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0. INTRODUCTION

What are the Infinite-Dimensional Integrable Systems? To my knowledge, this
fundamental question has not beex; given a final answer up to now. The notion of
"complete integrability” for infinite-dimensional systems is commonly intended to be some
sort of generalization of the classical notion of integrability "a la Liouville" in analytical
mechanics; however, there is no criterion available in general to decide whether a nonlinear
partial differential equation admits enough conservation laws to be considered as
completely integrable. According to the common wisdom, the most direct test of complete
" integrability is the existence of the so-called "soliton solutions"; actually, this criterion has
to be sharpened since there are PDEs admitting one- and two-soliton solutions, which
nevertheless do not share all the features that one would expect for a completely integrable
system, such as the existence of a canonical transformation to "action-angle" variables (in
the inﬁnitc-dirﬁensional case, this is commonly known as "Inverse Scattering Transform"),
or the continuous dependence of solutions on initial data. Another well-known (and
nevertheless mysterious) fact is the occurrencé of the so-called "Painlevé property" in all
classical examples of IDIS. The Painlevé property is the following one: the location of the
essential singularities of the solutions is fixed, i.e. it does not depend on initial data; only
polar singularities are affected by the choice of the initial conditions. This feature has been
often proposed as a criterion for integrability, even if it is not clear at all why it should be
so. However, the Painlevé property does not apply directly to the PDE one wants to test,

but to the ODEs that can be extracted from it by imposing all possible symmetry




requirements: therefore it is, in principle, very difficult to use the Painlevé property as a

test. A thorough discussion on these subjects can be found in [1].

In spite of the previous observations, there are 5 number of PDEs occurring in the
literature which are to be considered as IDIS beyond any possible doubt: in other words,
any reasonable definition of IDIS should include them. Namely, these equations are those
which can be extracted from some wéll— characterized "hierarchies" of PDEs, in particular
from the so-called Kadomtsev-Petviashvilij hierarchy. These equations are presently
acquiring a prominent position among the classical subjects of mathematical physics; this is
due to many reasons, and I will try to list some of them below.

First, most of these equations arise directly as mathematical models in a number of
rather different and apparently unrelated fields, such as fluid dynamics, condensed matter
- physics, plasma physics, quantum theory of particles and fields, gravitational theories. For
instance, let me mention the ancestor of this family, the celebrated KdV equation, which
was introduced to describe the solitary waves first observed in a channel by John Scott
Russel in 1834; another example is provided by the theory of conductivity in solids,
introduced by Fermi, Pasta and Ulam in 1940. It seems quite striking the fact that these
models were built directly on the basis of the experimental observation, and only/
afterwards the distinctive features of the IDIS became apparent; however, exactly those
features were able to explain the unexpected behavior of that models. Therefore, even a
quite abstract setting of the theory of IDIS is likely, at least in principle, to provide some
insight into a class of observable (and actually observed) phenomena.

On the other hand, some mathematical structures, introduced to deal with IDIS,
have turned out to be suited also to different applications. As a matter of fact, the present

burst of popularity of the algebro-geometric approach (which will be the subject of this




thesis) is mainly due to the relevance of that method also for the string theory (see e.g.
[2]); this is therefore another good motivation to investigate this subject.

A third reason may be found in the concurrence, in the various approaches to
IDIS, of many different mathematical techniques. Dealing primarily with differential
equations, the relcvanc¢ of the analytical setting is immediately evident; but the latest
developments have displayed also a charming interplay of algebra and geometry. It is not
difficult to guess that investigating thi;s favoured area of overlapping of many mathematical
methods could provide usetul indications also beyond the scope of the IDIS theory.

Let me further discuss this latter point. Roughly speaking, there are presently two
main approaches to investigate the nature of the "complete integrability". The first one
relies on the generalization to infinite-dimensional systems of the methods of hamiltonian
mechanics, in particular the construction of suitable "Poisson structures”. The remarkable
- amount of work done in this direction is summarized in various textbooks, such as [3],
[1]. One of the most relevant issues of this work is probably the understanding of the
intimate connection between Lie-algebra structures and hamiltonian structures. This
interplay can be emphasized in two possible ways, either by writing the defining equations
of the IDIS in fnatrix form (see e.g.[4]), or by regarding them as evolution equations for
differential operators in one variable ([5], [6]). In Sect. 1.2 I will briefly mention the
theory bearing the names of Adler, Kostant and Symes, which is a real cornerstone of that
buiding. However, more general settings have been recently introduced. In particular, I
believe that the theory of the so-called "Poisson-Nijenhuis structures" on a Lie algebra and
their possible reductions (see [7]) could provide a fairly comprehensive framework, which
also clarifies the role of the so-called "classical Yang-Baxter algebra" in this context.

A different approach relies on the algebro-geometric interpretation of IDIS. The

first step in this direction was achieved by applying the methods of commutative algebra to




the ring of differential operators, or more precisely to its commutative subrings. The
modern algebraic geometry tells us how to investigate such algebraic structures in terms of
the associated geometrical objects, such as algebraic curves and holomorphic line bundles.
The evolution of the system is then interpreted as generéting a geometrical deformation of
the latter objects. The whole setting is mostly due to the Russian school, in particular to
Krichever [8], while tﬁe idea of associating algebraic curves to rings of differential
operators was first introduced aroun(i 1920 by Burchnall and Chaundy [9]. A typical issue
of that construction is the recasting of the "evolution flows" as linear translational flows
over a complex torus, the Jacobian variety, which parametrizes the structures of
holomorphic line bundle (of degree zero) on a given algebraic curve. In particular cases,
this can be achieved in purely geometrical terms, without relying on commutative algebra;
for instance, for the KdV equation one can directly recover the "Jacobian flows" by means
- of the generalized Weierstrass @ -function on hyperelliptic curves (see [10]).

In the algebro-geometrical picture a particular object has acquired a prominent role:
the so-called Universal Grassmannian Manifold. In 1981 M. Sato proved that this
infinite-dimensional manifold is particularly suited to parametrize solutions of the KP
hierarchy. Sato's approach is not originally related with algebraic geometry; it relies mainly
on purely algebraic considerations. The UGM setting, nevertheless, has deeply improved
also the geometrical insight, and the investigation of its structure by various authors, like
G. Segal, G. Wilson, M. Mulase, T. Shiota, E. Arbarello and C. De Concini (see [11] and
refs. quoted therein), has eventually provided the solution of a classical problem of
algebraic geometry, i.e. the "Schottky problem" about the characterization of the Jacobian
varieties among the whole set of analytical complex tori. Of course, this sort of
"by-products" are able to motivate by themselves the whole investigation of the subject, at

least from the pure mathematicians' viewpoint. The UGM formalism was introduced to




provide a geometrical interpretation of the "bilinear form" of the KP equations introduced
by Hirota: the solution of the Schottky problem, for instance, has been obtained by
regarding the Hirota equation as a condition for the existence of an algebraic curve whose
Jacobian variety is a given complex torus. |

Remarkably enough, Hirota's t-function, which occurs in the bilinear form of the
KP hierarchy, is also thé starting point of the so-called "fermion-operator formalism" for
IDIS, introduced by the Kyoto grou;; ([12]) and dealing extensively with representations
of infinite-dimensional Lie algebras. The difference between the "geometrical approach" a
la Segal & Wilson and the "algebraic" setting by the Kyoto school seems however
restricted merely to the way of introducing exactly the same objects; it has been claimed
([13]) that there is a complete correspondence between the two pictures. As it is
well-known, both the UGM and the fermion- operator picture raised a great interest among
- theoretical physicists dealing with the string model and conformal field theories.

On the other hand, the Burchnall-Chaundy-Krichever framework, as well as the
Kostant-Adler-Symes construction on the hamiltonian side, correspond to analogous
treatments of the finite-dimensional case (see [14]). It is instructive to compare the
difficulty in properly defining the class of "completely integrable systems" in the
infinite-dimensional case, with the present occurrence in the literature of two possible
notions of "complete integrability” in finite dimension. In fact, the development of
algebro-geometrical methods for mechanical systems has led some authors to set a
definition of "algebraic integrability" (see [15]) besides the classical "Liouville-
integrability". It is still unclear whether the two notions of integrability do actually
coincide, or the "algebraically integrable systems" form a proper subset of the
"Liouville-integrable" ones. In a parallel way, for the moment nobody seems to know to

which extent the methods of algebraic geometry can be applied to PDE system admitting a



hamiltonian description. As a matter of fact, the relation between algebraic geometry and
Poisson structures is still an open problem (some indications about the finite-dimensional
case can be found in the recent paper [16]). For instance, the fact that the setting of the
"spectral problem", which is quite relevant in the algebfaic picture, arises in a natural way
within the hamiltonian framework as the explicit expression of a well-defined "momentum
mapping" seems not to have received the due attention in the literature.

Finding the link between algébraic geometry and hamiltonian picture is an exciting
challenge, not only for aesthetical reasons, but also in view of the possible outcomes; for
instance, the hamiltonian framework lies at the starting point of the geometrical approach
to quantization. :nd the quantization of nonlinear systems is still a vaste, unexplored area.
To mention a more restricted but quite fashionable problem, it has been recently suggested
([17]) that suitable modifications of the hamiltonian structure of KP equations could make
- possible to represent non-trivial central extensions of the Virasoro algebra in the space of
differential operators. It is precisely in this sense that I said above that the study of IDIS

could provide relevant indications to deal with even more general subjects.

This thesis should be intended as a preparatory step to deal with the
aforementioned problem of recasting the algebro-geometric structures in terms of of the
hamiltonian framework. As a matter of fact, I will not deal at all with the latter one here,
but I will concentrate on the algebro-geometrical side and review the results appeared so far
in the literature; the final aim of this thesis, however, is to present these results in a form
particularly suited to compare them with the hamiltonian approach.

This is the reason for the particular organization of the material presented herein,
which is represented in the diagram on the cover page. The first part of the thesis (Sects. 1

to 4) will be devoted to the description of the fundamental ingredients of the construction,




namely: the algebra of differential operators and its extension to the algebra of (formal)
pseudo-differential operators; the "Baker-Akhiezer functions"; the "Krichever data"
consisting in an algebraic curve C, a distinguished point on it, and a line bundle L over C;
and, finally, the Universal Grassmannian Manifold. |

The presentation of the ring of differential operators will follow a classical
approach (see [10], [18]). I will not deal with the analytic problems related to the action of
these operators on different function épaces; since the properties which are relevant for the
whole discussion are of algebraic character, one can rely on a purely formal construction.
In particular, the pseudo-differential operators will not be introduced by means of the
Fourier transform as it is currently done, so they are not to be interpreted, in principle, as
integro-differential operators.

The algebro-geometric structures will be introduced in a way which is inspired by
- the subsequent construction; I will extensively describe the relation between algebraic
varieties and commutative rings, since the link with IDIS, as I have anticipated below,
relies mainly on this setting. On the other hand, a number of items of the theory of
Riemann surfaces, which are needed only for technical reasons, will be simply recalled in a
very sketchy way.

Sect. 3 deals with the abstract definition of the Baker-Akhiezer functions,
anticipating some remarks which should contribute, in my hope, to clarify some points
arising later.

In Sect. 4, before introducing the UGM, I will briefly recall the main properties of
the well-known finite-dimensional Grassmannians; I will then present first the definition
due to Sato, both for historical reasons and because the relation with differential operators
is somewhat more direct in this setting; for the rest, I will follow almost faithfully the

tractation by Segal & Wilson [13].




The second part of the thesis is devoted to the description of the links between the
funtamental "blocks" listed above. I have tried to be as complete as possible in presenting
each link in both directions; I regard this effort as the most sigm‘ﬁcaﬁt feature of the present
work, since each paper available on the subject folldws in general only one arrow in
describing these correspondences. I stress that having at hand such a completely
"commutative" structuré, even if apparently redundant, is a necessary starting point to
make a comparison with the hamilto;ﬁan framework; in fact, we do not know in advance
which object in the structure will be the most relevant to this purpose, and being able to
recover the whole construction by starting from any point could be very important. From
the reader's viewpoint, this organization of the material should make one able to obtain an
almost self-consistent description of a single edge of the diagram without reading the other

Sections.



1. DIFFERENTIAL OPERATOR ALGEBRA AND RELATED
EQUATIONS

1.1 The Rings of Formal Differential and Pseudo-Differential Operators

A considerable insight into the deep structure of nonlinear IDIS such as KdV or
KP equations has been obtained by regarding them as infinitesimal generators of flows in
the space of differential operators, following the suggestions by Lax and Gelfand & Dikii
([19], [5]). The space of differential operators is naturally endowed with a ring structure,
in terms of which these infinitesimal generators can be given a very simple description. A
. comprehensive reference for the material below is [10].

To define a differential operator (in one variable), one should first specify the
space in which the coefficients of it do live. For the present purposes, it is enough to
assume that this space is a commutative ring of functions R. According to the different
situations, one could let R being the space of analytic functions in a neighborhood of the
origin, the space of smooth functions with compact support, the space of smooth periodic
functions, or a space of formal series, without concerning about convergence problems.
For most purposes the latter choice is advisable, and I will consider alternatively the rings
C[[x]] (Taylor series, not necessarily convergent) or C((x)) (Laurent series); in general,
however, I will not specify the ring of coefficients. In the sequel I will also consider rings
of functions of more than one variable.

Let R[D] be the space of formal differential operators with coefficients in R. Each

element LeR[D] has the form L = Ekzo a(x) Dk , 4. €R ; the action of the elements of
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R[D] as differential operators on R is defined through the identification D = d/dx. In this
way, the composition of operators L - P is well-defined and makes the space R[D] a
(non-commutative) ring.

R[D] is endowed with a natural grading, i.e. R[D]-—-@ «RI[D]y , R[D]y being the
subspace of differential operators of degree k. The subspace R[D], can be obviously
identified with R; however, they are not to be confused as rings: throughout this Section, I
shall write f* to denote the multiplicafion operator associated to the function feR .

The ring structure of R[D] is completely described by the Leibnitz rule:
(1.1) Do f* =f*. D + (Df)*

From this formula, in fact, one can derive the general multiplication rule; for notational
_ convenience, let me define the operators 9, and dp, as acting on an element L = 2o a, DX
as follows: ax L= Zkzo (Day) Dk, aDL = Ekzo kay Dk-! (if L has degree zero, of course,

I set opL = 0) the product of two operators A, BeR[D] is then expressed by
(1.2) | AeB=2,50 kD1IKAI B

whereby the product on the right-hand side is intended to be commutative (this formula can
be proved by applying the Leibnitz rule to products of the form D™ . (x™)* ). It is
straightforward to check that the multiplication defined by (1.2) is associative.

In the next Sections I will deal with the following problem: let me consider a
one-parameter deformation of a differential operator L, i.e. a family L(z) =2k20 ak(x,t)Dk,
which can be identified with an element of R'[D], R' being a ring of functions of the two

variables (x, ). For reasons that will be explained below, to describe such a deformation it
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is convenient to extend the ring R[D] to the ring PsD(R) of formal pseudo-differential
operators with coefficients in R. To this end one introduces the operator D'!: by

multiplying both sides of (1.1), from the left and from the right, by DL, one obtains
(1.3) f*. D1=D1.f*+ D1 (DH*.D1L :

iterating the application of this formula on (Df)* - D! in the last term, and so on, one

eventually finds
(1.4) Do =2, (kDT k(D) 9 K g

The expression (1.4) shows that the multiplication rule (1.2) can be straightforwardly
extended to the ring R((D)) of formal Laurent series with coefficients in R: this ring I will
denote by PsD(R). Any element A = Ekez ak(x)Dk e PsD(R) can be splitted into a
positive (or differential) part (A) = Zkzoak(x)Dk and a negative part (A)_=Zk<0ak(x)Dk.
Let me remark that the meaning of the operator D! is merely algebraic in this setting: to
make it correspond to the "integration operator'-one should make a suitable choice of the
ring R, for instance the ring of C™-functions with compact support.

In the sequel I will deal mostly with monic operators, i.e. operators whose
highest-order coefficient is a constant. Without loss of generality, one can suppose this
constant to be equal to one. In the paper [20] this setting is generalized to elliptic
operators, i.e. operators whose highest-order coefficient is non-vanishing at x = 0. The

relevance of the ring PsD(R) is mainly due to the following remarkable properties:
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(1.5) Proposition : Let Q € PsD(R) be a monic pseudo-differential operator of
arbitrary degree n, Q = D“+Zk <n ) DX; then Q has a unique inverse Q1,

which is monic and of degree (-n).

This proposition can be proved by induction. If one can find an "approximate inverse"
X(m) =DM+ lekSm ay Dk such that X<m) > Q = 1+ b D™+ (l.o.terms), then,
setting X1y = (X-bDF™1), one finds Xy, 1y« Q = 1+ ¢ D™ 2+ (Lo.terms). Of

course, X g = D™, |

(1.6) Corollary : The monic degree-zero elements K = 1 + Zk<0 ak()c)Dk form a

multiplicative group (the Volterra group).

- (1.7)  Proposition (Schur): Every element Q € PsD(R), monic and of degree n, has a
unique n-th root QYN The centralizer Z(Q) ={A e PsD(R)/ [A,Q] =0} of Qis
the ring of the Laurent series Zkez Cx Qk/n, ¢ € C.Z(Q) is commutative;

furthermore, any commutative subring of PsD(R) is of this type.
The proof of this proposition can be found, for instance, in [10].

The reason for having introduced the rings R[D] and PsD(R) can now be
illustrated by the following example. Let me consider again a deformation of an operator L,
as above, and assume that this deformation is generated by the tangent vector 9, L defined

by the so-called Lax equation:

(1.8) J,L =[P, L] (P,L € R'[D]);
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for suitable choices of the "Lax pair" (P, L), the equations for the coefficients of P and L
which follow from (1.8) turn out to reproduce some well-known IDIS, for instance the
KdV and the KP equations.

In fact, let L = D? + u*(x,r) and P = D3 + (3/2)(u(x,t)D + (Du(x,0)*); calculating

the expression of the commutator by the formula (1.2), one finds
(1.9) [P, L] = (1/4) (D%u + 6uDu)*

In a similar way one can recover the KP equation, the Boussinesq equation and other IDIS;
this motivates the introduction of the ring R[D]. Now, let me remark that the choice of the
second term for the Lax pair, once fixed the first one, is not arbitrary, since (1.8) can be
consistent only if deg ([P, L]) < deg(L) , since the degree of 8[ L cannot exceed deg(L)
(more precisely (deg(L) - 1), if L is monic); while in general, for arbitrary P, one has
deg([P, L]) < (deg(P) + deg(L) - 1). As I will show in the next Section, the
characterization of the admissible Lax pairs can be easily discussed by means of the

properties of the ring PsD(R) described above.
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1.2 Lax Equation, Spectral Problem and related topics.

The Lax equation (1.8) has a deep meaning, and the fact that it reproduces the
PDEs of some well-known IDIS is far from being accidental. Let me list some relevant
situations in which the Lax equation plays a central role.

In Part B of this thesis I will present the Burchnall-Chaundy-Krichever
construction that I have outlined in the introduction. The Lax equation acquires an intrinsic
geometrical meaning in that context, since it represents, in a suitable sense, the generators

| of linear flows on the Jacobian torus of spectral curves. This will be explained later.

As a second instance, let me briefly recall the main ideas of the Adler-

- Kostant-Symes approach to the complete integrability of Hamiltonian systems. Let g be a
(possibly infinite-dimensional) Lie algebra. g, or rather its dual g* (which is often
identified with gitself, by assuming the existence of an ad-invariant metric), is naturally
endowed with a Poisson structure, called Lie-Poisson bracker. In fact, g* can be identified
with the cotangent space to the identity of the corresponding Lie group G, and one can
prove that the canonical symplectic form on T* G admits a well-defined restriction to 4*,
which is however not of maximal rank (actuaily, not even of constant rank; therefore, it
defines a Poisson structure but not a symplectic structure). The explicit expression of the
Lie-Poisson bracket of two functions f, ge C™( g*), calculated in p € g*, is the

following:

(1.10) {f, gl =<u, [VE Vgl>
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where V' denotes the gradient defined by the relation df(iL) = <p, V£>. The characteristic
leaves of this Poisson structure, i.e. the submanifolds of 4* such that the restriction of the
Lie-Poisson tensor has maximal rank, turn out to be the orbits of the coadjoint action ad*.
Thus, on these orbits one can define a symplectic structure, which is commonly known as
the Kostant-Kirillov form. Now, if one fixes a Hamiltonian A on a characteristic leaf and
writes the corresponding Hamilton equations in Poisson form, one tipically finds Lax
equations, due to the occurrence of thé commutator in the expression (1.10).

It could seem that the hamiltonian systems on coadjoint orbits in a Lie algebra
constitute a very particular case; this is not so, for at least two reasons. First, a theorem by
Kirillov shows that such systems are the general model for hamiltonian systems with
symmetries: namely, if the group G acts transitively on a symplectic manifold M,
preserving the symplectic form, then M is isomorphic to a coadjoint orbit (in g*) either of
~ G or of a central extension of it. The second reason lies in the AKS construction. From the
arguments outlined above it follows (I skip the details; see e.g. [14]) that any two
ad*-invariant fuctions on g* have vanishing Lie-Poisson bracket. However, the restriction
of these functions to any coajoint orbit Q does not provide any non-trivial integral of
motion for thé hamiltonian systems above described, since these functions are just
identically constant on Q. The AKS construction relies on the introduction of a second
coadjoint action. Namely, one starts from a spliiting of a semisimple Lie algebra ginto two
orthogonal subspaces N and M, closed with respect to the commutator operation, and
considers the coadjoint action adpy* of N on its dual (which can be identified with M); this
action is related with the coadjoint action of the whole algebra through a projection
operator, so it is easy to see that the orbits of the two actions do not coincide. On the orbits
of the "new" coadjoint action ady* one can define in the standard way another Kostant-

Kirillov form: it turns out that the ad*-invariant functions commute also with respect to the
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new symplectic structure, but they are not identically constant on the new orbits. It turns
out that, for a hamiltonian system defined on these latter ones, one can obtain in this way
enough non-trivial constants of the motion in involution to fulfill Liouville's condition for
complete integrability.

Also this construction could seem to deal only with some particular cases of
completely integrable hémiltonian systems, and in fact it is not expected to cover all the
possible cases; however, one can treat in this way most of the known examples, included
the infinite-dimensional case of KdV equation, whereby the Lie algebra involved is just
PsD(R) and the splitting is the natural one, into the space PsD(R) =R (D) and its
complementary space PsD(R)_ (see e.g. [21]). Now, the AKS construction is directly
related with the Lax equation because all the integrable systems which can be obtained
through the AKS framework admit a Lax representation. Let me remark that Lax equations
- occur in more general approaches to the complete integrability problem, so they are to be
regarded as one of the main contact points of the various theories.

The third and final argument that I will rise to support the investigation of Lax
equations is that they express integrability conditions for systems of linear PDEs, which
are commonly known as spectral problems. Before doing that, however, I wish to retake
the question posed at the end of Sect. 1.1, i.e., how can one determine the admissible Lax

pairs? The answer is provided by the following proposition:

(1.11) Proposition : Let LeR[D], monic and of degree r; for each p<0, the space of the
elements PeR[D], of degree p, such that deg([P, L]) < (r-1) is generated by the
elements (Lk/r)_,_, (k=1, ..., p), the differential part of the powers of the r-th root

of L.
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The fundamental ingredient of the proof of (1.11) is provided by the following lemma:
(1.12) Lemma : The space described in Proposition (1.11) is (p+1)-dimensional.
The explicit form of the commutator of P=), Vi DX and L=, Up DK is the following:
(1.13) [P,L]= Zi,j,kz() [kik) v; 9,55 - () w0, kv 1 DIt

For each k, the coefficient of Dk depends on the coefficients v; , and their derivatives,
only for pzizk . Therefore, once we have solved the condition for the vanishing of the
coefficient of DF*K+1 the analogous condition relative to DK becomes a linear first-order
ODE for vy, which has a unique solution up to a constant. Since the coefficients of DK
- must vanish for p=k=>-1, and the equation for k=p is trivially satisfied (L is assumed to be
monic), the lemma is proved by induction. To prove the theorem, one has to show that the
commutators of the elements (LX) + (k=1, ..., p) with L itself have the prescribed degree.
This follows from Proposition (1.7), which implies [(L¥T),, L] = - [(L¥") , L]; since
(Lk/r)_ has negétive degree by definition, deg([(Lk/r)_, L})<r-1. |

Now I can discuss the setting of the spectral problem. Let me cosider two
operators L, P eR'[D] ; it is well known that the existence of a (formal) solution ¥ of the

joint eigenvalue problem for L and P

Ly =Ny
(1.14)
Py = py
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depends on the the condition
(1.15) [L,P]=0 .

For differential operators, (1.15) is known as Novikov equation, or stationary KdV

equation. To obtain the standard KdV equation (1.8), one can set the following problem:

Ly =\
(1.16)
Py =9, ,

Yy being now intended as a function of two variables (x,r). The compatibilty condition

- becomes in fact
(1.17) [L,o0, -P]=0 at L =[P L]

Further generalizing to the case of L, P € R"[D], where R" = R'[[y]], one can

consider the problem

Ly =0,y
(1.18)
Py=90,¢v ;

this time, the compatibility condition leads to the Zacharov-Shabat equation ([22]), which

some authors also call "Lax equation” or "zero-curvature condition":
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(1.19) [ay—L,at-P]=0 <= atL—asz [P, L]

If one sets L = D? + u(x,r) (from now on, I will write u instead of u* since there is no
more possible ambiguity), and chooses P to be a third-order operator, one finds for the
coefficients the Kadomtsev-Petviashvilij equation (see e.g. [23]).The proof that (1.19) is

indeed a compatibility condition for the linear system (1.18) will be postponed to Part B.

I'now wish to generalize even more this setting by considering a coefficient ring R
formed by functions depending on an arbitrary number of variables, which I will
collectively denote by ¢ = (x, 1,, #3, ...). Let Q be a monic pseudo-differential operator of
degree one, and P, (n =2, 3, ...) be an infinite family of differential operators such that

deg(P,) = n. Let the following relations hold for any n<2:

Qw =\
(1.20)
Py =3, ¥

(9, standing for d/dr, ); the related compatibility conditions are an infinite number of

Lax equations

(1.21) o, Q = [P, Q] s
together with infinitely many ZS equations

(1.22) 3y Py -9, Py = [P, Pyl
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In spite of having so many condition to be fulfilled, the problem admits solutions: in fact,
let me assume (for the moment, as an ansatz suggested by the considerations above)

P =(Q"),; equations (1.22) are then automatically satisfied:
(1~23) (am QI] - an Qm)+ - [Pm’ Pn] = ([Pm, Qﬂ] - [Pna Qm] - [Pma Pn])+ =
= ([P - Q™ P,-Q™), = 0

This problem, which will be re-examined from a different viewpoint in Sect. 5, leads

therefore to the KP hierarchy (see [12]):

(1.24) d, Q = [(Q",, Q]




2. ALGEBRAIC VARIETIES AND COMMUTATIVE RINGS.

2.1  Algebraic Curves.

One of the most beautiful ‘results of the algebraic theory of the differential
operators is the connection with the classical theory of algebraic curves. The root of this
correspondence, as I have anticipated in the Introduction, is the relation between spectral
problems and commutative subrings of differential operators. The modern approach to
algebraic geometry suggests how to associate geometrical objects to commutative rings and
modules, and this will be the subject of this Section. The main references on this material
are the textbooks [24], [25] and [26]. In these books the definitions are usually given in
terms of an arbitrary field K (even not algebraically closed). For my purposes, it is enough
to deal with the particular case K=C; however, most of the definitions hold in the general

case.

(2.1)  Definition : An affine algebraic variety V cC" is the common zero locus of a

set of polynomials fi, ..., fi € C[x;, ..., x; ].

The equations f; (x;, ..., x,) = 0 are called the defining equations of V. The algebraic
curves are the varieties of (complex) dimension one. The plane algebraic curves are the
curves in €2 defined by one polynomial f € Clx, y] .

Of course, the zero locus of f is also the common zero locus of all polynomials

ged({f;}), 9({f;)<=C[ xy, ..., x, | being the principal ideal generated by the polynomials
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f;. Therefore, each algebraic variety V is in correspondence with a proper ideal of a
polynomial ring C[ xy, ..., x, ; the ideal 9({f;}) is called the ideal of the variety V and
will be denoted by 9(V). A variety V is said to be irreducible if 4(V) is a prime ideal, or,
equivalently, if 9(V) is generated by irreducible poiynornials. Geometrically, being
irreducible means that V cannot be split into the union of two proper subvarieties. In the
sequel I will assume in géneral that V is irreducible.

An algebraic variety V calm'es two topological structures which deserve a
particular attention: one is the "standard" topology induced on V' by the usual topology of
C™; the other one is the Zariski topology. The latter topology is obtained by defining the
closed sets in V' to be the algebraic subvarieties X < V. The two topologies are far from
being equivalent. For instance, it is easy to see that the Zariski topology is not Hausdorff.
As a matter of fact, these two structures reflect different attidudes towards the geometrical
- object V. For instance, one can alternatively define a (nonsingular) curve C to be an
analytic complex manifold of dimension one; this definition is not strictly equivalent with
the previous one, since there are affine curves which are not smooth manifolds, and there
are analytic manifolds which are not the zero locus of a set of polynomials in C™: but most
of the examples lie in the intersection of the two classes of objects. In the analytical
construction C comes automatically equipped with the first topology mentioned above.
From the algebraic viewpoint, however, the most "natural” topology is the Zariski one, as
- I will show below.

In the sequel, let me restrict to algebraic curves, although the definition below hold

for affine varieties of arbitrary dimension.

(2.2) Definition : The coordinate ring A(C) of a plane curve C is the quotient ring

C [x,y1/9(C).
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The algebraic notion of coordinate ring is related with the structure of the space of the
fuctions defined on C. This space is described in terms of sheaf structures; recalling the
definitions and theorems related with sheaf theory would exceed the scope of this thesis,

so I refer the reader to standard textbooks such as [24], [25].

(2.3)  Definition : A function r: C—> € is said to be regular at a point p eC if there
exist a (Zariski-)open neighborhood U cC of p and two polynomials f, geC[x,y]

such that, on U, g is nowhere vanishing and r = f/g.

A function is called regular on C if it is regular at every point of C. The regular functions
form the structure sheaf, denoted by O . The local ring O cpata point p €C is the

ring of germs of regular functions at p (i.e. the ring of equivalence classes of functions
- under the following relation: f ~ g if f = g on some neighborhood of p); equivalently,

O¢, is the stalk of O, atp.

P

Now comes the relation between the structure sheaf and the coordinate ring. It is
evident that the minimal algebraic subvarieties of C are its points. In general, any point
p € C? is thé zero locus of a maximal ideal of C[x,y]; if p € C, this maximeil ideal
contains the ideal 9(C). Passing to the quotient by 9(C), to each point p on the curve
corresponds a maximal ideal in A(C); this maximal ideal turns out to be the ideal
y, = {fe A(C)/f(p)=0}. Let me recall the definition of the localization R, of aring
R at a maximal ideal m: R, is the ring formed by the equivalence classes of fractions

f/g, where f, g € R and g ¢ m, f/g being equivalent to f'/g'if r € R exists such that
r (f'g - fg") = 0 . From the definition (2.3) it follows that (SJC,p = A(C')mp .
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(2.4) Proposition : Let O(C) denote the ring T(C, © c) of the global sections of
the structure sheaf; then O(C) g A(C) .

To prove (2.4), consider for each polynomial f € Cl[x, y] the restriction f |~ € O(C); this
defines a map C[x, y] = O(C) , the kernel of which is just 4(C), and therefore an
injective map A(C) — O(C) . Now, one can show that, in a suitable sense,
oEC)ec N pECOC,p =N, A(C)n; , where m runs over all maximal ideals of A(C);
consequently, A(C) € O(C)<c N m A(C) . A standard algebraic theorem says that, for

any integral domain D, D & (1, D, . Thus Proposition (2.4) is proved. |

In the next Section I will discuss the reconstruction of an affine curve from the
knowledge of its coordinate ring. In the sequel, however, I will need to deal also with
- projective varieties. In fact, although any affine variety is compact in the Zariski topology,
in general the affine varieties are not compact with respect to the complex topology. To see
this, consider for instance the affine line y = 0 ; the Zariski-open sets are just the
complements of discrete sets of points on the line, and it is easy to check that any covering
of the line by such open sets admits a finite subcovering. Of course, the complex line is not
compact in the usual topology. In the algebraic approach, a geometrical object which is
compact in the usual sense is obtained by passing from C™ to the projective

_ compactification IPC™.

(2.5) Definition : A projective variety V < PC" is the common zero locus of a set of

homogeneous polynomials f, ..., fp € C[xy, ..., x,].

The natural embedding of V into PC™ is obtained by identifying {x,, ..., x,} with a
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system of homogeneous coordinates in P C™.
One can think to a projective curve as an affine curve compactified by adding a
"point at infinity". This compactification is achieved, in practice, by passig from the

defining equation f (xo, X,) = 0 to the following homogeneous equation in PC™ :
(2.6) 0= f(xg Xp, %) = %98 £ f (x, /%, x,/x,)

In the sequel, I will mainly deal with affine curves arising from projective curves by
subtracting a distinguished point. One can find in the reference textbooks the detailed
construction of the rings and sheaves related to projective varieties; I will not deal with this

subject since it is not strictly needed for the discussion of Part B.

2.2  The Spectrum of a Ring.

Since the points of a variety and the maximal ideals of its coordinate ring are in
one-to-one correspondence, one is led to ask whether it is possible to endow the set of
maximal ideals of an abstract commutative ring A with a structure of algebraic variety.
There is, however, a technical problem in dealing with maximal ideals: one can see that to
each morphism of algebraic varieties (i.e. to each continuous map between two varieties X

and Y such that the pull-back of a regular function on Y is regular on X) should
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correspond a ring homomorphism of the respective coordinate rings; but the image of a
maximal ideal under a generic homomorphism of rings is not necessarily a maximal ideal.
The prime ideals, on the contrary, are preserved by ring homomorphisms, so one can
overcome the difficulty by taking the set of prime ideals of A. Let me recall that a prime

ideal pc A can be defined in an equivalent way by any one of the following two properties:

(2.7) Definition : pc A isa prime ideal iff either
(1) forany pairof elementsa,be A,abe p= aep orbep;

(ii) the quotient ring A/pis an integral domain.
For a maximal ideal m, A/mturns out to be a field; therefore, any maximal ideal is prime.

- (2.8) Definition : The spectrum of a commutative ring A is defined (as a set) by

setting Spec(A) = { pc A/ pis a prime ideal}.

The next task is to topologize Spec(A). To do this, one considers for each ideal
ac A the set U(a) = { pe Spec(A) / a € p } . The sets U(a), as a runs over all the
ideals of A, are defined to be the closed sets in the Zariski topology on Spec(A). In this
topology, the points p of Spec(A) can have different properties: if p is a maximal ideal,
U(p) = {p}, so that the point pitself is a closed set; such a point will be called a closed
point. If pis not maximal, it can happen that the closure of pis the whole space Spec(A).
This happens, for instance, for the zero ideal 0 ={0}, which is prime if A is an integral
domain. Such points are called generic points.

The occurrence of generic points comes from having considered the prime ideals

instead of the maximal ones; from the previous considerations, one can expect that only the
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closed points of Spec(A) correspond to the points of a variety.
So far, Spec(A) is only a topological space. To make it correspond to an algebraic

variety I still have to define the sheaf of regular functions on it.

(2.9) Definition : A regular function on an open set U < Spec(A) is a map

P
points of U, such that: (i) f(p) € Ap; (ii) locally, i.e. on some neighborhood

f:U—1l peU Ap from U to the disjoint union of the localizations A at the

V of any point peU, f coincides with a fraction a/b, a,b € A and b does not

belong to any ideal g contained in V.

By carefully reading this definition, one sees that it is the natural counterpart of Definition
(2.3). One obtains in this way a sheaf O , on Spec(A); its stalk at any point p is

- isomorphic to A_. It is easy to check that the ring of global sections O (Spec(A)) is

»
isomorphic to A itself. This procedure will be generalized in Sect. (2.4) to build the sheaf
of sections of a line bundle on Spec(A) starting from a rank one A-module M.

To complete the picture of the correspondence between geometric and algebraic
data, let me recall which is the algebraic counterpart of the notion of dimension and
singular locus of a variety. In a ring A, the height of a prime ideal p is the maximal
integer n such that there exist n prime ideals Pi» - Pp » With the property
PSP, C...Cp,C p. The Krull dimension of aring is the maximal height among all prime
ideals. One can prove that the dimension of an affine variety equals the Krull dimension of
its coordinate ring. Furthermore, take a point p on an affine variety V' and consider the
maximal ideal , defined above. The quotient mp/ )‘11p2 is a vector space over C, which is

the algebraic counterpart to the tangent space to V' in p. It can be proved that, according to

the common geometrical intuition, the dimension over C of ‘mp/ mp2 equals the dimension
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of V, i.e. the Krull dimension of A(V), if and only if p is a nonsingular point.

So far I have been dealing with the reconstruction of an affine variety from a
commutative ring; now I will briefly mention that a projective variety can be built by
starting from a graded ring, by taking the space of homégeneous prime ideals. Namely, let
G = ®;¢yG; a commutative graded ring; one defines G,=@;,,G; (G, is a homogeneous

prime ideal, i.e. it is generated by homogeneous elements a; € G, , 1>0).

(2.10) Definition : The projective spectrum of a graded ring G is defined (as a set) by

Proj(G) = { p < G/ pis a homogeneous prime ideal not containing G, } .

It is evident that Proj(G) < Spec(G), so one can endow Proj(G) with the relative Zariski
topology of Spec(G). A construction which is similar to the previous one allows to define
the structure sheaf on Proj(G). Further details can be found in [24] or [26] but will not be
needed in the sequel.

For evident reasons, I cannot present here a complete exposition of the theory of
algebraic varieties. In particular, I did not prove that Spec(A), or rather the set of its closed
points, is an affine algebraic variety in the sense of Definition (2.1). As a matter of fact, I
have implicitly claimed that a variety can be defined by the datum of the sheaf of regular
functions. I will not discuss this point: for my purposes, it is enough to know that there is
an homeomorphism between the underlying topological space of a variety V and the set of
closed points of Spec(A(V)), and this homeomorphism pulls back regular functions to
regular functions (according to the respective definitions); this can be seen from the
statements above. Therefore, whenever an abstract ring A can be realized as a quotient
Clxy, - xn]/ d for some ideal 9, the above cosiderations allow to identify (the set of

closed points of) Spec(A) with the variety defined as being the zero locus of 9.
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2.3 Divisors, Line Bundles, Jacobian Variety.

In Part B, I wiyll make use of a number of standard notions concerning the
geometry of algebraic curves. However, it would seem unreasonable to present here all the
details and proofs, which can be easily found in any basic textbook on the subject ([27],
[28]). Therefore, I simply list below, for the reader's convenience, the main definitions
and properties which will be mentioned in the sequel.

I will assume in this Section a more "geometrical" approach to algebraic curves; in
other words, let me regard a (nonsingular) algebraic curve C' as a complex manifold with a
holomorphic atlas. A (holomorphic) line bundle over C is a complex vector bundle of

- rank one defined by holomorphic transition functions.

(2.11) Definition : A divisor & on C is a finite formal linear combination, with
integer coefficients, of points of C: & = Zkez ap P » Px € C . The degree of
O is the sum of its coefficients: deg(d) = Zk ay . An effective divisor is a

divisor with only positive coefficients.

To each meromorphic function f on C 1is associated a divisor, denoted by (f)= Zk 4 Py»
where each p, is either a zero or a pole of f, and a; is either the order of the zero, or minus
the order of the pole. Such a divisor is said to be principal. A principal divisor has always
degree zero. The set of divisors of degree zero has a natural structure of additive group,
and is denoted by Divy(C). One can define an equivalence relation, called linear

equivalence, by setting 89 ,~d0, iff &,-49, is principal. The Picard group Pic%(C) is the
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quotient Divy(C)/~ .

Let H;(C) be the first (singular-) homology group of C (as a topological
manifold). The genus g of C is half the rank of H;(C) (which is always even). In the
sequel I will deal with the case g > 0. Let {a;, b;} (i ;:1, ..., @) a symplectic basis for
H,(C), that is a system' of generators such that the intersection matrix Ilai.bjll is the
symplectic matrix J = (401 %) . Such a basis always exists on C .

One can choose a set {w;} (1 =1, ...,g) of independent holomorphic one-forms

(also called abelian differentials of the first kind ) such that <w ,a >=6 (<,>

mn

denoting integration of a one-form over a one-cycle).
(2.12) Definition : The period matrix 2 of C is the (g o g)-matrix ll<w, b >l

- The rows of Q define independent vectors in €8; let A denote the lattice generated by these

VeCctors.
(2.13) Definition : The Jacobian torus Jac(C) is the abelian group C&/A .

Jac(C) has a structure of algebraic variety. Fixing a basepoint p, on C, one can define a

mapping from C to Jac(C) by setting:

(2.14) Definition : The Abel map C : C — Jac(C) is defined by

p
C{(p):(J' w), e mod A
Po

({e;} being the canonical basis in €& ). In fact, different choices of the path from p; to p
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lead to the same equivalence class in C8/A . The Abel map extends by linearity to divisors

onC:

(2.15) QD)= 2 oy (] oye  modA
Po

In particular, a classical theorem states that Pic%(C) and Jac(C) are isomorphic as abelian
varieties.

An important object related to Jac(C) is the Riemann 8-function:
(2.16) Definition: 8(z) = 2, czg [ exp(in(v, Qv)) " exp( 2mi(v,2)) 1 ,

where ( , ) stands for the standard euclidean scalar product in C8. 8(z) is not periodic
mod A (a periodic holomorphic function would be identically constant), so it does not
define a function on Jac(C); however, it can be thought as a section of a line bundle on

Jac(C), obtained by taking a suitable quotient (mod A) of the trivial bundle C8xC.

Going back to divisors on C, a relevant point is the correspondence between
divisors and line bundles. On one hand, to each line bundle L. on C one can associate the
divisor of any one of its meromorphic sections (the divisor of a section of L is defined in
the same way as for functions on C): this map is well defined modulo linear equivalence,
since two sections of L always differ by a meromorphic function. Conversely, let & be a
divisor; one can cover C by open sets U, and find a local meromorphic function f, on
each U, such that (f,) coincides with the restriction to Uy of . The functions
Eap = fa/fB are thus holomorphic on UaﬂUB and define the transition functions of a

line bundle L(J). Finally, one can check that, for any meromorphic section s of L,
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LzL((A)). By definition, the degree of a line bundle is the degree of its associate divisor.

The cohomology of sheaves of sections of line bundles on a curve C is one of the
classical subjects of algebraic geometry. A fundamental result is the Riemann-Roch

formula:

(2.17) Proposition (Riemann-Roch) : Given a curve C of genus g and an effective
divisor f, the zeroth and the first cohomology spaces of the sheaf I (D) of

sections of L(9) are related by the following equality:
dim HY(C, BZ(H) ) - dim HI(C, B(H) ) =deg(H) +1-g

- In particular, for meromorphic functions on C the following result holds: if {D) (D a
generic effective divisor), is the dimension of the space of meromorphic functions f such
that (f) +d0 is effective or zero, then AD) =1 if deg(N)<g, while {D) =deg(O) +1 -g
if deg(L)=g (note that also the constant functions are taken into account). The divisors of
degree less than g for which ) is greater than one are‘said to be special. The points on
C which are special divisors are called Weierstrass points. If C is hyperelliptic, i.e. its
defining equation has the form y?=F(x), F being some polynomial of degree 2g + 1, the

Weierstrass points coincide with the branching points of the function y.
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2.4 O (C)-Modules and Line Bundles

The reconstruction of a line bundle, starting from a commutative ring A and a
rank-one A-module M, involves two steps. First, one defines the sheaf associated to M on
Spec(A), which I will denote by TN, ; ‘;then, it is possible to associate to T, an algebraic
variety which is fibered over Spec(A). This variety turns out to be a line bundle L(TN.); its
sheaf of sections is isomorphic to TN,, while the original A-module M is isomorphic to the
A-module of the global sections of L{N,).

The first step is analogous to the construction of the structure sheaf on Spec(A).
For the moment, let me assume more generally that M has rank n. One considers the prime
ideals peSpec(A) and define the localization Mp of the module M at a prime ideal pto be the
ring formed by the equivalence classes of fractions m/a, where meM, a€A and a¢ p, m/a
being equivalent to m'/a'if b € A exists such that b (m'a-ma') = 0 in M. MP is an

Ap—rnodule with the scalar multiplication (a/b)'(m/c) = (ma/bc).

(2.18)  Definition : The sheaf I, is obtained by associating to each open set
U C Spec(A) the set of functions s: U-s 1l peU MP such that: (i) (p)e Mp,

(ii) s is locally a fraction m/a (in a sense analogous to definition (2.9)).

(2.19)  Proposition : (i) N is a sheaf of modules over the structure sheaf of Spec(A);
(i) Foreach p, the stalk TN, P is isomorphic to Mp
(ili) The module of global sections T (Spec(A), TN.) is isomorphic to M.
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I will not give the proof of (2.19) (see [24]). Now comes the second step:

(2.20)  Definition : For k>0, let SXM denote the symmetrized k-fold tensor product of
M with itself. The symmetric algebra S(M) is the direct sum @, SkM , S'M

being identified with A.

In the general case in which M is free and of rank n, S(M) = Alx, ..., x; ].
M being a free A-module, TN, is locally free by construction, so that for each open
set UCSpec(A) on which T, is free, I can choose a basis for TN, (U). Let now 4 be the

sheaf on Spec(A) associated to the module S(M); from the considerations above it follows:
2.2D Proposition : Spec( A y(U) ) = Spec( O, (U) [x5 cs X 1)

Starting from a covering {U,} of Spec(A), one can "glue" the spaces
Spec(Ap\(U,)) by a standard technique (see [24]). The resulting object is denoted by
Spec(S(M)), and is endowed with local trivializations provided by the identification (2.21).
In this way one obtains a vector bundle of rank n: the fiber at a closed point m of Spec(A)
turns out to be isomorphic to Spec((@A,m/m)[xl, Xy 1) 2 Spec(Clxy, ..., x, ) = C°.
Therefore, if one stars from an A-module of rank‘one, one gets a line bundle.

The above construction should in principle be generalized to projective curves, to
be really suited to the future discussion. However, a fundamental property of projective
varieties is that they can be covered by affine open sets; one can therefore apply locally the
construction above and then glue together the affine pieces (the non-triviality of the line

bundle so obtained lies just on this glueing procedure).




3. THE BAKER-AKHIEZER FUNCTIONS

Let C be a smooth compact algebraic curve of genus g, with a distinguished point
p and a local coordinate & in a neighborhood of that point. Since the point p is identified in
general with the "point at infinity", it is common to use the local function z =k™! instead of

the parameter & to express the local dependence of a function on C in a neighborhood of p.

(3.1) Definition : A Baker-Akhiezer function ¥ 1is a function on C having an
essential singularity at p such that, in a neighborhood of p, ¥ ~ exp[Q(z)] for
some polynomial Q € C[z], and being meromorphic on the affine part C \p,

with exactly g poles.

The Baker-Akiezer functions provide solutions of the spectral problems listed in Sect.
(1.2), as it will be shown in Sect. 5 (see [13], [29]). For the moment, let me only
anticipate two points. First, let me assume that a differential operator L (with constant

coefficients) exist such that the BA function xl:l is the solution of the eigenvalue problem
3.2) L=,
If one wants to study a deformation of L, by allowing its coefficients to depend on a

number of parameters (x, Zy, i3, ..., I,), one is led to deal with a family of BA functions

P, depending on the same parameters through the condition (3.2). I will regard such a
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family as a single object Y (x, f,, &3, ..., ;). An useful parametrization is provided by the
coefficients of the polynomial Q(z) expressing the singular behavior at p, so that:

(3.3) WX, ty, by, iy 2) = eXP(XZ + 1y22 + 1320 + ..) 'ZkelN ay (%, 2y, ) 27K

In general, ¥ is normalized by requiring ayg=1. The degree of Q(z), and consequently the
number of parameters, is directly relaéed with the number of equations defining the spectral
problem.

The second remark is the following. When dealing with spectral problems, one is
often led to formal expressions of the type (3.3). These formal Baker-Akhiezer functions
(whereby z plays the role of spectral parameter ) do solve the spectral problem, but there
are in principle no indications about the actual convergence of the series on the right-hand
- side of (3.3). As a matter of fact, if one started with given differential operators, the
convergence of W can be ensured by the functional-analytic properties of the operators
themselves; but the problem I will deal with consists in finding the differential operators
which solve the compatibility equations for the spectral problem. Therefore, I wish to
obtain both the differential operators and the BA function at the same time; the whole
algebro-geometrical approach is actually intended to provide methods to construct these
objects from geometrical data, and ensure in that way that the solutions are not just formal
ones. Thus, the future strategy will consist mainly in trying to identify formal solutions

with well-defined BA functions over suitable spectral curves.




4. THE UNIVERSAL GRASSMANNIAN MANIFOLD

4.1 The Finite-Dimensional Grassmannian

The fourth block of the ideal aiagram underlying this thesis concerns the Universal
Grassmannian Manifold. Since this is, in some sense, a generalization of the usual notion
of finite-dimensional Grassmannian, I begin by recalling the definition and some relevant
features of the latter one. For the sake of simplicity, I will assume that the vector spaces

involved in the definitions are vector spaces over € rather than over a generic field K.

- (4.1) Definition : The Grassmannian Gr(n, k) is the set of linear k-dimensional
subspaces of C™. It can be described as the quotient

Gr(n, k) = {k-frames in C"}/GL(k, C)

(a k-frame is a system of k independent vectors). It is easy to see that GL(n, C) acts
transitively on Gr(n, k). I will show that Gr(n, k) is an algebraic variety by embedding it in
PC™, m=(",)-1 . To each k-frame (v, ..., V) Oone associates the exterior product
VIA VoA oA vie ACM = €M needless to say, this exterior product is independent
of the action of GL(k, C), up to a multiplicative factor. Therefore, we can assume each
point of Gr(n, k) to correspond to a point in PC™. By choosing a basis {e;} in C" and
setting v; = Zj v{ e, one can write

)’

(4.2) ViA A Vk = lei1<...<ik<n Wil...ik eil/\ A eik ;
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denoting the coordinates Wi BY W T = (g, .., iy), one has wrp =det |l vij l,iel,
i=1, ..,k

The set of coordinates wy allows to write explicitly the defining equations of the
(image of) the Grassmannian Gr(n, k) in PC™, In‘fact, the point identified by the
coordinates wy lies in the image of Gr(n, k) iff the multivector v =2 w;e; € AC"is
decomposable, i.e. it is ‘of the form v =v;A .. A v. It is possible to prove (see [27])

that the condition of being decomposable yields the following coordinate expression:
(4.3) ZISpSk-H Wil e gy WiponGp)miisy = O

(where (.) means that the corresponding index has to be suppressed). These are the
well-known Pliicker relations.

The same embedding of Gr(n, k) into PC™ can be described in a more abstract
way: in fact, there is a general method of embedding into a projective space P CT any
algebraic variety endowed with an invertible sheaf &, provided & is generated by (r+1)
global sections. In the case of Gr(n, k), one first define the universal (or taurological )
bundle S(n, k).to be the subbundle of the trivial bundle Gr(n, k) X CP, obtained by setting
the fiber over a point p € Gr(n, k) to be just the k-plane in C" corresponding to p. To this
vector bundle one further associates the dererminant bundle Det S(n, k) , simply by taking
the k-th exterior power of each fiber of S(n, k): the transition functions of the determinant
bundle so obtained coincide with the determinant of t}he transition functions of S(n, k). One
can prove that the sheaf of sections of the dual of the determinant bundle, Det*S(n, k), is
generated by the (")) sections associating to each point of Gr(n, k) its Pliicker coordinates

wy. Thus, this sheaf provides the embedding described above.
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4.2 Sato's Definition of UGM

M. and Y. Sato's approach to the Universal Grassmannian Manifold ([30]) relies
mainly on the generalization of the Pliicker embedding. Let me consider the system of

inclusions
(4.4) .. € Gr(n k) ¢ Gr(n', k') c... ,

for k'>k and n'-k'>n-k. These inclusions are obtained by identifying C™" with the subspace
of C™ spanned by the first n vectors of the canonical basis {e;}, and then mapping a
- k-space into a k'-space by taking the direct sum with the linear span of the vectors {ej}

(j=n+1, ..., n+k'-k). This is represented, in terms of the Pliicker coordinates, by setting

(4.5) (wi 50 (

11...1k ) ? jp = n+p *

W: . . .
e J1Jk'k

And assuming the remaining coordinates wy to be equal to zero. One can check that the

Pliicker relations are preserved. The inverse limit of the sequence of inclusions (4.4) can

thus be represented as follows:

(4.6)  Definition : Let Gr = { {wy} / {wy} fullfill the Pliicker relations}, where I
runs over all ordered subsets of N (such subsets will be called partitions ). The

Universal Grassmannian Manifold is the quotient

Gr = (Gr-{0))/ C* .
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Subtracting the point with identically zero coordinates and taking the quotient by (0fe
correspond to regarding the wy as homogeneous coordinates.

Let V° be the subspace of €™ spanned by the k' vectors {e;}), i=n"k,.n"
From the definition of the inclusions (4.4), one sees directly that the image of a k-plane of
C" is contained in the set of k'-spaces whose projection on V° has a kernel of dimension k
at most; the cokernel has obviously the same dimension. Therefore, since the dimension of

the kernel and the cokernel above are independent of n' and k', passing to the limit for

n',k'> e, one can set the following alternative definition:

(4.7) Definition : Let V be the infinite-dimensional space generated by the vectors
{e;},1€Z, V° be the subspace spanned by {ej}, j<0, and ©° be the orthogonal

projection on V°. Gr is the set of the subspaces W of V such that

dim(ker 7°ly,) = dim(coker 7t°lyy) <oo.

Let me remark that the space V° has been defined here by taking the basic vectors
with negative index. In the next Section I will adopt Segal & Wilson's viewpoint, and the
space H +» playing the same role as V* here, will be the one generated by vectors with
positive index. The occurrence of the two conventions in the literature is somewhat

confusing, although it is always easy to realize which one has been adopted in a particular

paper.
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4.3 Segal-Wilson's Approach to UGM

In their well-known paper [13], G. Segal and G. Wilson adopt a definition of the
UGM which is close to (4.7). However, their approach relies mostly on functional-analytic
and algebro-geometrical arguments, while Sato, and more generally the Kyoto group, tend
to stress the purely algebraic side of the construction.

According to Segal & Wilson, the Grassmannian Gr(H) can be defined for an
arbitrary separable complex Hilbert space H, with a suitable decomposition H=H_®H ;
however, in the applications one usually deals with H = L?(S'), so I will restrict the
definitions to this case. Let S! be identified with the unit circle IzI=1 in €, and consider the
orthonormal basis of L2(S!) provided by the functions {zk}kez. H = L%S!) can be
splitted in two closed, infinite-dimensional orthogonal subspaces H_ =C {zk}k20 and
H=C {zk}k<0 . For an arbitrary subspace W < H , let T, and 7_ denote the orthogonal

projection operators from W to H_ and to H_ respectively.

(4.8) Definition : The Grassmannian Gr(H) is the set of all closed subspaces

W c Hsuchthat isa Fredholm operator and 7_ is a compact operator.

Let me recall that a Fredholm operator has by definition finite-dimensional kernel and
cokernel; the index of the operator is the difference between these dimensions. According
to this definition, the index of m, is not required to be zero, as it was in (4.7). Gr(H) is
split into connected components labeled by the index of 7, (this index is also called virtual

dimension of the space W ). For many purposes, it is enough to deal with the connected
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component of the spaces with zero virtual dimension.

The requirement on m_ does not occur in Sato's purely algebraic construction,
since this requirement is mainly intended to define the functional-analytic features of the
manifold Gr(H). Namely, requiring ©_ to be compact ailows to give Gr(H) the structure of
a Banach manifold, while other choices would lead only to a Fréchet manifold. In some
situations, it is advisable to require m_ to be an Hilbert-Schmidt operator, so that Gr(H)
becomes an Hilbert manifold. To sée how the restrictions on 7_ affect the structure of
Gr(H), it is enough to observe that each point W of the "compact" (resp.
"Hilbert-Schmidt") Grassmannian has a neighborhood U(W) ={W' c Gr(H) / W' is the
graph of a compact (resp. Hilbert-Schmidt) operator W->W-=1 . Such neighborhoods are
diffeomorphic to the Banach (resp. Hilbert) space of compact (resp. Hilbert-Schmidt)
operators H, >H_, which therefore provides a local model for the analytic structure of
- Gr(H).

Due to the restrictions on the projections 1, , the group GL(H) does not act on
(H) is defined as follows:

Gr(H); instead, its subgroup GL_. (H) acts transitively. GL

res Ies

assume that ge GL(H) has a block decomposition, with respect to the splitting H=H, ®H,,
- (ab

of the form g = \¢ d) ; 8 € GLy(H) iff b and ¢ are compact operators (a and d are then

automatically Fredholm). In view of the relation with the KP flows, the following

subgroups of GL__ (H) are very relevant:

Ies
(4.9) Definition : Let T be the group of continuous maps g: S! > €, and T, be
the subgroup formed by the maps g which extend to holomorphic functions
on a neighborhood of the unit disk IzI<0, with the condition g(0)=1. T and T
can be viewed as subgroups of GL . (H), by letting their elements act as

multiplication operators on H.
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Eachelement g € T admits a representation of the form
(4.10) g=exp 2052

the coefficients (¢, f,, ...) provide an useful parametrization of T ; in the sequel I will
often write x instead of 7; .

It is convenient to consider the following typical example of spaces W belonging
to Gr(H): let S be an ordered sequence (s, S,, ...) of integer numbers, such that s, =k
for all but a finite number of values of k. The space Hg spanned by the functions {ZX) kes
belongs to Gr(H) and has virtual dimension zero. In fact, the kernel and the cokernel of 7t
are spanned by the negative powers {zk}kE S k<0 and by the "lacking" positive powers
{Zk}k¢s,k>o respectively, so they have the same finite dimension. To obtain a space of
virtual dimension d, one should take a sequence S for which s, = k-d holds for almost all
k). The spaces Hg are good models for the points of the Grassmannian, since for each
W eGr(H) there exists a sequence S such that W is the graph of a compact operator
HS—>HS-L. Thié is expressed by saying that W is transverse 1o HS-L : it is evident that in
this case W = Hg as Hilbert spaces. One can prove in this way that in any space W the

elements of finite order 2k<n Qe K are dense, since they are dense in Hg.

In view of the connection with KP flows, the following definition is very

important:

(4.11) Definition : The subspace Gr™ ¢ Gr(H) is the closed subspace formed by the

elements such that zZ"W < W (2" acting as a multiplication operator).
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Not every point W of the Grassmannian belongs to such a subspace. For the spaces Hg it
is easy to check which are the values of n for which Hq e Gr(“); for instance, let
S=(2,-1,1,2,4,5,6,..); then Hg belongs to Grm and to any Grl™ for n>5 . It is
quite evident that WeGr™ implies WeGr&" | for any ke N.

To each point W one can associate a commutative ring according to the following

definition:

(4.12) Definition : The ring Ay, is the ring of analytic functions f: S 5 € such that

fWalBcwalg Walg being the set of elements of finite order in W.

Of course, WeGr™ and " e Ay are equivalent statements. For the spaces Hg it is very
~ easy to find generators for Ay ; [ will discuss an example in Part B, where I will show
how to associate  algebraic curves to points of Gr(H).

Let me now describe how one can recover a space W belonging to some Gr™
from the knowledge of a sufficient number of independent functions belonging to it. To
this aim it is irﬁportam to observe that a Grassmannian Gr(H") can be defined, analogously
to the case of Gr(H), starting from the Hilbert space H" of the (L2~integrable)
vector-valued functions f:S! - €™ Letting {€;},<i<, be the canonical basis in C", a
basis for H" is provided by the functions {zkei}kez. One can set a correspondence
between H" and H by associating to each element z¥e; the element 21 of the basis of
H. More generally, to each vector-valued function f =2i f;(z) e; one can associate the

scalar function

(4.13) f =2, fi(z" 2!
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Conversely, let Z,, ..., £, be the n-th roots of z; to an element f € H corresponds the

function f =2, f,(z) e; , where
(4.14) £ (2)=nl Y, (2 )iz .

Under this correspondence, Gr(® 1s the image of the subspace of Gr(H") formed by
elements W® guch that z W™ ¢ W™, It is now easy to see that such elements are
completely determined by the generators of the n-dimensional quotient space
W/ (z wmy,

This allows to associate in an unique way to n independent functions
Wy, W e H aspace We Grm , which contains them. In fact, one considers the

- vector-valued function Y = Zi wki(z) e, associated to each W, and forms the matrix

1 w1 Wiz .. W&y

b (™! V(2 . (Zy)
@.15)  p=lwdl = |

(Zph (g™ W(Z) ... W (Z)

At this point, a space W™ e Gr(HM) is provided by W™ = y H®_ H®_being the space
spanned by {Zkei}leo . Under the map H® o yH(“) +» the constant functions e; become
just the functions ¥, ; therefore, the space W e Gr(H), obtained from W™ according to

the prescription (4.13), will contain the functions W . Of course, the procedure fails if the
functions Y are such that y has determinant equal to zero; the necessary condition is thus

the regularity of the matrix lly;(2)ll, where the £, are related by the condition ()" =z .
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4.4 The Dual Determinant Bundle and the t-Function

The geometric meaning of Hirota's T-function is connected with the generalization
to Gr(H) of the Pliicker embedding. For each point WeGr(H), consider pairs (w, A)

formed by a basis w={w, } for W and a complex number A.

(4.16) Definition : The dual determinant bundle Det* on Gr(H) is defined by assigning
to each point WeGr(H) the one-dimensional linear space formed by the
equivalence classes of pairs (w, A) under the following equivalence relation:
(w,A) ~ (w', A\") iff w'=Tw (T being a linear operator which differs from the

- identity by a trace-class operator) and A' = (det T)\.

I omit the explicit description of the transition functions of Det*, which would involve a
number of technical points which are not directly relevant for the present purposes. The
condition on the operator T must be imposed in order T to have a well-defined determinant;
furthermore, since not any two bases w, w' are re - ted by such an operator, one should
also restrict the possible choice of the basis. In order to do this, one can use the property,
stated in the previous Section, that each WeGr(H) is the graph of an operator Hg->Hg 1

for some sequence S as in the last Section (there is a unique such S which is minimal with
respect to a suitable ordering); one can therefore define a reference basis w° to be the
preimage, under the projection W-Hg , of the standard basis {Zk}kes of Hg. The

allowed representatives (w, \) are those for which the basis w can be obtained from w*

by applying an operator T having a determinant (w will then be called an admissible basis).
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The role of Pliicker coordinates is played by the following sections of Det* :

(4.17) Definition : For any WeGr(H) , let ng[W] be the projection operator wg[W]:
W—Hg. ThePliicker coordinates in Gi(H) are fhe sections wg of Det* defined by
setting wg:Wr— (w, det g[w]) ,w being an admissible basis for W and mg[w]
standing for the matrix form of the operator mg[W] with respect to the basis w

(and to the standard basis in Hg).
This observation follows from the definitions:

(4.18) Proposition : The sections wg can be identified with the coordinates wy
introduced in Sect. 4.2 by associating to each sequence S the partition
I=(iy, iy, ...), ij=k-s,.. Each Pliicker coordinate wg(W) is different from zero iff

W is transverse to HS*L .

I shall now consider the section ¢ = wy, i.e. the determinant of the projection
.. In particulzir, let me examine the action on ¢ of the group T" defined by (4.9). It is
useful to this purpose to parametrize elements g € T by the coefficients 4; of the series

expansion
(4.19) g=1+2 k2
The action of g on the admissible basis w is simply given by {wy }~—{g'wy}. For

example, for W= H_, one has {zk}r———> {zk + Zbo h; Z+K): the projection g'H >H, is

then expressed by the upper triangular matrix G = ”hj-i” (having set iy =1). This matrix
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has determinant equal to one, therefore for H,_ one has o (g-H )= go(H,), since the
left-hand and right-hand sides of this equality are represented can be represented by
({g'wy}, det G) and ({g'wy }, 1) respectively. However, on a generic point W, 6(W) is
not equivariant under the action of T" . Let me consider the case of a space Hg#H, . The
standard basis is indeed an admissible basis; now, o (Hg) should vanish, according to
Proposition 4.18, since Hg is not transverse to H_, while the projection g'Hg->H, is
expressed by the matrix Gg = |Ihj-si||, and it is easy to see that the determinant of this
matrix is equal to the determinant of its (r X r) upper left block, r being the maximum
integer for which s, #k , and this determinant does not vanish in general. Therefore, for an

arbitrary point W, c(g'W) # g'c(W).

(4.20) Definition : For each WeGr(H), the tunction Ty, : T’ > C is defined (up to
a constant factor) by setting:
c(gW)

Tw (@)= ———
gP

p being an arbitrary nonzero element of the fiber of Det* over W. If W is transverse to H_,
o (W) does not vanish and one can choose p = o(W). In that case the t-function can be
regarded as properly expressing the "defect of equivariance” of the action of T on the

section 6 (W):
(4.21) Ty (g) glo(W) = o(g1W)

If W is transverse to HSJ‘, one can choose p = wg(W). With this choice, one easily finds:
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(4.22) Proposition : For any sequence S, ’CHS coincides with the determinant of

the finite matrix Ilhj_S.H described above, having set
1

gl=1 +2i>0hizi i

Such a determinant is known in the literature as the Schur function Fi(h), I being the
partition associated to S as in (4.18). The Schur functions were originally introduced
within the group representation theory, as character polynomials of the irreducible
representations of GL(n, €). The authors from the Kyoto school have often emphasized
this fact in their papers, while Segal & Wilson consider this connection as an irrelevant
coincidence. This clearly reflects the different attitude of the various authors towards the
subject of the UGM.

For a generic point WeGr(H), th t-function can be expressed in terms of its

Pliicker coordinates; namely, one finds
(4.23) Ty (2) = 2g wg(W) Fg(l)

where Fg(h) denotes (by abuse of notation) the Schur function relative to the partition
associated to S, I represents the coefficients of the expansion of g! as in (4.22), and the
sum runs over all the sequences S as above. Actually, only the sequences for which W is

transverse to HSJ~ do actually contribute to the sum.
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4.5 The free-fermion representation

The so called "free-fermion operator formalism" for the KP hierarchy is one of the
main results of the Kyoto group (see [12], [31]). I will recall here this construction, which

is extremely interesting by itself, even if I will not deal with it in Part B.

(4.24) Definition : The free fermion operator algebra 4 is the non-commutative algebra
generated by elements ¢ and ¢* , neZ, satisfying the follwing Canonical

Anticommutation Relations:
— £ E — . : —
[(Pm’q’n]+— [ m> ® n]+‘O ’ [q’m’q“'*nh‘émn

The Fock space ¥ is the left A-module generated by a cyclic (vacuum) vector 1Q;>

satisfying the identities
(4.25) @* 1Q:>=0 ifn<0  ; ¢, 1Q>=0 if n20

One can build in a symmetric way a right A-module 7", with vacuum vector <€l; these

spaces are endowed with a bilinear pairing IxF* € defined by
(4.26) (<Qyla , b1Qy>) — <Qylab IQ,> abek

(<Ql ab 1Q,> turns out to be a complex number due to the CAR and to the identities
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(4.25)). The pairing is normalized by setting <Q,lQ>=1.
Let t =(z, ,, ...) be an infinite set of parameters; one defines the Hamiltonian
H(?) by setting:
(4.27) H(ty 1y, ) = Ziez ke & €59 i
Let G c A be the group formed by the elements yeA such thu
(4.28) VT Pp= szZ ®mYamn > @y Y=2‘mEZ Y ¥ amy ;
to each element yeT, one associates a T-function:

(429 () = <Qql 1Dy 10>

How is this framework related with the construction of the previous Sections? The
interpretation given by Segal & Wilson is the following one. Let Gr(H) be the
"Hilbert-Schmidt" Grassmannian, and let ¥ be the L2-closure, with respect to a suitable
inner product (see[2]), of the space spanned by the Pliicker coordinates wg in T (Det*) .

To each point WeGr(H) one lets correspond the section Qy, of Det* defined by
(4.30) Qu (W) = det ll <wy w’j> I ,
where {w;} and {w';} are admissible basis for W and W' respectively, and <, > denotes

the scalar product in . The map W +— 1Qy,> defines a Pliicker embedding of Gr(H) into

the projective space IP(¥{), IQ2y,> being the ray correspondig to the section Qy,. Under this
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map, the image of the section ¢ (= (2y,) will be identified with the vacuum vector Q> .
One introduces at this point the elements q € I', andp ¢ € T"_, defined for each

Ce C,ICI>1, as follows:
z 1

1
(4.31) G=1-— ;  pr=(l-—)
=17 =77

(where ~ stands for complex conjugation). The element Prdg € T acts on W and
consequently on the section Qyy: setting { = pel® one defines the operator-valued

distribution «(8) by letting p > 1. One sets as usual
21
(4.32) o) =] o f8)

foranyfe H= L%SH . In particular, let ¢, = ©(z") and eF = o ;n) ; one can check

from the definition (4.32) that
(4.33) [¢(0), (®)] =0 ; [@(0), *(6)] = 6(6-6") ,
and that consequently ¢ and ¢*  fulfill the CAR stated in (4.24).
A further step consists in taking the exterior algebra A (H_ ®H ), which is
generated by the products
(4.34) ZUA A Zim A ZHALA Zha.
Let me now associate to each space Hg in Gr(H) an element e N (H,_®H)) of the form

(4.34), where the indices iy coincide (with opposite sign) with the negative integers in the

sequence S, while the indices j, coincide with the lacking positive integers in S. To a more
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general space W € Gr(H) one associates the element
(4.35) 2w = 2g Wg(W) 25
Gr(H) can now be realized as a left A-module via the map

. . — — *
(436) 5= CGhA ..n zimA ZIiALA Zh) — @S = @1 Pi @1 TP s
in this way, Q> = cpSlQO>, and more generally Q> = ES wS(W)cpSIQO>. In
particular, Ty, (g) corresponds exactly to the T-function Ty defined by (4.29), having set
IQw>=7vIQy>and g = exp[H(1)] .

The same construction could also be carried for Gr(H"), leading to a n-component
fermion representation; this can be important for the physical interpretation of such
constructions according to quantum field theory, but from the viewpoint of the integrable
systems this generalization seems not to add any relevant piece of information with respect

to the ordinary scalar construction, because of the correspondence between Gr(H") and

Gr(H) stated in Sect. 4.3 , which can easily be implemented in this formalism.



5. BAKER-AKHIEZER FUNCTIONS AND DIFFERENTIAL
OPERATORS

5.1 Novikov Equation

I have introduced in Sect. 1.2 the Novikov equation

(5.1 [L,P]=0

for a pair of monic operators L, P € R[D], as being the compatibility condition for the

spectral problem

Ly =Ny
(5.2)
Py = py

I will now consider L and P as acting on the space of formal Baker-Akhiezer functions,
letting the reader refer to the remark at the end of Sect. 3 about the general meaning of this

setting.

(5.3) Proposition : For any monic operator L € R[D] of degree n, there exists a
pseudo-differential operator K = 1 + Zk>0 ak(x)D'k, belonging to the Volterra

group, such that L. K=K - D™,
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This proposition can be checked by direct computation: the equation in (1.17) allows to
find iteratively all the coefficients a, of K. K is defined up to multiplication by an arbitrary
element of the Volterra group with constant coefficients , which obviously commutes with

DM |

For the rest of this Section and the next one, I will drop out the symbol - for

multiplication (composition) of operators, and I will assume all the operators to be monic.
(5.4) Proposition : The formal Baker-Akhiezer function
Y=Ke¥=e[1+2, 2.k 7

is a solution of the spectral problem (5.2), if K is defined according to (5.3)

and L and P fulfill the condition (5.1).

In fact, LY = (LK) e** = (KD") e** = 2" K e** = 7" y; for the second equation in (5.2),
let R € PsD(R) be defined by R =K!1PK . Since 0=[P,L] =[KRK! L]=
= K[R, D] K'l, R should commute with D! and is therefore an operator with constant
coefficients, R = Zkezcka, cp e C. Let rhe denote R by u(D): it follows that P =

=Ku(D) K1 and P¥ =Kpu(D) e¥ = pu(2)v. |

As a consequence of these observations, one is led to associate to the BA function
Y the whole centralizer Z (L) in R[D] (which is not to be confused with the centralizer

Z(L)in PsD(R)). An important remark is the following one:
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(5.5) Proposition : If two commuting differential operators L and P are of
relatively prime degree, the space formed by the eigenfunctions W of L and
P corresponding to a given pair of eigenvalues (N, y) is one-dimensional

for almost all pairs (X, p)e C2.

This proposition will be proved in Sect. 7.

5.2 The KP Hierarchy

I will now consider the infinite set of linear differential equations
(5.6) P, w=0d, ¥
for all n=2, where both P, and ¥ depend on infinitely many variables (x, ,, 3, ...) and Bn
stands for 0/dr,, as in Sect. 1.2. I have showed above that the associated compatibility
conditions

(5.7) 9 Py - 9, Py = [Py, Py

admit the solution P_= (Q"),, Q being a pseudo-differential operator of degree one. Let me
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prove that if we restrict the system (5.6) to the space of formal BA functions
(5.8) W = exp(rz + 1,22 + 1323 + L[+ Ly ay (D) 278

all the solutions of (5.7) are of the type stated above.
Assume K to be the pseudo-differential operator K= 1+ 2k>0 a(8) DX, such that

W =K exp(xz + 1,22+ 132> + ...); then
(5.9) 9w =[9.K +K 2" exp(z + 1,22 + 1,23 + ...) = [(QK)K+KD"K1] w

Therefore, P, = [(9,K)K'+KD"K!] and since P, is a differential operator, and the degree

of (anK) cannot exceed (-1), one finds
(5.10) P, =(KD"'K1), , (0,K)K!=-(KDK_.

Setting Q = (KD"K"1), one obtains the desired result.

The BA function technique allows also to prove that the ZS equation
(5.11) d3L-0,P=[P,L]
is the compatibility condition for the spectral problem

Ly=03,
(5.12)
P\P=a3‘~b >
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in fact, assume (to fix the ideas) that L and P are of degree 2 and 3 respectively; suppose
that for a given such pair (L, P), not necessarily fulfilling (5.11), there exists a BA

functions which solves the spectral problem: this BA function should have the form
(5.14) U = exp(xz + 1,22 + 221 + Xps g 8 (X, 1y 1) 2757 .

Now, ¥ is defined up to multiplication by a Laurent series in z with constant coefficients;
therefore, the kernel of the operator A = [83—P, BZ—L] contains an infinite-dimensional
subspace of the space of BA functions. However, on this space, A can be written as a
differential operator with respect to the variable x only. In fact, by introducing the operator
K related with ¥ in the usual way, one can substitute to each ai the expression
[(aiK)K‘1+KDiK'1]; but a differential operator in one variable cannot have an
infinite-dimensional kernel, unless it is the trivial operator. Thus, the existence of a

solution of the system (5.12) implies that (L., P) must fulfill (5.11) as it was claimed.




6. BAKER-AKHIEZER FUNCTIONS AND KRICHEVER DATA

In Section 3 T have introduced "axiomatically" the BA functions as objects defined
on a given smooth algebraic curve. In this Section I mean to point out that there is a
"faithful" correspondence between BA functions and algebraic curves: this correspondence
is ensured by the property of existence and uniqueness of the BA function associated to a

given Krichever datum.

(6.1) Definition : A Krichever datum 1is a set (C, p, k, &), where C is a smooth
projective curve of genus g, p a distinguished point on it, k£ a local coordinate in a

neighborhood of p, and O is a generic effective divisor of degree g on C.

Thanks to the correspondence between divisors and line bundles described in Sect. 2.3,
the Krichever data can be re-expressed as quintuples (C, p, &, L, ¢), L being a line bundle
over C and ¢ being a local trivialization of L over the domain of the coordinate k. This
setting can be further generalized to singular curves, but this generalization will not be
relevant for this Section.

Asin Section 3, let z = k! . Given a polynomial R(z)eC[z], I can define w R [0
be the unique meromorphic differential on C having a pole in p as the only singularity,
such that the principal part of wg in p has the form dR(z) and such that all the a-periods
<wp, a;> (see def. in Sect. 2.3) vanish. Let B = (B, ..., Bg) be the vector of b-periods

B; = <wg, b>.
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(6.2) Proposition : Given a Krichever datum (C, p, k&, &), a polynomial
R(z)eC[z], and an arbitrary point gq#p on C, the Baker-Akhiezer function

defined by (3.1) is given uniquely by the following expression:
0(Q(s) - K+B)

S
Y(s)=exp[| wg] ,
jq RToce(s) - K)

0 being the Riemann theta-function and ¢ being the Abel map, defined by (2.16)
and (2.14) respectively, and K being the constant vector such that 6(C (s) - K)

vanishes exactly when se d .

It is easy to check that all the requirements of def. 3.1 are fulfilled. The relevant point to
prove is the uniqueness statement. Suppose W' to be another function on the same curve,
with the same divisor of poles and the same singular behavior at p. The ratio ¢ = ¥'/¢
is therefore a meromorphic function on C. One can see from the explicit formula above that
the divisor of zeros of P, (), has degree g and is non-special. Now, (), coincides
with the divisor of poles of «; however, a non-special divisor cannot be the divisor of
poles of a meromorphic function on C (recall Sect. 2.3). Therefore ¢ has to be constant.
If one chooses another parametrization of C, the coefficients of the polynomial R
should change accordingly. For instance, let R = (xz + t222 + t3z3); if I change the
parametrization in such a way to have z +— az +b + czl + 0(z%),a#0, band c being

constant, the corresponding change of the coefficients is given by

x > ax + 2ab 1, + (3ab*+3a%¢) 1,
6.3) b a2, +3a%b 1,

3
= 2y
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However, as I have anticipated in Sect. 3, I will consider the family of BA
functions Y (x, 1,, I3, ... z) as a single object, and I shall still call it a BA function. Such
an object is defined uniquely by the geometrical datum (C, p, &), without regard to the
parametrization, nor to the polynomial R(z); as I will show below, it corresponds to the
orbit in the space of BA functions (in the strict sense) of the flows generated by Lax
equations. To anticipate a concrete example, Let R(z) be the third-order polynomial above

and note that the associated BA function P(x, 1,, Z5; 2) solves the spectral problem

Ly = 82 )
(6.4)

~ here L and P are determined from W, according to the methods explained in Sect.5,
through the Volterra operator K defined by means of the coefficients of the series
expansion of ¥ (so that ¥ =K exp[R(x, t,, 13; 2)]), by setting L=KD?K"! and
P=(L3/2) +- With these assumptions, one could check that \ leads to a solution of the
Kadomitsev-Petviashvilij equation. If one furthermore assumes that the function z2 extends
to a meromorphic function on C having the only singularity at p (which can happen only if

C is hyperelliptic and p is a Weierstrass point), one can define the function
(6.5) W'= exp[-1, 22 | W
P' has the same polar divisor as W, while its singular behavior at p is expressed by the

polynomial exponent (xz + t3z3). Due to the uniqueness property, ¥' must be the BA

function on C associated with the latter polynomial. The system (6.4) thus becomes
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(writing now W for y')

Ly=22y
(6.6)

Py =3, v

As I have already stressed, (6.4) lead to the Lax equation a[ L= [P, L], having set t = 5.
By a change of variable x + x’, an}; differential operator L of order two can be put into
the form L = D? + u(x, 1), in order to recover exactly the KdV equation.

The fact that u does not depend on t, in the present case can be proved in the
following way: let Q = KDK'I; by construction, Q¥ = z: but the first equation in (6.4)
reads (Q%), ¥ =22 Y, so that (Q%)_ = 0. Now, it has been shown in Sect. 5.2 that (Q?)_ =
= (BZK)K‘I; therefore K, and thus L, do not depend on t,. As a consequence of that
* construction, to find a solution to the KdV equation, one can start from a given
hyperelliptic curve C, set R(z)=(xz + tz°), and write down explicitly ¥ according to (6.2).
Let now ¥ = exp[R(z)][1+zk>0 a (x, t)z‘k] be the series expansion for y; from the

relation L = KD?K"! one easily finds u(x, 7):

(6.7) u=-2Da,




7. DIFFERENTIAL OPERATORS AND ALGEBRAIC CURVES

7.1 The Burchnall-Chaundy-Krichever Theory

Burchnall, Chaundy and Baker first introduced around 1920-1930 a relationship
between pairs of commuting differential operators and algebraic curves. Their remarkable
papers [9] were however forgotten, and more recently Krichever recovered independently
the same result. On the other hand, Burchnall and Chaundy did not relate their construction
to Lax equations (which were introduced later), and consequently to the IDIS. The
connection with the latter ones is actually due to Krichever. The starting point of the BCK

theory is the following observation:

(7.1)  Proposition : Let L and P be two differential operators of degree m and n
respectively, m, n being relatively prime, and let [L, P]=0. Then there exists an

irreducible polynomial Q(x,y)eC[x, y] such that Q(L, P)=0 .

In fact, let me consider the equation (P - i)w=0, defining the m-dimensional eigenspace
Vu of P in the space C™((-1, 1)). Since P and L commute, ¥ € Vu implies that Ly e Vu.
Let {W;} ., . m bethe basisin V,, such that (ai/axiﬁpi(()):aij . With respect to that
basis, the restriction of L to Vu is represented by a mXm matrix Lu with polynomial entries
in p. Let Q(N, 1) be the characteristic polynomial Q(}A, 1) = det (Lu - AD). The differential
operator Q(L, P) vanishes on each V¥ « V“, for any p: therefore it has an

infinite-dimensional kernel and must vanish identically. To see that Q is irreducible,
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suppose Q(x, y)=Q,(x, y)Q,(x, y); then, either Q,(L, P) or Q,(L, P) should be the zero
operator; in fact, if Q,(L, P) is not zero, I m(Q,(L, P)) is infinite-dimensional and then
Q,(L, P) must vanish for the same argument as above. In either cases, one of the two
polynomials, say Q,, has exactly the same zeros aé Q; thus the zero locus of Q, is
properly included in the zero locus of Q,, and Q, must be a factor of Q. Iterating the
argument until one is left with irreducible factors only, one concludes that Q must be the
r-th power of an irreducible polyﬁomial, for some integer r. Now, Q contains the
monomials A™ and ", so r should be a common divisor of m and n. If m, n are relatively

prime, then r = 1 and the proposition is proved. |

Consequently, the equation Q(X, W) = 0 has exactly n distinct solutions for each
value of A, except for a finite number of branching points. Since Vu is n-dimensional,
each eigenspace Vu,l of Lu is one-dimensional. These one-dimensional joint eigenspaces
of L and P form a line bundle on the curve C defined by Q(\, 1)=0 . In this way, one
associates to the pair (L, P) a Krichever datum, once the curve C has been compactified by
adding the point at infinity. To be precise, one should check that the line bundle so
obtained has degree g; although this could be done within the framework described so far,
I will postpone the discussion about this point to Sect. 7.3, where I will rely on a more
abstract setting. Before introducing the latter one, however, I wish to sketch a different
example of algebraic curves arising as spectral curves, namely the Floquet theory of the

Hill's operator.
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7.2  The spectral curve of the Hill's operator

In the mathematical literature, the operator D? + q(x) is known as the Hill’s
operator. The so-called F loquet theory of the Hill's operator with a periodic potential q(x)
leads directly to an algebraic cur\;e, without relying on the algebraic properties of
commutative subrings of differential operators. This subject is widely discussed in [32],
and is the starting point for the thorough investigation due to McKean and his collaborators
([33]); these authors have showed, within the framework of spectral theory, that the space
of all potentials q(x) leading to the same spectrum of the Hill's operator is to be identified
with (the real part of) the Jacobian torus of an hyperelliptic curve of possibly infinite
- genus. I will summarize below the main elementary ideas of the Floquet theory.

Let q(x) be a piecewise continuous periodic function of minimal period 7. The

differential equation
(7.2) | (D*+q)y =0

admits two independent solutions y;, y, such that ¥1(0) =¥,'0) =1, y,'00) = y,(0) = 1.

With these "normalized solutions” one defines the characteristic equation
(7.3) s2-[y,(m) +y, @] s+ 1=0

Let s, s, be the roots of (7.3), and let e € be such that s;= el and §y= griom,
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(7.4) Proposition (Floquet) : If §,%$,, then the Hill's equation (7.2) has two linearly
independent solutions f,= elox p;(x) and f,= g iox p,(x), p; and p, being

periodic functions of period T .

The proof can be found in [32]. Let me now define Q(x, A) = q(x) - A, assuming g and X

to be real. The eigenvalue problem for (D?+ q) is translated into the Hill's equation
(7.5) [D?+Qx, M) 1y(x, \)=0.

For each value of N\ there are two normalized solutions ¥1(x, A), yo(x, N) , and two
characteristic roots s,(A) and 5,(}); s,#s, for almost all . The values A, for which s,=s,
carry a relevant information, since the solutions of Hill's equation (7.5) are bounded if the
- characteristic exponent a is real, while they are unbounded for Im(c)#0. Thus the branch
points A, are the endpoints of the interval of instability of the spectrum of (D? + q) (such
intervals are called gaps).

Let now A(N) be the discriminant
(7.6) ACN) =y,(m, N) +3,(7, N) .
IfA(N) =%2 one has s, = s, =% 1;itis possible to show that in this case there exists a
nontrivial solution of minimal period 1t (if A(\) = 2) or 27t (if A(\) = -2). Therefore, one

can split the set of branch points {;} into two groups, {};"} and {};'}, were A(A;") =2

and A(X;') = -2 . The order of these values on the real axis is the following:

(7.7) )\0°<)\1’S)\2'<>\1°£>\2°<>\3's)\4'< -
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both sequences {A;"} and {);'} tend to infinity, and the point at infinity itself is a branch
point. The intervals of instability are those of the type (N;°, N;,;") or (A, Ay, {"); if the
endpoints of one of these intervals coincide, the gap disappears; the intervals of stability,
on the contrary, cannot disappear. |

There are potentials q(x) such that the number of gaps is finite. For these
finite-gap potentials, almost all the roots of the equation Az()\) -4 =0 are double roots;
the gaps correspond to the simple roots I; in the periodic spectrum of (D2 + q). One is

therefore naturally led to consider the hyperelliptic curve defined by the equation
N
(7.8) p? =11 (L - 1)

The genus of this curve is determined by the number of gaps; in the general case, the genus
~ is infinite (assuming that such objects have a meaning). To get a compact curve one adds
the point at infinity which turns out to be a Weierstrass point.

To see the relation of this construction with the BCK one, one could observe that
the functions f; and f, introduced in (7.4) are simultaneous eigenfunctions of the Hill's
operator L = (D? + q) and of the rtranslation operator T, defined by setting
T, f(x) = f(x+m). T, is not a differential operator: however, if one restricts the coefficient
ring of R[D] to contain only periodic functions, then the operators L and P involved in the
BCK setting both commute with T,. One can therefore consider the matrix expression of
any two of these operators acting on the eigenspaces of the third one, so that both the
construction of this Section and the BCK one are recast in a purely algebraic form; in this
way (see e.g. [34]) one can check the equivalence of the two approaches for the particular
case of the Hill's operator. From the viewpoint of the spectral theory, we learn in this way

that hyperelliptic curves of finite genus lead to finite-gap potentials.
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7.3 Abstract description of the BCK theory

In this Section I will summarize the abstract setting of the BCK construction,
following essentially the presentation by D. Mumford in the paper [35]. The subject is also

discussed in [20], [36]. The main result can be stated as follows:

(7.9)  Proposition (Krichever) : To each commutative subring A  R[D] (R being the
ring of formal series C[[x]] ), containig at least two monic operators of relatively

- prime degree, corresponds a (generalized) Krichever datum (C, p, k, ), where

& is a torsion-free rank-one sheaf such that dim HY(%) = dim HY(B) = 0.
Conversely, to each such Krichever datum there corresponds a commutative ring

of differential operators as above; two rings A, A, being identified, however, if

Aj=u-A,- u~l for some function u(x).

If the curve C is smooth, we can consider the line bundle L associated to the sheaf 33,
instead of & itself; from the Riemann-Roch formula we see that the degree of L should be
equal to g - 1, g being as usual the genus of C. This seems in contrast with the previous
setting, where one was dealing with line bundles of degree g. However, the difference is
only apparent; it corrresponds essentially to a different choice of the normalization of the
BA functions. As a matter of fact, since the main point is to study equations which are
related with deformations of the line bundle L, one can always tensorize the latter one with
a fixed bundle L, to change the degree, without affecting the result; actually, one tipically
wants to end up with a line bundle of degree zero, i.e. with a point of the Jacobian variety.

Let me now outline the proof of (7.9).
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The starting point is a deformation & * of the sheaf I3, defined in this way: let U
be an open neighborhood of p in C; the variety CxC can be covered by the two open sets
U =Ux Cand U, = (C\p) x C. Z* is obtained by glueing the two restrictions of
L @0 to U, and U, through the transition function exz, z being the inverse of the local
coordinate k, as in Sect. 3. The sections of this sheaf could be thought of as (local) BA
functions with the normalization a5(x) = 0 instead of ay(x) = 1 as usual (there are no
global sections of this kind).

The next step consists in defining the operator V: Z*— L *(p), L*(p) being the
sheaf of meromorphic sections of & * with at most one pole of order one in p. V is

defined over U, as being just D=(d/dx), and it extends to U, by means of the formula
(7.10) e* D(e* f(z, x)) =z f(z, x) + D f(z,x)

Therefore, V= z f+ (sect. of &*). Iterating V, one obtains maps V" : LT*— L *(np).
From the hypothesis on the cohomology of &, it follows that also dim HY(Z*) =
=dim H!(Z*) = 0; from the cohomology sequence associated with the exact sequence
0= TB*@p) > B*—> L*(p)/T* — 0 one deduces that dim HY(T *(p)) = 1.
Choose a generator s,e " (CxC, Z*(p)); by applying V one can obtain a sequence of
sections s, = Vs, el (CxC, BZ*((n+1)p)) .
Let me now consider the ring A = T(C\p, O ): it is possible to see, from the

fact that s = syz" + (Lo. terms), that the set of sections {s;}i=g o form a basis of

T'(CxC, T*((n+1)p)) as an A-module. Take a € A ; any such function can be extended to
a meromorphic function on C by letting the pole in p have an order large enough:
a =az" + (Lo. terms). Then the section a sy €T (CxC, Z*((n+1)p)) can be expanded

as follows:
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(7.11) S0 = 015, + D ereen1 8 S = [0V + Do a () VN s, .

This formula defines an embedding of A in R[D], mapping a — [oD™ + 2 ak(x)Dk]. If
one chooses a different generator s, the image of .the ring is unchanged up to the
identification stated in (7.9). If n is large enough, there always exists a global
meromorphic section on C having only a pole of order n in p; therefore A contains
elements of almost any degree. The iﬁage of A must then include differential operators of
relatively prime degree (all the elements of A are monic, as one can see from (7.11)). This
proves the proposition in one direction.

Conversely, consider the commutative subring of differential operators A as an
abstract ring; according to the discussion in Sect. 2.2, one recovers the affine part C\p
simply by taking the closed points of Spec(A). To get also the point p, one has to build the
- projective curve associated with the graded ring G = @,y G;, whereby G;={LeA/
deg(L) < 1i}. Furthermore, one can check that R[D] itsélf is a free A-module of rank one,
provided A has one element for each degree n above some finite degree n,; this is easily
checked to be true if A contains two operators of relatively prime degree (in fact, the
equation am + bn = ¢, m and n fixed integers, has a solution (m, n) € N2 for any ¢ 2 m+n
if and only if [n] is an invertible element in the ring Z_, i.e. n is prime w.r. to m). The
sheaf &5 (or rather its restriction to C \ p) can thus be identific| with the sheaf over Spec(A)
associated to R[D], according to the technique presented in Sect. 2.4. To see this, just

define a correspondence R[D] =T (C\p, & ) by setting D +— s, |

What happens if we change the sheaf & ? One expects that the embedding of A,
viewed as an abstract ring, into R[D], change accordingly. If we assume C to be smooth

and & to be the sheaf of sections of a line bundle L, we can describe a deformation of that
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sheaf by letting the Jacobian variety act as follows: to each point on Jac(C) it corresponds
an equivalence class of divisors [{] of degree zero, and the action on L is given by
LOL(D), L() being the line bundle associated with 9.

An infinitesimal deformation is therefore described by a tangent vector to J ac(C).
This tangent vector can be represented by a line bundle L’ over the variety CxC[1]/(1%),
with transition function 1+7 ¢, ¢ being an element of HY{(® c)- Omitting the details, I
simply recall that s; lifts to a sectibn so™ of the "deformed sheaf" I **, obtained by
tensoring (over O ) T * with the sheaf of sections of L". The restriction of 8y to the
affine part C \ p has the form Sp*=(sq +1 5y, S’ being defined as follows: observe that
the local section cs; of & * can be written in the form csy = zkez cx(x) s : then s’
coincides with (minus) the "positive part" (csp),, 1.€. 5p'= ‘Zleo C(x) 8y

Forany a e T'(C\p, O ) as above, one can expand asy* in the form
(7.12) asy* = ZoskSn(ak(x)H a' () vk SR
‘The variation in the coefficients of the image of a in R[D] is then obtained by solving
(7.13) asy' = ZoskSn (a'y (@) vk 8o + a(x) vk S - }
The left-hand side of (7.13) can be expanded in the form
(7.14) a5y = -(Dino G V(Lo 20 VE) s, |

while
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(7.15) D0 400 VEsg'= <Xy 3,00 V(Do €50) V) s, -

Having associated to a the differential operator L(a) = Zkzo a,.(x) Dk, it is natural to
associate to ¢ the pseudo-differential operator W(c)=zkezck(x) Dk , So that equation

(7.13) becomes
(7.16) d,L(a) = [(W(c),, L(a)]
This setting illustrates therefore the geometrical meaning of the Lax equation, as it was

anticipated in the Introduction; the Lax equation represents the image of the infinitesimal

action of Jac(C) on line bundles over C, under the Krichever's correspondence (7.9).




8. UNIVERSAL GRASSMANNIAN MANIFOLD AND
DIFFERENTIAL OPERATORS

In the paper [30], M. and Y. Sato have presented a method to make a given
pseudo-differential operator K (beldnging to the Volterra group) correspond to a point
W € Gr. This is the starting point for the "grassmannian approach" to infinite-
dimensional integrable systems. I will recall in this Section the direct construction due to
Sato, while in Sect. 9 I will present the slightly different strategy of Segal & Wilson,
consisting in associating to a point W € Gr(H) a Baker-Akhiezer function. In any case, it
should be clear at this point (even if a precise statement in this sense has not been
- formulated) that dealing with the space of BA functions is equivalent to dealing with the
Volterra group.

In Sect. 4.2 it was stated that Gr is the set of linear subspaces (with suitable
restrictions) of an infinite-dimensional vector space V. The crucial point is now the

following:

(8.1)  Proposition : V admits a structure of left PsD(R)-module; with this structure,
V is isomorphic to the quotient module PsD(R)/M , where M is the maximal
ideal PsD(R) - x .

First, one lets PSD(R) act on V by setting

(8.2), xoXviee =2 kvie 3 DeXvie =2 v, e
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It is straightforward to see that the commutation rule [D, x] = 1 is preserved by this
representation as well as the other algebraic relations holding in PsD(R). The next step

consists in setting the correspondence
(8.3) V= Z Vkek — V= Z Vk]).k-1

which maps a vector v € V into a pseudo-differential operator with constant coefficients

Ve PsD(C) . Let me prove at this point the following

(8.4) Lemma : Any operator Q € PsD(R) is equivalent mod M to an operator with
constant coefficients V € PsD(C) . Furthermore, to each equivalence class

[Q] € PsD(R)/M belongs a unique operator with constant coefficients.

In fact, given a pseudo-differential operator Q, one can always find another operator P
such that [Q - (P - x), D] =0, which implies that (Q - P - x) has constant coefficients (the
equation can be solved iteratively); on the other hand, two operators with constant
coefficients cannot differ by an operator of the form (P - x), since such an operator cannot

have constant coefficients, as it is easy to check. |

By means of this lemma, one can regard the map defined by (8.3) as a map
S:V—>PsD(R)/M. It remains only to prove that S is an isomorphism of
PsD(R)-modules. Assuming R = C[[x]], it is enough to check that x - S(v)=Sx-v)

and D < S(v) = S(D - v): this follows from the straightforward application of (1.2):
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xeS(V)=-5(v) - x+2 (k-1) v D2
(8.5)
D°S(v)=szD-k. E

Under the isomorphism S, the subspace V* introduced in Sect. 4.2 corresponds to
the subspace spanned by {Dk}kzo (mod M) .

Now, the relation with the Gfassmannian can be made clear. Let K be a Volterra
operator with coefficients in C((x)) (formal Laurent series); I will assume that, for both K
and K1, all the coefficients have a finite number of negative-power terms which is
bounded by some integers m and n, for K and K-! respectively: this is equivalent to saying
that x™ » K and K1 - x™ belong to PsD(C[[x]]). To the operator K one associates the
subspace Wy = (K1ex™) « V°. Of course, if the condition K1+ x" e PsD(T[[x]D
holds for some n, it holds also for any n'>n; however, a different choice of the integer n
does not affect the definition of Wy, since x"« V° = V°. From (8.2) one can see that the
negative-index generators of V can be mapped into positive-index generators by applying
x! or D only. Since K-! does not contain any positive power of D, and it contains
negative powers of x up to the n-th only, Wy contains a finite number of positive-index
generators and thus defines a point in Gr.

In the paper [30], the image of the KP flows on the Grassmannian is also
described; however, I will treat this subject, as well as the converse problem of recovering
the operator K from a point in Gr, in the next Section, by relying on the Segal-Wilson's

formalism.




9. GRASSMANNIAN MANIFOLD AND BAKER-AKHIEZER
FUNCTIONS

9.1 BA function and t-function

The relationship between points of Gr(H) and BA functions, according to Segal &
-~ Wilson [13], relies on the properties of the T-function (4.20).

Let me recall that T, was defined by (4.9) as being the group of holomorphic
maps Dy—C, (D, being the unit disk IzI<1) acting as multiplication operators on H (after
restriction to S!) and therefore on the points WeGr(H). In particular, the operator g

- belonging to T for any given { € € such that I{>1, has been introduced by (4.31).

(9.1)  Proposition : Let W be transverse to H_; then, the boundary value of tw(qc) for

ICl — 1 (as a function of { ) belongs to W.

To prove this statement, consider the compact operator A: H + — H_ whose graph is W
(according to Sect. 4.3, A exists if W is transverse to H ); let w = {wy ) be an admissible
basis for W, which shall be expanded in the form Wy = Eiez wikzi. The matrix
W, = llw;ll5, represents the projection operator W — H,, and one has

2 b
6 (W) = (w,det W_). Write g € T in the block form g:(? d) as in Sect. 4.3; then

(9.2) Ty () =det (1 +a'b A)
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A direct computation allows to see that for g = q > the operator a"'b maps a function f(z)
into the constant function f(C). Since W is transverse to H_, one can assume that each
element wy_of the admissible basis w has order k. The element w,, has therefore the form
wo =1+ 1{,(2), fy(z) € H.. The matrix corresponding tb the operator a"'bA has the only

non-vanishing entry (a‘le)OO, which is equal to fo(f;). As aresult, one finds

©.3) t@g) = 1+ £,0)

At this point it is apparent that for I{| — 1, the boundary value of TW(qZ;) just coincides

with w,, |

I will now consider the subspace TWc T + on which the t-function Ty, does not
“vanish: TW= {geT,/tyw(g) # 0}; equivalently, TW is characterized by saying that
geTWiff g'l'W is transverse to H_ (i.e. g''W lies in the open set Ug; this makes evident

the fact that TW is dense in T +)- The formula (9.3) shows that for any ge TW one can

write
(9.4) Teig(@) = 1+ 2o a ) 7%,
t = (x, 1y, 13, ...) representing the set of parameters of g according to (4.10)

(9.5)  Definition : The Baker-Akhiezer function Yy associated to W  Gr(H) is the

function

@)= g telw(@) =g twi -2 5 - 222 1 - (32)3, ) /1y (@) .
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Formally, 1y, admits an expansion of the form (3.3). From prop. (9.1) it follows that
Ww(z; ) € W for any value of ¢ : this is the crucial property of Wy In principle, Wy, has
been defined only for those values (x, Iy, I3, ...) which correspond to elements of TW;
actually, Wy, is an analytic function at these values, whiie it becomes singular outside T W.
However, since the singularities arise from the vanishing of Tyw(®) in the denominator of
the right-hand side of the formula above, and one can check that the T-function has only

zeros of finite order, Yy extends meromorphically to the whole T o

(9.6) Proposition : For any WeGr(H), Y w(z; £) is the unique meromorphic
function of the form exp [xz + t222 +...] (1 + 2i>0 a (0 z'k) which belongs

to W (as a function of z) for any value of t .

- In fact, let W' another such function; for ¢ = (0, 0, ...), W' must be proportional to W,
since it is a function of order zero belonging to W; therefore it must be a multiple of Yy by
a constant factor. By using the methods of Sect. 5.2, one can easily write a family of
differential operators P, such that ¥' is a solution of the spectral problem (5.6); these
differential operators depend only on the expansion of W' at ¢ = (0, 0, ...) and must then
coincide with those associated in the same way with Wy Therefore W' and Yy, satisfy the
same linear differential equations, with the same initial value; thus they must coincide for

all ¢ | |

Let me consider more closely the family of differential operators P, associated

with Py, A remarkable result of this setting is the following one:
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(9.7) Proposition : If W belongs to Gr™ for some n, the KP hierarchy associated
with Y, (in the sense of Sect. 5.2) reduces to a subhierarchy not depending on

the variable Ly

From the very definition of Gr®™ it follows that W e Gr(® imply z"yy € W. Then, also
(P, - z“)ww € W; in fact Ly, belongs to W for any differential operator P, since
Wy € Wforall x. Now, ¢'= (P, 1— ") Wy, must be a multiple of Wy, because it is
easily seen to fulfill the hypotheses of (9.6); however, it is also evident that the coefficient
of the expansions of ¥' and Yy do not coincide, except for the zeroth-order coefficient;
then ' = 0. I have already showed in Sect. 5.2 that if P Wy, = 2"y, then the associate
Volterra operator K, as well as the operator Q direclty occurring in the KP hierarchy

(1.24), do not depend on Iy | |

Actually, T have already stressed that Gr&™cGr®™ for all positive integers k;
consequently, infinitely many variables drop out from the KP hierarchy in the case of
Prop. (9.7). In particular, if W belongs to two spaces Gr™ and Gr(™, m and n being
relatively pn'rrie, the KP hierarchy reduces to a hierarchy involving only finitely many
variables. I will come back to this remark in the next Section; but it should be evident that
the analogy of the condition above with the one occurrin g in the BCK construction is not
accidental.

At this point, I wish to make two remarks. First, the procedure described above
leads to an expression for the Volterra operator K associated to Wy, which is the same that
Sato & Sato present in their paper [30]. Sato's approach seems more direct, but this
depends only on the fact that [30] deals from the beginning with the image of the

Grassmannian under the Pliicker embedding. Secondly, let me recall that the introduction
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of the t-function is due to Hirota, who was led to recast the KP hierarchy into a bilinear
differential equation for t. De Concini (see [11]) has shown that the Hirota bilinear
equation can be derived from the observation that Tyw(-H= Ty L (2); one can therefore define
the two BA functions Wy and Wy, L from the same ’c;function, by simply reversing the
sign of the parameters of the element ge T _; the two functions so obtained are orthogonal
(since they belong to orthogonal subspaces). Writing the orthogonality relation for Yy and

Yl in terms of the T-function, one obtains the Hirota equation.

9.2 From the BA function to Gr(H)

To find the point WeGr(H) which is associated with a given BA function, one
make use of the method presented in Sect. 4.3. The points which can be recovered in this

way are those associated to BA functions such that, for some n,
(9.8) BH\U = Ny,

so that we expect to end up with a point W € Gr™. In general, the starting point is a
differential operator L of degree n, rather that a BA function; one gets this latter one in the
usual way, i.e. by defining a Volterra operator such that L - K=K - D", and setting the

"initial value" ¥ (x, 0, 0, ...; z) = K e*%; (9.8) is then satisfied. As I have stressed above,
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the initial value of the BA function is sufficient to recover the whole spectral problem
satisfied by W, and the spectral problem generates the evolution of W in a unique way;
therefore, the problem is restricted to finding a space W which contains ¥ and its
derivatives calculated in ¢ = (x, 0, 0, ...). Actually, the first (n-1) derivatives are enough to
fix W; in fact, only n independent functions are needed to characterize a point in Gr(r‘),
while, on the other hand, the other derivatives of ¥ are dependent of the first (n-l)‘ones
through the equation Ly = z% . The only problem lies in the fact that, starting from a
differential operator L, one gets in the way explained above a formal solution, whitout any
information on the convergence of its expansion. To get a point W in the Grassmannian,
one must assume that the series defining W, as well as its first (n-1) formal derivatives,
actually converge. Segal & Wilson point out in [13] that this seems to be the only criterion
available to single out the formal BA functions having an image in Gr(H). Having
supposed that the derivatives ¥ & = Dky(x, 0, ...; z), k=0, ..., n-1, actually define n
functions of z, one obtains W through the formula (4.15). To ensure that Y(z) is regular,
one observes that & ~ X for z —eo; therefore, up to a possible rescaling of z (P has
nice transformation properties under rescaling, which I have not mentioned here), it is not
restrictive to as}sume that y(z) is invertible for IzI=1. To complete the picture, I must show
that W coincides with the BA function W ,. From the same argument as in the proof of
(9.6), one can see that it is enough to provev that the initial values Yy (x, 0, ...; z) and
Wwix, 0, ...; z) should be the same; now, since both {w®)} and { DkLlJW(x, 0, .. 2}

form a basis for W/z"W, and each w® has exactly degree k, one can check by induction,

starting from k=0, that the two sets of derivatives must coincide.



10. THE KRICHEVER MAP

One of the most relevant results about the UGM is the correspondence between
points of Gr(H) and Krichever data.

Let (C,p, k,L, @) be a Kr;chever datum as in (6.1), with deg(L)=g -1, and
assume that the range of the local coordinate k extends to the unit disk D, in C: the unit
circle S! will thus be identified with its image on C through k. This setting is not
restrictive, up to a possible rescaling of £ which does not affect the construction below. Let
U be a neighborhood of p included in the domain of &, and including the unit circle. By
means of the trivialization ¢, the local holomorphic sections of the line bundle L over U\p
- can be identified with local analytic functions : T'(U\p, L) = T(U\p, O ). Taking the
restriction to S! of these functions, one can identify the Hilbert space H of Sect.4.3 with
the L2-closure of T'(U \ p, L), whereby the variable z is to be identified as usual with k.
The space H_alg (resp. H.) can be identified with the subspace (resp. with the L2-closure
of the subspacé) of functions on the unit circle which extend analytically to the unit disk,
or, equivalently, which extend to holomorphic sections of L over U.

Observe that C=(C \p)UU and, up to fetraction, S1=(C\p)NU, and consider the

Mayer-Vietoris exact sequence
(10.1)  0—TI(C,L)—-T(C\p, L)®H &  HlE - HI(C, L) — 0.

Taking the quotient by H 28, one finds the following diagram:
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0 0
¥ N

0 H 2lg H 218 0

2 4 Y ¥
0— I'(C,L) » T(C\p, )®H& - HIE —» HYC,L)- 0.

(10.2) d J N N2
0- T L) - T(C\p,L) — HA— HY(C,L)-> 0.

) \2 \! \J

0 0 0 0

which allows to prove that the lower row is also exact. From the Riemann-Roch formula

one has:
(10.3) dimI'(C, L) - dim HY(C, L) = deg(L)-g+1=0,

and one concludes that t,: I'(C\ p, L) — H__is a Fredholm operator (I will omit the proof
that 7t_is compact; it can be found in [13]). In this way one identifies the subspace Wal&
corresponding to the Krichever datum with the subspace of the functions on S! extending
to holomorphic sections of L on C \p; W is then recovered by taking the L2-closure of
walg,

Conversely, to get a curve and a line bundle from a point WeGr(H), one has just
to apply the standard procedure described in Sect. 2.2 and 2.4. This time, the relevant
objects are the ring Ayy introduced by (4.12) and the Ay,~-module W28, The construction
does not always lead to non-trivial results; for instance, if W does not belong to any one of
the subspaces Gr(™), Ay contains only the constant functions, and Spec(Aw)=Spec(CT) is
only one point. On the other hand, if W € Gr™ for some n, and therefore W e Gr&™) for

all positive integers k, all the monomials ZXM are contained in Ayy. For example, consider
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the space Hg, S =(-3,-1, 1, 3,4, 5, ...); we have Hq e Gr™ for n = 2,4,6,7,....In
this case, Ay, is the ring C[z2, z’], which can be identified with C[x, y}/(y%-x7). The
associated curve C is the singular hyperelliptic curve y2=x’. One easily realizes why the
points of Gr® lead to hyperelliptic curves.

However, if AW does not contain functions of any order above some finite order
ng, W28 cannot be an Ayy-module of rank one. Krichever [8], Mumford [35], and Verdier
[20] have discussed possible genefalization of the BCK construction to higher-rank
bundles, corresponding to rings of operators having higher-dimensional common
eigenspaces, but this is beyond the scope of this thesis. A sufficient condition in order
W2 0 be a rank-one Ay-module is that W belong to two subspaces Gr{™) and Gr™, with
m and n relatively prime. We already know from Prop. (9.7) that in this case only a finite
number of variables occur in the KP hierarchy. This should not be surprisin g; in fact, once
one has recovered a Krichever datum including a curve C of finite genus, the KP flows can
be recast as linear flows on Jac(C), and the tangent space to this torus is finite-
dimensional. The requirement on the integers m and n above is therefore the exact
translation of the analogous requirement in the BCK setting. In fact, it is easy to generalize
the argument of the proof of Prop: (9.7) to build an isomorphism between Ay and the
commutative ring of differential operators having Wy as common eigenfunction. The latter

statement allows to close the diagram of the cover page.

La nature est un temple ou de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe a travers des foréts de symboles
Qui l'observent avec des regards familers.

Ch. Baudelaire, Correspondances
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