k 2(1+0082k’5)

This proves that Zy =Im L and consequently L is a Fredholm operator of index zero. ¢

Thanks to this proposition, we can use the standard theory (see for example [GM)) to ensure
that there exist continuous projections

P:X-X, Q:Z-72

such that ImP = Keri and Ker Q=Imi .
If we restrict L to Ker Pdom L, L is bijective and so it admits a unique (depending on P)
inverse

szlmi—%domi NKer P .

It is then possible to define a generalized inverse of L , namely the operator

Kpg: 7 — dom L M Ker P
KP,Q = KP(I - Q) .
It is easy to see that Kp o is continuous from Z into dom LA KerP and consequently that
Kpg is completely continuous from Z into X, thanks to the compactness of the embedding

of H! into CO.We are now almost ready to state the main theorem concerning the existence
- of periodic solutions to equation

(1.4.30) X'(t) +x'(t—1) = f(t, x(1) .
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To complete the general setting that we are going to use to apply Mawhin's Continuation
Theorem we need some restriction on the nonlinearity f in order that it send continuously Z
into itself. We shall then suppose that f: R xR — R isa Carathéodory function 7-periodic in
the first variable and such that

(1.4.31) VR >0 ,3fgeZ such that

If(t, s) < fr(t) Vt VIsISR .

As we have seen above this implies that the Nemytskii operator associated to f is continuous
from X into Z.We remark that in view of these properties the mapping

KpoN:X —X

is completely continuous.
The existence of (-) periodic solutions to Equation (1.4.30) follows now from the existence of
fixed points for the mapping Kp N, and this is precisely what we are going to prove.

Theorem 1.4.1. Let f:R xR >R bea Carathéodory function w-periodic in the first
variable and such that (1.4.31) holds. Suppose moreover that there exists M such that

(1.4.32) £t x> 0 for Ixl> M

and

(1.4.33) im {88 _ ¢ |
Isl—e0 S

Then there exists at least a n-periodic solution to Equation (1.4.30).

Proof. With the notations introduced in this section we know that the theorem is true if there
exists a fixed point for the mapping Kp NN, that is a solution of the equation

(1.4.34) x = Kp oNx .
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We are going to show the existence of such a solution via Mawhin's Continuation Theorem
(A.3.). All we have to do then is to show that the hypotheses of this theorem hold true, and
precisely that there exists an open bounded set Q — X such that

a) QN:X — Z is continuous and sends bounded sets into bounded sets.

b) If g=OQNlgkedf » then

g(x)#0 Vxe 3QKerL.

c) deg(g, Qr\Kerf,, 0)=0

d) Lx#ANx VAe]0, 1, Vxe 9QndomL .
We take Q =B, = {xeX/Ixll, <r}, with r sufficiently big.
Now QN is clearly continuous and sends bounded sets into bounded sets because if BcX is
such a bounded set, then VxeB

T
d[lf(t, x)12dt < const

T
and IIQNxll = | L [ f(tx)dt | < const independent of x;
O

a) is proved.

b) is trivial if we choose r > M and we remark that 0QnNKer L consists of constant
¥
functions: if ce 9QKerL , then g(c) = 1 Jf(t,c)dt #0 by (1.4.32).
o

¢) is trivial too if we remark that
deg(g, QNKer i, 0)=1
being equal to the degree of a linear map ﬁuough (-1, g(-1)) and (r, g@r)) , with
gl <0<g@®.

Finally, we consider d): working like in the proof of Proposition 1.4.1. it is easy to show that
there exists k>0 such that

(1.4.36) Lull, > kil VuedomL .

Now by (1.4.33) it follows that Ve >0, dc >0 such that

(1.4.37) INxIl,< ¢ + € lIxll;
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by (1.4.32), for every solution x of ix = ANx there exists tye [0, 2n] such that

(1.4.38) X)) <M ,

and consequently, for every solution of Lx =ANx we get

(1.4.39) Il <M+ Ikl

which, substituted into (1.4.37) yields

(1.4.40) INXIL, <c+eM+erlikll, .
Finally, using (1.4.36) we get

(1.4.41) kll)'dlz <ICxl, <INxll, <c+eM+¢ \/;-Ib'(llz
which means, for € small enough,

(1.4.42) Ixll, < const.

Recalling that for every solution of £x = ANx we have also inf x()I <M, we finally get
t

(1.4.43) lixll; 5 < const

which is the required estimate. ¢
1.5. A special form of the nonlinearity.

The purpose of this section is to show how the hypotheses of Theorems 1.3.1. and 1.4.1. can
be considerably weakened when the nonlinearity has the special form f(t, x) = g(x) + h(t) .
We start with the analogous of Theorem 1.3.1., that is with the "compact" case lal<1.
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Theorem 1.5.1. let lal<1andlet g: R — R be a continuous function such that there exists
M >0 with

(1.5.1) gx)x20 if xI=zM.

Let hel? have zero mean value.
Then there exists at least one 27-periodic solution of the equation

(1.5.2) x'(t) + ax'(t — 7) = g(x) + h(D) .

Proof. We fix L <0 and we write (1.5.2) in the equivalent form

(1.5.3) X'(t) + ax'(t — T) + ux(t) = g(x) + ux(0) + h(t) .

If we define the operator L, : dom L!_lcCO — 12 by domL, = H1
Lx)(@®) =x'(1) + ax'(t — 1) + px(t) ,

we have from the general theory of Section 1.2 that L, is invertible, and that L;l is
completely continuous from L2 into CO.

If we call N: C? — L2 the (continuous) Nemytskii operator associated to g + ul+h and T,
the mapping 1_1:1 N, we have that T, : 9 — 9 is completely continuous and its fixed points
are the solutions of Equation (1.5.2). We look for fixed points of Ty with the aid of Leray-
Schauder's Continuation Theorem.
The only thing to verify is that

VAe10, 1[, x #AT,x Vxe 0By,

where By = {xeCo/ IIxll <vR} and R is to be chosen conveniently.
We begin by noticing that for every solution of x = KTux we have inflx(t)l < M . Indeed

integrating L,x =ANx between 0 and 2r we get '

2%
(1.5.6) J{xg@(o)—u(l—x) x()ldt = 0

and, by the mean value theorem, there exists to such that
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(1.5.7) Ag(x(tg) — K(L - Mx(te) = 0.
If x(tp) =0 there is nothing to prove; if not, we multiply (1.5.7) by x(tp) to get
Ag(x(10)) x(tg) = p(1 = 1) Ix(tg)2 < 0

because W <0 and then x(ty) <M.

It remains to show that there exists an a priori estimate independent of A on II).dlz , where x is
a solution of x =AT,x, to end like in the proof of Theorem 1.5.1.

We put for simplicity x(t) = x(t—T) and we write L,x =ANx in the form

(1.5.8) X'—Ag(x) + (1 - A)ux = — ax'(t—1)+ Ah .

Taking the L2 norm of both sides we get

2r I
{OJ‘IxI2 + A2 Ojlg(x)lz +(1-2A)2u2 O‘.'lez 201 - )p J'g(x)x}l/2 <

< fal llxll2 + Adhhll, ;
therefore

2n
{Jb.(lz =2A(1 = A)p) 6[g(x)x}lf?- < lal lixll, + Allnll, .
Squaring gives

2n
(1-a2) IKIZ < 2A(1 — A Jg00x + A2IIhli2 + 22, lal lixll, lihll, <

SAM1-Mu[  Jgxx+  [gx)x] +c+c' lixll; .
{IxIsM} {Ixi>M}

Now if IxI>M, g(x)x >0 and 2A(1 - A)p jg(x)x < 0 and then
{IxI>M}



-41 -
(1-2a2) Ilidl% <2miul M sup lg(s)l +c +c'lIxlly <c" + ¢ Ixll;
Isi<M
from which follows lixll, < const independent of A . : ¢
We close this part with the analogous of Theorem 1.4.1.: also in this case the sign condition on
g is sufficient to ensure the existence of a periodic solution when the forcing term has period

.

Theorem 1.5.2. Let g: /R — R be a continuous function such that there exists M > 0 with

(1.5.10) gx)x20 if xIZ2M .

Let he L2 have period 7 and zero mean value.
Then there exists at least one (n-) periodic solution of

(1.5.11) ; x'(t) + x'(t — T) = g(x(t)) + h(t) .

Proof. Like in the previous theorem the only thing to prove is that

(1.5.12) Ix # ANx VxedBgdom L.
With the same notation as in Theorem 1.4.1. there exists k>0 such that

(1.5.13) k lIxlly < IExlly < A lig(x)lly + Alihll,

for every solution of Lx = ANx .
Taking the L2 norm of x —Ag(x) =—x,+Ah we get

7t

IIZ + A2 llg()li2 < XI5 + A2 bl — 24 Jh;g :

Then, by (1.5.13)

AlgGIE < A2 1IhI5 + 2%(‘-nm|2 O gl + Allhlly) <
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2
<AL+ 2 IhiE + z%‘(—uhu2 llg(oll,

which gives lig(x)ll, < const independent of A .
Finally substituting this estimate in (1.5.13) we get

lixll, < const.

We then invoke the sign condition to get the required estimate, as in the proof of Theorem
1.4.1. ¢

Remark. In this section we have studied the case a = 1, imposing some conditions on f (%--
periodicity) suggested by Proposition 1.2.3. It is perfectly clear that analogous results can be
obtained in the case a =-1, with the help of Proposition 1.2.4., by requiring that f have some
suitable "simmetry" properties.
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CHAPTER 2

SOME DIFFERENTIAL EQUATIONS WITH
DELAYS IN THE NONLINEARITIES

2.1. Motivations and general remarks.

The aim of this section is to introduce to the study of some nonlinear delay differential equations
where the delay appears in the nonlinearity. As we have done in Chapter 1, we choose a
particular type of equation depending on some parameters in order to present the various
situations which occur when the parameters are allowed to vary.

As in the first part of the thesis we are interested in finding periodic solutions of these equations
with prescribed periodicity, which we will always assume to be 2.

The equations that we are going to consider are essentially of two kinds, namely

(2.1.1) x'(t) = f(t,x () — f{t—1,x(t-7))

with its subcase

(2.1.2) x'(t) = g(x(1) — g(x(t=1)) + p(V)
and )
(2.1.3) x'(t) = f(t,x(t)) — f(t,x(t—7)).

The study of the existence of periodic solutions for these equations will take place throughout
Chapter 2.

In this section we are going to make some introductory remarks and to present some negative
results.

Equations (2.1.1), (2.1.2) and (2.1.3) have been studied extensively in the literature by many
authors, see for example [AS], [CK], [DL], [JE], [LW1], [LWZ2]; in particular, much attention
has been devoted to the analysis of the asymptotic behaviour of the solutions; for this and
related matters we refer to the interesting survey paper by Haddock, [HD].




The study of the asymptotic behaviour of solutions of these equations turns out to be especially
significative when one is interested in periodic solutions. As a matter of fact, a first (negative)
result was provided for equation (2.1.3) by the work of Jehu, in [JE]. This work answered the
following question posed by Haddock in [HD]:

given a functional differential equation for which each constant function is a solution, when do
all solutions tend to constant as t — oo ?

Noticing that for equation (2.1.3) all constant functions are solutions, we can take advantage of
Jehu's result to remark that there are qualitative hypotheses on f such that for (2.1.3) the only
periodic solutions are the constant ones. Indeed Jehu proved that if f is continuous in x,
periodic in t and strictly decreasing, each solution of (2.1.3) tends to a constant as t — co. We
are able to say something more, for some particular values of the delay .

We have indeed

Proposition 2.1.1. let f: R xR — R be continuous, 2x periodic in the first variable and
strictly monotone in the second.
If t/me @, then the only 2n-periodic solutions of (2.1.3) are the constant functions.

Proof. Let x be a 2n-periodic solution of (2.1.3). Notice that, being x of class C9, it is

automatically (from the equation) of class CL.
Let tybe a point of absolute maximum for x; then

0 = £(ty ,x(t9)) — £(tg ,x(tg —1))

and, being f strictly monotone, x(ty) = x(ty—1), that is, ty—1 is a point of absolute maximum
for x. Now, because t/m ¢ Q , x cannot be both T-periodic and 2x-periodic; so we can apply
the preceding argument to the point ty—T, to show that t;—2T is another absolute maximum
for x, and so on. Then the points (tg—kT),cpy are all absolute maxima for x and, since they are

dense (mod 2r) in [0,27], we conclude that x(t) = x(ty) for all t. ¢

Another negative result is immediately obtained for equation (2.1.3) when f does not depend
explicitly on t, that is for the equation

(2.1.4) X'(t) = f(x(t)) — £(x(t~1)).

Indeed for every continuous f, the periodic solutions of (2.1.4) are all constant, as one can
easily see taking the LZ norm of both sides of
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x'(t) — f(x(1) = fx(E=1),

and remarking that the mixed product in the left-hand-side vanishes because of periodicity: we
get

12 + IEGOIZ = IEGOIES

that is, x = const.

This trivial remark settles the matter as far as equation (2.1.4) is concerned. A completely
different situation arises when the right-hand-side of (2.1.4) is perturbed with a periodic forcing
term p(t), that is when we consider equation(2.1.2). The study of existence of periodic
solutions of (2.1.2) will take place in the following sections.

We want to end this introduction with some motivations, from the point of view of the
applications, for the choice of equations (2.1.1),(2.1.2), and (2.1.3).

Indeed, they represent very important models of various phenomena in mathematical biology.
One of the first authors who started the study of these equations was Lotka, in his research on
the growth of a population. To make an example, we would like to explain how to derive an
equation of the type (2.1.2), ruling the growth of a population, from very general assumptions.

Suppose for instance that the "length" of life of each individual is independent of the total
number of individuals in the aggregate and of the distribution of the ages among them. Assume
moreover that the number of births per unit time is a function only of the population size; that is,
the birth rate is "density-dependent” but not age-dependent.

Now suppose that x(t) denotes the number of individuals at time t. Then the number of births
per unit time is some function of x, say f(x(t)).

Finally we introduce an assumption which is rather restrictive but nonetheless meaningful if we
consider long time intervals and average data: we Suppose that every individual has the same life
span, T. Therefore, if every individual dies at age T, the number of deaths per unit time is given
by f(x(t—t)). Since the difference f(x(t)) — f(x(t—1)) is the net change in the population per unit
time, the growth of the population is governed by the equation

x'(t) = f(x()) — f&x(ED),

which is (2.1.2) with p=0.
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We recall eventually that the same equations (2.1.1-3) are also very good models for the
diffusion of infectious diseases. For these aspects we refer to [CK] and references therein.

2.2. A first existence result.

In this section we want to give a first and easy existence result concerning equation (2.1.1).
This equation has been studied by Arino and Seguier in [AS], with the aim of investi gating the
asymptotic behaviour of its solutions. As a by-product of this study they were able to prove the
following

Theorem 2.2.1. (Arino - Seguier) let f: R xR — R be continuous, T-periodic in the

first variable, nonincreasing in the second and either strictly decreasing or lipschitzean in the
second variable. Suppose moreover that f(t,0) =0. Then, for every real number o, there exists
a T-periodic solution of

x'(t) = f(t,x(t)) — f(t—1,x(t—1))

such that

t
x(t) — jlf(s,x(s))ds = Q.
t-

We are going to show that if monotonicity is replaced by some growth assumption on f, then
one can still get at least one periodic solution.

To this aim we suppose that f is a Caratheodory function, 2x-periodic in the first variable and
such that for every R > 0, there exists an fre L2with

(2.2.1) f(t, )l <fr(t), VY Isl<Rand ae.t.

Under this assumption the Nemytskii operator N associated to f is a continuous mapping from
CYto L2 Moreover, we observe that if we call T, the mapping defined by

(Tex)(t) = x(t~1),
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then the right-hand-side of (2.1.1) can be written Nx — T,Nx . The mapping N-T,N takes

functions with zero mean value into functions with zero mean value, so that if we denote by X

and Z respectively the spaces of C0 and L2 functions with zero mean value, we can think of
N - T,N as a continuous mapping from X toZ

Since L= -g—t- is continuously invertible between XNH! (endowed with the H! topology) and

7, L7 is a completely continuous operator from Z to X and T=L Y(N-TN): X - Xis

also completely continuous.
By Leray-Schauder continuation theorem there exists a fixed point of T, that is a periodic
solution of (2.1.1), if one is able to prove that solutions of

(2.2.2) x =ATx, O<A <1,

are uniformly bounded in X with respect to A.

This is exactly what ensures the following

Proposition 2.2.1. There exists an € > 0 such that if

(2.2.3) tim sup | Z22| < & forallt,
s—toeo §

then the mapping T has a fixed point.

Proof. Itis enough to show that solutions of (2.2.2) are a priori bounded with respect to A.
Now by (2.2.3) there exist constants M = M(e) and & = &(g), with 8(g) — 0as € — 0 such
that

(2.2.4) INxll, <M + Slixll, forall xe X.
Then, if x satisfies (2.2.3) for some A € ]0,1[, we have
(2.2.5) lIx'lly < IINxll, + IITNx ll, = 21INxll, < 2M + 28lIxll;,

where we have also used the fact that T, is an isometry from L2 into itself.

Now if we recall that x has zero mean value, we can apply Wirtinger's inequality to get from
(2.2.5) the estimate
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(2.2.6) IIx'll; < 2M + 2C3lix'll,,

for some constant C independent of x.
When € is chosen small enough, we can assume 2C8 < 1, so that (2.2.6) yields

lix'll, < const., forall Ae ]0,1[.

Using again Wirtinger's inequality we get the boundedness of the H! norm of solutions of
(2.2.2), forevery A € 10,1[, which is enough to obtain a fixed point of T. ¢

Remark. As it is well-known, Wirtinger's constant for functions with zero mean value can be
taken equal to one, so that in the hypotheses of Proposition 2.2.1. we just have to ask that € be
such that 8 < 1/2.

2.3. The dominated case.

In this section we present a result concerning the existence of periodic solutions for equations of

the type

(2.3.1) x'(t) = af(x(t)) — bf(x(;—-’c)) +p(t)

when the constants a and b allow the "ordinary" term f(x(t)) to dominate the "functional" term
f(t,x(t-1)).

We recall that similar existence results have been obtained by Arino and Seguier in [AS], under
the crucial hypothesis that the nonlinearity be monotone. It is the main purpose of this section to
show that in the dominated case, monotonicity plays no essential role and can therefore be
abandoned. We will show in Section 2.4. that this happens even if such a domination is not
present, introducing some suitable growth conditions on f.

We remark that, although the form of the nonlinear term that we consider might look at first
glance less general than that of Arino and Seguier, this is not the case: to write (2.3.1) as in the
paper by Arino and Seguier one has to show that there exists a function o such that
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p(t) = ou(t) — a(t—1),
and we know from the general results of section 1.2. that this is in general false.We are

nevertheless able to prove the existence for every delay T, even if t/x ¢ 0.

We begin to precise the functional setting in which we want to study equation (2.3.1).
As usual we denote by L2, H' and C0 the spaces of 2n-periodic LZ, H! and C° functions; if f

is a real-valued continuous function and if p e L2, then the Nemytskii operator associated to
the right-hand-side of (2.3.1) maps CPinto L2 continuously. Our aim is to transform (2.3.1)
into a fixed point problem which can be solved by means of the Leray-Schauder continuation

theorem. We think of the operator %— as a linear map

L:domLcC’—1?

with domL =H'. As L is not invertible, we write (2.3.1) in the equivalent form

(2.3.2) X'(t) — ux(t) = af(x(t)) — bf(x(t-1)) — px()+ p(t)
where L is a constant whose sign will be conveniently chosen. If now we set
L,:domL, c ' L2,
dom Lu = H.l,
LX)(® = LX) — px(),

itis well known that L,, is invertible and that L: : L2 s completely continuous.

The existence of a periodic solution to problem (2.3.1) is then proved, provided that the map
= 1y .0 0
T, = L“NP.C -C,

where N, : C” - L’is defined by (N,x)(t) = (Nx)(t) — px(t), has a fixed point. We remark
that T, is completely continuous.
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We now come to the theorem which makes precise all the hypotheses needed in order for Ty, to
have a fixed point.

Theorem 2.3.1. Let f: R — R be continuous and such that
(2.3.4) f(x)x =20 forall xe B.

Let a,b € R be such that lal > Ibl.
Then for every pe L% with zero mean value there exists at least one 2n-periodic solution of

x'(t) = af(x(t)) — bf(x(t—1)) + p(t).

Proof. As we have already remarked, the thesis of the theorem is equivalent to the fixed point
problem

find x € C°such that

(2.3.6) x =T, x

By Leray-Schauder continuation theorem, (2.3.6) holds true if one can show that the solutions
of

2.3.7) x =T, x

are uniformly bounded with respect to A € ]0,1[. -We are going to check this property by
establishing some a priori estimates.
Indeed, if x is a solution of (2.3.7), then

(2.3.8) X'(t) — p(1 = A)x(t) — Aaf(x(t)) = —Abf(x(t—T)) + Ap(t).
If we take the L2 norm of both sides of (2.3.8) we get

2n
(2.3.9) X1 + (1 = A) 22 + AZalEGONZ + 2pha(l — ) Jf(x)xdt <
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< APD2EGIZ + Al + 2A%1bl IEGx) L ipll,.

Now if we choose [ such that sgn(uLa) > 0, we have

A2@@” = b IEGOIZ < A% lpliZ -+ 20 21bl IEGx)1Iipll,.

Dividing this last relation by A? we obtain

(2.3.10) IIf(x)H22 < const. (independent of A).

Taking advantage from this inequality we see from (2.3.9) that

(2.3.11) lix'lly < const. (independent of A).

To complete the estimates we just have to show that every solution of (2.3.8) has a zero, in
order to bound its C° norm by means of the inequality

(2.3.12) lixll__ < 2m)"iixl,.

But this property follows easily integrating equation (2.3.8) and recalling that p has zero mean
value:

2% - 2n
(2.3.13) 0=2A(a-b) Jf(x)dt + (1 -A) ({xdt

Now if a>0,then a—b>0and p > 0; if x does not change sign, then the two quantities in
the right-hand-side of (2.3.13) have the same sign, and (2.3.13) is false. The case a < 0 is
analogous. We have thus obtained that all the solutions of (2.3.7) are uniformly bounded with
respect to A, and the proof is complete. 14
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2.4. Sufficiency of the growth condition.

We now turn to the case in which the ordinary term f(x(t)) does not dominate the functional one
f(x(t — 1)), that is, when lal = Ibl. For simplicity we assume lal = Ibl = 1 and again we consider
the problem of finding 2x-periodic solutions of

(2.4.1) x'(t) = f(x(1)) — f(x(t—1)) + p(V) .

As we have said at the beginning of the previous section, Arino and Seguier proved that the
equation

(2.4.2) x'(t) = f(t=1,x(t—1)) — £(t,x(t))

has infinitely many T-periodic solutions, each of which is completely determined by the value
of the "first integral"

t
H(x) =x() + jlf(s,x(s))ds.
t-

One of the basic assumptions which were made on f in [AS] was that it be nondecreasing in the
state variable x and either strictly increasing or locally lipschitzean.

Our main goal is to show that these hypotheses can be completely abandoned if we replace them
with some growth condition on f, to get the existence of at least one 2x-periodic solution.

We denote by X and Z respectively the spaces of %and L2 2rw-periodic functions with zero

2n
mean value and we observe that, if f is continuous and Jp(s)ds = 0, the Nemytskii operator N

associated to the right-hand-side of (2.4.1) is continuous from X to Z.
If we define as usual the linear operator L by

L:domLcX—>7Z,
domL=H1,

@Lx)(O = x'(1),
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we have that L is continuously invertible between X N H! (endowed with the H topology)
and Z, sothat L™ :Z — X is completely continuous.

Once again, after defining T = L’IN, the existence of a periodic solution for (2.4.1) will follow
from the existence of a fixed point for the completely continuous map T: X — X.

This is precisely what ensures the following

Theorem 2.4.1. Let f: R — R be continuous.

2n
For every p e L™, with J p(s)ds = 0, there exists a positive constant €= g(p) such that if

(2.4.3) lim sup '—f-%—)—' < e(p)
s—teo S

then there exists at least one 2nt-periodic solution of (2.4.1).

Proof. We show the existence of a fixed point for the map T by means of the Leray-Schauder
continuation theorem. To this aim, we have to show, like in the proof of theorem 2.3.1 that
there exists a uniform bound for the C0 norm of the solutions of

(2.4.4) x = ATX,

for every A €10,1[.

Since we know that solutions of (2.4.4) have zero mean value, by Wirtinger's inequality we
only have to find a bound on the L? norm of their derivatives.

Indeed, let x be such a solution, for some A € ]0,1[; then

(2.4.5) x'(t) = M(x(D) = Mx(E=1)) — Ap(D).
Taking the L% norm yields
2r
(2.4.6) x5 + AIEGOIE = AHIFGONZ +AipliZ — 2k2Jf(x(t—t))p(t)dt

that is, by Holder's inequality,
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(2.4.7) k' < AZlipliZ + 2A2Hpl i)y,

Now by (2.4.3) there exists a constant M > 0 such that

(2.4.8) IEGR)Il, <M + () I,

If we carry this inequality in (2.4.7) we get

lIxI2 < lplZ + 21ipll (M + e(p) IIxI2) <
< lipl2 + 2lIpll (M + e(p)lix'3),

from which we deduce, if &(p) < 2llpll.) ™",
lIx'll, < const., (independent of A),

which is the desired estimate.
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Appendix A. Fixed points and continuation theorems.

In this Appendix we recall briefly the main classical theorems which we use throughout the
thesis. We omit their proofs, for which we refer to [DE] and [GM].

In what follows, whenever E is a normed space, By will always denote the open ball of radius
R, thatis, the set {x € E/lIxll <R}.

We begin with the classical Schauder Fixed Point Theorem:

Theorem A.1. (Schauder). Let E be a Banach space. Let T : Bg— Bg be a completely
continuous map. Then there exists an x € By such that Tx =x.

Strictly related to the previous theorem is the following Leray-Schauder Continuation Theorem:

Theorem A.2. (Leray-Schauder). Let” E be a normed space and let T:E — E be a
completely continuous map. Suppose there exists an R > 0 such that, for every A € 10,1, the
equation

x =ATx
has no solutions on 9By. Then there exists x € By such that Tx =x.

Let us suppose now that X, Z are normed spaces and that L : dom L ¢ X — Z is a linear
Fredholm operator of index zero. With the same notations used in Section 1.4., we denote by
P and Q a pair of continuous projections (in X and Z respectively) such that Im P = Ker L and
KerQ=ImL, and by Kp:Z — dom L N Ker P the generalized inverse of L.

We recall that if Q < X is open and bounded, a mapping N : Q — Z is called L-completely
continuous if QN is continuous, takes bounded sets into bounded sets, and if KpoN is
completely continuous from X into itself.

Then we can now state Mawhin Continuation Theorem:

Theorem A.3. (Mawhin). Let X, Z be normed spaces and L :domL < X — Z a linear
Fredholm operator of index zero. Let Q c X be an open bounded set and let N: Q — Z be an
L-completely continuous map.

Let g= QNIg Akerr: Q@ W KerL — Im Q be such that g(x) 0, Vx € 0Q N Ker L.
Suppose moreover that
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i) Lx#ANx, VA e ]0,1[, Vxe 0Q ndom L.

ii) deg(g,2 N Ker L,0) # 0.

Then there exists an x € Q N dom L such that Lx = Nx.
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