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Abstract

We study the thermal equilibrium distribution generated by a Nosé-Hoover
thermostat coupled to a mixed quantum-classical system, whose time
evolution is taken to be either Ehrenfest (E), or Car-Parrinello (CP) type. It
is found that neither E or CP dynamics lead to the correct averages for the
quantum subsystem. A new classical modified CP dynamics is introduced,

and explicitly shown by theory and model simulation, to vield the correct

averages.
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Chapter 1

Introduction

Mixed quantum-classical systems are of wide interest in several areas of
physics and chemistry. For instance, in condensed matter physics, nuclei
or ions can often be considered as classical particles, while electrons require
a quantum treatment. The dynamics of these systems has received much
attention recently, particularly in connection with developments in computer
simulations(1?-3],

It is well known that a clearcut separation between quantum and classical
behaviour exists only in the adiabatic Born-Oppenheimer (BO) regime, in
which the electrons remain in a single energy eigenstate. In this case the
temporal evolution of the system can be found by solving Newton’s equations
for the nuclei coupled to time-dependent Schrédinger’s equations for the
electrons. The resulting dynamics is often called Ehrenfest (E) dynamics*1.
It the electrons are in the ground-state rather than in a generic eigenstate,
one can use an alternative and often computationally more efficient scheme
in which Newton’s equations are used also for the electronic degrees of
freedom, as shown by Car and Parrinello (CP)®2. However, both CP and
E dynamics are incorrect in presence of non-adiabatic transitions, which
originate characteristic quantum effects in the ‘slow’ nuclear dynamics as

well. In this case, practical algorithms fully based on differential equations
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are not available and ad hoc stochastic procedures, such as the surface

"3 have been used to compute the temporal evolution of

hopping model,
the mixed quantum-classical system. In view of their intrinsic complexity,
applications of such schemes have been mostly limited to the case of a single
quantum particle immersed in a classical bath.

Under the assumption of ergodicity time averages are equivalent to
ensemble averages. Then the following question arises: can we compute
canonical averages for a mixed quantum-classical system by averaging over
trajectories generated by any appropriate dynamics? For classical systems,
for example, schemes like the Nosé or the Nosé-Hoover thermostat have been
proposed which achieve precisely this goall®l. It would be interesting to
investigate if suitable generalizations of the E or the CP dynamics allow
to achieve this goal also for quantum systems. Indeed a generalization of
the Nosé theorem to quantum systems was recently discussed in a paper®,
in which it was additionally suggested that a simple E-type dynamics could
yield the correct canonical distribution. This is an intriguing possibility
since the thermalization of a quantum sub-system among different energy
eigenstates necessarily implies a breakdown of adiabaticity. However one can
not exclude that an improper dynamics of non-adiabatic processes, like E
or CP, might still be able to yield correct equilibrium distributions. More
generally it is not clear what are the conditions that a continuous dynamics of
non-adiabatic processes should satisfy in order to yield the correct quantum
canonical distribution.

In this work we present a general formulation of the thermal equilibrium
properties of mixed quantum-classical systems whose dynamics is governed
by E or CP equations, in which a classical Nosé-Hoover thermostat is coupled
to quantum degrees of freedom. Our analysis is based on a generalized
Liouville equation. We show that an important requirement must be obeyed
by any chosen dynamics in order to reproduce the exact canonical distribution

of the mixed system. As it turns out, neither ordinary E nor ordinary




CP dynamics satisfy this requirement: they in fact lead to a different
distribution. This implies that extensions of the Nosé theorem to the mixed
quantum-classical case cannot be realized by simple E dynamics, contrary
to what was assumed in calculations presented in Ref. [9]. In this work,
in addition we explicitly suggest that a novel dynamics of a modified CP
type would yield the correct distribution. We corroborate our theory with
numerical simulations on a simple two-level quantum system coupled to
a Nosé-Hoover thermostat via a chain of classical anharmonic oscillators.
We find perfect agreement between the results of the simulations and the
analytical distribution functions corresponding to E, CP and modified CP

dynamics, respectively.




Chapter 2

Canonical Ensembles

2.1 Ehrenfest dynamics

We begin by considering n classical particles with coordinates q;, momenta
p: and masses m;, coupled to a (discrete) quantum system with normalized
wave-function |¥ >. In E dynamics the wave-function evolution is governed
by a time-dependent Schroedinger equation while the classical particles are
moved by a force averaged on the quantum state. The resulting equations

for the mixed system are:

qi = pi/mi (2.1)

o 9 _9V(q) 59
pi=—< \Iflaqu(q)I\If > " ag (2.2)
B0 >= H(q)|¥ > (2.3)

where the dot indicates time derivative, H(q) is the quantum Hamiltonian
with the classical g coordinates as parameters, V(q) is an extra potential
acting strictly on classical variables. For this motion the conservation of

energy:

EE;”. =< @[H(q)l‘l’ > +V(q) -+ Z“l‘& (2-4)
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1s easily verified. To ensure thermal equilibrium at temperature T we couple
a Nose-Hoover thermostat ¢ to the classical particles. Eq. (2.2) 1s replaced

by:

P

| 9 oV

and the time evolution of ¢ is given by:

5‘— Z —nkT Jie; (2.6)

where & is the Boltzmann constant and @ is the effective mass of the
thermostat. Under ergodic conditions, the Nose-Hoover thermostat coupled
to the classical sub-system is completely equivalent for equilibrium properties
to a large external bath. In order to find the equilibrium distribution
generated in the mixed quantum- classical system by Eqgs. (2.1,2.3,2.5,2.6) we
follow an approach which is commonly used for purely classical system!108],
First we notice that if [W >= 3":(a;+1b;)|; > in terms of N orthogonal basis
vectors (|j >)j=1,..n, with aj, b; real coefficients, then the quantum state is
uniquely specified by the vector X = (q;, bf) Then a distribution function

p(I',t) can be defined in the generalized phase space I' = (q.p, X, ¢). From

probability conservation we get:

d g
—p=—=|=—.T 2.7
dt (31" ) P (2.1)
where the divergence of the extended generalized velocity,
N Nood; oy | o
= q — P — —= 2.8
it Zah Pl g PGt gy g @)
can be evaluated using the equations of motion (2.1,2.3,2.5, ,2.6) obtaining:
0
T=- 2.
ar né (2.9)

Only the Nosé-Hoover friction term in the equation (2.5) for p; contributes

to this divergence. In particular no contributions arise from the quantum
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motion, since H(q) is an Hermitian operator. Thus, upon removing the
thermostat the divergence vanishes and under ergodic condition the space
(q,p,X) is uniformly covered by the motion, as is the phase space (q,p) in
ordinary classical microcanonical dynamics.

In analogy with the purely classical case we can define an effective ‘energy’

E.(T) = Egp, + %Qg'z =< UH(q)|¥ > +V(q) + Z + Q{’ (2.10)

2my

whose time derivative can be calculated using the equations of motion

obtaining:
d(‘iﬁ = —nkT¢ (2.11)
This allows rewriting Eq. (2.7) as:
% LlT ‘ZZ (2.12)
A stationary solution to this equation is given by:
ps(L') = exp[—H (L) /kT]6(< T|T > —1) (2.13)

where the delta function expresses the additional condition of norm conser-
vation of the wave-function. Thus under ergodic conditions the time average

of a generic quantum observable O(q) within E dynamics is equal to:

<O >pp= Jwpyser @' % d"b < W|O(q)[¥ > exp|—(< UIH(q)|¥ > +1(q))/kT]
Ehr= f<\p]\p>=1 d”q d¥a d~b exp[—(< lIllH(q)l\If > —f-x(q))/'l‘ﬂf}
(2.14)

2.2 Car-Parrinello dynamics

In CP dynamics the wave-function is treated as a classical field moved

accordingly to the classical Lagrangian:

L=p<TT>-Usp+A(< T[T > 1) (2.

o
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with

mwz<wm(n@>ﬂqq+§j (2.16)

2m; m;

where the fictitious mass ;¢ characterizes the response of the wave-function to
an applied force and the Lagrangian multiplier A represents the (holonomic)
constraint of normalization. From this Lagrangian we obtain again Eqgs.
(2.1) and (2.2) for the motion of canonical q; and p; coordinates whereas the

Schroedinger equation (2.3) is replaced with:

,LL]\I! >=—-H(q)|¥ > +A\|T > (2.17)

The conserved energy in this dynamics is:
N i 1 p? _
szﬂ<mw>+<mw@m>+wm+zs%. (2.13)

In CP system the wave-function can be considered real, thus, being (|7 >
)j=1,...N areal basis, the state of the ‘guantum’ subsystem is uniquely specified
by the vector Y = (¢j,Pa,)j;> where p,; = 2ud; are the classical canonical
momenta associated to the variables a;. All degrees of freedom are classical
and the the classical canonical p(q,p,Y) = —exp(—Ecp/kT), defined on
the space (q,p,Y), can be used directly to calculate the averages. Thus the

average of a quantum observable O(q) with no dependence on p and on pa,

Is given by

d*qd¥ae < V|O(q)|¥ > exp[—(< U|H(q)|¥ > +V(q))/kT]
Jeppsey ' d¥a exp[—(< UIH(q)|¥ > +V(q))/kT]
(2.19)

This expression is identical to the (2.14), however, since in this case the wave-

f<w|\y>=1

<0 >cp=

function is real, the integration is restricted to the a variables only. Also in
this case to get this canonical distribution in a finite system we can apply a
thermostat on the classical (p, q) subsystem. Following the treatment of the

previous section it is easy to recover expression (2.19).
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2.3 Correct quantum-classical averages

To get the correct expression for mixed quantum-classical system we start
treating all the degrees of freedom quantum-mechanically, obtaining for the

average of quantum observable O(q):

Tryisyella>3[0(q) exp[—(H(q) + V(q))/+T]]
Tryisye(ia>lexp[—(H(q) + V(q))/kT]]

where the trace is performed on product of Hilbert spaces {l7 >} and {]q >}.

<0 >fu11——quantum: (220)

Under the assumption that the classical limit [p;, q;] = 0 applies Eq. (2.20)
becomes:

<0~ - J4aTr[0(q)exp[—(H(q) + V(q))/kT]] (
T JdrqTrlexp[-(H(q) + V(a)/kT]]

N

21)

where the trace is performed on the {|5 >} space only. The canonical averages
in both E and CP dynamics are different from this correct expectation value.
In CP and E averages the wave-function appears in the exponent and the
trace of Eq. (2.21) is replaced by a continuous integration, which misses
the discreteness of quantum subspace. It is thus no surprise that a quantum
subsystem described by Egs. (2.14) and (2.19) actually behaves as a classical
one. For instance, for T going to zero, the quadratic form in the exponent
of E and CP canonical averages originates a behavior equivalent to (2N —2)
or to (N — 1) classical linear oscillators, respectively.

We now observe that it is the form of the conserved energy Frpn,, Fcp
in microcanonical dynamics which produces a wrong statistical behavior of
a quantum sub-system. In Eqgs. (2.4), (2.18), when |¥ > is given by a linear
superposition of eigenstates |¢;(q) > corresponding to the elgenenergies
E;(q), the energy is conserved only on average and the mixed motion does
not explore the correct microcanonical ensemble, where energy has to be

conserved exactly as in a full quantum treatment.




2.4 Modified CP dynamics

Egs. (2.14) (2.19) would yield the correct statistical distribution, if the wave-
function |¥ > could be constrained to visit only the discrete set of eigenvectors
of the Hamiltonian instead of running continuously over all their possible
linear combinations. This suggests that a possible way of obtaining the
correct distribution, without performing a full quantum treatment, consists
in adding a fictitious constraining potential /; to the potential Ucp in CP
dynamics, which favorites the configuration corresponding to the quantum

Hamiltonian eigenstates. For instance such a potential can be of the form:
Usla, X) = n[< U[H*(q)|¥ > = < U|H(q)|¥ >7] (2.22)

where 7 is a positive coupling constant. This potential has the property
of being a positive definite quantity which vanishes only at eigenstates. In
the limit of large 7 the resulting modified CP dynamics mimics the level
quantization of the true quantum spectrum in terms of a classical motion
consisting of a succession of activated jumps between the valleys of the
total potential Ugp + Us. To get the canonical average of this modified CP
dynamics we add in the exponents of Eq. (2.19) the fictitious potential Us.
In the limit of large 7 we can expand quadratically the potential around the
Hamiltonian eigenstate and perform the gaussian integrations. The resulting

average takes the form of a sum over independent *valleys’ E; yielding:

Jd"q 30 < ¢i(@)|O(q)|¢i(q) > exp[=(Ei(q) + V(q))/kT]| Dety | !
Jdq ¥ expl—(Ei(@) + V(a))/KT][Dety| 7
(2.23)
where [¢;(q) > are the eigenstates of H(q), with eigenvalues Ei(q), and

< O >ppdcp=

Dety, is the determinant of the operator H— < ¢;|H|d; >= H — E; in
the space orthogonal to |¢; >. The determinant accounts for the difference
between distinct valleys caused by the unequal spacing of the energy levels.

Eq. (2.23) recovers the discreteness of the quantum spectrum but the Det
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factors modify the weight of the different eigenstates. It follows that an
exract expression for the average can be obtained from the weighted average
< O|Dety| >modscp | < |Dety| >modgcp. Although exact in principle, this
average may not be easy to implement, since knowledge of the determinant
implies knowledge of the spectrum of H. However, it is a nontrivial result,
since any a-priori information and/or reasonable approximation for this
determinant will automatically produce a valuable approximation to the

exact quantum average.
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Chapter 3

Simulation on model system

3.1 The model system

In order to verify the results of the previous chapter we have applied the
above theory to a simple mixed system consisting of a two-level quantum
Hamiltonian coupled to a chain of n classical one-dimensional anharmonic

oscillators with masses m; = 1 and potential

Via) = ell)a! + 3 eli)(as - ga)’ (3.1

The quantum Hamiltonian is given by:
H(q) = Al¢(q) >< ¢(q)] (3:2)

where A is a constant energy gap and
|6(a) >= sin(gn — gn-1)|1 > +cos(gn — gn-1)|2 > (3-3)

To enforce thermal equilibration the classical oscillators are coupled to a Nosé
thermostat of mass Q. We have considered three different dynamics for the
mixed system, namely E, CP, and modified CP dynamics, respectively. If the

system is ergodic the time averages will coincide with the canonical averages
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calculated in the previous chapter. The non linearity of the classical potential
and the different coefficients ¢(7) guarantee ergodicity also in a small system.
Thus the number n of classical non-linear oscillators was taken equal to 5 after
numerically verifying that in this case the system is sufficiently ergodic. To
ensure rapid thermalization the frequencies of the wave-function dynamics, of
the classical oscillators and of the thermostat must be comparable. This was
achieved in E and CP dynamics by choosing m; = A = p = 1, ¢(7) randomly
distributed between .5 and 1.5, and Q = nkT. In the case of modified CP
dynamics we used 7 = 50 and scaled by this value the ¢(:) coefficients and
all the masses, i.e. m;, Q,u. The potential U; was cutoff at the value 5kT
in order to allow the system to cross the barrier separating the two valleys
of Uy + Ugp for a sufficient number of times during a numerical dynamical

simulation.

3.2 Results of the simulations

In our model system the canonical averages deduced in the previous chapter
are easily evaluated, either analytically or in terms of simple one-dimensional
integrals. For instance, the exact average energy of the two-level quantum

system is given by:

Aexp(—=A/kT)

H era™ 3.4

< Q) >ene= T STATRT) (34
while for E and CP dynamics we get:

Aexp(—A/kT) .

H = kT — ‘ 3.
< H(q) >pi [ exp(—AJKT) (3.5)

2 1 2 <of — sin? I

< H(q) >op= Jo " dfsin®8 A exp(—sin®0 A/kT) (3.6)

JET df exp(—sin®0 A/ET)
Notice that for a two-level quantum system with fixed gap A the determinant

Dety, is just a constant that factorizes out. Thus in this case the averages
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in the modified CP dynamics with n — oo coincide with the exact results
also without the determinant corrections. In the case of finite n and a cutoff
potential the canonical distribution deviates slightly from the correct one,

and can be calculated using eq. (2.19) with U; added to the energy.

045 T T T .l TTES

<H>

Figure 3.1: Average energy of the quantum two-level system vs. temperature.
The curves have been calculated using the analytical distribution formulae. The
dots refer to time averages using E, CP and modified CP equations of motions.

The canonical averages for energy vs. T corresponding to the four cases
discussed above are reported as lines in Fig. (3.1). We observe that the
thermal distribution within E or CP dynamics is very different from the
exact one, particularly at low T" where the characteristic quantum exponential
behaviour is replaced by a classical linear behaviour in both the E and the

CP cases. On the contrary, the modified CP dynamics originates a thermal
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distribution which is very close to the exact one already with the finite U/;
potential used in the present calculation/t.

We now perform ‘molecular dynamics’ simulations to compute average
energies by means of time averages using the E, CP, and modified CP
equations of motion. The results are again reported in Fig. (3.1) as
points.  Firstly, we notice that the results of the time averages agree
perfectly with those obtained directly from the canonical distribution
formulae. This provides a striking demonstration of the validity of the Nosé-
Hoover procedure to compute canonical averages also in the present rather
unconventional situation. Secondly, it might seem that, when considering
systems more complex than the present one, the large n values, that are
required to recover the correct quantum equilibrium distribution in terms
of classical modified CP dynamics, would necessitate prohibitively long
simulation times to achieve thermal equilibration. Luckily this is not the
case since, in realistic systems, the gap between different eigenstates depends
on the instantaneous configuration, and transitions between different BO
surfaces basically occur at level crossings, where the barrier separating

different valleys is very small

3.3 Conclusion

In summary, we have presented an analysis of the thermal equilibrium prop-
erties of mixed quantum-classical systems described by different dynamics.
In particular, we have found that it is possible to reproduce the thermal
equilibrium distribution of a quantum subsystem by an appropriate classical
dynamics, which exploits the notion of a fictitious constraining potential to
mimic the discrete character of a quantum spectrum. This idea is now being
pursued in applications to more realistic systems. It would be very inter-
esting if modified CP dynamics could also serve to simulate non-adiabatic

dynamic processes. This would be possible if the classical hopping probabil-
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ity between different valleys within modified CP dynamics could reproduce

the quantum transition probability between different eigenstates.
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