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"Giunti in una radura il corteo s’arresis € la principessa vide innanzi
a s€ una strana casetta: era piccola, ma cost piccola ..
‘Chi abita qui?’

‘I sette nani,” cinguetiarano i passeri.”

“Frattanto, alla casetta dei nant, Biancaneve aveva organizzato una

festicciola in onore dei suoi amici che lavevano ospitata tanto di buon
grado.”

(una fiaba)

"As it reached a clearing the procession stopped and the princess
found herself looking at a strange little house: but it was so small, oh so
very small ...

‘Who lives here?’

‘The seven dwarfs,” chirped the sparrows.”

“Meanwhile, in the house of the dwarfs, Snow White had organised

a party in honour of her friends who had shown her such warm hospi-
tality.”

(a fairy tale)
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Abstract

There are seven ghost-like objects, known as dwarf spheroidal
galaxies, which orbit the Milky Way. We consider the question
of whether dark matter can be identified with the seven dwarfs.
The former may or may not exist in any environment, and this
is discussed in chapter 1. If they are associated with each other,
then the former’s identity is almost certainly not that of the only
non-baryonic dark matter candidate actually known to exist —
we discuss this issue in chapters 2 and 4. Somewhat larger dwarfs
provide an intermediate case (chapter 3), however we find that
neither theory nor observation is yet sufficiently developed to an-
swer these questions.

This review is based on information which was known to be
available in July ’88.
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Galazy My (mag) | d (kpc) | v, (kpe) | 7e/r. | to(V)(mag/0") | HB type
Fornax —12.6 140 0.5 6 23.3 red
Leo I —-11.4 220 0.3 3 23.5 red?
Sculptor —-11.1 S0 0.2 6 23.9 red
Leo II —-10.2 220 0.2 4 3. red
Carina -9.4 100 0.2 3 24.9 red
Draco —8.5 75 0.15 3 25.4 red

Ursa Minor —8.5 65 0.15 6 26.1 blue(!)

Table 1: Some Dwarf Spheroidal Properties

Approximate

Candidate/particle mass Predicted by Astrophysicul effects
G(R) — Non-Newtonian gravitation Mimics DM on large scales
A (cosmological constant) — General relativity Provides Q = | without DM
Axion, majoron, goldstone boson 10-%ev QCD: PQ symmetry breaking Cold DM
Ordinary neutrino 10-100 eV GUTs Hot DM
Light higgsino, photino, gravitino, axino. sneutrino® 10-100 eV SUSY/SUGR Hot DM
Para-photon 20-400 eV Modified QED Hot/warm DM
Right-handed neutrino 500 eV Superweak interaction Warm DM
Gravitino, etc.® 500 eV SUSY/SUGR Warm DM
Photino, gravitino, axino. mirror particle. simpson

neutrino® keV SUSY/SUGR Warm/cold DM
Photino. sneutrino, higgsino, gluino, heavy neutrino® MeV SUSY/SUGR Cold DM
Shadow matter MeV SUSY/SUGR Hot/cold (like baryons)
Preon 20-200 TeV Composite models Cold DM
Monopoles 10'° GeV GUTs Cold DM
Pyrgon. maximon. perry pole, newtorites,

Schwarzschild 16" Gev Higher-dimcinion thicorics Coid DM
Supersymmetric strings 10" GeV SUSY 'SUGR Cold DM
Quark nuggets. nuclearites 10" g QCD. GUTs Cold DM
Primordial black holes 10" g General refativity Cold DM
Cosmic strings, domain walls 104" Mg GUTs Promote galaxy formation. but

cannot contribute much to

" Abbreviations: DM, dark matter; QCD. quantum chromodynamics; PQ, Peccei & Quinn: GUTs. grand unified theories; SUSY, supersymmetric theories; SUGR.
supergravity: QED, quantum clectrodynamics.

" Of these various supersymmetric particles predicted by assorted versions of supersymmetric thearies and supergravity, only one, the lightest, can be stable and
contribute to €. but the theories do not at present tell us which one it will be or the mass to be expected.

Figure 1: Dark Matter Candidates — from Trimble ‘87
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Chapter 1
INTRODUCTION

1.1 HISTORY OF DARK MATTER

The so—called dark matter problem began back in 1932 when Oort [158]
calculated that roughly one half of the mass in the solar neighbourhood
inferred from stellar velocities had to be in a form unaccounted for by
the visible stars. One year later, Zwicky [222] came to the conclusion
that the luminous galaxies in Virgo could only account for 1-10% of
the mass inferred from the measured velocity dispersions. The same
problem was reinforced by Smith in 1936 [188], and in the following
year the Coma cluster was found to have the same property [223].

During the subsequent three and a half decades, relatively little ap-
peared in the literature on this problem, with one of the major works
being that of Kahn and Woltjer [112], who in 1959 stated that neces-
sary for the dynamical stability of the Local Group was the existence of
an ‘appreciable amount of intergalactic matter’, which they concluded
must be comprised mainly of ionised hydrogen. Two years after that,
more evidence was found [154] that the total masses of individual galax-
ies in clusters determined from optical rotation curves did not add up
to sufficiently high values to bound these clusters.

It will have already been noticed that the dark matter problem, right
from the beginning, was one that existed on a variety of scales, from the
solar neighbourhood up to the Virgo cluster. Indeed it will be seen later
on in this account that the problem exists, at least in the ‘majority view’
on allscales ranging from the neighbourhood of the Sun right up to the
Universe as a whole.

The modern era of dark matter investigation can be conveniently
designated as having begun in 1973 when Ostriker and Peebles [160]



postulated the existence of massive halos around spiral galaxies in order
to provide a mechanism for heating up the disk components so that they
would no longer be unstable to bar-making modes. This was a totally
different kind of motivation for dark matter from those that had pre-
viously arisen. The following year, two independent sets of researchers
[61, 161] tabulated galaxy masses as a function of their respective radii,
to find the result M(R) oc R for R < 100 kpc and M < 102 My, both for
spirals and ellipticals. This was interpreted by these authors as strong
evidence for dark halos, being a very convenient and natural mass dis-
tribution for them. It was at this stage, however, that the first strong
doubts on the existence of substantial amounts of dark matter were
expressed: in 1975, Burbidge [33] heavily criticised these works, point-
ing out their implicit assumptions that all the systems studied should
be both physical systems (as opposed to, for example, chance projec-
tions on the sky) and bound ones — assumptions on which the result
M(R) « R was entirely dependent.

Another motivation for dark halos around galaxies found by both
Ostriker et. al. [161] and Einasto et. al. [61] was the observation of flat
rotation curves in nearby galaxies at large galactocentric distances where
the neutral hydrogen HI extended well beyond the optical boundaries.
This implied the presence of substantial mass past the visible boundaries
of galaxies, since otherwise a more Keplerian-type fall-off would have
been expected in these outer regions. But it was pointed out in the same
paper by Burbidge that non—circular motions in these regions could by
themselves be sufficient to explain the rotation curves. At roughly the
same time, Woltjer [216], using globular clusters in the Milky Way ‘halo’,
found a mass for the Galaxy substantially less than that expected from
the Ostriker et. al. ‘superhalo’ scenario.

All of these problems, which we must in principle be in a position
to resolve before confidently inferring the existence of large quantities
of dark matter, have unfortunately remained until today along with
numerous other problems, so that even though with time more evidence
for dark matter has accumulated, so have the doubts on this evidence
and its interpretation.

1.2 MASS TO LIGHT RATIOS

The most common way of investigating whether dark matter exists on
many scales has been, and still is, the use of the mass to light ratios of the
objects in question, such as globular clusters, spiral galaxy disks, spiral
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and elliptical galaxies, and clusters of galaxies. If life were considerably
more simple and convenient than it actually is, we would be able to say
for example that if the mass to light ratio of a spiral galaxy exceeded
a certain well-defined value then this would unambiguously imply the
existence of dark matter. This would be because our well-defined value
of M/L would be the value obtained by dividing the total mass of all
the galaxy’s constituents known to us (stars, gas, dust etc.) by the
total luminosity emitted from these constituents. Hence any M /L found
to exceed this value would reveal a contribution which added to the
mass but not the luminosity, i.e. a dark component. Unfortunately,
things aren’t quite so simple. "We find for example that mass to light
ratios of clusters are greater than those of smaller groups of galaxies,
apparently indicating that there is proportionally more dark matter in
larger clusters than in smaller ones. This is in fact the usual conclusion
reached by most researchers, and may well be true. However, a large
part of the discrepancy is due to stellar population differences between
the early type galaxies in clusters and the spirals in small groups (the
earlier type galaxies being, roughly speaking, less luminous than later
types). In their classic review on the sub ject of dark matter in galaxies,
Faber and Gallagher ’79 (see [67]), showed that the mass to light ratios
for the stellar population alone in spirals is substantially less than that in
ellipticals and lenticulars. They thus concluded that ‘the reality of excess
unseen mass in great clusters relative to small groups must therefore still
be considered uncertain at the present time.’

Mass to light ratios are measured in solar units, so that M/Lg =X
means X solar masses per solar luminosity, and the subscript B refers
to the fact that the luminosity is usually measured in the blue band.
When measuring mass to light ratios of distant objects like clusters,
the distance, and hence the Hubble constant, usually comes into the
calculation, so when comparing values given by different authors it is
worth noting that the value for H = 50 will be one half of the value that
would have been obtained if H = 100 had been used. We see then that
one of the main difficulties that is encountered in the calculation of M /L
ratios is the large uncertainty in the Hubble constant. We also note that
when different luminosity bands are used they can be approximately
intercompared by M/Ly ~ 0.7M/Lg and M /Ly ~ 0.5M/Ly. Another
problem is how to correct for absorption in our Galaxy, since M/L can
by this adjustment drop by a factor of two [197]. Moreover, normalising
to face—on galaxies will also lower the M/L value.

A virtue of the M/L analysis is that it enables us to compare results



found by many varied techniques. Bearing in mind all the inherent prob-
lems, we proceed with our criterion for the existence of dark matter to
be when obtained M/ L values are significantly higher than certain well-
defined ‘luminous’ values, which will depend on the system in question.
For the Galactic disk this will be around 7, for globular clusters 2-3, for
spiral galaxies 6, elliptical galaxies 8. These values, in the blue band,
and for H = 50, are from Faber and Gallagher ’79. They are somewhat
approximate, and should be understood as order of magnitude indicators
only.

1.3 DARK MATTER TODAY

As has already been mentioned, there is circumstantial evidence for dark
matter on nearly all astrophysical scales. Each one of these needs to be
treated separately. There isn’t room here for anything like a compre-
hensive account, and the interested reader is referred to the superb and
elegant review by Trimble '87 (see [197]) and the references contained
therein (all 777 of them), in particular the classic paper by Faber and
Gallagher *79 (see [67]).

We begin with the solar neighbourhood, whose dynamics have re-
cently been studied by J. Bahcall [18, 19]. He calculated a ratio of dark
to luminous matter of 0.5 to 1.5 by mass, with the former distributed
in the disk with scale height less than 0.7 kpc, as is the old disk popula-
tion (Bahcall and Soneira '80 — see [17]). The main problem with this
analysis however is a possible overestimation of the stellar brightnesses
involved and an underestimation of distances, which results in an over-
estimate of the local mass density. This is because, roughly speaking, if
a given tracer star at a given velocity travels further from the plane than
thought, there must correspondingly be less mass in the plane holding it
back than thought [197]. In fact, a more recent study extending to 2kpc
from the plane requires no dark matter in the disk, be it thick or thin
([197], p-428). The current situation, then, for the solar neighbourhood,
or more generally the Milky Way disk, is one which inspires a good deal
of reservation for a separate dark component.

Measuring rotation curves for our Galazy is an exceedingly difficult
task, due to the problems of accurate distance determination and the
conversion of heliocentric velocities to galactocentric ones, to the extent
that probably a more accurate way of measuring the Milky Way mass is
the use of probes such as globular clusters, field stars and dwarf galaxies
which orbit in the outer regions. The two main approaches to estimate



the mass contained interior to these ob jects is either from their veloc-
ities or from tidal interaction theory, the premise in the latter being
that the observed sizes of the clusters and dwarf galaxies represent tidal
truncation by the Milky Way, and thus reflect the amount of mass in
the Milky Way because this determines the strength of the tide. Hodge
and Michie [100] showed in 1969 that these objects are tidally influ-
enced, however Seitzer [183] has more recently made calculations which
suggest they are not tidally relaxed, so that the formula(e) used should
give misleading results. Much more will be said about this question at
a later stage, where it will prove a major consideration. Other problems
are the assumption of circular orbits for the halo ob jects (not justified,
and giving excess masses if incorrect), and similarly the assumption of a
locally isotropic velocity distribution. Moreover the old problem of the
correlations of ages and chemical compositions with dynamics makes
everything still more complicated [40]. On the other hand, since instead
of a sudden truncation in the outer regions of the satellite globular clus-
ters and dwarf galaxies, the stars should leak away gradually, masses
derived from the tidal method, according to a recent study [162], should
be scaled up by a factor of about 2.75. We note here in passing that
in the calculations, the masses assumed for the satellite dwarf galax-
les enter linearly, a very interesting consequence of which is that either
both the Milky Way and the dwarfs come out very massive or neither
do. This will also be a relevant idea later on. Returning to the question
of circular orbits, one argument recently put forward [167] for circular
orbits (or at least orbits of low elongation) of the outer halo objects
goes as follows: these objects are too weakly bound to have even sur-
vived one close approach to the Galactic centre where they would have
been destroyed by a combination of bulge or disk shocking or dynamical
friction, hence they must be on orbits which do not take them close to
the central regions. To summarise the current situation for our Galaxy:
from rotation curve analyses the mass within the solar radius is proba-
bly about half dark (and probably spheroidal in form), while the mass
exterior to the Sun’s orbit is some 2—10 times as much [197], although
a recent study by Tremaine [196] points to a dark halo of only mod-
erate extent (< 50kpc). The results however are very sensitive to the
unknown velocity distribution of the halo objects used.

As for other spiral galazies, the universal method is that of rotation
curve analysis, using either optical or 21cm observations. The fact that
these rotation curves do not display Keplerian fall-offs and that this
probably implies the existence of large quantities of gravitating mass



outside the optical regions was noticed by Freeman [75] in 1970. Sub-
sequent to the 1974 paper by Ostriker et.al. [161], the best accepted
theoretical interpretation of this result was a picture in which M/L
increased monotonically with R, consistent with massive dark halos.
However in 1983, Kalnajs [113] showed that at least the optical rotation
curves could be equally well fit by a disk alone which had constant mass
to light ratio. The HI data extends considerably further out than the
optical data, and once the rotation curve is seen to be still flat past
about three exponential scale lengths [78], the method of Kalnajs can
no longer account for the extra mass, which is thus identified as dark
matter. A good example is NGC 3198 (see [208]), traced out by HI
observations to 11 disk scale lengths, where the integral M/Lg is 24h
and the average halo/disk ratio at least 4. As for the shape of the dark
matter distribution in spiral galaxies, the evidence does seem to point
towards a spheroidal one, although this is by no means conclusive [197].
The main reasons for believing halos are spheroidal are provided by HI
flaring, warps, and the famous disk stability arguments first given by
Ostriker and Peebles [160]. See, however, the recent claim by Kalnajs
[114] that spheroidal halos are not necessary for disk stability. Finally it
must again be remembered that the possibility of non—circular motions
must be taken into account (although in this case there is evidence for
non—circular velocity effects causing derivations of low rather than high
masses [35]). In summary, then, there seems to be very strong evidence
for dark matter halos in spiral galaxies, particularly when the HI obser-
vations extend past three scale lengths. It can moreover be argued that
halo models give more natural fits to the data than the purely disk mod-
els of Kalnajs, even when it would in principle be possible to account
for the data without a halo [176].

Probably the best example to date of evidence for dark matter in
an elliptical galazy is that of M87. Two separate analyses of the X-
ray temperature profile of this galaxy [70, 191] obtain M(r) as linearly
increasing with r out to at least 300kpc, a result which gives a mass
within this radius of about 3 x 10"* My and mass to light ratio of around
750, whereas the luminous contribution for such a system should be of
the order of 8 or so. This result seems to imply that over 99% of the
mass in this galaxy is composed of dark matter. We have to be careful
with this interpretation however, because M87 is situated at the centre
of the Virgo cluster — hence the result could be a manifestation of the
potential well of the cluster as a whole, and not of the galaxy at the
centre of it. We point out though that the core radius found to give



the best fit to the observations by Stewart et.al. is around 25kpc, a
value characteristic of a galaxy and not a cluster. Most other galaxies
are not strong enough in X-rays for a sufficiently accurate temperature
determination to calculate the mass of the galaxy, which is given by [27]:

_ kgTr dlnp dInT
" dinr dlnr

Here p is the mean molecular weight and m, the proton mass. So for
other elliptical galaxies we must turn to the methods based on velocity
dispersions, namely the global Virial theorem, King models, or observa-
tions of test particles in circular. motion about the spheroidal component.
A review of these three methods is given by Faber and Gallagher [67],
and a more recent investigation [16] gives average mass to blue light
ratios for the wvisible regions of a large sample of normal ellipticals of
about 13, subject to a Hubble constant H ~ 95.

The next scale up is that of binary galazies, a field of study plagued
with problems for finding mass to light ratios. The main difficulty is that
of actually identifying binary galaxies, since there is no way of telling
whether apparent binaries are only brief encounters, optical doubles, or
in fact real binaries. Therefore the investigations are based on statistical
studies of the relative line of sight velocities, which itself has proved to
be a tremendous problem. The situation has been aptly summed up
by Binney and Tremaine [27], in that ‘the mass to light ratio of binary
galaxies is probably large, but not so large as the ratio of the mass of
papers on this subject to the light they have shed on it.’ See also Sharp
'85 [186] for reasons to be cautious with calculations of binary galaxy
masses. One of the more meaningful studies was done by White et.al.
[211], who found no correlation of the line of sight velocity differences
with the projected separations, concluding that point mass models for
binary galaxies do not work. This is regarded as evidence for dark halos
that extend well beyond the optical boundaries. There are, however,
serious doubts on the stability of such configurations, in the sense that
the halos could be truncated by tidal forces, and their survival against
dynamical friction has to be questioned (failing which the binaries could
merge within an orbit or two). Moreover, the models to date which seem
to approach consistency with the data seem to require roughly isotropic
velocity ellipsoids. This raises the question of how these galaxies ever
acquired their orbital angular momentum [27]. For isotropic orbits the
bulk of the most recent data for binary galaxies gives mass to light ratios
of 30 & 10 [197], which would more than double for circular orbits, but
decrease for radial ones.

M(r)

= 1
Gum, (1-1)



The Local Group (dynamically dominated by the Milky Way and An-
dromeda M31) and other small groups are subject to the same problems
as binaries — the Local Group may not for example even be bound. A
typical M/L ratio found for small groups is about 170h [197].

Larger clusters are modelled in much the same way as individual
elliptical galaxies, that is by the use of the Virial theorem, or by King
models. Once corrected for absorption (in our Galaxy), normalised to
face—on values and calculated with Hy = 50, Virgo, Coma, Perseus and
other rich clusters have resultant Virial M/L’s of 100 or more, whereas
other methods tend to yield slightly larger values (see [197] for refer-
ences). Uncertainties due to the average luminosity functions used could
change M/L by factors of 2—4. The usual problem with the Virial anal-
ysis in general also applies here — if the outer parts of clusters are
not relaxed, then the masses thus derived could well be too large by
factors of 3—5 [43, 153]. It is finally worth noting that contamination
by foreground and background objects will push up the measured ve-
locity dispersion to increase M/L (see e.g. [72]), an effect that could
also be caused by the existence of substructures within the cluster. The
X-ray emission method used for M87, when applied to clusters, gives
approximately M/L = 200h [46, 71, 201]. In passing we note that grav-
itational lensing calculations have yielded M/L’s of 1033, for the cluster
that lenses the QSO 08574561 [84, 171], however the method, which has
also been applied to single galaxy lenses, is at this early stage poorly
developed [34, 151], and no more will be said about it here.

Once we have moved up to the scale of superclusters, the results are
usually given in terms of the cosmological parameter Q. A measured
value of (M/L)h will contribute Q' = (M/L)h/1000h towards closure
of the Universe. We note here that the obtained  is conveniently
independent of the Hubble constant. On the assumption that all super-
clusters have the same M/L, measurements of ‘Virgo—centric infall’ (i.e.
the phenomenon of our recession from Virgo being less than it would
be in an unperturbed Hubble flow) give @ = 0.2 4 0.1, as do measure-
ments of other superclusters [197]. This would at first sight seem like
pretty strong evidence for ruling out the commonly favoured ) = 1, a
question which will be discussed shortly. The ‘Cosmic Virial Theorem’
(i-e. the use of the correlation function [164]) yields on average about
the same value [56, 165]. However a recent study [45] casts considerable
doubt upon the validity of the correlation function’s basic property of
fundamental scale lengths, at least in the CfA slice of the Universe.

On even larger scales, Lahav [125] has found = 0.3 from galax-



les at an average distance of 50h~'Mpc, while two recent studies of
IRAS galaxies [144, 217] have yielded Q = 0.5 and 0.85 + 0.15 respec-
tively. These uncertain measurements need confirmation, and more of
the IRAS galaxies need measured distances, but it is not impossible that
the closure density, or something extremely close to it, has already been
measured. :

In summary, a belief in an = 1 Universe requires a belief in sub-
stantial amounts of dark matter (see section 1.4), whereas it could be
consistent for an . = 0.1—0.2 Universe to contain essentially no dark
matter. Some of the alternative explanations to the combination of ob-
servations and calculations, which avoid dark matter, are given below
for the various scales involved (from Trimble ’87 [197]):

Solar neighbourhood Tracer stars brighter than assumed.

Rotation curves of spirals Quter gas in non circular and probably
impermanent orbits owing to effects of recent arrival, companions
etc; luminosity at large radii underestimated because sky back-
ground brightness overestimated.

Velocities of galaxy satellites Outer high-speed objects not in per-
manent bound orbits.

X-ray emission from ellipticals Gas temperature distribution de-
clines steeply towards galactic centres.

Velocity dispersion calculations Preponderance of circular orbits
at large radii.

Binary galaxies Preponderance of radial orbits or isotropic distribu-
tion, or spurious pairs.

Small groups Many unbound, or bound only as parts of larger struc-
tures.

Rich clusters Not yet relaxed; interacting subsystems; X-ray gas
polytropic rather than isothermal; dynamics dominated by cen-
tral massive core.

1.4 DARK MATTER CANDIDATES

The individual constituents which make up the dark matter can either be
baryonic or non-baryonic. It is necessary, before discussing the various
possibilities, however, to discuss the value of the density parameter ().
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It was pointed out by Dicke and Peebles '79 [60] that if © is within
a factor ten of one now (as we in fact measure), then it must have
fallen within about one part in 10 of unity during the nucleosynthesis
epoque (T ~ (0.1—10)MeV) [224], and one part in 10 at the time of
the GUT phase transition (T ~(107°—10'5)GeV) [185]. This is strongly
suggestive of a value of exactly unity for Q. A more popular reason for
believing {2 = 1 is provided by inflation [88], which does not necessar-
ily require a value of one exactly, although it is generally believed that
it will force Q today so close to 1 that the deviation will not be mea-
surable [182]. We note however a recent study by Ellis 'S8 [64], which
shows that inflation is not inconsistent with today having any value,
low or high. Not without its problems [28], inflation is the best the-
ory to date of the early Universe — one of its main attractions is its
ability to explain the correlation in density and temperature between
mutually distant regions of the Universe without violating the principle
of causality. Another motivation for a critical density Universe is the
large degree of homogeneity we observe in the microwave background,
since otherwise it is hard to form galaxies while retaining such a regular
background [202]. An argument based on the Copernican Principle and
leading to the same conclusion can be found in Binney and Tremaine
‘87 ([27], p.627). Now if 2 is indeed one, the obvious question is why
have observations only yielded values around 0.2 ? The most immediate
answer is that galaxy formation is biased: galaxies form preferentially
in high density regions [59] so that luminous matter does not trace the
overall mass distribution of the Universe. This will shortly be seen to
be an important idea in connection with models of galaxy formation.
It has to be borne in mind, however, despite these arguments which
are attractive to many, that, as put by Turner ’85 [200]: ‘theoretical
prejudice aside, there is no convincing evidence (or even unconvincing
evidence for that matter) that  is any larger than about 0.2 + 0.1°.

“Pertinent to the Q problem, we now turn to nucleosynthesis theory,
which provides both lower and upper bounds on the baryonic contribu-
tion to 2. The standard model [29, 57] gives limits:

0.015 < Qph? < 0.15

from which we conclude that all the matter in clusters and superclus-
ters could consist entirely of baryonic matter. The above upper limit
can be raised towards unity by, other than lowering H, to 25, allowing
non-zero lepton number [204], or inhomogeneities in density or temper-
ature [175], such that @ = 1 in baryons is not inconceivable, and has
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perhaps been ruled out rather too readily in the past. At the other
end of the spectrum, of course, for high Hubble constant and modulo
the standard model, an upper limit for Qp of around 0.15 could well
require non-baryonic matter even in very large proportions in clusters
and superclusters, and =ven for a low overall value of Q.

It is now time to list the various possibilities for the individual com-
ponents or particles that make up the dark matter, starting with the
baryonic kind. We have to consider brown dwarfs, white dwarfs, black
holes (small primordial ones, stellar mass ones, and very massive ones),
gravitational radiation, and gas.

A closure density of intergalactic cold or warm gas would produce
detectable emission and/or absorption lines which are not detected [163].
For very hot gas to close the Universe would require more than 10% of
all available nuclear energy in the Universe to heat the gas, which is
quite a problem [85] — moreover the spectrum cannot be fit by thermal
radiation [80].

Not much can yet be said about gravitational radiation, since it could
close the Universe without us having detected it (11, 172]. Perhaps a
factor contributing to its attractiveness is that it cannot be clustered,
in which case the galaxies wouldn’t trace the overall mass distribution

As for primordial black holes, again little can be said, although they
could close the Universe [42, 152], and their clustering properties are
also unknown.

Brown dwarfs, substellar objects whose only energy source is con-
traction, could for example account for the Qort limit without having
yet been detected. It remains an open question whether they exist in
substantial quantities, and if so just how dynamically important they
would be [197].

White dwarfs, the remnants of (0.5—8)+£2M, stars could also exist
in our Galaxy for example without having been detected, and once again
are very poorly constrained both by theory and observation [197].

Black holes of solar masses in our Galaxy can more or less be ruled
out since they would accrete interstellar gas to produce X-rays which
are not seen, and more heavy elements would have been detected in the
gas [197].

Finally we consider massive black holes. Their existence in the halo
could provide the explanation for the long known increase of stellar
velocity dispersion with age in the disk; this would favour a 10'2 M,
halo made up of 10°Mg black holes [108, 115, 124].

Non-baryonic dark matter may well be needed in conjunction with
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baryonic contributions, since if dark matter were just one thing it would
be somewhat difficult to see how it could be sufficiently ‘cold’ to settle
down into the Galactic disk and simultaneously ‘hot’ enough to remain
less clustered than superclusters over a Hubble time or so.

There are a tremendously large number of (mostly hypothetical only)
non-baryonic candidates, obtained mainly from various different theo-
ries of particle physics. For an exquisite account of this subject the
reader is referred to the review by Turner ’85 [200]. A useful classifica-
tion of these candidates is into either cold dark matter, warm dark mat-
ter or hot dark matter. Defined properly, hot dark matter is relativistic
when galaxies form, which wipes out small perturbations and promotes
large scale structure. Cold dark matter is non-relativistic when galax-
les form, and this promotes small scale structure. Usually this can be
parametrised by the individual particle mass, where the heavier the par-
ticle the colder it is. This is not however always the case. For example,
a very light candidate particle, the axion, at around 107%eV, is cold.

Before going through a list of some of the more popular candidates,
it should be noted that if the Universe is indeed closed by some form of
non-baryonic matter this will present us with another fine-tuning prob-
lem, where the densities of nucleons and non-baryons are approximately
the same (to within one order of magnitude or so), so that a particular
value of the energy scale of a symmetry breaking (or some other process)
is required [200]. Bearing this problem in mind we proceed with a very
brief and non-exhaustive account of these ‘objects’, knowing all along
that the vast majority of them, if not all, are incorrect as solutions of
the ) problem and/or do not exist.

One of the oldest such candidates is the neutrino, proposed by Cowsik
and M.Clelland ’72 [48], who concluded that a rest mass of 10—100eV
for the neutrino could result in an = 1 Universe. Although neu-
trinos are known to exist (the only such candidate for which this can
be said), it is still unknown whether they have non-zero rest masses
or not. If they are massless, they will not make a significant contri-
bution to 2, whereas this latter parameter is a direct function of the
rest mass if it is non-zero, so that only certain ranges of neutrino mass
are allowed, as we will see later. One of the most popular tests of the
respective hot and cold dark matter scenarios is the use of N-body sim-
ulations of structure formation, the results of which have perhaps been
credited with too much importance in the past, since implicit in these
simulations are separate processes such as the initial perturbation spec-
tra, biasing mechanisms, post-formation clustering and relaxation, plus
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the effects of dust exploding stars or active nuclei (not to mention the
standard problems with N-body simulations of error domination and
non-physical softening parameters). Modulo this approach, cold dark
matter has fared rather better than its hot opponents, to the extent that
by 1985, during the IAU Symposium entitled ‘Dark Matter In The Uni-
verse’ [119], hot dark matter in general and neutrinos in particular, on
the strength of a simulation by White, had for all intents and purposes
been ruled out. The other main constraint on the neutrino hypothesis,
which forms the crux of chapter 2, was also pointing in this direction.
The worst problem the neutrinos had with structure formation was that
small scale structure such as galaxies was made too late [212] — the so
called ‘timing problem’. This problem has recently been shown to be
resolvable [32], subject to a mechanism of galaxy formation called ‘an-
tibiasing’, which requires that galaxies form preferentially in flat ‘sheets’
rather than ‘filaments’, possibly finding themselves less clustered than
the neutrinos. The neutrino scenario may well see a rise in popularity
over the next few years (see ‘popularity graph’ on p. vi )

We note from this graph that at the time of lowest popularity for
neutrinos, cold dark matter was at its highest, with White’s simula-
tions proving very persuasive. At the same time, a theoretical model
of galaxy formation with biased cold dark matter was constructed by
Dekel and Silk [58], which along with its bearing on dwarf galaxies (see
chapter 4) seemed somewhat successful. However, the cold dark matter
scenario has been dealt a serious blow (from past experience, we will not
say ‘fatal’) by the recognition of its inability to account for large scale
structure in general and streaming motions in particular (209, 214]. The
neutrino picture on the other hand does seem equipped to explain these
motions [32, 50]. We briefly discuss two more candidates, while most of
the rest are tabulated on page v.

First, there is a semi-baryonic form of matter coined ‘quark nuggets’,
which was proposed in 1984 by Witten [215]. These are large globs of
quark matter, which are formed during the quark/hadron phase tran-
sition if we have very large baryon number and if quark matter rather
than nuclear matter is the main stable configuration (these are suppo-
sitions which may or may not be correct). These nuggets would not
participate in primordial nucleosynthesis and would contribute about
0.9 to 2. Witten himself concluded in the same paper that this strange
matter candidate is indeed not a very likely one, as have the authors
of several more recent studies [9, 12]. A compelling feature of quark
nuggets however is that they seem to be the only non-baryonic can-
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didate which is not subject to the aforementioned fine-tuning problem
associated with symmetry breaking.

Secondly, we have strings, either in ‘super’ or ‘cosmic’ variety. A
nice feature of string theories is that they automatically incorporate
gravity, as do theories of supersymmetry (the point like, or field the-
ory, limit of a superstring theory is a supersymmetric or supergravity
grand unified theory—SUSY/SUGR GUT). This offers the hope of uni-
fying gravity with the other forces [200]. Observationally, not much
can yet be said about strings, and theoretically, relevant constraints do
not exist. Recently, however, a model of galaxy formation with cosmic
strings and massive neutrinos'in conjunction has been proposed [23].
This is an example of what Trimble [197] coins rather skeptically as
a scenario with ‘two tooth fairies’, and the point that thirty—odd sin-
gle candidates is already enough without considering all the possible
pairs among them is well taken. This scenario is fundamentally differ-
ent to hot dark matter ones without cosmic strings, as the effect of the
strings is to develop the cosmological structure in a hierarchical rather
than fragmentary fashion. The theory is at the very least an improve-
ment on previous attempts to combine cosmic strings with cold dark
matter [22, 146].

Finally, we note that instead of playing with particle physics we
can do the same with either Newtonian or Einsteinian physics. Firstly,
modifications to Newtonian physics by for example allowing the gravi-
tational ‘constant’ G to vary with separation or acceleration [148] could
account for flat rotation curves and large velocity dispersions without
the existence of dark matter. But apart from a general reluctance to
forsake Newtonian gravity in favour of a less elegant theory, it is also
possible that dark matter models do match the observations better [94].
Secondly, the old phantom possibly-non—zero cosmological constant A,
which for a flat Universe would have to be presently of order +10~35s~2
[197], gives us a fine-tuning problem if inflation is correct. This is in
essence because during the inflationary epoque A is briefly enormous
[31]. The likelihood of A being non-zero is a matter of taste, with most
people preferring dark matter as a more compelling option.

As a final word on dark matter in general, substantial amounts of it
on whatever scale may or may not exist. Some of the evidence is very
persuasive to most, although there is still room for a good deal of doubt
(see, for example [26]). Dark matter is at the very least an attractive
(to some) single solution to a large number of problems, and a decent
working hypothesis worthy of further investigation.
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Chapter 2

PHASE SPACE
CONSTRAINTS AND
DWARF GALAXIES

2.1 THE TREMAINE GUNN CONSTRAINT

The reader will have noticed that there was no mention of dwarf galaxies
in the brief introductory survey. The discussion of these ob jects will be
further delayed until towards the end of this chapter, which lays the
foundation for the main discussion of this thesis. It will be seen that it
is the extreme nature of dwarf galaxies which makes them so relevant
to the question of dark matter.

As we saw in the previous chapter, very little is known regarding
what the dark matter might actually be, because we have very little
either from observation or theory to guide us in favour of or against any
particular candidate. Theoretical models and N-body simulations of
galaxy formation, which discriminate between hot, warm and cold dark
matter, have constituted one of the few ways of obtaining at least a hint
or indication as to which kind of dark matter might be more likely than
the others. As already noted, however, N-body simulations are not to
be taken simply at face value, as other, separate, effects enter into these
simulations, which are very difficult to separate away again, because
they depend on certain model assumptions. More useful perhaps would
be a rather more model-free constraint of some kind — in fact such a
constraint exists. Nine years ago, Tremaine and Gunn [195], produced
a result, based mainly on kinematics, which provided a limit on the
mass that an individual hot, neutral, light lepton such as a neutrino
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could have if it were to settle down into configurations such as galactic
halos. These authors actually went as far in their original paper as
to conclude that the dark matter in isolated galaxies, binary galaxies,
groups and clusters could not be made of any stable, neutral lepton
less massive than 1MeV. This ruled out hot, light neutrinos, one of the
main dark matter candidates to provide an 2 = 1 Universe. However,
such a conclusion has proved to have been somewhat too hasty, and the
application of this mass constraint today will be seen to be a far less
unambiguous proposition, to the extent that the possibility of ruling out
light neutrinos on these grounds remains an open question.

Before entering into the details of the present day dilemma, in which
the work of Tremaine and Gunn remains in essence unaltered, it is
instructive to examine the original derivation. The calculation was per-
formed explicitly for neutrinos, although in fact the result applies to
any hypothetical non-interacting Maxwell-Boltzmann particle, but not
bosons because of the nature of the statistics involved. The essence of
the argument is to find an expression for the maximum coarse—grained
phase space density Dy of the neutrinos soon after they decoupled in
the early Universe and before they began to cluster; an expression for
the value of this quantity D; once they have settled into a galactic halo
(if they settle into galactic halos, that is), and then to simply require
that Dy > Dj, since this quantity must decrease with time. The ex-
pression thus obtained will yield, on rearrangement, a lower limit to the
mass of the neutrino, which will depend on the assumptions made about
the relative masses of the different neutrino types, their masses being
extremely poorly constrained by particle physics.

The parameter Dy is simply 2¢,h~3, since the momentum distribu-
tion while the neutrinos are relativistic and still in thermal equilibrium
is, according to the standard model of the early Universe [210]:

dp
1 + exp(p/kT,(z))

n, (p)dp = (%) (2.1)
The same equation applies to all types of neutrino as well as their
anti-particles. Here g, is the number of allowed helicity states, which
has been left in because not enough is known about processes in the
very early Universe which determine g,, which could either be 1 or 2.
We introduce the notation v, for electron-neutrinos and v, for muon-
neutrinos, to be used later. Here however, Tremaine and Gunn made
the simplifying assumption that both types were equal in mass and he-
licity, so that for the moment the notation v will do. Since two types of
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neutrino were then known, this made a four—fold contribution to (2.1),
whose maximum value gives Dj.

In obtaining D, rather more assumptions were made. Arbitrarily
taking the central regions of the bound systems formed by the neutri-
nos to resemble isothermal gas spheres implied a Maxwellian velocity
distribution [27]:

—

. podp
n,(p)dp = W exp(—v?/20?) (2.2)

from which could be read off the value:
Dy = pom*(2me?)3/? (2.3)

where pg is the central density and o the one-dimensional velocity dis-
persion.

Eliminating po in favour of the core radius (see Appendix C for a
discussion of core radii and their various definitions), defined by:

902
2
= 2.4
e = InGon (2.4)
and putting Dy > D, one obtains:
9h3
4
2.
M > 4(2m)5/2g,Gor? (2:5)
which, when written in more astronomical terms becomes:
. 100kms=\Y* (1kpc)'/?
m, > (101eV) (———-’33——) pc) gt (2.6)
o Te

This is the upper limit on the neutrino mass as found by Tremaine and
Gunn.

Ever since it was shown in 1967 by Lynden-Bell [132], it has been
well known that for collisionless systems the maximum coarse—grained
distribution function (that is, averaged over some finite region of space)
will decrease with time, as a consequence of phase mixing or violent
relaxation which cause the fluid in phase space to become “frothy’, al-
lowing low density or empty regions to enter. This provides a simple
Justification for the statement Dy > Dy, used to derive (2.6).

In passing it is interesting to note that a remarkably similar con-
straint would have been derived from the Pauli exclusion principle,
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which would have differed from (2.5) merely by a factor of 2'/4, making
it less severe. The former states that the occupancy f = (1 + e"/kT)‘1
must be less than unity, whereas the argument used by Tremaine and
Gunn forces f to be less than a half. This important point was noted by
these authors in their original paper.

To obtain a numerical value from (2.6), they then considered a typ-
ical galactic halo, with the values r. = 20kpc and ¢ ~ 150km/s. This
yielded:

m, > (20eV)g 1/ (2.7)

What does this lower limit tell us? The very least we can say is that
if neutrinos are to be a viable candidate for dark matter in halos, then
this lower limit must for consistency be lower than any upper limits that
exist. There are three ways of obtaining the latter. Firstly, we obtain
an upper limit, for the electron neutrino only, of around 30eV from
the recent supernova 1987A [181]. This is the best model-independent
limit we can probably obtain from this event, although lower, model—
dependent, values have in the past been claimed. Secondly, laboratory
experiments provide upper limits on the neutrino mass [48], and for the
electron neutrino the latest value is around 20eV [122]. This renders the
supernova—based constraint irrelevant, except for the curiosity, noted by
Schramm [181], that the occurence of 1987A in the Large Magellanic
Cloud causes the value to come out so closely to the laboratory limit.
Bearing these values in mind, we will prefer to concentrate on the upper
limits provided by cosmology, which gives a bound on the sum of the
various neutrino masses. The standard theory of the early Universe
[210] leads to the following results. ..

At the point when the Universe has cooled to about 1—2MeV, most
of the muons and pions have annihilated away. During cooling, the
average neutrino collision rate decreases, due to the decrease in the weak
interaction cross-section and the drop in number density. At around this
temperature the time between collisions exceeds the expansion time, so
that the neutrinos drop out of thermal equilibrium. Since both electron
and muon neutrinos are known to be less massive than 1MeV they are
still relativistic when they decouple. During the subsequent cooling
and expansion the neutrinos are redshifted to lower energies according
to p o< 1 + 2, and form a uniform background. Hence equation (2.1)
continues to hold, as T, o< 1 + z as well, so that the neutrinos behave
as if they were still in thermal equilibrium even though they are no
longer interacting (except by gravity). The temperature of the photons
redshifts in the same fashion, preserving T,(z) = T,(z) which previously
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held when the neutrinos were still in equilibrium with the photons. An
important property of the standard model of the thermal history of the
early Universe, easily derivable from the approximation that all chemical
potentials are zero (enabling energy densities and pressures of various
particles to be functions of temperature only) is that the entropy per
unit volume, s, is constant. After e*e~ annihilation virtually only the
photons are left in thermal equilibrium. Equating the expressions for s
both before and after this event, one obtains:

T1y/Tay = (4/11)/3

where 77, is the photon temperature before e*e™ annihilation and T,
the value afterwards. This phenomenon does not affect the neutrino
temperature T, since the neutrinos had already decoupled. Therefore
one obtains:

T,(z) = (11/4)°T,(2)

which holds from the end of e*e™ annihilation up until the present.
Now, since the present value T,(0) is known to be 2.7K we obtain:

T,(0) = (4/11)/°*T,(0) = 1.9K

This calculation was originally done for zero-mass neutrinos, but since
electron and muon neutrinos were relativistic straight after dropping out
of thermal equilibrium, the calculation remains unchanged. Using this
result it is easy to show that the relation between the number densities
of neutrinos and photons is simply:

Ny, = 3/1177“7914

where the ‘i’ labels each species of neutrino. Therefore the present mass
density would be:

pv = 3/11n,(2g.m, )

recalling the assumption that g,, = g,, and m,, = m,,. The last ex-
pression follows because the neutrinos today should be non-relativistic.
The number density of photons is found from the black-body radiation
formula:

1 oo p’dp
T R /o exp(p/kT,) — 1

which yields
ny = 16m((3) (kT (0)/h)°

where ((3) = 1.202 is the Riemann zeta function.
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The critical density of the Universe is p. = 3H?/87@, which implies
that the contribution to £ from neutrinos is predicted to be:

50\ % 2m,g,

Q, :=p, = 0.04 (——)

v Pl e H) 1ev

From this equation there are various ways of obtaining upper limits
to m,. Firstly, and most conservatively, we can simply put Q, < 1,

certainly in accordance with observations. This yields:

(2.8)

12.5¢V | H =50

50eV . H =100 (2.9)

m,g, < (12.5eV)(H/50)* = {
This is consistent with (2.7) for H > 64.
Secondly, the approach adopted by Tremaine and Gunn was to con-
sider a quantity Q*, the ratio of the density distributed like the galax-
ies to p.. On the assumption that the neutrinos participate in the
galaxy clustering, (‘justified’ by the order of magnitude argument v, ~
kpT,(0)/m < 50km/s for m > 1eV, a velocity smaller than the typical
velocity dispersion within galaxies or clusters), we can put 2, < Q.
This latter quantity was estimated, subject to considerable errors, to be
around 0.05 [83]. This gave a limit 20 times more stringent than that
obtained from (, < 1:

{ 0.625¢V |, H = 50
myg, >

2.5eV , H =100 (2.10)

So if we were to believe that 2, < 0.05, the upper and lower limits
were in contradiction, irrespective of the values of the two unknowns H
and g,, where 50 < H < 100 Km/s/Mpc and 1 < g, < 2. Moreover,
relaxing the assumptions m,, = m,, and g,, = 9v,, and taking instead
without loss of generality m,, > m,, merely doubles the right hand side
of (2.10) while increasing (2.7) by 2!/4. Hence these particles were ruled
out as being the dark material in galactic halos, and by eztension in
clusters of galaxies where the dark matter is believed to be in the form
of halos which have been tidally stripped from their galaxies to form a
more uniform background.

As mentioned earlier, a standard working assumption in the cosmo-
logical theory is that of zero muon- and electron— lepton number, which
amounts to the vanishing of the corresponding chemical potentials. Al-
lowing for the more general case where this is not true, conservation of
lepton number (both electron and muon type) yields u « 1/R, unchang-
ing the form of the distribution given by (2.1), with the addition of u,
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and the contradiction obtained above becomes worse. This is because
the maximum phase space density of neutrinos plus antineutrinos is in-
dependent of y, so that the lower limit is unchanged, whereas u, # 0
increases their spatial density, requiring a lower mass and hence more
restrictive upper limit.

The problem would appear to be solved: light neutrinos cannot form
the dark matter in galaxies or clusters of galaxies, and (if one is attracted
by the most economical theory, that the dark matter is the same on all
scales) the same conclusion can be applied to the cosmological ‘missing
mass’. A

However, we need to update the values of various quantities that
were used in the original paper, consider possible generalisations which
need weaker assumptions, and finally consider a case where this mass
constraint would in effect be rendered irrelevant.

Firstly, we have to account for the fact that a third type of neutrino
is now known to exist, the tau neutrino v.. Before supposing that there
might be some unlimited number of neutrino species in existence but not
yet discovered, we note the result that the abundance of *He constrains
the number of light (m < 1MeV) neutral leptons to n < 3—4 [189].
As regards the (unknown) value of g,, it is noted that there are two
possibilities for massive neutrinos: Majorana neutrinos (v = 7) which
have g, = 1; and Dirac neutrinos (v # 7) for which we put g, ~ 1 (due to
the early decoupling of the right—handed neutrinos [185]). It is suggested
[180], that we have the Majorana type, in which case 9y; = 1 exactly
for ¢ = 1,2,3. (We note that Majorana right— handed neutrinos may or
may not exist, whereas Dirac right-handed neutrinos must exist [224].
Combined with the fact that we only observe left~handed neutrinos, this
is the justification for supposing that it is more likely we have Majorana
neutrinos). Next, a more general version of (2.6), which allows for the
number of neutrino species n = 1—4 explicitly is:

100k Y4 kpe\ Y
m,,>(120eV)(—09—aﬁ/—3-) (rpc) (ng,)V/* (2.11)

which reduces to (2.6) for n = 2. More importantly, however, is how
seriously can we take the cosmological upper bound Q, < Q* ~ 0.05?
The observational value for Q* is not so much the question as is the
line of argument leading to this inequality, which uses the rough rela-
tion v, ~ kT,(0)/m, ~ 50/m, km/s. Since the velocity dispersion in
galactic halos is of the order of 100—200km/s, a mass m, > 0.5eV will
give a lower random velocity today for the neutrinos, suggesting that
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they could settle down into galaxies. However, the process of galaxy
formation is far more complicated than that, and until we know a lot
more about structure formation in general we do not know a priori the
predominant clustering scale of the neutrinos. Therefore a substantial
fraction of Q, could still remain clustered on scales larger than a few
hundred kiloparsecs characteristic of large galaxies. This, as noted by
Schramm and Steigman [180], provides a natural explanation for the
observation that there is proportionally more dark matter on larger
scales. We abandon the Q* approach, considering it much safer and
less contrived, certainly to put 9, < 1, or, failing inflation (the classi-
cal interpretation thereof) but still believing observations on the largest
scales, to put £, < 0.2. An interesting point is that we can also obtain
Qohd <1 from the ages of globular clusters [180], which yields:

3
> m,, < 100eV

i=1

for Majorana neutrinos. However this will be ignored for it contains
further uncertainties from stellar evolution theory. Hence we prefer the
upper limits given most conservatively by Q, < 1:

3
25eV . H =50
;m"* < { 100eV , H = 100 (212)

for Majorana particles. Thus we no longer have a contradiction with the
Tremaine~Gunn constraint, which for one species of Majorana particle
applied to a typical galaxy is m, > 24eV.

Looking at the mathematical form of our phase space constraint
(2.5) we note that it would be strengthened for smaller core radius r,
and smaller velocity dispersion ¢. We are therefore led to consider
systems which have much smaller characteristics, with the possibility
of obtaining a lower bound which would be in conflict with equation
(2.12). Hence the need to study these smaller systems, namely the
dwarf galaxies, because if we are able to show in them the existence of
substantial amounts of dark matter then we can apply equation (2.5)
to them, with the possibility of being able to conclude something very
fundamental about what that dark matter may not be. Before going on
to examine these galaxies though, it is worth taking a slightly closer look
at equation (2.5), which is dependent on the assumption that galactic
halos are isothermal.
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2.2 MORE GENERAL CONSTRAINTS
ON THE NEUTRINO MASS

In the derivation of equation (2.5) we recall that the neutrino config-
uration around galaxies was taken to be that of an isothermal sphere.
A justification for this could be the observational result obtained by
Ostriker et.al. [161] that M(r) o r, appropriate for isothermal spheres.
However this result has only been shown to apply in the outer regions,
whereas it is the inner regions we are interested in. Lynden-Bell [132]
showed that if the violent relaxation subsequent to galaxy formation is
complete then the stellar distribution function will tend asymptotically
to an isothermal. However, it is simply not known to what extent this
relaxation is attained. So such an assumption is in fact a rather unjus-
tified one. A method which could avoid this problem would lead to a
far more general and reliable lower mass limit for neutrinos. One might
suppose that the results are not very sensitive to the isothermality as-
sumption, in view of the fact that Ruffini and Stella ’83 [174] obtained
a minimum m, which differed by only 5% or so by using a King model
for the neutrinos. But this result is not very surprising in view of the
fact that King models were devised so as to resemble the isothermal
sphere at small radii, and that the family of King models forms a one—
parameter sequence parametrised by, for example, the concentration c
which is the logarithm of the ratio of two characteristic radii, and the
isothermal sphere is approached asymptotically as ¢ — co.

As pointed out by Madsen and Epstein '84 [136], nothing is known
about the dark halo configuration, so a true mass limit can only be
obtained from a model-independent analysis which is not subject to
the uncertainties obtained by assuming a specific configuration for the
neutrinos in halos. Two such approaches were given by these authors.
Firstly, the maximally compact configuration M, nq.(r; m,, M, s0t), where
M, ot is the total neutrino mass, was put to satisfy M, maa(7) > Muger(r),
where My,q1(7) is the observational distribution of the dark matter for a
galaxy. Their second method was to simply use the constraint that the
halo neutrino pressure must exceed the value given by the limiting case
of ‘half-degeneracy’, occupation number f = 0.5 for the relic neutri-
nos, the value used in the Tremaine-Gunn analysis, which is consistent
with the requirement of a non-increasing coarse—grained distribution
function.

For g, = 1 and only one non—negligible neutrino mass, the maxi-
mally compact configurations were modelled by placing the neutrinos
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with f = 0.5 at the centre, with the others in outer layers in order
of decreasing occupation number. This gives f(r) as a monotonically
decreasing function of r. A complicated differential equation for f is ob-
tained, the solution of which (obtained numerically) will correspond to
maximally compact neutrino galaxies which had the initial phase space
distribution of equation (2.1). From this is obtained, for a pure neutrino
galaxy, the relation:

10kpc) */® (10121\1@)1/8
m,, = 32.9 — 9] v 2.13
( Rutl/z ) -ZVIu,tot ( )

where R, 1/, is the half-mass radius. It is found, incorporating the effect
of the baryonic matter of the galaxy, that for most cases of astrophysical
interest this has only a modest effect, as do preselection effects where
the neutrinos with the highest phase space densities may preferentially
form galaxies. A lower bound on m,, is then found once an upper bound
for M, 1ot is known. The latter can be found from considerations of in-
teractions between galaxies (e.g. as in the local group), or by using mass
to light ratios. Our main problem with this entire approach, however,
is that in order to apply it we need to be able to determine the dark
matter distribution.

The second method, one not requiring numerical solutions to equa-
tions, and with different observational demands, gives a possibly stronger
lower bound on m,, and is based on pressure considerations. There are
two requirements:

1. The existence of some radius ro, beyond which M (r) increases

more slowly than r?

2. Beyond this radius the mass density of baryons is negligible.

In mathematical language:

M(r) < r"M(;") (2.14)
To
for 7 > ro and B < 2.
1 dM _ BM(ry) [ r\P-3
= Paark(r) = 472 dr S dmrrd (;) (2.15)

for r > rg, and equality at r = 7q.
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Integrating the equation of hydrostatic equilibrium,

Pufro) = /oo GM(r)

Ut} 7‘2

pu(r)dr

and using the inequalities (2.14, 2.15) then yields:

GM*(ro) [ B
P,(ro) < Py (2_ﬂ> (2.16)

An alternative expression for the pressure of these nonrelativistic neu-
trinos is:

4

87{' P‘mu:c("‘)
P,(r) = 3—];5/0 dpf(r)

where pnaq(r) is the maximum neutrino momentum at radius r. Since
the density p,(r) is given by:

(2.17)

2
m,

p'nma:(")

pulr) = 2m b f(r) [ dmptdp = (87m, [3K) f(r)pl () (218)

we have:

8r 8wh* [ 3 \5/3 p, (r)5/3
P.(r) = g -5 (5) By e

(7‘) 15h3mupmam(r)f(r) 15m§/3 871' (T)2/3 ( 9)
by eliminating pma.(r). But the occupancy f must be less than 0.5, so
we obtain from (2.19):

8mh? 3\%/3 pu(r)¥/3
P2 e (6) e oy (220)

Now putting 7 = 7 in (2.20) and using (2.15) and (2.16):

GM(ro)® (_ B\ 2%/°8mh? (38M(ro) 5/% (2.21)
8mrg 2—-08) 7 15m%/3 32mw2rd '
which on rearrangement yields:
1/4 2\ 3/8 3/
m, > (£ 2-/ ik (2.22)
27?2 10Grq M(rg)t/e

or, in more astronomical language:

10kpe\¥® (101200, \ V/®
m, > 13.58Y4(2 — 3)*/® (M) ( 0 G’) eV (2.23)

To AI(T() )
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Both equations (2.13) and (2.23) were applied by Madsen and Epstein
to the Virgo cluster galaxy M87. Using M, ;,; < 3 x 10'* M from mass
to light ratios consistent with the deduced Mari(r) if R, 1/2 < 230kpc
in equation (2.13) gave:

my(M8T) > 4.4eV - (2.24)

while the values ro ~ 20kpc, M(ro) < 7 x 10'?My, B ~ 1 and equation
(2.23) gave:
m,(M8T) > 8.2eV (2.25)

The pressure-based method is preferred for its mathematical conve-
nience. It gives a higher My min because the maximum compactness
configuration is not one that is actually very likely to be formed by
the neutrinos, it is a somewhat artificial extreme case, or so we suspect
[136]. Moreover, the requirement of knowing the dark matter distri-
bution M, 4o,k(7) is a difficult one to realise. It is interesting to com-
pare these values for M87 with that which would be obtained from the
Tremaine-Gunn constraint (2.11) with n = 1 = g,. Stewart et.al. '84
[191] find a probable core radius for M87 of 25kpc and core density
1.5 x 1072 Mgpc~2. Using the standard relation (2.4) gives velocity dis-
persion parameter ¢ = 240km/s. Using these values in (2.11) yields:

m, > 19.2¢V (2.26)

Hence we see clearly that the more general constraints derived by Mad-
sen and Epstein can lower the bounds on the neutrino mass by factors
as great as 3—4.

We finally remark that the m, limits given by (2.13) and (2.23)
are still not completely general, as an isotropic velocity distribution
was implicit in the derivations. In a subsequent paper [137], Madsen
and Epstein allowed for departures from isotropy via the parameter «,
where:

< v} >:<v423 >=(1-a)<v?>

The halo is assumed to be spherical and non-rotating so that:
<vg >=< vy >=< v, >=10

From Jeans’ hydrodynamical equations one obtains:

dP’r P GM,p,
Yy 9qiy = TP (2.27)

dr r 72
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where P]" := p, < v} > and M, is the neutrino plus baryon mass
within 7. For r > r., a radius characteristic of the extent of the stellar
component, a is assumed constant, and once again:

T ,3 r ﬁ"?’
M,(r) < 34 (Z) = ) < i (2
T AT
with equality at r = r,, but § < 2—« this time (this is necessary for non-
divergence on integration). Integrating the hydrodynamical equation
and using these inequalities, we obtain:

. GM*p*
Tr . < T 1%
Pr(r) < 22— a—[)r.

(2.28)

which reduces to (2.16) for isotropy a = 0, since p; = BM/(4mr?). The
analogue of (2.20) is then:

22/38mh? 3\%/3 5
prr o /3
v(r) 2 15mg/3(1 — )3 <87r) pur) (2:29)

which finally yields the mass limit:

13.58Y42 — a — B)%/® <10kpc)3/8 (1012M@

1/8
m, > (1 — a)1/4 ——‘]"—4,—;‘———) eV (230)

s
Conservatively taking r. >~ R,s for a sample of sixty spiral galaxies,
where the rotational velocities were constant (8 = 1) or slightly increas-
ing (# > 1), Madsen and Epstein found, for a = 0, lower limits on m,,
in the range (20—35)h'/2eV, while reasonable values of the anisotropy
parameter o < 0.4 gave limits which were weaker by an average 13%
or so. The values used for o were based on collapse simulations of hot
collisionless systems [143, 207], which suggest isotropy (a = 0) in the
central regions, and radial dispersion (« > 0) in the outer regions such
that o gradually increases to about 0.4 at the radius enclosing 80% of
the total mass.

A stronger limit would be obtained for less conservative estimates of
7. than Hys, and equation (2.30) is to be regarded as the most general,
model-independent route to m, i, we have, subject to our ability to
accurately determine the parameters 8,r. and M. We note that the in-
clusion of anisotropy lowers the mass limit still further, our most general
version being substantially weaker than the Tremaine-Gunn constraint.

We conclude this chapter from a non-standard perspective. The con-
ventional interpretation of flat or gently rising rotation curves is that
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galaxies possess dark, spheroidal halos, and it is upon this assumption
that we hope to use our phase space constraints to make a strong state-
ment about neutrino masses. But perhaps such is not the case, and the
neutrinos are instead distributed uniformly throughout clusters. This is
a possibility we have to consider, since the core radius of equation (2.6)
would then be so large as to render My, min SO small that there would be
no hope of ruling out massive neutrinos as the dark matter (if this is
what we are hoping for, that is).

2.3 A NON~—HALO NEUTRINO MODEL

Quite recently, Cowsik, one of the first people to speculate that neu-
trinos may close the Universe, and Ghosh [50] proposed a scenario, the
essence of which is that neutrinos are distributed on the scale of a few
Mpc, that is of rich clusters. A consequence of this is that the galax-
ies and intergalactic baryonic matter are embedded in a cluster—sized
neutrino cloud. Pertinent to the main subject of this thesis is the ques-
tion of m, ;. obtained from the neutrino distribution in the smallest
systems. The fact is, the core radius r. of the neutrinos that appears
in equation (2.6) would in this scenario not be of the order of a few
kpc, characteristic of a galactic halo, but instead of the order of a few
Mpec, characteristic of the cluster. The m, i, thus obtained will clearly
not be large enough to challenge any independently obtained upper lim-
its. In this case the phase space arguments, although interesting in the
context of theoretical physics, will be of no use for obtaining definitive
conclusions about the nature of the dark matter.

Until we know far more about the process of galaxy formation it is
not possible to say whether the premise of this scenario is right or wrong.
It does appear however to provide a rather more natural explanation
than the halo picture for the flat and gently rising rotation curves which
seem to continue indefinitely.

Cowsik and Ghosh use a modified version (from [49]) of the well-
known mass-radius relation [126] for a degenerate non—relativistic fermion
gas:

8 91.9A°
md = 220
Y GPg?a’R3M,
where R, is the core radius, M, the core mass, and « is the ‘effective
filling factor’ & ~ 2¢ iavourgnets™>/? ~ 2 x 1072, where s is the ratio of
the magnitude of the initial density fluctuations to R,.

(2.31)
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From (2.32) a neutrino mass of around 10eV is consistent with neu-
trino clustering on scales of clusters of galaxies if the limiting radius is
Ry ~ 20R,.. The error in this value will not be too serious, thanks to
the high power m, enters as:

5eV <m, < 20eV

This mass range for the neutrino is consistent with an = 1 Universe
[49]. The mathematical formalism which describes the embedding of the
baryonic matter within the neutrino clouds amounts to the simultaneous
solution of the collisionless Boltzmann and Poisson equations, satisfied
by both the stellar and neutrino components. The simplest approach,
and that taken by Cowsik and Ghosh, is to assume isotropy for both
components. Further generality is lost on the assumption of Maxwellian
distribution functions:

2

—m; v
e - — v . 2
for ¢« = 1,2, where ¢ = 1 refers to the non-neutrino and i = 2 the

neutrino component. The assumption of a Maxwellian is probably a
reasonable zero-order approximation to reality, and has the virtue of
being easy to handle mathematically. The numerical solutions to the
self-consistent coupled Boltzmann—Poisson equations are then shown to
reproduce the following:

1. the distribution of galaxies in a cluster;
2. high stellar velocities in dwarf galaxies;

3. tidal stability of galaxies in general and dwarf galaxies in particu-
lar;

4. surface density profiles for all types of galaxy;
5. flat and gently rising rotation curves.

Points (2) and (3) will be discussed in chapter 4 as they are vitally
important to the dwarf spheroidal debate which is the main subject of
that chapter. The above successes of the embedding picture, particularly
point (5), provide persuasive weight to the credibility of this scenario,
which, if correct, will not yield lower limits on m, of more than 10eV
or so, even in dwarf galaxies. So the existence of dark matter in these
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systems is, modulo this scenario, perfectly consistent with neutrinos
being that dark matter.

As regards the validity of this scenario, which opposes the conven-
tional picture that dark matter coagulates around individual galaxies,
there may be at least two observational ways of finding which of the
two, if either, is correct, as noted by Cowsik and Ghosh. For the con-
ventional view, the fluctuations in the gravitational potential throughout
the cluster will be far larger than in the embedding scenario. One probe
of this is gravitational lensing, for which detailed calculations remain
to be done. The second probe concerns the question of tidal distortion
of individual galaxies in clusters, the shapes of these disrupted galaxies
being substantially different in the two scenarios. For this phenomenon
also, little detail is yet known.
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Chapter 3

DARK MATTER, IN
DWARF SPIRALS

3.1 THE EVIDENCE FOR HALOS

A dwarf galaxy may be defined as a galaxy with magnitude Mg >
—18. Amongst the various types of dwarf galaxy are spirals, irrequlars,
ellipticals and spheroidals. The spheroidals are devoid of HI gas and in
general show no evidence of recent star formation. The ellipticals are
somewhat larger and sometimes do possess young stars: a discussion of
these two types of dwarf galaxy is deferred to chapter 4. The irregulars
and spirals are slightly larger and more luminous than the ellipticals and
spheroidals, and also exhibit recent star formation. The traditional view
of their morphology has identified dwarf ellipticals as relatives of larger
ellipticals, and dwarf spirals as relatives of their larger optical versions.
However a rival picture has come to light in recent years, which identifies
the various dwarf types together as sharing a similar heredity, as it has
gradually been discovered that they share many common properties.
This issue will be discussed again in chapter 4, as it bears on the question
of whether dark matter exists in one type only or perhaps all types
necessarily. The reader is referred to the review article by Aaronson 87
[6] for a comprehensive discussion.

As in ordinary spirals, the best evidence for dark matter in their
smaller optical counterparts comes from extended HI rotation curves.
In short, the method consists of measuring this rotation curve V(r) as
far out as possible, to rpn... Assuming a constant M/L for the disk
component and using the surface brightness distribution, one calculates
the rotation curve that would obtain in the presence of the disk alone.
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The difference in these two curves will correspond to the contribution of
the dark matter halo. Fortunately dwarf spirals do not usually contain
central bulges, which makes the difficult matter of rotation curve de-
composition substantially less of a problem than for the case of normal
sized spirals which in general do have bulges. The disks are reasonably
well approximated by the exponential law: ‘

I(R) = Iyexp(—R/Ry) (3.1)

where I(R) is the surface brightness profile and Ry the so—called disk
scale length. Detailed discussions of the mathematics involved can be
found in the articles by Carignan 85 [36] and Kalnajs '$3 [113]. As the
decomposition of the observed rotation curve is not determined uniquely,
two extreme cases are computed, one using the disk to explain as much
of the curve as possible, the other using the halo to fit the most it can.
These are called the maximum disk and minimum disk models respec-
tively (or, equivalently, minimum halo and maximum halo). The true
situation should then be bracketed by these two extremes. Moreover,
a narrower range can be obtained by considering spiral structure con-
straints, where minimum halo disks may be bar—unstable and maximum
halo models inhibit the density waves required for the spiral pattern.
See, for example, Athanassoula et.al. '87 [14].

Before consulting the best evidence for dark matter in dwarf spirals,
we should bear in mind the considerable ensemble of difficulties that are
involved in the analysis (see [120]):

1. as with normal spirals, the assumption of circular motion for the
HI gas might not be correct;

2. the assumption that M/L is independent of radius is at best a very
uncertain one;

3. H, contributions have to be taken into account, which is a more
severe problem for the lower luminosity systems;

4. especially for edge-on galaxies, corrections for internal absorption
are poorly known and important;

5. for non edge-on galaxies, corrections for velocity projection involve
€rrors;

6. HI warps disrupt the velocity data;
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7. the density distribution of the halo has to be guessed a priori and
arbitrarily;

8. these models treat the disk and halo as superposed systems. They
are not self-consistent because they neglect the gravitational effect
of one upon the other. In the smallest systems, if the dark matter
component is found to dominate the visible one (as it sometimes
is), the corrections will be small;

9. by around Mp > —14 the rotation velocity has decreased to the
same order as the velocity dispersion, so the errors can be large
and we need corrections for this pressure support;

10. at this low luminosity, the disk fails to be flat, by amounts de-
scribed by the usual (Vias/0, €) diagram [104], where € is elliptic-
ity, Vimae the maximum rotation velocity and o the velocity dis-
persion;

11. at this low luminosity, irregularities in the HI distribution and
velocity field become greater;

12. at these low luminosities, it is harder to reach the V = const part
of the rotation curve.

Despite these difficulties, there is still extremely good evidence for dark
matter in some very faint dwarf spirals. As a general rule, rotation
curves which are flat out to about three exponential scale lengths can
be modelled adequately and fully explained by pure disk systems or
disks plus visible bulges, as found by Kalnajs [113]. If the rotation
curve data extends beyond this radius and the curve remains flat or
slightly rising, then this is no longer the case: the maximum disk model
does not provide enough matter to account for the rotation curve, and
an invisible component in the outer regions (a halo) is needed. An
excellent example of this is provided by the faint dwarf spiral DDO
127, which has Mp = —14.5 and a rotation curve measured out to
7.5 scale lengths where it is still rising gently. It has a well defined
inclination of 54° (problem (5) resolved), with regular HI distribution
and velocity field (problem (11)), and the exponential fit is a good one.
The results indicate a reasonably strong gravitational domination by
the dark component (since the minimum and maximum amounts of
allowed disk do not differ by much), so that the lack of self-consistency
in the fitting will not be too serious. This in turn greatly narrows down
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our uncertainties in the halo parameters (problem(7)). It is thus very
difficult to avoid the conclusion that DDO 127 contains dark matter
in substantial quantities, and that it has a halo [120]. This is by no
means the only dwarf spiral for which such a conclusion can be reached:
Carignan and Freeman '85 [37], Carignan et.al. '85 [38] and van Albada
et.al. "85 [208] find halo to disk ratios in the minimum halo case of
2—T for five dwarf spiral galaxies. It thus seems pretty clear that dwarf
spirals contain dark matter halos.

3.2 NEUTRINOS IN DWARF SPIRALS?

We want to apply equation (2.11), the Tremaine—~Gunn constraint, to
these small spiral systems. For this we need to determine the parameters
r. and o for the dark matter distribution. For the three nearby ‘pure
disk’ systems NGC 247, 300 and 3109, Carignan and Freeman '85 [37]
assumed an isothermal sphere for the dark halo, consistent in the sense
of it later being appropriate to apply equation (2.11). Using Kalnajs’
procedure to calculate the rotation curve V,,.(r) expected from the sur-
face photometry distribution I(r), fitting Vieie(7) to Vi (r) in the inner
parts where the disk is expected to dominate the halo gravitationally,
the M/L value, assumed constant, is calculated for the disk. This gives
the maximum (M/L)g;,i, possible and so we are already dealing with the
minimum halo case. The (non self-consistent) next step is to put:

s (1) = Vo) + Vi, () (3-2)

where V,o1(7) is the circular velocity of the isothermal halo. At large

r, Vobs(7) 22 Vigon(r) — 220 and r, is related to o by equation (2.4).
Carignan et.al. 85 [38] used the same procedure for UGC 2259,

whereas van Albada et.al. ’85 [208] used for NGC 3198 the modified

law:

p(r) = ﬂ%/_a_ﬁ (3.3)

with v ~ 2, which gives a better fit than the isothermal law in the inner
regions.

The assumptions of isothermality or the use of equation (3.3), and
the lack of self-consistency are two weaknesses in the above analysis.
For example, they describe systems of infinite extent (since for large
r,poxr?= M(r)xr — coasr — o), and the velocity dispersion
(which is constant in the isothermal model) in a finite system is expected
to decrease in the outer regions where the escape velocity is lower. Thus
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the value calculated for o could well be a factor of a few less than the
true core value.

The values of r. and ¢ calculated in this manner, taken from Kor-
mendy ’85 [120], are given below, along with the corresponding values
of My min calculated from the Tremaine-Gunn constraint (2.11) with
g =n=1:

Galazy e (kpe) | o (km/s) | mymin
NGC 247 22 90 26.3eV
NGC 3198 12 105 34.3eV
NGC 300 12 60 39.4eV
NGC 3109 10.5 40 46.6eV
UGC 2259 8.7 57 46.8eV
DDO 127 2.3 27 109.5eV

Table 3.1: m,, ;, for dwarf spirals

An inconsistency with the cosmological upper limit m, < 100A? is
seen to exist marginally for DDO 127. But this is probably still within
the error bounds because of the various sources of inaccuracy already
listed, as well as the fact that a model-independent limit rather than the
Tremaine-Gunn constraint should be used. We have already seen that
the more general phase space constraint can lower My min by a factor of
three to four. In fact, for NGC 3198 we can use the values To = To5 =
11.2 kpe, M(ro) = 0.057 x 10'2Mg and 8 = 1 (from [176]), to obtain
My,min = 18.5eV for anisotropy parameter o = 0. We see then that this
has halved the value we obtained from the Tremaine—Gunn constraint.
Moreover, Kormendy [120] describes the rotation curve of DDO 127 as
rising out to rys and flat thereafter. From this, we can take # = 1 and
To = 725. We take the value 755 = 1.76kpc, as also given by Kormendy.
Combined with a maximum rotational velocity of 34km /s, we compute
a value for the mass within this radius of M(ro) = 4.74 x 108 My, using
the equation for spherical symmetry:

22(r) = SH)

T
which is probably a good enough approximation. Putting these values
into equation (2.23) we obtain a revised value of m, > 51eV for DDO
127 from the more general constraint. Once again the value is halved,
and we find a result which is still compatible with cosmology. We stress
again that these more general, weaker limits cannot be ignored in the

(3.4)
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absence of a convincing reason to believe that halos are isothermal —
either due to complete violent relaxation or some other mechanism. We
note that, as expected, the values of m, ., compared consistently, are
increasing with decreasing scale size, so that the natural next step is
to consider the smallest type of galaxy known to exist — the dwarf
spheroidals.
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Chapter 4

DARK MATTER IN
DWARF SPHEROIDALS

4.1 INTRODUCTION

The smallest and faintest galaxies known to us, dwarf spheroidals are
by nature exceedingly difficult objects to observe. Being as faint as
My > —13 or so means that integrated light measurements are vir-
tually impossible. In compensation it is fortunate that there are seven
(known) such galaxies in the immediate vicinity of the Milky Way. Their
relative closeness is an advantage, although we are still unable to pin
down with particular confidence either their distances or absolute mag-
nitudes. The fact that we happen to find ourselves in a galaxy which
is surrounded by so many of these dwarf galaxies is not in fact believed
to be a matter of luck — they are probably the most common galax-
ies in the Universe. This alone makes them objects worthy of study.
Moreover, their apparent structural simplicity makes these ob jects suit-
able for testing evolutionary models [6]. We mention in passing that
an offshoot of some of the recent observations of the velocities of satel-
lite dwarfs of the Milky Way, originally performed to investigate dark
matter in these systems, has been the application to determinations of
the Milky Way’s mass. Regarding the dwarfs as test particles, their
Galactocentric radial velocities and distances can be used to constrain
the distribution of dark matter in the Galactic halo. This is a ques-
tion which could in turn be very important for the masses of the dwarfs
themselves (see §4.2). For references, see [91, 135, 157, 167].

We have been led to consider dwarf spheroidals, with the question
of whether they contain dark matter. The possible consequences that
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an affermative conclusion would have on the viability of light, stable,
neutral neutrinos do not provide the only motivation for such an in-
vestigation. If these, the smallest visible galaxies, have substantial or
dominating halos, do completely dark halos exist by extension? A re-
lated speculation is that the visible matter in the smallest dwarfs could
become non self-gravitating, due to the domination of the dark compo-
nent. This, in turn, could turn off star formation, and there would be
some natural lower limit to the sizes of small galaxies. The question of
the existence of dark matter in dwarf galaxies is also of crucial impor-
tance to the problems of galaxy formation and evolution. For example,
a recent theoretical model of galaxy formation [58] is successful in pre-
dicting various correlations that have been observed in dwarfs between
absolute magnitude and M/L ratio, velocity dispersion, surface density
and abundance. This picture requires that the dwarfs possess dark ha-
los, and thus its success depends on whether we find good evidence for
dark matter in dwarfs. We note here in passing that the scenario has
dwarfs as realisations of primordial 1o density fluctuations, while other
‘normal’ galaxies arise from the far less common 20 and 3¢ fluctuations.
We will return to this question quite soon. As an alternative explana-
tion for the observed trend in absolute magnitude with mass to light
ratio, it may be simply that the initial mass function depends sharply
on abundance, albeit far more sharply than for any other stellar system
known to us. The dark matter would then be present either in the form
of stellar remnants or brown dwarf stars [6]. This too is postponed to a
later stage of our discussion. We are led back to the question of the ori-
gin of the dwarf spheroidals. Since only those that orbit the Milky Way
are well studied, attention here is restricted to these, the local dwarfs.
There are essentially two, rival, pictures of their formation, describable
as ‘disruptive’ and ‘isolated’ respectively. In the former, the local dwarf
spheroidals are products of the debris of tidal encounters between the
Milky Way and the Magellanic Clouds. This could explain the roughly
coplanar distribution of the spheroidals on the sky [102, 123, 134], and
would avoid the difficulty of how star formation actually proceeded (we
will encounter this difficulty in §4.3) in such low density conditions,
as the galaxies could have formed in this way already containing stars
which were born in the Magellanic Clouds. On the other hand, the stel-
lar content of the spheroidals would be very difficult to account for, as
would the high mass to light ratios which we shall see later, if they are
correct. The ([Fe/H], My ) relation is hard to explain [6], and the “tight’
nature of the observed ([Fe/H], age) relation [220] is not what might be
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expected to result from the separation event. It is moreover difficult to
understand the apparent very old age and large quantity of the globular
clusters which have been observed in Fornax [220].

The alternative scenario has the spheroidals forming from the infall
of gas around large-sized seed galaxies, and then losing the majority of
their original mass adiabatically, via some process such as supernovae—
driven winds [187, 203]. The problem with this is that a system like
Draco would have had to begin its existence a hundred times smaller
and a million times more dense than it is now — not particularly com-
pelling. An interesting point is that within this scenario, the observed
([Fe/H], My) and ([Fe/H]|, surface brightness) relations cannot be ex-
plained, according to Dekel and Silk 86 [53] unless there is a dark halo.
If star formation is cut short sooner in smaller systems by gas removal,
this would lead us to expect an increase in M/L with decreasing lumi-
nosity. They calculate M/L o< L7%%7, which as we see from figure (4.1)
[6], seems to agree rather well with the observations.

) 0 2 iz B

Figure 4.1: M/L as a function of L for dwarf spheroidals



We are not forced to accept the scenario of Dekel and Silk, even if
we believe in the isolated type of formation. Figure (4.1) is also ex-
plicable in terms of the initial mass function, where the dark matter
would either be predominantly in the form of stellar remnants or else
brown dwarfs. For stellar remnants, we require an IMF biased towards
high mass stars [145]. This has difficulties with enrichment and excess
supernova activity [5]. For low mass stars, the IMF has to be suffi-
ciently steep at low masses. This question is discussed in more detail in
§4.4. Moreover, the prospects for the Dekel and Silk scenario do not at
present look too good. It is a model of biased cold dark matter galaxy
formation. As mentioned in chapter 1, cold dark matter encounters se-
rious difficulties in explaining very large scale structure and streaming
motions. Secondly, this model predicts a uniform distribution of dwarf
galaxies throughout the Universe, in the sense that the dwarfs would
be true tracers of the mass. In particular then, dwarfs would be found
in the voids. However, a recent study by Thuan et.al. '87 [193] of the
redshifts of 58 dwarf galaxies in the cfA slice of the Universe has led
to the conclusion that they do not occupy the voids. See also Binggeli
'88 [24] for a more detailed discussion of this question, and a similar
conclusion. Whether or not we do reject this model is a matter of taste,
especially as some doubts on the interpretation of the findings of Thuan
and others can be raised, as discussed by Binggeli. The main point we
wish to make here however is that the origin of dwarf galaxies is of vital
importance for the question of dark matter, which is in turn relevant to
our main topic.

We come back to a point raised in chapter 3, that of the relation
between dwarf spirals and dwarf spheroidals. If the traditional view
that dwarf spirals are just small spirals, and dwarf spheroidals are just
small ellipticals is, as is increasingly believed, wrong, it may well be that
these two kinds of dwarf are in origin related to each other. The first
suggestions of this possibility [1, 62], based in part on the similarity
in brightness distributions, had that the spheroidals formed from the
spirals and irregulars through ram-pressure stripping of their gas. The
relevance of this idea to the question of dark matter is obvious: the sim-
plest approach would be to say that if we know that dark matter exists
in the spirals (which we on the whole do believe to be the case), then by
extension it exists in their gas—stripped descendants, the spheroidals.
More quantitatively, Lin and Faber ’83 [120] considered the value of
M. /M, the ratio of visible to total mass of the dwarf spiral before
stripping, using a model stellar mass to light ratio of 0.4 based on UBV
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colours [127]. The ratios Myas/Miotar and (M/ Ly )sorar Were known from
2lem studies. Data for dwarf irregular galaxies from the sources [73,
192, 199] gave nearly two thirds of the total mass within the Holmberg
radius in non-luminous form. Allowing for fading, the disappearance of
all the gas, they then calculated the mass to light ratios of the resultant
spheroidals. These turned out to be consistent with the values they had
found from their independent tidal analysis (see §4.2). Their results are
illustrated in the following table.

Galazy | My | Myas | M. | Muow | Ly | (M/Lv). | (M/Ly )u
d.irr. [1.00 | 0.22 [0.060 | 0.71 | 0.158 | 0.40 5.8
d. sph. | 0.78 | 0.00 | 0.069 | 0.71 | 0.028 | 2.5 27.9

Table 4.1: Predicted M/Ly ratios of dwarf spheroidal galaxies

This is an interesting result, but we need to consider the whole ques-
tion in somewhat more detail. Alternative to ram pressure stripping,
the mechanism could be an internal one [68, 79, 203], or one whereby
all of the gas makes stars. What is the evidence for this evolutionary
picture for dwarf galaxies? Here we briefly list the observations which
support it, based on the review by Kormendy ’86 [121]:

1. similar surface brightness profiles (they are both equally well fit
by exponentials); ’

2. similar correlations between various core parameters;

3. the discovery of huge, very low surface-brightness dwarfs in Virgo
[177] is consistent with what we’d expect from galaxies that have
lost great amounts of mass;

4. similar intrinsic shapes [39, 155]. The explanation for this is very
simple [25]: as L decreases, so does Vin../0 by the Tully-Fisher
relation, because the internal velocity dispersion remains constant
at about 10km/s due to local processes like supernova heating.
Thus the originally spiral, disk galaxy becomes less and less flat-
tened (the ellipticity is given approximately by ¢ = v?/(1 4 v?),
where v := V15./0), and eventually it becomes elliptical-shaped;
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10.

11.

12.

since we find intermediate age stellar populations in spheroidals,
this implies stars were still forming for some time after the forma-
tion of the galaxies [5];

. if Ursa Minor, one of the local dwarf spheroidals, was once an

irregular, this would explain the observed clumpiness in the dis-
tribution of stars therein [156];

the metallicity-luminosity relation for dwarf spheroidals is as con-
tinuous with that of dwarf spirals and irregulars as it is with nor-
mal ellipticals [5];

. the unusually large number of globular clusters in the spheroidal

Fornax indicates that this galaxy was once brighter [90];

. the high mass to light ratios calculated for the local spheroidals

Draco and Ursa Minor [5] are consistent with fading after strip-
ping;

the original suggestion of stripping [62] came from the observation
that the type of satellite dwarf depends on distance from the par-
ent galaxy. The spheroidals are found closer in, irregulars further
out, and the closest irregulars are the most luminous ones, which
have been able, with their deeper potential wells, to survive the
process of stripping caused by the host’s halo;

the spheroidals in Virgo are concentrated towards the centre where
tidal stripping effects will be greatest, whereas the spirals and
irregulars are distributed almost uniformly [178];

bright disk galaxies in Virgo contain less HI than similar galaxies
in the field [81, 93].

As regards the possibility of the spheroidals being related to larger ellip-
ticals, we first note that the existence of a metallicity—luminosity relation
for the latter suggests that M/L should increase with L [194], whereas
for dwarfs we observe a decrease (see figure 4.1, p. 40). Secondly, as
we immediately see from figure (4.2)[121], the various core parameter
correlations, mentioned in (2), imply that the normal ellipticals seem to
be distinct objects from the dwarfs, as do globular clusters. This will
be an important point to consider shortly.
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Figure 4.2: core parameter correlations

The evidence for a common heredity between the dwarfs is thus quite
good (although quantitative analysis is needed), while the evidence that
larger ellipticals are distinct objects from dwarf spheroidals is better.
The two lowest luminosity local dwarf irregulars could provide evidence
of objects which are transitional between irregular and spheroidal types:
the Sagittarius dwarf and LGS3. These both seem to have absolute
magnitudes of the same order as for spheroidals, Mg ~ —10.5 and —9.4
respectively. They also seem to have quite large M/L ratios [6]. The
Sagittarius dwarf seems to be populated almost exclusively by carbon
stars, very much like the spheroidal Fornax. As for LG S3, star formation
has probably not occurred in this galaxy for the last 10% years. It seems
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that the only difference between LGS3 and a typical spheroidal is the
existence of a small amount of HI in the former. So we may well be seeing
here examples of galaxies in the process of transition from irregulars to
spheroidals.

The last point we make about this transitional picture for the origin
of dwarf spheroidals concerns the physical viability of the sweeping of
the gas. Frank and Gisler ’76 [74] made a simple quantitative model
of this mechanism. Using, from this study, the equation for the rate of
mass loss from irregular galaxies in and by the halo of the Milky Way,
Lin and Faber ’83 [129] calculated the required number density of gas in
the halo. For a progenitor galaxy of initial mass 2.4 x 10"My, gas radius
~1kpc, they found that for the gas to be stripped within a Hubble time,
the gas in the Milky Way halo has to have an ambient number density
of ~ 107%m™2 at a typical distance of about 100kpc. Unfortunately,
we can not take the next step to see if this is the case, because such a
density is too low to be detected. A density of this order though does
seem plausible [129]. A more recent study of the plausibility of the ram—
pressure stripping hypothesis has been made by Eskridge ’88 [65]. The
usual mechanism supposed responsible for the stripping is one where
a nearby parent galaxy posesses a halo which sweeps out the gas from
the dwarfs. Eskridge however considers the system of dwarf spheroidals
recently discovered [30] in the outer regions of the M81 group where no
nearby parent galaxy appears to exist. The ‘stripping agent’ for these
galaxies could thus be the inter—cluster medium. It is found that the ra-
tio of the mean free path of this medium, with respect to the dwarfinter-
stellar medium, to the dwarf galaxy radius, is of the order of 10~%. This
is a successful test of viability since if the ratio had been greater than
one then the particles would have typically travelled distances greater
than the physical extent of the galaxy before interacting, rendering the
stripping completely ineffective. Next, Eskridge considered the peculiar
velocities of these dwarfs, calculated from the equation of Frank and
Gisler. We require that these peculiar velocities not exceed the escape
velocities of the galaxies from their cluster environment. Sub ject to this
requirement, he finds that, apart from the case where the dwarfs contajn
significant amounts of dark matter while the cluster as a whole does not
(which we suggest is not the most appealing of possibilities), the ram
pressure stripping hypothesis is within reason. This means that such
an origin for these dwarfs is consistent with their being bound to the
group, although it is perfectly conceivable that they are not bound, since
we observe them now in the outer regions. Uncertainty in the value of
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the intercluster density makes a definite conclusion impossible. If this
density turns out to be extremely low, < 1.7 x 1072°gem ™3, then the
peculiar velocities of the dwarf galaxies would be so much greater than
the cluster escape velocity as to rule out the stripping argument. The
main result of this investigation then is that large parent galaxies do
not seem necessary for the ram-pressure stripping argument.

Having described the main reasons for studying dwarf spheroidal
galaxies and their relevance to our principal question of whether they
contain dark matter, it is time to proceed and see what kind of an
answer we can find. The most common measurement is of mass to
light ratios, values above a certain fixed number being considered good
evidence for dark matter, as this fixed value is the M/L that would be
accounted for by the visible matter alone in the system under question.
This fixed value will clearly vary amongst the various types of galaxy, as
different kinds of galaxy have different stellar populations and varying
proportions of dust and gas. The most usual way of approaching this
problem (i.e. of deciding what this fixed value should actually be) for
dwarf spheroidals has been, and still is, to consider globular clusters.
The simplest picture is this: dwarf spheroidals and globular clusters
are in stellar content extremely similar systems — the latter probably
do not contain dark matter and have an average M/L of around 2.
Hence any M/L reasonably greater than 2 that should be found for
dwarf spheroidals would be strong evidence for dark matter in these
galaxies. We must, however, be more cautious than to simply reason in
this way without a certain amount of reservation, for two main reasons.
In recent years it has been found that significant differences do exist
in the composition of these two respective systems, and moreover the
possibility of dark matter in globular clusters should not be completely
ruled out. We list some of the main differences that we should bear in
mind when comparing these systems, as given by Da Costa 84 [54]:

1. all dwarf spheroidals studied exhibit a spread in their heavy ele-
ment abundance [190, 219], whereas all but one globular clusters
(w Cen) do not;

2. anomalous Cepheids seem to be far more common in dwarf spher-
oidals than globular clusters. An anomalous Cepheid is a variable
star which does not obey the period-luminosity relation for either
type II or classical Cepheids, and seems to have a mass 2—3 times
those of RR Lyrae variables [218];

3. the dwarf spheroidals do not follow the conventional relation be-
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tween horizontal branch type and metal abundance for galactic
globular clusters;

4. carbon stars seem to be far more common in dwarf spheroidals;

5. at least some of the dwarf spheroidals contain intermediate age
stars, which are not found in globular clusters [1].

These findings constitute at least a modification of the former simpli-
fied picture, which states: ‘no gross differences in spectral appearance
exist among stars in the dwarf spheroidal galaxies, the outlying globular
clusters, and the inner halo clusters’ [47]. Next, there is the question of
dark matter in globular clusters, generally believed not to exist. There
are two reasons to think again. Da Costa and Freeman '85 [55], from
line of sight velocity measurements of stars in the globular cluster ‘47
Tucanae’, concluded that this system must have missing mass to explain
the observed velocity dispersion values, unlike the globular cluster M3.
This dark matter is reckoned to provide 30—40% of the total mass. The
result is however somewhat model-dependent: it is modulo the ‘thermal
equilibrium’ multimass models that substantial amounts of dark matter
are necessary (see Appendix D). Secondly, Peebles ’84 [227] has con-
structed a cosmological model in which globular clusters tend to form
with extended dark halos. In this cosmological model, the Universe is
dominated by weakly interacting cold dark matter particles. We merely
make the point here then that we cannot yet say that dark matter does
or does not exist in globular clusters, at the very least until we know
more about the radial behaviour of the velocity ellipsoid (v, roughly
constant in the outer regions would give p(r) o r~2, consistent with a
halo configuration). For our purposes however, the most conservative
assumption that globular clusters do not contain dark matter is the best
to use, in the sense that an eventual discovery based on this that dark
matter exists in dwarf spheroidals would still hold if it also existed in
globulars. As for the fixed M/L that we should consider as typical for
globular clusters, we note that Illingworth *76 [103] found an average
value of 1.6 from measured central velocity dispersions for ten clusters,
using King models. Higher values, as high as 7 for M15 and 3.5 for
NGC 6388 and 47 Tuc, have been calculated from thermal equilibrium
multi-mass models by Illingworth and King ’77 [105], where 30—60% of
_ the mass in these systems is supposed to be in white dwarfs. We take an
average and approximate M /Ly ratio of 2, and at the same time bear in
mind that the differences (1)—(5) in stellar composition between dwarf
spheroidals and globular clusters will have a certain effect on this value.
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The younger, brighter populations in the dwarfs could make their lumi-
nous contribution to M/L lower than for globular clusters, although the
escape of low mass stars from the latter by evaporation would work in
the opposite sense. We now examine the methods that one uses for ac-
tually calculating these M/L ratios, which we hope will tell us whether
dwarf spheroidal galaxies contain dark matter. '

4.2 THE TIDAL APPROACH

It turns out that determining the M/L of dwarf spheroidals is a partic-
ularly thorny problem. As before, attention is restricted to the seven
known local spheroidals, in the hope that they are typical such systems.
Crucial for the credibility of mass to light ratios obtained from consider-
ations of tidal theory is the question of whether the local spheroidals are
tidally limited by the gravitational field of the Milky Way — and if they
are tidally limited, are they tidally relaxed? Both these key questions
will be discussed quite shortly, and we note here that the answer to them
tells us whether or not we can actually apply the standard tidal formula
(or some modification thereof) legitimately. Faber and Lin 83 [69] were
the first to calculate dwarf spheroidal masses using this method. We
consider here some of the details.

Amongst other things, it was shown by Hodge (e.g. [95—99]) in his
extensive studies in the 60’s of the local dwarf spheroidals that their
luminosity profiles are well fitted by King models, which are models for
tidally truncated systems. This is a good reason to believe that these
systems are tidally truncated by the Milky Way. Approximating both
the Milky Way and its satellites as point masses, and identifying the tidal
radius r, of the satellite (defined as the radius at which the satellite’s
density falls to zero) with the ‘Jacobi limit’, one can show to first order
in the small quantity r,/D:

m 1/3 m 1/3
re=D (m) ~ D (W) / (4.1)

where D is the distance between the two systems, m and M are the
dwarf and Milky Way masses respectively, and the orbits are assumed
circular [27]. The Jacobi limit is defined as the distance between the
dwarf and the saddle point of the effective potential ®.;; which lies
between the two galaxies, where ®.;; := E; — % and Ej is Jacobi’s
integral, constant along any orbit in a steadily rotating potential ([27],
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p.135). The problems with using this equation are obvious. The point
mass approximation will fail badly if the satellites are actually orbiting
within the Milky Way halo. The identification of tidal radius with the
Jacobi limit is not unambiguous, because the zero-velocity surface is
not spherical ([27], p.485), and the assumption of circular orbits is not
justified for the spheroidals. A slightly alternative relation between the
masses of the two respective galaxies and tidal radius of the satellite,
and that used by Faber and Lin, was derived by King ’62 [117]:

m 1/3
o= o) o

(see Appendix B for the derivation). A point mass potential is still
assumed here, although the orbit is not necessarily circular: d, is the
distance of closest approach and e the orbital eccentricity. The point
here is that the tidal limit is supposed to be determined by conditions at
pericentre, an argument that might seem physically reasonable, though
it is far from proven. The assumption of a point mass Milky Way will
yield an underestimate of r, and hence an underestimate of the dwarf
spheroidal mass. It is underestimated still further by the fact that at a
given perigalactic passage there will not be enough time for all the stars
capable of reaching 7; to be stripped away; and a third effect works
the other way, that a dwarf will shrink as it moves away from closest
approach as its stars will feel the attracting gravitational force of the
Milky Way less. These details are hard to model. An equally severe
problem, an observational one this time, is the uncertainty in d,: Faber
and Lin used present heliocentric distances, which of course overestimate
dp and so underestimate m. As for the unknown nature of the orbits,
they used an eccentricity e = 0.5 for each system in the hope that this
value would average out the differences. The final unknown in equation
(4.2), which is inverted to find the dwarf spheroidal mass m, is the Milky
Way mass M. Faber and Lin assumed that the Galaxy has a spherical
isothermal halo with constant circular velocity 225km/s, based on the
study by Gunn et.al. '79 [87]. A weakness in this method then is that
we need to know the mass distribution of the Milky Way in order to
find the masses of the dwarf galaxies. Since m increases linearly with
M in equation (4.2), a high mass for the Galaxy (i.e. the existence of
a massive Galactic halo) automatically implies a high dwarf spheroidal
mass, perhaps due to dark matter. This is an important point to be
borne in mind, if the assumptions leading to equation (4.2) are to be

believed.
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Using equation (4.2) for the outer globular clusters of the Galactic
halo, with data from Harris and Racine 79 [89], Faber and Lin obtained
an average M/Ly of 1.34 + 0.4. This seems a remarkably good result.
in that it agrees so well with more conventional evaluations of globular
cluster mass to light ratios, and as such provides a certain amount of
support for the method. We will do well to remember though that
the method was actually designed to apply to globular clusters, and
that dwarf spheroidal galaxies are somewhat different systems in their
response to the tidal field of the Milky Way. Applying the same equation
for the dwarf spheroidals that orbit our Galaxy, with data from (2, 3,
98, 101], Faber and Lin found M /Ly values as follows.

Galazy dnei(kpe) | M/Ly | Ly /10%Lg
Ursa Minor 67 126 0.18
Draco 67 13 0.19
Sculptor 84 6.8 2.0
Carina 85 54 0.065
Fornax 188 1.0 24
Leol 220 0.21 3.1
Leo I 220 0.30 0.71

Table 4.2: M/Lvy(tidal) For The Dwarf Spheroidals

The mean M/L calculated in this fashion was 30.3 & 19.3. This is a
good order of magnitude higher than that for globular clusters, strongly
indicating large quantities of dark matter in these systems. We note
that M/L is lower for the more distant dwarfs and that tidal mass cal-
culations for these objects, where the tidal action is less effective, could
be systematically underestimated. Faber and Lin then went on to note
that the dwarfs’ luminosity profiles seem to be fit as well by exponen-
tials as by Hubble laws or King models with cutoffs, if not better. If
they are true exponentials, or more generally not truncated, then their
masses and mass to light ratios derived from (4.2) will have been sys-
tematically underestimated, this effect being more pronounced for the
more distant objects. We need to know more about this, and are led
back to our initial questions as to whether the local dwarf spheroidals
are indeed tidally truncated and, if so, have they had time to reach a
state of tidal relaxation? It is moreover possible that, particularly the
closer systems which yield the highest M/L’s, are actually in the process
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of being disrupted by the tidal field of the Milky Way.

Regarding the first of these questions, we can go back to 1969 and a
classic paper by Hodge and Michie [100]. Plotting the quantity |7,/ V|
against ellipticity, they obtained a correlation for Sculptor, Draco and
Ursa Minor. The quantities T, and V, are defined by:

T, = / ZF.dM, V.= - [ 22au (4.3)
p 0z

where the z-axis joins the centre of the Milky Way with the centre of the
dwarf system; M is the mass of the system, and F, the z—component of
the tidal force exerted by the Milky Way. The ratio T. /V. should then
be a measure of the importance of the tidal force in determining the
internal structure of the dwarf, and thus a correlation of this quantity
with ellipticity would be evidence for the tidal force as the principal
determinant of the outer structure of the dwarfs. The trend was not
obeyed by Leo I, IT which are so distant that it is doubtful they would
feel the Galactic tide to any real extent. A second test was a plot of
T/ V.| against the ratio of limiting to core radius, and all the galaxies
were found to obey the same trend this time: the stronger the tidal
force, the lower the stellar density in the outer regions, so we expect
and observe large values of |T./V.| to correspond with large central
concentrations. We can thus conclude quite confidently that the local
dwarf spheroidals are tidally limited by, and dependent in their outer
properties on, the Milky Way.

The second question is more subtle, the question of whether these
systems are tidally relaxed. Seitzer ’85 [183] has studied this problem
in the case of local globular clusters, numerically following 1000 test
particles in a Plummer potential cluster. He found that about 50 orbits
were necessary for tidal relaxation: the dwarf galaxies have probably
completed less than 10. The point is, that this non—authentic N-body
treatment of self gravitating systems can only be applied to very cen-
trally concentrated systems like globular clusters, and probably not to
the loosely bound dwarf galaxies. Freeman [77] has pointed out an ex-
ample of globular clusters for which a large number of orbits may not be
necessary to attain a state of tidal relaxation. The young LMC globular
clusters are younger than one orbital time around the LMC. Measur-
ing their masses however from their tidal radii yields results which agree
with the more conventional methods of mass determination via luminos-
ity functions and radial velocity measurements (see §4.3). He points out
that these clusters have more or less circular orbits: we recall the fact
that the Jacobi limit can not even be defined unless the orbit is circular
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[27], as well as the uncertainty involved in using perigalacticon distances
rather than apogalaciicon or something in between for ecceniric orbits.
Freeman concludes that the tidal radii of these young globular clusters
have more to do with their formation conditions than their dynamical
evolution. This idea is relevant to the dwarf spheroidals: if they have
orbits of low eccentricity, then it could be reliable to use equation (4.2)
to determine their masses.
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Figure 4.3: Tidal Disruption in Dwarf Spheroidals?

Related to the question of tidal relaxation is the even more serious
concern (particularly for the galaxies themselves) that they may be in
the process of tidal disruption. Hodge and Michie 69 [100] concluded
that if Ursa Minor is currently on an approach passage, then the tidal
field of the Galaxy will actually tear it apart. Ursa Minor's observed
limiting radius was about three times larger than its computed tidal
one [98], which indicates that a great deal of its mass is being pulled
out. They calculated a dynamical time—scale for the disruption as short
as 6 x 10% years, which is less than the system’s transit time past the
Milky Way. We now know that Ursa Minor is approaching the Galactic
centre, and some authors (e.g. Lynden-Bell [134]) have concluded that
the Milky Way must now be tearing this system apart. An interesting
study of this problem was made by Joeveer 85 (cited by Einasto [63]).
He plotted the tidal radii of Virgo Cluster dwarf spheroidal galaxies
and local spheroidals against absolute blue luminosities Lg (see figure
4.3). On a logarithmic scale, the Virgo dwarfs scatter about a straight
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line, as do the local dwarfs Leo I, II and Fornax — these are the three
most distant spheroidals. Relative to this straight line, the four nearer
spheroidals have larger tidal radii. His interpretation of this result is
that the nearest satellites are actually ezpanded rather than limited,
thanks to the process of disruption. Einasto [63] concludes that the four
nearest spheroidals — Ursa Minor, Draco, Carina and Sculptor — are
all strongly disturbed by tidal forces, so that estimating their masses via
an equation such as (4.2) is not possible.

We note however that some of the local dwarf spheroidals are con-
siderably less luminous than the majority of those in the Virgo Cluster,
so perhaps we ought not to expect the straight line to continue to apply
in such an extreme regime.

The difference between the globular clusters and dwarf spheroidals
which orbit our Galaxy, as regards susceptibility to tidal disruption, is
apparent from the numerical experiments performed by Miller ’86 [149].
He has shown, subject to the usual problems of N-body simulations, that
the former are essentially in no such danger: a cluster with M /L =1
could get as close as 100pc to the Galactic centre before perishing. It
is the small size of these systems which protects them. For the dwarf
spheroidals, the story is a different one: if these systems have M/L =1
then their closest approaches consistent with survival were obtained as
follows.

Galazy dV(kpc) | d(kpe) [ d, . (kpc) (M/L)V [ (M/L)#
Fornax 44 56 188 0.013 0.088
Sculptor 48 63 84 0.18 0.57
Leo I 28 29 220 0.0021 0.017
Leo II 32 35 220 0.0031 0.025
Draco 41 50 67 0.23 0.56
Ursa Minor 95 176 67 2.8 6.9
Carina 97 183 85 1.5 4.7

Table 4.3: Dwarf Spheroidals: Tidal Disruption Properties

Here the superscripts (1), (2) correspond to a Galactic 1/r and log-
arithmic potential respectively, df, are the distances of safe closest ap-
proach if M/L = 1, d,. is the present Galactocentric distance, and
the last two columus list the M/L required to avoid disruption at the
present Galactocentric distances. We see that for unit M/L, Ursa Minor
and Carina would surely perish, while Draco and Sculptor would also
be in some danger. We of course suspect somewhat higher M/L ratios

53



for these systems. The values of closest approach should increase by
factors of 1.26 and 1.41 for more than one orbit, while the M/L’s should
double. The M/L ratios required to avoid tidal disruption in the last
two columns are considerably lower for all systems than those derived by
Faber and Lin, from which we are able to conclude that the assumptions
involved in the use of equation (4.2) yield M/L ratios that are consis-
tent with these assumptions. However we so far have no real evidence
that these galaxies are not being disrupted, and the high M/L values
found, particularly for the closer systems, are also consistent with this
possibility, where (4.2) would have then been used to yield spuriously
high masses. ~'

In view of the evidence that has been presented in this section, we
cannot do otherwise than to admit we just don’t know to what ex-
tent the application of equation (4.2) is legitimate. Even for systems
that have tidally relaxed and are not subject to disruption, there are
shortcomings in the method per se as well as observational uncertain-
ties. It has to be admitted that the evidence seems to indicate that
the dwarf spheroidal galaxies have not completed enough orbits around
the Milky Way to achieve a state of relaxation in their outer regions,
and that tidal expansion rather than truncation seems a possibly more
likely phenomenon for the inner four systems. The apparent success of
the tidal method for determining globular cluster masses is encouraging
but tainted by the fact that the globulars are virtually immune to tidal
disruption, and at least the inner globulars have probably completed
enough Galactic orbits to have relaxed in their outer, tidal, regions.
For the dwarf spheroidals, as we have seen, the story is a different and
rather more complicated one. As Faber and Lin in their original paper
admitted, the spirit of the investigation was a speculative one. We are
forced by the lack of reliability of this approach to adopt another one,
for which we hope the limitations will be less. It is the more conven-
tional method of using stellar radial velocities, an approach which for
observational reasons has only proved possible for the dwarf spheroidals
over the last five years or so. Will we be able, once and for all, to con-
firm the high mass to light ratios obtained by Faber and Lin, and hence
be in a position to rule out one of the classic dark matter candidates in
dwarf spheroidal galaxies?
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4.3 STELLAR VELOCITY APPROACH

There are various standard techniques for calculating the masses of
galaxies from their velocity dispersions, which are obtained from mea-
surements of stellar velocities. Radial velocities are obtained from the
stellar spectra, but this can unfortunately only be done in the faint
dwarf spheroidals for the stars at the tip of an old giant branch, where
V > 17mag. High precision is also required to measure low velocity
dispersions, precision as good as +1km/s.

Aaronson '83 [2] was the first to use this approach for dwarf spheroi-
dals. He measured the radial velocities, via cross—correlation techniques,
of three carbon stars in Draco, to an accuracy of about lkm/s. It
would clearly be absurd to calculate a dispersion from just three ob jects.
Aaronson showed instead that the minimum velocity dispersion allowed
by a x? test at the 5% level with two degrees of freedom was 6.5km/s.
An isotropic King model was then used for these one-dimensional dis-
persions. A simple expression for the mass of the galaxy is given by
Hlingworth 76 [103] (see Appendix C):

M =16Tr.u < v? > (4.4)

where 7. is the core radius in parsecs and p a dimensionless mass pa-
rameter which depends on the geometry of the galaxy. Using previously
obtained values of 7., and L then gave for Draco:

M _ 0.72 < v? > (4.5)
Ly
which gave a value of 31 at the 95% confidence level. We note that this is
more than double the value obtained by Faber and Lin: Aaronson then
used their equation with a higher Galaxy mass and lower perigalacticon
distance to obtain M/Ly = 29 for Draco, and concluded that the tidal
method could well be legitimate. We now encounter the problems in-
herent in this approach, and follow the lengthy debate which has sprun
from these questions. '
Aaronson [2] acknowledged these problems. The first is due to the
tiny number of stellar velocities and the unreliability of the statistics in-
volved. Secondly, there are suspicions that these carbon stars have large
atmospheric motions, so that the velocities measured reflect the motions
of the atmospheres rather than centre of mass velocities. Thirdly, their
apparently high dispersion could be due to binary membership and thus
totally misleading as to the motions that would have been induced by
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the smooth potential of the galaxy as a whole. Finally, we have our old
question of tidal disruption, which would also affect the velocity disper-
sion, particularly for a system as close as Draco. As shown by Hodge
and Michie [100], the time scale for tidal disruption would be on the
order of 2 x 10® years, which is such a short time that Aaronson argued
there is a small probability that we would actually see a system in this
state. We at this stage should also bear in mind that the carbon stars
may not actually give a good guide to the overall velocity dispersion,
averaged over different stellar types with presumably different orbital
behaviour. On this point Aaronson as a post-script cited a later mea-
surement of a non-carbon stellar velocity in Draco which was of the
same order as for the carbon stars. He thus concluded that there did
not seem to be any significant zero—point difference between the carbon
and non-carbon velocity systems. However the statistical significance
of this result is even less.

Cohen 83 [44] promptly responded to these claims by measuring the
radial velocities of four globular clusters in Fornax. She concluded that
M/Ly was less than 8 at the 95% confidence level. This is interesting
because the velocity dispersion of the clusters she found to be 6km/s,
a factor of 5 or so less than that predicted roughly by Faber and Lin
if Fornax were to have a mass to light ratio similar to that of Draco.
However, the accuracy of the radial velocity measurements was only
+10km/s for three and +20km/s for the fourth of the clusters, not
sufficiently accurate for any meaningful determination of the dispersion.
Moreover, we probably shouldn’t expect to obtain high M /L ratios from
data in the core regions in these galaxies where we do not expect the
dark matter to dominate over the visible matter. This is a point we
shall come back to later.

McClure 84 [141] addressed the question of binarism. He obtained
3—4 year span velocity measurements for CH stars in our Galaxy and
some globular clusters. It is believed that the carbon stars in Draco, Ursa
Minor and Sculptor are similar to these stars, and it is upon this belief
that the interpretation of the results depends. We note however the
recent discovery that dwarf spheroidals and globular clusters have a lot
less in common regarding stellar populations than was once thought, as
discussed in §4.1. M.Clure found two main effects among these cluster
CH stars: systematic long term velocity variations, and random short
term variations. Such behaviour would support binarism in these stars.
Moreover, it is noted that the CH stars resemble the population I Ba
II stars in their spectral features, the latter probably all being binary
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stars [140]. So perhaps the CH are binaries as well. This does not of
course follow necessarily, particularly if we note that population II stars
(CH stars are population II) are believed to be on the whole deficient
in binary systems [21]. The short term velocity fluctuations could be
explained by atmospheric motions (because CH stars are population II
giants of low mass and so have low surface gravity), while the long term
variations seem more consistent with binary membership. Furthermore,
we should note the suggestion by M.Clure and Norris ’77 [139] that
globulars containing CH stars tend to be systems of lower concentra-
tion. This suggests that, if CH stars do indeed tend to be binaries,
then binaries survive longer in systems of lower concentration. Dwarf
spheroidals are considerably less concentrated than globular clusters, in-
creasing the likelihood of binarism in them. We have to conclude that,
at least to some extent, dwarf spheroidals probably contain binary sys-
tems among their carbon stars. The observations by Aaronson were not
multiple epoque ones for two of the stars: these were what was needed
to determine whether binarism or velocity variability in general was at
work among the dwarf galaxy stellar components.

Seitzer and Frogel '85 [184] used the same method as Aaronson,
obtaining radial velocities for six carbon stars in Carina, three in Sculp-
tor, and five in Fornax. They obtained velocity dispersions of around
6km /s for each system and respective M/Ly ratios of 9.7,3.4 and 0.5.
In spite of the considerable doubts on carbon stars as truly representing
galactic velocity dispersions, they were chosen for the fact that they are
the most luminous stars in those galaxies, and because accurate radial
velocities could be obtained even for low signal-to-noise ratios due to
the strong features in their spectra. Unfortunately these authors only
observed these galaxies on one night each, so that nothing can be said
about long-term variability of the velocities. On the bright side though,
the velocity dispersion for Carina of 6km/s agreed with that obtained
by Cook et.al. '83 [225], who had measured the same carbon stars a
couple of years earlier. This should be regarded as weak circumstantial
evidence for these stars not being members of binaries. Since equation
(4.4) only gives the mass of the galaxy, in order to calculate M/L the
total luminosities are needed separately. These are determined by the
use of uncertain luminosity functions, often assumed to be the same
as for some suitable globular cluster, an assumption which does not
seem very safe. Moreover the core radii, tidal radii and distances of the
galaxies, which are needed for the application of equation (4.4), are all
considerably uncertain. With regard to the problems of the small num-
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ber statistics involved here, the errors in the M /Ly were well over 50%
for all three galaxies. The statistical error in the observed < v% > is
probably proportional to (2/N)/? [53], where N is the number of stars
involved. This means that in order to have a statistical error less than
30% in the mass requires at least 20 stellar radial velocities. These er-
rors due to statistics could be even worse, as we will see later. Due to
the small number of known carbon stars in the dwarf spheroidals it was
therefore necessary to obtain velocities for other types of stars, both for
this reason and because of the possibility of variability in the carbon
stars. ‘

An improvement in the situation was made by Aaronson and: Ol-
szewski 85 [4], who studied 10 stars in Ursa Minor and 11 in Draco.
Apart from the improvement in number was that most stars were ob-
served at two or more epoques, and that 16 of these 21 stars were K
giants. Velocity dispersions as high as 10km/s were found for both sys-
tems. It is interesting to note that two of the Draco stars and three
in Ursa Minor were velocity variables over the 1—3 year periods they
‘were observed for. These authors argued against the high velocity dis-
persions being due to tidal effects from our Galaxy in the following way:
the crossing time scale, and hence time scale for disruption, for Ursa Mi-
nor and Draco is about 10° years, while their stars are about 10'° years
old. This gives something like a 1% probability of us seeing one such
galaxy, and lower still for two. It is not clear how seriously this kind of
argument should be taken. Perhaps more convincingly, Aaronson [226]
pointed out that in the absence of dark matter the predicted dispersions
in Draco and Ursa Minor would be of the order of 0.5km/s. Simple cal-
culations have shown that tidal disruption is likely to only double this
value (we should be careful in accepting this claim in the absence of a
decent theory for such a phenomenon), which would still be an order of
magnitude down on the dispersions observed. As for the binary ques-
tion, we first note that 5 out of 21 stars showed velocity variations of
the type expected for binaries (none however showed the kind of ‘jitter’
associated with atmospheric motions [138]). Secondly, most stars in this
survey were K giants, as opposed to carbon stars. Carney and Latham
'85 [41] found a binary proportion of 15% in the halo giants — a low
fraction, although of course binary formation processes in the dwarfs
could be very different from those in our Galaxy. As a further test of
binarism, Aaronson and Olszewski performed Monte Clarlo simulations
to conclude that a 50% presence of binaries in a normal distribution in
the dwarfs would not affect their observations to any significant degree.
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These authors thus believed that their findings of high velocity disper-
sions were due to self gravitation and interpreted literally their results,
obtained from equation (4.4) that M/Ly = 40 and 100 for Draco and
Ursa Minor respectively.

Returning to the question of atmospheric motions in carbon stars,
Jura ’86 [110] noted that some of these stars are surrounded by CO
envelopes [221]. The (radio-determined) CO radial velocity has been
shown to probably be the actual centre of mass velocity of the star, to
within 1km/s [150]. Using this result, Jura compared the optical radial
velocities to CO radial velocities for carbon stars in our Galaxy, finding
an intrinsic dispersion due to hon centre of mass optically determined
motions of about 5km/s. This result would have serious consequences
for the carbon star measurements in dwarf spheroidals, if they have the
same properties as their Milky Way counterparts. The dwarf galaxy
carbon stars probably have lower metallicities and so different pulsa-
tional properties, effective temperatures and mass-loss rates [111], so it
is not clear how far one should carry the results across to these systems
— although for red giants in general there is good reason to believe in
the existence of unstable atmospheres with fluctuating velocity fields
[131]. As regards the K stars, similar effects are possible but unknown,
although it is known that in metal-poor globular clusters these effects
do not exist [168].

The most numerous radial velocities for any single galaxy were found
for 16 K giants in Sculptor by Armandroff and Da Costa ’86 [13]. They
obtained a one dimensional velocity dispersion of 6.3km /sand M/Ly =
6 4 3.1 for this galaxy. The analysis of these authors differed in a couple
of respects from previous ones. Firstly, they noted that since for some of
the stars only there were multiple observations, then for these stars the
velocities were significantly more certain than for the others. To take
this effect into account, they used weighted calculations for the mean
velocity and velocity dispersion. Instead of the standard formulae:

=1
no(o )2
< v’ >= .(ﬂ__}i)_ (4_7)
=1 n-— 1

where the denominator (n — 1) is needed for these small number statis-
tics, since the velocities follow a y? distribution and var(x?) = (2 )var(v)
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(see[130]), these authors used:

LT = iwivi/iwi (48)

i=1

(=) (o)) e

where the weights w; were taken to be the inverse squares of the indi-
vidual velocity uncertainties, which were in turn 4.7/N'? km/s, where
N =number of observations and the factor 4.7 is the single observation
uncertainty. The dispersion of the instrument is the second term in the
square bracket. Secondly, they calculated the central M /L as well as the
global value (see discussion on p.62), obtaining a value of 6. Given the
error they quoted as +3.1, combined with other problems, this is not
strong evidence for dark matter in Sculptor.

As a passing remark, it is interesting to note that the mean stellar
velocity, interpreted as the systemic velocity for Sculptor, turns out from
these observations to be +107.4 km/s, a value very much higher than
that of 4-20 km/s obtained by Richer and Westerlund ’83 [169]. This
has two interesting consequences. Firstly, it supports a relatively high
Milky Way mass, in contrast to the studies of Lynden—Bell et.al. '83 [135]
and Olszewski et.al. ’86 [157], who used Richer and Westerlund’s value.
Secondly, the predicted radial velocity of Sculptor if its origin is of tidal
debris from the Magellanic Clouds is —100 + 20 km/s [133]. The very
different observed velocity of +107.4 km/s thus provides good evidence
against such a theory for the origin of the dwarf spheroidals (or at least
for Sculptor, if we don’t insist on a common origin), which as such lends
support, by elimination, to the theory that the dwarf spheroidals are
evolved versions of dwarf spirals and irregulars.

The most recent observations to date are measurements of seven car-
bon stars, once again in Sculptor, by Aaronson and Olszewski ’87 [7].
With regard to the last point made, they obtained a systemic veloc-
ity for this galaxy of 109.2 4 4.5 km/s, in remarkably good agreement
with that of Armandroff and Da Costa. The main motivation for this
work, apart from the question of the systemic velocity of Sculptor and
its important consequences, was to investigate the reliability of measure-
ments obtained from carbon stars. On this point, the results of Jura
[110] were questioned for two main reasons: the radio—determined CO
velocities were not known for sure to be indicative of centre of mass
motion; and the very existence of CO envelopes implies the occurrence

< v? >=

60



of mass—loss and instability. In fact, all but one of the stars considered
by Jura has photometric amplitude variation > 1.5mag, the exception
having a difference of 0.1km/s in the optical and CO velocities. Regard-
ing temperature (or colour) as more reliable than luminosity as a gauge
of the presence of atmospheric instability, they pointed out that the car-
bon stars in Draco, Ursa Minor and Sculptor are all much bluer than
the carbon stars in the globular cluster 47 Tuc which were found to be
velocity variables. This leads to the expectation that these carbon stars
would not exhibit the pulsational instabilities of the latter. Virtually no
amplitude-variable carbon type stars in Draco, Ursa Minor or Sculptor
were found in extensive searches [15, 205, 206]. Hence Aaronson and
Olszewski concluded that, based on this evidence with regard to colour
and variability, the atmospheres of the C stars in Draco, Ursa Minor and
Sculptor are not substantially unstable and so do not bias velocity mea-
surements based on them. All the evidence is circumstantial however,
and the question remains an open one.

From the seven C stars measured, the velocity dispersion obtained
was 11.9 & 3.4 km/s. Excluding the one star suspected to be a binary,
brings the value down to 7.2 £+ 2.3 km/s. From this, two points are im-
mediately apparent. Firstly, it agrees reasonably well with the analysis
of a larger number of K stars performed by Armandroff and Da Costa,
which yielded a value 6.3 +1.2 km/s. Secondly, it shows the substantial
effect the presence of even one binary can have in such a small sample.
The central M/L ratio, they obtained as 7.7, although only two of their
stars were within the core region. Taking the results at face value, that
is ignoring all the various uncertainties present, this is more than twice
the global value for globular clusters, and hence provides weak evidence
for dark matter (it is more appropriate to compare the central M/L
ratios of dwarf spheroidals to the global values for globular clusters, be-
cause in the latter systems the effects of mass segregation are probably
important, so that the more massive stars would be expected to dom-
inate the core regions instead of an unbiased mixture [13]). We now
discuss some of the more important theoretical difficulties, and later go
on to consider the question of the nature of the dark matter in dwarf
spheroidals, if it exists.

As we have noted, the usual method of obtaining the mass or mass to
light ratio of spheroidal or elliptical galaxies from the velocity dispersion
is to use an isothermal or King model. This effectively amounts to
using the simplest form of the Virial theorem M ~ 3¢%r /G, but with
a particular choice of the geometrical constants omitted in the above.
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The global galactic mass can be measured, using equation (4.4) and
dividing by the total luminosity (a quantity which is unfortunately not
directly measurable for these faint systems, so that further uncertainties
are introduced by the use of a relatively arbitrary luminosity function,
usually assumed to be the same as for some chosen globular cluster).
Alternatively, one can directly calculate the central mass to light ratio.
This is a process which avoids the need for Liotes and minimises the
dependence on the assumption of a King model, a model which was in
fact designed for globular clusters, which are, more than conceivably,
fundamentally different stellar systems (with regard to origin, stellar
population and dynamics) from dwarf spheroidals. This latter approach,
advocated by Kormendy 85 [120], considers the parameters Iy, Xo and
po, the central light density, central surface brightness and central mass
density respectively. We then have:

=
Lh== (4.10)
pre
0.2
po = 166— (4.11)
NP (4.12)
- Iy B pzorc .

Equation (4.12) thus gives the central mass to light ratio, which is also
a function of p, a geometric factor depending on concentration log r; /7.,
which is tabulated in Peterson and King ’75 [166].

Despite the improvement that we obtain from this method, many
inherent problems still abound. To begin with, the approach is not self-
consistent, as was the case for rotation curve decompositions for spiral
galaxies. The dark matter halo, if it exists, may well not be describable
by a King model. The core radius r. is measured for the visible matter
and implicitly assumed to apply also to the dark matter, but the latter
could in principle have any value r.(d.m.). So the assumption is almost
certainly an incorrect one. In spiral galaxies for example, r.(d.m.) is
substantially greater than r.(vis). It is therefore quite conceivable that
po(vis) > po(d.m.), so that the central velocity dispersion contains vir-
tually no information on the dark matter which lies predominantly in
the outer regions. The majority of stars whose radial velocities have
been measured to date have been stars within one core radius: o(r)
needs to be measured at least out to a radius where the dark matter
contribution becomes important — which can not at present, for tech-
nological reasons, be realised in dwarf spheroidals. Kormendy points
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out that the various corrections to o needed for self-consistency show
that the simple calculations usually done have systematically underes-
timated M/L. More than one definition of core radius exists: modulo
+ the model assumed, it is better to use the one defined dynamically by
King ’66 [118] rather than the empirical fitting function definition of
King ’62 [117] (see Appendix C for details). Since the dwarf spheroidals
are actually elliptical in shape (at least for the visible matter), the use of
mean radius would be a better approximation than the major—axis ra-
dius usually adopted. Since o(r) decreases with increasing r in a King
model, o should be corrected for the mean radius of the stars mea.
sured. Projection effects should be taken into account, as well as the
phenomenon that the measured dispersion will be a systematic under-
estimate to the ¢ used in (4.11) and (4.12), by the amounts given by
King 66 [118]. These corrections, taken together, increase the M/L ra-
tio by a factor of around three, which is a very important result if King
models are to be believed. It could turn out for example though that
dwarf spheroidals have exponential rather than King-model brightness
profiles, in which case we could no longer make the above statement.
We note again though that in this case the tidal mass estimates would
be too small. So it seems that in either case the estimates we have for
the masses of dwarf spheroidals should be pushed upwards by improving
the models.

We now take a closer look at the central densities of the five spheroidals
for which this parameter has been measured, to find an interesting prop-
erty. We tabulate, from Kormendy ’85 [120], the central density of
visible matter if this component has M/L = 2 (globular cluster type
population), its value if M/L,;, = 7 (old disk populations), the total
central density and central mass to light ratio:

Galazy po(vis): po(vis): Po po/Io
M/Lyy =2 | M/Ly, =T
Fornax 0.04 0.14 0.028 +0.018 | 1.4+ 0.9
Sculptor 0.07 0.24 0.19+0.16 55+4.9
Carina 0.028 0.1 0.11 +£0.07 7.8 +6.0
Ursa Minor 0.01 0.04 0.914+0.51 |175+131
Draco 0.026 0.09 0.64 +£0.34 48 + 35

Table 4.4: Central densities of dwarf spheroidals (in Mg /pc?)

We note immediately that in the three galaxies for which low mass
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to light ratios have been computed, we have the property:
po(d.m.) < po(vis)

Hence we should not be surprised when we find a low central mass
to light ratio — dark matter could still exist in substantial quantities
in these galaxies, but further out than a core radius or so. In stark
contrast, we have for Ursa Minor and Draco extremely high central
densities, po(d.m.) ~ 100po(vis). This means that the central density is
about an order of magnitude greater than in dwarf spirals, from which
we suspect they may have evelved. But such a difference in density
may be difficult to explain within such a picture. It also means that the
luminous matter may not be self-gravitating, which raises the question
of how the stars actually formed there, because self-gravitation is surely
important for star formation. If we can solve the problem of how dwarf
spirals evolve into dwarf spheroidals while their central densities increase
by a factor of 10 or so, then the star formation problem would also
be solved since formation would have occurred while the galaxy was
in its spiral stage. Perhaps this is an even worse problem than it at
first sight seems: it would require different kinds of dark halos in the
two systems, since po(d.m.) < po(vis) in dwarf spirals. Based on these
considerations, Kormendy [120] concludes that o has probably been
seriously overestimated for Draco and Ursa Minor, so that he regards
the existence of dark matter in dwarf spheroidals as still very insecure.
Aaronson and Olszewski ’87 [7] however do not agree — they prefer to
regard the situation as quite natural that extreme systems should have
extreme properties.

If o has indeed been seriously overestimated, it may well be that the
small number statistics involved, always notorious, have conspired to
produce this effect. Such a possibility has been examined in detail for
the case of Carina by Godwin and Lynden—Bell ’87 (82]. They collect the
observations of radial velocities for this galaxy from three independent
sources. Although these sources show good agreement for the velocity
dispersions of 6 £3,6+ 2 and 8+ 4 km /s, there is no correlation among
the stars as to which move more quickly or slowly than the mean. In-
tercomparing the respective data, they conclude that the errors in the
velocity dispersion had previously been underestimated by a factor of
2 or so. Using the method of maximum likelihood, they determine the
best estimate o = 1.1—3.2 km/s, which is certainly a low enough value
to be explicable by a purely stellar content. This is a disturbing con-
clusion (for those who prefer to believe the dark matter hypothesis). It
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does not of course prove an absence of dark matter in Carina since the
stellar velocities need to be measured in regions further from the centre,
where the effects of such a component would become more important.
However, it does point more in the direction away from dark matter
than towards it, and underlines the problems involved with the errors
which arise when statistics are applied to such small numbers, particu-
larly when the errors themselves are of the same order as the dispersion.
Intercomparisons of stellar velocities relative to the mean need to be
performed for the other dwarf spheroidals — particularly Draco and
Ursa Minor, the two galaxies which provide the strongest evidence for
dark matter. '

The hope that measuring the internal velocity dispersions of the local
dwarf spheroidals would provide the answer as to whether they contain
dark matter has not yet been realised. It is furthermore even debatable
whether this method is more reliable than the tidal approach described
in §4.2. What is interesting is the observation that these two indepen-
dent methods give results which are in excellent qualitative agreement
with each other. They both predict extremely high mass to light ra-
tios for Draco and Ursa Minor, and it is also encouraging to note that
they both put the five measured systems in the same ‘weighing’ order of
mass to light ratio: Ursa Minor, Draco, Carina, Sculptor, Fornax. There
are at least three possible explanations for this situation. Firstly, both
approaches could be essentially correct, in which case we have convine-
ing evidence for dark matter in the first two of these systems (and by
Occam’s rasor or a taste for simplicity therefore also in the others). Sec-
ondly, perhaps this is just a pure coincidence, improbable though it may
seem. Thirdly, there may be some basic fallacy that both approaches
have in common, which has systematically managed to produce this ef-
fect. We regard the most likely explanation for the third eventuality to
be that the tidal field of the Milky Way acts on these galaxies not in
the way we would like it to (giving nice tidally limited luminosity pro-
files), but in an unpleasant way (causing disruption of one or more of
the galaxies). The correlation of M/L with distance supports this view,
because of course the closer a spheroidal is to the Milky Way, the more
it will be in danger of disruption by the tidal field. We at present do not
have a decent theory of this type of interaction, so we do not know just
how the velocity dispersions of these systems would be affected by the
Milky Way — whether the effect would be great enough to explain the
high values that have been measured. Since these dwarf spheroidals are
loosely bound systems, the suspicion is that even their inner regions will
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be substantially affected, unlike the more tightly bound globular cluster
systems which orbit our Galaxy. We exhibit in table (4.5) the weighing
order by M/L for the dwarf spheroidals, according to the two indepen-
dent methods of calculation (from [6, 69, 120]), and the correlation with
distance from the Galactic centre which could well be the explanation.

Galazy | d(kpe) | (M/Ly)D | (M/Ly)® | (M Ly)D
global central
Ursa Minor 65 126 100 175
Draco 75 13 40 48
Carina 100 | 7.2 (corrected [6]) 8 7.8
Sculptor 80 6.8 5 5.5
Fornax 140 | 1 2 1.4

Table 4.5: M/L’s in weighing order for dwarf spheroidals

4.4 SUMMARY

Before giving a final evaluation of the argument, we will initially assume
that dwarf spheroidals do contain dark matter. We are interested in
the consequences of such a situation, particularly with regard to the
constraints on the mass of the neutrino, if such a particle is supposed to
constitute that dark matter. The strongest constraint will be obtained
for the galaxy with smallest core radius and velocity dispersion, namely
Draco, for which we use the values o = 9km/s and r. = 0.15kpc, from
Aaronson ’87 [6].

Applying equation (2.11) in its mildest form, namely with n =
3ym, = m, =m,, = m,,g9, =g, = 9y, = gu, = 1 (Majorana
neutrinos), we obtain:

m, = (120eV)(100/9)/4(1/0.15)/2371/4 = 430eV (4.13)

The limit will be stronger if only one kind of neutrino exists, by a factor
34, giving m, > 566eV. It will however be weakened by allowing
for the very likely possibility that re(d.m.) > r.(vis), and the related
uncertainty in the assumption o(d.m.) = o(vis). Secondly, the neutrino
halo is not necessarily an isothermal one, as assumed in the derivation
of equation (2.6). As we have noted before, if the violent relaxation is
not complete (and there is no way of knowing whether or not this is
s0), we should be very careful about the distibution we assume. We
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have also seen that the more general constraints derived by Madsen
and Epstein [136, 137] can lower My,min by a factor of two or three, so
that a non-isothermal configuration for three types of neutrino can in
principle provide a limit as low as around m, > 140eV. If for example
we further have r.(d.m.) ~ 2r.(vis), then we are reduced still lower, to
m,, > 100eV. The upper limit from cosmology in this situation is, from
equation (2.12):

. (25/3)eV , H=50
My < { (100/3)eV , H=100 (4.14)

so that m, < 33eV is the best we can do towards compatibility with
m, > 100eV. At the other extreme, if only one neutrino species is
present, the latter will become m, > 133eV while (4.14) becomes:

) {25ev , H=50 (4.15)

100eV , H=100

Hence even for the extreme case H = 100km /s/Mpe, we obtain a contra-
diction between the upper and lower limits, although clearly the effects
of using the constraints derived by Madsen and Epstein should be con-
sidered more quantitatively. This is not an easy task observationally,
to determine the quantities 8,7, and M(r,). If the halo distribution
is close to an isothermal in the inner regions [179], the discrepancy
between the upper and lower limits is far stronger, even if we retain
re(dom.) >~ 2r (vis):

my, > 305eV,  m, < H?/300eV  ;n =3, all m,, equal  (4.16)
m, > 400€V, m, < H?/100eV = ;n=1 (4.17)

We thus conclude, to a reasonably high level of confidence, that if
dwarf spheroidal galaxies contain dark matter, consistent with the re-
sults taken at face value for two of these systems, then this dark matter
can not be made of light neutrinos.

Continuing with our assumption that the data and their interpreta-
tion for Ursa Minor and Draco are correct, we use the principle of Oc-
cam’s rasor to infer that all non-pathological cases of dwarf spheroidal
galaxies contain dark matter (probably as halos). Therefore light neu-
trinos are not the dark matter in dwarf spheroidals. The next step in
the argument is usually to say that therefore neutrinos are not the dark
matter on larger scales, and that in particular they therefore do not
make up ordinary—sized galactic halos, the dark matter in clusters, and
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the cosmological dark matter which closes the Universe (if the Universe
is closed, that is). This step is though by no means necessary. It is
motivated in part by a taste for economy of theory, that the dark mat-
ter is the same on all scales, supported perhaps by the observation that
the ratio of dark to visible mass seems approximately scale independent
[68]. The information is not yet good enough to test this hypothesis
on the smallest galactic scale for dwarf spheroidals. Moreover, it seems
increasingly more likely that dwarf spheroidals are distinct ob jects from
their larger namesakes, as discussed in §4.1 — if this is true, there is no
reason to expect the constancy of the above ratio to carry over to these
systems, and, equally, no reason to expect the dark matter to be made
of the same particles or objects in dwarf galaxies as on larger scales.

We discuss briefly, in this light, the possibility that the dark matter
in dwarf spheroidals is baryonic. The two main candidates are dull, low
mass stars and heavy stellar remnants. This question has been discussed
by numerous authors, in particular within the context of dwarf galaxies
by Armandroff and Da Costa ’86 [13], and by Aaronson and Olszewski
‘87 [7]. The former regard the high values of M/L in Draco and Ursa
Minor as evidence that it is unlikely that the IMF be squeezed to the
extremes required for baryonic dark matter in these systems. They
instead consider the case of Sculptor, for which they calculated a central
M/Ly = 6. Suppose that star formation occurred in a single burst in
globular clusters, and that accordingly the initial mass function can be
represented by the simple power-law expression:

dN oc m=(+2)gdm (4.18)

with 0.2Mg < m < 50Mg. If m > 1M, implies a 0.7M remnant,
and no stars escape, then = ~ 2 gives a global M/L ~ 2.8, the mean
value for the globular clusters in a sample they considered. Ignoring
any differences that may occur when carried over to Sculptor, this gives
for a M/L of 6 values ¢ ~ 2.8 and z ~ —0.5 for low and high mass
biasing respectively. Neither of these values is implausible [128]. Mel-
nick and Terlevich '86 [145] constructed models for which the IMF is
a function of chemical composition, in the sense that more metal-poor
systems would yield smaller values of z. This -supports the idea that
stellar remnants form the dark matter in dwarf spheroidals. Using the
same method for Ursa Minor and Draco, Aaronson and Olszewski ob-
tained z ~ —1.3 for remnants and z ~ 3.7 for low mass stars if one
allows m > 0.1Mj instead of 0.2Mg. They went on to argue that in
the case of high mass biasing, one would expect considerable amounts
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of self-enrichment to occur, inconsistent with the extent to which dwarf
spheroidals are metal-poor. M.Clure et.al. 86 [142] find for globular
clusters a correlation between abundance and mass function parameter:
the most metal-rich have & ~ —0.5 and the most metal-poor z ~ 2.5.
Since dwarf spheroidals are metal-poor, this supports a low mass bias-
ing, provided a comparison between these two types of system can be
reliably made. To sum up this situation, arguments exist for both al-
ternatives — perhaps that based on abundance is the more convincing,
indicating that the metal-poor spheroidals might be more likely to have
their dark matter in low mass stars than in stellar remnants.

We now consider another consequence of taking the M /L calculations
for dwarf spheroidals at face value. Firstly, the Tully-Fisher relation ’77
[198] seems to be satisfied: o increases with decreasing Mp [120]. This
perhaps provides encouragement to believe that the results are correct,
at least qualitatively. As for the relation derived by Faber and Jackson
76 [66], that M/Lp o« LY? for elliptical galaxies, we have a different
situation. These authors realised that this relation would fail to hold
exactly for fainter ellipticals. What we notice for the dwarf spheroidals
however is a far greater discrepancy — the trend is actually reversed,
namely M/L decreases with increasing luminosity for the spheroidals.
This is good evidence that dwarf spheroidals are not a morphological
continuation of larger elliptical galaxies, and as such lends weight to the
idea that they are evolved from dwarf spirals.

Having convinced ourselves of the profound consequences of the exis-
tence of dark matter in dwarf spheroidal galaxies, we sum up the various
pieces of evidence and arguments both in favour of and against such a
hypothesis, which we conclude is a question which still has to be an-
swered firmly. The following list is intended more as a reminder than
some kind of balance scale, bearing in mind that the quality and not
the quantity of argument is more important.

FOR:

1. The tidal calculations of Faber and Lin give mass to light ratios
about one order of magnitude greater than for globular clusters;

2. the velocity dispersion measurements, pioneered by Aaronson, pre-
dict high mass to light ratios for dwarf spheroidals;

69



. the strikingly good agreement between these two independent meth-
ods (in particular, they both put the spheroidals in the same rank-
ing order of mass to light ratio);

. the reproduction of the Tully-Fisher relation by the observations
supports a belief in the observations;

. Monte Carlo simulations suggest that binaries do not account for
the velocity dispersions observed;

. the strong evidence for dark halos in dwarf spirals, coupled with
increasingly persuasive indications that spheroidals are evolved
versions of these galaxies, implies dark matter in the spheroidals;

- extended halos are necessary for dwarf galaxies in the theory of
Dekel and Silk, which neatly accounts for various correlations that
are observed in these galaxies.

AGAINST:

. The tidal analysis might be flawed due to the non-attainment of
tidal relaxation (local spheroidals not having completed enough

orbits around the Milky Way);

- the dwarf spheroidals for which we measure the highest M/L ra-
tios from equation (4.2) are also those most likely to be tidally
disrupting;

. the velocity dispersion analysis might be flawed for the same rea-
son;

. the small number statistics involved may be too serious a difficulty,
and error estimates in the past have been too conservative;

. measured velocity dispersions may be manifestations of binary or
atmospheric motions instead of self-gravity;

. the King models used may not be applicable to dwarf spheroidals,
which are in many ways different from globular clusters and might
for example be described better by exponential rather than trun-
cated profiles.
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There is of course at least one scenario where dwarf spheroidals do
contain dark matter, but this makes absolutely no difference to the
viability of light neutrinos as their constituents. This is the model of
Cowsik and Ghosh ’87 [50], which has a critically closed Universe with
~ 10eV neutrinos which settle down on the scale of a few Mpc and
not of individual galactic halos. The lower limit on the neutrino mass
derived from the Tremaine-Gunn constraint in this situation is around
m, > 3eV, in no contradiction with cosmological upper limits in a high
1 Universe.

In view of the large number of uncertainties in virtually all aspects
of the argument, it seems appropriate to finish with a brief enumeration
of some of the more obvious directions in which future work could be
fruitfully aimed.

1. A question of importance to the origin of, and degree of homogene-
ity among, the local dwarf spheroidals is why Fornax is, subject
to the observations, the only such system which contains globular
clusters.

2. Of crucial importance to the credibility of velocity dispersion mea-
surements would be a quantitative investigation into the effects
of the Galactic tidal field on the internal dynamics of the dwarf
spheroidal satellites. In particular, is the effect strong enough to
produce the observed o ~ 10km/s as opposed to the o ~ 0.5km/s
that would be expected if they were isolated systems without dark
matter?

3. Attempts to model dwarf spheroidals self-consistently with dark
matter components would ease the present uncertainties on the
values of the core radius and velocity dispersions of the dark com-
ponent, so important for the accurate application of the phase
space constraints. The feeling is that the effects of r.(d.m.) >
rc(vis) will probably not be great enough to avoid a smaller upper
limit than lower limit on m,, but this is completely untested. If
the luminosity profiles are better fit by exponentials than tidally
truncated King profiles, then the basic philosophy of King mod-
elling for such systems may have to be abandoned in favour of
some other approach.

4. If the data on central densities in Draco and Ursa Minor are cor-
rect, and if dwarf spheroidals are evolved versions of dwarf spirals,
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then as a consequence of such a transition the final central den-
sity will have to be around a factor of 10 greater than its initial
value. Could ram pressure stripping of gas or some other process
account for such an effect, and if so, would this mean that halos in
spheroidals are of a different nature to those in spirals, for which
we have po(d.m.) < po(vis)?

. How does the function M(d.m.)/M(vis) behave for the smallest
galaxies?

. Can the Cowsik—Ghosh hypothesis be tested by, for example, grav-
itational lensing observations and calculations?

. The theory of tidal limitation of satellites orbiting around a host
galaxy is still in a rudimentary state. The most recent study, by
Allen and Richstone ’88 [10] shows that for circular orbits the tidal
equation for 7, derived by King ’62 [117] and a generalisation by
Innanen et.al. 83 [107] are fairly well in agreement with numerical
simulations, although they fail badly for elongated orbits. Allen
and Richstone derive a first order theory for such orbits in much
better agreement with the simulations, but improvements could
still be made.

. The effects of (two——body—encounter—induced) evaporation, dynam-
ical friction, disk shocking and bulge shocking on globular clusters
in orbits around our Galaxy (as regards the respective rates of de-
struction) are currently being investigated by Aguilar et.al. ’88 8].
A similar treatment would be interesting for the dwarf spheroidals,
particularly with regard to the possibility that the seven dwarfs we
observe are the only survivors from an initially larger population.
Hence they would not be on orbits which are particularly elon-
gated, since otherwise they would have already been destroyed by
bulge shocking, suspected by Aguilar et.al. to have been the most
effective destruction mechanism in the past. It has already been
noted on p.52 that if the dwarf spheroidals are on low eccentricity
orbits then the use of the tidal equation to determine their masses

could be reliable.
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Appendix A

THE ISOTHERMAL
SPHERE

Consider the function f defined by:

f(e)z(—é—mi;)—g,—;exp<e/a2):@§;7%exp( ;,R-"') (A1)

identified with the distribution function of some stellar dynamical sys-
tem.
By integrating over velocity space we obtain:

p = prexp(s/a?) (A.2)

Poisson’s equation is:

Ld [ ,dp)
T (r :l;‘—) = —4rGp (A.3)

hence by (A2):

d [ ,dlnp\  4nGr?p
£ ( b ) - 1 (A.4)
An isothermal gas has equation of hydrostatic support:
Td GM
dp _ksTdp _  GM(r) (A.5)

dr m dr 72

where kp is Boltzmann’s constant, p, T are the gas pressure and tem-
perature, m is the mass per particle, and M(r) is the total mass within
radius 7 ([27], p.226). This yields, on differentiation:

< <rzdmf’) B (A.6)

dr dr kpT
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Comparison of (A4) with (A6) suggests the identification:
o = kpT/m (A.T)

subject to which we can say that the distribution function f given by
(A1) describes a stellar dynamical system which has the same struc
ture as a self-gravitating isothermal gas sphere. Hence the so—called
isothermal model of stellar dynamics.

Integrating (A1) over configuration space, we obtain for the distri-
bution of velocities:

F(v) _ Aexp(—v?/20?) (A.8)

for some X subject to normalisation. Thus the isothermal sphere has a
Maxwellian velocity distribution. It is interesting to note that this is for
a collisionless system, while kinetic theory gives that a Maxwellian dis-
tribution of velocities also obtains for particles which bounce elastically
off each other. We thus note that for the isothermal sphere it is of no
importance whether the system is collisionless.

It is trivial to check that:

v? = 3¢° (A.9)

so the mean square speed of the stars at a point is independent of
position. Moreover, the distribution function depends only on ¢, and
so is isotropic. Therefore the one-dimensional velocity dispersion is
equal to o.

Setting a power law density profile in (A4) yields the simple solution:

0.2

2w Gr?

p(r) = (A.10)
known as the singular isothermal sphere. This solution suffers from an
infinite central density. To avoid this problem, one uses dimensionless
variables p and 7, defined by:

implpe,  Fimr/r (A11)
where po is the central density and r, the ‘King radius’ (see Appendix
C):
902 1/2
= A.12
o (47erg) ( )
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Using equations (A2) and (A4) we obtain:

o
This equation can be solved numerically ([27], p.229), and approaches
the singular isothermal sphere by around r ~ 1579, which can thus
be used accurately in the outer regions. For spherical symmetry, the
circular speed v.(r) is given by:

vf _ GM(r)

r

(A.14)

which yields v. = o 21/2 at large r, a constant value in accordance with
observed flat rotation curves.
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Appendix B

LIMITING RADIUS AND
THE TIDAL EQUATION

In 1962, King [117] obtained the following empirical law for the surface
density f, derived from star counts in the outer regions of globular
clusters:
1 1\?
f=h (‘ - “) (B.1)
A

where the surface density drops to zero at r = ry, and f; is a constant.
This was the first definition of tidal radius r,. King identified this
abrupt cutoff, as the name suggests, with the tidal forces of the Galaxy,
and performed the following simple calculation for a globular cluster in
an elliptical orbit around the Galactic centre. An important point is
that the tidal or limiting radius is determined at perigalacticon in this
calculation, with justification that this is the point where the cluster
is cut back most severely, the tidal field being at its strongest there.
King argued that internal relaxation is too slow to increase the size
of the cluster between successive perigalacticon passages. For the dwarf
spheroidals which are of interest to us, internal relaxation will be slower,
although these galaxies will also spend more time in completing any one
orbit than the globular clusters since they are further out. It is unclear
how accurate the taking of perigalactic distance actually is. The result
of the calculation is that which was used by Faber and Lin ’83 [69] to
calculate the masses of the local dwarf spheroidals.

Let R, 6 be polar coordinates of the cluster centre as measured from
the centre of the Galaxy. Consider the line connecting the centre of
the cluster to the centre of the Galaxy. The tidal limit is then defined
as the distance from the point P to the cluster centre, where at P the
acceleration on a star is zero with respect to the cluster centre, at the
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moment of perigalactic passage.
If w is the angular velocity of the cluster with respect to the Galactic
centre and ¥(R) is the Galactic potential, then:

—— = Rw?— 2= | (B.2)

is the acceleration of the cluster with respect to the Galactic centre. Let
R, be the distance of some star measured from the same point. Then
the acceleration of this star with respect to the Galactic centre will be:

d’R, d\y) GM,.(R, — R)
Rs

——— — 2 —_— ' —
qz — R (dR IR, — RJ?

(B.3)

where M. is the mass of the cluster, assumed a point mass. Hence the
required relative acceleration is the difference between these two values:

d\p) (dw) _ GM.(R, - R)

dt?

d? 2
—(R,—R) = (R, — R’ — (Zﬁ = TR

d*v GM, f
~Y 2 — —— ¢ —
~ (w iw TR, - ng) (R, — R) (B.4)
to first order. This will vanish when |R; — R| = iy, which yields:
GM,
3 c

For the sake of simplicity, the Galaxy is now supposed to be ade-
quately represented by a point mass Mg, which yields:

d*w 2G Mg
drR? ~  R° (B.6)
and the angular velocity in the elliptical orbit is given by:
GM,
w? = R4ga(1'— e?) (B.7)
P
where perigalacticon is given by:
R, =a(l —¢) (B.8)
Hence (B5) with this further loss of generality becomes:
M, \'?
im=R [ —° B.9
" "(Mc(3+e)) 59

77



which is the familiar equation used in chapter 4. The assumption of a
point mass Galaxy underestimates M, for fixed Mgz and hence will not
be responsible for any high values of M, that may be found.

King found good agreement between r, and Tiim for a sample of
globular clusters around our Galaxy.
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Appendix C
ANALYTIC KING MODELS

The analytic King model of 1966 [118] was designed specifically for glob-
ular clusters. At the centre of such a system, the relaxation time is a
small fraction of its age [159]. Hence it is suspected that stellar en-
counters are important. An old version of the collisionless Boltzmann
equation, corrected for collisions, is the Fokker-Planck equation [27], for
which the encounters are predominantly weak. Assuming for simplicity
an unmized stellar system (or equivalently one in which all stars have the
same mass) which is isotropic everywhere, one can begin by considering
the function:

£(0,v) = k(exp(—j*v*) — exp(—j%v?)) (C.1)

at the cluster centre, where v, is the escape velocity.

The potential ¥(r) = E — 323 is taken to be zero at the surface of
the cluster. Hence a star with zero energy will just be able to reach
the surface. The cut-off is incorporated into (C1), since for v < wv.,
f > 0and for v > v., f < 0 and so must be taken to be zero. Another
approximation is the neglect of the fact that the shape of the cluster
will be distorted by the tidal force, which pulls more strongly on the
near side than the far side.

Since v} = —2¥ = —2¥(0) := —2¥, at the centre, (C1) can be

written in terms of energy:
f(0,v) = kexp(252Wo)[exp(—25°E) — 1] (C.2)

By Jeans’ theorem, the distribution function is the same function of E
at all points, so that at any other point we have:

f(r,v) = kexp [~25%(¥ — )] [exp(—720?) — exp(~j%2)]  (C.3)
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We note that the velocity distribution has exactly the same form as
(C1). Within an approximation made by Michie ’63 [147], this function
solves the steady-state Fokker-Planck equation, so stellar encounters are
taken into account everywhere, not just in the central regions.

Having obtained an expression for the distribution function in this
way from the velocity distribution, the next step is to derive the density
profile. This is done as usual by integrating over velocity space which
is isotropic in this case:

p :/ Ef(g,v)47rv2d‘v (C.4)
0.
For convenience the substitution y = —27%0, z = j%0? can be made to
yield:
K
p=2mkj % exp(y — yo)/ (exp(—z) — exp(—y))z'/?dx (C.5)
0
4 . y 3/2 1
=p= §7rkj exp(y — yo)/ exp(—z)z> *dz (C.6)
0

obtained by integrating the first term in the integrand by parts. The
density is thus proportional to the quantity:

D(y) = exp(y) [ exp(~o)e?da (C.7)

and so is given as a function of ¥. To obtain p as a function of r, one
must solve the Poisson equation:

Viy =

1d A d’%  24¥
— = ( ? ) = =4nGp (C.8)

r e = ——— — ———
r2 dr dr dr? = rdr
In terms of y and a dimensionless radius R := /7 we have:

dy  2dy

Fi7E) + RdR = -87(’Gj27‘3p (C.9)

The scale factor r, will be very close to the value where the surface
brightness drops to one half of its central value (this is the empirical
definition of core radius from King ’62 [117]), provided that the left
hand side of (C9) is —9 at the centre. This is found by power series
substitution. Hence: '

8mG i ripy = 9 (C.10)
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Identifying (C2) with a so-called “9owered isothermal sphere’, which is
in fact what a King model is [27], we note:

252 =1/0" ‘ (C.11)
Therefore: 052
2 90

r. = G (C.12)

is the analytic definition of core radius (some prefer to call it the King
radius: see [27], p.233), where o is the one-dimensional velocity disper-
sion of the isothermal sphere, constant by definition.

King models actually exist in families, because in solving the Pois-
son equation it is necessary to choose a value for the central potential,
amounting to a choice of y(r = 0) in equation (C9). The usual central
boundary condition, d¥/dr = 0 is taken (a particle at the centre of
a spherical system feels no force). Integrating Poisson’s equation out-
wards, we find that the surface on which ¥,y and therefore p vanish (this
corresponds to the tidal radius T¢) increases with the chosen value of ¥,
The central escape velocity increases directly with y(0): it is easy to see
that as y(0) — oo the family of King models goes over to the isother-
mal sphere. King models form a one-parameter family, characterised by
y(0), or equally by the concentration parameter:

c = log,o(r¢/7c) (C.13)

We can now justify equation (4.4) quite simply, the equation com-
monly used to calculate the total mass of a cluster:

M =16Tr.p < v? > (C.14)
The cluster is a finite sphere of radius r, and hence:

Tt R,
M = / p 4mridr = rf/ p 4mR*dR (C.15)
0 0

where R := r/r. and the second integral is py times tt, which defines p.
Therefore:

M =7 po p (C.16)
But by (C12) we have that:

po < a?/r? (C.17)
and thus:

Mxr, puo? (C.18)
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The numerical factor of 167 comes from an adjustment to the units of
pc, km/s, and solar masses [103].

As we have mentioned before, in a King model ¢ is a related pa-
rameter, but not the velocity dispersion. The latter quantity decreases
away from the centre due to the decrease in escape velocity. This means
that calculations of velocity dispersions from radial velocities of stars
that have been observed away from the centre have to be corrected up-
ward to obtain the o of equation (C18). This correction will always,
in the lack of extensive data, be a highly uncertain one, and it turns
out for reasons discussed in §4.3 to be far more convenient and accu-
rate to calculate the central value of M/L. This process is known as
core fitting, and equation (4.12) gives the central M/L in terms of cen-
tral one-dimensional velocity dispersion, central surface brightness and
‘core radius’. Richstone and Tremaine '86 [170] have pointed out that
on dimensional grounds alone one can always write the central mass to
light ratio in the form:

M 952

L~ " 2xGI(0)Ry
where Ry is the half-brightness radius, I(Rp) = 0.5 I(0), and 7 is some
constant. The interesting point is that 7 turns out to be very close to
unity for a wide variety of models, although it seemingly never equals one
exactly. For the isothermal sphere we have n = 1.013; for King models
in the range 3.89 < 7¢/7e < 353.2, we have 0.962 < 7 < 1.009; for poly-
tropes of finite mass, n varies from 0.903 to 0.971 as the polytropic index
n ranges from 0.5 to 5 (n — oco corresponds to the isothermal sphere);
and 7 is equally close to unity for a number of other models [170]. 1t
appears then that 7 is very nearly unity in any isotropic, spherical sys-
tem with constant mass to light ratio and a well-defined, flat, central
core. Richstone and Tremaine define King’s method to consist of the
application of (C19), with 7 = 1 exactly. There is confusion regarding
the characteristic or ‘core’ or ‘King’ radius which may be used, differ-
ent authors having used different definitions but not necessarily with a
consistent nomenclature. For instance, King ’62 [117] himself first gave
an empirical definition of core radius r, which amounted to:

1 2
I(R) = ky ([1 TR k2> (C.20)

where k; and k, are constants. This core radius is close, but not equal
to, the half-brightness radius:

0.919 < Rpp/r. <1 for ry/r. > 10 (C.21)

(C.19)
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The second definition King gave is (C'12), based on his analytic mod-
els. In this case too we have an approximate half-brightness radius:

0.883 < Rpy/rc < 1.004 for ry/r. > 10.7 (C.22)

For the isothermal sphére, Ry, = 1.004 r.. In a related model of Rood
et.al. ’72 [173], the core radius is the half-brightness radius exactly, since
the surface brightness is described by:

Io

This model, incidentally, has = 0.999

A heuristic derivation of 7 = 1 can be made as follows [170]. Make
the fallacious assumption that the velocity dispersion is independent of
radius and call it ¢. The density profile in the Rood et.al. model is:

) = (624

The Taylor expansion near the origin is:

3r? 4
p(r) =po |1 - oz + O(r%) (C.25)
The equation of hydrostatic equilibrium for isotropy is:
d, ., GM(r)
;l_'l:(pa ) - 7’2 p (0'26)
Substituting (C25) into (C26) yields:
— 3por/r? = f4wGp§r/302 = 90% = 4rGr%p, (C.27)
Now using:
M 2
M_ 2 g 2
I 7(0) Poltry (C.28)

which applies exactly for the Rood et.al. model, and putting (C27) into
(C28) with r. = Ry, as already noted, we obtain (C19) with n = 1
exactly. This is in principle flawed of course since the velocity dispersion
is not constant. For King models however, when 7¢/re > 10, the velocity
distribution near the centre is very nearly Gaussian, which means that
the dispersion is nearly constant in this region, and 7 is nearly one.
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Finally, it is interesting to note that a general expression for 7, calculated
from the hydrostatic equation, is:

A I plr)dn
9 waM(r)p(r)dr/r

(C.29)

a quantity which is manifestly different for each density profile, but
which conspires to lie within a small neighbourhood of unity for a variety
of models.
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Appendix D

KING MODELS
EXTENDED

King models are probably the most simple way of treating galaxies which
are tidally truncated at their boundary — they are isotropic, and are
single-mass models (i.e. all masses are treated as equal). The relaxation
times of globular clusters are somewhat smaller than their ages. This
suggests that mass segregation has occurred in these systems. The usual
way of pinning down the structural parameters 7e,7¢ and I(0) is by fitting
the observed I(R) to that calculated from a King model. However, it
is mainly the massive stars that are measured as contributors to J (R),
so if there is mass segregation this will not accurately represent the
true profile. As regards isotropy, it is noted that the outermost stars in
globular clusters are measured to be in almost radial orbits. Therefore
King models are a first approximation only to real globular clusters.

In 1976, Da Costa and Freeman [51] made a multi-mass model for
M3. The distribution function was essentially unchanged, although the
dispersion parameter ¢ now depended on mass m. The crucial point is
that thermal equilibrium was assumed, and represented as:

ma2(m) = constant (D.1)

Thermal equilibrium leads directly to mass segregation, but it is not
known and is difficult to check observationally, whether such a state has
been fully reached, or if we only have partial equilibrium. There are
reasons for which full thermal equilibrium may not be attained. Ina-
gaki ’84 [106] has found for instance that for equipartition at the cluster
centre we need Myan/Mmin < 2.8, whereas in real globular clusters the
individual stellar masses will range from about 0.1Mg to 1 M. It there-
fore seems unlikely that full thermal equilibrium is reached [76]. But
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it does appear that at least some globular clusters have evolved some
way towards equipartition: Da Costa 77 [52] (cited by Freeman [76])
has shown that in 47 Tuc the low mass stars (~ 0.45My) are less cen-
trally concentrated than the more massive ones (~ 0.87Mg). One of his
models, which corresponds to partial thermal equilibrium:

m'%0? = constant (D.2)

gave a M/L of about 4 for this globular cluster. The mass stratification
was a continuous one, with a mass function which allowed for moderate
proportions of both stellar remnants and white dwarfs, which would be
the ‘dark matter’ responsible for such a M/L, high for globular cluster
standards.

Illingworth and King 77 [105] used full thermal equilibrium models
for M15, 47 Tuc, and NGC 6388, requiring as much as 30% to 60% by
mass of white dwarfs to fit the o and I(r) data.

Anisotropy was first included in these models by Gunn and Griffin
79 [86]. A weak amount of anisotropy was sufficient to fit the data for
M3 without invoking surprisingly large numbers of remnants. But apart
from the neglect of both anisotropy and the equipartition process, King
models perhaps have another serious shortcoming. This problem is as-
sociated with the nature of the cutoff. The crucial point is as follows:
King models, and all related treatments, have distribution functions
with truncation in energy. Consequently, only stars with negative en-
ergy, with respect to the boundary potential, are included in the system.
Kashlinsky ’88 [116] has demonstrated three unphysical consequences of
such an effect: stars can be both bound to the system and at the same
time excluded from it; no circular orbits are allowed in substantial re-
gions; and the spatial boundary is poorly defined. As an alternative to
such a truncation process, he instead presents a distribution function for
a spherically symmetric anisotropic system with a truncation in radius.
This function allows for all orbits bound to the galaxy. By normalising
the potential to zero at the boundary r = R, the maximal energy of any
bound star with angular momentum J is:

J?

€ S €maz = 2_35

With this value as the cutoff (it is positive, hence stars which are ex-

cluded by the King-model cutoff ¢ < 0 can actually be bound to the
system), Kashlinsky obtains the distribution function:

I= (Er?lé?ﬁ [exp(—c/08) = exp(~J?/2R?0? ] (D.4)

(D.3)
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Two important points are to be noted. Firstly, this actually coincides
with the King-model distribution function for purely radial orbits, where
J = 0. Secondly, the distribution function is automatically anisotropic,
since f = f(e, J?).

Although interesting as a step forward in principle for finite system
modelling, further details are not really relevant for our purposes, for
the following reasons. Firstly, tedious algebra shows that for this distri-
bution function the velocity distribution is nearly isotropic in the central
regions, as are King models everywhere (since only stars with low J can
reach the central regions, equation (D4) makes this evident). Secondly,
numerical integrations show that the f given by (D4) and a King model
have similar total extents and total mass to light ratios. These are the
important properties which were needed for the previous investigations.
We note finally that for this new model the velocity distribution is tan-
gential in the outer regions, the projected velocity dispersion is flatter
than for a King model, as is the projected density; and that the new
model is easily generalisable to axisymmetric flattening and rotation,
producing rotation curves which are indeed flat. However, the obser-
vation of predominantly radial orbits in globular clusters, and other
problems concerning the cutoff surface and absence of a third integral,
indicate that further modification is required.
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