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Introduction

In field theory anomalies appear as a breakdown at quantum level of classical
conservation laws: we can group them into two families according to whether the sym-
metry they break is a rigid or a local one. From another point of view we have the
family of consistent anomalies: they are characterized by the fact that they satisfy an
algebraic equation — the Wess-Zumino consistency condition — derived by the group
theoretical properties of the classical symmetry. They split in two different types: chiral
anomalies (gauge, local Lorentz, diffeomorphism anomalies and their supersymmetric
version), which appear only in chirally asymmetric theories, and conformal anomalies
(conformal and superconformal anomalies) which live in chiral and non chiral theories
as well. A general feature of the consistent anomaly is the loss of the classical tensorial
properties of the currents related to the broken symmetries: consistent anomalies do
not transform covariantly under the symmetry transformation of the classical theory.
As regards chiral] theories we can define a second family, the covariant anomalies: they
are linked with a redefinition of the currents in such a way that the classical trans-
formation laws are recovered. From the physical point of view the two families are
strongly distinguished by the fact that the consistent anomalies derive from dinamical
currents, coupled to the potentials of the theory, while the covariant ones do not. In
this sense the presence of consistent anomalies destroies the perturbative consistency
of the quantum theory: they reveal a conflict between renormalizability and unitarity.
When anomalies was discovered [1] they apperead rather as a calculation puzzle. In the
first eighties it was realized that a rich algebraic and geometrical structure subtends
the existence of consistent anomaly: its characterization as solution of a cohomological
problem [2] and its relation with deep algebraic geometric theorems, as the index the-
orem (3], were crucial tools in understanding and solving many problems. Much less
interest was given to an equivalent study of the covariant anomaly, that has not been
considered a fundamental object. Only recently, after few years the seminal suggestions
of [4], people realized that even for covariant anomalies does exist a deep mathematical
framework describing their structure [5].

A complementary approach to the problem of the anomaly relies on the construction
of some representations of the anomaly algebra: as concearns theories describing gauge
or gravitational interaction of spin one-half fermions this is obtained by means of the
so called fermionic determinant. In gauge theory different definitions of this object
were given by the use of (-function technique [6], finite mode regularization [7], reg-
ularization of fermion propagator [8], reproducing the correct perturbative results for
the consistent anomalies. In the gravitational case, at least at our knowledge, the



only analytical definition and explicit computation of the chiral determinant appeared
in [8, 9], claiming the absence of diffeomorphism anomaly: no definition in term of
¢- function was given until now. In this framework covariant anomalies sporadically
appeared as a mistake in the regularization procedure [10]: a first step toward a sis-
tematic construction of functional representing the algebra of covariant anomaly is
present in [11]. In this notes we extend those results for gauge theory to arbitrary
even dimensions: consistent and covariant gauge anomalies are different solutions of
an extended cohomological problem and they can be obtained from different fermionic
determinants. Then we try to generalize these results to the gravitational case: the
situation is more subtle, due to the difficult use of (-function technique. We are able
to solve completely the covariant problem and, using the properties of the extended
algebra, we find the correct operator whose (-function determinant gives the consis-
tent anomaly in d = 2. We perform the calculation of this determinant, that agrees
with Leutwyler’s result [9], obtained in a more indirect way: really we have found a
one-parameter family of operators realizing the same functional up to local terms. It
represents also a manifestly diffeomorphism-invariant calculation of the determinant
(in [9] polynomial counterterms are needed to achive the general covariance).

We do not consider here the case of non trivial fiber bundles (non trivial principal
bundles for gauge theories and non parallelizable manifold for spinors in curved space),
but we hope in future to extend our results to this interesting situations: anyway some
hints are given about it. We close remarking that there is some more physical interest
for the study of the covariant structure of the anomalies: in a recent paper [12] strong
relations between the quantization of anomalous theories and the covariant currents
has been found. Also the link between Chern-Simons theory in 2n — 1 dimensions
and covariant anomalies in 2n — 2 presented in [13] stimulated our studies. The com-
plexification of the gauge group, that is the main tool in our description of covariant
anomalies, has also been used, in different context, by Witten [14].
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Chapter 1

Algebraic characterization of
covariant anomalies

In this section we briefly review the definitions of consistent and covariant anomaly
for a gauge theory in flat d-dimensional euclidean space-time. We recall the algebraic
description of the consistent anomaly and we show how to extend this characterization
to the covariant one.

1.1 Consistent anomaly

Let T'[A] the vacuum functional in presence of the external gauge field A = AjT,dz"

and J§(z) = 5‘%#—% the gauge field current. In presence of chiral fermions the functional

a(x

I'[A] is not gauge invariant. If

6r A, = D, = 0,2+ [AL, A
describes the infinitesimal gauge variation of the Lie algebra valued parameter A = A, T,
and 5

5 = [ (B Au(o s

is the operator realizing the transformation on some functional of 4,(z) , the symmetry
breaking manifests itself by the occurence of an (integrated) anomaly A(A, 4)

§(NT[A] = A, A) = [ P22 Tr[AG](=)
DMJ# = "'Ga[A] (1'1)

Obviously §()) represents the Lie algebra
[8(A1), 8(X2)] = 6([A1, Ae]) (1.2)

5



forcing the Wess-Zumino (W-Z) consistency condition for A(M A)
§(A)A(Az, A) — 6(A2)A(A, A) = A([A, Ae), 4) (1.3)

Any local functional of 4,,, linear in A, which satisfies (2.3) is called consistent anomaly.
One can put (1.3) into a more compact form by turning ) into a ghost field c: the W-Z
condition is equivalent to

sA(c,A) =0 (1.4)
with the definition for s
sA = —Dc
sc = —z[c,c]
52=0 (1.5)

s is the B.R.S.T. operator, characterizing the anomaly as solution of a cohomological
problem. Defining the strength field

1
F=dA+AA= 5 F,.do"ds’

one can prove the “Russian formula”

1
i
=y

—

=

where
AA

S

F

I
+ +

s ER W “
I
Ib

(1.7)

In the case of trivial bundle (I recall that the relevant structure for gauge theory is
a principal bundle P(M,G) where M is the compactified euclidean space-time and
G is the Lie group underlying the theory) a solution of (1.4) is easily given applying
simultaneosly the “Russian formula” and the “transgression formula” [15]

P(F™) = dwy,_,(A, F) (1.8)

P is a symmetric ad-invariant polynomial on the Lie algebra and wd,_1(A, F) is the
Chern-Simons form:

P(F") = dwyn_1(A, F) (1.9)
Expanding the (2n-1) form wan_1(A) in powers of ¢

2n-1

won—1(A) = Z Wk _(Ac) (1.10)



the lower index giving the form degrees and the upper one the ghost number. The
so-called “descent equations” are obtained matching the powers of ¢

dwgn—l(A) = P(Fn)
Swgn—l—k(Aw C) + dwég:—l'z—k(Aa c) =0 (1-11)

For k = 1 the integration gives

s /w;n_z(A,c) =0 (1.12)

identifying A(A,c) = fwi,_,(4,c) as a good candidate for the consistent anomaly. An
explicit expression is ‘

/w;n_2(A,c) =n(n—1) /Ul dt P(dc + [A, c],tA, F[?) (1.13)

with F, = tdA +t?AA

We remark that the W-Z condition is linear in A so in order to find the correct coef-
ficient we need more informations about the matter content of the theory, or, equiv-
alently, about the definition of I'[A]. We remember that one can always add to A
a term of the type sa(A) + dB(A) of the correct canonical dimensions: this freedom
corresponds to the choice of the representative down the cohomology class.

For non-trivial principal bundle the situation is sligthly complicated: it can be obtained

a good solution [4] fixing a background conmnection Ay, belonging to the same bundle
of A. The formula (1.7) is modified as

P(F™) — P(F}) = dwy,_1(A, Ay) (1.14)

showing that P(F™) is not exact as in the case of trivial bundle: actually we consider
P(F™) as a form on the base manifold, the projection of a (exact) form defined on the
whole principal bundle.The anomaly acquires a dependence on Ay: it corresponds, as
we will see, to an equivalent obstruction in defining a Weyl determinant in this non
topological trivial situation.

1.2 Covariant anomalies

One can easily show that if the consistent anomaly is different from zero the current
J"(z) does not transform covariantly under gauge transformation. In general it is

possible to find a polynomial X*(A) which makes the current covariant [16]. One
defines a new current

~

Jr = Jr 4 X* (1.15)



with the property
5Ny = =\ (1.16)

recovering the classical tensorial transformation. The polynomial X#(A) is called the
Bardeen-Zumino counterterm and the covariant divergence of J* is known as the co-
variant anomaly:

D, J* = —G.(A). (1.17)

In order to understand this operation two remarks are useful: firstly the redefinition
of J! does not correspond to an allowed one of the vacuum functional. In other words
G.(A) does not belong to the same cohomological class of G,(A4) (and it does not satisfy
the W-Z condition). Secondly, even in the abelian case does exist a difference between
covariant and consistent anomaly: the functional form is equal but the numerical

coeflicient is different.

In d = 2n — 2 space-time dimensions the explicit expression for G(A) is known [16] (for
a simple group)

Acou(A, ) = /dmzn_zTT{cé] = n/P[c,F"—l]. (1.18)

Anyway also Ao, can be algebraically characterized, embedding it into the solution of
a cohomological problem [4].

We suppose that there is a subgroup K of a Lie group G with the properties that the
- invariant symmetric polynomial P vanishes when its argoments are restricted to LieK
(we assume again that P(_M,é) is trivial). It is possible to decompose A and ¢ along
LieK and an invariantly defined orthogonal complement (LieK),

A=A+ A,
c=cg +cy (1.19)

with Ay ,cx € LieK and A,,c, € (LieK), We remember that (LieK), is not in
general a Lie algebra.

The consistent anomaly A(c, 4) as it stands does not vanish along LieK but it reduces
to A(cn,A1): in reference [4] it was proved the existence of a general counterterm
I'p[A] = [ X(A,, Ak), local polynomial in A, and Ak, called the Bardeen countert-
erm, that added to the vacuum functional gives

a

A(C_L,A_L,AK) = A(C,A) ~+ SI‘B[A]
SA(C_L,A_L,AK) = 0

~

1
A(C_L’AJ_,AK) :TL/./U dtP(cl_,F"_l(AK—}—tAi)%—n(n— 1)

/ /O CdtP(Ay, 1AL i) - tA) — c1], — [AL,el)r, F7™%(Ax +tA41)).  (1.20)

}



Projecting A(C_L,AJ_,A]() on A =0
AleL,0,Ax) = n/P(cL,F”“l(AK). (1.21)

The comparison with the consistent solution

/w;n_g - /P(c, F™) 4 ... (1.22)

shows the appearence of the factor n [16]. Now if K is the structure group G,
A(cl, 0, F™~1) is the covariant anomaly. So taking a suitable embedding of G in some
larger group @G, it is possible to obtain a solution of the cohomological problem (1.4)
that reduces to the covariant anomaly after a projection. The same is true also in
presence of a non trivial P(M, @), requiring that the bundle is reducible to P(M, G).
An interesting feature is that, in this case, the covariant anomaly on the contrary of
the consistent one does not depend on some fix background connection: we will discuss
these difference in the framework of the functional approach. All these properties have
been further explored, and new descent equations, describing the covariant anomalies,
have been obtained using concepts like vertical cohomology and local B.R.S.T. symme-
try [5]. For our purposes it is sufficient the just described characterization: our choice
of the group in which to embed @ is different from the original proposal [4] and it was
firstly discuss in [11]. As we will see after it is directly related to a functional approach
and it is also possible to obtain the consistent anomaly. We will take G = SU(N).

1.3 The complex extension

Let us take complex values to the gauge potentials
A= AT, = A= (A} +iAT, = A,T, (1.23)

where now T}, is a basis for SL(2N,C): applying the previously derived formalism we
identify

G = SL(2N,C) Ax = AT, = A,
K =S8U(N) AL =AT,=4, (1.24)

with ¢ = ¢; and ¢; = ¢,.
Then we have to exhibit an invariant symmetric polynomial on SL(2N,C) vanishing
on SU(N): the correct choice is

P(As, 43) = %[P(F"(/l) — P(F(A)] (1.25)
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We can specialize equation (1.20) with the result

sA(A1, Ag;cy) =0

- 1
Avou(Ay, Agic) = % /0 dt / Ples, F™"Y (A + tAz))+

n(n —1)

+ 2t

/(‘)1 dt/P(Ag,(tz _ 1) [AQ,CZ], Fn—Z(Al +tA2))—-

—(ca = —c2; Ay — —42) (1.26)

For A, = 0 (real projection), putting ¢, = i¢; we obtain
Aoon(Ar,0,c5) = n/P(ég,F"_l(Al)) (1.27)

But we can derive from the present formalism also the usual consistent anomaly: if we
do not require the vanishing of the symmetric invariant polynomial on SU (N) and we
choose

P(A1,4.) = P(F"(A4))
or

P(Ay, A;) = P*(F"(A))

we obtain a solution of the cohomological problem under the form

Acon(AlyA%Cl)C?) = Aion = /w;n-—Z(A7 C)

or

Acon(“413 '—A27c17 _C2) = ZXzon = ‘/w;n—2(‘4t’c*)

It is rather clear that the projection on SU(N) (¢; = 0) reproduces, after the limit
A, = 0, the usual expression for the consistent anomaly Acon(A1,c1). This is not really
the more general way to embed the consistent solution into the extended problem,
although is the basic one: we are going to see that any solution that reduces to the
consistent one on SU(N) is built in term of a covariant solution and the just found

Acon(AbAQa Cy, Cg).

Any invariant polynomial
aP(F"(A)) +BP(F"(A)) (1.28)

with o + 8 = 1 reduces to the usual SU(N) polynomial P(F"(A;)) on A; = 0; con-
versely applying the descent equation to (1.28) one recovers a solution A*P(Ay, Asyciycs)
that gives

Aa'ﬁ(AlaoaclaO) = Acon(Ala cl)- (129)
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Let us see how A®? is made: we rewrite (2.28) using 8 =1 — «

1
Za[i(P(F”)—P*(F"))]—}—P(F") (1.30)
$0 immediately it results
Aa,ﬂ = 2C¥ACOU(A1, Ag, Cg) - 2aSPB(A1, Ag) + Acon(A—l7 —AQ, Ci, —Cg) (131)

AP appears (up to coboundary terms) to be the sum of a covariant like solution
20, (vanishing on SU(N)) and the consistent solution Alon: in other words two
solutions of the extended cohomological problem that reduce to the usual consistent
on SU(N) (and A; = 0) differ for a piece proportional to the covariant solution. So
all the informations about the consistent anomaly are encoded on Al or A% . The

con con’
natural question that now arises is: in the extended situation
SAcov =0

sA =0

con

Acop and Al could differ by some term of the type s H(A)?

One can prove with some explicit example (for istance in the simplest case d = 2) that
the answer is not. The two solutions belong to different cohomology classes of the s
operator defined on SL(2N,C).

Before closing the section we rewrite the equation for covariant and consistent anoma-
lies, embedded on SL(2N,C), in a more handful way for the future functional appli-

cations. Coming back to the original Ward operator §(A) for SL(2n,C), A = AT, we
write

§(A) = 61(A) + 62(s) (1.32)

with §;();) generating gauge transformations of SU(N) type and 6,(A;) living on the
orthogonal invariant complemement. The algebra of §; and 6, is

[61(A1),81(A2)] = &1([A1, A2])
182021, 82(X2)] = —=61([A1, Aq))
[61(A1),82(A2)] = 62([A1, Ao]) (1.33)

giving the W-Z conditions

61(A1)a1(A2) = 61(A2)ai(A1) = a1([A; As))
§2(A)az(A2) — 62(A2)az(A) = —ax([Ar, Aa])
)

6:(0)az(A2) — 62(A2)ar(M) = ax([My Ml (1.34)
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where a; = §;T and a; = 8T

The covariant solution corresponds

0,1:0

as # 0 (1.35)

The consistent one, as it was shown in reference [11], is
as = *ia; (1.36)

The sign relies on the choice of P or P~ as invariant polynomial. Obviously this is not
the only way to characterize the consistent solution: a; can always differ, as we have

seen, for a piece proportional to the covariant anomaly
Gy = tia; + aay’”’ (1.37)

So it is sufficient looking for solutions respecting (1.36): all the others correspond to
sum to the functional ' a functional al'cy with

51I\cov =0

cov

52rcov = Gy

At the end we remark that (1.35) and (1.36) are particular choices into the cohomology
classes giving in the limit Ay = 0 the canonical form for the anomalies: so the equal
‘s to understand there modulo coboundary terms (of SL(2N,C)): the projection on
A, = 0 produces the correct anomaly (on SU(N)) only for representatives satisfying
exactly (1.35), (1.36).



Chapter 2

Algebras and functional
determinants in gauge theories

In the previous sections we did not care about the definition of the vacuum functional

I'[A]: it must be obtained by some regularization procedure from the formal expression

T[4] = —In [[Dg]exp—Sa(A)

Sa(A) being the classical action for the field ¢ coupled to an external gauge field A.
Perturbation theory induces the fact that two different regularization procedures on
['[A] are distinguished only by some local term in the field A and its derivatives, of the
correct canonical dimensions. To choose a different regularization corresponds, for the
anomaly, to take a different representative down the cohomology class. If we extend
the gauge group we have to find a definition for T[A]: but now there are two non
trivial indipendent classes of cohomology for the extended problem. This means that
we can try to construct two non trivial representations of the algebra (1.33), giving
respectively the different solution, characterized by the conditions (1.35) and (1.36).
They are not distinguished by coboundary terms so only the second reduces to the
correct one, giving the consistent anomaly: (1.36 ) individualizes the correct vacuum
functional for an anomalous SU(N) gauge theory. We will use this property also in
the gravitational case in order to find the effective action in d = 2.

2.1 The problem of the Weyl determinant
The classical action for spinors coupled to a gauge or a gravitational background is

Su= [avipy o

13
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with D some first order operator of Dirac type
Formally it results

T[A] = — In DetP(A) (2.2)

Immediately we face up with a basic difficulty in defining the determinant for chiral
fermions: in this case Dis the Weyl operator that maps a chiral spinor on a spinor of
opposite chirality

pl F(S+),\[ — I‘(S_)]\[ (23)

where (S )ar (T(S-)ar) is the space of right (left) sections of the vector bundle as-
sociated by the Dirac representation to the Spin-principal bundle on M. I'(S4 ) and
I'(S-)ar are different Hilbert spaces and does not exist any canonical isomorphism be-
tween them: J) does not map an Hilbert space into itself and we have no canonical way
to define a meaningful eigenvalues problem for this operator. A way out is to modify
the Weyl operator in order to have a good eigenvalues problem but, in general, some
of the classical properties are lost after the modification. For the Dirac operator there
is no problem

Do : T(S)ar — T(S)ar
L(S)ar =T(S+)n © T(S- ) (2.4)

The eigenvalue problem is meaningful
pD \Ijn - An ‘I,n

n is an integer (we suppose to work in a compact manifold). A gauge transformation
on Dp acts

g:Po - U DU (2.5)

The covariant transformation (2.5) implies that the eigenvalues are costant under gauge
action. In general A, grows with n so the naive definition

DetDp =[] An (2.6)

is meaningless. We can use an analytic regularization, the (-function regularization
[6], that does not change the eigenvalues but simply cuts the contribution of the higher
one. The so defined determinant is invariant under gauge transformations. In the
Weyl case one immediately recognizes that even if the covariance is conserved by the
original operator, the same may not be true for the modified one. Let us go to see what
happens if we try to apply directly the {-function machinery to the Weyl operator: we
fail because there is no way to define its complex power [17]. As an example we consider
the d = 2 flat case, where the operator is

D=i0.(0.+ Ay) - (2.7)
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A, being an antihermitian potential and o, one of the two inequivalent representations

of the Weyl algebra [18]. The principal symbol [17] of D is

al(:n,f) = "Uﬂfu = —£ — 1o (2'8)

as we have choosen oy = 1 and o, = 2. To define a complex power of D we need the
existence of a ray of minimal growth [17], namely we have to find an angle ¢ in the
complex plane of the variable A = texpi¢ such that

texpid—a; #0 VE>0, [{ =1 (2.9)

This is clearly incompatible with the expression (2.8).We see that already for gauge
theory on a flat manifold the Weyl determinant cannot be defined, at least by {-function
method. The same is true in the curved space. The Dirac case is different: the principal
symbol is

a1(z, &) = —7uéu

that do possess the ray (v, are the Dirac matrices).

2.2 The definition of Weyl determinants

In order to obtain a good eigenvalues problem it is quite natural to fix an isomorphism

T

T:T(5-) - T(Sy) (2.10)
and to define

DetD= Det(TD) (2.11)

where now the operator 7)) admits a well defined eigenvalues problem even if the
covariance is, a priori, lost: our task is to find a such T to recover, under gauge
variation, the consistent anomaly from the just defined functional. In the gauge case
the question is easily solved, also for non-trivial principal bundle, and the embedding
into a SL(2n,C) theory determines not only the consistent but even the covariant
solution of the extended problem. The physical intuition gives immediately a result:
in the case of trivial bundle one can always describe a right fermion interacting with a
gauge field as a Dirac fermion in which only the right part is coupled with the gauge
field. In d = 2n the Weyl operator is

D= io’p(au + Au)
o, are the Weyl matrices obeying

ouoy, + 0,6, = 26, (2.12)
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&, is the other inequivalent representation of the algebra, existing for d = 27 [18]. We
can use .

. . Y2n+1

D= i7.(0u + (__5—)‘4#) (2.13)
v, being the Dirac matrices. i)has a good eigenvalues problem and admits (-function
regularization: naturally in this case the covariance is lost. It happens

- 0 p
p= (i&uaﬂ 0 ) ‘ (2.14)
so the determinant is
Det]D = Det|[(:16,0,) D) (2.15)
The isomorphism T appears to be the free kinetic Weyl operator of opposite chirality.

In some sense it corresponds to a particular normalization of the determinant: 16,0,
has no dinamical contribution and we can formally subtract it.

From a more formal point of view, we require (always for trivial bundle)

1. Det(TD) gives rise to the consistent anomaly (solution (1.36) of the W-Z ex-
tended)

2. The anomaly must be local in the gauge field
3. Det(T D) is smoothly connected to the free case

4. Det(T]) is a functional of the gauge field A, only (for non trivial P(M,G) this

is not possible as we will see).

Essentially we are trying to define the determinant of a first order operator in terms
of the determinant of a second order one. Moreover we extend the gauge group to

explore the possible different representation of the extended anomaly algebra, varying
the isomorphism T'.

A good general candidate for 7' is
T(r) = D(r) = i5,(8, + rAl) reR (2.16)

Now some remarks are in order: We can always take the matrices o, as o‘L, from the
general properties of the Weyl algebra, getting for r = I:

p=D’
and:
Det(T(1)P) = Det(P' D) = | Det( D)’ (2.17)

For r = 1 we lose the phase of the determinant in which the uneztended anomaly lives
[19]: it is well known that the modulus of the Weyl determinant is equal (apart from
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some regularization terms) to the Dirac determinant.

Let us study the determinant (2.16): conditions 3. and 4. are obviously satisfied by
¢-function definition. To test the different 7 we make the variation & and 6, on A,
and AL: we compute the answers of the just defined determinant and we try to find
the values of r for which

a; = $1a9 (2.18)
with
a; = & 1n DetT(r) D

as = &21n DetT(r) D
where a, and a, are local on A and At. We will find also T(r) for which

gy =0 a2 #0 (2.19)
Using standard (-function formalism [6] we obtain

WUA, A'51] = 2 TP Lo (220)

Tr is an operatorial trace and F(r) is some normalization factor that gives the correct
weight for the effective action.
After some efforts we have found:

51()W = }-(1-;5 (4:;),1 [ @ Tr{Ho(r)(1 — ) — Fo(r)(1 ~ )al~
-~ D e T AL PR e 221)
" ()W = F%;’)@%" [ e Tol B ()1 + )a + By (r)(1 + r)a]-
- (" U s Tr{a AL DB P) Hi (222
where

H, = Ho(D(r)D)
En = Hn(pb('r‘))

H, is the n-th coefficient of the heat kernel expansion of the operator in question.

The second term in the variation is in general non local requiring the use of the inverse
of differential operators: only in the abelian case, where the commutators disappear
we have a local variation for any value of r. The non local term disappears for r = 0
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and r = 1.
r = 0 (the consistent case):

1 ] 5 -
. =———o— | & Tr[(—Hn H,
or(®) = s g | 47 T H(O) + E0)e
(0) = et [ e Trl(—H,(0) + Ha(0))e) (2.23)
aj\a) = F(O) (4;71')" i n .
So ay = —iay. Therefore r = 0 gives the consistent anomaly; the correct choice for

F(0) is 1. We note that in this case the relevant operator is
(16,.0,)P = T(0) = i6,.0,

as we have guessed from physical arguments. The usual determinant is obtained pro-
jecting Ag = 0.
r = 1 (the covariant case):

ai(a) =0
1 1
() = F(@) @y
ai(c) =0 and ap(a) # 0 obtaining the covariant solution. Taking F(1) =2 one can
compute in the limit A; = 0 the trace [18]: the result is

&z 2 Tr|(— Ha(1) + Ha(1))e] (2.24)

1 sgn(o) [ on
(471-)" ’IL' )/d wEPl---I—‘ZnTT[FI—‘U—Q"'FIJEn—ll-l?na] (225)

which corresponds to the cohomological result (1.21), taking into account the correct
normalization factors for the polynomial P. We remark that the covariant anomaly
can be, in this way, obtained starting from A, = 0 varying the modulus of the Weyl
determinant with a general transformation of S L(2N,C). For general r we have again
solutions of the cohomological problem but they are not local.

We can make another use of the covariant solution [11]. . is in general (before the limit
A,=0) a functional of At and A. If we put, formally, At=0 taking A # 0, A € SU(N),
it is clear that we recover the consistent anomaly. This is not surprising because At=0
corresponds to r=0. In some sense the covariant solution of the extended problem is
more general because, using a formal limit, one can obtain both the anomalies. We
will explore this property also in the gravitational case.

At the end of this section we want to discuss briefly what happens in presence of a
non trivial principal bundle. In this case we cannot define a determinant smoothly
connected to the free one, because there is no connection on P(M,G) that descends
to the zero one on the manifold, so a problem of normalization holds. Moreover the
operator T(r)P for r = 0 is not the correct one: non trivial P(M,G) means that on
the manifold does not exist a global definition for the connections. One has different
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expressions on different patches covering the manifold: these different expressions are
linked by some gauge transformation (transition functions). Conversely an operator
depending on the connections does not possess a unique form but in different patches
has different representations connected by a gauge transformation. For example let us
suppose that on a subset a C M the Dirac operator is P and in 8 C M is D' when

an B # ¢ being
A =U"TAU +U'dU

it results
p=u-pu

. Now in order to have a determinant we need the eigenvalues, that are global properties
of the operator: the transformation law means that if in

a: DU, =77,
in B8
B: P, =Y,
with ¥/ = UU,,. In this way the eigenvalues do not depend on the patches.
On a non-trivial P(M,R) the Weyl operator do possess the correct transformation

law passing between different patches: but for the eigenvalues problem the relevant
operator is T J) and we need

(TPY = U (TP)U
This relation forces for T

T'=U"'TU

One immediately realizes that 7" must depend on some fixed background connection
Ay, belonging to P(M,G). The natural choice is

T = 7(0) = (9 + 4o)

Nevertheless we can again define a family of operators T'(r) fitting between the consis-
tent and the covariant case

T(r) = i5,(0, + (1 — r) A}, +7A%)
It is very easy to verify that
T'(r) = U'T(r)U

For 7 =1 the dependence on A, disappears, so the covariant anomaly does not depend
on the background fixed connection according to the cohomological argument of refer-
ence [4]
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Example: d = 2 non abelian gauge theory
The relevant Seeley-de Witt coefficients are:

1

1 . R A N
H(r)= ——-2-7"[14“,14::] + 57'5;111[14#’142]

BulrAl — A + -;-e#,,a”(fiu +rAl) (2.26)

- 1

1 . . ..
Hy(r) = 57‘[14;”142] + 5”;»[14;1,/11]

+ 50ulr Al — A - %euuau(Au +rAl) (2.27)

The choice 7 = 0 gives:
ai(a) = ias(a) = / dszgTT[(ewaﬂAu —i8,4,)a (2.28)
that for Au — A, is the usual consistent anomaly (modulo a coboundary). For r = 1:

a;(a) =0

"

1 Y o ay  a
as(a) = — / 2zTr([ewdu(A, + Al + [AT, A)—
—i0,(A, — A) —i[Al, 4, ]a) (2.29)

N

down the real projection AL = A,

1 o .
ar(a) = Z;/d“mTr[(e,“,F,w)a] =a

If we put formally in as(c)
Al =0

we obtain again the consistent anomaly (2.28) (modulo a factor i)



Chapter 3

Gravitational anomalies

In this chapter we turn our attention to the anomalous behaviour of chiral spinors
coupled to a Riemannian background. The occurance of gravitational anomalies has
been pointed out by the pioneering work of Alvarez-Gaume and Witten [19], and it
has known many attention in the meddle of the eighties [20]: for more recent studies
see [21]. We are interested in generalizing the formalism of covariant anomalies in this
context and in finding an analytical definition of the curved Weyl determinant, using
the properties of the extended algebra. We are not yet been able to give a general
solution out of d = 2: nevertheless we have performed an explicit coordinate-invariant
calculation of the determinant in the two dimensional space recognizing the correct

operator to use on a (-function approach.

3.1 General properties

The classical Weyl action is

o°n T . 1 =
Sa = /d- /g eq 0at (O + 7 Qucadooa) ¥ (3.1)

where ¢® and &° are the Weyl matrices, F,, are the n-beins fields (with inverse ) and
,,cq 1s the spin-connection linked to the metric tensor

Guv = Eua Eua

Quab = EZ (8;1Eub e I‘;}UE,\(,)

We are interested in describing the symmetries of the action (3.1): for the moment
we do not worry about the global description of this transformations on which we will
make some comments in the next pages. We remark that, on the contrary of the gauge

21
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case, the symmetries act on the fibers as well as on the base manifold.
Coordinate transformations (diffeomorphisms):

6Eya(z) = 0,8"(z) Eua(“’) + 0,Ea(z) € ()

6y(z) = O,¢(z) €¥(=) (3.2)
¢" generates the infinitesimal diffeomorphism on the base manifold.
Frame rotations (SO(2n, R) transformations):

§Ea(z) = Aap(z) Bpw()

89(z) = Aap(@)wastp() (3.3)

with Agy = — Ay, and wgp the generators of SO(2n, R) in the choosen spinorial represen-

tation (really the relevant group is Spin(2n) that is a double covering of SO(2n, R)).For

the Weyl case
1

Wab = 7 (0466 — 054]

Conformal transformations:
6Eua(z) = Az)Epa(z)

59(2) = vA(a)b (=) (3.4)
_ where v = n—%.

Let I'[E] the vacuum functional of the theory in the external background: let us study
the Ward identity derived from SO(2n, R) symmetry and diffeomorphism invariance.
Classically there are two currents:

the spin-current

65,
Jh(z) = —— 3.5
ab( ) 5Quab(m) ( )
and the consistent energy-momentum tensor
65(:[
THz) = .
1) = g5 (3.6)
From T"* one can construct the symmetric energy-momentum tensor
1
TH = S (ehTY + e4TY) (3.7)
and 1
T = 5 (BT~ BT) (3.8)

In absence of torsion

T = 0 (3.9)
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and the classical symmetries give the equations:

D,J% = (3.10)
D,T* =0 (3.11)

The presence of anomalies changes these conservation laws: let us suppose that T'[E)|

is not invariant under frame rotation. The generator of the SO(2n, R) rotations is

) = [ /G (6 E) 15—

0Eue = — A B

giving
§(\)T[E] = /dznm\/g,\a,, G = £(3) (3.12)
But using the quantum definition of the consistent energy-momentum tensor
ST E]
$E,,
§(NT[E] = / 42" 2/5 Ao Tt (3.13)

The anomaly G, is identified with the antisymmetric part of the energy-momentum
tensor (classically zero): the equation (3.10) is modified:

DyJY + Ty =0 (3.14)

The covariant divergence of the energy-momentum tensor involves the diffeomorphism
invariance: be §(¢) the generator of this symmetry

9 )
56) = [ o i) -
(f) mﬁ( & )EE“G
d?n 1 5 v 5 5
= / z+/9 '2‘( Eguu)eam + (5,\(§)E,1U)S'E';; (3.15)
with
6£glw = -Du Eu + Du El,l
L, .
Aab(&) = 585 e;) (augu + au&y) - gf\Q/\ab (316)

Diffeomorphism anomaly means

%

S(E)TIE) = [ &z geta, = af¢) (3.17)
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Using again the definition of T¢ and supposing the presence of the frame anomaly it
is easy to prove

D“T”" + ¥ = a” (3.18)
where
¥ =-D, (eZeZ‘Tab) -+ szTab (3.19)

We remark the interplay between the two anomalies: in fact a* is the genuine diffeo-
morphism anomaly, manifesting the non-invariance of the Weyl determinant under co-
ordinate transformations. Nevertheless in the Ward identity for the energy-momentum
tensor also appears the Lorentz anomaly Tys, that changes the balance equation. Even
in absence of diffeomorphism anomaly, say a* = 0, the energy-momentum tensor is not
covariantly conserved, but this is not a signal of general covariance breaking. It is an
effect of the Lorentz anomaly: the n-beins fields, not dynamical at the classical level,
acquire a dynamical meaning in presence of the frame anomaly. This mixing is better
understood if we write the whole algebra of the two symmetries.

If one try to give a global description of this algebra on the base manifold one must be
careful if the topology is not trivial (namely if the manifold is not parallelizable). The
key point is that the action of £ on the tangent plane (on E,, and Qa) is defined
only up to a local rotation of the orthogonal frame. Following [20] we introduce from
the beginning a fixed background field E), so the transformation laws globally defined

are:

§(\)Epa = A Epa

§(A) Qb = Dydas (3.20)
§(¢)Epa = LeEpa + (6" Qay) Bua
6(6)9;10.6 = Lfﬂﬁlﬂb + Du [gu(ﬂuﬂb - Q’Bab)] (321)

The following commutation rules hold:
[6(A1),8(22)] = 8([M1; A])

[6(61),8(A2)] = 6(¢" D, A)
[6(61), 6(€2)) = 6([€,&2l) — 6(&1E5 R, (3.22)

where L; is the usual Lie derivative, Di=D,+[Q, ], (€1, &) = €085 — 50,8
and R“uab = GHQBab — alﬂgab + [Qg,ﬂg]ub
We note that the global gravitational algebra is much more complicated than the gauge
one: the W-Z consistency conditions are:

§(A)t(A2) — (A2)E(A1) = ¢([A1; Aa))

§(£0)t(h) — 8(A2)a(ér) = t(¢" D, A)
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§(€1)t(A2) = 6(€2)a(&1) = a([é, &2]r) — H(EVELR,,) (3.23)

In presence of non-trivial topology is not consistent to assume that a = 0 while it is
possible put ¢ = 0. In reference [20] a solution of the full cohomological problem (3.23)
has been given, using the same method outlined for the gauge theory: this solution, in
the case of parallelizable manifold, gives zero for the diffeomorphism anomaly. It is also
possible to construct a Wess-Zumino-Witten action [16], using the n-bein E,,, in order
to compensate the Lorentz anomaly: the prize to pay is anyway the occurrence of a
coordinate anomaly. In the following we suppose, unless special remarks, to work with
parallelizable manifold, disregarding problems of globality. Within this limitation is
consistent to assume both a* = 0 or T,;, = 0 (one can pass from a situation to another
with a W-Z-W term): because our operatorial approach will be manifestly coordinate

invariant we take a” = 0. The problem reduces to find solution of:
8(A1)t(A2) — 6(A2)t (A1) = t([A1, Aal)

5(€)E(A) = —t(¢8,A) (3.24)
The first line is equivalent to a problem similar to the gauge theory one (with gauge

group SO(2n, R)) while the second equation shows that ¢(A) transform as a scalar

under diffeomorphism: consistent Lorentz anomaly can be obtained from the general
solution (1.13) where:
A — Q= QS apdz"

F— R=d2+[0,0]

Sap are the generator of SO(2n, R).

A strong property can be derived from the theory of the ad-invariant polynomidl over
a Lie algebra: the relevant polynomial to extract the SO(2n, R) anomaly is one of
rank n + 1 and this does exist only if » + 1 = 2k (it is not difficult to understand this
“selection rule” in term of symmetrized trace of the SO(2n, R) generators). The result
is the absence of Lorentz anomaly in d = 4k.

3.2 The covariant Lorentz anomaly

The presence of the frame anomaly, as in the gauge case, changes the tensorial proper-
ties of the spin-current J,q and of the energy-momentum tensor T#. Classically Jq.s
transforms:

5(’\)Juab = "'(Aac']ucb + )‘chpca) - 6,\v]pab- (325)
It is not difficult to show that in presence of anomaly:
)

8(A)Juab = 6(A)

E
5Q;mb F[ ]
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6 2
= 63T+ 2o [ 4"0/F AedTen (3.26)
80t

We see the appearance of an inomogeneus term; one of course can define a covariant
spin-current

"

Jpab = J,.mb + X/,mb

5
SN Xy = — d*"z/9 AeaTea (3.27)
5 uab
modifying the anomaly
D, Jt = —Ta+ D, XY = —Toy (3.28)

The energy-momentum tensor has the same behaviour:

TR R

e+ e LB

1 ) ) 1 ) )
e T oM 1% — u v .
5(A)T - [5(A)7 2(ea (SEua + ea 5E;1a )]P[E] (ea 6Eua + ea 5Eua )5(A)I‘[E] (3 29)

The commutator is zero so:

1
5(A)Tuu = —2-(85 5; a5E /dZn:D\/_)\chCd (330)
pa

that is in general not zero: T is not a tensor. One can again redefine it, using a local
polynomial:

THe = TH 4 [ (3.31)

recovering the covariance with
(M = =§(X)TH

The balance equation (3.18) is changed; we will call the covariant divergence of T
covariant anomaly of the energy-momentum tensor:

D, T = & (3.32)

We remark that the presence of the covariant anomaly does not mean a breaking of
the diffeomorphism invariance, as we have seen before.

To obtain algebraically the Lorentz covariant anomaly T we can work in perfect
analogy with the gauge case (the covariant divergence of the energy-momentum tensor
actually is not produced by an algebraic method, but we will compute it directly by
the use of a functional representation): we extend the orthogonal group SO(2n, R) to
the complex orthogonal group SO(2n,C): in order to preserve the relation between
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n-bein and metric we choose a particular complexification of the external fields. We
start with a complex n-bein:

By =E! +iE2,
with
EuaEua = 9uv
The simplest way to achieve this is taking
Eua = AabEub
Ay € S0(2n,0)
The relation between E#a and g, gives the constraints :

E;iaEzl/a - ELE, = Guv

pava

lpmpl 2ump2 e
ea Eua ea Eua - 511

eraliy — ErgEry = Sap (3.33)
and
E,.EL+E,E., =0
€palne + €pali = 0
eiaEzb + e}leia =0 (3.34)

We derive the spin-connection
Qyuat = €4(OuBis) — T, Bxs)

nab
Q}zub = (e}luapE;b - EZUBuEsb - Fﬁu(equ}\b - ei”Eib)
Q;zmb = (ecllual—lEsb -+ ei"ﬁuEib) - Fﬁu(equib - egyE,l\b) (3-35)

If we will call, like in the gauge case, §;(A) the transformation of the maximal compact
subgroup (SO(2n, R)) and 6,(A) the one of its orthogonal complement in SO(2n,C),
we obtain:

51()\)6}1” = /\abeéu
S (A)et = Agpe®

51(/\)92111() = ——BIJAab + Aar:‘Q,]lcb + )\ch

51(A)Q[21ab - Aachcb + Abc‘(ziZ (336)

pac

1
uac

Sa(N)elt = Agpedt

a
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Sa(N)e = —Ape,”

a

62()‘)Q;11ab = Aacﬂicb + )‘bUQZac

52(A)QZab = auAab - )‘acQLCb - Ach‘llac (337)
61 and 6, gives the SO(2n,C') algebra

[61(A1), 81(A2)] = 61([A1, Az])

[62(A1), 62(A2)] = —6.([A1, A2))
[61(A1), 62(A2)] = 62([A1, Ao])

The W-Z consistency conditions for SO(2n,C) are similar to the SL(2n,C) ones,
studied before:

with consistent solution:

and covariant solution:

t(A) =0
ty(A) £ 0

In the limit Qfmb = 0 we recover the known expression for the consistent and covariant
Lorentz anomaly.

3.3 The Weyl determinant in curved space
The relevant object in the study of I'[E] is the operator appearing in the action (3.1):
1
D=ioc.el (6, + EQHCd&CUd) (3.38)

acting on the space I'(S,); the invariant measure is d*"z./g. We begin studying the
transformation properties of D and P
Frame rotation:

§(A)P=P7—7p
§(\P=Pr—#p (3.39)

with )
T = —Aab&aab

4
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Diffeomorphism:
8(&)P=¢"0,p— Pero,
5(¢)D= ¢"0,D— D& o, (3.40)

As we have seen before it is not possible to define directly, by (- function, the determi-
nant of J): in order to have a good eigenvalue problem we would like to find the correct
isomorphism. One immedeatly realizes that it is not possible to use the same trick of
the gauge theories: from the physical point of view we are tempting to introduce a free
partner for the chiral spinor interacting with gravity

T = (i540,) (3.41)

In so doing we inevitably break both symmetries (we are looking for a diffeomorphism
invariant theory): moreover (3.41) is not a fixed isomorphism because a general coordi-
nates transformation changes it and it does not admit a good geometrical interpretation
having no invariant meaning in curved space. One may think about a generalization

of the Weyl kinetic operator:
16,e40, (3.42)

This a good operator, but it is not free, depending crucially on the n-bein field. Anyway
we can try to fix the isomorphism 7T satisfying the properties required to represent
a solution of the extended W-Z conditions. Actually we will study a more general
operator then T J): we define

T[B;r, o] = %m Det[ D, (r) P ()] (3.43)

where

el Toas
D) = 15288 (8, + L0 ue0u)

EC(S) = iaaég ( a[.l + Z‘Q;,Lcd&cad) (344)

where we have used the complexification, deforming both operators with 7,5 € R; k is

a suitable normalization factor. The functional is defined by (-function technique:

Dlfir, 5] = 7o T (D) B(5) ) oo (3.45)

Let us note that » = s = 1, k = 2 does correspond to the modulus case:

57 Trl(PLR) im0 = | In det | (3.46)
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The definition (3.43) gives a functional invariant under diffeomorphism: it is easy to
show that

() D(r)Du(5)) = ~[(D.(r)Pe(5)), £8,]

Using the properties of the complex powers of elliptic operators [17], namely the fact
they are of trace class

Tr[AB] = Tr[BA],

this change is seen does not affect the determinant. For frame rotation the situation is
not trivial: it is a simple exercise to prove from (3.39)

§1(A)D.(5) = s[P(s)7 — TRe(s)] + (s = 1)( = 7) P(s) + (1 — s)A(7)
5:(A)Dr) = r(D(r)r — T D) + (L= 7)(r = F)Br) + (1 = ) A(7) (3.47)

52N () = is[D(s)7 — TDu(s)] + (s — 1)(7 — F)Du(s) + (1 — 8)A(7)
S(ND,(r) = ir[FD(s) — D(r)r] —i(1 = r)(r — F)D,(r) —i(1 = m)A(r)  (3.48)

where

A(7) = ([oa, T]i€40, —!—149” d€h0a0.04, 7))

(T) ([Gas ]ze MO, 41— Q*Cdew[aacrrad, 7])

From these we can obtain the whole variation on _lDC(T) D.(s): applying (-function
technique

1(r) = 1L TR D) (=D~ (=D (P B (=17 (o= D)7+
FT{(1 - )PDAR) + (1= DADRENDRORL) o (349)

() = L T (B P ()= DT+ D) - ()~ (s 4 1P
FTr{(1 - $)PNAR) — (L= AN RENBORE) " heo (3:50)

3.4 Covariant solution

Putting » = 1, s = 1 and k = 2 we obtain:

t2(A) #0
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ta(X) =

2y/g TrlF Ho(PLP.) — 7 Ha(D. DY) (3.51)

We recall that the heat-kernel coeflicients H,, are local in the external field and their
derivatives. In the limit Q7 , = 0 the covariant Lorentz anomaly is recovered: really
until now we have not computed the trace (3.51) for general d = 2n, as in the gauge
case, because of the greater complexity of the heat-kernel coeflicients. The basic reason
is that while in the gauge case only the leading contribution in ¢ matrices to the n-th
Seeley-de Witt coefficient survives into the trace, in the gravitational one the subleading

term also gives, in general, a non zero effect. So we cannot make a direct computation
with the cohomological result given in term of invariant polynomials: nevertheless the
explicit calculation in d = 2,4,6 comforts ourselves.
Now we show how to obtain from this functional

M(E', B*) = §EZT7‘[(JDTP) i=o (3.52)

the covariant energy-momentum tensor 7% and the covariant spin-current J,.;. Let
us define

. 5 5§ .
T = —Im(e¥—5— 1+ &* T El,E2 3.53
(& osg T EM) [ ] (3.53)

where the operator acting on I'[E', E?], written in term of E!, and E

ua?

1 ) ) 1 ) )
weo__ 1p 1y . 2p 2v 3.54
© ( €a §E2 + €a SEgu) ( €4 6E1 + €a 5E,ia) ( )
We want to prove that:
T = T 2y (3.55)

Exactly we will show:

1. S(A)T‘“’ =0, with 6()) generator of SO(2n, R) rotation: T# is really a tensor.

2. D”T“” = a”, with @ the covariant anomaly of the energy-momentum tensor.
The point (1) is very simple: we note

6(0) = lim () (3.56)

where the compact generator has the expression

n é 4]
51(A) /d2 m\/—'Aab(eb 6Ef) +e b 6E2 )

From (3.53)
(AT = [6:(X), 0T + 0* 8 (M) (3.57)
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Being &,(A)I" = 0 (we recall that the modulus is invariant under the usual SO(2n, R))
and using the explicit result [§;()), ©*¥] = 0 we obtain:

5 (AN)T* =0 (3.58)

This is true for any e2* so in particular for e = 0 The second claim is much more
subtle. We compute

/ & z/g &, DT (3.59)

¢, is an infinitesimal vector field. This expression can be rewrite as

]

2n 1 1 5 r
/d- m\/—g'-i(DllE’/_}_Dugﬂ)(e;’ 5E2 - tllué‘E) )I‘ (360)

Utilizing the expression for the diffeomorphism generated on E,m and (3.16) one recov-
ers the action of §(¢) on the real and the imaginary part of the n-bein:

1
§(6)BL, = =(Dub® + D6 EL, + M Ely — X Ejy — € (D By — B B) - (3.61)
2

; 1 2 : 2
BB = 5(DuE" + DB + Mo Bly KBy = (BB + BBL) - (22)

with
ab—' (6/1&1 aafﬂ)[eme;” e’aegu]
My = 500k — Buti )X + €27

The last equations allow us to write (3.60) as:

. § , 6 -
IERNAUGE gm0z I
2n 1 6 1 6 r
/d :B\/— )‘ab 5 Q,\ab][ ub5E2 -prb-El ]F+
Ha
2n 2 A2 2 g 1 b 2
- /d m\/g[’\ab_e Q)\ab][ ub5E2 +E,ub6El ]I‘ (363)
pa Ha

The third term is zero (it is a compact SO(2n,C) rotation on T'), the second is related
to the covariant anomaly Top, giving

) )
[ E eV By~ SOl + D = 05T (369

The operator acting on I is:

L6 § e am
[5(§)Eua 5E2 6(5) pa 5El ]E/Ja - ZS(E)EIJU - 5(7’6)Eﬂﬂ (365)
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It generates the diffeomorphism of imaginary parameter: the functional I' is not invari-
ant under this transformations on the contrary of real diffeomorphism. Let us study
the variation of J). and P! under §(ié): after some efforts

~

5(EYD. = dy + dy (3.66)

with 1
d = E[Dw 559;1VUU]+

=D.7— 7D +{ 290 e}
and the parameter in 7 and 7 is

Aab = = BBy (8"€ — 87€") — 18" Quap

b .

Conversely
§GED! = dy + da (3.67)
with 1 .
Z{D/n‘sfguv&u}

b o 1
#pl+ {00 Pl

)
I

The total variation is:

S(iE)(PLR) = PUrt = 7). + PLRF — 7DD,

1 = .
'4‘[55957 DiD) +di +dy (3.68)

The dilatation part, proportional to é.g/;, drops out in the variation of the determinant
being a commutator. The rotational part, proportional to 7 or 7, gives contribution
only with Im(Ag): it is a non compact SO(2n,C) on I' of parameter

( gu‘Quab)
Therefore §(i€)I" has a first contribution
— [ &g (A = € Q)T (3.69)

that kills with the second part of (3.64). It only remains to calculate the d;, d contri-
bution: after defining:

A= {D/176 P+ (El? + Dl¢) | (3.70)
A= {Du,é“}+ (élD + Pie) (3.71)
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with

we have the useful formulas:

dy+dy = A'PLD. - PIDA + DY(A — AT, (3.72)
deriving from the identity
Cil = Ap,_ — pCA
= P P

Again the (-function feels only the variations coming from imaginary terms

- LD PR + S PUDLEIR. (3.73)

At the end we remain with:

[ 05 DI = - L (STr{{(DLR) — (BB KD, €} Decs

Some heat-kernel calculations gives (after the elimination of the parameter { and the
projection on E7 ). '

1

D, T* = 4(4W)HTT[D§Hn(m,y) — DKHn(iU;y)]xzyg’\”——
1 . , ]
N 4(47r)nTT[DXH"(‘“7y) — DY H(,y)la=yg” (3.74)

This expression coincides with the result of [8] and can be solved in term of invariant
polynomials recovering the perturbative calculation of [19].
For the spin-current we define

o 1 &6 -
Jh = c——Tq _ 3.75
ab 1 59‘210{) Quab—u ( )
Performing an analogous calculation to the energy-momentum tensor one we find:

§(N)J = 6xJ%, (3.76)

and
/dznm\/g)\ab(Dllj;lb) = —52(A)f = — / dQHiB\/gAabTab (377)

This complete our analysis of the covariant solution of the extended algebra: from
the modulus of the extended Weyl operator we recover the covariant e-m tensor and
spin-current with the relative anomalies.
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3.5 Consistent solution

We see that, on the contrary of the gauge case, the non local terms do not disappear
without an explicit calculation, for some values of r and s, unless 7 = 1 = s (the
covariant solution). At the present day we are not able to find some r and s giving rise
in d = 2n:

£ (A) = Fits(N) (3.78)

nor if this possible solution is local. What we are able to do is to solve the problem for
n = 1: the abelian character of the theory makes the commutators A , A zero. The cal-
culation is of interest by itself because we can write explicity the determinant: the first
computation [22] was based on a particular choice of coordinates; in [9] Leuterwyler
showed that it is possible to renormalize the effective action preserving the general
covariance. In our approach diffeomorphism invariance appears naturally and the cal-
culation is performed as the determinant of a well defined elliptic operator, using the
(-function technique.



Chapter 4

Two dimensional Weyl
determinant

We assume from the begining that the base manifold is parallelizable: in this case no
problem arises with fixed background connections and the used operators do posses
a global expression. Even in this situation, the simplest as possible, the calculation
is not completly straightforward, as we will see: some subtle points must be clarified
before in order to understand the philosophy of the computation.

Firstly we remark that also in the abelian case of d = 2 there are two distinct coho-

mology class: one can prove that if £;()) realizes the covariant solution

§1(A)t2(A2) = O
t2(A) = 0 (4.1)

it does not exist a local functional P in the complexified 2-beins E,m and E;a and therr

derivatives, scalar under general coordinates transformations, giving the comsistent
solution

-

ta(A) = £it,(A) (4.2)
with
B(A) = (X)) + 8NP
t(A) = &(NP (4.3)

Then we note that the request t5()) = #1¢;()) concearns the structure of the cobound-
aries: adding to I' some local term P we obtain a different representative of the coho-
molgy class:

t1(A) — £1(A) =t (M) + 6.(A)P
£a2(A) — £2(A) = t2(A) + 62(A)P (4.4)

36
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giving in general £, (1) # £5(A). So it is not necessary that bc(r)ﬂc(s) generates anoma-
lies stricly obeying (4.2): we require the consistent costraint up to local terms in the
effective action. A

The last remark is about a simplification that our approach takes in two dimensions:
in order to exploit the solutions of SO(2n,C) anomaly algebra we had to work with
the full complexified Weyl operator. Anyway the case d = 2 is very particular and we

do not need to make the complexification. Basically we recognize that
Lie SO(2,C) ~ Lie(SO(2,R) ® R,)

and we understand R, as the group of conformal transformations, described in (3.4):
here conformal means a local dilatation of the orthogonal frame (we do not touch the
base manifold). Actually the effect of a SO(2n,C) rotation on the Weyl operator is
the same of a real rotation plus a conformal transformation.

In the following we shall use the Weyl matrices oy=5,=1 , co=—&> = 7 and the Weyl
operator

D=10,e(0, +1Q,) (4.5)
with 1
iQ“ = Z‘Qpab&aa'b
A SO(2,C) matrix A admits the factorization
A=RA

where R € SO(2n, R) and

» [ cosh¢ —isinhé
A‘<Mﬂ¢ mﬁ¢> (4.6)
from which one can derive the identities
(husel)ow = exp(~9) e, (47)
»oa 1 . . 1
(AacAdeQucd)Uan =10, — 55;145 (4.8)
i = ehoa -0,9) (4.9)
eho,t = el o, (—=0, 4.9
H (\/‘a
The effect of A on Pis
A:D— P =io.el (8, +1i)
with
i = exp(— ) (4.10)
) 1€,
Q= Q,+ 28,0 (4.11)

2/
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These are the changes of e and {2, under a conformal transformation: the non-compact
sector of SO(2n,C), represented by A, acts on the Weyl operator as a conformal
transformation. So we do not need to extend the 2-beins to complex values but we
will simply understand §(A) the conformal generator: in order to match the parameter

T = ﬁx\ab&aa'b of the non-compact transformation with the parameter ¢ we define

1
T o= — 4.12
1T 2¢) ( )
Now the project is: after the definition
DBy, 8] = s (T (D(r)P(5)) it (4.13)
7y 8 _k——Zdt T T S =0 .
with )
l)(s) = iaaeﬁ[@l -+ Z(l - S)Qu]
- - 1
lD(T) = w'aeg[aﬂ - Z(l - T)Qu]
and
t1(X;r,8) = 6i(AT[E; 7, 8]
ty(A;7,8) = 82 (A)T[E; 7, 5 (4.14)
we want:

1. To find the values of r, s, k that satisfy the consistent constraint (up to cobound-
ary terms)

ti (A7, 8) = tta(Asr, 8)

9. To fix the normalization using the relation between consistent and covariant

anomaly: we obtain the last one acting with §2(}) on In \/det(D1 D)

Really we will do something more: in d = 2 we can compute ['[E;r,s] for any = and
s: so we will normalize the determinant itself using the knowledge of ln/det(D'])
(r=s=0=k). Let us note that (4.13) is invariant under diffeomorphisms, as we have
seen, while is clear the origin of the SO(2, R) breaking: D(r)P(s) does not change
covariantly under rotation of the local frame (in the (-function language the infinites-

imal variation of P(r)P(s) is not a commutator). Writing down the transformation

law (T = —7):
§(N)(D(r)P(s)) = (rr — F)(D(r)D(s))+
+ (1= s)7(P(r)P(s)) + P(r)[—rT + s7]P(s) (4.15)
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8o(N(P(r)P(s)) = —ilrr = F)(P(r)P(s))+
+ (P(r)P(s))(L = s)iT + P(r)i[(2 = 7)r + 571 D(s) (4.16)

The infinitesimal variation of T'[E : r,s] is:

§(ANTE : 7, 8] =

2 - STr((P(r)P(s)™ = (P()D (7)) Jemol(r = 5)7

SONTIE : 5] = = Trl(D(r) () (s = ) = (D)D) (r = s)eor

Using the heat-kernel representation of the complex powers of elliptic operators [17]
we obtain

§I(AT[E :r,s] = 5 k4 /d“a:\/_Tr[Hl Hl](r + )T (4.17)

EAATE i 7ys] = 5 _'L_ kgfdﬁm\/g:m[ﬂl — (s — ) (4.18)

with H; = Hl(l—l)(r)p(s)) and H, = Hl(lD(s)Zp(r)) H, being the n-th coeficient of the
expansion of the heat-kernel in the limit ¢ — 0 [17].

Generalizing the technique developped in [8] to our case (a deformation of D) we
compute the coefficients H; and H; ( we do not report the long but straightforward
procedure)

1 1 )
Hy= cR— ZR(2—s+7)+ %DMQ”(S + ) (4.19)
- 1 1 1
H = —6R - gR(? +s5—71)— ~2—DuQ"(5 +7) (4.20)
R is the curvature scalar that in d = 2 is easily expressed as
1 _
Zeuu\/ﬁR = 0,0, — 0.9, (4.21)
Then we put:
(s—r)==z
(s+7)=

With this definition and using the explicit form of H; and H;, the “anomalies” appear:

1

t1(Ay7y8) = Y —

/dzm gT(4myR+zy2D ) (4.22)

ta(Asr,8) = :l;i—:“/d% g'r(—é—R—i— :EQR—I—zmyD ) (4.23)

Let us look for the covariant solution
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4.1 Covariant solution

t1(A;rys) =0 (4.24)

that implies y = 0; on 7 and s we have the condition:

r+s=0 (4.25)
The 8, variation is:

i 1 ) 1 1,
tQ(A;T,S) = Eﬂ/d“ﬂ!ﬁ}z(—g -+ ZCE“)T (426)

We note that there is not an unique solution: varying » and s along r=—s we obtain a
continuos family of operators whose determinant represents covariant solutions of the
extended cohomological problem: they differ for a coefficient so we can choose k as
function of z in order to fix the correct normalization. The right value is obtained by
the modulus of Weyl determinant, characterized by r=s=k=0

1 2
t =——[d .
(A) = — 5 / z/gRT (4.27)
The normalization condition derives from (4.26) and (4.27)
1 1 1, 1
ST e — 4.28
eon 3t T . (4.28)
Solving along r = —s we find:
k
k) = -
s(k) =+ 5
k
(k) = ¥y (4.29)

where k > 0: the §, variation of the functional (4.13) is costant along [s(k),~(k), k].
The symmetry r,s — —r, —s reflects a change of o representation. As we will see after

not only the covariant anomaly but also the functional itself is costant along s(k), (k).
Put in another way

Det(P(r(k))P(s(k))) = [Det( D' P (4.30)

We have found a continuous deformation of the modulus of Weyl determinant, as-
sociated to a continuous family of operators, representing continuous powers of the
modulus itself (the determinants are normalized to the free laplacian one). The same
feature will appear also for the consistent case. By the way we note that the limit
k = 2 is not singular: with our normalization we find:

Det(P( L) p(22) = 1
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4.2 Consistent solution

The equation (4.2) gives the system

1 11,
=% )
y? = Fay (4.31)

Unfortunately there is no meaningful solution: the only one is

3
=0:2°==
Yy &=

reducing t1(A), tz(A) to coboundary term. We have to exploit the freedom of inserting
a local term in the definition of I'[E; r, s] to recover the consistent solution: in so doing
we introduce a new parameter, that will appear only in the intermediate calculation.

We add to T
Pla) = — dzmSZ Q- 4.32
( ) 4:7[(2 — k) ./ K ( )

with a € K and we define

S (NI = £,(})
Sy (MY = £5(2)

It is easy to verify that P(a) changes (remembering that &, acts like a conformal
transformation):

§,(N)P(a) = ma/ﬁzwumr (4.33)
6:(N)P(a) = ma/(—%R)T (4.34)
The new system is

1 1 1, 1

Y =Hg g )

v: + 2a = Faoy (4.35)
It holds the relation ] 1. 1.

5%y = i(g — Zm‘ — Zy“) (4.36)
that will be fundamental and does not depend on a. Solving for z and v as function
of a

y? = 3d°
2 _ 4 2
r° = - +3a° + 4o (4.37)

3
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To fix @ we use the general form of T'[E : r,s]: the calculation is performed in isother-
mal coordinates: we are allowed to choose a particular coordinate system being our
definition of determinant invariant for diffeomorphism. Locally any two dimensional
riemannian manifold admits a coordinate system in which the metric tensor has the
form [23]

g = exp(4G)b, (4.38)

giving the zwein-bein
e = exp(—2G)6} (8ap cos 2F — eqpsin 2F) (4.39)

where F'(z) describes the freedom of a local orhogonal rotation. We make the additional
assumption to work on a manifold admitting a global system of this coordinate. In

this system the spin-connection and the scalar curvature have the simple expression:

Q, =0, F+¢€.,0.,G

R= —4%6,18,1(,1

Now the possibility to calculate exactly the determinant relies on the fact that one can
write:

D(r)P(s) = exp|—G(3 — ) +iF(r — 1)}i6; exp[-G(2 + 7 — s)
exp[—iF(r + 5)]i0- exp[G(1 — s) — iF (1 — 5)] (4.40)
where 01 = 01 & 0,

It is not difficult to find the infinitesimal variation of the determinant for the transfor-
mation

G— G—eG
F — F —¢F

e — 0 and to iterate this change leading G and F' to zero:
Det(D(r)P(s)) = exp(—T|r, s])det(—&%) (4.41)

This is the standard decoupling technique [6] that allows the calculation of two dimen-
sional determinants: we note that the normalization to the free laplacian is a natural
bonus of the procedure. Some care is needed on the iteration for the presence of a
conformal factor in the measure: anyway we give the result deferring the details in the
appendix. In isothermal coordinates:

1 ., 1 1. 1
Mol = oo / &3 (5 — 70 )UG0,0,C + i 5oy 4F0,0,G+

1 )
+ m/d 2AF,0,F —

1 2
ma/ d*z[4F8,0,F +4G0,0,G]  (442)
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We recognize the contribution of P(a) and I'[r,s]. The real part of this action is not
gauge invariant, but we can reduce it to a gauge invariant form adding a suitable local
term, obtaining:

R R S B TS S ST S 1
r[r,s,a]_SW@_k)/M(g 1 4y)4aaﬁaﬂc+z(2my)4pa,iaﬂa (4.43)

T 2
=T+ 2 - / &P (=y?) (4F8,8,F + 4G0,8,G) (4.44)

In fact it is a general property that the modulus of the Weyl determinant can be always
written as a gauge invariant quantity [19]. Now we can compare the real part of I with:

—ln Det(D'D) = T[r, 8] r=smk=0 (4.45)

In other words we require that the definition

det(D) = exp(—Llr, s])

is consistent with the well known relation

| Det(P)| = y Det(P1D)

Along the solution of the system (4.35)

. 1 1 .

f = o) / 22[4G8,8,G + i4G8,0,F) (4.46)
fixing the relative value between the real and the imaginary part of I' for any ¢ «
appears only as a device to find the correct normalization. Expressing %my as a function

of a and requiring

Ref‘ = F[T,S]Ir—:s:k:D (447)
we obtain the equation: )
1 1 3, 1
= —a— —a') == 4.48
o wY TR T %) T g (4.48)

solved by

az—-——:t \/k— i k>1

Then using the definition of G and F' and the coordinate invariance of the determinant
we can write I' in a manifestly invariant form

2 2 L v
_ 192 /d z\/9(2) /d y\/9(y)R(z y)R(y)+iR(z)A; (= ,y)ﬁau(\/ﬁﬂ (¥))

(4.49)
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with A;l(m,y) the kernel of the inverse of Beltrami-Laplace operator:
1
V9

I' is connected to T, obtained by a purely {-function definition, with a local term

Ay = —=0,(g" /300 (4.50)

ﬁ(k)/dzm\/gﬂuﬂ“ - y2—8——7:(—§1—_—~5/d2m\/§9uﬂ“ (4.51)

so I' is a sort of minimal form of the Weyl effective action, in which the real part is
reduced to the gauge invariant form. By the way T coincides with the result of (8],
the sign of the imaginary part being related to the chirality. Coming back to T[r, s],
expressing through (4.37) and (4.48) r and s as function of k, we find a family of
I'[E, k], generated by the operators b(r(k))l)(s(k)), that differ for the allowed local
term and define the Weyl determinant.

T(E;r(k), s(k)] = T + B(k) / Py /G04, (4.52)

B(k) = 3 k2 ;““1 . k > 1. We have expressed y* through k: in order to have a well

~ k
defined I for any k > 0 we have choosen

I_

11
O
a=-g3t3

disregarding the other solution. The coefficient of the local term has a contiuos be-
haviour showing that, in the limit & — 2, I' coincides with T. Solving for r(k) and s(k)

we get:
r(k) = —3{-3- . s(k) = —?\/E‘:i

r(k) = —~vVk—1; s(k) = — (4.53)

showing a sort of symmetry between the inequivalent representation of the Weyl alge-

bra. Again we find a family of operators whose determinants give powers of the Weyl
determinant, up to local term.

Det(D(r(k)D(s(R))) = (Det D) exp (k) [ oy /gQ  (454)
with (k) = =(k — 2vk — 1)

In particular one can choose k = 1 so s = 0 obtaing the original definition
Det] = Det(TD)

r— p-2 (4.55)



45

We note that (everything is normalized to the free laplacian) for k =2

Det(P(r(2))P(s(2))) = 1 (4.56)

It seems that for the critical values r = ?%_?’— ;8 = i—‘é—g the dependence of the deter-
minant from the external field desappear. At the moment we do not know if ther is
some deep reason for this behaviour.
In this formalism diffeomorphism invariance is manifest; we do not need any coun-
terterm to recover the general covariance. Anyway we can add a Wess-Zumino term
to T, utilizing the zwein-bein field E,, in order to cancel the Lorentz anomaly, but
generating a coordinate anomaly: we do not know if is possible to implement it in our
operatorial approach. Another direction of work is to extend the computation to non
parallelizable manifolds.
At the end we want to show how is possible to recover the determinant in a less rig-
orous but more direct way, utilizing the formal limit on the complexified connection
described in chapter two. In the gauge case, if we start with the complexified action,
the Weyl determinant is obtained by the calculation of its modulus putting formally
Al=0

Det(PLP.) — Det(9D)
In the gravitational case the same trick does not look to produce the same effect:
the presence of a n-bein field does not allow to perform a limit on the spin-connection
without touch the n-bein itself, unless to break their canonical relation. To put Qzabz()
seems to force E7,=cost while E,, # 0: the general covariance is lost. But in d=2 the
operation can be made in a particular way to preserve the geometry of the theory. If
we complexify the zwei-bein with a non-compact SO(2C) rotation

» [ cosh¢ ~—isinhé
A= ( isinh¢ cosh ¢ ) (4.57)
the relevant spin-connections are
Q, =Q, + 20,¢
QL =Q, —2i0,¢
giving
1 . . ;
Oudp = E(Qu - ‘QL) =1, (4.58)

As we have seen in the Weyl operator

By = exp(¢) Bua

A 1
O, = 0, + —2"8,¢
H 2 \/g 1
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50 E’,m and Q,, are the conformal transformed objects: here ¢ appars as a “dilaton”
field. In this way ]! becomes the usual D']) where the geometric fields are the
conformal transformed of the original ones. Using the explicit result:

-1nDetp'Tp = o /d"m\/g_‘/d“y\/_-R Sl e y)R(y)  (459)
with
Gy = €xP(20)guv
R = exp(~28)[R + A,29)
and A=A, we get

—lnDetE'TlD /d“m oz /d y\J9W)R(z) + 28,810, (z,9)[R(y) + 20,¢] =
_/dm 9(z /d"y\/_R “1(z,3)R(y) fdszR¢+¢A¢] (4.60)

At this point we come back to {1, and QL: from (4.58)

1
Ny = —:/—_g_a,l(\/ﬁf“ / (4.61)
giving

1 ; 1
5 In DetPLp. = 4—8— / Loy /G, LI+

t o5 [ #0y/o(z) [ du/o(y)Rie R(y) ~ 45R(2)0;" (2,3)—=0, (/5" (3)
Vi

(4.62)

Now all the dependence on the parameter ¢ of the complex transformation is carried by

the connections. It easy to check that putting Q“:O or QLzO one recovers the correct

determinant (with a different sign on the imaginary part). Really it remains a local
term

1
—— [ d*z,/q Q0" 4.63
76871' / ‘\/E ! ( )
that, as usual, can be removed. At the moment we do not know if it gives the correct
result in more than two dimensions: out of d=2 it is not possible to represent complex

rotation as contormal transformations, complicating a lot the the calculation, but in
principle, one can work with the Seeley-de Witt coeflicients

4.3 Conclusions

In the case of gauge theory we have shown as to describe consistent and covariant
anomalies in an unified scheme: the problem of representing this solutions in a func-
tional approach has been completly understood, and it is not difficult to extend the
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results to non trivial fiber bundle. The essential role of the complexification of the
gauge group appear in both the approach. The gravitational case is more involved,
for the presence of two symmetries and a more sophisticated geometrical background.
Anyway simplifying the problem to the pure Lorentz anomaly we have studied the co-
variant sector and we have shown as it is related to the complex SO(2n, () extension
of 50(2n, R). Unfortunately we have not been able to find a functional representation
for the consistent vacuum functional in d = 2n. Nevertheless the semplicity of d = 2
has allowed us to calculate exactly the determinant, showing that a continuous family
of operators, admitting as determinant the Weil one, do exist. In some sense they
correspond to different regularizations of the theory, changing only for local terms in
their effective action: our result agrees with the Leutwyler calculation [9].



Appendix A

Heat-kernel expansion

Let us consider a second order differential operator
A=-—g"0,0,+ f*Ou+h (A.1)

The fields f and h are allowed to be matrix-valued: we assume that g" is positive and

A acts on a compact manifold: A can be rewritten in the form
1
V9

The heat-kernel of A is a solution of:

A= (8, + )G90 +v,) +V (A.2)

9 Keyit) + AK(w3:0) =0 (A.3)
with the boundary condition: |
1
K(z,y;0) = 6z —y)— (A.4)

V9

We remark that K(z,y;t) also exists for non definite positive operators [17]: the impor-

tant point is the positivity of the metric itself, that controls the asymptotic behaviour

of the eigenvalues of A. We denote the lenght of the shortest path from z to y by
n(z,y) (geodesic distance): for ¢ — 0 K admits the expansion (8]:

K(a,yi) - (4m)F exp 120 S 40 (o) (A5)

n=0
Using the property:
g"0,m0,m = 4n (A.6)

one can verify that the heat-kernel equation is satisfied order by order in ¢, provided
that the coefficients obey to a recursive differential equation:

1 1 d
~2—5“7]D,1Hn + (n + ZD“Du'q - §)H,, = —AH, 4 (A.7)

48
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where D, is formed with the field v, and the Levi-Civita connection ]."f‘w.
This differential equation implies that, at = = y, H, and their derivatives reduce to
local polynomial. Using the property:

(DuD, — D,D,)Co = R},,Cr + FuCa (A.8)

it is possible to express all the quantities in terms of the curvatures R3,, and f., =
Ouvy — O,vy, + [V, v, and the derivatives of 7. It is a matter of patience to obtain the

heat-kernel coefficients H,: as an example we report the computation of H, for the
operator

A= Pr)P(s) = aclliy + (1 - 1)) ouellid, — (1 — )0

that is the relevant one in the case of d = 2 gravitational determinant (Q, = iﬂuab&a Ob)-

Using the recursive differential equation at z = y it is easy to prove:
1
Putting D(r)/(s) in the “canonical” form:

1 11w
v, = 5[(1 — 7)), + (1 —5)Q, +20,] + 5 _\/_§€A Gu[(r = 1)y + 2Qy + (s — 1),

B, = —u, (A.10)
and ) . ‘
V = —8‘(2——-S+7“)R+ %(r—}-s)D“Q“ (A.11)
So .
H(P(r)D(s)) = %R - %(2 Fr—s)R+ 5(r+5)D,0" (A.12)

To get H, we have to send r — s and 2, — —Q, All the heat-kernel coefficients used
in the various chapters were obtained in an analogous way.



Appendix B

The variation of the determinant

In term of the heat-kernel K(z,v;t) we can express the (- function connected to the
operator A:

((s;A) =Tr[A™°] = I‘(ls) y dz /UOG dtt* 'tr[K(z,z;t)) (B.1)

standing the relation between kernel:

<z|A7y >= nI‘_(lts_)/uoo dt t* 'tr[K(z,y;t)] (B.2)

If we perturbe the operator A with €A, ¢ — 0, where A4, is a differential operator
(ordA > ordA,), we obtain [6]:

C(s; A+ edr) = ((s) + €f(s) + O(¢?)
f(s) = sTr[A™" 71 A4] (B.3)

From the definition of determinant [6]:

d
—1In DetA = EC(S)‘.?:U (B4:)
Ole Tecovers:
d
—1In Det(A + €4;) = —In DetA + ed—(sT'r[A"s—lAl])g:D (B.5)
s

Using the relation (B.2) and the expansion (A.7), together with the fact we are working
with trace-class operators, one could in principle to compute every variations. The fact
that in the most of our computations only one heat-kernel coefficient is needed derives
from the particular form of the variations:

Ay = a(z)A + AB(z)

In this case is rather clear that only a coeflicient makes contribution in the limit s = 0.

50



Appendix C

Decoupling technique

We want to show how the decoupling technique works in the calculation of (4.41). The
relevant finite transformation is:

G—-G(l-y)=G,
F— F(l—y)=F, (C.1)
Let us define the quantity:
F'lysr,s] = lim 31;(1*[1/ — Sy;r, ] = Ily;m, 5]) (C.2)
where 14
Egim ] = — 2 S Tr{(B(rs )P ) hoo (©3)
b(r;f) and J(s;¢) are obtained by the usual i/)(r) and J(s) with the substitution
G—(1-¢G
F—(1-¢F

It is clear that

I[i;r, 8] =Tr, 4]
T'[0;7,5] = —1n Detd” (C.4)

giving:
1
/ dt T'[y;7,s] = T[r, 5] — In Detd? (C.5)
0
Using the expression of ~E(v‘) and J(s) we obtain in conformal coordinates

Dysr,s) = sTr{(P(rs ) Plsiy) (2 + 5 — )G — il + o) Fl+

ol
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+ (P(siy)P(ri9)) (2 + 7 = 5)G +i(r + 8)Flhicy (C.6)
From the heat-kernel expansion:
I'ly; 7, o] /F )(Hy(P 92+ 7 — 5)G —i(r + s)Fl+
+ (L (P(s;9)P(rsy))(2 = 7 + 5)G +i(r + 5)F)) (C.7)

with 1/g(y) = exp(4G(1 — v)).

The exph(:lt calculation of H; and ﬁl in isothermal coordinates gives

Hy = exp(~4(1— 1)C)[(~4(1L ~ 9)8,8,0) 15 — 57— 5)] = 21 ~ )8, (r + )

1 1

Hy = exp(—4(1 = y)G)(—4(1 — 9)8.0,G)[- 75 — g(s = )] + %(1 ~ 9)0u0,F(r + 5)]
A straightforward algebra gives:
I'[y; 78] = /d2 ~(4G8,8,G) — 4(7‘—5) (4G8,8,G)—
- %(TQ — $2)(4F8,8,G) + (2 + 1 — 5)A(F8,0,F)] (C.8)
and
1 2
/dyI‘y,rs /dm4G55G)(——Z(r~s))

;(7' — s*)(4F8,8,G) + (2 + r — 5)2(4F8,8,F) (C.9)
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