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Introduction

The importance of semiconductor devices in modern technology can be hardly
overestimated. Since the invention of transistors in 1947, they have been
widely used in every kind of electronic circuitry. The characterization of
semiconductor materials is then a fundamental subject in many fields of
physics and industry.

Semiconductor interfaces deserve a special attention. The presence of an
interface breaks the full translational simmetry of the system, thus altering
the resulting band structure. It is well known that, in this case, so-called
interface states appear, i.e., states whose wavefunctions are localized in a
very small region (only few atomic layers thick) surrounding the interface.
These states usually place themselves in the gap between the valence and
conduction bands; often they are half-filled, giving the system a metallic
character.

Surfaces are a special case of this situation. It is found that surfaces of
most materials reconstruct, i.e., atoms near the surface rearrange their po-
sitions in a configuration energetically more favoured than that they would
have in the bulk (such a configuration is called a reconstruction). This phe-
nomenon is particularly strong in semiconductors, in which atoms are tied
together by covalent bonds; usually there is a hybridization of atomic states,
producing sp® and/or sp® orbitals. Such orbitals are strongly directional,
and at a surface, some of them point outward and don’t form bonds with
other atoms: these are the so-called dangling bonds. The presence of dan-
gling bonds is energetically unfavourable, so atoms find more convenient to
rearrange their geometry to reduce the number of them.

There are usually different competing reconstructions, consisting in differ-
ent spatial configurations of the surface atoms; they induce different surface
states, and can modify the character of the system from insulator to metallic
or vice-versa. Determining the reconstructions of surfaces of a given material
is therefore a very important subject in the study of semiconductors, as it
represents the first basic step to the understanding of single-crystal growth
and interface formation.



In the case of single-crystal growth, we deal with clean surfaces. There are
many ways in which a clean surface can reconstruct; tipically this causes only
the first one or two atomic layers to change significantly their geometry, while
a few deeper layers are slightly distorted. An important reconstruction mech-
anism is the formation of adatoms, i.e., single atoms placed over a complete
layer of atoms. Adatoms hybridized sp®, such as those of diamond-structure
semiconductors, usually lie over the site midway among three surface atoms
saturating their dangling bonds, i.e., pairing each of them to an orbital of
theirs, thus turning them into covalent bonds (this can be done with relatively
little distortion of the orbitals); this way, three dangling bonds are removed
while only one is formed, namely, the fourth sp?® orbital of the adatom.

Another subject of interest is the deposition of one substance on another:
this is a widely used technique to produce a clean surface of a given ma-
terial over a suitable substrate. This starts with the deposed atoms being
adsorbed by the surface, i.e., binding themselves to the surface as adatoms.
The reconstructions of such surfaces depend on both the adsorbate (i.e., the
adsorbed material) and the substrate, and also on the coverage rate, i.e., the
surface density of adsorbed atoms. The coverage rate is usually measured
in monolayers: 1 monolayer is the number of atoms per layer of the clean
(unreconstructed) surface.

A widely studied case is that of semiconductors having a diamond struc-
ture, namely carbon (C) in the diamond phase, silicon (Si), germanium (Ge)
and the alpha phase of tin (a-Sn). Sn, in fact, presents two solid phases
called o (grey tin) and B (white tin; a third phase, v-Sn, appears only at
very high pressures); only the former has a diamond structure, while the
latter doesn’t behave as a semiconductor either.

On the (111) surface of a diamond-structure substance, a possible recon-
struction is the so-called o phase, in which adatoms cover all the surface
atoms’ dangling bonds. The density of adatoms is then 1/3 monolayer, and
the number of dangling bonds is correspondingly reduced. Such a reconstruc-
tion is also called a v/3 x /3 R30° (+/3 for brevity), due to the shape of the
unit cell: see figure 2.2. An « phase is observed, for example, for Sn-Ge(111)
(i.e., Sn atoms adsorbed on a Ge (111) surface), Sn-Si(111), and Pb-Ge(111)
systems; it is not observed, instead, in clean Si(111) and Ge(111) systems.

In this work, we use first-principles calculations to analyse the reasons of
such a behavior. Calculations are performed on the Sn-Ge(111) surface: the
/3 reconstruction is compared to the competing 2 x 2 one (see again figure
2.2), as both are observed experimentally. The same reconstructions are also
studied, for comparison, for a clean Ge(111) surface. In Chapter 1 the com-
putational method is briefly exposed, while in Chapter 2 the systems studied
are described in detail. Results are presented and discussed in Chapter 3.

5



Chapter 1

Computational methods

1.1 The PWSCF (plane-wave self-consistent
field) method

In the framework of the density-functional theory (DFT) [1, 2, 3], the problem
of solving the Hamiltonian of a solid can be reduced to a system of the so-
called Kohn-Sham equations [2]:

Hysdi(r) = <__lv2 +V(r) +/ ]:_(_I‘Ij’l

n(r) = 29 i —€r)|i(r)]?

where the ¢;(r) are called single-particle orbitals; n(r) is the total electron
density and V'(r) the potential generated by nuclei (possibly plus an external
potential), while V,.(r) is called the exchange-correlation potential. Its exact
form cannot be calculated, but a number of approximations are available; for
example in the Local Density Approximation (LDA) [2]

§ (n(r)ege[n(r)])

dn(r)
ezc[n(r)] being the exchange-correlation energy of the system, that is a func-
tional of n(r) [1].

The Kohn-Sham equations are solved iteratively by choosing a trial ex-
pression for n(r), obtaining V.(r) from it, and then calculating a new ex-
pression for n(r); the procedure is repeated until self-consistency is achieved.

In the plane-wave self-consistent field method [4], the single-particle or-
bitals are written as
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where the G’s are the reciprocal lattice vectors of the crystal, while k is a
vector of the first Brillouin zone (BZ). The Kohn-Sham system is then solved
for a finite number of equations, selected by choosing a finite set of k’s in the
BZ and by restricting to the plane waves e!®*+&)T guch that [k + G| is less
than a given cutoff energy E.,;. Sets of so-called special k-points are available
in literature [5, 6] that allow accurate results using a small number of k’s.

This way, the system’s wavefunctions are calculated ab initio for a given
set of atomic positions. For the given configuration, the Hellmann-Feynman
forces [4] acting on atoms can then be calculated, atoms be moved according
to these forces, and the procedure repeated until the forces become less than a
given value, or the energy of the system reaches a (possibly global) minimum.

Finally, given the wavefunctions, band energies and the total energy of
the system are easily calculated.

1.2 Pseudopotentials

Especially in large atoms, electrons of the inner shells have very strong bind-
ing energies and very localized wavefunctions; a PWSCF calculation involv-
ing these electrons would then require a very large cutoff energy, and thus a
very large number of plane waves (which grows roughly as Eflf ), resulting
in a very time- (and memory-) consuming calculation.

A substantial lowering of the cutoff required to obtain accurate results
can be achieved by taking into account only electrons of the outer shells (i.e.,
valence electrons), while inner-shells electrons (also called core electrons) can
be considered not to interact with other atoms; their wavefunctions can then
be calculated by solving a single-atom Hamiltonian, and so does the screened
potential that outer electrons see: this is called a pseudopotential.

Pseudopotentials can be calculated by solving the all-electrons single-
atom problem, and then requiring that “pseudo-wavefunctions”, i.e., wave-
functions of the pseudo-Hamiltonian, coincide with true valence wavefunc-
tions outside a suitable “core radius” 7.; moreover, they must be sufficiently
smooth to be accurately evaluated with a low cutoft.

A pseudopotential is said to be transferable, if it gives reliable results
for different systems; another property that is usually required is norm-
conservation [7], i.e., that integrals from 0 to r. of real and pseudo-wave-
functions be equal for each valence state. It is found that to satisfy these
requirements, pseudopotentials must be non-local, i.e., depend on the an-
gular momentum of electrons; a computationally efficient form for non-local
pseudopotentials is given in [8]. An extensive set of pseudopotentials can be
found in [9].



1.3 Swurface calculations

As PWSCF calculations are only affordable for a small number of atoms (with
our computational facilities and using Sn and Ge atoms, we couldn’t have
more than about 50 of them, due to memory constraints), periodic boundary
conditions are necessary to avoid unwanted surface effects; in calculations on
bulk solids, the unit cell of the crystal is the natural choice. A surface system,
however, doesn’t have a translational simmetry in the direction orthogonal to
the surface. Calculations are then done on a slab a few atomic layers thick,
which has an upper and a lower surface; by imposing periodic boundary
conditions, the system becomes an infinite sequence of repeating slabs.

While in directions parallel to the surface the periodic cell can be made
as small as the surface reconstruction periodicity allows (down to a 1 x 1 cell,
i.e., a single atom per layer, for unreconstructed surfaces), in the orthogonal
direction the upper and lower surface must be sufficiently distant not to
interact with each other, both in the same cell and in neighboring cells; this
means that the slab must consist of a sufficiently large number of layers, and
also that there must be enough empty space in the cell above and below
the surfaces. The periodic cell has therefore the shape of a tall prism; the
corresponding Brillouin zone is a very low one, so that two-dimensional sets
of special points can be used.

The lower surface can be a replica of the upper one, in which case all
quantities such as the surface energy must be divided by two; but a common
technique is to leave it unreconstructed and to saturate its dangling bonds
with hydrogen atoms. This way, the lower surface is like a truncated bulk,
and does not influence the upper surface. When this choice is made, while
atoms near the upper surface are allowed to move according to the Hellmann-
Feynman forces, the lowest layers’ atoms are also kept fixed in their bulk
positions, which increases their “bulk-like” character.

In this work we did all calculations with the program pwscf, which im-
plements the PWSCF method using the Ceperley-Alder exchange-correlation
potential functional [10, 11]. Pseudopotentials of the Kleinman-Bylander
form [8, 12] are used. The Davidson method [13] is used to solve the Kohn-
Sham system in momentum space, and a modified Broyden algorithm [14] is
used to accelerate convergence. Details on the unit cells, the cutoff, and the
k-point samplings used are given in section 2.4.



Chapter 2

Systems studied

2.1 (111) surfaces: adatom sites

On the (111) surface of a diamond-structure crystal, there are two sets of
inequivalent sites where adatoms can lie: either on the top of an underlying
atom of the second surface layer, or over a hollow site of the same layer (in
this case, the nearest underlying atom is one of the fourth layer), as shown
in figure 2.1. The two positions are usually called Ty (I" stands for “top”)
and Hj (H stands for “hollow”), respectively.

There is computational evidence [15, 16, 17] that T, sites are almost
always energetically more favourable: in fact, the atom directly below the
adatom can move inward to reduce stresses, while simmetry doesn’t allow this
in the Hs geometry. In our calculations, therefore, we placed all adatoms in
T, positions.

Figure 2.1: Side view of an adatom placed on: (a) a Ty site. (b) an Hj site.
Adatoms are shaded in grey. Dashed lines represent dangling bonds.



2.2 Ge(111) and Sn-Ge(111) 2 X 2 reconstruc-
tions: the adatom-rest atom mechanism

2 x 2 reconstructions are so called because their unit cell has twice the side of
an unreconstructed (111) surface, thus containing four atoms per layer. The
structure of a 2 X 2 reconstruction is shown in figure 2.2. Such reconstructions
are driven by the so-called adatom-rest atom mechanism: while three atoms
per unit cell establish chemical bonds with the adatom, the fourth atom of the
topmost layer (called a rest atom) has a dangling bond at a lower energy level
than that of the adatom. A charge transfer (partial of total) then happens
between them, thus making two half-filled states into a “mostly filled” and
a “mostly empty” one: the total energy is lowered by this process.

In this work the Sn-Ge(111) 2 x 2 reconstruction, which is experimentally
observed [18], was studied: in this system, the Sn coverage rate is 1 atom per
2x 2 cell, or 1/4 monolayer. We also studied the Ge(111) 2% 2 reconstruction,
taking it as the lowest-energy reconstruction of this surface. Actually the
experimentally observed reconstruction is the ¢(2 x 8) one [19, 20], which
is shown in figure 2.3; but this surface, having a unit cell twice as large as
the 2 x 2 one, is computationally too expensive. Because of the similarity
between the two systems (the c(2 x 8) cell can be divided into a 2 x 2 and
a c(4 x 2) subcells, whose surface energies are practically indistinguishable),
we suppose their difference in energy to be sufficiently small.

2.3 Ge(111) and Sn-Ge(111) a (v/3) recon-
structions

In /3 reconstructions, all topmost-layer atoms establish chemical bonds with
adatoms. The structure is shown in figure 2.2: the unit cell of such a recon-
struction contains three atoms per layer, has a side /3 times larger than that
of the 1 x 1 cell, and is rotated 30° with respect to it. The reconstruction is
therefore called v/3 x v/3 R30° (+/3 for brevity). As there is a single dangling
bond per unit cell, the system must have a half-filled electron band; it is
therefore a metal, while the 2 x 2 system, having two dangling bonds per cell
(one of which is filled while the other is empty, as said above), is an insulator.

In this work the Sn-Ge(111) v/3 reconstruction was studied: its Sn cov-
erage rate is 1 atom per +/3 cell, or 1/3 monolayer. Such a reconstruction
is experimentally observed for this system [21, 22, 23, 24, 25], but is not for
the Ge(111) one, which we also studied for comparison.
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Figure 2.2: Top view of: (a) a 2 x 2 reconstruction; (b) a /3 reconstruction.
The larger the circles, the higher the corrisponding atoms; adatoms are the
largest circles at all. Adatoms and rest atoms, that is, atoms with dangling
bonds, are shaded in grey. The unit cells are outlined.
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Figure 2.3: Top view of a ¢(2 x 8) reconstruction. The larger the circles, the
higher the corrisponding atoms; adatoms are the largest circles at all. The
unit cell is outlined in solid; the 2 x 2 and c(4 x 2) subcells are also shown
with dashed lines.

2.4 Computational details

Before calculating the surfaces previously described, a cell of bulk Ge was
examined to determine the optimal (i.e., minimum-energy) lattice spacing.
The geometry of the cell was chosen to be similar to those used for the
surface calculations: it had a 1 x 1 periodicity in the horizontal directions,
thus containing one atom per layer, and consisted of 12 layers vertically (a
number of layers not multiple of 6 would not allow vertical periodicity). The
coordinates of the 12 Ge atoms, in units of the horizontal cell side a, are
shown in table 2.1. We found an optimal cell side of 7.575 atomic units, the
experimental value being 7.560 a.u. [26].

For our surface systems, we used a slab with the same horizontal peri-
odicity of the reconstruction, namely 2 x 2 and v/3 x v/3 R30% there were
therefore 4 and 3 atoms per layer, respectively. A 10-layers slab was used,
with an adatom on the top surface, while the dangling bonds on the bottom
surface were saturated with hydrogen atoms: the 10 Ge layers, plus the H
one, plus the adatom, correspond to the 12 layers used in the cell described
above. The total number of atoms per cell was then 45 for 2 x 2 systems, and
34 for /3 ones. The empty space between periodic images of the slab was
about 20 atomic units, i.e., about 10 A. The systems were relaxed allowing
adatoms and atoms of the 6 topmost layers to move, while other layers were

12



coordinates | coordinates |

0.0000 0.0000  2.1433 0.0000 0.0000 -0.3062
0.5000 0.2887  1.9392 0.5000 0.2887  -0.5103
0.5000 0.2887  1.3268 0.5000 0.2887  -1.1227
-0.5000 -0.2887  1.1227 -0.5000 -0.2887 -1.3268
-0.5000 -0.2887  0.5103 -0.5000 -0.2887 -1.9392
0.0000 0.0000  0.3062 0.0000 0.0000  -2.1433

Table 2.1: Atomic positions for the bulk Ge slab. All coordinates are in units
of the horizontal cell side = 7.57507 a.u. The vertical cell side is 37.1101 a.u.

[ unrelaxed coords | relaxed, Sn-Ge | relaxed, Ge |

A | 0.0000 0.0000 1.1196 0.0000 0.0000 1.2774 0.0000 0.0000 1.2492
-0.1667  -0.2887  1.0017 | -0.1539 -0.2666  1.0134 | -0.1510 -0.2615  1.0142
-0.1667  0.2887 1.0017 0.3078 0.0000 1.0134 0.3020 0.0000 1.0142
0.3333 0.0000 1.0017 | -0.1539  0.2666 1.0134 | -0.1510  0.2615 1.0142
-0.5000 -0.2887  0.8839 0.0000 0.0000 0.8392 0.0000 0.0000 0.8331
0.0000 0.0000 0.8839 | -0.5000 -0.2887  0.9168 | -0.5000 -0.2887  0.9204
0.5000 0.2887 0.8839 0.5000 0.2887 0.9168 0.5000 0.2887 0.9204
-0.5000  -0.2887  0.5303 0.0000 0.0000 0.4933 0.0000 0.0000 0.4881
0.0000 0.0000 0.5303 | -0.5000 -0.2887  0.5493 | -0.5000 -0.2887  0.5513
0.5000 0.2887 0.5303 0.5000 0.2887 0.5493 0.5000 0.2887 0.5513
-0.3333  0.0000 0.4125 0.1707 -0.2956  0.4152 0.1715  -0.2970  0.4152
0.1667  -0.2887  0.4125 | -0.3412  0.0000 0.4152 | -0.3428  0.0000 0.4152
0.1667 0.2887 0.4125 0.1707 0.2956 0.4152 0.1715 0.2870 0.4152
-0.3333  0.0000 0.0589 | -0.3369  0.0000 0.0593 | -0.3373  0.0000 0.0592
0.1667  -0.2887  0.0589 0.1685 -0.2918  0.0593 0.1686  -0.2921  0.05692
0.1667 0.2887 0.0589 0.1685 0.2918 0.0593 0.1686 0.2921 0.0592
-0.1667 -0.2887 -0.0589 | -0.1657 -0.2870 -0.0585 | -0.1655 -0.2867 -0.0590
-0.1667  0.2887  -0.0589 | -0.1657  0.2870 -0.0585 | -0.1655  0.2867  -0.0590
0.3333 0.0000 -0.0589 | 0.3314 0.0000 -0.0585 | 0.3311 0.0000  -0.0590

H | -0.3333  0.0000 -1.2283 | -0.3333  0.0000 -1.2283 | -0.3333  0.0000  -1.2283
H | 0.1667 -0.2887 -1.2283 | 0.1667 -0.2887 -1.2283 | 0.1667 -0.2887 -1.2283
H | 0.1667 0.2887  -1.2283 | 0.1667 0.2887 -1.2283 | 0.1667 0.2887  -1.2283

Table 2.2: Unrelaxed and relaxed atomic positions for the /3 slabs. The
adatom is labelled A, the hydrogen atoms H. The four lowest Ge layers, which
have been kept fixed, are not shown: they can be obtained by simmetries.
All coordinates are in units of the horizontal cell side = 13.12041 a.u. The
vertical cell side is 53.0255 a.u.
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| | unrelaxed coords |

relaxed, Sn-Ge

relaxed, Ge

]

A | 0.0000 0.0000 0.9696 0.0000 0.0000 1.0692 0.0000 0.0000 1.0424
-0.2500 -0.1443  0.8675 | -0.2421 -0.1398  0.8570 | -0.2386 -0.1378  0.8593
0.0000 0.2887 0.8675 0.0000 0.2796 0.8570 0.0000 0.2755 0.8593
0.2500 -0.1443 0.8675 0.2421  -0.1398  0.8570 0.2386  -0.1378  0.8593

R | 0.5000 0.2887 0.8675 0.5000 0.2887 0.9422 0.5000 0.2887 0.9478
-0.2500  -0.4330 0.7655 | -0.2329 -0.4429 0.7878 | -0.2316 -0.4436  0.7915
0.0000 0.0000 0.7655 0.0000 0.0000 0.7202 0.0000 0.0000 0.7152
0.2500 -0.4330  0.7655 0.2329 -0.4429  0.7878 0.2316  -0.4436  0.7915
0.5000 0.0000 0.7655 0.5000 0.0198 0.7878 0.5000 0.0212 0.7915
-0.2500 -0.4330  0.4593 | -0.2510 -0.4325 0.4743 | -0.2510 -0.4324  0.4771
0.0000 0.0000 0.4593 0.0000 0.0000 0.4190 0.0000 0.0000 0.4167
0.2500  -0.4330  0.4593 0.2510  -0.4325  0.4743 0.2510 -0.4324  0.4771
0.5000 0.0000 0.4593 0.5000 -0.0011  0.4743 0.5000  -0.0012  0.4771
-0.2500  0.1443 0.3572 | -0.2577  0.1488 0.3576 | -0.2583  0.1491 0.3584
0.0000  -0.2887  0.3572 0.0000 -0.2976  0.3576 0.0000 -0.2983  0.3584
0.2500 0.1443 0.3572 0.2577 0.1488 0.3576 0.2583 0.1491 0.3584
0.5000  -0.2887  0.3572 0.5000 -0.2887  0.3673 0.5000  -0.2887  0.3690
-0.2500  0.1443 0.0510 | -0.2519  0.1455 0.0504 | -0.2524  0.1457 0.0512
0.0000 -0.2887  0.0510 0.0000 -0.2909  0.0504 0.0000  -0.2915 0.0512
0.2500 0.1443 0.0510 0.2519 0.1455 0.0504 0.2524 0.1457 0.0512
0.5000  -0.2887  0.0510 0.5000 -0.2887  0.0575 0.5000 -0.2887  0.0585
-0.2500 -0.1443  -0.0510 | -0.2509 -0.1449 -0.0496 | -0.2508 -0.1448  -0.0488
0.0000 0.2887  -0.0510 | 0.0000 0.2897  -0.0496 | 0.0000 0.2896  -0.0488
0.2500  -0.1443 -0.0510 | 0.2509 -0.1449 -0.0496 | 0.2508  -0.1448 -0.0488
0.5000 0.2887  -0.0510 | 0.5000 0.2887  -0.0543 | 0.5000 0.2887  -0.0544

H | -0.2500  0.1443  -1.0637 | -0.2500  0.1443  -1.0637 | -0.2500  0.1443  -1.0637

H | 0.0000 -0.2887 -1.0637 | 0.0000 -0.2887 ﬂ-1.0637 0.0000 -0.2887 -1.0637

H | 0.2500 0.1443  -1.0637 | 0.2500 0.1443 -1.0637 | 0.2500 0.1443  -1.0837

H | 0.5000 -0.2887 -1.0637 | 0.5000 -0.2887 -1.0637 | 0.5000 -0.2887 -1.0637

Table 2.3: Unrelaxed and relaxed atomic positions for the 2 x 2 slabs. The
adatom is labelled A, the rest atom R, the hydrogen atoms H. The four

lowest Ge layers, which have been kept fixed, are not shown: they can be

obtained by simmetries. All coordinates are in units of the horizontal cell

side = 15.15014 a.u. The vertical cell side is 53.0255 a.u.
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[ system \ k-points weights ‘
surfaces (0.380718, 0, 0) 1

(0.190359, 0, 0) 1/4
bulk Ge | (0.595180, 0.123819, 0) 1/4
(0.404820, 0.123819, 0) 1/2

Table 2.4: 1- and 3-k-points sets used for calculations. Coordinates are in
units 27/a, a being the horizontal cell side.

[ k-points weights |
0.111111, 0.064150, 0) 1/9
0.222222, 0.128300, 0)  1/9
0.444444, 0.256600, 0) 1/9
0.333333, 0.064150, 0) 2/9
)
)

0.444444, 0.128300, 0)  2/9
0.555556, 0.064150, 0)  2/9

e o~

Table 2.5: The 6-k-points set used for calculations. Coordinates are in units
2m/a, a being the horizontal cell side.

kept fixed. Relaxed and unrelaxed atomic coordinates are shown in tables
2.2 and 2.3.

The energy cutoff for all calculations was 12 Ry, that had been previously
determined to be the optimal choice for this kind of systems [12].

As of the k-points sampling, we first used the sets of £-points shown in
table 2.4. A single point was used for the four surface systems to minimize
the computation time, especially for the calculation of equilibrium positions:
the special point of [6] was used, while the three-points sets used for the
bulk Ge cell were obtained by refolding the 2 x 2 point over the 1 x 1-cell
irreducible Brillouin zone (IBZ).

After relaxing atomic positions, total energy calculations were repeated
with a better sampling of the IBZ, using for all three systems the 6-k-points
sampling of [6]; some test calculations with an 18 k-points sampling (see
again [6]) were also done. These points are shown in tables 2.5 and 2.6.
Since, atomic positions were kept fixed to those determined by calculations
with a single k-point: we tested that relaxing positions with three k-points
gave negligible differences.

For our purposes we also needed to calculate the energy per atom of bulk
Ge and Sn: we calculated the latter using a 2-atoms fcc cell (the crystal

15



| k-points weights || k-points weights |

(0.074074, 0, 0) 1/27 |[(0.185185, 0.064150, 0)  2/27
(0.148148, 0, 0) 1/27 || (0.259259, 0.064150, 0)  2/27
(0.296296, 0, 0) 1/27 || (0.407407, 0.064150, 0)  2/27
(0.370370, 0, 0) 1/27 || (0.481481, 0.064150, 0)  2/27
(0.518519, 0, 0) 1/27 || (0.296296, 0.128300, 0)  2/27
(0.592593, 0, 0) 1/27 || (0.370370, 0.128300, 0)  2/27
(0.629630, 0.064150, 0)  1/27 || (0.518519, 0.128300, 0)  2/27
(0.592593, 0.128300, 0)  1/27 || (0.407407, 0.192450, 0)  2/27
(0.518519, 0.256600, 0)  1/27 || (0.481481, 0.192450, 0)  2/27

Table 2.6: The 18-k-points set used for calculations. Coordinates are in units
27 /a, a being the horizontal cell side.

1 coordinates H 0.0000  0.0000 0.0000 ‘ 0.2500  0.2500 O.QSM

Table 2.7: Atomic positions for the 2-atoms fec cells. All coordinates are in
units of the cell side, that is 10.722 a.u. for Ge and 12.250 a.u. for Sn.

structure being that of diamond), having determined previously the optimal
(i.e., minimum-energy) lattice spacing to be 12.250 a.u., compared with the
experimental value of 12.267 a.u. [26]. The energy per Sn atom was -7.1476
Ry. The atomic coordinates are reported in table 2.7, while the special-k-
points set used [5, 27] is reported in table 2.8.

For the Ge system, instead, we used the total energy, divided by 12, of
our bulk Ge cell; however, for comparison we also considered a 2-atoms cell
with Ge atoms, with a lattice spacing of 10.722 a.u., while the experimental
result is 10.691 a.u. [26]. The energy per Ge atom was -8.0288 Ry, almost
identical to the 12-atoms-cell result of -8.0291 Ry (using 6 k-points).

] k-points weights || k-points weights |
0.125, 0.125, 0.125) 1/32 (0.125, 0.375, 0.625) 6/32
0.125, 0.125, 0.375) 3/32 (0.125, 0.375, 0.875) 6/32
0.125, 0.125, 0.625) 3/32 (0.125, 0.625, 0.625) 3/32
) ( )
) ( )

0.125, 0.125, 0.875 3/32 0.375, 0.375, 0.375 1/32
0.125, 0.375, 0.375 3/32 0.375, 0.375, 0.625 3/32

(
(
(
(
(

Table 2.8: The 10-k-points set used for calculations. Coordinates are in units
27 /a, a being the fcc cell side.
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Chapter 3

Results and discussion

3.1 Free energies and chemical potentials

Since the Sn coverage rate is not equal for all the systems we studied, the
quantity we must consider to determine which reconstruction is energetically
more favourable, is the free energy 2 = E — uN per surface unit area,
where N is the number of Sn atoms: as we calculated energies E per 1 x
l-cell, N is 1/4 and 1/3 for Sn-Ge(111) 2 x 2 and /3 respectively, and
0 for Ge(111) reconstructions. The number of Ge atoms, instead, can be
considered constant, provided we subtract the energy of 1 bulk Ge atom
from that of Ge(111) cells (see section 2.4): in these slabs, in fact, there is
one more Ge atom than in Sn-Ge(111) ones, that is, the adatom, and an
atom “comes” from the bulk to fill the cell. This is equivalent to saying that
the chemical potential for Ge is fixed to that of the bulk.

A physical constraint also applies to the Sn chemical potential: our sur-
face reconstructions can’t be equilibrium states (i.e., local minima of the free
energy) if the chemical potential is greater than the energy of a Sn bulk atom
[28, 29, 16]. If this were the case, the recontruction would be unstable against
aggregation of Sn atoms in “drops” of bulk Sn. This upper bound to the Sn
chemical potential, as calculated in section 2.4, is -7.1476 Ry.

The energies F are directly output by the program pwscf for the slabs
considered. We first did all calculations using the 1- and 6-k-points sets of
section 2.4 to sample the IBZ; then, because of the non-negligible difference
between the two sets of results, we also did calculations with a 18-k-points
set (also reported in section 2.4); we found energies very similar to those
obtained with 6 k-points, indicating that convergence in k-point sampling
was achieved with 6 k-points. Results are shown in table 3.1 and figure 3.1.

According to our results, there are two reconstructions that have the
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| system | k-points | slab energy |1 x 1-cell energy

3 -96.37262 Ry —
bulk Ge 6 -96.34938 Ry —
18 -96.34863 Ry —
1 -332.60982 Ry | -83.15246 Ry
Sn-Ge 2 x 2 6 -332.52724 Ry | -83.13181 Ry
18 -332.52742 Ry | -83.13186 Ry
1 -251.26994 Ry | -83.75665 Ry
Sn-Ce v/3 6 -251.19178 Ry | -83.73059 Ry
18 -251.19117 Ry | -83.73039 Ry
1 -333.46806 Ry | -81.35925 Ry
Ge 2 x2 6 -333.38601 Ry | -81.33922 Ry
18 -333.38619 Ry | -81.33929 Ry
1 -252.12337 Ry | -81.36411 Ry
Ge V3 6 -252.04485 Ry | -81.33858 Ry
18 -252.04421 Ry | -81.33839 Ry

Table 3.1: Total energies E of the slabs considered. The energy of 1 Ge
bulk atom (calculated with the corresponding number of k-points) has been
subtracted from the Ge reconstructions energies to calculate the 1 x 1-cell
energies.

-81.33 - T T T T T
™ Sn-Ge 2x2 —
-81.332 Sn-Ge sqrt3 ---- y
Ge 2x2 -----
-81.334 Ge sqrt3 - =
3 -81.336 .
= -81.338 .
>
e R SARAGRACOEIE I E I SN
- 8134 - -
o
2 .1.342 |- 4
@ L
8 81344 - §
-81.346 | R
-81.348 - .
_8135 1 1 ] 1 1
7.2 719 748 747 716 7145 714

chemical potential, Ry

Figure 3.1: Free energies Q = E — uN (N is the number of Sn atoms)
per 1 x I-cell of the systems considered, calculated with 18 k-points, as a

function of the chemical potential u. Lines end at the upper-bound value of
W ="T.1476 Ry.
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minimum value of Q for some value of y, i.e., the Sn-Ge v/3 one (a phase) for
—7.1733 Ry < u < —7.1476 Ry, and the Ge 2 x 2 one for u < —7.1733 Ry.
This is only partially consistent with experimental evidence. Our results
agree with experiment in predicting a stable a-phase for Sn-Ge(111) [21,
22, 23, 24, 25], but not for clean Ge(111), where, as expected, the 2 x 2
reconstruction is found to win over the v/3 one [19, 20]. Instead, the 2 x 2
reconstruction, which has also been recently observed [18], should never exist
according to our results. It has to be noticed, however, that the difference in
the free energy between this reconstruction and the minimum-{2 one is very
little (less than 1 mRy for the value of p at which Sn-Ge /3 coexists with
Ge 2 x 2) and therefore we can speculate that the 2 X 2 reconstruction may
exist as a metastable one.

3.2 Bond angles and atomic hybridization

In table 3.2 the angles (with respect to the horizontal direction) and lengths
of the adatoms’ and rest atoms’ bonds with their nearest neighbors in the
various reconstructions are reported: we see that in all cases adatoms and
rest atoms move considerably outward, thus increasing bond angles (see figure
3.2) with respect to the ideal tetrahedral value of 19.5°. A mechanism that
induces the raising of adatoms is surely the repulsion between each adatom
and its underlying second-layer atom, since their distance is only 2/3 of the
bulk bond length when they are in their unrelaxed positions.

Another mechanism, that is of interest for our problem, is the following.
In sp?® hybridization, atomic orbitals are a linear combination of the s and
the three p wavefunctions, and the energies of the hybridized states are also
linear combinations of &, and £, (namely, (5 + 3¢,)/4 in the ideal case).
When the bond angles are varied, the coefficients of the combinations also
vary; in particular, it can be shown [30] that the energy of the dangling bond
state is '

9
Ezep—z(ap—es)sinQQ

The extrema of this situation are the cases sinf = 2/3 (6 = 41.8°), in
which E = &,, and § = 0, in which £ = ¢,: in the former there is no
hybridization at all, so that the three bonds are p orbitals and the dangling
bond is an s one, while in the latter the three bonds are hybridized sp? and
the dangling bond is the remaining p orbital. The tetrahedral case, in which
all four orbitals have the same energy (¢, + 3¢,)/4, corresponds to the value
sinf = 1/3 (# = 19.5°).

Because of this mechanism, as adatoms and rest atoms move outward,
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1
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1
1
t

Figure 3.2: Bond angles between adatoms or rest atoms and their nearest
neighbors. When bond lengths are larger (as in the case of larger adatoms),
bond angles are also larger. The dashed lines pointing upward represent the
dangling bonds.

| system [ bond angle | bond length | 2nd-layer dist. |
ideal (tetrahedral) 19.5° 4.639 a.u. 3.093 a.u.
Sn-Ge using covalent radii 28.6° 4.981 a.u. 3.930 a.u.
ideal bond length — — 4.639 a.u.
ideal bond length, Sn-Ge — — 4.981 a.u.
Sn-Ge /3, adatom 40.6° 5.321 a.u. 5.749 a.u.
Sn-Ge 2 x 2, adatom 37.20 5.317 a.u. 5.281 a.u.
Sn-Ge 2 x 2, rest atom 29.9° 4.698 a.u. —
Ge /3, adatom 37.9° 5.021 a.u. 5.460 a.u.
Ge 2 x 2, adatom 33.69 5.012 a.u. 4.957 a.u.
Ge 2 x 2, rest atom 30.39 4.693 a.u. —

Table 3.2: Bond angles and lengths for adatoms and rest atoms for the re-
constructions studied. The ideal (tetrahedral) value, and the value obtained
by using the Sn-Ge covalent bond length, are given for comparison. The
adatoms’ distances from the underlying 2nd-layer atoms are also reported
and compared with the ideal values.
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surface bands of their dangling bonds lower their energies, thus “stabilizing”
the system. A clear evidence that rehybridization is energetically more im-
portant than repulsion is given by the fact that rest atoms, that have no
underlying neighboring atom so that the repulsive mechanism doesn’t apply,
also raise considerably their positions (see table 3.2).

A simple geometrical argument that explains the different behavior of
clean and Sn-covered Ge(111) surfaces can now be straightforwardly formu-
lated. The larger size of the Sn adatom (see figure 3.2) naturally favours a
larger bond angle with respect to a Ge adatom. The covalent radius for Sn
is in fact 1.40 A, to be compared with 1.22 A for Ge.

Since the /3 surface is stabilized by the outward motion of the adatom,
that we know to be more favourable for Sn, while the 2 X 2 one is stabilized
by that of the rest atom, which is a Ge atom for both Sn-covered and clean
Ge(111), we thus conclude that a simple argument based on the different
atomic size of Sn and Ge nicely accounts for the markedly different behavior
of the two surfaces.

In support of the above argument, we show in figures 3.3 and 3.4 the
electron bands of the four surface reconstructions. Surface bands are clearly
seen: in /3 reconstructions we have one of these, that corresponds to the
adatoms’ dangling bonds, while in 2 x 2 ones there are two surface bands, that
correspond to the adatoms’ (the higher one) and to the rest atoms’ (the lower
one) dangling bonds. We have verified these correspondences by calculating
the spatial charge density of the states: results are shown in figure 3.6.

For both kinds of reconstructions, we can observe a lowering of the
adatoms” dangling-bond bands, and of the Fermi energy, for Sn-Ge systems
with respect to Ge ones, in agreement with the simple picture given above.
This gives the Sn adatom’s dangling bond a more s-like character, thus low-
ering the energy of the corresponding band.

The mechanism applies to /3 and 2 x 2 reconstructions differently: in
the formers, the adatom’s dangling-bond band is half-occupied, so that by
lowering its energy, the total energy of the system is also lowered. We there-
fore expect for /3 adatoms a strong tendency to move outward. In the
latters, instead, by moving the rest atom outward, its dangling-bond band,
that is fully occupied, lowers its energy, thus reducing the total energy; but
by moving outward the adatom, the lowering of its dangling-bond band, that
is empty, doesn’t contribute to decrease the total energy. We then expect
for 2 x 2 adatoms a weaker tendency to move outward than for /3 ones. In
fact, we can see from table 3.2 that bond angles in /3 systems are actually
larger (about 3-4 degrees) than in 2 X 2 ones.
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Figure 3.3: (a) Sn-Ge v/3 electron bands; (b) Ge v/3 ones. The region around
the Fermi energy is shown. Plots are rotated to allow a better comparison.
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gion around the Fermi energy is shown. Plots are rotated to allow a better
comparison.



cell side (13.120 a.u.) units

cell side (15.150 a.u.) units

cell side (15.150 a.u.) units

Figure 3.5: Charge density of: (a) the Sn-Ge /3 slab; (b) the Sn-Ge 2 x 2
slab. Densities are plotted on a vertical plane through adatoms and (for the
2 x 2 case) rest atoms. Positions of atoms near this plane are also shown.
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Figure 3.6: Charge density of: (a) the Sn-Ge /3 surface state (half-filled); (b)
the Sn-Ge 2 x 2 higher surface state (empty); (c) the Sn-Ge 2x 2 lower surface
state (filled). Densities are calculated assuming all states fully occupied, and
plotted on a vertical plane through adatoms and (for the 2 x 2 case) rest
atoms. Positions of atoms near this plane are also shown.
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3.3 Summary and conclusions

In this work we have calculated the free energies of four competing recon-
structions of the Sn-Ge(111) surface. Our calculations have shown that an
accurate Brillouin-zone integration is required to obtain reliable results; for
our unit cells, the 6-k-points set of [6] gave good results. This set should be
good (even better) also for larger units cells, which have a smaller IBZ, while
smaller cells (e.g., 1 x 1 ones) may require a greater accuracy.

Our results imply that of those reconstructions, only the Sn-Ge v/3 and
the Ge 2 x 2 are stable phases of the system. The Sn-Ge 2 x 2 reconstruction
appears not to be a stable phase; however, it may exist as a metastable one.
In fact, experiments also point to this direction.

Our results agree with the experimental evidence that the Sn-Ge /3
phase, despite its being metallic and having half-filled dangling bonds, has a
sufficiently low energy to prevail over the Sn-Ge 2 x 2 one; this is not true for
the corresponding Ge phases. We suppose that the larger size of Sn atoms
with respect to Ge ones play a major role in this phenomenon: the greater
bond lengths imposed by Sn adatoms being so large cause the bond angles to
increase, thus modifying the hybridization state and lowering the adatom’s
dangling-bond band. This mechanism, indeed, favours the /3 reconstruction
against the 2 X 2 one.

This interpretation is supported by experimental observations on other
(111)-surface systems: surfaces in which the adatom is larger than bulk
atoms, such as the Pb-Ge(111) and the Pb-Si(111) ones, also reconstruct
with a /3 structure [31, 32, 33, 34], while surfaces with equal-size (and pos-
sibly smaller) adatoms, such as clean Ge(111) and Si(111), don’t. (Si(111)
actually reconstructs with a larger, namely 7 x 7, structure; however, this is
made of building blocks having an adatom-rest atom structure [35] as in the
2 x 2 reconstruction.)
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