International School for Advanced Studies

Trieste

Two Problems in
Condensed Matter Theory:

a) Surface Melting
with Long-Range Potential

b) Impurity-Impurity Interaction
in The Honeycomb Lattice

Thesis submitted for the degree of

“Magister Philosophiae”

CANDIDATE SUPERVISORS
Xijaojie Chen Prof. Erio Tosatti

Dr. Furio Ercolessi



Surface Melting
with Long-Range Potential



Contents

Introduction

1 Long-Ranged Potential

1.1 Mean-field theory of melting . . . . .« v v o v e e
1.1.1

1.1.2 Review of mean-field description of surface melting

Phenomenological explanation of melt growth . .

1.2 A model long-ranged potential . . ... .. ...

2 Bulk Simulation

2.1 Compensating pressure

2.2 Bulk properties . . . .

3 Surface Simulations

3.1 Method . . . o o
31.1 A “semi-infinite” slab . . . ... ..o
3.1.2 Tail force and energy . . . .« . . oo
3.1.3 The reflection wall . . . .. .o
3.1.4 Construction of the system . . .. ... .....

3.2 Low temperature results . . . . . ..o oo
3.9.1 Surface disordering . . « - . . . oo e
3.2.2 A specific heat peak . ... ... ..o

2.3 Intermediate temperature results: formation of the quasi-
liquid layer . . . . o oo e e e

3.4 Definition of molten layers . . . . . . . . .. oo

3.5 High temperature results . . . . .. ..o
3.5.1 Surface melting . . . . - . . oo e

...................

S ov ot G

10

13
13
15

22
22
22
24
28
29
30
30
32

35
37
39
39



3.5.2 The growth of the quasi-liquid film
4 Discussions and Outlook

Bibliography

i



Introduction

The idea that crystal melting might be a surface-initiated process when
the liquid wets its own solid is very old [1,2]. A massive amount of
macroscopic and semi-macroscopic evidence for the appearance, just
below the triple point temperature Tpn, of a quasi-liquid film at the
solid-gas interface, particularly of molecular crystals, has been collected
by chemical physicists [3]. More recently, with the advent of powerful
surface physics tools, the study of this problem has begun at the micro-
scopic level. Several crystal surfaces which melt—i.e., where a growing
quasi-liquid layer {forms very near but below T.., have been identified
[4,5,6,7]. Other surfaces have also been found, which exhibit what might
be called “non-melting”, i.e. no quasi-liquid layer appears at all [8], or
if it appears, it does not grow as 1., is approached [9].

While these experimental studies are now expanding, and promise
to uncover much rich physics, microscopic theory for surface melting is
still a outstanding problem. For a microscopic theory, one would need
for a start a simple and accurate model, capable of accounting for the
bulk phase diagram including solid, liquid and vapor phases, the triple
point and the critical point of any true substance. Such a theory has
not yet been identified and the very basic building block for a surface
melting theory is missing. '

Alternatively, a very popular microscopic model is the so-called SO§
model of surface roughening [10,11,12], which accounts well for “verti-
cal” disordering phenomena occur at solid-liquid interface [13], as well as
at certain solid-vapor interfaces, such as high-index surfaces [14], where

steps either exist already at T = 0. or are very easy to produce at low



enough temperatures [15,16]. Unfortunately this model does not pos-
sess a triple point — the §05 “crystal” has no vapor and never melts
__ and is of little use very near T,, where the three phases coexist with
equal status. Due mainly to historical reasons and to the lack of any
better theory, roughening is often quoted as a theory of surface melting,
although this is clearly improper [17].

Computer simulations, most notably molecular dynamics (MD), would
seem in principle well suited to study surface melting. Several molecular
dynamics simulations have been carried out over the last decade, aimed
at finding and undefstandjng surface melting. By far the most popu-
lar system chosen has been a collection of particles with Lennard-Jones
(LJ) interaction. The classic work is that of Broughton and Woodcock
(18], followed up later by Broughton and Gilmer [19]. The disordering
of several surface layers below T, is quite well characterized by these
studies.

Nonetheless, the number of disordered or “melted” layers exhibited
by these MD simulations is too small to establish unequivocally that a
clear equilibrated quasi-liquid film is forming. Quite recently the opin-
jon has been expressed, based on very similar calculations, that the LJ
surfaces do not melt, but rather roughen [20]. This is argued on the
grounds that the number of surface vacancies is large, and that the
crystal periodic modulation of surface density is never small, so that
atoms appear to occupy “lattice positions”. However, the true problem
does not have to do with surface melting or roughening, both of which
we believe to occur on a LJ surface (they are not alternative), but rather
with expecting too much of present-day MD calculations. In a micro-
canonical calculation, the temperature fluctuates by a large amount, of
order \/——% (conversely in a canonical calculation, the energy fluctuates,
and one is not better off). Hence it is intrinsically difficult to approach
T, by less than say, one percent. This is usually insufficiently close
to T., to have a well-developed quasi-liquid layer, even when this wants
to form. While one can rather conclude that in its present version MD
is just not the right tool to study surface melting, it turns out that MD

allows a perfectly good study of the hehavior of surfaces which do not



melt [21].

Recently, Tosatti and Trayanov [22] have proposed a mean-field lat-
tice theory, based on minimization of free energy respect to two param-
eters, namely density p; and crystallinity c;. They applied the theory
to a LJ system, and found that the thickness of the quasi-liquid layer
increases asymptotically like (T5 — T)—%, rather than like |In( T\, — T)]
as expected, due to the long-range nature of the full LJ potential [23]. It
is interesting, in fact, that the apparently irrelevant weak potential tail
should have such a dramatic effect on the quasi-liquid layer. For even
longer-ranged potentials, such as one expected for molecular species that
have a permanent dipole moment, the quasi-liquid layer thickness should
be enhanced even more. This, in the end, might be the reason why some
of these molecular crystals offer the best examples of macroscopically
observable quasi-liquid layers [3]. Before proceeding further with the

contents of this thesis, two additional remarks can be made:

o The first is that the liquid film thickness diverges like t‘v—i""‘, where
t= L"J’;—;-I—', v is the interaction tail exponent, v = 6 for LJ system,
and d is the space dimension. This is in fact a general result,
already well-known in the theory of wetting [24,25] and will be

further discussed in section 1.1.2.

o A second, more important remark concerns the physical explana-
tion of why should long-range forces yield a thicker quasi-liquid
film. A qualitative explanation could be that of Tosatti [26], ac-
cording to which the long-range attractive tail has the effect of
shifting the interface between two phases, in favour of the denser
one (see section 1.1.1). Since the mean density difference between
the liquid phase and the gas phase is much larger than that be-
tween the solid and the liquid, we expect the quasi-liquid film

thickness to be increased with a longer-range attractive tail.

The idea of the present work is to choose a very long ranged potential,
which asymptotically behaves like 1™, v < 6. Such a potential is not

meant to describe any particular real physical system. But we expect



it (see chapter 1 and Ref. [23]) to give rise to an enhanced “super-
premelting” (SM), with many more layers melted than a LJ system
(v = 6) at same value of t = I%‘;"ll Hence, with this fictitious system,
we should be able to clearly observe surface melting by computer simu-
lation. The hope is to be able to equilibrate a thin liquid film of perhaps
5 — 10 layers thickness, at temperature near, but significantly below the
bulk melting temperature, and then study carefully for the first time its
static and dynamic properties.

The organization of this thesis is the following: in chapter 1, we
describe in some detail our model potential, and discuss some effects
due to its long range behavior. .‘We present in chapter 2, some of the
preliminary results we obtained in a simulation of a bulk solid crystal,
based on our model potential. The motivation for this bulk work is

two-fold:

e Adjust some system dependent parameters of the MD simulation

program [27] (such as time step, etc.);

e Locate the relevant bulk coexistence lines and the solid lattice

constants near melting.

These quantities are very important for the surface melting simulation,
described in detail in chapter 3. Some interesting results have been ob-
tained, in good agreement with expectations based on mean-field theory
(see chapter 1 and ref. [15,23]). Preliminary hints of unexpected features
have been found at lower temperatures. If confirmed, they might begin
to shed light on very unexplored aspects of surface melting, connected
with the first-layer break-up. The results are discussed, with some out-

looks, in chapter 4.



Chapter 1

Long-Ranged Potential

1.1 Mean-field theory of melting

We have mentioned in the introduction that the long-range (LR) inter-
action has important effects on the premelting behavior of the crystal.
In particular, the melt growth exponent depends on the interaction tail
in a critical way. While a thorough understanding of the melting phe-
nomena is still an open problem in condensed matter physics, theories
based on mean-field approximations (MFA) have been found to be able
to give the correct growth exponent [29,23,25,22,5,30], as well as the

bulk behavior of the surface free energy.

1.1.1 Phenomenological explanation of melt growth

To give a phenomenological explanation of the melt growth [26], suppose
we have a system of particles interacting by a short-range potential near
the triple point. The lower half space is assumed to be occupied by
particles in the solid phase, while the upper half space by gas par‘ticles.
Furthermore, let us suppose the solid to be wetted by a quasi-liquid layer
of a certain thickness [ located in between the solid and the vapor. This
occurs when, as it is usually the case, the sum of the solid-liquid and
liquid-vapor interface free energies is lower than the solid-gas interface
free energy [31,30,32,25].



The thickness { is very modest for short-range (SR) forces, obeying
the growth law: ' -
l o |In|T — Tol| (1.1)

with T, the transition temperature. Turning on the LR attractive tail
has the effect, first of all, to shift the solid-gas as well as the liquid-gas
and solid-liquid bulk coexistence lines, in favour of the denser phases.
That means, for our system, that some liquid will be recrystallized,
moving upwards the solid-liquid interface. At the same time, much more
gas particles will condense into liquid, so that the liquid-gas interface
also moves upwards, but in a much more pronounced way than the solid-
liquid interface. As a result, the liquid layer thickness becomes much
larger.

Evidently, this reasoning, based on macroscopic concepts, explains
only qualitatively why long-range attractive interactions should favour
surface melting. A much more detailed quantitative discussion is given

helow.

1.1.2 Review of mean-field description of surface

melting

Though an appropriate melting theory is still absent, it has been argued
that surface melting exhibits the same thermal singularity of complete
wetting [25,5]. Let us introduce a simple phenomenological mean-field
theory of surface melting [23,24] by observing that the interatomic inter-
action poteitials are repulsive at short distances and attractive at large
distances. Dividing them up suitably leads to a reference Helmholtz
free energy density fa(p,T), which describes the effects of the hard-core
repulsive parts of the interactions. Since the long-range interaction sup-
presses the fluctuations [33], the attractive parts of the interactions can
be treated in mean-field approximation. One obtains then the following

grand canonical potential {2 for a given number density profile p(7) [34]:

Wp(L Tl = [ dFfiliptM}T)



+3 [ @ [ ara (7= Fp(e()
+ [ @V (7) = ol (1.2)

Here, all integrals are taken over the half-space V. = {7 = (rjj,z >
0)}, w(|7 — 7|) is the attractive part of the adsorbate-adsorbate (fluid-
fluid) interaction, while the substrate (the semi-infinite solid) potential
is p,V (), with p, being the mean number density of the substrate.
(Note that the number density p is the fluid number density.) The
substrate-adsorbate interface is assumed to be in the zy plane at z = 0.
In equation 1.2 the hard core contribution to (1 is treated in a local
density approximation. The mean-field solution results from minimizing
Q{p(7)}, T, p] with respect to all density profiles.

One can split this minimization into two steps:

—
"

o Minimize Q[{p(7)},T, 1] in that subspace of {p()} in which all
profiles have the same interface position [, so that p(z = oo) equals
the gas density p,(p,T) in the bulk. The most favourable ones
will be those that are liquid-like for 0 < z < [. In this way one

constructs a function Q,({; T, p);

e Minimizing Q,(l; T, 1) with respect to [ yields the mean-field solu-
tion Q,(T,p) = 0y,, and the equilibrium interface position UT,p)
within MFA. The actual profile p(7; T, ) corresponds to that pro-
file which minimizes Q[{p(7)}, T, u] in the subspace belonging to

(T, p)-
An analytic treatment of this approach becomes feasible [25] if so-

called square-gradient theories are used. This means that fluid-fluid

interaction term in equation 1.2 is expanded into a Taylor series:
1 - . -
> [ a7 [ 17 = 7 p(Fe() =
1 o 1. =42 -
——ilbo/dﬂp(r)]z + 502 /dﬂv,o(r)] + O(wa) (1.3)

with e = — [ dFd(7) > 0, Wy = —3 [ dird(r), and @, ~ [drr™w(r).
(The derivation of equation 1.3 uses p(z = 0) = 0.) A necessary condi-

tion for equation 1.3 to be valid is that all the moments w, exist. This



requires that w(r) decays exponentially. For van der Waals forces 4
does not exist (i.e. the integral diverges), so that people in dealing with
long-range interactions, approximate the Auid-fluid interaction w(7) as
short-range, and treat the substrate potential as a long-range one. Sur-
prisingly, the thermal singularities obtained are the same, irrespective of
whether both interactions or only the substrate potential are long-range
(35,36,37].

To proceed, a so-called sharp-kink approximation is employed. In
this approximation, the continuous density profile is replaced by piece-

wise constant functions:

pr ifdy <z <1
p(z) =14 p, ifl<2z<L (1.4)

0 otherwise

Thus, [ is the thickness of the liquid layer of density pi, pg is the gas
density, d,, is a microscopic distance corresponding to the repulsive hard-
core. A macroscopic distance L gives the cutoff of the gas phase.

The effective mean-field potential Q,({) is the minimum of Q[{p(7)}, T, n
with respect to density profiles {p(7)} with a prescribed liquid-gas inter-
face position [. In the sharp-kink approximation, each of these subspaces
consists of a single profile, given by equation 1.4. Upon substitution
of equation 1.4 into equation 1.2, one finds that the grand canonical
potential can be separated into the following bulk (gas) and surface

contributions (A denotes the surface area):
Q{p(")}, T, p} = ALy (pg, T,p) + AQ,(1L, T, ) (1'5)

where Q, is the bulk term which does not depend on the [, while the

surface term 2, carries the important ! dependence [38,25]:
Q,00) = Stl+w(l)+ KR (1.6)

with t = (TIin — T)/Ton, and 5 = Tw(S — S.), where S; and S, are
respectively the bulk entropies per unit volume of the liquid and of

crystal at T,,, while I represents terius independent on {. The term



w(l) depends on the interaction forces, and is defined as:

M0=0w—%)hﬁ; @ﬂw'ﬁwl @VWﬂ (1.7)
where t(y) represents the fluid-fluid interaction potential,
ty) = / dzw(z)
y

w(z) = /dzrnzb((r”?’ —1—9:2)1/2) (1.8)
In equation 1.7, V(y) is the substrate potential, it is the three dimen-
sional integral of the long-range interaction potential @:

vis)= [ d | End((z =P+ i)

1/2

) (1.9)

One can easily prove that for a potential tail of kind:

a
pry (1.10)
the leading term in the V(z) is just of

u
V(z) ~ —— (1.11)
ZO'
with wg constant (the so-called Hamaker constant) and the exponent
oc=v-—3.
The mean value I of the liquid layer thickness is determined within

MFA by: 80.(1)

' al
Upon substitution of equations 1.11,1.7,1.6 into equation 1.12, one ob-

= (1.12)

tains easily that

[~ t77
n = o, —1=~— (1.13)

a

where «, is the exponent of the specific heat. For van der Waals forces,
one obtains the liquid layer growth exponent 1 = %, which is in fully
agreement with experimental results on Ar [5] and numerical calcula-

tions using a Lennard-Jones potential [22].



1.2 A model long-ranged potential

Computer simulation studies of surface melting are faced with the prob-
lem of the limited temperature (or energy, in a microcanonical simula-
tion) resolution available. Fluctuations are in fact, as large as 1/v/N,
or ~ 1% for a typical system with N ~ 10000. On the other hand,
the MFA-based study in Ref. [22] reports for example, the presence of a
4 ~ 6 layers thick quasi-liquid layer only 1% below the melting temper-
ature, for (110) surface of LJ system. This makes the surface melting of
the (6-12) LJ system' very difficult to investigate by molecular dynamics.

Concerning the choice of our model system in the surface melting
studies, on one hand, we would like to have v as small as possible, so as
to obtain a thicker and faster-growing liquid layer. On the other hand,
the bulk total energy sum diverges for v < 3, whence a neutralizing
background is needed for such potentials. We do not wish to have neu-
tralizing backgrounds in our surface problem, because of the ambiguities
it could generate. Therefore, we must have v > 3.

Also, it should be noted that long-range forces tend to suppress
fuctuations. Since we would after all want to observe some fluctuation
effects, v should not be too small. As a compromise between these differ-
ent motivations, we have chosen v = 4 for the present study. Precisely,
our potential is of the Lennard-Jones type inside a range rr = 3.20,
with o the hard core distance of the potential, and has a long-ranged
tail outside 77 (this form has been used previously by A. Trayanov and

E. Tosatti [39]):

Vs = 4e¢, {(%)12 — (%)6} if r <rr;

(1.14)
¢T(7‘) = —60(—%—:—&,): v otherwise.

¢(r) =

where ¢, is the depth of the Lennard-Jones potential, and a, b are pa-

rameters which are determined by the continuities of ¢(r) and %—(}l at

rr. With these two conditions, we easily find that o ~ 7.738, and
b~ —1.065. »

Clearly, this is an academic system, not particularly related with

any “real” system-—although the shori-range part is rare-gas-like. Its

10



only purpose is to allow a close examination by computer of the surface
melting phenomenon. In fact, according to equation 1.13, we expect
this system to have the exponent 17 = 1, and therefore to exhibit a
surface “super-premelting”, which would be clearly observable by
MD simulations.

Preliminary results of mean-field based study by Tosatti and Trayanov
[39] using the same potential, based on the same technic described in
reference [22], confirm this prediction. For a (110) surface, they have
obtained the exponent n = 1. They have observed that the number of
molten-layers is about 1 ~ 2 at 7.5% below Tp,, and it rises to about
4 ~ 6 at 1% below T),.

In practical numerical calculations, in order to limit the number of
interacting pairs, a cutoff range rc is introduced. The force can be

expressed as:

Fo= R(7) + (7)) (1.15)

where F’l(ﬁ) represents the force on particle ¢, due to the surrounding

particles within a sphere of radius r.:

Fy(i) = ‘7@(7‘1‘1)9(% = 7ij) (1.16)

511>

and 14:"2(7":) is the force on particle 7 due to the particles outside the

sphere:
— N —
B(7) = =Y Vig(ri;)0(ri; —7e) (1.17)
i
For convenience, throughout our simulations, we use r. = 7r. In this

way, F, is just the force due to interactions by a common (6-12) LJ
potential truncated at r. = 3.20, while Fz is the force due to the ~ 1/7*

interaction tail (see Eq. 1.14):

N o,
Fo(ri) = = > Vigr(ri;)0(rij —7e)- (1.18)

11



While F} is computed exactly (this amounts to sum explicitly over ~ 140

neighbors), ﬁz is approximated by an analytic method, described in

detail in the next chapters.
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Chapter 2

Bulk Simulation

2.1 Compensating pressure

In MD calculations of bulk systems, the particles are enclosed in a box
(usually a parallelepiped which we also used), and periodic boundary
conditions (PBC) are used to minimize the boundary effects. PBC con-
sist of repeating the computational box by rigid translation along the
three directions parallel to the box edges, so that the whole space is
filled. When computing the forces acting on a given particle i, one then
has to include the contributions coming not only from the other particles
7 in the MD box, but also from their images 3',3", -+, in the adjacent
boxes — if their distance from i is less than the interaction cutoff. Usu-
ally however, to reduce greatly the computer time, the cutoff r. is chosen
to be less than L/2, where L is the box side length (we assume a cubic
box for simplicity). It is easy to show that, with this choice, at most
only the nearest of all the images of a particle j can interact with ¢. For
this reason, this construction is called the “nearest image convention”.
We have adopted it, by using r. = 3.20 and L = 7.7110 (at T = 0).

In this way, however, we include only the first term in the force
splitting of Eq. 1.15. For the second term which contains the long-range
tail contributions, we approximate the system outside a sphere of radius
r. centered on each particle ¢, with a uniform fluid with density p. The

tail term is then obtained by integration on this uniform fluid.

13



In a bulk, the tail contribution to the force is zero in this approxi-
mation for symmetry reasons. However, the long-range tail has a non
negligible effect on the energy. In fact, the tail energy for a particle can

be calculated as:

V(7) = 1/2 ) ¢(ri;)0(ri; — )

i=1
- (J#1)

/+oo p /+oo dR? a

~ T z — -

J—oo 0 2 [(R2+22)5+b]4
ap

= (2.1)
with p the bulk density, approximated to be constant, and
27 7ol Te 1
[84 3 ( CL) { (T‘C + b)S (TC + b)2 e + b} ( )

Here, and from now on, we use the reduced units. For r. = 3.2, a =
—0.36. This dependence of the energy on the density of the system gives
rise to an effective “internal pressure”, which we can replace in our bulk
simulations with an equivalent external pressure. This pressure, also
called “compensating pressure”, can be introduced in the following way.

Suppose we have a system with IV particles without the tail inter-
actions, in thermodynamic equilibrium (in the absence of pressure) at
a certain volume . The density is thus po = go— At some instant, we
turn on the tail forces. After some time, the system will reach a new
equilibrium state with volume ); and density p; = év—l Since the tail

contribution Ep to the total energy is proportional to the density,
Er = Nap, (2.3)
as the density changes from po to py, the enthalpy will also change by

AH = Nalp, (2.4)

where

Ap = p1 — po. (2.5)

14



Analogously, the presence of an external pressure P would also cause

a change in volume Af}, implying an enthalpy change:
AH = PAS. (2.6)

Of course, for these two interpretations to be equivalent, it’s necessary
that

Ap
P = Na—t
“AQ
1 N
= Nazga(g)
= —ap’. (2.7)

Note that, for an attractive tail, o < 0, so that P is positive.

Thus, in bulk simulation, by using equation 2.7, we can account for
the tail correction by just applying the compensating pressure according
to the density of the system. Therefore, as far as bulk properties are
considered, our system characterized by potential 1.14 is equivalent to
a conventional LJ system under pressure. Of course, this is no longer

true when a surface is present.

2.2 Bulk properties

We study a model system composed of particles interacting with one
another via the potential described in the previous chapter. For our
simulations, we use the constant pressure MD method of Parrinello-
Rahman [28], which allows for variations of volume and the shape of the
box under the action of the external pressure and the internal stress.
The temperature of the system is also kept constant by scaling the
particle velocities at each time step. The program we used was originally
constructed by Parrinello and Ercolessi [27]. This program uses a 5th-
order predictor-corrector algorithm for solving the equations of motion,
and has many facilities for “slab” simulations. We present here the
results for N = 500.

In what follows, the physical properties are expressed either in the

reduced units or in the real units suitable for argon. For the former,

15



we measure energy in €, length in o, temperature in 7, with kp being
B .

. N . 2.5

the Boltzmann constant, pressure in % and time in (%%_)2, where m

is the mass of particles. For the latter, we substitute ¢g = 125K, ¢ =
3.446 A and m = 39.9g/mol into the reduced units. It’s well known that
the LJ potential serves as a good approximation for rare gas materials,

and this is particularly the case for argon. A time step is taken to be
1

0.00234(—’—";?)5, which corresponds to 0.5 10~ 4sec. for argon.

We start with an f.c.c. structure. The reason why we choose an f.c.c.
crystal as our initial structure is that argon is known to form an f.c.c.
crystal below 84K . In our constant pressure-constant temperature sim-
ulation, the system adjusts itself so that it can take the structure and
the volume which it should take under given temperature and pressure.
However, the energy barrier among the f.c.c. and h.c.p. structures is
fairly high, our system once constructed in a f.c.c. structure, does not
transform to an h.c.p. structure. At each temperature we initially set
the compensating pressure according to equation 2.7, with the density
calculated by using the lattice constant obtained by extrapolating those
at lower temperatures (for T' = 0 we use a trial lattice constant). The
system could however reach an equilibrium point corresponding to a
different density, thereby making invalid the initial choice for the com-
pensating pressure. For this reason, in the course of the simulation we
continuously monitor the lattice constant, and adjust the compensat-
ing pressure whenever the lattice constant is changed appreciably from
the initial one in order to achieve self-consistency. Changes in the pres-
sure during the run are rather small anyway, being typically contained
within ~ 5% at T' = 0.72, and practically zero at low temperatures
(T < 0.60), where the temperature dependence of the lattice constant
is nearly linear. |

Starting from T = 0, we increase the temperature of this f.c.c. crys-
tal up to T =084 with each increment of 0.08. At each temperature,
we have equilibrated the system for 5000 steps, calculating the desired
statistical quantities as time averages. We present the compensating

pressure and atomic volume as a function of temperature, respectively

16
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Figure 2.1:

Compensating pressure (in reduced unit) used in the bulk simulation (see equa-
tion 2.7).

in Figs. 2.1 and 2.2. Other data, including one-particle energies and
lattice constant, are reported in table 2.1. Note that the lattice con-
stant serves as input for the surface simulation described in the next
chapter. From fig. 2.2, we can locate the bulk melting point somewhere
between 0.72 and 0.84 reduced unit. Due to the unavoidable presence
of overheating, T}, is probably closer to the former values. The problem
of determination of T,, will be discussed in chapter 3. The correlation
function (see fig. 2.3) shows a gradual disappearance of the second peak
inside this temperature range, indicating loss of f.c.c. crystalline order.
Nosé and Yonezawa [40], who have studied a LJ system with a cutoff
distance 7, = 2.9 and a compensating pressure P = 0.593 reduced unit
(250bar), also estimated the bulk melting point to be 0.84 (105K ). Both

calculations are limited by the finite size of the simulation system and
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Temperature E,. Er Frin Eioe a p P
0.00 —8.300 | —0.671 | 0.001 —8.970 | 1.5422 | 1.091 | 0.43
0.08 _8.182 | —0.664 | 0.121 | —8.725 | 1.5476 | 1.079 | 0.42
0.16 —8.059 | —0.657 | 0.241 | —8.475 | 1.5534 | 1.067 | 0.41
0.24 _7.932 | —0.649 | 0.239 | —8.342 | 1.5596 | 1.055 | 0.40
0.32 _7.795 | —0.641 | 0.481 | —7.955 | 1.5664 | 1.041 | 0.39
0.40 —_7.650 | —0.632 | 0.601 | —7.681 | 1.5738 | 1.027 | 0.38
0.48 _7.493 | —0.622 | 0.721 | —7.392 | 1.5819 | 1.010 | 0.37
0.56 _7.322 | —0.611 | 0.842 | —7.091 | 1.5910 | 0.993 | 0.36
0.64 —7.128 | —0.599 | 0.962 | —6.765 | 1.6017 | 0.974 | 0.34
0.72 _6.932 | —0.588 | 1.082 | —6.438 | 1.6114 | 0.956 | 0.33
0.80 _6.604 | —0.566 | 1.202 | —5.968 | 1.6326 | 0.919 | 0.30

Table 2.1:

One particle short-range potential energy E,,, tail potential energy Er = ap,

kinetic energy FEki, total energy Etot = Epot + ET + Ekin, lattice constant a,

and particle density p and compensating pressure P = —ap?, as a function of

temperature. All quantities are expressed in reduced units.
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the finite simulation time. Due to the unavoidable presence of hysteresis,
implying superheating, the value 0.84 is thus considered as an upper
bound for the melting point. A more precise determination of Ty ~
0.74 + 0.02 has been obtained by studying a system with a free surface,

as described in the following chapter.
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Chapter 3

Surface Simulations

3.1 Method

3.1.1 A “semi-infinite’ slab

The usual geometry utilized in simulation for surface studies is the
“slab”: a system with two parallel free surfaces, separated by an ade-
quate thickness of material. By this, we mean that the thickness should
be large enough so as to make the surface quantities we are measuring in-
dependent of the thickness itself, i.e. well converged to their limit value
corresponding to an infinite thickness. Therefore, the slab is nothing but
a computational device, which avoids us the difficulty of directly study-
ing a semi-infinite system, which is what physically interests us. This
trick works well for a large number of things, such as surface phonons
in crystals, multilayer relaxations etc.. In all these cases, surface effects
decay relatively quickly when moving from the surface into the bulk.
However, we expect the slab model to work badly in our case, where tail
interactions coming from the deep bulk are supposed to have important
effects at the surface. For this reason, the slab model has to be replaced
by something which more closely approaches a semi-infinite system.
Our simulation system is still a slab, but its two surfaces are treated
in a different way. One of them is the free surface, which is the subject

of our study. The other surface is seen as an interface towards an infinite
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Figure 3.1:

The geometry used for surface studies (see text).

bulk (see figure 3.1). On this side, a thickness of material at least equal
to the force cutofl distance r. is kepl fixed, with the atoms frozen at
perfect lattice positions and not subjected to dynamics. These fixed
atoms have the purpose to supply realistic bulk-like short-range forces
to the moving atoms just above. The thickness of this fixed material
(at least r.) ensures that no moving atom can “see” the bottom surface,
that is, there are not large density anisotropies within a sphere of radius
7. centered on each moving atom. To minimize internal stress effects,
the lattice parameter of the fixed lattice is that of a pure bulk at the
same temperature we wish to simulate on the system with the surface,
and is taken from the bulk simulation described in chapter 2.

Outside a sphere of radius 7. centered on each atom, the system is
ireated as a uniform [luid and the forces are obtained by integration.
In this case, we explicitly assume a semi-infinite system, leading to the
formulas in section 3.1.2. This amounts to assume the presence of a
tyirtual” bulk below the fixed atoms (Fig. 3.1). Overall, this system

behaves as semi-infinite, with the exception of the aloms in contact
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with fixed atoms. Here, the dynamics is severely different from that
of a real semi-infinite system. This effect, llowe;\rer, is related to an
approximation on short-range forces, and we expect it to be relevant
only within distances of the order of r. from the fixed part. This becomes
unimportant if we make the total “moving” slab thickness much larger
than that. Long-range effects on the other hand, which worried us in
the first place, are now correctly treated, so that atoms near the free
surface “feel” tail contributions from an underlying semi-infinite bulk.
Finally, note that the crystalline fixed substrate has a practical ad-
vantage in avoiding a complete melting of the system even above the
bulk melting point, and supplying a “crystal seed” which is crucial to
recrystallize the system if the temperature is decreased. This allows us
to study easily the systém in both directions (solid to liquid, T’ increas-
ing, and liquid to solid, T' decreasing), obtaining both the lower and
upper boundary of the hysteresis cycle when measuring, for instance,

the number of molten layers as a function of T'.

3.1.2 Tail force and energy

In our surface studies, PBC are in effect only along directions parallel to
the surface plane (x and y directions), whereas free conditions are used
along the surface normal (z direction). As described in chapter 1, we
split the forces into a long-range part and a short-range part. The short-
range interaction is treated directly with the normal discrete sum (see
equation 1.16). Contrary to the bulk simulation case, the long-range
interaction tail gives an important contribution to the force in surface
simulations. For simplicity, we approximate again the discrete sum in

equation 1.18 by:

1 quT

ﬁz(ri):/dﬁp(ﬁ+r1)— )00 — ). (3.1)

Now the difficulty lies in the fact that our system is not homoge-
neous, since the solid, liquid and vapor phases may coexist, and several
approximations for p(7) have to be done to make the calculation of the

integral practically possible. First of all, we assume all the interfaces
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between phases to be planar. This is partially justified by the use of
a MD box repeated by periodic boundary conditions, which automati-
cally suppresses fluctuations of the interface along z direction (normal
of the free surface) with wavelength larger than the box size. Moreover,
we assume that the particle density depends only on the z coordinate.
In the end, to be able to analytically integrate out this term, following
Gibbs [41], we approximate the density function with a step form:

o(z) = { pr if z < zo5 (3.2)

po otherwise.

The plane parallel to the step.z = z is called Gibbs plane, and p;
and po are parameters determined by the density profile of the system.
The Gibbs plane is a reference plane throughout our surface simulation.
This is a common approximation, used by people for studying surface
excess quantities. Of course, it is not at all justified a priori, and can
easily rise up controversy. We’ll discuss this point in detail in chapter 4,
where we describe an improvement over this approximation, together
with a brief description of simulations in course, based on the improved
method. Anyway, for our present academic purposes, the step form
is not completely unreasonable, and amusingly, it turns out that with
this simplified model, we get a remarkably good agreement with the
theoretical expectations and experimental results (see section 3.5.2).
With these simplifications, 1?’2 is reduced to the following analytic

form:
22m(p1 — ,Oo)fz(lzo - Zil), if |2 — zo| < 75
Fy(z) = (3.3)

2m(pr — pol{falre)
+1p(re)lre® — (20 — z)?]}, otherwise.

where ) . .
a a
z)=—= — . 4

Here,  is the positive direction chosen as the normal of the free surface,

zo is the Gibbs plane position, calculated by fitting the real density to a

step function as discussed below, and z; is the z coordinate of particle ¢.
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The tail contribution to the one particle energy is just the integral

of Fy . We get, after some straightforward algebra

Vr(z) = Vi(x)
a ab 1

—27(py — po) ((Zi et b) — ?(Zi Yy b)2> ; (3.5)

Il

for z; > zp + 1o,

Vr(z:) = Va(zi)
Vi(zo + 7e) — 2m(p1 — po)
((alre) # Sr(rare)(ss = 20 =)

S LIOHCEEEE (36)

il

for zg — re < 2z; < 29 + T¢, and
Vr(z:) = Va(zo—7c)
‘/2(2?() - rc) -
a ab 1

1
2m(p1 —P0)§ Li — 2o —b + ?(z; ~ zg — b)?
a ab 1 :I

+
Te+b 3 (re+b)?

(3.7)

for z; < zg + re.
An alternative, but equivalent way of calculating the tail energy is

to directly integrate the tail potential:

Ve() = + [ drp()p(7 — DO Rl = v, (38)

with p(7) approximated in equation 3.2. The derivatives of Vr gives
out two terms: one term is that defined in equation 3.3; another term,
arised due to the derivatives of the heaviside function, is cancelled by
its short-range counterpart.

The tail contribution to the force and the one-particle energy are
plotted in fig. 3.2. We see that the tail correction acts as an external

field, the force is extremely long ranged, something like 10 o, and 1is
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Figure 3.2:
Tail force (dash line) and energy (solid line) as a function of z. The Gibbs

plane of density corresponds to z =10 in this figure. Reduced units are used.
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largest in the interphase region (near the Gibbs plane). This force tends
to keep the particles from evaporating away from the surface, i.e. it rises
up the energetic barrier between the liquid phase and the vapor phase.
Also, the energy contribution of tail interaction lowers the total energy
(in practice, this is as large as ten per cent, see table 3.2).

To construct the tail force, we have at first constructed the density
profile via simple histogram statistics, with a histogram width equal
to ;& of the lattice constant. In order to have an accurate fitting, we
have then smoothed out the density profile obtained in this way, by
averaging over a window of 11 histogram channels centered on each
channel. Then we fit the new smoothed histogram to a step function
by using the standard x? criterion. The plane corresponding to the
step position is then taken as the Gibbs reference plane. The whole
procedure is repeated at each time step, so that the reference plane can

move during the simulation run.

3.1.3 The reflection wall

In the course of simulation, some particles appear to evaporate away.
In order to avoid a loss of particles (which cannot be replaced in our
canonical simulation), we have imposed a reflection wall above the Gibbs
reference plane. The distance between the two planes is changed from
one temperature to another, and is adjusted to be large enough to not
affect too much the system (by the presence of the wall), but also small
enough to avoid excessive equilibration times. In practice, it turns out
that for T' < 0.60, the reflection wall is of no use, since no particle is
observed to evaporate, while at T' = 0.76 we put the reflection wall at
about 40 above the Gibbs plane.

The reflection wall works in the following way. Suppose during the
simulation, one particle goes beyond the reflection wall. Due to numer-
ical integration by discrete time steps, when this event is detected the
particle will have its coordinate (z-component) z = z; + Az, where
z,; is the coordinate of the reflection wall and Az > 0. If v, is the

z-component of the velocity, the wall will elastically mirror-reflect the
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Figure 3.3:
Dynamics of a reflection event. -The dots represent the positions assumed
by the particle at successive integration time steps. .The particle proceeds
through ABC -+, bul at C it is detected to be above the refllection wall. The
reflection procedure moves the particle in C' and inverts its velocity along
z. The integration algorithm remains essentially unaware of the event, and

proceeds to calculate the trajectory C'D - .- as though particle were coming
from B'. '

particle by transforming

z — z—2Az
v, — —U, (3.9)
While the inversion ol v, is quite obvious, the correction to z is required

to ensure a smooth operation of the integration algorithm throughout

the reflection event (see fig. 3.3).

3.1.4 Construction of the system

Our simulation system is composed of 1600 particles, of which 1300
are moving and 300 are fixed to mimic the bulk solid. Each crystal
layer consists of 50 particles, so that we have a total of 32 layers, of

which 6 layers are fixed. The number of fixed layers is chosen in such
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a way to correspond to a total thickness (3.85550 at zero temperature)
larger than the cutoff distance 7. (see equation 3.3). We have chosen
as initial structure, a f.c.c. crystal with a (100) free surface, which is
expected to be easy to melt [22]. Generally, surface simulations are
more time consuming, because of the larger number of particles, and
longer equilibration times. Thus, to speed up the surface simulations,
we have increased the time step to 0.004 reduced units, corresponding to
0.86 10~ 'sec. No appreciable errors appeared for this increase. At each
temperature step, we set the lattice constant a equal to that obtained

in the independent bulk crystal simulation described in chapter 2.

3.2 Low temperature results

3.2.1 Surface disordering

We have carried out simulations on surface melting by first creating
the crystal with the structure described in the previous section. In
the initial configuration, the distances between layers are all equal to
the bulk inter-planar distance. This configuration, however, does not
correspond to an energy minimum at T' = 0. In the equilibrium state,
the spacing between layers near the surfaceis usually fairly different from
the bulk inter-planar distance. For this reason, our initial configuration
intrinsically contains an amount of extra potential energy that, when
the simulation is started, results in an oscillatory motion along z of the
whole slab with a rather long period. To avoid this undesirable effect,
we first relax the system by quenching it for 250 steps. In this run, all
particle velocities are rescaled at each time step by a factor a = 0.5.
This run allows the layers to relax and brings the system closer to its
energy minimuin.

At this point, the positions are randomized and we heat up the
crystal to 0.36 reduced temperature units, with each increment of tem-
perature AT = 0.12, and equilibrate the system for 4000 time steps. Up
to T = 0.36 , every property of the crystal shows a solid-like behavior.
We then proceed to T' = 0.48. and equilibrate it for 6400 steps. At this
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igure 3.4:

Instantaneous lateral view of the crystal structure at T = 0.48 reduced units.

temperature, some atoms ol the top layer have been promoted over the
reference plane. Since the temperature is still far from the triple point
(T =~ 0.74, see section 3.5.1), these particles have not enough kinetic
energy to overcome the attractive force due to the other atoms, and
so they just oscillate near the top layer. In other words, they are just
adatoms. These oscillations originate fluctuations of the “vapor” density
and oscillations of the reference plane, slowing down the equilibrium pro-
cess. The formalion of adatoms can be visualized from figure 3.4, where

instantaneous positions of the particles are sketched. In figure 3.5 we see
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Figure 3.5:
z-y projected trajectories of the particles in the top layer within 300 time steps
(T' = 0.48). The free surface normal is toward the reader. Note the vacancy

indicated by an arrow.

the trajectory of the particles of the top layer over 300 time steps. Note
the presence of a vacancy. A plot of the deunsity profile (see figure 3.6)
shows an increase of width of the top layer, and a small secondary peak

due the presence of adatoms.

3.2.2 A specific heat peak

The total energy o is another quaulity from which we can get some
interesting thermodynamic informations. We have plotted the total en-
ergy as a function of temperature ( see figure 3.7).

There is a step-up between 0.36 and 0.48. The origin of this step
in the total energy is still uncertain. It corresponds to a peak in the
specific heat (see figure 3.8). Theoretically, soluble models also show a
specific heat peak al some 20% below roughening temperature [43,11]
Tr. 1t is generally accepted that MD simulations can not reproduce the
roughening transition, because the finite simulation size limits the fluc-

tuations. However, the specific heal peak is associaled in the models,
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Specific heat as a function of temperature. Reduced units are used.

with the loss of vertical short-range order, and that can very well be re-
produced in a simulation. The situation is still somewhat unclear, as for
example the entropy increase around T' ~ 0.42 extractible from Fig. 3.8,
seems one order of magnitude too large to fit into this explanation. In
attempt to understand the situation, we have plotted the density dif-
ference pg = p1 — po as a function of temperature (see figure 3.9). At
T = 0.36, po = 0 and pq is just the number density of the solid phase. At
T = 0.48, due to the presence of adaloms, po is increased to 0.6, while
py is decreased due to thermal expansion of the lattice. This suddenly
increases the tail potential energy (see equation 3.5, 3.6, 3.7). Whether
this is an artefact of our step approximation of the density profile, or
it is due to the effect of the long range tail is unclear. Probably both
are the origin. On one hand, since the adatom “layer” is very thin, the
smoothing of density profile (see section 3.1.2) significantly rises up the
adatoms density and so artificially lowers pq. However this cannot be
the only factor for the sharp decrease of pg, in view of the flat valley
of pg between T' = 0.48 and T' = 0.64, which means that pa(T = 0.48)
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Figure 3.9:
Density difference pg = p1 — po as 2 function of temperature. Note that, due
to the step approximation of density profile, in p; there are contributions from

both solid and liquid particles, just as in po there are liquid and vapor particles.

should not be too much off.

A simulation without the step approximation, to check this point
and other interesting behaviors, is presently in progress (see chapter 4).
This radically improved description of the interface, should enables us

to eliminate the uncertainties discussed above.

3.3 Intermediate temperature results: for-

mation of the quasi-liquid layer

We heat further the system up to T = 0.56, by setting the increment
of temperature AT = 0.04 reduced units. At each temperature we have
equilibrated the system for 7000 time steps. In the course, the number
of adatoms increased continuously, so that at T'= 0.56, a filim of quasi-
liquid is already (ormed as the plot of density profile (see figure 3.10)
suggests. Figure 3.11 (trajectory plot) shows the evidence of some in-

plane diffusion. It is interesting to see that the formation of this quasi
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liquid film is gradual (from T' = 0.48 to T' = 0.56) and smooth. While
the energetic cost associated with the creation of the first adatoms at
T = 0.48 is surprisingly high (see discussion in section 3.2.2), continuing

to form the quasi-liquid film is fairly easy.

3.4 Definition of molten layers

There are several qualitative and semi-quantitative ways to define a

molten layer :

1. The intra-layer pair. correlations have lost their crystalline

shell structure;
2. The mean square displacement is linear with time and large;

3. The average energy per atom is sensibly larger than in a

typical bulk layer;

4. The in-plane orientational order Oy (see below) has dropped

from close to one to close to zero.

We define st
0, = | Zis W]
i Wi;

Where the sums run over first-neighbor pairs and 6;; is the angle which

(3.10)

the ¢ — j bond, projected to zy plane, forms with the = axis. The weight

Wi = exp <—(i:—zf)—2) : (3.11)

function

262
with § half of the average inter-planar spacing, has the purpose of fil-
tering out all “non-coplanar” neighbors. As an example, we present the
behavior of O4 (figure 3.12) and of the density profile (figure 3.13) at
T = 0.72 reduced units. At this temperature, crystalline layers have
Q4 ~ 0.6, while O, drops to ~ 0.1 or less in the liquid phase. As a
practical criterion, we call “solid” a layer with Oy larger than 0.3 and
liquid otherwise. We have checked that this generally fits well with the

other criteria above. In particular, diffusion sets in rather sharply for
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Q4 smaller than this value, whereas for 0.3 < 04 < 0.45, thg diffusion
coefficient oscillates in time, following the fluctuations of the solid-liquid

interface.

3.5 High temperature results

3.5.1 Surface melting

Using the criteria above, the results for the simulations at higher tem-
peratures can be thus summarized: By heating up the system to T' =
0.60 reduced unit, for 7000 steps, one layer melts. From T = 0.60 to
T = 0.64, the quasi-liquid phase grows logarithmically (see section 3.5.2
and [15]). At T = 0.64, we have equilibrated the system for 22000 steps
and a quasi-liquid layer of thickness corresponding to 3 solid layers is
observed. At T = 0.68, particles in the vapor phase begin to appear, so
that the vapor pressure becomes measurable, although with large fluc-
tuation. (Note near the melting point, a small shift in T' corresponds to
a fairly large change in P.)
We have calculated the vapor pressure by defining it as

) (3 )

3 i=

P =

where n, is the number of particles that have been reflected by the
reflection wall during the simulation time T,, v; is z-component of the
velocity of particle i and A is the area of the reflection wall (i.e., the
slab area).

Special care should be paid for attainment of equilibrium at T =
0.68. In fact, after 20000 time steps of equilibration time, three quasi-
liquid layers are formed, with one more layer beginning to melt (in this
layer O4 = 0.36). After other 7000 steps of simulation, this layer is also
melted. This shows that the kinetics of the process is relati\‘lely slow on
the MD time scale.

There is a step-up of pg at 7' = 0.68 (see figure 3.9). This means
that the Gibbs plane is shifted towards the gas phase so that the density

difference rises due to the decrease in po.
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Proceeding further to T = 0.72, with continuous monitor and care,
we observe that 8 layers have melted (see figure 3.12 and fig. 3.13).
The thickness of the quasi-liquid layer corresponds approximately to
10 solid layers. The diffusion of the system (see figure 3.14) shows
a characteristic liquid behavior. We have plotted also the trajectory
(figure 3.15), showing a clear three phase coexistence. Table 3.1 gives
a comparison of our monitored results for this temperature to those
obtained by Broughton et. al. for a LJ system at T = 0.67. Particularly,
note that the latent heat of melting we obtained is smaller, which is
what we expect for the long range potential. The same is true for the
difference between the bulk solid density and the bulk liquid density. It
is interesting to note that while our bulk solid density is approximately
equal to that of BBA, our bulk liquid density is nearer to that of bulk
solid. The good agreement between the fixed bulk lattice spacing and

the moving bulk one confirms that the stress at this artificial interface
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Present BBA

Temperature T =0.72|T =0.67
Bulk solid density . 0.97 0.965
Bulk liquid density 0.86 0.834
Bulk solid pot. energy —7.35 —7.266
Bulk liquid pot. energy | —6.16 -6.020
Fusion energy 1.19 - 1.246
Bulk lattice spacing 0.8099

Fixed bulk latt. spac. 0.8057

Table 3.1:
Comparison of our monitored quantities at T = 0.72 with those obtained by
Broughton, Bonissent and Abraham (BBA) [42]. Note that the temperature
at which BBA monitored is the triple point of the LJ system, T' = Tm =
0.67, which is quite different from ours. Both systems exhibit a three phase
coexistence, T, = 0.67 in the BBA case, Ty, = 0.74 in ours. Our data in the
table are however given only at T' = 0.72, which is close, but not coincident with
T... Note also that the MD simulation of BBA limits the interactions within
a cylinder of diameter 40 and height 100. All the gquantities are expressed in

reduced units.
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Figure 3.15:
Trajectory at T = 0.72, over 300 time steps. The right plot is the (z-y)
trajectories of particles within a slice corresponding to a thickness indicated in
the left plot by a [.

is small.

Heating up to 0.76, the entire crystal is melted. Thus, we are led to
conclude that the triple point Ti, is about 0.74, which is substantially
larger than the triple point of LJ system, I' = 0.67 £ 0.01.

A more precise determination of T, is very difficult, because of the
intrinsic fluctuation of the temperature and the finite simulation time..
We have tried to cool down the system from T = 0.76 to T = 0.72
for 40000 time steps, but the number of molten layers remained larger
than that obtained by heating up. This could be attributed to the fol-
lowing reasons. In small systems, surface effects can cause substantial
distortions of the equation of state in the vicinity of phase transition.
Melting is usually a discontinuous and irreversible process. What we
can say is only about the thermodynamic properties in the limited time
range of about 10-1° to 10~? seconds. A more elaborate determination
of T., is however in project now (see chapter 4). In table 3.2 we report
average energies, pressures and reflection wall positions at different tem-

peratures. Note the step-up of By [rom T' = 0.72 Lo 0.76 by a quantity
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Some interesting quantities at several temperatures T' averaged over Mg,. time
steps: the one particle short-range potential energy E,., tail potential energy
Eiqai1, total energy Eiot, energy fluctuations o = \/7 E
heat C, = ng‘sﬂ and the distance of the reference plane from the bottom of the

material, d, ¢, averaged over N time steps. Reported also the vapor pressure

i>—<E

7 .
N(V=1) , Specific

P,ap, averaged over 7000 time steps. Reduced units are used.
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T E, Eiai Eior o Cy Pyop dry | Maye
0.12 | —7.962 | —0.638 | —8.454 | 0.6 10~* 0 24.07 | 500
0.24 | —7.805 | —0.626 | —8.138 | 0.7 1074 | 2.6 0 24.28 | 750
0.36 | —7.629 | —0.613 | —7.802 | 1.0 107* | 2.8 0 24.54 | 750
0.48 | —7.401 | —0.250 | —7.066 | 0.8 107* | 6.1 0 24.66 | 1300
052 | —7.322 | —0.270 | —6.959 | 0.4 107* | 2.7 0 24.67 | 1500
0.56 | —7.246 | —0.283 | —6.847 | 0.6 107* | 2.8 0 24.70 | 1000
0.60 | —=7.152 | —0.299 | —6.720 | 0.4 107* | 3.2 0 24.87 | 1000
0.64 | —7.022 | —0.324 | —6.566 | 0.6 10~* | 3.9 0 24.95 | 2000
0.68 | —6.895 | —0.396 | —6.462 | 0.3 107* | 2.6 | 1.49 107 | 25.35 | 3000

+1.49 1077
0.72 | —6.647 | —0.452 | —6.221 | 0.2107* | 6.0 | 2.63 10~7 | 26.21 | 4500
+1.26 1077
0.76 | —5.938 | —0.354 | —5.365 | 0.2 10~* | 21.4 | 1.15107° | 28.09 | 4500
+0.26 107°
Table 3.2:




Temperature | 0.60 | 0.64 | 0.68 | 0.72 0.76
thickness | 0.702 | 2.246 | 3.329 | 7.774 | oo(~ 23.127)
< O4> 0.296 | 0.224 | 0.188 | 0.155 0.104

Table 3.3:
Quasi-liquid layer thickness and associated orientational order parameter Oy,
averaged throughout the quasi-liquid layer. Reduced units are used. Note that
0.1 is the typical value of < O4 > for the liquid. At T' = 0.76, the entire
material is quasi-liquid like, except for the bottom two layers, which can not
melt, due to the strong influence of the fixed bulk.

E,iep = 0.48 (see figure 3.7). This is the latent heat, characteristic of

the melting transition.

3.5.2 The growth of the quasi-liquid film

In Table 3.3, we report the thickness | of the quasi-liquid layer at
each temperature, together with the value of Os. The criterion used is
that proposed in section 3.4.

A plot of log! versus logt (1 = ZT‘—’"—T with T, varying from 0.73 to
0.75) is shown in figure 3.16. As we mentioned before, the thickness
growth from T = 0.60 to T' = 0.64 is logarithmic. Fitting the last three

points, we get a growth law
l~Ct™", (3.13)

with 7 ~ 0.77 for T, = 0.74. This is in surprisingly good agreement
with the mean-field theory expectations (see sectionl.1) of n = 1. Care
however! We have approximated the density profile by a step function
(see chapter 1), which may still be reasonable for T < 0.60. As the
three phase coexistence formed for T' > 0.68, the step approximation
becomes just an academic simplification, and can not surely take into
account accurately excess quantities of the two interfaces. In fact, this

simplification tends to overestimate the long-tail effect (7 < 1).
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Figure 3.16:
The quasi-liquid layer thickness [ as function of t = I—%%‘— As we are not able
to accurately determine Ty, different curves have been plotted, corresponding
respectively to a) Trm = 0.75 (circles); b) Trn = 0.73 (triangles);
¢) Tm = 0.74 (squares). The corresponding value of i extracted from these fit
is a) 7 = 0.56; b) n = 0.77; c) n = 0.96. |
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Chapter 4
Discussions and Outlook

We have carried out simulations on a model system, with a long-ranged
potential. Both bulk and surface simulations appear to be successful.
The bulk results are physically very reasonable, and also rather close
to the known behavior of, e.g., rare-gas solids [40]. Surface initiated
melting has been unambiguously observed. In particular, a quasi-liquid
film of 8 layers is observed near, but below T.,, which fits well theoretical
expectations. In particular, mean-field calculations by Trayanov and
Tosatti [39], yield qualitatively similar results on a (110) surface with
the same potential used here.

A new unexpected specific heat peak has been found, at a temper-
ature where vacancies and adatoms begin to appear. The reliability of
this phenomenon is still uncertain, due to the approximations we have
made. Some improvement on the tail force calculation is now in progress.
This consists of directly using the equation 3.1, and treat the integral
with discrete sum over z, by dividing the material into fine slices paral-
lel to the free surface. Following the new method, the three artificially
introduced dynamic quantities zo, po and p; will disappear. The three
phase thermodynamics is thus more correctly taken into account..

Several interesting simulations are now in progress, with the follow-

ing purposes:

1. Check of the specific heat peak at T' = 0.42, which might be

of importance for the understanding of roughening;
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2. Study of the quasi liquid film growth law with the new method.
With proper account of the three phase coexistence, we might
be able to improve further the reliability of the results. In
particular, we should be interested in the cross-over between

the log t behavior and the ¢~! behavior;

3. Determination of the phase diagram, in particular of the
triple point in a more accurate way, by starting with a system

of solid-vapor coexistence mixture.

4. Investigation of dynamical effects at surface melting.
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Introduction

It is well known [1] that in a metal, charge-charge interaction exhibits
an oscillatory form and decays with distance as power-law, due to the

screening effects. Precisely, the interaction potential ¢(r) is given by:

¢(r) _ cos(Z/cI;r +77), (1)

T
where kp is the Fermi wave number, 7 a phase shift due to the scattering
of the electrons with the impurity center, and d the space dimension. In
an insulator instead, the interaction decays exponentially with distance.
Graphite is in an intermediate case, it is semi-metal. Consider a

tight binding, spinless model hamiltonian for two-dimensional graphite:

t
Hy = 5 Z [£A >< LB[ + l_l_B >< .l_A|7 (2)

Ladg<lalp>

where % (t < 0) is the hopping energy, and the kets |l > are tight
binding orbitals centered at site [. The sites form a honeycomb lattice
as illustrated in fig .1, which consists of two sublattices ‘A’ and ‘B’.
The sum with the condition < [4,l5 > limits [, and lg to be nearest
neighbors.

It is easy to obtain the band structure (see appendix A.1) of this
simplified model hamiltonian. There are two bands touching at one
point (the point P, see fig. .2). The lower band which is located between
—1.5t and 0t, is a bonding band; while the upper band is an anti-bonding
band, and is between 0t and 1.5¢. There is a saddle-point at the middle
of each of the two bands, precisely at —0.5¢ and +0.5¢.

If we make the sublattices inequivalent by, e.g., adding a perturbative
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Figure .1:
Honeycomb lattice formed by two sublattices: ‘A’ (open circle) and ‘B’ (closed

circle).
) \ :
- - ky
o

.) ] o
2 q

/ _ L P K,
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Figure .2:
Band structure (left figure) of our model graphite hamiltonian (equation .2).

The right figure shows the first Brillouin zone.



Energy.t =1

Figure .3:

Boron nitride band structure, obtained by doping one sublattice of the model

graphite system, with doping amplitude V' = 0.25¢.

hamiltonian
leLJ'l_B_> V1<£_li|a (3)

lp
the zero gap in the band structure will be broken (see fig. .3). This
corresponds to the well known boron nitride structure (BN).

A single impurity in 2-D graphite, Vi|lg >< lg |, though obviously
unable to create a gap, will produce a disturbance around the site lp.
This disturbance can be picked up by a second impurity, giving rise to
an interaction between them. In this thesis, we consider the impurity-
impurity interaction in our model 2-D graphite system. The interest is

many-fold:

e Find out the interaction which replaces equation .1 for 2-D semi-

metal;

o Obtain an estimate for the electronic part of the lateral intercalate-

intercalate interaction in graphite;

o Obtain, by straightforward analogy, the form of the hole-hole in-

teraction in a magnetic system with two insulated “Fermi points”,



such as the so called “s + id” RVB phase, postulated for the Hub-
bard model [2,3,4,5]. There one deals with magnetic excitations

instead of charge excitations.

Starting with the very simple hamiltonian defined in Eq. .2, we dope
the system by adding two point-like impurities, situated at different
sites, with impurity potehtials V; and V;. In the thermodynamic limit,
the Fermi level will not be changed by this extremely weak doping, and
we look for the interaction potential between these two impurities. Our
approach is as follows.

We first calculate the unperturbed Green’s function with a very ac-
curate method (see chapter 2), and then obtain the perturbed one by
Dyson’s equation. The impurity-impurity interaction is then obtained,
by calculating the total energy change, due to the simultaneous presence
of the two impurities, minus the individual energy changes caused by
each impurity. A

In chapter 1, we describe some theoretical preliminaries of the Green'’s
function theory of impurity problem. We present a very efficient way of
calculating the unperturbed Green’s function in chapter 2. Extreme nu-
merical accuracy is crucial in this problem, as one deals with exceedingly
small differences between large numbers. Finally, we show some results
obtained, together with some discussion in chapter 3. Some detail of

mathematical calculations are described in the appendix.



Chapter 1 |
‘Theoretical Preliminary

To set up our theoretical bases, we review some Green’s function theory
of impurity problem in this chapter. For more detailed descriptions, we
refer to the standard text books such as the reference [6].

The ground state energy Eo of a system of non-interacting electrons
is given by:

Eo = /_E" deNo(e)e. (1.1)

Here No(¢) is the density of states (DOS) and can be expressed in terms

of the Green’s function Go(€),
1
No(e) = -;Im{T[GO(f)]}, (1.2)

where T' means to take the trace, and ep is the Fermi energy, defined
through the normalization of particle density No(e):

ep v
/ No(e)de = N, (1.3)

o0

where A is the total number of particles in the system. In our 2-D
model graphite system, the Fermi level er =0 (see Fig. .2).

The real problem of calculating the total energy, is to find out the
Green’s function in a convenient way. In a perfect crystal, Bloch state
representation is a good candidate. We write the Green’s function (as

in common use, the Green’s operator is also called Green’s function



throughout this thesis) as

Go(e) = Ek: E—_—%—()%%ﬁ, (1.4)
where |k) is the Bloch state defined in equation A.2, and E(k) is the
eigenvalue associated.

Doping the system, we distort the periodicity of the crystal. How-
ever, in the weak doping limit, Dyson’s equation provides a straight-
forward way of calculating the perturbed Green’s function in terms of

the unperturbed ones:
G - GQ + GQTGQ, (15)

where T is the well known T matrix containing information of the scat-
tering center.
In particular, adding one impurity with potential V1 at site L, we

generate a perturbative hamiltonian
H,=|l>WV <l (1.6)
The corresponding T matrix is given by:

T = H,+ HGoH, + HGoH1GoHy + -+
= |I>t(V) <
Wi

t( V; ——
(1) = TG D

(1.7)

Upon substitution of equation 1.7 into equation 1.5, we obtain the per-

turbed Green’s function Gy [6]:

Gl = Gg + Ggl_l_ > < uGo (1.8)

nh
1 - ViGo(L,1)
The change of DOS 6 N; can then be obtained through:
§Ni(e:l, Vi) = Y (Gi(m,mje) — Go(m,m;¢))
= Y < UGolm > ti(V1) < m|Goll >

1 ViGo (L, €)
- — i T

T MGl Le)




Here we have used the following fact:

S <UGolm >< miGoll > = < 1IGolL >

- G (1.10)

where Gy (€) is the derivative of Go(e) with respect to .
There is a discrete level E, outside the band, given by the zero of

the denominator in the right-hand side in equation 1.9,
Go(l,; Ep) = 1/W1 (1.11)
Hence, the normah'zétion condition in equation 1.3, is equivalent to
/"’ deSNy(e) = —1, (1.12)
p

with ep the lower band edge. In the thermodynamic limit, the band
edges should not be changed by doping one or two impurities. However,
due to the finiteness of § in practical calculations, which causes a spread
of the sharp band edge (for details see chapter 3), ep is slightly changed
(for an attractive impurity potential, ep is lowered). Equation 1.12 is
then used to find out the value of ep in calculating the one impurity

induced energy change 6 E;, given by
SE(L, VM) = /EF de e6N1(¢)

_ /”’ de €5 Ny(e) + E, (1.13)

Doping the system with another impurity, e.g., at site m and with

potential Vz, we add another perturbative hamiltonian:
Hz = IZ‘I_?_/ > Vz <'Z7_1i. (1.14)

The perturbed Green’s function includes now, not only the two single
impurity scattering processes, but also the two-center multiple scattering
processes. It is possible to calculate the change of DOS induced by these
two point-like impurities [6]. It is given by:

1 ' '

§Ny(e) = —Im{[tiGo (L Li€) + tmGo (m,m;€)] +

T

(V1) (V2)[Go (2, L €)Go(l mi€) +

Go' (I, m: €)Golm. L €)] frmt}, (1.15)
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(e} = 1 — it Go(m, 1 E)GO(LHB €)

The factor fu converges to one very rapidly as the distance between the

two sites increases (see fig. 1.1). B

ased on this fact, we would expect

the impurity-impurity interaclion to decay also rapidly with distance.

Similar to the single impurity case, there are discrete levels, which

are determined by the equation:

1 - VZC’iOI(m,

i Byy) = 0 (117)

where Go is the single impurity perturbed Green’s function with the

impurity at site [, and amplitude Vi, i.e.:

Goi(my, mu; €) = Golm,m;e) + Go(n, L )i (Vi)Goll. 115 €)

(1.18)

The energy change cau be calculated by

€F
S Viim, Vi) = [ de edNa(e) + T By

(1.19)

p=1



where n, is the total number of discrete levels. Again normalization
condition (with an expression similar to the equation 1.12, but the —1
in the right-hand side is substituted by —n;) is particularly useful for
determining the ep in practical calculations.

The impurity-impurity interaction  is then defined as the difference:

¢(LV1;T_TL.,V2) = 6E2(L7 Vl;ma V2) - 6E1(£7 %) - 6E1(7_T£7 V2) (120)



Chapter 2

A feasible way to calculate

the Green’s function

A common approach to calculate the Green’s function Gl is the so-called
“sum over the Brillouin zone” (see equation 1.4). ‘This method however,
is extremely time consuming, expecially when small value of ¢ is an
intrinsic necessity of the problem in hand as in our case.

In fact, in a two dimension system, the DOS exhibits discontinuities
at both band edges, which produce logarithmic singularities of the real
part of G at the band edges (see fig. 2.1). In practical numerical cal-
culations, § is always finite, causing a spread of the perturbed DOS at
the band edges. This spread is then enhanced by the singularity of the
Re[Gy] due to the impurity scattering which mixes ReGy and ImGy in
the perturbed Green’s function. If the value of § is not sufficiently small,
the spread could be so large, such that the continuum and the discrete
level are overlapped, expecially when the latter is near to a band edge
(In the single impurity problem, for Vi = —0.2¢, eg — E, = 0.000009%).
Once this happened, the precision is drastically lowered, and calculation
of a small quantity, such as interaction energy between two impurities,
is practically meaningless.

Hence, it is necessary to use a better method to calculate G, which
is not time consuming for small values of §, and is accurate — if we

want to calculate the interaction potential between the impurities. Our

10
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Real (solid line) and imaginary (dashed line) parts of the unperturbed Green's
function Go(0,0). The imaginary part is just the unperturbed DOS times 7.

Note that the energies are expressed in unit t.

approach is as follows:

o First, formulate the problem of calculating unperturbed Green’s

function as solution of the standard lattice problem [T];

o Then, map the honeycomb lattice problem into the analytically

solved [7] triangular lattice problem.

o Express the triangular lattice Creen’s function in terms of the
complete elliptic integrals of first and second kinds of complex
modulus [7];

o Evaluate the complete elliptic integrals of first and second kinds’

by the powerful arithmetic-geometric mean method [9,8,10];

o Finally, from the unperturbed Green’s function obtained through
this accurate way, calculate the energy changes according to the

equations in chapter 1.
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2.1 Triangular lattice Green’s function

We first introduce the triangular lattice Green’s function. The analytic
solution of the triangular lattice problem has been found by Horiguchi
[7]. The lattice Green’s function for the triangular lattice with the near-
est neighbors interaction, is the solution of the following difference equa-

tion, which involves a §-function type inhomogeneous term

2¢,Gy(la, mb) — Gi(la + 2a,ma) — Gi(la — 2a,mb)
—Gi(la + a,mb + b) — Gi(la + a,mb — b)
—Gy(la — a,mb 4 b) — Gi(la — a,mb —b)
= 26106m0, | 2.1)
where [ +m is an even integer, and a and b are respectively equal to 3
and 1\/_ times the length of the edge of the triangles.
The boundary value of the function is required to be zero as [ + m?2

tends to infinity. The solution of this equation under this boundary

condition is given as follows [7]:

b m/a /b
Gi(la,mb) = (2“7r)2 /J/a de /-"/b dy
ei(lam+mby)

(2.2)

€ — cos 2aT — 2 COs aT Cos by
It is invariant under the rotation of the coordinate axes around the
origin, by an angle H(nm), n=1,2,3,4,5,
1 L1 .1 1
Gi(la,mb) = Gy(lacos -3—(717\') mbsin g(n'rr), lasin §(n7r)+mb cos =(n)),
' (2.3)

and under the inversion on la axis and mb axis (cf. Fig. 2.2),

Gi(la,mb) = Gy(la, —mb) = Gi(—la, mb). (2.4)

Using Eq. 2.3 for n = 5 and Eq. 2.4 for the inversion on mb axis,
one obtains the following equation by which the function Gi(la,mb) for

mb > 3la is expressed in terms of the one for mb < 3la:

1 1 1 1
Gi(la,mb) = Gt(-ila. + i\@mb’ 5\/§la., ——Emb). (2.5)

12



Figure 2.2:

The network of triangular lattice.

Thus it is sufficient to calculate only the values at lattice sites shown by
the black points in Fig. 2.2.

It can be shown [4] that for any complex variable ¢, the functions
G4(0,0), Gi(2,0) and G¢(4,0) may be expressed as (From now on, for

simplicity, we write Gy(la,mb) as Ge(l,m)):
G4(0,0) = (1/2m)gk(k)
- 1
Gi(2,0) = (e&/6m)gls (k) — 3

Gi4,0) = gl AWK + HERER) ~ (k) (20)

with
; 3(a? = 2)(k*+ "= 2) + (k* —2a% + a')e
fl(k) 3(kz . QZ)az
4(a® — 1)
fz(k) (k? — a?)a?

'2(k2 —2a% + (_\“1)
fa(k) = 3(k? — a?)a?

il

I

g = 8[(2¢, + 3)7 — 1]

13



o = 41— (26 +3)"Y
ko= 4(2e+3)"*/[(2¢ +3)* —1]
and K(k) and E(k) are given as follows:

K(k)  for {Ime}{Imk} < 0;
K(k)=<{ K®(k) for Ime > 0 and Imk > 0; (2.8)
K(3)(k) for Ime;, < 0 and Imk < 0,

Pl2e + 3+ 3], 2.7)

E(k)  for {Ime}{Imk} < 0;
E(k) =< E®(k) for Ime > 0 and Imk > 0; (2.9)
EG)(k) for Ime; <0 and Imk < 0,

where

il

(k) K(k)+ 2iK'(k)
E®(k) = E(k)+2i[K'(k) — E'(k)]
KE®(k) = K(k) - 2K'(k)
E®(k) = E(k)-2[K'(k) - E'(k)]. (2.10)
Here, K(k) and E(k) are respectively complete elliptic integrals of the
first and second kind (see Abramowitz et. al. [9]), K’ and E' are the
complementary quantities of K and E respectively,
K'(k) = K(k')
E'(k) = E(k"), (2.11)
where k' is the so-called complementary modulus of k,
kK= (1— k%) (2.12)

Recurrence formulae are particularly useful in numerical calcula-
tions. It can be shown [7] that, on the la axis, the values of G.(l,0)
at an arbitrary lattice site can be calculated through the following re-
currence formula:

Gu(l44,0) = [1/(1+2)][4( +1)(ee + 1)Ge(l 4 2,0)
—20(2¢,> — 3)Ge(1,0) +4(I — 1)(ee + 1)
xG(l —2,0) = (I — 2)G(1 — 4,0)],

(2.13)

14



where [ is even. From this equation, the values of G¢({,0) for I > 6 can

be calculated from the knowledge of G,(0,0), G¢(2,0) and G(4,0).
Next we consider the function G;({,1). From Eq. 2.1, one can ob-

tain the following equation by taking the symmetry properties 2.4 into

account:

Gl +1,1) = eGul,0) - % (Gu(l +2,0) + Gl — 2,0)] -
Gl —-1,1) (2.14)

where [ is even and larger than or equal to 2, and
Gi(1,1) = G4(2,0). (2.15)

More generally, for Gy(l,m), with [ > 4 and m > 2, the following
recurrence formula is obtained by applying Eq. 2.1 for lattice site (I —
1,m—1):

Gi(l,m) = 26G(l—1,m—1)—= Gl ~2,m)
—G(Il—-3,m—1)—G(l+1,m—1)
~Gy(l,m — 2) = G¢(I — 2,m — 2). (2.16)

We note that when Eq. 2.16 is used, the function G(I,m) for m > 3l is
expressed by the one for m < 3! by using the relation 2.5:

Gu(l,m) = ;t(%(z +3m),%(l —m)) (2.17)

2.2 Mapping the honeycomb lattice prob-

lem to triangular lattice problem

In order to map the honeycomb lattice problem into the triangular lat-
tice one, using the translational invariance of the unperturbed system,

we define the following two Green’s functions, G g and GgP4:

Gg?*(ia,jb;z) if [ and m in the same sublattice ‘A’;
Go(l,m; z) =

GuPAlia,jb;z) il ‘A andm e ‘B,
(2.18)
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where ¢ and 7 are two integers, such that in cartesian coordinates [—m =

(ia,7b), with a being half of the lattice constant, and b half of the bond

length, defined in figure .1. Here we have defined a complex quantity:
z = €+ 16. (2.19)

These two Green’s function satisfy two difference equations of the hon-
eycomb lattice (see equation A.11), which can be solved analytically (see
section A.2):
b wfa w/b
Gr**(la,mb) = 4z—a——/ da:/ dy

472 —7/a —7/b
ei(lam+mby)

X 4z? — 3 — 2 cos 2ax — 4 cos az cos 3by’
BA s ab w/a w/b
GH (la’ mb) - E—i /:-w/a. de /;ﬂ/b dy

ei(lam—i—mby)[eizbm + ei(—am—by) + ei(am—-by)]

.(2.20
4z — 3 — 2 cos 2ax — 4 cos ax cos 3by ( )

The functions Gg**(la,mb) and GgP*(la,mb) are invariant under
the rotation of the coordinate axes around the initial lattice site by the

angles 2nm, n =1,2:
Gg(la,mb) = Gul(zi, 1)
r; = la cos(gnﬂ') — mb sin(—é'mr),
n = la sin(%nw) + mb COS(%TL’IT), (2.21)
and under the inversion on the vertical axis
Gr(la,mb) = Gu(—la, mb). (2.22)

As we put z = € + i§, where € is a real and § a positive infinitesi-
mal number, we can easily prove that the real and imaginary parts of
Gu**(z : la,mb) are odd and even functions respectively, and the real
and imaginary part of GgP4(z : la,mb) are even and odd functions

respectively:

ReGg(e —i6;la,mb) = =N, ReGg(—¢,—16;la, mb)
ImGy(e —i6;la,mb) = 0L, JmGg(—€—1é; la,mb) (2.23)
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where A\, is plus or minus one according to whether the sites [ and m
belong to the same sublattice or to different sublattices. '

After the parameters a and b are deleted by variable transformation,
these functions Gg?4(la,mb) and Gx?®(la, mb) are expressed in terms
of the lattice Green’s function for the triangular lattice [7] (for simplicity,

we ignore the two constants a and b in the arguments of G),

Gr4(l,m) = 22G(e;l, %m)

1 1
GHBA(l,m) = Gi(el, §(m +2)) + Gele;l — 1, g(m - 1))

(el 1, %(m ~1))
e = (42°—3)/2, (2.24)

where Gy(e;l,m) is defined by equation 2.2. Thus, the analytic prop-
erties and the values of the lattice Green’s function for the honeycomb
lattice can be obtained from the knowledge of that for the triangular

lattice.

2.3 Evaluation of the complete elliptic in-

tegrals

One of the powerful method to calculate numerically the complete el-
liptic integrals is the so called “arithmetic-geometric mean method”
(AGM) [9,10,8]. Briefly, the method works in the following way 9]
(Here we present a standard description of the AGM. For the case of
complex modulus K, however, a modified method as described in the
appendix, in section A.3, should be used.): to calculate the complete
elliptic integrals at modulus ko, one starts from a given number triple
(a0, bo, co), With

ag = 1
bo = (1—kot)'/?
Cp = ]‘Jn, (2-25)



and proceeds in recurrence to number triples (a1,b1,c1)--- (@nybnycn),

according to the following arithmetic geometric means:

an = (a'n—l + bn—l)/2
b'n.' - (a“n——lbn—-].)l/2
Cpn — (a'n—l - bn_l)/2 (2.26)

and stops at i-th step when ¢; = 0 to the degree of accuracy. Then it

can be shown [9] that the complete elliptic integrals satisfy:

K(ko) = =/(2a:)

K—E 1
‘ e = ’2‘(C02 4+ 2¢.t + -+ 2¢%) (2.27)

This is a powerful algorithm — for a precision of 10715, it takes less

than 12 iterations.

2.4 Calculation of the Green’s function

Starting from calculating the complete elliptic integrals of the first and
second kinds, by using the arithmetic geometric mean method, and thus
calculating the modified ones I and E, we can obtain the triangular
lattice Green’s function (see section 2.1). As an example, we show in
fig. 2.3 the G4(0,0), which reproduces the singularities with high preci-
sion.

The honeycomb lattice Green’s function Gy (or equivalently the Go)
can be calculated in a straight forward way with equation 2.24. In
fig. 2.4 we present G*(14,0). Note the figure reproduces accurately

the oscillations as well as the singularities.
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Chapter 3 |

Results and Discussion

3.1 One-impurity perturbation energy

To find the energy change induced by the single impurity perturbation,
we should first find out the discrete levels, by looking for the solution of
the equation

1—-ViGo(l,L;2) = 0. (3.1)
The algorithm we used is a combination of the Newton-Raphson and
the bisection algorithms [11]. This algorithm has both the rapidity
of the Newton-Raphson zero searching, and the safety of the bisection
algorithm. Figure 3.1 shows the discrete levels as a function of the
impurity potential Vi. Near the band edges, the pole E, depends on
Vi exponentially as we expect, due to the logarithmic divergence of the
DOS at the band edges. For small value of |V1|, the discrete level Ej
can be {found only if § is small. Typically, for V; = —0.2t, we have found
that § < 1078 is necessary.

The perturbation energy is then calculated through the equation 1.13,
where the change of density of states §N, is calculated by using equa-
tion 1.9. In calculating § N, the derivative of the Green’s function is
obtained by calculating the derivatives of the complete elliptic integrals,
through the following analytic relation [9]:

dK (k) 1 (B(k)— k" K(k)
dk k? { k }
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Figure 3.1:

Discrete levels as function of the impurity potential. Energies are expressed in
- unit t. The curve is specular (E,(-V) = ~Ey(V)) fora repulsive perturbation
V.

dE(k) E(k) — K(k)

—5 p (3.2)

The calculation of the integrals is quite hard, due to the bad behavior
of the integrand. In fact, the main contributions to 6.E, come from the
Jower band edge (for attractive potential) and the saddle point, where
the 6§V, exhibits singularities (see figure 3.2). We have found the 5-
th order adaptive Runge-Kutta algorithm [11} most appropriate. This
algorithm was originally used for solving differential equations. It is not
difficult, however, to use it also for integration, because the derivative
of the primitive function equals the integrand.

Generally, the lower integral bound ep is slightly lower than -1.5t°
(for attractive potential), as the impurity caused spread of the band
edge. In practice, the value of ep is varied as varying Vi, and is de-
termined by the normalization condition (see equation 1.12). We have
calculated §E; for V, varying form —0.2t to —2t (see table 3.1 and
figure 3.3). High precision of the integration is necessary to have mean-

ingful results. As a test of convergence, we have varied § from 107°

21



)
_ 2.0 ] -
o i' :
T ,\ ;
i :
> | o
= 1.0} “ i
> o i
< A 5
[- " i
0 4 i
5 /// \ |
2 0.0n L
o [ . -
5 [/ \
5 1 2
2-1.0f - ‘
g il
2 \l :
<5 '
o)
Z2.2.0F \! -
- | )

S |

-1.5 ‘-1.0 -0.5 0.0

ENERGY ( DELTA = —6.E-8 )
Figure 3.2:

Single impurity induced change of density of states. Note that the energies are

expressed in unit .

to 101, obtaining the same results within the fourth decimal number,
provided the normalization is optimized.

It is known that the unperturbed density of states po(l; ¢) exhibits a
discontinuity as € approaches the band edge [6], i-e.,

polli€) T2 pa. (3.3)
As a result
Goll, L €) =& paln|(e — e5)/Cl; (3-4)

where C is a positive constant. Thus for very small | V1], Ep lies very close
to the band edge and one can use equation 3.4 for Gol(l, L ) Substituting
equation 3.4 into 1.11 we obtain

1 <0 , ) 1 '
EP V:\_f €Ep — C exXp (" ‘Vltpd> . (3-5)

On the other hand, the continuum integral in the equation 1.13 de-

pends on Vi linearly, for |V3| — 0 (see equation 1.9). We can thus
conclude that in the small |V3] limit, the energy change induced by the
single impurity perturbation depends linearly on the impurity potential

V,. Figure 3.3 confirms this expectation.
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Vi E, ‘ €B Normalization 6 E,
—0.2 | —1.500009 | —1.50000005 | —0.9995114 —0.1080
0.3 | —1.500033 | —1.50000008 | —1.0000060 —0.1661
_0.4 | —1.500690 | —1.50001000 | —1.0000236 —0.2283
-0.5 _1.504205 | —1.50001000 | —1.0000249 | —0.2938
0.6 | —1.513908 | —1.50001000 | —1.0000199 —-0.3623
0.7 | —1.532382 | —1.50000010 | —1.0000068 —0.4335
_0.8 | —1.560581 | —1.50000005 | —0.9999995 —0.5074
1.0 | —1.644042 | —1.50000005 | —0.9999994 ~0.6619
~1.2 | —1.756088 | —1.50000005 —1.0000081 —0.8241
~1.3 | —1.820115 | —1.50000005 | —0.9999998 -0.9076
_1.4 | —1.888337 | —1.50000005 | —0.9999963 —0.9925
1.5 | —1.960087 | —1.50000003 | —0.9999937 —1.0787
—1.6 | —2.034827 | —1.50000003 —0.9999948 —1.1166
—1.7| —2.112116 | —1.50000003 | —0.9999916 —1.2544
1.8 | —2.191594 | —1.50000003 | —0.9999912 —1.3436
~1.9| —2.272964 | —1.50000003 —0.9999932 —-1.4337
—2.0 | —2.355982 | —1.50000003 —0.9999935 —1.5245

Table 3.1:

Results of one impurity perturbation problem (§ = 4. 10~ is used). The
upper bound Ef of the integral is kept to be zero. Adjusting the lower bound
¢ to optimize the normalization, we obtained the same results of §E; up to
the fourth decimal number, for § varying from 1078 to 10!, Note that the

energies are expressed in unit t.
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Figure 3.3:
One impurity perturbation energy as function of impurity potential. The en-
ergy tends linearly to zero as is expected (see the text). Note that the energies

are expressed in unit ¢.

3.2 Impurity-impurity interaction

The calculation of §E, is similar to what we- have done in the previ-
ous section. First, we find out the discrete levels by solving the equa-
tion 1.17. The two impurities perturbed energy §E, is then calculated
through the equation 1.19. Finally, the interaction energy is simply the
difference defined in equation 1.20. In table 3.2 we present results for
the case where V; = —0.5t ,V, = —0.5t. The results for Vi = —0.5¢ and
V, = —0.7t, are presented in table 3.3. What are written in the first
column of the tables 3.2 and 3.3 are the positions of the second impurity
m. The other impurity is assumed at [ = (0,0). Note that the inter- -
action is repulsive when the two impurities are in the same sublattice,
and attractive when they are in different sublattices. The interaction
energy is smaller than the numerical error, when the distance between

the two impurities is larger than 4a (see Fig. 3.4).
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m ) €8 Normal. E, int. ene.
(2,0) | —4 1011 | —1.5008 | —1.0000229 | —1.52821
—4107% | —1.5029 | —0.9999991 —0.00115
(4,0) | —4 10-8 | —1.5029 | —0.9999988 | —1.51543 | —0.00001
(6,0) | —4 10~8 | —1.5029 | —1.0000067
-8107® | —1.5035 —0.9999996 | —1.51110 | —0.00009
(1,1) | —4 108 | —1.5020 | —0.9999985
—1.5028 |' —1.0000010 | —1.54878 0.01571
(2,-2) | —4 10~8 | —1.5028 | —0.9999924 ‘
~1.5030 | —0.9999964 | —1.52373 0.00605
Table 3.2:
Results of two impurities perturbation problem, V3 = —0.5t, V2 = —0.5¢. Note
that the engrgies are expressed in unit £.

m ) €B Normal. E, int. ene.
(2,0) | -4 10-% | —1.5029 | —0.9999991 | —1.56039 | —0.00144
(4,0) | -4 108 | —1.5029 | —0.9999992 | —1.53988 —0.00004
(6,0) | -8 10-% | —1.5035 | —1.0000102 | —1.53463 | —0.00012
(1,1) | —4 108 | —1.5028 | —1.0000002 | —1.59573 0.01992
(2,-2) | —4 10~% | —1.5030 ~0.9999951 | —1.55278 0.00782

Table 3.3:

Results of two impurities perturbation problem, V3

Note that the energies are expressed in unit t.
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Impurity-impurity interaction potential, with one impurity located at the ori-

gin, and the another impurity at the site where the corresponding interaction
energy are written. Fach site is characterized by two numbers, the upper
one refers to the case Vi = —0.5t,V; = —0.5t, and the lower one to the case
V; = —0.5¢, V, = —0.7t. Note that the energies are expressed in unit . The in-
teraction potential is repulsive for two impurities sitting at the same sublattice,

and attractive otherwise.
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3.3 Discussion

We have carried out calculations of the charge-charge interaction in
one model graphite system (see equation .2). We have first mapped
the honeycomb lattice to the triangular lattice — its dual lattice [7].
Using the results obtained by Horiguchi [7], the triangular lattice Green’s
function is calculated in terms of the modified complete elliptic integrals
of complex modulus, which in turn are numerically calculated in an
accurate way by a powerful “arithmetic geometric mean” method.

It turns out that the impurity-impurity interactions are: a) very
weak, b) oscillatory, c) decaying, rapidly with distance.

A crude explanation of these behaviors could be as follows:

o The weakness of the impurity-impurity interaction is very likely
to result from the fact that most states in 2-D graphite are well
removed from Ep. Only a tiny minority of states is near Er,
while a large pileup occurs at the saddle points, B ~ £0.5¢ (see
figure 3.2).

o The minority of states near Ep is however responsible for the long
tail of the interaction potential ¢(l,Vi;m, V2). Since the Fermi
level lies at the P-point, i.e. away from k = 0 and is two-fold
degenerate, one can expect oscillations (analogous to the Friedel
oscillation cos(ZEF -7) ) like cos((j -7), with Q= krp + kpg + kor
(see figure .2).

o At the analytic level, in d = 2, and with a zero-gap, one could
expect ! a decay of the interaction potential like cos(@ . 7)/rite,

with @ = 1. The present numerical results are well compatible

1The asymptotic behavior of the interaction potential ¢ can be obtained in the
following way: Since the states near Ep are responsible for the long tail behavior of
the interaction potential, using the well known kp approximation, we approximate the
band structure as E(E) = —pok. It is then possible to prove that the off-diagonal
unperturbed Green’s function decays with distance as power law l/r%. As ¢ is pro-
portional to Goz(f,vﬁ.) to leading order (see equations 1.9, 1.15, 1.16 and 1.19), we

obtain for the interaction potential ¢(r) o 1/



with these analytic behaviors, but do not extend enough to provide

a quantitative evaluation of a.

To the extent to which these results can be carried over to describe
the magnetic excitations of the so-called “s + i d” RVB state
of the Hubbard model [2], as discussed in the introduction, it is
interesting to note that they will imply attraction for holes sitting

on different sublattices, and repulsion when on the same sublattice.
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Appendix A

Some Detail of Calculations

A.1 Band structure

Giving the model tight binding hamiltonian defined in equation 2, we

are now going to solve the following Schrodinger equation:
Hlk) = E(k)Ik), (A1)

with the Bloch state |k) being linear combinations of tight binding or-
bitals:
k) = 3 alk)eally > + 2 Ak)eHEE]ls > (A.2)
la 3:]
Upon substitution of equation A.2 into equation A.l, and using the

ortho-normality of the orbitals, we find the following results:

la(k)|* = 18R =1 (A.3)

E(k) = £|S1(k)l; (A.4)

Si(k) = 3 etllarin), (A.5)
5:]

where the sum in equation A.5 runs over the three neighbors (see fig-
ure .1) of the site 4. '

There are two primitive lattice vectors in the graphite lattice:

n = 2a(1/2,v3/2),
r = 2a(—1/2,V3/2), (A.6)
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and two reciprocal vectors:

™

E_l_ = ;(1’1/‘/5)’
hy = —(=1,1/V3). (A7)

a
Here the parameter a is half of the lattice constant. Carrying out ex-

plicitly calculation of equation A.5, we find

E(k) = :}:%\ﬁ—l— 2{cos(k1 — ky)2m + cos(ki2m) + cos(kz2m)}  (A.8)

with k = kyhy + kol

A.2 Difference equations of the honeycomb

lattice Green’s function

There are two kinds of matrix elements of the Greens’ operator Go. One
(GUAA) is associated to the case where the two sites [ and m are in the

same sublattice ‘A’

et_,?_(ﬂ"é)

AA L) — :
GO (L’D]-’) E) 2&: € — E(&) +‘l:6’ (A"g)

the other one (Go?#) is associated to the case where the two sites are
in sublattices ‘B’ and ‘A’ respectively:

giklme—la) G, (k)

A €)=
Go® (la,mB; ) 2&: e — E(k) +16 lsl(k)l

(A.10)

Here, the sums run over the first Brillouin zone, and the function Si(k)
is defined in equation A.5. Note that in equation A.9 and A.10, we
have implicitly defined the superscript of G.

Using the translational invariance of the unperturbed system, we
introduce the two lattice Green’s functions G HAA and Gg® A, defined in
the equation 2.18. Hemnce, upon direct substitutions of equations A.9 and

A.10, and using the equations A.4, A.3, A.5, we obtain the following

30



two difference equations:

2G4 (i,7) — G - 1,7 +1) - GrPAE +1,7+1)
GuPA(i,7 —2) = 2606505
9:GBA(i,j) — Gr* i+ 1,5 - 1) — Gpl4(i—-1,7-1)
Gpti(i,j+2) = 0. (A1)

With the boundary condition that Gg(i,j) vanishes when r goes to
infinite, these two equations can be solved analytically (7], i.e.:

b w/a w/b
Ge**(i,5;2) = 4z—a—/ drc/ dy

472 ) -x/a —m/b
ei(lam+mby)

472 — 3 — 2 cos 2ax — 4cos ax cos 3by
b w/a w/b
GeP2(i,j;2z) = : dm/ dy

Z?:E —n/a ~m/b
ei(lam+1nby)[ei2bm + ei(—am—by) + ei(am—-by)]

(A.12)

472 — 3 — 2 cos2ax — 4cosax cos 3by

A.3 Arithmetic geometric mean method

The complete elliptic integral of the first kind is defined as

1
h
V1= kolsin®6

K (ko) = /07'/2 d6 (A.13)

while the second kind is defined as

w/2 -
E(ko) = /0 d0+/1 — ko2sin?0. (A.14)

Here the parameter ko is called modulus. Arithmetic geometric mean
(AGM) method has been proved to be very useful in calculating the
complete elliptic integrals [9]. For complex ko, a modified AGM method
has been proposed by Morita et. al. [8]. The modified AGM method
consists of recursive calculations of a three number series (SnytnsCn)s -

according to the following recurrence form:

An — 2/(‘L + ]’-‘/n—-l)
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k’ = k, ..11/2(1,

iy :‘ (tn—l + I‘:’n——ls'n—l)a"nz/2

Sn = (Sn—l + tn—l)a‘n/z

Ch = Cn-10Gn (A.15)

L
starting by so = 1, to = k'o?, and co = 1, where k'o = (1 — ko?)?. The
recurrence proceeds until k', =1 to the precisio'n required. It can be

shown (8] that K (ko) = r/(2¢,) and E(ko) = 7/(28n)-
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